Science.gov

Sample records for interleukin-1beta-induced beta-cell apoptosis

  1. Angiotensin II modulates interleukin-1{beta}-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-{kappa}B crosstalk

    SciTech Connect

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun; Jiang, Bingbing

    2011-07-08

    Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin

  2. Baculovirus p35 increases pancreatic {beta}-cell resistance to apoptosis

    SciTech Connect

    Hollander, Kenneth; Bar-Chen, Michal; Efrat, Shimon . E-mail: sefrat@post.tau.ac.il

    2005-07-01

    {beta}-cells die by apoptosis in type 1 diabetes as a result of autoimmune attack mediated by cytokines, and in type 2 diabetes by various perpetrators including human islet amyloid polypeptide (hIAPP). The cascade of apoptotic events induced by cytokines and hIAPP is mediated through caspases and reactive oxygen species. The baculovirus p35 protein is a potent anti-apoptotic agent shown to be effective in a variety of species and able to inhibit a number of apoptotic pathways. Here, we aimed at determining the protective potential of p35 in {beta}-cells exposed to cytokines and hIAPP, as well as the effects of p35 on {beta}-cell function. The p35 gene was introduced into {beta}TC-tet cells, a differentiated murine {beta}-cell line capable of undergoing inducible growth-arrest. Both proliferating and growth-arrested cells expressing p35 manifested increased resistance to cytokines and hIAPP, compared with control cells, as judged by cell viability, DNA fragmentation, and caspase-3 activity assays. p35 was significantly more protective in growth-arrested, compared with proliferating, cells. No significant differences were observed in proliferation and insulin content between cells expressing p35 and control cells. In contrast, p35 manifested a perturbing effect on glucose-induced insulin secretion. These findings suggest that p35 could be incorporated as part of a multi-pronged approach of immunoprotective strategies to provide protection from recurring autoimmunity for transplanted {beta}-cells, as well as in preventive gene therapy in type 1 diabetes. p35 may also be protective from {beta}-cell damage caused by hIAPP in type 2 diabetes.

  3. Interleukin-1beta induces death in chondrocyte-like ATDC5 cells through mitochondrial dysfunction and energy depletion in a reactive nitrogen and oxygen species-dependent manner.

    PubMed

    Yasuhara, Rika; Miyamoto, Yoichi; Akaike, Takaaki; Akuta, Teruo; Nakamura, Masanori; Takami, Masamichi; Morimura, Naoko; Yasu, Kayoko; Kamijo, Ryutaro

    2005-07-15

    IL-1 (interleukin-1) acts as a key mediator of the degeneration of articular cartilage in RA (rheumatoid arthritis) and OA (osteoarthritis),where chondrocyte death is observed. It is still controversial, however, whether IL-1 induces chondrocyte death. In the present study, the viability of mouse chondrocyte-like ATDC5 cells was reduced by the treatment with IL-1beta for 48 h or longer. IL-1beta augmented the expression of the catalytic gp91 subunit of NADPH oxidase, gp91phox, as well as inducible NO synthase in ATDC5 cells. Generation of nitrated guanosine and tyrosine suggested the formation of reactive nitrogen species including ONOO- (peroxynitrite), a reaction product of NO and O2-, in ATDC5 cells and rat primary chondrocytes treated with IL-1beta. Death of ATDC5 cells after IL-1beta treatment was prevented by an NADPH-oxidase inhibitor, AEBSF[4-(2-aminoethyl)benzene-sulphonyl fluoride], an NO synthase inhibitor, L-NAME (NG-nitro-L-arginine methyl ester), and a ONOO- scavenger, uric acid. The viability of ATDC5 cells was reduced by the ONOO(-)-generator 3-(4-morpholinyl)sydnonimine hydrochloride, but not by either the NO-donor 1-hydroxy-2-oxo-3-(N-methyl-2-aminopropyl)-3-methyl-1-triazene or S-nitrosoglutathione. Disruption of mitochondrial membrane potential and ATP deprivation were observed in IL-1beta-treated ATDC5 cells, both of which were restored by L-NAME, AEBSF or uric acid. On the other hand, no morphological or biochemical signs indicating apoptosis were observed in these cells. These results suggest that the death of chondrocyte-like ATDC5 cells was mediated at least in part by mitochondrial dysfunction and energy depletion through ONOO- formation after IL-1beta treatment. PMID:15784009

  4. Knockdown of prolactin receptors in a pancreatic beta cell line: effects on DNA synthesis, apoptosis, and gene expression.

    PubMed

    Arumugam, Ramamani; Fleenor, Don; Freemark, Michael

    2014-08-01

    Prolactin (PRL) and placental lactogen stimulate beta cell replication and insulin production in vitro and in vivo. The molecular mechanisms by which lactogens promote beta cell expansion are unclear. We treated rat insulinoma cells with a PRL receptor (PRLR) siRNA to determine if PRLR signaling is required for beta cell DNA synthesis and cell survival and to identify beta cell cycle genes whose expression depends upon lactogen action. Effects of PRLR knockdown were compared with those of PRL treatment. PRLR knockdown (-80 %) reduced DNA synthesis, increased apoptosis, and inhibited expression of cyclins D2 and B2, IRS-2, Tph1, and the anti-apoptotic protein PTTG1; p21 and BCL6 mRNAs increased. Conversely, PRL treatment increased DNA synthesis, reduced apoptosis, and enhanced expression of A, B and D2 cyclins, CDK1, IRS-2, FoxM1, BCLxL, and PTTG1; BCL6 declined. PRLR signaling is required for DNA synthesis and survival of rat insulinoma cells. The effects of lactogens are mediated by down-regulation of cell cycle inhibitors (BCL6, p21) and induction of A, B, and D2 cyclins, IRS-2, Tph1, FoxM1, and the anti-apoptotic proteins BCLxL and PTTG1. PMID:24114406

  5. Effects of low intensity laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Xiong, Guoxin; Xiong, Leilei; Li, Xinzhong

    2016-09-01

    To investigate the effects of low intensity semiconductor laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes, a method using a high-fat diet and low-dose intraperitoneal injections of streptozotocin established a type 2 diabetes mellitus rat model. Model rats were randomly divided into a laser acupoint irradiation group, rosiglitazone control group, and placebo group; each group had 10 rats. In addition, 10 normal male rats were selected for the normal control group. The Housanli, Neiting and Yishu acupoints of the rats in the laser acupoint irradiation group were irradiated with a 10 mW semiconductor laser; each point was irradiated for 15 min, once every 2 d over 28 d, for a total of 14 episodes of irradiation. The rosiglitazone group rats were given rosiglitazone (0.2 mg kg‑1) intragastrically; the placebo group rats were given 0.9% brine (0.2 mg kg‑1) intragastrically, once daily, for four consecutive weeks. The change of fasting blood glucose was determined before and after each treatment. The islet beta-cell apoptosis was determined. The islet beta-cell apoptosis rates of the laser acupoint irradiation group and the rosiglitazone group were significantly lower than the rate of the placebo group. Even though the rate was lower in the laser acupoint irradiation group than in the rosiglitazone group, there was no significant difference between them. It is shown that acupoint irradiation with a semiconductor laser can effectively inhibit islet beta-cell apoptosis in rats with type 2 diabetes.

  6. Calcium-activated Calpain-2 Is a Mediator of Beta Cell Dysfunction and Apoptosis in Type 2 Diabetes*

    PubMed Central

    Huang, Chang-jiang; Gurlo, Tatyana; Haataja, Leena; Costes, Safia; Daval, Marie; Ryazantsev, Sergey; Wu, Xiuji; Butler, Alexandra E.; Butler, Peter C.

    2010-01-01

    The islet in type 2 diabetes (T2DM) and the brain in neurodegenerative diseases share progressive cell dysfunction, increased apoptosis, and accumulation of locally expressed amyloidogenic proteins (islet amyloid polypeptide (IAPP) in T2DM). Excessive activation of the Ca2+-sensitive protease calpain-2 has been implicated as a mediator of oligomer-induced cell death and dysfunction in neurodegenerative diseases. To establish if human IAPP toxicity is mediated by a comparable mechanism, we overexpressed human IAPP in rat insulinoma cells and freshly isolated human islets. Pancreas was also obtained at autopsy from humans with T2DM and nondiabetic controls. We report that overexpression of human IAPP leads to the formation of toxic oligomers and increases beta cell apoptosis mediated by increased cytosolic Ca2+ and hyperactivation of calpain-2. Cleavage of α-spectrin, a marker of calpain hyperactivation, is increased in beta cells in T2DM. We conclude that overactivation of Ca2+-calpain pathways contributes to beta cell dysfunction and apoptosis in T2DM. PMID:19861418

  7. Ubiquitin D Regulates IRE1α/c-Jun N-terminal Kinase (JNK) Protein-dependent Apoptosis in Pancreatic Beta Cells.

    PubMed

    Brozzi, Flora; Gerlo, Sarah; Grieco, Fabio Arturo; Juusola, Matilda; Balhuizen, Alexander; Lievens, Sam; Gysemans, Conny; Bugliani, Marco; Mathieu, Chantal; Marchetti, Piero; Tavernier, Jan; Eizirik, Décio L

    2016-06-01

    Pro-inflammatory cytokines contribute to pancreatic beta cell apoptosis in type 1 diabetes at least in part by inducing endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). It remains to be determined what causes the transition from "physiological" to "apoptotic" UPR, but accumulating evidence indicates that signaling by the ER transmembrane protein IRE1α is critical for this transition. IRE1α activation is regulated by both intra-ER and cytosolic cues. We evaluated the role for the presently discovered cytokine-induced and IRE1α-interacting protein ubiquitin D (UBD) on the regulation of IRE1α and its downstream targets. UBD was identified by use of a MAPPIT (mammalian protein-protein interaction trap)-based IRE1α interactome screen followed by comparison against functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines. Knockdown of UBD in human and rodent beta cells and detailed signal transduction studies indicated that UBD modulates cytokine-induced UPR/IRE1α activation and apoptosis. UBD expression is induced by the pro-inflammatory cytokines interleukin (IL)-1β and interferon (IFN)-γ in rat and human pancreatic beta cells, and it is also up-regulated in beta cells of inflamed islets from non-obese diabetic mice. UBD interacts with IRE1α in human and rodent beta cells, modulating IRE1α-dependent activation of JNK and cytokine-induced apoptosis. Our data suggest that UBD provides a negative feedback on cytokine-induced activation of the IRE1α/JNK pro-apoptotic pathway in cytokine-exposed beta cells. PMID:27044747

  8. Maternal antioxidants prevent beta cell apoptosis and promote formation of dual hormone-expressing endocrine cells in male offspring following fetal and neonatal nicotine exposure

    PubMed Central

    BRUIN, Jennifer E; WOYNILLOWICZ, Amanda K; HETTINGA, Bart P; TARNOPOLSKY, Mark A; MORRISON, Katherine M; GERSTEIN, Hertzel C; HOLLOWAY, Alison C

    2013-01-01

    Aim Fetal and neonatal nicotine exposure causes beta cell oxidative stress and apoptosis in neonates, leading to adult-onset dysglycemia. The goal of this study was to determine whether an antioxidant intervention could prevent nicotine-induced beta cell loss. Methods Nulliparous female Wistar rats received daily subcutaneous injections of either saline or nicotine bitartrate (1.0 mg/kg/d) for 2 weeks prior to mating until weaning. Nicotine-exposed dams received either normal chow or diet containing antioxidants (1000 IU/kg vitamin E, 0.25% w/w coenzyme Q10 and 0.1% w/w alpha-lipoic acid) during mating, pregnancy and lactation; saline-exposed dams received normal chow. Pancreas tissue was collected from male offspring at 3 weeks of age to measure beta cell fraction, apoptosis, proliferation and the presence of cells co-expressing insulin and glucagon. Results The birth weight of the offspring born to nicotine-exposed dams receiving dietary antioxidants was significantly reduced. Most interestingly, the antioxidant intervention to nicotine-exposed dams prevented the beta cell loss and apoptosis observed in nicotine exposed male offspring whose mothers did not receive antioxidants. Male pups born to nicotine-treated mothers receiving antioxidants also had a trend towards increased beta cell proliferation and a significant increase in islets containing insulin/glucagon bi-hormonal cells relative to the other two treatment groups. Conclusion This study demonstrates that exposure to maternal antioxidants protects beta cells from the damaging effects of nicotine thus preserving beta cell mass. PMID:22385833

  9. Exendin-4 Protects Mitochondria from Reactive Oxygen Species Induced Apoptosis in Pancreatic Beta Cells

    PubMed Central

    Li, Zhen; Zhou, Zhiguang; Huang, Gan; Hu, Fang; Xiang, Yufei; He, Lining

    2013-01-01

    Objective Mitochondrial oxidative stress is the basis for pancreatic β-cell apoptosis and a common pathway for numerous types of damage, including glucotoxicity and lipotoxicity. We cultivated mice pancreatic β-cell tumor Min6 cell lines in vitro and observed pancreatic β-cell apoptosis and changes in mitochondrial function before and after the addition of Exendin-4. Based on these observations, we discuss the protective role of Exendin-4 against mitochondrial oxidative damage and its relationship with Ca2+-independent phospholipase A2. Methods We established a pancreatic β-cell oxidative stress damage model using Min6 cell lines cultured in vitro with tert-buty1 hydroperoxide and hydrogen peroxide. We then added Exendin-4 to observe changes in the rate of cell apoptosis (Annexin-V-FITC-PI staining flow cytometry and DNA ladder). We detected the activity of the caspase 3 and 8 apoptotic factors, measured the mitochondrial membrane potential losses and reactive oxygen species production levels, and detected the expression of cytochrome c and Smac/DLAMO in the cytosol and mitochondria, mitochondrial Ca2-independent phospholipase A2 and Ca2+-independent phospholipase A2 mRNA. Results The time-concentration curve showed that different percentages of apoptosis occurred at different time-concentrations in tert-buty1 hydroperoxide- and hydrogen peroxide-induced Min6 cells. Incubation with 100 µmol/l of Exendin-4 for 48 hours reduced the Min6 cell apoptosis rate (p<0.05). The mitochondrial membrane potential loss and total reactive oxygen species levels decreased (p<0.05), and the release of cytochrome c and Smac/DLAMO from the mitochondria was reduced. The study also showed that Ca2+-independent phospholipase A2 activity was positively related to Exendin-4 activity. Conclusion Exendin-4 reduces Min6 cell oxidative damage and the cell apoptosis rate, which may be related to Ca2-independent phospholipase A2. PMID:24204601

  10. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    SciTech Connect

    Wan, Jun; Jiang, Li; Lue, Qingguo; Ke, Linqiu; Li, Xiaoyu; Tong, Nanwei

    2010-01-15

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  11. GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim.

    PubMed

    Nogueira, Tatiane C; Paula, Flavia M; Villate, Olatz; Colli, Maikel L; Moura, Rodrigo F; Cunha, Daniel A; Marselli, Lorella; Marchetti, Piero; Cnop, Miriam; Julier, Cécile; Eizirik, Decio L

    2013-05-01

    Mutations in human Gli-similar (GLIS) 3 protein cause neonatal diabetes. The GLIS3 gene region has also been identified as a susceptibility risk locus for both type 1 and type 2 diabetes. GLIS3 plays a role in the generation of pancreatic beta cells and in insulin gene expression, but there is no information on the role of this gene on beta cell viability and/or susceptibility to immune- and metabolic-induced stress. GLIS3 knockdown (KD) in INS-1E cells, primary FACS-purified rat beta cells, and human islet cells decreased expression of MafA, Ins2, and Glut2 and inhibited glucose oxidation and insulin secretion, confirming the role of this transcription factor for the beta cell differentiated phenotype. GLIS3 KD increased beta cell apoptosis basally and sensitized the cells to death induced by pro-inflammatory cytokines (interleukin 1β + interferon-γ) or palmitate, agents that may contribute to beta cell loss in respectively type 1 and 2 diabetes. The increased cell death was due to activation of the intrinsic (mitochondrial) pathway of apoptosis, as indicated by cytochrome c release to the cytosol, Bax translocation to the mitochondria and activation of caspases 9 and 3. Analysis of the pathways implicated in beta cell apoptosis following GLIS3 KD indicated modulation of alternative splicing of the pro-apoptotic BH3-only protein Bim, favouring expression of the pro-death variant BimS via inhibition of the splicing factor SRp55. KD of Bim abrogated the pro-apoptotic effect of GLIS3 loss of function alone or in combination with cytokines or palmitate. The present data suggest that altered expression of the candidate gene GLIS3 may contribute to both type 1 and 2 type diabetes by favouring beta cell apoptosis. This is mediated by alternative splicing of the pro-apoptotic protein Bim and exacerbated formation of the most pro-apoptotic variant BimS. PMID:23737756

  12. GLIS3, a Susceptibility Gene for Type 1 and Type 2 Diabetes, Modulates Pancreatic Beta Cell Apoptosis via Regulation of a Splice Variant of the BH3-Only Protein Bim

    PubMed Central

    Colli, Maikel L.; Moura, Rodrigo F.; Cunha, Daniel A.; Marselli, Lorella; Marchetti, Piero; Cnop, Miriam; Julier, Cécile; Eizirik, Decio L.

    2013-01-01

    Mutations in human Gli-similar (GLIS) 3 protein cause neonatal diabetes. The GLIS3 gene region has also been identified as a susceptibility risk locus for both type 1 and type 2 diabetes. GLIS3 plays a role in the generation of pancreatic beta cells and in insulin gene expression, but there is no information on the role of this gene on beta cell viability and/or susceptibility to immune- and metabolic-induced stress. GLIS3 knockdown (KD) in INS-1E cells, primary FACS-purified rat beta cells, and human islet cells decreased expression of MafA, Ins2, and Glut2 and inhibited glucose oxidation and insulin secretion, confirming the role of this transcription factor for the beta cell differentiated phenotype. GLIS3 KD increased beta cell apoptosis basally and sensitized the cells to death induced by pro-inflammatory cytokines (interleukin 1β + interferon-γ) or palmitate, agents that may contribute to beta cell loss in respectively type 1 and 2 diabetes. The increased cell death was due to activation of the intrinsic (mitochondrial) pathway of apoptosis, as indicated by cytochrome c release to the cytosol, Bax translocation to the mitochondria and activation of caspases 9 and 3. Analysis of the pathways implicated in beta cell apoptosis following GLIS3 KD indicated modulation of alternative splicing of the pro-apoptotic BH3-only protein Bim, favouring expression of the pro-death variant BimS via inhibition of the splicing factor SRp55. KD of Bim abrogated the pro-apoptotic effect of GLIS3 loss of function alone or in combination with cytokines or palmitate. The present data suggest that altered expression of the candidate gene GLIS3 may contribute to both type 1 and 2 type diabetes by favouring beta cell apoptosis. This is mediated by alternative splicing of the pro-apoptotic protein Bim and exacerbated formation of the most pro-apoptotic variant BimS. PMID:23737756

  13. PED/PEA-15 Inhibits Hydrogen Peroxide-Induced Apoptosis in Ins-1E Pancreatic Beta-Cells via PLD-1

    PubMed Central

    Raciti, Gregory Alexander; Zatterale, Federica; Nigro, Cecilia; Mirra, Paola; Falco, Roberta; Ulianich, Luca; Di Jeso, Bruno; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2014-01-01

    The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from TgPED/PEA-15 mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1EPED/PEA-15). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1EPED/PEA-15 cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1EPED/PEA-15. These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism. PMID:25489735

  14. Serum levels of pancreatic stone protein (PSP)/reg1A as an indicator of beta-cell apoptosis suggest an increased apoptosis rate in hepatocyte nuclear factor 1 alpha (HNF1A-MODY) carriers from the third decade of life onward

    PubMed Central

    2012-01-01

    Background Mutations in the transcription factor hepatocyte nuclear factor-1-alpha (HNF1A) result in the commonest type of maturity onset diabetes of the young (MODY). HNF1A-MODY carriers have reduced pancreatic beta cell mass, partially due to an increased rate of apoptosis. To date, it has not been possible to determine when apoptosis is occurring in HNF1A-MODY.We have recently demonstrated that beta cell apoptosis stimulates the expression of the pancreatic stone protein/regenerating (PSP/reg) gene in surviving neighbour cells, and that PSP/reg1A protein is subsequently secreted from these cells. The objective of this study was to determine whether serum levels of PSP/reg1A are elevated during disease progression in HNF1A-MODY carriers, and whether it may provide information regarding the onset of beta-cell apoptosis. Methods We analysed serum PSP/reg1A levels and correlated with clinical and biochemical parameters in subjects with HNF1A-MODY, glucokinase (GCK-MODY), and type 1 diabetes mellitus. A control group of normoglycaemic subjects was also analysed. Results PSP/reg1A serum levels were significantly elevated in HNF1A-MODY (n = 37) subjects compared to controls (n = 60) (median = 12.50 ng/ml, IQR = 10.61-17.87 ng/ml versus median = 10.72 ng/ml, IQR = 8.94-12.54 ng/ml, p = 0.0008). PSP/reg1A correlated negatively with insulin levels during OGTT, (rho = −0.40, p = 0.02). Interestingly we noted a significant positive correlation of PSP/reg1A with age of the HNF1A-MODY carriers (rho = 0.40 p = 0.02) with an age of 25 years separating carriers with low and high PSP/reg1A levels. Patients with type 1 diabetes mellitus also had elevated serum levels of PSP/reg1A compared to controls, however this was independent of the duration of diabetes. Conclusion Our data suggest that beta cell apoptosis contributes increasingly to the pathophysiology of HNF1A-MODY in patients 25 years and over. PSP/reg1A may be

  15. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    SciTech Connect

    Bhattacharya, Semantee; Manna, Prasenjit; Sil, Parames C.

    2011-12-15

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic {beta}-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic {beta}-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: Black-Right-Pointing-Pointer Oxidative stress is suggested as a key event in the pathogenesis of diabetes. Black-Right-Pointing-Pointer D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. Black-Right-Pointing-Pointer DSL normalizes cellular antioxidant machineries

  16. Lithospermic acid B protects beta-cells from cytokine-induced apoptosis by alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1

    SciTech Connect

    Lee, Byung-Wan; Chun, Sung Wan; Kim, Soo Hyun; Lee, Yongho; Kang, Eun Seok; Cha, Bong-Soo; Lee, Hyun Chul

    2011-04-01

    Lithospermic acid B (LAB) has been reported to protect OLETF rats, an established type 2 diabetic animal model, from the development of diabetes-related vascular complications. We investigated whether magnesium lithospermate B (LAB) has a protective role under cytokine-induced apoptosis in INS-1 cells in vitro and whether it slows the development of diabetes in OLETF rats in vivo. Pretreatment with 50 {mu}M LAB significantly reduced the 1000 U/mL INF-{gamma} and 100 U/mL IL-1{beta}-induced INS-1 cell death. LAB significantly alleviated cytokine-induced phosphorylations of p38 and JNK in accordance with a decrease in cleaved caspase-3 activity in beta-cells. LAB also protected against the cytokine-induced caspase-3 apoptotic pathway via significant activation of Nrf2-HO (heme-oxigenase)-1 and Sirt1 expression. OLETF rats treated with 40 mg/kg/day LAB showed a significant improvement in glucose tolerance compared to untreated OLETF control rats in vivo. Our results suggest that the cytoprotective effects of LAB on pancreatic {beta}-cells are related with both alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1.

  17. Mechanisms of beta-cell death in type 2 diabetes.

    PubMed

    Donath, Marc Y; Ehses, Jan A; Maedler, Kathrin; Schumann, Desiree M; Ellingsgaard, Helga; Eppler, Elisabeth; Reinecke, Manfred

    2005-12-01

    A decrease in the number of functional insulin-producing beta-cells contributes to the pathophysiology of type 2 diabetes. Opinions diverge regarding the relative contribution of a decrease in beta-cell mass versus an intrinsic defect in the secretory machinery. Here we review the evidence that glucose, dyslipidemia, cytokines, leptin, autoimmunity, and some sulfonylureas may contribute to the maladaptation of beta-cells. With respect to these causal factors, we focus on Fas, the ATP-sensitive K+ channel, insulin receptor substrate 2, oxidative stress, nuclear factor-kappaB, endoplasmic reticulum stress, and mitochondrial dysfunction as their respective mechanisms of action. Interestingly, most of these factors are involved in inflammatory processes in addition to playing a role in both the regulation of beta-cell secretory function and cell turnover. Thus, the mechanisms regulating beta-cell proliferation, apoptosis, and function are inseparable processes. PMID:16306327

  18. Interleukin-1beta induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons.

    PubMed

    Tabarean, I V; Korn, H; Bartfai, T

    2006-09-15

    Most of the inflammatory effects of the cytokine interleukin 1beta (IL-1beta) are mediated by induction of cyclooxygenase (COX)2 and the subsequent synthesis and release of prostaglandin E2. This transcription-dependent process takes 45-60 min, but IL-1beta, a well-characterized endogenous pyrogen also exerts faster neuronal actions in the preoptic area/anterior hypothalamus. Here, we have studied the fast (1-3 min) signaling by IL-1beta using whole-cell patch clamp recordings in preoptic area/anterior hypothalamus neurons. Exposure to IL-1beta (0.1-1 nM) hyperpolarized a subset ( approximately 20%) of preoptic area/anterior hypothalamus neurons, decreased their input resistance and reduced their firing rate. These effects were associated with an increased frequency of bicuculline-sensitive spontaneous inhibitory postsynaptic currents and putative miniature inhibitory postsynaptic currents, strongly suggesting a presynaptic mechanism of action. These effects require the type 1 interleukin 1 receptor (IL-1R1), and the adapter protein myeloid differentiation primary response protein (MyD88), since they were not observed in cultures obtained from IL-1R1 (-/-) or from MyD88 (-/-) mice. Ceramide, a second messenger of the IL-1R1-dependent fast signaling cascade, is produced by IL-1R1-MyD88-mediated activation of the neutral sphingomyelinase. C2-ceramide, its cell penetrating analog, also increased the frequency of miniature inhibitory postsynaptic currents in a subset of cells. Both IL-1beta and ceramide reduced the delayed rectifier and the A-type K(+) currents in preoptic area/anterior hypothalamus neurons. The latter effect may account in part for the increased spontaneous inhibitory postsynaptic current frequency as suggested by experiments with the A-type K(+) channel blockers 4-aminopyridine. Taken together our data suggest that IL-1beta inhibits the activity of preoptic area/anterior hypothalamus neurons by increasing the presynaptic release of GABA. PMID:16777343

  19. Interleukin-1 beta induces synthesis and secretion of interleukin-6 in human chondrocytes.

    PubMed

    Bender, S; Haubeck, H D; Van de Leur, E; Dufhues, G; Schiel, X; Lauwerijns, J; Greiling, H; Heinrich, P C

    1990-04-24

    Increased concentrations of interleukin-6 (IL-6) have been found in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and crystal-related joint diseases. It is therefore of great interest to identify the cells responsible for the production of IL-6, and to investigate whether IL-6 plays a role in the pathogenesis of degenerative or inflammatory joint diseases. Here we show that human interleukin-1 beta (IL-1 beta) induces IL-6 synthesis and secretion in differentiated human chondrocytes. In organ cultures resembling closely the in vivo system 10(6) chondrocytes incubated with 100 units of interleukin-1 beta per ml of medium led to the release of 6 X 10(3) units of IL-6 within 24 h. Chondrocytes cultured in agarose or as monolayers similarly incubated with IL-1 beta produced even higher amounts of IL-6: 70 X 10(3) units per 10(6) cells within 24 h. The induction of IL-6 synthesis by IL-1 beta was also shown at the mRNA level. IL-6 secreted by stimulated chondrocytes showed heterogeneity upon Western blot analysis. PMID:2335234

  20. Glucolipotoxicity of the Pancreatic Beta Cell

    PubMed Central

    Poitout, Vincent; Amyot, Julie; Semache, Meriem; Zarrouki, Bader; Hagman, Derek; Fontés, Ghislaine

    2009-01-01

    Summary The concept of glucolipotoxicity refers to the combined, deleterious effects of elevated glucose and fatty acid levels on pancreatic beta-cell function and survival. Significant progress has been made in recent years towards a better understanding of the cellular and molecular basis of glucolipotoxicity in the beta cell. The permissive effect of elevated glucose on the detrimental actions of fatty acids stems from the influence of glucose on intracellular fatty-acid metabolism, promoting the synthesis of cellular lipids. The combination of excessive levels of fatty acids and glucose therefore leads to decreased insulin secretion, impaired insulin gene expression, and beta-cell death by apoptosis, all of which probably have distinct underlying mechanisms. Recent studies from our laboratory have identified several pathways implicated in fatty-acid inhibition of insulin gene expression, including the extracellular-regulated kinase (ERK1/2) pathway; the metabolic sensor Per-Arnt-Sim kinase (PASK); and the ATF6 branch of the unfolded protein response. We have also confirmed in vivo in rats that the decrease in insulin gene expression is an early defect which precedes any detectable abnormality in insulin secretion. While the role of glucolipotoxicity in humans is still debated, the inhibitory effects of chronically elevated fatty acid levels has been clearly demonstrated in several studies, at least in individuals genetically predisposed to developing type 2 diabetes. It is therefore likely that glucolipotoxicity contributes to beta-cell failure in type 2 diabetes as well as to the decline in beta-cell function observed after the onset of the disease. PMID:19715772

  1. Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes✩

    PubMed Central

    Jaberi-Douraki, Majid; Schnell, Santiago; Pietropaolo, Massimo; Khadra, Anmar

    2014-01-01

    In type 1 diabetes, an autoimmune disease mediated by autoreactive T-cells that attack insulin-secreting pancreatic beta-cells, it has been suggested that disease progression may additionally require protective mechanisms in the target tissue to impede such auto-destructive mechanisms. We hypothesize that the autoimmune attack against beta-cells causes endoplasmic reticulum stress by forcing the remaining beta-cells to synthesize and secrete defective insulin. To rescue beta-cell from the endoplasmic reticulum stress, beta-cells activate the unfolded protein response to restore protein homeostasis and normal insulin synthesis. Here we investigate the compensatory role of unfolded protein response by developing a multi-state model of type 1 diabetes that takes into account beta-cell destruction caused by pathogenic autoreactive T-cells and apoptosis triggered by endoplasmic reticulum stress. We discuss the mechanism of unfolded protein response activation and how it counters beta-cell extinction caused by an autoimmune attack and/or irreversible damage by endoplasmic reticulum stress. Our results reveal important insights about the balance between beta-cell destruction by autoimmune attack (beta-cell homicide) and beta-cell apoptosis by endoplasmic reticulum stress (beta-cell suicide). It also provides an explanation as to why the unfolded protein response may not be a successful therapeutic target to treat type 1 diabetes. PMID:24831415

  2. Characterization of FKGK18 as inhibitor of group VIA Ca2+-independent phospholipase A2 (iPLA2β): candidate drug for preventing beta-cell apoptosis and diabetes.

    PubMed

    Ali, Tomader; Kokotos, George; Magrioti, Victoria; Bone, Robert N; Mobley, James A; Hancock, William; Ramanadham, Sasanka

    2013-01-01

    Ongoing studies suggest an important role for iPLA2β in a multitude of biological processes and it has been implicated in neurodegenerative, skeletal and vascular smooth muscle disorders, bone formation, and cardiac arrhythmias. Thus, identifying an iPLA2βinhibitor that can be reliably and safely used in vivo is warranted. Currently, the mechanism-based inhibitor bromoenol lactone (BEL) is the most widely used to discern the role of iPLA2β in biological processes. While BEL is recognized as a more potent inhibitor of iPLA2 than of cPLA2 or sPLA2, leading to its designation as a "specific" inhibitor of iPLA2, it has been shown to also inhibit non-PLA2 enzymes. A potential complication of its use is that while the S and R enantiomers of BEL exhibit preference for cytosol-associated iPLA2β and membrane-associated iPLA2γ, respectively, the selectivity is only 10-fold for both. In addition, BEL is unstable in solution, promotes irreversible inhibition, and may be cytotoxic, making BEL not amenable for in vivo use. Recently, a fluoroketone (FK)-based compound (FKGK18) was described as a potent inhibitor of iPLA2β. Here we characterized its inhibitory profile in beta-cells and find that FKGK18: (a) inhibits iPLA2β with a greater potency (100-fold) than iPLA2γ, (b) inhibition of iPLA2β is reversible, (c) is an ineffective inhibitor of α-chymotrypsin, and (d) inhibits previously described outcomes of iPLA2β activation including (i) glucose-stimulated insulin secretion, (ii) arachidonic acid hydrolysis; as reflected by PGE2 release from human islets, (iii) ER stress-induced neutral sphingomyelinase 2 expression, and (iv) ER stress-induced beta-cell apoptosis. These findings suggest that FKGK18 is similar to BEL in its ability to inhibit iPLA2β. Because, in contrast to BEL, it is reversible and not a non-specific inhibitor of proteases, it is suggested that FKGK18 is more ideal for ex vivo and in vivo assessments of iPLA2β role in biological functions. PMID

  3. WS6 induces both alpha and beta cell proliferation without affecting differentiation or viability

    PubMed Central

    Boerner, Brian P.; George, Nicholas M.; Mir, Shakeel U.R.; Sarvetnick, Nora E.

    2016-01-01

    Agents that stimulate human pancreatic beta cell proliferation are needed to improve diabetes mellitus treatment. Recently, a small molecule, WS6, was observed to stimulate human beta cell proliferation. However, little is known about its other effects on human islets. To better understand the role of WS6 as a possible beta cell regenerative therapy, we carried out in-depth phenotypic analysis of WS6-treated human islets, exploring its effects on non-beta cell proliferation, beta cell differentiation, and islet cell viability. WS6 not only stimulated beta cell proliferation in cultured human islets (in agreement with previous reports), but also human alpha cell proliferation, indicating that WS6 is not a beta cell-specific mitogen. WS6 did not change the proportion of insulin-positive beta cells or the expression of beta cell-specific transcription factors, suggesting that WS6 does not alter beta cell differentiation, and WS6 had no effect on human islet cell apoptosis or viability. In conclusion, WS6 stimulates proliferation of both human beta and alpha cells while maintaining cellular viability and the beta cell differentiated phenotype. These findings expand the literature on WS6 and support the suggestion that WS6 may help increase human islet mass needed for successful treatment of diabetes. PMID:25739404

  4. Phenylpropenoic Acid Glucoside from Rooibos Protects Pancreatic Beta Cells against Cell Death Induced by Acute Injury

    PubMed Central

    Himpe, Eddy; Cunha, Daniel A.; Song, Imane; Bugliani, Marco; Marchetti, Piero; Cnop, Miriam; Bouwens, Luc

    2016-01-01

    Objective Previous studies demonstrated that a phenylpropenoic acid glucoside (PPAG) from rooibos (Aspalathus linearis) extract had anti-hyperglycemic activity and significant protective effects on the pancreatic beta cell mass in a chronic diet-induced diabetes model. The present study evaluated the cytoprotective effect of the phytochemical on beta cells exposed to acute cell stress. Methods Synthetically prepared PPAG was administered orally in mice treated with a single dose of streptozotocin to acutely induce beta cell death and hyperglycemia. Its effect was assessed on beta cell mass, proliferation and apoptotic cell death. Its cytoprotective effect was also studied in vitro on INS-1E beta cells and on human pancreatic islet cells. Results Treatment with the phytochemical PPAG protected beta cells during the first days after the insult against apoptotic cell death, as evidenced by TUNEL staining, and prevented loss of expression of anti-apoptotic protein BCL2 in vivo. In vitro, PPAG protected INS-1E beta cells from streptozotocin-induced apoptosis and necrosis in a BCL2-dependent and independent way, respectively, depending on glucose concentration. PPAG also protected human pancreatic islet cells against the cytotoxic action of the fatty acid palmitate. Conclusions These findings show the potential use of PPAG as phytomedicine which protects the beta cell mass exposed to acute diabetogenic stress. PMID:27299564

  5. Regulation of pancreatic beta-cell mass.

    PubMed

    Bouwens, Luc; Rooman, Ilse

    2005-10-01

    Beta-cell mass regulation represents a critical issue for understanding diabetes, a disease characterized by a near-absolute (type 1) or relative (type 2) deficiency in the number of pancreatic beta cells. The number of islet beta cells present at birth is mainly generated by the proliferation and differentiation of pancreatic progenitor cells, a process called neogenesis. Shortly after birth, beta-cell neogenesis stops and a small proportion of cycling beta cells can still expand the cell number to compensate for increased insulin demands, albeit at a slow rate. The low capacity for self-replication in the adult is too limited to result in a significant regeneration following extensive tissue injury. Likewise, chronically increased metabolic demands can lead to beta-cell failure to compensate. Neogenesis from progenitor cells inside or outside islets represents a more potent mechanism leading to robust expansion of the beta-cell mass, but it may require external stimuli. For therapeutic purposes, advantage could be taken from the surprising differentiation plasticity of adult pancreatic cells and possibly also from stem cells. Recent studies have demonstrated that it is feasible to regenerate and expand the beta-cell mass by the application of hormones and growth factors like glucagon-like peptide-1, gastrin, epidermal growth factor, and others. Treatment with these external stimuli can restore a functional beta-cell mass in diabetic animals, but further studies are required before it can be applied to humans. PMID:16183912

  6. The class I histone deacetylase inhibitor MS-275 prevents pancreatic beta cell death induced by palmitate.

    PubMed

    Plaisance, Valérie; Rolland, Laure; Gmyr, Valéry; Annicotte, Jean-Sébastien; Kerr-Conte, Julie; Pattou, François; Abderrahmani, Amar

    2014-01-01

    Elevation of the dietary saturated fatty acid palmitate contributes to the reduction of functional beta cell mass in the pathogenesis of type 2 diabetes. The diabetogenic effect of palmitate is achieved by increasing beta cell death through induction of the endoplasmic reticulum (ER) stress markers including activating transcription factor 3 (Atf3) and CAAT/enhancer-binding protein homologous protein-10 (Chop). In this study, we investigated whether treatment of beta cells with the MS-275, a HDAC1 and HDAC3 activity inhibitor which prevents beta cell death elicited by cytokines, is beneficial for combating beta cell dysfunction caused by palmitate. We show that culture of isolated human islets and MIN6 cells with MS-275 reduced apoptosis evoked by palmitate. The protective effect of MS-275 was associated with the attenuation of the expression of Atf3 and Chop. Silencing of HDAC3, but not of HDAC1, mimicked the effects of MS-275 on the expression of the two ER stress markers and apoptosis. These data point to HDAC3 as a potential drug target for preserving beta cells against lipotoxicity in diabetes. PMID:25610877

  7. The Class I Histone Deacetylase Inhibitor MS-275 Prevents Pancreatic Beta Cell Death Induced by Palmitate

    PubMed Central

    Plaisance, Valérie; Rolland, Laure; Gmyr, Valéry; Annicotte, Jean-Sébastien; Kerr-Conte, Julie; Pattou, François; Abderrahmani, Amar

    2014-01-01

    Elevation of the dietary saturated fatty acid palmitate contributes to the reduction of functional beta cell mass in the pathogenesis of type 2 diabetes. The diabetogenic effect of palmitate is achieved by increasing beta cell death through induction of the endoplasmic reticulum (ER) stress markers including activating transcription factor 3 (Atf3) and CAAT/enhancer-binding protein homologous protein-10 (Chop). In this study, we investigated whether treatment of beta cells with the MS-275, a HDAC1 and HDAC3 activity inhibitor which prevents beta cell death elicited by cytokines, is beneficial for combating beta cell dysfunction caused by palmitate. We show that culture of isolated human islets and MIN6 cells with MS-275 reduced apoptosis evoked by palmitate. The protective effect of MS-275 was associated with the attenuation of the expression of Atf3 and Chop. Silencing of HDAC3, but not of HDAC1, mimicked the effects of MS-275 on the expression of the two ER stress markers and apoptosis. These data point to HDAC3 as a potential drug target for preserving beta cells against lipotoxicity in diabetes. PMID:25610877

  8. MST1: a promising therapeutic target to restore functional beta cell mass in diabetes.

    PubMed

    Ardestani, Amin; Maedler, Kathrin

    2016-09-01

    The loss of insulin-producing beta cells by apoptosis is a hallmark of all forms of diabetes mellitus. Strategies to prevent beta cell apoptosis and dysfunction are urgently needed to restore the insulin-producing cells and to prevent severe diabetes progression. We recently identified the serine/threonine kinase known as mammalian sterile 20-like kinase 1 (MST1) as a critical regulator of apoptotic beta cell death and dysfunction. MST1 activates several apoptotic signalling pathways, which further stimulate its own cleavage, leading to a vicious cycle of cell death. This led us to hypothesise that MST1 signalling is central to the initiation of beta cell death in diabetes. We found that MST1 is strongly activated in a diabetic beta cell and induces not only its death but also directly impairs insulin secretion through promoting proteasomal degradation of key beta cell transcription factor, pancreatic and duodenal homeobox 1 (PDX1), which is critical for insulin production.Pre-clinical studies in various animal models of diabetes have reported that MST1 deficiency remarkably restores normoglycaemia and beta cell function and prevents the development of diabetes. Importantly, MST1 deficiency can revert fully diabetic beta cells to a non-diabetic state. MST1 may serve as a target for the development of novel therapies for diabetes that trigger the cause of the disease, namely, the destruction of the beta cells. The major current focus of our investigation is to identify and test the efficacy of potent inhibitors of this death signalling pathway to protect beta cells against the effects of autoimmune attack in type 1 diabetes and to preserve beta cell mass and function in type 2 diabetes. This review summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Heiko Lickert and colleagues, DOI: 10.1007/s00125-016-3949-9 , and by Harry

  9. Pituitary tumor transforming gene-null male mice exhibit impaired pancreatic beta cell proliferation and diabetes

    PubMed Central

    Wang, Zhiyong; Moro, Enrico; Kovacs, Kalman; Yu, Run; Melmed, Shlomo

    2003-01-01

    The mammalian securin, pituitary tumor transforming gene (PTTG), regulates sister chromatid separation during mitosis. Mice or cell lines deficient in PTTG expression, however, are surprisingly viable. Here we show that PTTG disruption in mice (PTTG−/−) severely impairs glucose homeostasis leading to diabetes during late adulthood, especially in males associated with nonautoimmune insulinopenia and reversed alpha/beta cell ratio. Islet beta cell mass in PTTG−/− mice was already diminished before development of frank diabetes and only increased minimally during growth. BrdUrd incorporation of islet cells in PTTG-null mice was ≈65% lower (P < 0.005) than in the WT pancreas, whereas apoptosis rates were similar. PTTG−/− beta cells had pleiotropic nuclei, suggesting defects in cell division. The results indicated that securin is indispensable for normal pancreatic beta cell proliferation. PMID:12626748

  10. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    SciTech Connect

    Kover, Karen; Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu; Tasch, James; Hager, Melissa; Clements, Mark; Moore, Wayne V.

    2015-06-19

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose

  11. A synopsis of factors regulating beta cell development and beta cell mass.

    PubMed

    Prasadan, Krishna; Shiota, Chiyo; Xiangwei, Xiao; Ricks, David; Fusco, Joseph; Gittes, George

    2016-10-01

    The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells; however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation. PMID:27105622

  12. NADPH oxidase mediates glucolipotoxicity-induced beta cell dysfunction--clinical implications.

    PubMed

    McCarty, Mark F; Barroso-Aranda, Jorge; Contreras, Francisco

    2010-03-01

    An impairment of glucose-stimulated insulin secretion--reflecting decreased glucokinase expression--and a moderate decrease in beta cell mass attributable to increased apoptosis, constitute the key features of beta cell failure in type 2 diabetes. Oxidative stress, provoked by prolonged exposure to excessive levels of glucose and/or fatty acids (glucolipotoxicity), appears to be a key mediator of these defects. Oxidant-provoked JNK activation induces nuclear export of the PDX-1 transcription factor, required for expression of glucokinase and other beta cell proteins. Conversely, increases in cAMP induced by incretin hormones promote the nuclear importation of PDX-1, counteracting the diabetogenic impact of oxidant stress; this may explain the utility of measures that slow dietary carbohydrate absorption for diabetes prevention. The ability of oxidative stress to boost apoptosis in beta cells is poorly understood, but may also entail JNK activation. Recent work establishes a phagocyte-type NADPH oxidase as the chief source of glucotoxicity-mediated oxidative stress in beta cells. Since bilirubin is now known to function physiologically as an inhibitor of NADPH oxidase, and phycocyanobilin (PCB) derived from spirulina likewise can inhibit this enzyme complex, supplemental PCB may have utility in the prevention and control of diabetes, and Gilbert syndrome, associated with chronically elevated free bilirubin, may be associated with decreased diabetes risk. PMID:19576699

  13. Translation attenuation through eIF2α phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells

    PubMed Central

    Back, Sung Hoon; Scheuner, Donalyn; Han, JaeSeok; Song, Benbo; Ribick, Mark; Wang, Junying; Gildersleeve, Robert D.; Pennathur, Subramaniam; Kaufman, Randal J.

    2009-01-01

    SUMMARY Accumulation of unfolded protein within the endoplasmic reticulum (ER) lumen attenuates mRNA translation through activation of the protein kinase PERK and subsequent phosphorylation of eukaryotic initiation factor 2 on Ser51 of the alpha subunit (eIF2α). Genetic disruption of the PERK/eIF2α pathway in humans and mice produces severe pancreatic beta cell deficiency and post-natal lethality. To elucidate the role of eIF2α phosphorylation in beta cells, we have rescued the lethality of homozygous eIF2α Ser51Ala mice by expression of a loxP-flanked wild-type eIF2α transgene. Beta cell-specific transgene deletion to prevent eIF2α phosphorylation caused a severe diabetic phenotype due to heightened, unregulated proinsulin translation, defective intracellular trafficking of secretory and plasma membrane proteins, increased oxidative damage, reduced expression of stress response and beta cell-specific genes, and apoptosis. However, glucose intolerance and beta cell death in these mice were attenuated by antioxidant treatment. We conclude that phosphorylation of eIF2α coordinately attenuates mRNA translation, prevents oxidative stress, and optimizes ER protein folding to support insulin production in the beta cell. These findings that show increased proinsulin synthesis causes oxidative stress leading to beta cell failure may reflect events in the beta cell loss associated with insulin resistance in type 2 diabetes. PMID:19583950

  14. Toward beta cell replacement for diabetes

    PubMed Central

    Johannesson, Bjarki; Sui, Lina; Freytes, Donald O; Creusot, Remi J; Egli, Dieter

    2015-01-01

    The discovery of insulin more than 90 years ago introduced a life-saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell-derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes. PMID:25733347

  15. Toward beta cell replacement for diabetes.

    PubMed

    Johannesson, Bjarki; Sui, Lina; Freytes, Donald O; Creusot, Remi J; Egli, Dieter

    2015-04-01

    The discovery of insulin more than 90 years ago introduced a life-saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell-derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes. PMID:25733347

  16. Transcription factors involved in glucose-stimulated insulin secretion of pancreatic beta cells

    SciTech Connect

    Shao, Shiying; Fang, Zhong; Yu, Xuefeng; Zhang, Muxun

    2009-07-10

    GSIS, the most important function of pancreatic beta cell, is essential for maintaining the glucose homeostasis. Transcription factors are known to control different biological processes such as differentiation, proliferation and apoptosis. In pancreas, some transcription factors are involved in regulating the function of beta cells. In this review, the role of these transcription factors including Pdx-1, FoxO1, SREBP-1c, and MafA in GSIS is highlighted. The related molecular mechanisms are analyzed as well. Furthermore, the association between the role of transcription factors in GSIS and the development of T2DM is discussed.

  17. Proliferating pancreatic beta-cells upregulate ALDH.

    PubMed

    Liu, Yinglan; Jiang, Xiaoxin; Zeng, Yong; Zhou, Hui; Yang, Jing; Cao, Renxian

    2014-12-01

    High levels of aldehyde dehydrogenase (ALDH) activity have been regarded as a specific feature of progenitor cells and stem cells. Hence, as an indicator of ALDH activity, aldefluor fluorescence has been widely used for the identification and isolation of stem and progenitor cells. ALDH activity was recently detected in embryonic mouse pancreas, and specifically and exclusively in adult centroacinar and terminal duct cells, suggesting that these duct cells may harbor cells of endocrine and exocrine differentiation potential in the adult pancreas. Here, we report the presence of aldefluor+ beta-cells in a beta-cell proliferation model, partial pancreatectomy. The aldefluor+ beta-cells are essentially all positive for Ki-67 and expressed high levels of cell-cycle activators such as CyclinD1, CyclinD2, and CDK4, suggesting that they are mitotic cells. Our data thus reveal a potential change in ALDH activity of proliferating beta-cells, which provides a novel method for the isolation and analysis of proliferating beta-cells. Moreover, our data also suggest that aldefluor lineage-tracing is not a proper method for analyzing progenitor or stem activity in the adult pancreas. PMID:25028343

  18. On the origin of the beta cell.

    PubMed

    Oliver-Krasinski, Jennifer M; Stoffers, Doris A

    2008-08-01

    The major forms of diabetes are characterized by pancreatic islet beta-cell dysfunction and decreased beta-cell numbers, raising hope for cell replacement therapy. Although human islet transplantation is a cell-based therapy under clinical investigation for the treatment of type 1 diabetes, the limited availability of human cadaveric islets for transplantation will preclude its widespread therapeutic application. The result has been an intense focus on the development of alternate sources of beta cells, such as through the guided differentiation of stem or precursor cell populations or the transdifferentiation of more plentiful mature cell populations. Realizing the potential for cell-based therapies, however, requires a thorough understanding of pancreas development and beta-cell formation. Pancreas development is coordinated by a complex interplay of signaling pathways and transcription factors that determine early pancreatic specification as well as the later differentiation of exocrine and endocrine lineages. This review describes the current knowledge of these factors as they relate specifically to the emergence of endocrine beta cells from pancreatic endoderm. Current therapeutic efforts to generate insulin-producing beta-like cells from embryonic stem cells have already capitalized on recent advances in our understanding of the embryonic signals and transcription factors that dictate lineage specification and will most certainly be further enhanced by a continuing emphasis on the identification of novel factors and regulatory relationships. PMID:18676806

  19. Dopamine Modulates Insulin Release and Is Involved in the Survival of Rat Pancreatic Beta Cells

    PubMed Central

    Iglesias Osma, Maria Carmen; Blanco, Enrique J.; Carretero Hernández, Marta; Sánchez Robledo, Virginia; Catalano Iniesta, Leonardo; Carrero, Sixto

    2015-01-01

    The local synthesis of dopamine and its effects on insulin release have been described in isolated islets. Thus, it may be accepted that dopamine exerts an auto-paracrine regulation of insulin secretion from pancreatic beta cells. The aim of the present study is to analyze whether dopamine is a regulator of the proliferation and apoptosis of rat pancreatic beta cells after glucose-stimulated insulin secretion. Glucose stimulated pancreatic islets obtained from male Wistar rats were cultured with 1 or 10 μM dopamine from 1 to 12 h. Insulin secretion was analyzed by RIA. The cellular proliferation rate of pancreatic islets and beta cells was studied with immunocytochemical double labelling for both insulin and PCNA (proliferating cell nuclear antigen), and active caspase-3 was detected to evaluate apoptosis. The secretion of insulin from isolated islets was significantly inhibited (p<0.01), by treatment with 1 and 10 μM dopamine, with no differences between either dose as early as 1 h after treatment. The percentage of insulin-positive cells in the islets decreased significantly (p<0.01) after 1 h of treatment up to 12 h. The proliferation rate of insulin-positive cells in the islets decreased significantly (p<0.01) following treatment with dopamine. Apoptosis in pancreatic islets and beta cells was increased by treatment with 1 and 10 μM dopamine along 12 h. In conclusion, these results suggest that dopamine could modulate the proliferation and apoptosis of pancreatic beta cells and that dopamine may be involved in the maintenance of pancreatic islets. PMID:25886074

  20. Plant-Derived Compounds Targeting Pancreatic Beta Cells for the Treatment of Diabetes

    PubMed Central

    Oh, Yoon Sin

    2015-01-01

    Diabetes is a global health problem and a national economic burden. Although several antidiabetic drugs are available, the need for novel therapeutic agents with improved efficacy and few side effects remains. Drugs derived from natural compounds are more attractive than synthetic drugs because of their diversity and minimal side effects. This review summarizes the most relevant effects of various plant-derived natural compounds on the functionality of pancreatic beta cells. Published data suggest that natural compounds directly enhance insulin secretion, prevent pancreatic beta cell apoptosis, and modulate pancreatic beta cell differentiation and proliferation. It is essential to continuously investigate natural compounds as sources of novel pharmaceuticals. Therefore, more studies into these compounds' mechanisms of action are warranted for their development as potential anti-diabetics. PMID:26587047

  1. Role of Bioactive Food Components in Diabetes Prevention: Effects on Beta-Cell Function and Preservation

    PubMed Central

    Oh, Yoon Sin; Jun, Hee-Sook

    2014-01-01

    Bioactive compounds found in fruits and vegetables can have anti-oxidant, anti-inflammatory, and anti-carcinogenic effects and can be protective against various diseases and metabolic disorders. These beneficial effects make them good candidates for the development of new functional foods with potential protective and preventive properties for type 1 and type 2 diabetes. This review summarizes the most relevant results concerning the effects of various bioactive compounds such as flavonoids, vitamins, and carotenoids on several aspects of beta-cell functionality. Studies using animal models with induced diabetes and diabetic patients support the hypothesis that bioactive compounds could ameliorate diabetic phenotypes. Published data suggest that there might be direct effects of bioactive compounds on enhancing insulin secretion and preventing beta-cell apoptosis, and some compounds might modulate beta-cell proliferation. Further research is needed to establish any clinical effects of these compounds. PMID:25092987

  2. ER stress and the decline and fall of pancreatic beta cells in type 1 diabetes

    PubMed Central

    Brozzi, Flora

    2016-01-01

    Components of the unfolded protein response (UPR) modulate beta cell inflammation and death in early type 1 diabetes (T1D). The UPR is a mechanism by which cells react to the accumulation of misfolded proteins in the endoplasmic reticulum (ER). It aims to restore cellular homeostasis, but in case of chronic or overwhelming ER stress the persistent activation of the UPR triggers apoptosis, contributing to the loss of beta cells in both T1D and type 2 diabetes. It remains to be determined how and why the transition from ‘physiological’ to ‘pathological’ UPR takes place. A key component of the UPR is the ER transmembrane protein IRE1α (inositol-requiring enzyme 1α). IRE1α activity is modulated by both intra-ER signals and by the formation of protein complexes at its cytosolic domain. The amplitude and duration of IRE1α signaling is critical for the transition between the adaptive and cell death programs, with particular relevance for the activation of the pro-apoptotic c-Jun N-terminal kinase (JNK) in beta cells. In the present review we discuss the available information on IRE1α-regulating proteins in beta cells and their downstream targets, and the important differences observed between cytokine-induced UPR in human and rodent beta cells. PMID:26899404

  3. Human Fucci Pancreatic Beta Cell Lines: New Tools to Study Beta Cell Cycle and Terminal Differentiation

    PubMed Central

    Carlier, Géraldine; Maugein, Alicia; Cordier, Corinne; Pechberty, Séverine; Garfa-Traoré, Meriem; Martin, Patrick; Scharfmann, Raphaël; Albagli, Olivier

    2014-01-01

    Regulation of cell cycle in beta cells is poorly understood, especially in humans. We exploited here the recently described human pancreatic beta cell line EndoC-βH2 to set up experimental systems for cell cycle studies. We derived 2 populations from EndoC-βH2 cells that stably harbor the 2 genes encoding the Fucci fluorescent indicators of cell cycle, either from two vectors, or from a unique bicistronic vector. In proliferating non-synchronized cells, the 2 Fucci indicators revealed cells in the expected phases of cell cycle, with orange and green cells being in G1 and S/G2/M cells, respectively, and allowed the sorting of cells in different substeps of G1. The Fucci indicators also faithfully red out alterations in human beta cell proliferative activity since a mitogen-rich medium decreased the proportion of orange cells and inflated the green population, while reciprocal changes were observed when cells were induced to cease proliferation and increased expression of some beta cell genes. In the last situation, acquisition of a more differentiated beta cell phenotype correlates with an increased intensity in orange fluorescence. Hence Fucci beta cell lines provide new tools to address important questions regarding human beta cell cycle and differentiation. PMID:25259951

  4. Specific Silencing of the REST Target Genes in Insulin-Secreting Cells Uncovers Their Participation in Beta Cell Survival

    PubMed Central

    Gesina, Emilie; Caille, Dorothee; Gjinovci, Asllan; Waeber, Gerard; Meda, Paolo; Haefliger, Jacques-Antoine

    2012-01-01

    The absence of the transcriptional repressor RE-1 Silencing Transcription Factor (REST) in insulin-secreting beta cells is a major cue for the specific expression of a large number of genes. These REST target genes were largely ascribed to a function of neurotransmission in a neuronal context, whereas their role in pancreatic beta cells has been poorly explored. To identify their functional significance, we have generated transgenic mice expressing REST in beta cells (RIP-REST mice), and previously discovered that REST target genes are essential to insulin exocytosis. Herein we characterized a novel line of RIP-REST mice featuring diabetes. In diabetic RIP-REST mice, high levels of REST were associated with postnatal beta cell apoptosis, which resulted in gradual beta cell loss and sustained hyperglycemia in adults. Moreover, adenoviral REST transduction in INS-1E cells led to increased cell death under control conditions, and sensitized cells to death induced by cytokines. Screening for REST target genes identified several anti-apoptotic genes bearing the binding motif RE-1 that were downregulated upon REST expression in INS-1E cells, including Gjd2, Mapk8ip1, Irs2, Ptprn, and Cdk5r2. Decreased levels of Cdk5r2 in beta cells of RIP-REST mice further confirmed that it is controlled by REST, in vivo. Using siRNA-mediated knock-down in INS-1E cells, we showed that Cdk5r2 protects beta cells against cytokines and palmitate-induced apoptosis. Together, these data document that a set of REST target genes, including Cdk5r2, is important for beta cell survival. PMID:23029270

  5. Specific silencing of the REST target genes in insulin-secreting cells uncovers their participation in beta cell survival.

    PubMed

    Martin, David; Allagnat, Florent; Gesina, Emilie; Caille, Dorothee; Gjinovci, Asllan; Waeber, Gerard; Meda, Paolo; Haefliger, Jacques-Antoine

    2012-01-01

    The absence of the transcriptional repressor RE-1 Silencing Transcription Factor (REST) in insulin-secreting beta cells is a major cue for the specific expression of a large number of genes. These REST target genes were largely ascribed to a function of neurotransmission in a neuronal context, whereas their role in pancreatic beta cells has been poorly explored. To identify their functional significance, we have generated transgenic mice expressing REST in beta cells (RIP-REST mice), and previously discovered that REST target genes are essential to insulin exocytosis. Herein we characterized a novel line of RIP-REST mice featuring diabetes. In diabetic RIP-REST mice, high levels of REST were associated with postnatal beta cell apoptosis, which resulted in gradual beta cell loss and sustained hyperglycemia in adults. Moreover, adenoviral REST transduction in INS-1E cells led to increased cell death under control conditions, and sensitized cells to death induced by cytokines. Screening for REST target genes identified several anti-apoptotic genes bearing the binding motif RE-1 that were downregulated upon REST expression in INS-1E cells, including Gjd2, Mapk8ip1, Irs2, Ptprn, and Cdk5r2. Decreased levels of Cdk5r2 in beta cells of RIP-REST mice further confirmed that it is controlled by REST, in vivo. Using siRNA-mediated knock-down in INS-1E cells, we showed that Cdk5r2 protects beta cells against cytokines and palmitate-induced apoptosis. Together, these data document that a set of REST target genes, including Cdk5r2, is important for beta cell survival. PMID:23029270

  6. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    SciTech Connect

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya; Hirose, Takahisa; Kawamori, Ryuzo; Fujitani, Yoshio; Watada, Hirotaka

    2009-12-18

    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4 daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.

  7. Monitoring of beta cell replacement outcomes.

    PubMed

    Chang, Charles A; Haque, Waqas Z; Yoshimatsu, Gumpei; Balajii, Prathab S; Lawrence, Michael C; Naziruddin, Bashoo

    2016-03-01

    Pancreatic islet transplantation is a promising beta cell replacement treatment for patients with "brittle" type 1 diabetes (T1D) or intractable chronic pancreatitis to restore or preserve pancreatic endocrine function. Early after transplant, a significant islet mass is lost due to an innate inflammatory response, and further loss of the islet graft occurs over time due to immune response, drug toxicity, or metabolic exhaustion. Thus, clinically feasible techniques are essential to monitor islet graft function and survival to maintain appropriate therapy. Currently, islet graft function is monitored using blood glucose levels, insulin and C-peptide levels, and islet imaging. However, these tests are influenced by physiological changes, including beta cell stimulation. Biomarkers that are independent of metabolic stimuli would be more accurate and reliable in detecting islet damage. Antibodies against islet autoantigens are useful but not reliable markers of islet injury due to their presence during the pretransplant period. Several islet-specific proteins such as Glutamate decarboxylase-65, doublecortin, protein phosphatase 1, regulatory (inhibitor) subunit 1A, ubiquitin C-terminal hydrolase-L1, and the high-mobility group box-1 protein have been proposed as candidates to monitor islet damage, but these biomarkers have short half-lives and unreliable detection. Unmethylated insulin DNA has been studied in T1D patients and has been documented as a highly correlative and selective biomarker for beta cell death. More recently, microRNAs (miRNAs) that are selectively expressed in islets have been shown to provide sensitive and accurate quantification of islet damage. Analysis of plasma samples from autologous and allogeneic islet transplant patients has demonstrated the value of miRNA-375 as a specific biomarker to accurately assess islet damage. Use of selective, sensitive, and measurably reproducible biomarkers of islets will lead to effective monitoring of beta

  8. MicroRNAs as regulators of beta-cell function and dysfunction.

    PubMed

    Osmai, Mirwais; Osmai, Yama; Bang-Berthelsen, Claus H; Pallesen, Emil M H; Vestergaard, Anna L; Novotny, Guy W; Pociot, Flemming; Mandrup-Poulsen, Thomas

    2016-05-01

    In the last decade, there has been an explosion in both the number of and knowledge about miRNAs associated with both type 1 and type 2 diabetes. Even though we are presently in the initial stages of understanding how this novel class of posttranscriptional regulators are involved in diabetes, recent studies have demonstrated that miRNAs are important regulators of the islet transcriptome, controlling apoptosis, differentiation and proliferation, as well as regulating unique islet and beta-cell functions and pathways such as insulin expression, processing and secretion. Furthermore, a large number of miRNAs have been linked to diabetogenic processes induced by elevated levels of glucose, free fatty acids and inflammatory cytokines. Thus, miRNAs are novel therapeutic targets with the potential of protecting the beta-cell, and there is proof of principle that miRNA antagonists, so-called antagomirs, are effective in vivo for other disorders. miRNAs are exported out of cells in exosomes, raising the intriguing possibility of cell-to-cell communication between distant tissues via miRNAs and that miRNAs can be used as biomarkers of beta-cell function, mass and survival. The purpose of this review is to provide a status on how miRNAs control beta-cell function and viability in health and disease. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26418758

  9. Cocaine- and Amphetamine-regulated Transcript (CART) Protects Beta Cells against Glucotoxicity and Increases Cell Proliferation*

    PubMed Central

    Sathanoori, Ramasri; Olde, Björn; Erlinge, David; Göransson, Olga; Wierup, Nils

    2013-01-01

    Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide that promotes glucose-stimulated insulin secretion in beta cells via cAMP/PKA-dependent pathways. In addition, CART is a regulator of neuronal survival. In this study, we examined the effect of exogenous CART 55–102 on beta cell viability and dissected its signaling mechanisms. Evaluation of DNA fragmentation and chromatin condensation revealed that CART 55–102 reduced glucotoxicity-induced apoptosis in both INS-1 (832/13) cells and isolated rat islets. Glucotoxicity in INS-1 (832/13) cells also caused a 50% reduction of endogenous CART protein. We show that CART increased proliferation in INS-1 (832/13) cells, an effect that was blocked by PKA, PKB, and MEK1 inhibitors. In addition, CART induced phosphorylation of CREB, IRS, PKB, FoxO1, p44/42 MAPK, and p90RSK in INS-1 (832/13) cells and isolated rat islets, all key mediators of cell survival and proliferation. Thus, we demonstrate that CART 55-102 protects beta cells against glucotoxicity and promotes proliferation. Taken together our data point to the potential use of CART in therapeutic interventions targeted at enhancing functional beta cell mass and long-term insulin secretion in T2D. PMID:23250745

  10. Cocaine- and amphetamine-regulated transcript (CART) protects beta cells against glucotoxicity and increases cell proliferation.

    PubMed

    Sathanoori, Ramasri; Olde, Björn; Erlinge, David; Göransson, Olga; Wierup, Nils

    2013-02-01

    Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide that promotes glucose-stimulated insulin secretion in beta cells via cAMP/PKA-dependent pathways. In addition, CART is a regulator of neuronal survival. In this study, we examined the effect of exogenous CART 55-102 on beta cell viability and dissected its signaling mechanisms. Evaluation of DNA fragmentation and chromatin condensation revealed that CART 55-102 reduced glucotoxicity-induced apoptosis in both INS-1 (832/13) cells and isolated rat islets. Glucotoxicity in INS-1 (832/13) cells also caused a 50% reduction of endogenous CART protein. We show that CART increased proliferation in INS-1 (832/13) cells, an effect that was blocked by PKA, PKB, and MEK1 inhibitors. In addition, CART induced phosphorylation of CREB, IRS, PKB, FoxO1, p44/42 MAPK, and p90RSK in INS-1 (832/13) cells and isolated rat islets, all key mediators of cell survival and proliferation. Thus, we demonstrate that CART 55-102 protects beta cells against glucotoxicity and promotes proliferation. Taken together our data point to the potential use of CART in therapeutic interventions targeted at enhancing functional beta cell mass and long-term insulin secretion in T2D. PMID:23250745

  11. Insulin receptor alternative splicing is regulated by insulin signaling and modulates beta cell survival

    PubMed Central

    Malakar, Pushkar; Chartarifsky, Lital; Hija, Ayat; Leibowitz, Gil; Glaser, Benjamin; Dor, Yuval; Karni, Rotem

    2016-01-01

    Type 2 Diabetes (T2DM) affects more than 300 million people worldwide. One of the hallmarks of T2DM is peripheral insulin resistance, in part due to unproductive insulin signaling through the insulin receptor. The insulin receptor (INSR) exists as two isoforms, INSR-A and INSR-B, which results from skipping or inclusion of exon 11 respectively. What determines the relative abundance of the different insulin receptor splice variants is unknown. Moreover, it is not yet clear what the physiological roles of each of the isoforms are in normal and diseased beta cells. In this study, we show that insulin induces INSR exon 11 inclusion in pancreatic beta cells in both human and mouse. This occurs through activation of the Ras-MAPK/ERK signaling pathway and up-regulation of the splicing factor SRSF1. Induction of exon 11 skipping by a splice-site competitive antisense oligonucleotide inhibited the MAPK-ERK signaling pathway downstream of the insulin receptor, sensitizing the pancreatic β-cell line MIN6 to stress-induced apoptosis and lipotoxicity. These results assign to insulin a regulatory role in INSR alternative splicing through the Ras-MAPK/ERK signaling pathway. We suggest that in beta cells, INSR-B has a protective role, while INSR-A expression sensitizes beta cells to programmed cell death. PMID:27526875

  12. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss.

    PubMed

    Thorel, Fabrizio; Népote, Virginie; Avril, Isabelle; Kohno, Kenji; Desgraz, Renaud; Chera, Simona; Herrera, Pedro L

    2010-04-22

    Pancreatic insulin-producing beta-cells have a long lifespan, such that in healthy conditions they replicate little during a lifetime. Nevertheless, they show increased self-duplication after increased metabolic demand or after injury (that is, beta-cell loss). It is not known whether adult mammals can differentiate (regenerate) new beta-cells after extreme, total beta-cell loss, as in diabetes. This would indicate differentiation from precursors or another heterologous (non-beta-cell) source. Here we show beta-cell regeneration in a transgenic model of diphtheria-toxin-induced acute selective near-total beta-cell ablation. If given insulin, the mice survived and showed beta-cell mass augmentation with time. Lineage-tracing to label the glucagon-producing alpha-cells before beta-cell ablation tracked large fractions of regenerated beta-cells as deriving from alpha-cells, revealing a previously disregarded degree of pancreatic cell plasticity. Such inter-endocrine spontaneous adult cell conversion could be harnessed towards methods of producing beta-cells for diabetes therapies, either in differentiation settings in vitro or in induced regeneration. PMID:20364121

  13. Rat neonatal beta cells lack the specialised metabolic phenotype of mature beta cells

    PubMed Central

    Jermendy, A.; Toschi, E.; Aye, T.; Koh, A.; Aguayo-Mazzucato, C.; Sharma, A.; Weir, G. C.; Sgroi, D.

    2011-01-01

    Aims/hypothesis Fetal and neonatal beta cells have poor glucose-induced insulin secretion and only gain robust glucose responsiveness several weeks after birth. We hypothesise that this unresponsiveness is due to a generalised immaturity of the metabolic pathways normally found in beta cells rather than to a specific defect. Methods Using laser-capture microdissection we excised beta cell-enriched cores of pancreatic islets from day 1 (P1) neonatal and young adult Sprague–Dawley rats in order to compare their gene-expression profiles using Affymetrix U34A microarrays (neonatal, n=4; adult, n=3). Results Using dChip software for analysis, 217 probe sets for genes/38 expressed sequence tags (ESTs) were significantly higher and 345 probe sets for genes/33 ESTs significantly lower in beta cell-enriched cores of neonatal islets compared with those of adult islets. Among the genes lower in the neonatal beta cells were key metabolic genes including mitochondrial shuttles (malate dehydrogenase, glycerol-3-phosphate dehydrogenase and glutamate oxalacetate transaminase), pyruvate carboxylase and carnitine palmitoyl transferase 2. Differential expression of these enzyme genes was confirmed by quantitative PCR on RNA from isolated neonatal (P2 until P28) and adult islets and with immunostaining of pancreas. Even by 28 days of age some of these genes were still expressed at lower levels than in adults. Conclusions/interpretation The lack of glucose responsiveness in neonatal islets is likely to be due to a generalised immaturity of the metabolic specialisation of pancreatic beta cells. PMID:21240476

  14. In vivo regeneration of insulin-producing beta-cells.

    PubMed

    Jun, Hee-Sook

    2010-01-01

    Type 1 and type 2 diabetes mellitus are considered to be caused by defective control of blood glucose resulting from a reduced beta-cell mass. Thus, the restoration of a functional beta-cell mass by replacing the damaged beta-cells or stimulating beta-cell regeneration is a logical approach for the treatment of diabetes. Strategies for increasing the beta-cell mass include stimulating beta-cell replication and differentiation and inhibiting beta-cell death. Treatment with various growth factors such as GLP-1, BTC, HGF, and EGF and forced expression of beta-cell transcription factors such as Pdx-1, NeuroD, and MafA resulted in the regeneration of beta-cells in vivo. Another approach is the administration of stem/progenitor cells, which can differentiate into insulin-producing cells. However, there are no satisfactory methods yet for clinical application. Understanding the mechanisms of the regenerative process of pancreatic beta-cells will pave the way for the development of regenerative medicine for treatment of diabetes. PMID:20217517

  15. Pancreatic beta-cell hyperactivity in morbidly obese adolescents.

    PubMed

    Mercado, Arlene B; Castells, Salvador

    2006-12-01

    beta-cell hyperactivity, with increased beta-cell mass in the pancreas, contributes to insulin oversecretion in response to insulin resistance. beta-cell mass expansion, also known as "endocrine pancreas plasticity", is an adaptation to variations in insulin demand, is generally observed in obese persons and in women during late pregnancy. In obese persons, increased free fatty acids contribute to beta-cell growth. It is believed that type 2 diabetes develops in those persons unable to respond to an increased insulin demand with a high rate of beta-cell proliferation. Impairment of insulin secretion may originate from a genetic predisposition as well as aggravated by high lipid and glucose levels. Better understanding of endocrine pancreas plasticity and its regeneration mechanisms could lead to new treatment modalities for type 2 diabetes. Review of literature of pancreatic beta-cell hyperactivity in obesity and its existence in morbidly obese adolescents is hereby presented. PMID:17237743

  16. ADVANCES IN MOLECULAR IMAGING OF PANCREATIC BETA CELLS

    PubMed Central

    Lin, Mai; Lubag, Angelo; McGuire, Michael J.; Seliounine, Serguei Y.; Tsyganov, Edward N.; Antich, Peter P.; Sherry, A. Dean; Brown, Kathlynn C.; Sun, Xiankai

    2009-01-01

    The development of non-invasive imaging methods for early diagnosis of the beta cell associated metabolic diseases, including type 1 and type 2 diabetes (T1D and T2D), has recently drawn considerable interest from the molecular imaging community as well as clinical investigators. Due to the challenges imposed by the location of the pancreas, the sparsely dispersed beta cell population within the pancreas, and the poor understanding of the pathogenesis of the diseases, clinical diagnosis of beta cell abnormalities is still limited. Current diagnostic methods are invasive, often inaccurate, and usually performed post-onset of the disease. Advances in imaging techniques for probing beta cell mass and function are needed to address this critical health care problem. A variety of currently available imaging techniques have been tested for the assessment of the pancreatic beta cell islets. Here we discuss the current advances in magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and nuclear imaging for the study of beta cell diseases. Spurred by early successes in nuclear imaging techniques for beta cells, especially positron emission tomography (PET), the need for beta cell specific ligands has expanded. Progress in the field for obtaining such ligands is presented. Additionally, we report our preliminary efforts of developing such a peptidic ligand for PET imaging of the pancreatic beta cells. PMID:18508529

  17. Group VIA Ca2+-independent phospholipase A2 (iPLA2beta) and its role in beta-cell programmed cell death.

    PubMed

    Lei, Xiaoyong; Barbour, Suzanne E; Ramanadham, Sasanka

    2010-06-01

    Activation of phospholipases A(2) (PLA(2)s) leads to the generation of biologically active lipid mediators that can affect numerous cellular events. The Group VIA Ca(2+)-independent PLA(2), designated iPLA(2)beta, is active in the absence of Ca(2+), activated by ATP, and inhibited by the bromoenol lactone suicide inhibitor (BEL). Over the past 10-15 years, studies using BEL have demonstrated that iPLA(2)beta participates in various biological processes and the recent availability of mice in which iPLA(2)beta expression levels have been genetically-modified are extending these findings. Work in our laboratory suggests that iPLA(2)beta activates a unique signaling cascade that promotes beta-cell apoptosis. This pathway involves iPLA(2)beta dependent induction of neutral sphingomyelinase, production of ceramide, and activation of the intrinsic pathway of apoptosis. There is a growing body of literature supporting beta-cell apoptosis as a major contributor to the loss of beta-cell mass associated with the onset and progression of Type 1 and Type 2 diabetes mellitus. This underscores a need to gain a better understanding of the molecular mechanisms underlying beta-cell apoptosis so that improved treatments can be developed to prevent or delay the onset and progression of diabetes mellitus. Herein, we offer a general review of Group VIA Ca(2+)-independent PLA(2) (iPLA(2)beta) followed by a more focused discussion of its participation in beta-cell apoptosis. We suggest that iPLA(2)beta-derived products trigger pathways which can lead to beta-cell apoptosis during the development of diabetes. PMID:20083151

  18. Aucubin prevents interleukin-1 beta induced inflammation and cartilage matrix degradation via inhibition of NF-κB signaling pathway in rat articular chondrocytes.

    PubMed

    Wang, Sheng-Nan; Xie, Guo-Ping; Qin, Cheng-He; Chen, Yi-Rong; Zhang, Kai-Rui; Li, Xue; Wu, Qian; Dong, Wei-Qiang; Yang, Jun; Yu, Bin

    2015-02-01

    Proinflammatory cytokine interleukin-1β (IL-1β) plays a crucial role in the pathogenesis of Osteoarthritis (OA) by stimulating several mediators contributed to cartilage degradation. Aucubin, a natural compound derived from plants which has been shown to possess diverse biological activities including anti-inflammatory property, may benefit the IL-1β stimulated chondrocytes. The present study was aimed to investigate the effects of Aucubin on IL-1β stimulated rat chondrocytes. Rat chondrocytes were cultured and pretreated with Aucubin (1, 10, 20, 50μM), and then stimulated with or without IL-1β (10ng/ml). Gene and protein expression of MMP-3, MMP-9, MMP-13, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) was determined by real-time PCR and Western blotting respectively. Nitric oxide (NO) production was quantified by Griess reagent. Phosphorylation and nuclear translocation of p65 were detected by western blotting and immunofluorescence, respectively. We found that Aucubin significantly reversed the elevated gene and protein expression of MMP-3, MMP-9, MMP-13, iNOS, COX-2 and the production of NO induced by IL-1β challenge in rat chondrocytes. Furthermore, Aucubin was able to suppress the IL-1β-mediated phosphorylation and nuclear translocation of p65, indicating Aucubin may possibly act via the NF-κB signaling pathway. The present study proposes that Aucubin may be a potential therapeutic choice in the treatment of OA due to its anti-inflammatory and chondroprotective features. PMID:25576403

  19. Cordycepin modulates inflammatory and catabolic gene expression in interleukin-1beta-induced human chondrocytes from advanced-stage osteoarthritis: an in vitro study

    PubMed Central

    Hu, Pengfei; Chen, Weiping; Bao, Jiapeng; Jiang, Lifeng; Wu, Lidong

    2014-01-01

    Cordycepin is widely used as for its various pharmacological activities, such as anti-inflammation, anti-angiogenesis, anti-aging, anti-tumor and anti-proliferation. However, the precise role of cordycepin on chondrocytes is not clear. In the present study, we examined the inhibitory effects of cordycepin on interleukin-1 beta (IL-1β)-induced glycosaminoglycan (GAG) release, nitric oxide production as well as gene expressions of inflammatory and catabolic mediators in human cartilage and chondrocytes. Cartilage explants and human chondrocytes were cultured in the absence or in the presence of IL-1β (10 ng/ml) and with or without cordycepin (5-100 μM). GAG content in the cartilage explants was measured by using the dimethylmethylene blue method and Safranin O staining. Nitric oxide level was determined by Griess reaction. Expressions of MMP-1, MMP-13, cathepsin K, cathepsin S, ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs-4) and ADAMTS-5, inducible nitric oxide synthase (iNOS) and cyclooxgenase-2 (COX-2) were evaluated by real-time quantitative PCR. We found that cordycepin suppressed IL-1β-stimulated GAG release. Gene expressions of catabolic enzymes, including MMP-1, MMP-13, cathepsin K, cathepsin S, ADAMTS-4 and ADAMTS-5, were decreased by cordycepin in a dose-dependent manner. In addition, cordycepin inhibited IL-1β-induced COX-2 and iNOS expression at the transcript level as well as blocked NO production. Our results suggest that cordycepin may possess chondroprotective effect by preventing cartilage denegation and interfering inflammatory response in the pathogenesis of OA. PMID:25400736

  20. Interleukin-1beta-induced extracellular matrix degradation and glycosaminoglycan release is inhibited by curcumin in an explant model of cartilage inflammation.

    PubMed

    Clutterbuck, Abigail L; Mobasheri, Ali; Shakibaei, Mehdi; Allaway, David; Harris, Pat

    2009-08-01

    Osteoarthritis (OA) is a degenerative and inflammatory disease of synovial joints that is characterized by the loss of articular cartilage, for which there is increasing interest in natural remedies. Curcumin (diferuloylmethane) is the main polyphenol in the spice turmeric, derived from rhizomes of the plant Curcuma longa. Curcumin has potent chemopreventive properties and has been shown to inhibit nuclear factor kappaB-mediated inflammatory signaling in many cell types, including chondrocytes. In this study, normal articular cartilage was harvested from metacarpophalangeal and metatarsophalangeal joints of eight horses, euthanized for reasons other than research purposes, to establish an explant model mimicking the inflammatory events that occur in OA. Initially, cartilage explants (N= 8) were stimulated with increasing concentrations of the proinflammatory cytokine IL-1beta to select effective doses for inducing cartilage degeneration in the explant model. Separate cartilage explants were then cotreated with IL-1beta at either 10 ng/mL (n= 3) or 25 ng/mL (n= 3) and curcumin (0.1 micromol/L, 0.5 micromol/L, 1 micromol/L, 10 micromol/L, and 100 micromol/L). After 5 days, the percentage of glycosaminoglycan (GAG) release from the explants was assessed using a dimethylmethylene blue colorimetric assay. Curcumin (100 micromol/L) significantly reduced IL-1beta-stimulated GAG release in the explants by an average of 20% at 10 ng/mL and 27% at 25 ng/mL back to unstimulated control levels (P < 0.001). Our results suggest that this explant model effectively simulates the proinflammatory cytokine-mediated release of articular cartilage components seen in OA. Furthermore, the evidence suggests that the inflammatory cartilage explant model is useful for studying the effects of curcumin on inflammatory pathways and gene expression in IL-1beta-stimulated chondrocytes. PMID:19723086

  1. Interleukin-1beta-induced type IIA secreted phospholipase A2 gene expression and extracellular activity in rat vascular endothelial cells.

    PubMed

    Schwemmer, M; Aho, H; Michel, J B

    2001-06-01

    Two phospholipase A2 (PLA2) isoforms, secretory and cytosolic, have been implicated in inflammation. Secretory type IIA PLA2 (sPLA2-IIA), which hydrolyzes fatty acids bound at the sn-2 position of glycerophospholipids, has been detected universally in a variety of mammalian tissues and cells. The expression of the sPLA2-IIA gene and its extracellular activity were shown to be regulated by different factors such as hypoxia, cytokines and phorbol esters. In the present study, we examined the effects of interleukin-1beta (IL-1beta) on the expression of the 14kDa sPLA2-IIA, determined using reverse transcription polymerase chain reaction and radiometric Escherichia coli enzyme assay in primary cultures of rat endothelial cells and in two different rat endothelial cell lines (SVAREC and RBE4). These experiments revealed that IL-1beta induces sPLA2-IIa gene expression and secretion of the enzyme in endothelial cells in a dose- and time-dependent manner. The cAMP-elevator forskolin did not augment the cytokine-induced elevation of sPLA2-IIa enzyme activity but significantly increased the IL-1beta-stimulated sPLA2-IIa mRNA contents in endothelial cells. PMID:11469536

  2. Closing in on Mass Production of Mature Human Beta Cells.

    PubMed

    Kieffer, Timothy J

    2016-06-01

    Human pluripotent stem cell differentiation protocols based on mimicking developmental pathways are getting close to generating fully fledged pancreatic endocrine cells, including insulin-producing beta cells. However, challenges remain in identifying pathways to trigger the attainment of robust glucose responsiveness that occurs postnatally in beta cells. PMID:27257758

  3. Effect of Exendin-4 on Autophagy Clearance in Beta Cell of Rats with Tacrolimus-induced Diabetes Mellitus

    PubMed Central

    Lim, Sun Woo; Jin, Long; Jin, Jian; Yang, Chul Woo

    2016-01-01

    Growing evidence suggests that GLP-1 protects beta cells against various cellular injuries by modulating autophagy. In this study, we examined whether exendin-4 (Ex-4), a GLP-1 analog, had preventive effects on tacrolimus (Tac)-induced beta cell injury by improving autophagy clearance. Rats with Tac-induced diabetes mellitus exhibited increased autophagy-associated protein expression, light chain 3B levels, and autophagic vacuole numbers in pancreatic beta cells. Additionally, Tac increased autophagy in a dose- and time-dependent manner in vitro, and inhibition of autophagosome using 3-methyladenine reduced Tac-induced islet cell injury by decreasing reactive oxygen species production and apoptosis. Ex-4 treatment decreased Tac-induced hyperglycaemia, oxidative stress, and apoptosis, accompanied by decreased autophagy-associated protein expression and autophagosome numbers. In vivo and in vitro studies showed that Tac treatment impaired lysosomal function and autophagosome-lysosome fusion; these processes were improve by Ex-4 treatment. Moreover, addition of bafilomycin A1, an inhibitor of lysosomal function, abolished the protective effects of Ex-4. Our findings reveal that Tac-induced diabetes mellitus was a state of excessive burden of autophagosomes and impairment of autophagy clearance and that Ex-4 protected against Tac-induced pancreatic islet injury by reducing the burden of autophagosomes via activation of autophagosome clearance. Thus, Ex-4 had therapeutic effects on Tac-induced pancreatic beta cell injury. PMID:27436514

  4. Adenoviral infection or deferoxamine? Two approaches to overexpress VEGF in beta-cell lines.

    PubMed

    Langlois, Allan; Bietiger, William; Sencier, Marie-Christine; Maillard, Elisa; Pinget, Michel; Kessler, Laurence; Sigrist, Severine

    2009-07-01

    Rapid and adequate revascularization of transplanted islets is important for their survival and function during transplantation. Vascular endothelial growth factor (VEGF) could play a critical role with respect to islet revascularization. The aim of this study was to compare two strategies that are used to overexpress VEGF in beta-cells: (1) gene therapy through adenoviral infection and (2) a pharmacological approach using deferoxamine (DFO). beta-Cell lines from rat insulinoma (RINm5F) were either infected using an adenovirus encoding the gene of human VEGF 165 or incubated with DFO. One day after treatment, the viability of RINm5F cells was preserved with 10 micromol/L of DFO (103.95 +/- 5.66% toward control; n = 4). In addition, adenoviral infection maintained the viability of cells for all the concentrations used. In both treatments, overexpression of VEGF was in a comparable level. Finally, the ratio of Bax/Bcl-2 indicated that the apoptosis increased in infected beta-cells whereas treatment with DFO seems to be antiapoptotic. Our results suggest that the use of DFO could be a realistic approach to improve the vascularization of islets during transplantation. PMID:19527112

  5. Uncovering Factors Related to Pancreatic Beta-Cell Function

    PubMed Central

    Curran, Aoife M.; Ryan, Miriam F.; Drummond, Elaine; Gibney, Eileen R.; Gibney, Michael J.; Roche, Helen M.; Brennan, Lorraine

    2016-01-01

    Aim The incidence of type 2 diabetes has increased rapidly on a global scale. Beta-cell dysfunction contributes to the overall pathogenesis of type 2 diabetes. However, factors contributing to beta-cell function are not clear. The aims of this study were (i) to identify factors related to pancreatic beta-cell function and (ii) to perform mechanistic studies in vitro. Methods Three specific measures of beta-cell function were assessed for 110 participants who completed an oral glucose tolerance test as part of the Metabolic Challenge Study. Anthropometric and biochemical parameters were assessed as potential modulators of beta-cell function. Subsequent in vitro experiments were performed using the BRIN-BD11 pancreatic beta-cell line. Validation of findings were performed in a second human cohort. Results Waist-to-hip ratio was the strongest anthropometric modulator of beta-cell function, with beta-coefficients of -0.33 (p = 0.001) and -0.30 (p = 0.002) for beta-cell function/homeostatic model assessment of insulin resistance (HOMA-IR), and disposition index respectively. Additionally, the resistin-to-adiponectin ratio (RA index) emerged as being strongly associated with beta-cell function, with beta-coefficients of -0.24 (p = 0.038) and -0.25 (p = 0.028) for beta-cell function/HOMA-IR, and disposition index respectively. Similar results were obtained using a third measure for beta-cell function. In vitro experiments revealed that the RA index was a potent regulator of acute insulin secretion where a high RA index (20ng ml-1 resistin, 5nmol l-1 g-adiponectin) significantly decreased insulin secretion whereas a low RA index (10ng ml-1 resistin, 10nmol l-1 g-adiponectin) significantly increased insulin secretion. The RA index was successfully validated in a second human cohort with beta-coefficients of -0.40 (p = 0.006) and -0.38 (p = 0.008) for beta-cell function/ HOMA-IR, and disposition index respectively. Conclusions Waist-to-hip ratio and RA index were identified

  6. Targeting insulin-producing beta cells for regenerative therapy.

    PubMed

    Migliorini, Adriana; Roscioni, Sara S; Lickert, Heiko

    2016-09-01

    Pancreatic beta cells differ in terms of glucose responsiveness, insulin secretion and proliferative capacity; however, the molecular pathways that regulate this cellular heterogeneity are unknown. We have identified the Wnt-planar cell polarity (PCP) effector Flattop (FLTP) as a biomarker that identifies mature beta cells in the islets of Langerhans. Interestingly, three-dimensional architecture and Wnt-PCP ligands are sufficient to trigger mouse and human beta cell maturation. These results highlight the fact that novel biomarkers shed light on the long-standing mystery of beta cell heterogeneity and identify the Wnt-PCP pathway as triggering beta cell maturation. Understanding heterogeneity in the islets of Langerhans might allow targeting of beta cell subpopulations for regenerative therapy and provide building principles for stem cell-derived islets. This review summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Amin Ardestani and Kathrin Maedler, DOI: 10.1007/s00125-016-3892-9 , and by Harry Heimberg and colleagues, DOI: 10.1007/s00125-016-3879-6 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ). PMID:27412250

  7. Sources of beta cells inside the pancreas.

    PubMed

    De Groef, Sofie; Staels, Willem; Van Gassen, Naomi; Lemper, Marie; Yuchi, Yixing; Sojoodi, Mozhdeh; Bussche, Leen; Heremans, Yves; Leuckx, Gunter; De Leu, Nico; Van de Casteele, Mark; Baeyens, Luc; Heimberg, Harry

    2016-09-01

    The generation of beta(-like) cells to compensate for their absolute or relative shortage in type 1 and type 2 diabetes is an obvious therapeutic strategy. Patients first received grafts of donor islet cells over 25 years ago, but this procedure has not become routine in clinical practice because of a donor cell shortage and (auto)immune problems. Transplantation of differentiated embryonic and induced pluripotent stem cells may overcome some but not all the current limitations. Reprogramming exocrine cells towards functional beta(-like) cells would offer an alternative abundant and autologous source of beta(-like) cells. This review focuses on work by our research group towards achieving such a source of cells. It summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Amin Ardestani and Kathrin Maedler, DOI: 10.1007/s00125-016-3892-9 , and by Heiko Lickert and colleagues, DOI: 10.1007/s00125-016-3949-9 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ). PMID:27053238

  8. Serotonin competence of mouse beta cells during pregnancy.

    PubMed

    Goyvaerts, Lotte; Schraenen, Anica; Schuit, Frans

    2016-07-01

    Pregnancy is a key mammalian reproductive event in which growth and differentiation of the fetus imposes extra metabolic and hormonal demands on the mother. Its successful outcome depends on major changes in maternal blood circulation, metabolism and endocrine function. One example is the endocrine pancreas, where beta cells undergo a number of changes in pregnancy that result in enhanced functional beta cell mass in order to compensate for the rising metabolic needs for maternal insulin. During the last 5 years, a series of studies have increased our understanding of the molecular events involved in this functional adaptation. In the mouse, a prominent functional change during pregnancy is the capacity of some beta cells to produce serotonin. In this review we will discuss the mechanism and potential effects of pregnancy-related serotonin production in beta cells, considering functional consequences at the local intra-islet and systemic level. PMID:27056372

  9. Pancreatic beta cells express a diverse set of homeobox genes.

    PubMed Central

    Rudnick, A; Ling, T Y; Odagiri, H; Rutter, W J; German, M S

    1994-01-01

    Homeobox genes, which are found in all eukaryotic organisms, encode transcriptional regulators involved in cell-type differentiation and development. Several homeobox genes encoding homeodomain proteins that bind and activate the insulin gene promoter have been described. In an attempt to identify additional beta-cell homeodomain proteins, we designed primers based on the sequences of beta-cell homeobox genes cdx3 and lmx1 and the Drosophila homeodomain protein Antennapedia and used these primers to amplify inserts by PCR from an insulinoma cDNA library. The resulting amplification products include sequences encoding 10 distinct homeodomain proteins; 3 of these proteins have not been described previously. In addition, an insert was obtained encoding a splice variant of engrailed-2, a homeodomain protein previously identified in the central nervous system. Northern analysis revealed a distinct pattern of expression for each homeobox gene. Interestingly, the PCR-derived clones do not represent a complete sampling of the beta-cell library because no inserts encoding cdx3 or lmx1 protein were obtained. Beta cells probably express additional homeobox genes. The abundance and diversity of homeodomain proteins found in beta cells illustrate the remarkable complexity and redundancy of the machinery controlling beta-cell development and differentiation. Images PMID:7991607

  10. IL-13 improves beta-cell survival and protects against IL-1beta-induced beta-cell death

    PubMed Central

    Rütti, Sabine; Howald, Cédric; Arous, Caroline; Dermitzakis, Emmanouil; Halban, Philippe A.; Bouzakri, Karim

    2015-01-01

    Objectives IL-13 is a cytokine classically produced by anti-inflammatory T-helper-2 lymphocytes; it is decreased in the circulation of type 2 diabetic patients and impacts positively on liver and skeletal muscle. Although IL-13 can exert positive effects on beta-cell lines, its impact and mode of action on primary beta-cell function and survival remain largely unexplored. Methods Beta-cells were cultured for 48 h in the presence of IL-13 alone or in combination with IL-1β or cytokine cocktail (IL-1β, IFNγ, TNFα). Results IL-13 protected human and rat beta-cells against cytokine induced death. However, IL-13 was unable to protect from IL-1β impaired glucose stimulated insulin secretion and did not influence NFκB nuclear relocalization induced by IL-1β. IL-13 induced phosphorylation of Akt, increased IRS2 protein expression and counteracted the IL-1β induced regulation of several beta-cell stress response genes. Conclusions The prosurvival effects of IL-13 thus appear to be mediated through IRS2/Akt signaling with NFκB independent regulation of gene expression. In addition to previously documented beneficial effects on insulin target tissues, these data suggest that IL-13 may be useful for treatment of type 2 diabetes by preserving beta-cell mass or slowing its rate of decline. PMID:26909320

  11. Detailed transcriptome atlas of the pancreatic beta cell

    PubMed Central

    Kutlu, Burak; Burdick, David; Baxter, David; Rasschaert, Joanne; Flamez, Daisy; Eizirik, Decio L; Welsh, Nils; Goodman, Nathan; Hood, Leroy

    2009-01-01

    Background Gene expression patterns provide a detailed view of cellular functions. Comparison of profiles in disease vs normal conditions provides insights into the processes underlying disease progression. However, availability and integration of public gene expression datasets remains a major challenge. The aim of the present study was to explore the transcriptome of pancreatic islets and, based on this information, to prepare a comprehensive and open access inventory of insulin-producing beta cell gene expression, the Beta Cell Gene Atlas (BCGA). Methods We performed Massively Parallel Signature Sequencing (MPSS) analysis of human pancreatic islet samples and microarray analyses of purified rat beta cells, alpha cells and INS-1 cells, and compared the information with available array data in the literature. Results MPSS analysis detected around 7600 mRNA transcripts, of which around a third were of low abundance. We identified 2000 and 1400 transcripts that are enriched/depleted in beta cells compared to alpha cells and INS-1 cells, respectively. Microarray analysis identified around 200 transcription factors that are differentially expressed in either beta or alpha cells. We reanalyzed publicly available gene expression data and integrated these results with the new data from this study to build the BCGA. The BCGA contains basal (untreated conditions) gene expression level estimates in beta cells as well as in different cell types in human, rat and mouse pancreas. Hierarchical clustering of expression profile estimates classify cell types based on species while beta cells were clustered together. Conclusion Our gene atlas is a valuable source for detailed information on the gene expression distribution in beta cells and pancreatic islets along with insulin producing cell lines. The BCGA tool, as well as the data and code used to generate the Atlas are available at the T1Dbase website (T1DBase.org). PMID:19146692

  12. Islet Stellate Cells Isolated from Fibrotic Islet of Goto-Kakizaki Rats Affect Biological Behavior of Beta-Cell.

    PubMed

    Li, Feng-Fei; Chen, Bi-Jun; Li, Wei; Li, Ling; Zha, Min; Zhou, S; Bachem, M G; Sun, Zi-Lin

    2016-01-01

    We previously isolated islet stellate cells (ISCs) from healthy Wistar rat islets. In the present study, we isolated "already primed by diabetic environment" ISCs from islets of Goto-Kakizaki rats, determined the gene profile of these cells, and assessed the effects of these ISCs on beta-cell function and survival. We detected gene expression of ISCs by digital gene expression. INS-1 cell proliferation, apoptosis, and insulin production were measured after being treated with ISCs supernatant (SN). We observed the similar expression pattern of ISCs and PSCs, but 1067 differentially expressed genes. Insulin production in INS-1 cells cultured with ISC-SN was significantly reduced. The 5-ethynyl-2'-deoxyuridine-positive INS-1 cells treated with ISC-SN were decreased. Propidium iodide- (PI-) positive INS-1 cells were 2.6-fold higher than those in control groups. Caspase-3 activity was increased. In conclusion, ISCs presented in fibrotic islet of GK rats might be special PSCs, which impaired beta-cell function and proliferation and increased beta-cell apoptosis. PMID:26697502

  13. Beta-cell mitochondrial carriers and the diabetogenic stress response.

    PubMed

    Brun, Thierry; Maechler, Pierre

    2016-10-01

    Mitochondria play a central role in pancreatic beta-cells by coupling metabolism of the secretagogue glucose to distal events of regulated insulin exocytosis. This process requires transports of both metabolites and nucleotides in and out of the mitochondria. The molecular identification of mitochondrial carriers and their respective contribution to beta-cell function have been uncovered only recently. In type 2 diabetes, mitochondrial dysfunction is an early event and may precipitate beta-cell loss. Under diabetogenic conditions, characterized by glucotoxicity and lipotoxicity, the expression profile of mitochondrial carriers is selectively modified. This review describes the role of mitochondrial carriers in beta-cells and the selective changes in response to glucolipotoxicity. In particular, we discuss the importance of the transfer of metabolites (pyruvate, citrate, malate, and glutamate) and nucleotides (ATP, NADH, NADPH) for beta-cell function and dysfunction. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:26979549

  14. The level of nitric oxide regulates lipocalin-2 expression under inflammatory condition in RINm5F beta-cells.

    PubMed

    Chang, Seo-Yoon; Kim, Dong-Bin; Ko, Seung-Hyun; Jang, Hyun-Jong; Jo, Yang-Hyeok; Kim, Myung-Jun

    2016-07-15

    We previously reported that proinflammatory cytokines (interleukin-1β and interferon-γ) induced the expression of lipocalin-2 (LCN-2) together with inducible nitric oxide synthase (iNOS) in RINm5F beta-cells. Therefore, we examined the effect of nitric oxide (NO) on LCN-2 expression in cytokines-treated RINm5F beta-cells. Additionally, we observed the effect of LCN-2 on cell viability. First, we found the existence of LCN-2 receptor and the internalization of exogenous recombinant LCN-2 peptide in RINm5F and INS-1 beta-cells. Next, the effects of NO on LCN-2 expression were evaluated. Aminoguanidine, an iNOS inhibitor and iNOS gene silencing significantly inhibited cytokines-induced LCN-2 expression while sodium nitroprusside (SNP), an NO donor potentiated it. Luciferase reporter assay showed that transcription factor NF-κB was not involved in LCN-2 expression. Both LCN-2 mRNA and protein stability assays were conducted. SNP did not affect LCN-2 mRNA stability, however, it significantly reduced LCN-2 protein degradation. The LCN-2 protein degradation was significantly attenuated by MG132, a proteasome inhibitor. Finally, the effect of LCN-2 on cell viability was evaluated. LCN-2 peptide treatment and LCN-2 overexpression significantly reduced cell viability. FACS analysis showed that LCN-2 induced the apoptosis of the cells. Collectively, NO level affects LCN-2 expression via regulation of LCN-2 protein stability under inflammatory condition and LCN-2 may reduce beta-cell viability by promoting apoptosis. PMID:27233602

  15. Beta-cell preservation…Is weight loss the answer?

    PubMed

    Mazza, Angela D; Pratley, Richard E; Smith, Steven R

    2011-01-01

    Obesity is associated with an increased risk of type 2 diabetes (T2D). Pancreatic beta-cell failure is an early event in the development of glucose dysregulation and diabetes. Interventions to halt beta-cell failure in T2D include diet modification, exercise, and use of pharmacologic agents. There is evidence that abdominal obesity may contribute to diabetes through insulin resistance and beta-cell impairment. Pivotal long-term studies into the prevention of T2D have shown the importance of weight loss beside diet, lifestyle, and medication. The Finnish Diabetes Prevention Program (DPP) showed that weight loss gradually reduces the risk of diabetes, and that even modest weight loss can significantly reduce the incidence of T2D. Similarly, in the US DPP, weight loss as part of intensive lifestyle modification was the major factor in reducing the incidence of T2D in high-risk subjects, being more effective than drug intervention. While understanding the relationship between obesity and diabetes is complex, we know that weight loss has positive effects on adipose tissue. It causes an increase in the beneficial fat cell hormone adiponectin, and a decrease in adipose tissue inflammation. Also, it is associated with reduced insulin resistance and a consequential reduction in glucolipotoxicity, which can improve beta-cell function. In summary, weight loss improves glycemic control and thereby mitigates diabetes symptoms and complications, possibly through the preservation of beta-cell function. Therefore, efforts to prevent diabetes and preserve beta-cell function in patients with T2D should more consequently emphasize and target weight loss. PMID:22580726

  16. On the coherent behavior of pancreatic beta cell clusters

    NASA Astrophysics Data System (ADS)

    Loppini, Alessandro; Capolupo, Antonio; Cherubini, Christian; Gizzi, Alessio; Bertolaso, Marta; Filippi, Simonetta; Vitiello, Giuseppe

    2014-09-01

    Beta cells in pancreas represent an example of coupled biological oscillators which via communication pathways, are able to synchronize their electrical activity, giving rise to pulsatile insulin release. In this work we numerically analyze scale free self-similarity features of membrane voltage signal power density spectrum, through a stochastic dynamical model for beta cells in the islets of Langerhans fine tuned on mouse experimental data. Adopting the algebraic approach of coherent state formalism, we show how coherent molecular domains can arise from proper functional conditions leading to a parallelism with “phase transition” phenomena of field theory.

  17. Nr2e1 Deficiency Augments Palmitate-Induced Oxidative Stress in Beta Cells

    PubMed Central

    Shi, Xiaoli; Deng, Haohua; Dai, Zhe; Xu, Yancheng; Xiong, Xiaokan; Ma, Pei; Cheng, Jing

    2016-01-01

    Nuclear receptor subfamily 2 group E member 1 (Nr2e1) has been regarded as an essential regulator of the growth of neural stem cells. However, its function elsewhere is unknown. In the present study, we generated Nr2e1 knockdown MIN6 cells and studied whether Nr2e1 knockdown affected basal beta cell functions such as proliferation, cell death, and insulin secretion. We showed that knockdown of Nr2e1 in MIN6 cells resulted in increased sensitivity to lipotoxicity, decreased proliferation, a partial G0/G1 cell-cycle arrest, and higher rates of apoptosis. Moreover, Nr2e1 deficiency exaggerates palmitate-induced impairment in insulin secretion. At the molecular level, Nr2e1 deficiency augments palmitate-induced oxidative stress. Nr2e1 deficiency also resulted in decreases in antioxidant enzymes and expression level of Nrf2. Together, this study indicated a potential protective effect of Nr2e1 on beta cells, which may serve as a target for the development of novel therapies for diabetes. PMID:26649147

  18. Regulation of. beta. -cell glucose transporter gene expression

    SciTech Connect

    Chen, Ling; Alam, Tausif; Johnson, J.H.; Unger, R.H. Department of Veterans Affairs Medical Center, Dallas, TX ); Hughes, S.; Newgard, C.B. )

    1990-06-01

    It has been postulated that a glucose transporter of {beta} cells (GLUT-2) may be important in glucose-stimulated insulin secretion. To determine whether this transporter is constitutively expressed or regulated, the authors subjected conscious unrestrained Wistar rats to perturbations in glucose homeostasis and quantitated {beta}-cell GLUT-2 mRNA by in situ hybridization. After 3 hr of hypoglycemia, GLUT-2 and proinsulin mRNA signal densities were reduced by 25% of the level in control rats. After 4 days, GLUT-2 and proinsulin mRNA densities were reduced by 85% and 65%, respectively. After 12 days of hypoglycemia, the K{sub m} for 3-O-methyl-D-glucose transport in isolated rat islets, normally 18-20 mM, was 2.5 mM. This provides functional evidence of a profound reduction of high K{sub m} glucose transporter in {beta} cells. In contrast, GLUT-2 was only slightly reduced by hypoglycemia in liver. To determine the effect of prolonged hyperglycemia, they also infused animals with 50% (wt/vol) glucose for 5 days. Hyperglycemic clamping increased GLUT-2 mRNA by 46% whereas proinsulin mRNA doubled. They conclude that GLUT-2 expression in {beta} cells, but not liver, is subject to regulation by certain perturbations in blood glucose homeostasis.

  19. Beta-cell Assembly for the Quad Gas Sampling Detector

    SciTech Connect

    Cooper, Matthew W.; Bowyer, Ted W.; McIntyre, Justin I.; Hayes, James C.; Heimbigner, Tom R.; Ripplinger, Michael D.; Thompson, Robert C.

    2008-05-05

    The beta-cells used in the beta-gamma detector have taken time to develop and to standardize the assembly of them. In making the assembly routine it is important to have step by step assembly instructions as well as a list of potential problems and their solutions. This document attempts to accomplish these goals.

  20. Beta cell adaptation in pregnancy: a tribute to Claes Hellerström

    PubMed Central

    2016-01-01

    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades, but the mechanisms involved are still not clarified. In this review the information obtained in previous studies is recapitulated together with some of the current attempts to resolve the controversy in the field: identification of the putative progenitor cells, identification of the factors involved in the expansion of the beta cell mass in human pregnancy, and the relative roles of endocrine factors and nutrients. PMID:27055631

  1. IDO-Expressing Fibroblasts Protect Islet Beta Cells From Immunological Attack and Reverse Hyperglycemia in Non-Obese Diabetic Mice.

    PubMed

    Zhang, Yun; Jalili, Reza B; Kilani, Ruhangiz T; Elizei, Sanam Salimi; Farrokhi, Ali; Khosravi-Maharlooei, Mohsen; Warnock, Garth L; Ao, Ziliang; Marzban, Lucy; Ghahary, Aziz

    2016-09-01

    Indoleamine 2,3-dioxygenase (IDO) induces immunological tolerance in physiological and pathological conditions. Therefore, we used dermal fibroblasts with stable IDO expression as a cell therapy to: (i) Investigate the factors determining the efficacy of this cell therapy for autoimmune diabetes in non-obese diabetic (NOD) mice; (ii) Scrutinize the potential immunological mechanisms. Newly diabetic NOD mice were randomly injected with either 10 × 10(6) (10M) or 15 × 10(6) (15M) IDO-expressing dermal fibroblasts. Blood glucose levels (BGLs), body weight, plasma kynurenine levels, insulitis severity, islet beta cell function, autoreactive CD8(+) T cells, Th17 cells and regulatory T cells (Tregs) were then investigated in these mice. IL-1β and cleaved caspase-3 levels were assessed in islets co-cultured with IDO-expressing fibroblasts. BGLs in 83% mice treated with 15M IDO-expressing fibroblasts recovered to normal up to 120 days. However, only 17% mice treated with 10M IDO-expressing cells were reversed to normoglycemia. A 15M IDO-expressing fibroblasts significantly reduced infiltrated immune cells in islets and recovered the functionality of remaining islet beta cells in NOD mice. Additionally, they successfully inhibited autoreactive CD8(+) T cells and Th17 cells as well as increased Tregs in different organs of NOD mice. Islet beta cells co-cultured with IDO-expressing fibroblasts had reduced IL-1β levels and cell apoptosis. Both cell number and IDO enzymatic activity contributes to the efficiency of IDO cell therapy. Optimized IDO-expressing fibroblasts successfully reverse the progression of diabetes in NOD mice through induction of Tregs as well as inhibition of beta cell specific autoreactive CD8(+) T cells and Th17 cells. J. Cell. Physiol. 231: 1964-1973, 2016. © 2016 Wiley Periodicals, Inc. PMID:26743772

  2. The role of autophagy in pancreatic beta-cell and diabetes.

    PubMed

    Fujitani, Yoshio; Kawamori, Ryuzo; Watada, Hirotaka

    2009-02-01

    Pancreatic beta-cells play a key role in glucose homeostasis in mammals. Although large-scale protein synthesis and degradation occur in pancreatic beta-cells, the mechanism underlying dynamic protein turnover in beta-cells remains largely unknown. We found low-level constitutive autophagy in beta-cells of C57BL/6 mice fed a standard diet; however, autophagy was markedly upregulated in mice fed a high-fat diet. beta-cells of diabetic db/db mice contained large numbers of autophagosomes, compared with nondiabetic db/misty controls. The functional importance of autophagy was analyzed using beta-cell-specific Atg7 knockout mice. Autophagy-deficient mice showed degeneration of beta-cells and impaired glucose tolerance with reduced insulin secretion. While a high-fat diet stimulated beta-cell autophagy in control mice, it induced a profound deterioration of glucose intolerance in beta-cell autophagy-deficient mutants, partly because of the lack of a compensatory increase in beta-cell mass. These results suggest that the degradation of unnecessary cellular components by autophagy is essential for maintenance of the architecture and function of beta-cells. Autophagy also serves as a crucial element of stress responses to protect beta-cells under insulin-resistant states. Impairment of autophagic machinery could thus predispose individuals to type 2 diabetes. PMID:19158492

  3. Induction of human pancreatic beta cell replication by inhibitors of dual specificity tyrosine regulated kinase

    PubMed Central

    Wang, Peng; Alvarez-Perez, Juan-Carlos; Felsenfeld, Dan P.; Liu, Hongtao; Sivendran, Sharmila; Bender, Aaron; Kumar, Anil; Sanchez, Roberto; Scott, Donald K.; Garcia-Ocaña, Adolfo; Stewart, Andrew F.

    2015-01-01

    Types 1 and 2 diabetes affect some 380 million people worldwide. Both result ultimately from a deficiency of functional pancreatic insulin-producing beta cells. Beta cells proliferate in humans during a brief temporal window beginning around the time of birth, with peak beta cell labeling indices achieving approximately 2% in first year of life1-4. In embryonic life and after early childhood, beta cell replication rates are very low. While beta cell expansion seems an obvious therapeutic approach to beta cell deficiency, adult human beta cells have proven recalcitrant to such efforts1-8. Hence, there remains an urgent need for diabetes therapeutic agents that can induce regeneration and expansion of adult human beta cells in vivo or ex vivo. Here, we report the results of a high-throughput small molecule screen (HTS) revealing a novel class of human beta cell mitogenic compounds, analogues of the small molecule, harmine. We also define dual specificity tyrosine-regulated kinase-1a (DYRK1A) as the likely target of harmine, and the Nuclear Factors of activated T-cells (NFAT) family of transcription factors as likely mediators of human beta cell proliferation as well as beta cell differentiation. These observations suggest that harmine analogues (“harmalogs”) may have unique therapeutic promise for human diabetes therapy. Enhancing potency and beta cell specificity are important future challenges. PMID:25751815

  4. Increased perinatal remodelling of the pancreas in somatostatin-deficient mice: potential role of transforming growth factor-beta signalling in regulating beta cell growth in early life.

    PubMed

    Richardson, C C; To, K; Foot, V L; Hauge-Evans, A C; Carmignac, D; Christie, M R

    2015-01-01

    Early postnatal life is a critical period for development of the endocrine pancreas, involving remodelling of islet cells and maturation of secretory responses. Factors that regulate these processes are undefined. Somatostatin-secreting delta-cells are abundant in the developing pancreas and, because somatostatin inhibits growth, the hormone may regulate islet expansion in early life. The aim of this study was to investigate effects of somatostatin-deficiency on proliferation, apoptosis and pancreas expansion in the first 3 weeks of life in mice. Pancreases from control or somatostatin-knockout mice were analysed for beta cell, alpha cell and pancreatic volumes by morphometry, proliferation by BrdU incorporation and apoptosis by TUNEL labelling. Signalling pathways associated with proliferation and apoptosis were studied by immunohistochemistry and Western blotting. Knockout mice grew normally in the first 3 weeks of life, but had high circulating insulin that normalised by day 21. Beta cell, alpha cell and pancreatic volumes were decreased in knockout mice, accompanied by reduced proliferation and increased apoptosis in the pancreas. Decreased growth was not due to impaired Akt signalling, as Akt phosphorylation and nuclear cyclin-D2 increased in the knockout pancreas. Levels of TGF-β1, a factor implicated in tissue remodelling, together with SMAD phosphorylation through which TGF-β mediates its effects, were increased in the knockout pancreas. Beta cell expansion was impaired in knockout mice, potentially compensating for increased insulin secretion from islets lacking inhibitory effects of somatostatin, and was associated with increased TGF-β1 levels. TGF-β1 may represent an important regulator of beta cell mass in early life. PMID:25350519

  5. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat.

    PubMed

    Khan, S; Jena, G B

    2014-04-25

    Type 1 diabetes (T1D) also known as juvenile diabetes is a chronic autoimmune disorder that precipitates in genetically susceptible individuals by environmental factors particularly during early age. Both genetic and epigenetic factors are implicated in the beta-cell development, proliferation, differentiation and function. Recent evidences suggested that there is a link between diabetes and histone deacetylases (HDACs), because HDAC inhibitors promote beta-cell development, proliferation and function as well as improve glucose homeostasis. Sodium butyrate (NaB) is a short chain fatty acid having HDAC inhibition activity. The present study was aimed to investigate the protective role of NaB treatment on the beta-cell proliferation, function and glucose homeostasis as well as apoptosis in juvenile diabetic rat. Diabetes was induced by single injection of STZ (60 mg/kg, i.p.) in chilled citrate buffer, while NaB (500 mg/kg/day) was administrated by i.p. route for 21 days as pre- and post-treatment schedule. Plasma glucose and insulin levels, HbA1c, glucose tolerance, apoptosis, and expression of proliferating cell nuclear antigen (PCNA), p38, p53, caspase-3, extracellular signal-regulated kinase-1/2 (ERK-1/2), forkhead box protein O1 (FOXO1) and insulin receptor substrate-1 (IRS-1) as well as histone acetylation were evaluated. NaB treatment decreased plasma glucose, HbA1c, beta-cell apoptosis and improved plasma insulin level and glucose homeostasis through HDAC inhibition and histone acetylation in diabetic animal as compared to control. NaB treatment improved the beta-cell proliferation, function and glucose homeostasis as well as reduced beta-cell apoptosis in juvenile diabetic rat by the modulation of p38/ERK MAPK and apoptotic pathway. PMID:24530320

  6. A Figure-of-Merit for Beta Cell Detector Characterization

    SciTech Connect

    Foxe, Michael P.; Miller, Brian W.; Suarez, Rey; Hayes, James C.

    2015-09-02

    In order to decrease the minimum detectable activities (MDAs) of beta-gamma radioxenon detectors, it is important to increase the ability to resolve the individual isotopes. One proposed method for doing this is to increase the energy resolution of the beta cell through the use of silicon detectors. While silicon detectors can improve the energy resolution, it is accompanied with a decrease in detection efficiency compared to plastic scintillator beta cells. Due to the uncertainty on the impact of the competing variables, we have developed a figure-of-merit (FOM) capable of determining the impact of detector parameters on the MDAs. By utilizing the FOM to analyze different detectors, we are able to directly compare current and future detectors and estimate their impact on the radioxenon MDAs.

  7. Circadian Transcription from Beta Cell Function to Diabetes Pathophysiology.

    PubMed

    Perelis, Mark; Ramsey, Kathryn Moynihan; Marcheva, Biliana; Bass, Joseph

    2016-08-01

    The mammalian circadian clock plays a central role in the temporal coordination of physiology across the 24-h light-dark cycle. A major function of the clock is to maintain energy constancy in anticipation of alternating periods of fasting and feeding that correspond with sleep and wakefulness. While it has long been recognized that humans exhibit robust variation in glucose tolerance and insulin sensitivity across the sleep-wake cycle, experimental genetic analysis has now revealed that the clock transcription cycle plays an essential role in insulin secretion and metabolic function within pancreatic beta cells. This review addresses how studies of the beta cell clock may elucidate the etiology of subtypes of diabetes associated with circadian and sleep cycle disruption, in addition to more general forms of the disease. PMID:27440914

  8. Boost for Alginate Encapsulation in Beta Cell Transplantation.

    PubMed

    Pipeleers, Daniel; Keymeulen, Bart

    2016-05-01

    A recent study reported that encapsulation of human embryonic stem cell (hESC)-derived beta cells by a novel alginate formula protects against foreign body reactivity in immune-competent mice. Intraperitoneal implants corrected a diabetic state for at least 6 months. These observations will stimulate the development of alginate encapsulation towards novel cell therapy protocols for treating type 1 diabetes (T1DM). PMID:27037212

  9. Measuring and Modeling Xenon Uptake in Plastic Beta-Cells

    NASA Astrophysics Data System (ADS)

    Suarez, R.; Hayes, J. C.; Harper, W. W.; Humble, P.; Ripplinger, M. D.; Stephenson, D. E.; Williams, R. M.

    2013-12-01

    The precision of the stable xenon volume measurement in atmospheric monitoring radio-xenon systems is a critical parameter used to determine the activity concentration of a radio-xenon sample. Typically these types of systems use a plastic scintillating beta-cell as part of a beta-gamma detection scheme to measure the radioactivity present in the gas sample. Challenges arise when performing the stable xenon calculation during or after radioactive counting of the sample due to xenon uptake into the plastic beta-cells. Plastic beta cells can adsorb as much as 5% of the sample during counting. If quantification is performed after counting, the uptake of xenon into the plastic results in an underestimation of the xenon volume measurement. This behavior also causes what is typically known as 'memory effect' in the cell. Experiments were conducted using a small volume low pressure range thermal conductivity sensor to quantify the amount of xenon uptake into the cell over a given period of time. Understanding the xenon uptake in the cell provides a better estimate of the stable volume which improves the overall measurement capability of the system. The results from these experiments along with modeling will be presented.

  10. Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome.

    PubMed

    Nica, Alexandra C; Ongen, Halit; Irminger, Jean-Claude; Bosco, Domenico; Berney, Thierry; Antonarakis, Stylianos E; Halban, Philippe A; Dermitzakis, Emmanouil T

    2013-09-01

    Elucidating the pathophysiology and molecular attributes of common disorders as well as developing targeted and effective treatments hinges on the study of the relevant cell type and tissues. Pancreatic beta cells within the islets of Langerhans are centrally involved in the pathogenesis of both type 1 and type 2 diabetes. Describing the differentiated state of the human beta cell has been hampered so far by technical (low resolution microarrays) and biological limitations (whole islet preparations rather than isolated beta cells). We circumvent these by deep RNA sequencing of purified beta cells from 11 individuals, presenting here the first characterization of the human beta cell transcriptome. We perform the first comparison of gene expression profiles between beta cells, whole islets, and beta cell depleted islet preparations, revealing thus beta-cell-specific expression and splicing signatures. Further, we demonstrate that genes with consistent increased expression in beta cells have neuronal-like properties, a signal previously hypothesized. Finally, we find evidence for extensive allelic imbalance in expression and uncover genetic regulatory variants (eQTLs) active in beta cells. This first molecular blueprint of the human beta cell offers biological insight into its differentiated function, including expression of key genes associated with both major types of diabetes. PMID:23716500

  11. Oleate protects beta-cells from the toxic effect of palmitate by activating pro-survival pathways of the ER stress response.

    PubMed

    Sargsyan, Ernest; Artemenko, Konstantin; Manukyan, Levon; Bergquist, Jonas; Bergsten, Peter

    2016-09-01

    Long-term exposure of beta cells to saturated fatty acids impairs insulin secretion and increases apoptosis. In contrast, unsaturated fatty acids protect beta-cells from the long-term negative effects of saturated fatty acids. We aimed to identify the mechanisms underlying this protective action of unsaturated fatty acids. To address the aim, insulin-secreting MIN6 cells were exposed to palmitate in the absence or presence of oleate and analyzed by using nano-LC MS/MS based proteomic approach. Important findings were validated by using alternative approaches. Proteomic analysis identified 34 proteins differentially expressed in the presence of palmitate compared to control samples. These proteins play a role in insulin processing, mitochondrial function, metabolism of biomolecules, calcium homeostasis, exocytosis, receptor signaling, ER protein folding, antioxidant activity and anti-apoptotic function. When oleate was also present during culture, expression of 15 proteins was different from the expression in the presence of palmitate alone. Most of the proteins affected by oleate are targets of the ER stress response and play a pro-survival role in beta cells such as protein folding and antioxidative defence. We conclude that restoration of pro-survival pathways of the ER stress response is a major mechanism underlying the protective effect of unsaturated fatty acids in beta-cells treated with saturated fatty acids. PMID:27344025

  12. Mitochondrial network regulation and its potential interference with inflammatory signals in pancreatic beta cells.

    PubMed

    Baltrusch, Simone

    2016-04-01

    Mitochondria fulfil multiple tasks in nutrient metabolism, energy production, redox homeostasis and stress response, and are essential for pancreatic beta cell function. The dynamism and health of the mitochondrial network is regulated by fission- and fusion-triggering factors and by a quality control system that removes dysfunctional organelles. Alongside the role of mitochondria in regulating apoptotic cell death mediated primarily via production of reactive oxygen species and release of cytochrome c, there is evidence of other links between mitochondria and inflammation that have implications for cell viability. This review briefly outlines two pathways that are potentially vital for pancreatic beta cell function. The first concerns the regulation of Parkin, a protein that acts, not only as a central player in regulating mitophagy, but also as an activator of the NF-ĸB pathway. The fact that expression of optic atrophy protein 1 (OPA1), a mitochondrial fusion inducer and master mitochondrial cristae biogenetic factor, is increased following NF-ĸB activation highlights a point of mitochondrial control that might be influenced by TNFα signalling. A second axis of interest is suggested by IL-6-mediated upregulation of the fission inducer FIS1 alongside downregulation of mitofusin 2 (MFN2), a guard of mitochondrial fusion and metabolism and an inhibitor of apoptosis. This review summarises a presentation given at the 'Islet inflammation in type 2 diabetes' symposium at the 2015 annual meeting of the EASD. It is accompanied two other reviews on topics from this symposium (by Marc Donath, DOI: 10.1007/s00125-016-3873-z , and Jerry Nadler and colleagues, DOI: 10.1007/s00125-016-3890-y ) and a commentary by the Session Chair, Piero Marchetti (DOI: 10.1007/s00125-016-3875-x ). PMID:26873508

  13. Regulating the beta cell mass as a strategy for type-2 diabetes treatment.

    PubMed

    Song, Imane; Muller, Christo; Louw, Johan; Bouwens, Luc

    2015-01-01

    The incidence of type 2 diabetes (T2D) increases dramatically worldwide and has created an enormous health care burden. Obesity, dyslipidemia and insulin resistance are major risk factors for the development of T2D, but the major factor leading to the disease is failure of the insulin-producing beta cell mass to compensate for increasing insulin demands of the body. Progression of the disease further diminishes the beta cell mass as a result of lipotoxicity and glucotoxicity for which beta cells are particularly sensitive. Hence, treatment aiming to prevent beta cell loss or increase the number of beta cells could inhibit diabetes progression or lead to restoration of normal metabolism. Whereas current and new antidiabetic drugs are mainly targeting insulin secretion and action or glucose uptake, newer interventions must be found that prevent beta cell loss or increase beta cell number. The targets for this are beta cell proliferation, neogenesis and survival. This review examines major evidence from animal experiments suggesting that it is feasible to regulate the beta cell mass by bioactive compounds like growth factors, cytokines, hormones, phytochemicals and small molecules. Often the mode of action remains unclear due to inadequate methods to assess the effects of the compounds on the beta cell dynamics. Furthermore, a major challenge is to identify compounds with sufficient specificity in order to avoid unwanted effects on other cell types. Provided such safety issues can be solved, this may provide a curative approach for diabetes treatment. PMID:25654737

  14. Proliferation and plasticity of human beta cells on physiologically occurring laminin isoforms.

    PubMed

    Banerjee, Meenal; Virtanen, Ismo; Palgi, Jaan; Korsgren, Olle; Otonkoski, Timo

    2012-05-15

    We have previously characterized the molecular composition of human islet basement membranes and shown that human beta cells bind to laminin 511 (LM511) through integrin α3β1 and Lutheran glycoprotein. We have now investigated the impact of physical contact between cultured human beta cells and the laminin isoforms occurring in their natural niche. Human islet preparations derived from 15 donors were used, beta cells and duct cells were purified by magnetic sorting. Overall beta-cell proliferation was low or undetectable. However, in many experiments the only proliferating beta cells were detected in contact with the laminin isoforms that are found in the human islets in vivo (511 and 411). Purified ductal and beta cells underwent epithelial-mesenchymal transition (EMT). LM511 partially blocked this dedifferentiation of purified beta cells, and did not affect purified duct cells. Interactions with the surrounding basement membrane are important for the growth and function of human beta cells. However, only a very limited level of beta-cell proliferation can be induced by exogenous factors. LM511 may be a useful substrate for human beta-cell maintenance in vitro. PMID:22314207

  15. Role of microRNAs in islet beta-cell compensation and failure during diabetes.

    PubMed

    Plaisance, Valérie; Waeber, Gérard; Regazzi, Romano; Abderrahmani, Amar

    2014-01-01

    Pancreatic beta-cell function and mass are markedly adaptive to compensate for the changes in insulin requirement observed during several situations such as pregnancy, obesity, glucocorticoids excess, or administration. This requires a beta-cell compensation which is achieved through a gain of beta-cell mass and function. Elucidating the physiological mechanisms that promote functional beta-cell mass expansion and that protect cells against death, is a key therapeutic target for diabetes. In this respect, several recent studies have emphasized the instrumental role of microRNAs in the control of beta-cell function. MicroRNAs are negative regulators of gene expression, and are pivotal for the control of beta-cell proliferation, function, and survival. On the one hand, changes in specific microRNA levels have been associated with beta-cell compensation and are triggered by hormones or bioactive peptides that promote beta-cell survival and function. Conversely, modifications in the expression of other specific microRNAs contribute to beta-cell dysfunction and death elicited by diabetogenic factors including, cytokines, chronic hyperlipidemia, hyperglycemia, and oxidized LDL. This review underlines the importance of targeting the microRNA network for future innovative therapies aiming at preventing the beta-cell decline in diabetes. PMID:24734255

  16. Role of MicroRNAs in Islet Beta-Cell Compensation and Failure during Diabetes

    PubMed Central

    Plaisance, Valérie; Waeber, Gérard

    2014-01-01

    Pancreatic beta-cell function and mass are markedly adaptive to compensate for the changes in insulin requirement observed during several situations such as pregnancy, obesity, glucocorticoids excess, or administration. This requires a beta-cell compensation which is achieved through a gain of beta-cell mass and function. Elucidating the physiological mechanisms that promote functional beta-cell mass expansion and that protect cells against death, is a key therapeutic target for diabetes. In this respect, several recent studies have emphasized the instrumental role of microRNAs in the control of beta-cell function. MicroRNAs are negative regulators of gene expression, and are pivotal for the control of beta-cell proliferation, function, and survival. On the one hand, changes in specific microRNA levels have been associated with beta-cell compensation and are triggered by hormones or bioactive peptides that promote beta-cell survival and function. Conversely, modifications in the expression of other specific microRNAs contribute to beta-cell dysfunction and death elicited by diabetogenic factors including, cytokines, chronic hyperlipidemia, hyperglycemia, and oxidized LDL. This review underlines the importance of targeting the microRNA network for future innovative therapies aiming at preventing the beta-cell decline in diabetes. PMID:24734255

  17. Cdk5 inhibitory peptide (CIP) inhibits Cdk5/p25 activity induced by high glucose in pancreatic beta cells and recovers insulin secretion from p25 damage.

    PubMed

    Zheng, Ya-Li; Li, Congyu; Hu, Ya-Fang; Cao, Li; Wang, Hui; Li, Bo; Lu, Xiao-Hua; Bao, Li; Luo, Hong-Yan; Shukla, Varsha; Amin, Niranjana D; Pant, Harish C

    2013-01-01

    Cdk5/p25 hyperactivity has been demonstrated to lead to neuron apoptosis and degenerations. Chronic exposure to high glucose (HG) results in hyperactivity of Cdk5 and reduced insulin secretion. Here, we set out to determine whether abnormal upregulation of Cdk5/p25 activity may be induced in a pancreatic beta cell line, Min6 cells. We first confirmed that p25 were induced in overexpressed p35 cells treated with HG and increased time course dependence. Next, we showed that no p25 was detected under short time HG stimulation (4-12 hrs), however was detectable in the long exposure in HG cells (24 hrs and 48 hrs). Cdk5 activity in the above cells was much higher than low glucose treated cells and resulted in more than 50% inhibition of insulin secretion. We confirmed these results by overexpression of p25 in Min6 cells. As in cortical neurons, CIP, a small peptide, inhibited Cdk5/p25 activity and restored insulin secretion. The same results were detected in co-infection of dominant negative Cdk5 (DNCdk5) with p25. CIP also reduced beta cells apoptosis induced by Cdk5/p25. These studies indicate that Cdk5/p25 hyperactivation deregulates insulin secretion and induces cell death in pancreatic beta cells and suggests that CIP may serve as a therapeutic agent for type 2 diabetes. PMID:24039692

  18. Parathyroid Hormone-Related Peptide (1-36) Enhances Beta Cell Regeneration and Increases Beta Cell Mass in a Mouse Model of Partial Pancreatectomy

    PubMed Central

    Mozar, Anaïs; Lin, Hugo; Williams, Katoura; Chin, Connie; Li, Rosemary; Kondegowda, Nagesha Guthalu; Stewart, Andrew F.; Garcia-Ocaña, Adolfo; Vasavada, Rupangi Chhaya

    2016-01-01

    Aims/Hypothesis Finding ways to stimulate the regeneration of endogenous pancreatic beta cells is an important goal in the treatment of diabetes. Parathyroid hormone-related protein (PTHrP), the full-length (1–139) and amino-terminal (1–36) peptides, enhance beta cell function, proliferation, and survival. Therefore, we hypothesize that PTHrP(1–36) has the potential to regenerate endogenous beta cells. Methods The partial pancreatectomy (PPx) mouse model of beta cell injury was used to test this hypothesis. Male Balb/c mice underwent either sham-operation or PPx, and were subsequently injected with PTHrP(1–36) (160μg/kg) or vehicle (veh), for 7, 30, or 90 days. The four groups of mice, sham-veh, sham-PTHrP, PPx-veh, and PPx-PTHrP were assessed for PTHrP and receptor expression, and glucose and beta cell homeostasis. Results PTHrP-receptor, but not the ligand, was significantly up-regulated in islets from mice that underwent PPx compared to sham-operated mice. This suggests that exogenous PTHrP could further enhance beta cell regeneration after PPx. PTHrP did not significantly affect body weight, blood glucose, plasma insulin, or insulin sensitivity, in either sham or PPx mice. Glucose tolerance improved in the PPx-PTHrP versus PPx-veh mice only in the early stages of treatment. As hypothesized, there was a significant increase in beta cell proliferation in PPx-PTHrP mice at days 7 and 30; however, this was normalized by day 90, compared to PPx-veh mice. Enhanced beta cell proliferation translated to a marked increase in beta cell mass at day 90, in PPx-PTHrP versus PPx-veh mice. Conclusions PTHrP(1–36) significantly enhances beta cell regeneration through increased beta cell proliferation and beta cell mass after PPx. Future studies will determine the potential of PTHrP to enhance functional beta cell mass in the setting of diabetes. PMID:27391423

  19. Regulation of Beta-Cell Function and Mass by the Dual Leucine Zipper Kinase.

    PubMed

    Oetjen, Elke

    2016-06-01

    Diabetes mellitus is one of the most rapidly increasing diseases worldwide, whereby approximately 90-95% of patients suffer from type 2 diabetes. Considering its micro- and macrovascular complications like blindness and myocardial infarction, a reliable anti-diabetic treatment is needed. Maintaining the function and the mass of the insulin producing beta-cells despite elevated levels of beta-cell-toxic prediabetic signals represents a desirable mechanism of action of anti-diabetic drugs. The dual leucine zipper kinase (DLK) inhibits the action of two transcription factors within the beta-cell, thereby interfering with insulin secretion and production and the conservation of beta-cell mass. Furthermore, DLK action is regulated by prediabetic signals. Hence, the inhibition of this kinase might protect beta-cells against beta-cell-toxic prediabetic signals and prevent the development of diabetes. DLK might thus present a novel drug target for the treatment of diabetes mellitus type 2. PMID:27100796

  20. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways

    SciTech Connect

    Chen Yawen; Huang Chunfa; Yang Chingyao; Yen Chengchieh; Tsai Kehsung; Liu Shinghwa

    2010-03-15

    Mercury is a well-known highly toxic metal. In this study, we characterize and investigate the cytotoxicity and its possible mechanisms of inorganic mercury in pancreatic beta-cells. Mercury chloride (HgCl{sub 2}) dose-dependently decreased the function of insulin secretion and cell viability in pancreatic beta-cell-derived HIT-T15 cells and isolated mouse pancreatic islets. HgCl{sub 2} significantly increased ROS formation in HIT-T15 cells. Antioxidant N-acetylcysteine effectively reversed HgCl{sub 2}-induced insulin secretion dysfunction in HIT-T15 cells and isolated mouse pancreatic islets. Moreover, HgCl{sub 2} increased sub-G1 hypodiploids and annexin-V binding in HIT-T15 cells, indicating that HgCl{sub 2} possessed ability in apoptosis induction. HgCl{sub 2} also displayed several features of mitochondria-dependent apoptotic signals including disruption of the mitochondrial membrane potential, increase of mitochondrial cytochrome c release and activations of poly (ADP-ribose) polymerase (PARP) and caspase 3. Exposure of HIT-T15 cells to HgCl{sub 2} could significantly increase both apoptotic and necrotic cell populations by acridine orange/ethidium bromide dual staining. Meanwhile, HgCl{sub 2} could also trigger the depletion of intracellular ATP levels and increase the LDH release from HIT-T15 cells. These HgCl{sub 2}-induced cell death-related signals could be significantly reversed by N-acetylcysteine. The intracellular mercury levels were markedly elevated in HgCl{sub 2}-treated HIT-T15 cells. Taken together, these results suggest that HgCl{sub 2}-induced oxidative stress causes pancreatic beta-cell dysfunction and cytotoxicity involved the co-existence of apoptotic and necrotic cell death.

  1. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells.

    PubMed

    Taylor, Brandon L; Liu, Fen-Fen; Sander, Maike

    2013-09-26

    Recently, loss of beta-cell-specific traits has been proposed as an early cause of beta cell failure in diabetes. However, the molecular mechanisms that underlie the loss of beta cell features remain unclear. Here, we identify an Nkx6.1-controlled gene regulatory network as essential for maintaining the functional and molecular traits of mature beta cells. Conditional Nkx6.1 inactivation in adult mice caused rapid-onset diabetes and hypoinsulinemia. Genome-wide analysis of Nkx6.1-regulated genes and functional assays further revealed a critical role for Nkx6.1 in the control of insulin biosynthesis, insulin secretion, and beta cell proliferation. Over time, Nkx6.1-deficient beta cells acquired molecular characteristics of delta cells, revealing a molecular link between impaired beta cell functional properties and loss of cell identity. Given that Nkx6.1 levels are reduced in human type 2 diabetic beta cells, our study lends support to the concept that loss of beta cell features could contribute to the pathogenesis of diabetes. PMID:24035389

  2. Quantitative-Proteomic Comparison of Alpha and Beta Cells to Uncover Novel Targets for Lineage Reprogramming

    PubMed Central

    Mertins, Philipp; Udeshi, Namrata D.; Dančík, Vlado; Fomina-Yadlin, Dina; Kubicek, Stefan; Clemons, Paul A.; Schreiber, Stuart L.; Carr, Steven A.; Wagner, Bridget K.

    2014-01-01

    Type-1 diabetes (T1D) is an autoimmune disease in which insulin-secreting pancreatic beta cells are destroyed by the immune system. An emerging strategy to regenerate beta-cell mass is through transdifferentiation of pancreatic alpha cells to beta cells. We previously reported two small molecules, BRD7389 and GW8510, that induce insulin expression in a mouse alpha cell line and provide a glimpse into potential intermediate cell states in beta-cell reprogramming from alpha cells. These small-molecule studies suggested that inhibition of kinases in particular may induce the expression of several beta-cell markers in alpha cells. To identify potential lineage reprogramming protein targets, we compared the transcriptome, proteome, and phosphoproteome of alpha cells, beta cells, and compound-treated alpha cells. Our phosphoproteomic analysis indicated that two kinases, BRSK1 and CAMKK2, exhibit decreased phosphorylation in beta cells compared to alpha cells, and in compound-treated alpha cells compared to DMSO-treated alpha cells. Knock-down of these kinases in alpha cells resulted in expression of key beta-cell markers. These results provide evidence that perturbation of the kinome may be important for lineage reprogramming of alpha cells to beta cells. PMID:24759943

  3. Maturation of Stem Cell-Derived Beta-cells Guided by the Expression of Urocortin 3

    PubMed Central

    van der Meulen, Talitha; Huising, Mark O.

    2014-01-01

    Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully generate pancreatic endoderm cells. In diabetic rodents, such cells can differentiate further along the beta-cell lineage until they are eventually capable of restoring normoglycemia. While these observations demonstrate that stem cell-derived pancreatic endoderm has the potential to differentiate into mature, glucose-responsive beta-cells, the signals that direct differentiation and maturation from pancreatic endoderm onwards remain poorly understood. In this review, we analyze the sequence of events that culminates in the formation of beta-cells during embryonic development. and summarize how current protocols to generate beta-cells have sought to capitalize on this ontogenic template. We place particular emphasis on the current challenges and opportunities which occur in the later stages of beta-cell differentiation and maturation of transplantable stem cell-derived beta-cells. Another focus is on the question how the use of recently identified maturation markers such as urocortin 3 can be instrumental in guiding these efforts. PMID:25148370

  4. Oxidative Stress Type Influences the Properties of Antioxidants Containing Polyphenols in RINm5F Beta Cells

    PubMed Central

    Auberval, Nathalie; Dal, Stéphanie; Bietiger, William; Seyfritz, Elodie; Peluso, Jean; Muller, Christian; Zhao, Minjie; Marchioni, Eric; Pinget, Michel; Jeandidier, Nathalie; Maillard, Elisa; Schini-Kerth, Valérie; Sigrist, Séverine

    2015-01-01

    The in vitro methods currently used to screen bioactive compounds focus on the use of a single model of oxidative stress. However, this simplistic view may lead to conflicting results. The aim of this study was to evaluate the antioxidant properties of two natural extracts (a mix of red wine polyphenols (RWPs) and epigallocatechin gallate (EGCG)) with three models of oxidative stress induced with hydrogen peroxide (H2O2), a mixture of hypoxanthine and xanthine oxidase (HX/XO), or streptozotocin (STZ) in RINm5F beta cells. We employed multiple approaches to validate their potential as therapeutic treatment options, including cell viability, reactive oxygen species production, and antioxidant enzymes expression. All three oxidative stresses induced a decrease in cell viability and an increase in apoptosis, whereas the level of ROS production was variable depending on the type of stress. The highest level of ROS was found for the HX/XO-induced stress, an increase that was reflected by higher expression antioxidant enzymes. Further, both antioxidant compounds presented beneficial effects during oxidative stress, but EGCG appeared to be a more efficient antioxidant. These data indicate that the efficiency of natural antioxidants is dependent on both the nature of the compound and the type of oxidative stress generated. PMID:26508986

  5. Beta-cell deterioration during diabetes: what's in the gun?

    PubMed

    Robertson, R Paul

    2009-10-01

    Clinical management of patients with type 2 diabetes (T2D) successfully prevents extreme hyperglycemia but does not precisely control glucose levels throughout the day. The pathogenesis of T2D is akin to a double-barrel shotgun. The first trigger causes an explosion that sets genetic expression of the disease in motion; the second trigger discharges a host of environmental factors that worsen its clinical course. Candidate shells include glucolipotoxicity, cytokines, oxidative and endoplasmic reticulum stress and insulin resistance. This review considers how each candidate adversely impacts beta-cell function to create the downward spiral of glycemic control. Their roles in pathogenesis raise possibilities for new drug therapies designed to protect against adverse effects of residual hyperglycemia in patients treated with conventional drugs. PMID:19748794

  6. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    SciTech Connect

    Goalstone, Marc; Kamath, Vasudeva; Kowluru, Anjaneyulu

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  7. Cell therapies for pancreatic beta-cell replenishment.

    PubMed

    Okere, Bernard; Lucaccioni, Laura; Dominici, Massimo; Iughetti, Lorenzo

    2016-01-01

    The current treatment approach for type 1 diabetes is based on daily insulin injections, combined with blood glucose monitoring. However, administration of exogenous insulin fails to mimic the physiological activity of the islet, therefore diabetes often progresses with the development of serious complications such as kidney failure, retinopathy and vascular disease. Whole pancreas transplantation is associated with risks of major invasive surgery along with side effects of immunosuppressive therapy to avoid organ rejection. Replacement of pancreatic beta-cells would represent an ideal treatment that could overcome the above mentioned therapeutic hurdles. In this context, transplantation of islets of Langerhans is considered a less invasive procedure although long-term outcomes showed that only 10 % of the patients remained insulin independent five years after the transplant. Moreover, due to shortage of organs and the inability of islet to be expanded ex vivo, this therapy can be offered to a very limited number of patients. Over the past decade, cellular therapies have emerged as the new frontier of treatment of several diseases. Furthermore the advent of stem cells as renewable source of cell-substitutes to replenish the beta cell population, has blurred the hype on islet transplantation. Breakthrough cellular approaches aim to generate stem-cell-derived insulin producing cells, which could make diabetes cellular therapy available to millions. However, to date, stem cell therapy for diabetes is still in its early experimental stages. This review describes the most reliable sources of stem cells that have been developed to produce insulin and their most relevant experimental applications for the cure of diabetes. PMID:27400873

  8. Nanomaterial Solutions for the Protection of Insulin Producing Beta Cells

    NASA Astrophysics Data System (ADS)

    Atchison, Nicole Ann

    Islet transplantation is a promising treatment for type 1 diabetes. However, even with the many successes, islet transplantation has yet to reach its full potential. Limited islet sources, loss of cell viability during isolation and culture, and post-transplant graft loss are a few of the issues preventing extensive use of islet transplantation. The application of biomaterial systems to alleviate some of the stresses affecting islet viability has led to improvements in isolation and transplantation outcomes, but problems persist. In this work we approach two distinct issues affecting islet viability; ischemic conditions and immunological attack post-transplant. Ischemic conditions have been linked to a loss of islet graft function and occur during organ preservation, islet isolation and culture, and after islets are transplanted. We show that liposomal delivery of adenosine triphosphate (ATP) to beta cells can limit cell death and loss of function in ischemic conditions. We demonstrate that by functionalizing liposomes with the fibronectin-mimetic peptide PR_b, delivery of liposomes to porcine islets and rat beta cells is increased compared to nontargeted controls. Additionally, liposomes are shown to protect by providing both ATP and lipids to the ischemic cells. The delivery of ATP was investigated here but application of PR_b functionalized liposomes could be extended to other interesting cargos as well. The second area of investigation involves encapsulation of islets with silica nanoparticles to create a permselective barrier. Silica nanoparticles are an interesting material for encapsulation given their ability to be fine-tuned and further functionalized. We demonstrate that size-tunable, fluorescent silica nanoparticles can be assembled layer-by-layer on the surface of cells and that silica nanoparticle encapsulated islets are able to secrete insulin in response to a glucose challenge.

  9. Specialized Hub Beta Cells Trade Maximal Insulin Production for Perfect Timing.

    PubMed

    Kolic, Jelena; Johnson, James D

    2016-09-13

    The pulsatility of insulin release is disturbed early in type 2 diabetes, but it is not clear whether specialized pacemaker cells drive islet oscillations. In this issue of Cell Metabolism, Johnston et al. (2016) show that specialized hubs, identified as 1%-10% of beta cells with more active mitochondria and less insulin, synchronize beta cell oscillations. PMID:27626196

  10. Glucagon-Like Peptide-1 Receptor Agonists: Beta-Cell Protection or Exhaustion?

    PubMed

    van Raalte, Daniël H; Verchere, C Bruce

    2016-07-01

    Glucagon-like peptide (GLP)-1 receptor agonists enhance insulin secretion and may improve pancreatic islet cell function. However, GLP-1 receptor (GLP-1R) agonist treatment may have more complex, and sometimes deleterious, effects on beta cells. We discuss the concepts of beta cell protection versus exhaustion for different GLP-1R agonists based on recent data. PMID:27160799

  11. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes.

    PubMed

    Dooley, James; Tian, Lei; Schonefeldt, Susann; Delghingaro-Augusto, Viviane; Garcia-Perez, Josselyn E; Pasciuto, Emanuela; Di Marino, Daniele; Carr, Edward J; Oskolkov, Nikolay; Lyssenko, Valeriya; Franckaert, Dean; Lagou, Vasiliki; Overbergh, Lut; Vandenbussche, Jonathan; Allemeersch, Joke; Chabot-Roy, Genevieve; Dahlstrom, Jane E; Laybutt, D Ross; Petrovsky, Nikolai; Socha, Luis; Gevaert, Kris; Jetten, Anton M; Lambrechts, Diether; Linterman, Michelle A; Goodnow, Chris C; Nolan, Christopher J; Lesage, Sylvie; Schlenner, Susan M; Liston, Adrian

    2016-05-01

    Type 1 (T1D) and type 2 (T2D) diabetes share pathophysiological characteristics, yet mechanistic links have remained elusive. T1D results from autoimmune destruction of pancreatic beta cells, whereas beta cell failure in T2D is delayed and progressive. Here we find a new genetic component of diabetes susceptibility in T1D non-obese diabetic (NOD) mice, identifying immune-independent beta cell fragility. Genetic variation in Xrcc4 and Glis3 alters the response of NOD beta cells to unfolded protein stress, enhancing the apoptotic and senescent fates. The same transcriptional relationships were observed in human islets, demonstrating the role of beta cell fragility in genetic predisposition to diabetes. PMID:26998692

  12. Update on the protective molecular pathways improving pancreatic beta-cell dysfunction.

    PubMed

    Puddu, Alessandra; Sanguineti, Roberta; Mach, François; Dallegri, Franco; Viviani, Giorgio Luciano; Montecucco, Fabrizio

    2013-01-01

    The primary function of pancreatic beta-cells is to produce and release insulin in response to increment in extracellular glucose concentrations, thus maintaining glucose homeostasis. Deficient beta-cell function can have profound metabolic consequences, leading to the development of hyperglycemia and, ultimately, diabetes mellitus. Therefore, strategies targeting the maintenance of the normal function and protecting pancreatic beta-cells from injury or death might be crucial in the treatment of diabetes. This narrative review will update evidence from the recently identified molecular regulators preserving beta-cell mass and function recovery in order to suggest potential therapeutic targets against diabetes. This review will also highlight the relevance for novel molecular pathways potentially improving beta-cell dysfunction. PMID:23737653

  13. Direct Reprogramming for Pancreatic Beta-Cells Using Key Developmental Genes

    PubMed Central

    Cavelti-Weder, Claudia; Li, Weida; Zumsteg, Adrian; Stemann, Marianne; Yamada, Takatsugu; Bonner-Weir, Susan; Weir, Gordon

    2015-01-01

    Direct reprogramming is a promising approach for regenerative medicine whereby one cell type is directly converted into another without going through a multipotent or pluripotent stage. This reprogramming approach has been extensively explored for the generation of functional insulin-secreting cells from non-beta-cells with the aim of developing novel cell therapies for the treatment of people with diabetes lacking sufficient endogenous beta-cells. A common approach for such conversion studies is the introduction of key regulators that are important in controlling beta-cell development and maintenance. In this review, we will summarize the recent advances in the field of beta-cell reprogramming and discuss the challenges of creating functional and long-lasting beta-cells. PMID:26998407

  14. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    SciTech Connect

    Hals, Ingrid K.; Ogata, Hirotaka; Pettersen, Elin; Ma, Zuheng; Bjoerklund, Anneli; Skorpen, Frank; Egeberg, Kjartan Wollo; Grill, Valdemar

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The impact of UCP-2 over expression on mitochondrial function is controversial. Black-Right-Pointing-Pointer We tested mitochondrial functions at defined levels of overexpression. Black-Right-Pointing-Pointer We find minor increases of fatty acid oxidation and uncoupling. Black-Right-Pointing-Pointer Effects were seen only at high level (fourfold) of over expression. Black-Right-Pointing-Pointer Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 {mu}g/ml of doxycycline (dox) induced UCP-2 fourfold (424 {+-} 113%, mean {+-} SEM) and 0.1 {mu}g/ml twofold (178 {+-} 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 {+-} 11%) as well as D-[U-{sup 14}C]-glucose oxidation (+5 {+-} 9% at 11 mM glucose). Oxidation of [1-{sup 14}C]-oleate was increased from 4088 to 5797 fmol/{mu}g prot/2 h at 3.3 mM glucose, p < 0.03. Oxidation of L-[{sup 14}C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the

  15. Mafa expression enhances glucose-responsive insulin secretion in neonatal rat beta cells

    PubMed Central

    Aguayo-Mazzucato, C.; Koh, A.; El Khattabi, I.; Li, W.-C.; Toschi, E.; Jermendy, A.; Juhl, K.; Mao, K.; Weir, G. C.

    2011-01-01

    Aim/hypothesis Neonatal beta cells lack glucose-stimulated insulin secretion and are thus functionally immature. We hypothesised that this lack of glucose responsiveness results from a generalised low expression of genes characteristic of mature functional beta cells. Important glucose-responsive transcription factors, Mafa and Pdx1, regulate genes involved in insulin synthesis and secretion, and have been implicated in late beta cell development. The aim of this study was to assess whether Mafa and/or Pdx1 regulates the postnatal functional maturation of beta cells. Methods By quantitative PCR we evaluated expression of these and other beta cell genes over the first month compared with adult. After infection with adenovirus expressing MAFA, Pdx1 or green fluorescent protein (Gfp), P2 rat islets were evaluated by RT-PCR and insulin secretion with static incubation and reverse haemolytic plaque assay (RHPA). Results At P2 most beta cell genes were expressed at about 10% of adult, but by P7 Pdx1 and Neurod1 no longer differ from adult; by contrast, Mafa expression remained significantly lower than adult through P21. Overexpression of Pdx1 increased Mafa, Neurod1, glucokinase (Gck) mRNA and insulin content but failed to enhance glucose responsiveness. Similar overexpression of MAFA resulted in increased Neurod1, Nkx6-1, Gck and Glp1r mRNAs and no change in insulin content but, importantly, acquisition of glucose-responsive insulin secretion. Both the percentage of secreting beta cells and the amount of insulin secreted per beta cell increased, approaching that of adult beta cells. Conclusions/interpretation In the process of functional maturation acquiring glucose-responsive insulin secretion, neonatal beta cells undergo a coordinated gene expression programme in which Mafa plays a crucial role. PMID:21190012

  16. Interleukin-1 beta induces the expression and production of stem cell factor by epithelial cells: crucial involvement of the PI-3K/mTOR pathway and HIF-1 transcription complex

    PubMed Central

    Wyszynski, Rafal W; Gibbs, Bernhard F; Varani, Luca; Iannotta, Daniela; Sumbayev, Vadim V

    2016-01-01

    Potential crosslinks between inflammation and leukaemia have been discussed for some time, but experimental evidence to support this dogma is scarce. In particular, it is important to understand the mechanisms responsible for potential upregulation of proto-oncogenic growth factor expressions by inflammatory mediators. Here, we investigated the ability of the highly inflammatory cytokine interleukin-1 beta (IL-1β) to induce the production of stem cell factor (SCF), which is a major hematopoietic growth factor that controls the progression of acute myeloid leukaemia upon malignant transformation of haematopoietic myeloid cells. We found that human IL-1β induced the expression/secretion of SCF in MCF-7 human epithelial breast cancer cells and that this process depended on the hypoxia-inducible factor 1 (HIF-1) transcription complex. We also demonstrated a crucial role of the phosphatidylinositol-3 kinase (PI-3K)/mammalian target of rapamycin (mTOR) pathway in IL-1β-induced HIF-1α accumulation in MCF-7 cells. Importantly, mTOR was also found to play a role in IL-1β-induced SCF production. Furthermore, a tendency for a positive correlation of IL-1β and SCF levels in the plasma of healthy human donors was observed. Altogether, our results demonstrate that IL-1β, which normally bridges innate and adaptive immunity, induces the production of the major haematopoietic/proleukaemic growth factor SCF through the PI-3K/mTOR pathway and the HIF-1 transcription complex. These findings strongly support a cross-talk between inflammation and acute myeloid leukaemia. PMID:25418470

  17. Bmal1 and Beta cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced Beta cell failure in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian disruption has deleterious effects on metabolism. Global deletion of Bmal1, a core clock gene, results in Beta cell dysfunction and diabetes. However, it is unknown if this is due to loss of cell-autonomous function of Bmal1 in Beta cells. To address this, we generated mice with Beta cell ...

  18. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin.

    PubMed

    Song, Imane; Patel, Oelfah; Himpe, Eddy; Muller, Christo J F; Bouwens, Luc

    2015-01-01

    One week of treatment with EGF and gastrin (EGF/G) was shown to restore normoglycemia and to induce islet regeneration in mice treated with the diabetogenic agent alloxan. The mechanisms underlying this regeneration are not fully understood. We performed genetic lineage tracing experiments to evaluate the contribution of beta cell neogenesis in this model. One day after alloxan administration, mice received EGF/G treatment for one week. The treatment could not prevent the initial alloxan-induced beta cell mass destruction, however it did reverse glycemia to control levels within one day, suggesting improved peripheral glucose uptake. In vitro experiments with C2C12 cell line showed that EGF could stimulate glucose uptake with an efficacy comparable to that of insulin. Subsequently, EGF/G treatment stimulated a 3-fold increase in beta cell mass, which was partially driven by neogenesis and beta cell proliferation as assessed by beta cell lineage tracing and BrdU-labeling experiments, respectively. Acinar cell lineage tracing failed to show an important contribution of acinar cells to the newly formed beta cells. No appearance of transitional cells co-expressing insulin and glucagon, a hallmark for alpha-to-beta cell conversion, was found, suggesting that alpha cells did not significantly contribute to the regeneration. An important fraction of the beta cells significantly lost insulin positivity after alloxan administration, which was restored to normal after one week of EGF/G treatment. Alloxan-only mice showed more pronounced beta cell neogenesis and proliferation, even though beta cell mass remained significantly depleted, suggesting ongoing beta cell death in that group. After one week, macrophage infiltration was significantly reduced in EGF/G-treated group compared to the alloxan-only group. Our results suggest that EGF/G-induced beta cell regeneration in alloxan-diabetic mice is driven by beta cell neogenesis, proliferation and recovery of insulin. The

  19. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin

    PubMed Central

    Song, Imane; Patel, Oelfah; Himpe, Eddy; Muller, Christo J. F.; Bouwens, Luc

    2015-01-01

    One week of treatment with EGF and gastrin (EGF/G) was shown to restore normoglycemia and to induce islet regeneration in mice treated with the diabetogenic agent alloxan. The mechanisms underlying this regeneration are not fully understood. We performed genetic lineage tracing experiments to evaluate the contribution of beta cell neogenesis in this model. One day after alloxan administration, mice received EGF/G treatment for one week. The treatment could not prevent the initial alloxan-induced beta cell mass destruction, however it did reverse glycemia to control levels within one day, suggesting improved peripheral glucose uptake. In vitro experiments with C2C12 cell line showed that EGF could stimulate glucose uptake with an efficacy comparable to that of insulin. Subsequently, EGF/G treatment stimulated a 3-fold increase in beta cell mass, which was partially driven by neogenesis and beta cell proliferation as assessed by beta cell lineage tracing and BrdU-labeling experiments, respectively. Acinar cell lineage tracing failed to show an important contribution of acinar cells to the newly formed beta cells. No appearance of transitional cells co-expressing insulin and glucagon, a hallmark for alpha-to-beta cell conversion, was found, suggesting that alpha cells did not significantly contribute to the regeneration. An important fraction of the beta cells significantly lost insulin positivity after alloxan administration, which was restored to normal after one week of EGF/G treatment. Alloxan-only mice showed more pronounced beta cell neogenesis and proliferation, even though beta cell mass remained significantly depleted, suggesting ongoing beta cell death in that group. After one week, macrophage infiltration was significantly reduced in EGF/G-treated group compared to the alloxan-only group. Our results suggest that EGF/G-induced beta cell regeneration in alloxan-diabetic mice is driven by beta cell neogenesis, proliferation and recovery of insulin. The

  20. glucagon is essential for alpha cell transdifferentiation and beta cell neogenesis

    PubMed Central

    Ye, Lihua; Robertson, Morgan A.; Hesselson, Daniel; Stainier, Didier Y. R.; Anderson, Ryan M.

    2015-01-01

    The interconversion of cell lineages via transdifferentiation is an adaptive mode of tissue regeneration and an appealing therapeutic target. However, its clinical exploitation is contingent upon the discovery of contextual regulators of cell fate acquisition and maintenance. In murine models of diabetes, glucagon-secreting alpha cells transdifferentiate into insulin-secreting beta cells following targeted beta cell depletion, regenerating the form and function of the pancreatic islet. However, the molecular triggers of this mode of regeneration are unknown. Here, using lineage-tracing assays in a transgenic zebrafish model of beta cell ablation, we demonstrate conserved plasticity of alpha cells during islet regeneration. In addition, we show that glucagon expression is upregulated after injury. Through gene knockdown and rescue approaches, we also find that peptides derived from the glucagon gene are necessary for alpha-to-beta cell fate switching. Importantly, whereas beta cell neogenesis was stimulated by glucose, alpha-to-beta cell conversion was not, suggesting that transdifferentiation is not mediated by glucagon/GLP-1 control of hepatic glucose production. Overall, this study supports the hypothesis that alpha cells are an endogenous reservoir of potential new beta cells. It further reveals that glucagon plays an important role in maintaining endocrine cell homeostasis through feedback mechanisms that govern cell fate stability. PMID:25852199

  1. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  2. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins.

    PubMed

    Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R

    2016-06-01

    We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors. PMID:27015674

  3. Pancreatic beta cell function in the fetal pig and sow.

    PubMed

    Fowden, A L; Comline, R S; Silver, M

    1982-04-01

    Insulin secretion was investigated in acutely anaesthetized and chronically catheterized sows and their fetuses during late gestation. In the conscious animals, the mean fetal concentration of plasma insulin was 8.4 +/- 1.5 microunits/ml which was significantly less than the corresponding maternal value of 33.9 +/- 6.5 microunits/ml (n = 12, P less than 0.01). The plasma concentrations of insulin and glucose in the new-born piglets from these litters were not significantly different from the values observed in utero. The plasma concentration of insulin in the anaesthetized fetuses was significantly less than that in the chronically catheterized piglets over the same range of glucose levels. In the chronically catheterized animals, both fetal and maternal levels of insulin rose with increasing concentrations of plasma glucose while under acute conditions there was no correlation between the endogenous concentrations of insulin and glucose in either the fetuses or their mothers. Infusion of exogenous glucose (0.5 g as a 50% solution in 0.9% NaCl) stimulated the release of insulin in all the chronically catheterized fetuses studied but rarely increased the concentration of insulin in the anaesthetized fetusus. The present findings show that anaesthesia and surgery depress pancreatic beta cell function in the pig, particularly in the fetus. PMID:7043523

  4. Present and future cell therapies for pancreatic beta cell replenishment

    PubMed Central

    Domínguez-Bendala, Juan; Ricordi, Camillo

    2012-01-01

    If only at a small scale, islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy: the functional replenishment of damaged tissue in patients. After years of less-than-optimal approaches to immunosuppression, recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation. Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention. Progress in stem cell research over the past decade, coupled with our decades-long experience with islet transplantation, is shaping the future of cell therapies for the treatment of diabetes. Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration, including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells. PMID:23322984

  5. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    PubMed Central

    Martín, María Ángeles; Ramos, Sonia; Cordero-Herrero, Isabel; Bravo, Laura; Goya, Luis

    2013-01-01

    Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE) containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult. PMID:23912326

  6. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    PubMed

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  7. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation

    PubMed Central

    Plank, Jennifer L.; Mundell, Nathan A.; Frist, Audrey Y.; LeGrone, Alison W.; Kim, Thomas; Musser, Melissa A.; Walter, Teagan J.; Labosky, Patricia A.

    2010-01-01

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of Insulin-expressing cells and Insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of Insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of Insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic Insulin granules and the presence of abnormal granules in Insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  8. A role for G(z) in pancreatic islet beta-cell biology.

    PubMed

    Kimple, Michelle E; Nixon, Andrew B; Kelly, Patrick; Bailey, Candice L; Young, Kenneth H; Fields, Timothy A; Casey, Patrick J

    2005-09-01

    Glucose-stimulated insulin secretion and beta-cell growth are important facets of pancreatic islet beta-cell biology. As a result, factors that modulate these processes are of great interest for the potential treatment of Type 2 diabetes. Here, we present evidence that the heterotrimeric G protein G(z) and its effectors, including some previously thought to be confined in expression to neuronal cells, are present in pancreatic beta-cells, the largest cellular constituent of the islets of Langerhans. Furthermore, signaling pathways upon which G alpha(z) impacts are intact in beta-cells, and G alpha(z) activation inhibits both cAMP production and glucose-stimulated insulin secretion in the Ins-1(832/13) beta-cell-derived line. Inhibition of glucose-stimulated insulin secretion by prostaglandin E (PGE1) is pertussis-toxin insensitive, indicating that other G alpha(i) family members are not involved in this process in this beta-cell line. Indeed, overexpression of a selective deactivator of G alpha(z), the RGS domain of RGSZ1, blocks the inhibitory effect of PGE1 on glucose-stimulated insulin secretion. Finally, the inhibition of glucose-stimulated insulin secretion by PGE1 is substantially blunted by small interfering RNA-mediated knockdown of G alpha(z) expression. Taken together, these data strongly imply that the endogenous E prostanoid receptor in the Ins-1(832/13) beta-cell line couples to G(z) predominantly and perhaps even exclusively. These data provide the first evidence for G(z) signaling in pancreatic beta-cells, and identify an endogenous receptor-mediated signaling process in beta-cells that is dependent on G alpha(z) function. PMID:16157560

  9. Beta cell imaging - a key tool in optimized diabetes prevention and treatment.

    PubMed

    Gotthardt, Martin; Eizirik, Decio L; Cnop, Miriam; Brom, Maarten

    2014-08-01

    The prevalence of diabetes is 382 million worldwide, and is expected to rise to 592 million in 2035 (http://www.idf.org/diabetesatlas); 2.5-15% of national annual healthcare budgets are related to diabetes care, potentially increasing to 40% in high-prevalence countries. Beta cell dysfunction and death are central events in diabetes pathogenesis, but the natural history of beta cell loss remains unknown. Clinical imaging of beta cells will play a pivotal role in developing strategies for optimized diabetes prevention and treatment. PMID:24726483

  10. Isolation, Characterization and Potential Role in Beta Cell-Endothelium Cross-Talk of Extracellular Vesicles Released from Human Pancreatic Islets

    PubMed Central

    De Lena, Michela; Beltramo, Silvia; Romagnoli, Renato; Salizzoni, Mauro; Melzi, Raffaella; Nano, Rita; Piemonti, Lorenzo; Tetta, Ciro; Biancone, Luigi; Camussi, Giovanni

    2014-01-01

    The cross-talk between beta cells and endothelium plays a key role in islet physiopathology and in the revascularization process after islet transplantation. However, the molecular mechanisms involved in this cross-talk are not fully elucidated. Extracellular vesicles (EVs) are secreted membrane nanoparticles involved in inter-cellular communication through the transfer of proteins and nucleic acids. The aims of this study were: 1) isolation and characterization of EVs from human islets; 2) evaluation of the pro-angiogenic effect of islet-derived EVs on human islet endothelial cells (IECs). EVs were isolated by ultracentrifugation from conditioned medium of human islets and characterized by nanotrack analysis (Nanosight), FACS, western blot, bioanalyzer, mRNA/microRNA RT-PCR array. On IECs, we evaluated EV-induced insulin mRNA transfer, proliferation, resistance to apoptosis, in vitro angiogenesis, migration, gene and protein profiling. EVs sized 236±54 nm, expressed different surface molecules and islet-specific proteins (insulin, C-peptide, GLP1R) and carried several mRNAs (VEGFa, eNOS) and microRNAs (miR-27b, miR-126, miR-130 and miR-296) involved in beta cell function, insulin secretion and angiogenesis. Purified EVs were internalized into IECs inducing insulin mRNA expression, protection from apoptosis and enhancement of angiogenesis. Human islets release biologically active EVs able to shuttle specific mRNAs and microRNAs (miRNAs) into target endothelial cells. These results suggest a putative role for islet-derived EVs in beta cell-endothelium cross-talk and in the neoangiogenesis process which is critical for engraftment of transplanted islets. PMID:25028931

  11. Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets.

    PubMed

    Figliolini, Federico; Cantaluppi, Vincenzo; De Lena, Michela; Beltramo, Silvia; Romagnoli, Renato; Salizzoni, Mauro; Melzi, Raffaella; Nano, Rita; Piemonti, Lorenzo; Tetta, Ciro; Biancone, Luigi; Camussi, Giovanni

    2014-01-01

    The cross-talk between beta cells and endothelium plays a key role in islet physiopathology and in the revascularization process after islet transplantation. However, the molecular mechanisms involved in this cross-talk are not fully elucidated. Extracellular vesicles (EVs) are secreted membrane nanoparticles involved in inter-cellular communication through the transfer of proteins and nucleic acids. The aims of this study were: 1) isolation and characterization of EVs from human islets; 2) evaluation of the pro-angiogenic effect of islet-derived EVs on human islet endothelial cells (IECs). EVs were isolated by ultracentrifugation from conditioned medium of human islets and characterized by nanotrack analysis (Nanosight), FACS, western blot, bioanalyzer, mRNA/microRNA RT-PCR array. On IECs, we evaluated EV-induced insulin mRNA transfer, proliferation, resistance to apoptosis, in vitro angiogenesis, migration, gene and protein profiling. EVs sized 236±54 nm, expressed different surface molecules and islet-specific proteins (insulin, C-peptide, GLP1R) and carried several mRNAs (VEGFa, eNOS) and microRNAs (miR-27b, miR-126, miR-130 and miR-296) involved in beta cell function, insulin secretion and angiogenesis. Purified EVs were internalized into IECs inducing insulin mRNA expression, protection from apoptosis and enhancement of angiogenesis. Human islets release biologically active EVs able to shuttle specific mRNAs and microRNAs (miRNAs) into target endothelial cells. These results suggest a putative role for islet-derived EVs in beta cell-endothelium cross-talk and in the neoangiogenesis process which is critical for engraftment of transplanted islets. PMID:25028931

  12. Adhesion of pancreatic beta cells to biopolymer films.

    PubMed

    Williams, S Janette; Wang, Qun; Macgregor, Ronal R; Siahaan, Teruna J; Stehno-Bittel, Lisa; Berkland, Cory

    2009-08-01

    Dramatic reversal of Type 1 diabetes in patients receiving pancreatic islet transplants continues to prompt vigorous research concerning the basic mechanisms underlying patient turnaround. At the most fundamental level, transplanted islets must maintain viability and function in vitro and in vivo and should be protected from host immune rejection. Our previous reports showed enhancement of islet viability and insulin secretion per tissue mass for small islets (<125 mum) as compared with large islets (>125 mum), thus, demonstrating the effect of enhancing the mass transport of islets (i.e. increasing tissue surface area to volume ratio). Here, we report the facile dispersion of rat islets into individual cells that are layered onto the surface of a biopolymer film towards the ultimate goal of improving mass transport in islet tissue. The tightly packed structure of intact islets was disrupted by incubating in calcium-free media resulting in fragmented islets, which were further dispersed into individual or small groups of cells by using a low concentration of papain. The dispersed cells were screened for adhesion to a range of biopolymers and the nature of cell adhesion was characterized for selected groups by quantifying adherent cells, measuring the surface area coverage of the cells, and immunolabeling cells for adhesion proteins interacting with selected biopolymers. Finally, beta cells in suspension were centrifuged to form controlled numbers of cell layers on films for future work determining the mass transport limitations in the adhered tissue constructs. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 676-685, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com. PMID:19353639

  13. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.

    PubMed

    Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R

    2015-10-01

    Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system. PMID:26324934

  14. Targeting Homeostatic T Cell Proliferation to Control Beta-Cell Autoimmunity.

    PubMed

    Vignali, Debora; Monti, Paolo

    2016-05-01

    Immunomodulation of the autoreactive T cell response is considered a major strategy to control beta-cell autoimmunity, both in the natural history of type 1 diabetes and in islet transplantation, which can be affected by autoimmunity recurrence. So far, these strategies have had modest results, prompting efforts to define novel cellular and molecular targets to control autoreactive T cell expansion and activation. Novel findings highlighted the important role of the homeostatic cytokine interleukin-7 in inducing proliferation and differentiation of autoreactive T cell clones that causes beta-cell autoimmunity. In this review, we discuss recent evidences and novel findings on the role of IL-7 mediated homeostatic T cell proliferation in the process of beta-cell destruction and evidences of how targeting IL-7 and its receptor could be an innovative and effective strategy to control beta-cell autoimmunity. PMID:26983628

  15. Radioiodinated Naphthylalanine Derivatives Targeting Pancreatic Beta Cells in Normal and Nonobese Diabetic Mice

    PubMed Central

    Amartey, John K.; Shi, Yufei; Al-Jammaz, Ibrahim; Esguerra, Celestina; Al-Otaibi, Basem; Al-Mohanna, Futwan

    2008-01-01

    An imaging method capable of using a signal from pancreatic beta cells to determine their mass would be of immense value in monitoring the progression of diabetes as well as response to treatment. Somatostatin receptors (SSTRs) are expressed on beta cells and are a potential target for imaging. The main objective of this study was to investigate whether pancreatic beta cells are a target for radiolabeled naphthylalanine derivatives. The molecules were subjected to in vitro and ex vivo evaluations. Pancreatic uptake of radioactivity was lower in nonobese diabetic (NOD) mice than normal mice at all time points investigated (P < .05) and correlated with the number of islets in tissue sections of both control and NOD mice. Immunohistochemical and confocal fluorescent microscopic studies showed colocalization of insulin and the conjugate radioligand in the pancreas. The results demonstrated that pancreatic uptake is receptor-mediated, and that beta cells are the primary target. PMID:18483609

  16. Connexin implication in the control of the murine beta-cell mass.

    PubMed

    Klee, Philippe; Lamprianou, Smaragda; Charollais, Anne; Caille, Dorothée; Sarro, Rossella; Cederroth, Manon; Haefliger, Jacques-Antoine; Meda, Paolo

    2011-08-01

    Diabetes develops when the insulin needs of peripheral cells exceed the availability or action of the hormone. This situation results from the death of most beta-cells in type 1 diabetes, and from an inability of the beta-cell mass to adapt to increasing insulin needs in type 2 and gestational diabetes. We analyzed several lines of transgenic mice and showed that connexins (Cxs), the transmembrane proteins that form gap junctions, are implicated in the modulation of the beta-cell mass. Specifically, we found that the native Cx36 does not alter islet size or insulin content, whereas the Cx43 isoform increases both parameters, and Cx32 has a similar effect only when combined with GH. These findings open interesting perspectives for the in vitro and in vivo regulation of the beta-cell mass. PMID:21527868

  17. Activation of the GLP-1 receptor signalling pathway: a relevant strategy to repair a deficient beta-cell mass.

    PubMed

    Portha, Bernard; Tourrel-Cuzin, Cécile; Movassat, Jamileh

    2011-01-01

    Recent preclinical studies in rodent models of diabetes suggest that exogenous GLP-1R agonists and DPP-4 inhibitors have the ability to increase islet mass and preserve beta-cell function, by immediate reactivation of beta-cell glucose competence, as well as enhanced beta-cell proliferation and neogenesis and promotion of beta-cell survival. These effects have tremendous implication in the treatment of T2D because they directly address one of the basic defects in T2D, that is, beta-cell failure. In human diabetes, however, evidence that the GLP-1-based drugs alter the course of beta-cell function remains to be found. Several questions surrounding the risks and benefits of GLP-1-based therapy for the diabetic beta-cell mass are discussed in this review and require further investigation. PMID:21716694

  18. Activation of the GLP-1 Receptor Signalling Pathway: A Relevant Strategy to Repair a Deficient Beta-Cell Mass

    PubMed Central

    Portha, Bernard; Tourrel-Cuzin, Cécile; Movassat, Jamileh

    2011-01-01

    Recent preclinical studies in rodent models of diabetes suggest that exogenous GLP-1R agonists and DPP-4 inhibitors have the ability to increase islet mass and preserve beta-cell function, by immediate reactivation of beta-cell glucose competence, as well as enhanced beta-cell proliferation and neogenesis and promotion of beta-cell survival. These effects have tremendous implication in the treatment of T2D because they directly address one of the basic defects in T2D, that is, beta-cell failure. In human diabetes, however, evidence that the GLP-1-based drugs alter the course of beta-cell function remains to be found. Several questions surrounding the risks and benefits of GLP-1-based therapy for the diabetic beta-cell mass are discussed in this review and require further investigation. PMID:21716694

  19. Maturation of adult beta-cells revealed using a Pdx1/insulin dual-reporter lentivirus.

    PubMed

    Szabat, Marta; Luciani, Dan S; Piret, James M; Johnson, James D

    2009-04-01

    The enigmatic process of beta-cell maturation has significant implications for diabetes pathogenesis, and potential diabetes therapies. This study examined the dynamics and heterogeneity of insulin and pancreatic duodenal homeobox (Pdx)-1 gene expression in adult beta-cells. Insulin and Pdx1 expression were monitored in human and mouse islet cells and MIN6 cells using a Pdx1-monomeric red fluorescent protein/insulin-enhanced green fluorescent protein dual-reporter lentivirus. The majority of fluorescent cells were highly positive for both Pdx1 and insulin. Cells expressing Pdx1 but little or no insulin (Pdx1(+)/Ins(low)) comprised 15-25% of the total population. Time-lapse imaging demonstrated that Pdx1(+)/Ins(low) primary beta-cells and MIN6 cells could convert to Pdx1(+)/Ins(+) cells without cell division. Genes involved in the mature beta-cell phenotype (Glut2, MafA) were expressed at higher levels in Pdx1(+)/Ins(+) cells relative to Pdx1(+)/Ins(low) cells. Conversely, genes implicated in early beta-cell development (MafB, Nkx2.2) were enriched in Pdx1(+)/Ins(low) cells. Sorted Pdx1(+)/Ins(low) MIN6 cells had a higher replication rate and secreted less insulin relative to double-positive cells. Long-term phenotype tracking of Pdx1(+)/Ins(low) cells showed two groups, one that matured into Pdx1(+)/Ins(+) cells and one that remained immature. These results demonstrate that adult beta-cells pass through distinct maturation states, which is consistent with previously observed heterogeneity in insulin and Pdx1 expression in adult beta-cells. At a given time, a proportion of adult beta-cells share similar characteristics to functionally immature embryonic beta-cell progenitors. The maturation of adult beta-cells recapitulates development in that Pdx1 expression precedes the robust expression of insulin and other mature beta-cell genes. These results have implications for harnessing the maturation process for therapeutic purposes. PMID:19095744

  20. ALDH Expression Characterizes G1-Phase Proliferating Beta Cells during Pregnancy

    PubMed Central

    Zhang, Lijuan; Wang, Lin; Liu, Xiaoliang; Zheng, Dongming; Liu, Sishi; Liu, Caixia

    2014-01-01

    High levels of aldehyde dehydrogenase (ALDH) activity have been detected in various progenitor and stem cells. Thus, Aldefluor fluorescence, which represents precisely the ALDH activity, has been widely used for the identification, evaluation, and isolation of stem and progenitor cells. Recently, ALDH activity was detected in embryonic and adult mouse pancreas, specifically in adult centroacinar and terminal duct cells supposed to harbor endocrine and exocrine progenitor cells in the adult pancreas. Nevertheless, ALDH activity and aldeflour fluorescence have not been examined in beta cells. Here, we report a dynamic increase in the number of aldeflour+ beta cells during pregnancy. Interestingly, nearly all these aldeflour+ beta cells are positive for Ki-67, suggesting that they are in an active cell cycle (G1, S and M phases). To determine precisely at which phase beta cells activate ALDH activity and thus become aldeflour+, we co-stained insulin with additional proliferation markers, phosphohistone3 (PHH3, a marker for M-phase proliferating cells) and Bromodeoxyuridine (BrdU, a marker for S-phase proliferating cells). Our data show little aldeflour+ beta cells that were positive for either PHH3, or BrdU, suggesting that beta cells activate ALDH and become Aldefluor+ when they enter G1-phase of active cell cycle, but may downregulate ALDH when they leave G1-phase and enter S phase. Our data thus reveal a potential change in ALDH activity of proliferating beta cells during pregnancy, which provides a novel method for isolation and analysis of proliferating beta cells. Moreover, our data also suggest that caution needs to be taken on interpretation of Aldefluor lineage-tracing data in pancreas. PMID:24787690

  1. The electrophysiology of the beta-cell based on single transmembrane protein characteristics.

    PubMed

    Meyer-Hermann, Michael E

    2007-10-15

    The electrophysiology of beta-cells is at the origin of insulin secretion. beta-Cells exhibit a complex behavior upon stimulation with glucose including repeated bursts and continuous spiking. Mathematical modeling is most suitable to improve knowledge about the function of various transmembrane currents provided the model is based on reliable data. This is the first attempt to build a mathematical model for the beta-cell electrophysiology in a bottom-up approach that relies on single protein conductance data. The results of previous whole-cell-based models are reconsidered. The full simulation including all prominent transmembrane proteins in beta-cells is used to provide a functional interpretation of their role in beta-cell bursting and an updated vantage point of beta-cell electrophysiology. As a result of a number of in silico knock-out and block experiments the novel model makes some unexpected predictions: single-channel conductance data imply that large-conductance calcium-gated potassium currents acquire the potential of driving oscillations at supralarge glucose levels. A more complex burst interruption model is presented. It also turns out that, depending on the species, sodium currents may be more relevant than considered so far. Experiments are proposed to verify these predictions. PMID:17573431

  2. The expression and function of histamine H3 receptors in pancreatic beta cells

    PubMed Central

    Nakamura, T; Yoshikawa, T; Noguchi, N; Sugawara, A; Kasajima, A; Sasano, H; Yanai, K

    2014-01-01

    BACKGROUND AND PURPOSE Histamine and its receptors in the CNS play important roles in energy homeostasis. Here, we have investigated the expression and role of histamine receptors in pancreatic beta cells, which secrete insulin. EXPERIMENTAL APPROACH The expression of histamine receptors in pancreatic beta cells was examined by RT-PCR, Western blotting and immunostaining. Insulin secretion assay, ATP measurement and calcium imaging studies were performed to determine the function and signalling pathway of histamine H3 receptors in glucose-induced insulin secretion (GIIS) from MIN6 cells, a mouse pancreatic beta cell line. The function and signalling pathway of H3 receptors in MIN6 cell proliferation were examined using pharmacological assay and Western blotting. KEY RESULTS Histamine H3 receptors were expressed in pancreatic beta cells. A selective H3 receptor agonist, imetit, and a selective inverse H3 receptor agonist, JNJ-5207852, had inhibitory and facilitatory effects, respectively, on GIIS in MIN6 cells. Neither imetit nor JNJ-5207852 altered intracellular ATP concentration, or intracellular calcium concentration stimulated by glucose and KCl, indicating that GIIS signalling was affected by H3 receptor signalling downstream of the increase in intracellular calcium concentration. Moreover, imetit attenuated bromodeoxyuridine incorporation in MIN6 cells. The phosphorylation of cAMP response element-binding protein (CREB), which facilitated beta cell proliferation, was inhibited, though not significantly, by imetit, indicating that activated H3 receptors inhibited MIN6 cell proliferation, possibly by decreasing CREB phosphorylation. CONCLUSIONS AND IMPLICATIONS Histamine H3 receptors were expressed in mouse beta cells and could play a role in insulin secretion and, possibly, beta cell proliferation. PMID:24117016

  3. Sustained Beta-Cell Dysfunction but Normalized Islet Mass in Aged Thrombospondin-1 Deficient Mice

    PubMed Central

    Emanuelsson, Hanna; Christoffersson, Gustav; Carlsson, Per-Ola

    2012-01-01

    Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1), that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10–12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10–12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10–12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life. PMID:23094049

  4. The effect of smoking cessation pharmacotherapies on pancreatic beta cell function

    SciTech Connect

    Woynillowicz, Amanda K.; Raha, Sandeep; Nicholson, Catherine J.; Holloway, Alison C.

    2012-11-15

    The goal of our study was to evaluate whether drugs currently used for smoking cessation (i.e., nicotine replacement therapy, varenicline [a partial agonist at nicotinic acetylcholine receptors (nAChR)] and bupropion [which acts in part as a nAChR antagonist]) can affect beta cell function and determine the mechanism(s) of this effect. INS-1E cells, a rat beta cell line, were treated with nicotine, varenicline and bupropion to determine their effects on beta cell function, mitochondrial electron transport chain enzyme activity and cellular/oxidative stress. Treatment of INS-1E cells with equimolar concentrations (1 μM) of three test compounds resulted in an ablation of normal glucose-stimulated insulin secretion by the cells. This disruption of normal beta cell function was associated with mitochondrial dysfunction since all three compounds tested significantly decreased the activity of mitochondrial electron transport chain enzyme activity. These results raise the possibility that the currently available smoking cessation pharmacotherapies may also have adverse effects on beta cell function and thus glycemic control in vivo. Therefore whether or not the use of nicotine replacement therapy, varenicline and bupropion can cause endocrine changes which are consistent with impaired pancreatic function warrants further investigation. -- Highlights: ► Smoking cessation drugs have the potential to disrupt beta cell function in vitro. ► The effects of nicotine, varenicline and bupropion are similar. ► The impaired beta cell function is mediated by mitochondrial dysfunction. ► If similar effects are seen in vivo, these drugs may increase the risk of diabetes.

  5. Joe Doupe lecture: emerging strategies for the preservation of pancreatic beta-cell function in early type 2 diabetes.

    PubMed

    Retnakaran, Ravi

    2014-01-01

    A fundamental problem in the clinical management of type 2 diabetes is the inability to prevent the ongoing deterioration of pancreatic beta-cell function over time that underlies the chronic progressive nature of this condition. Importantly, beta-cell dysfunction has both reversible and irreversible components. Furthermore, the amelioration of reversible beta-cell dysfunction through the early institution of short-term insulin-based therapy has emerged as a strategy that can yield temporary remission of type 2 diabetes. In this context, we have forwarded a novel therapeutic paradigm consisting of initial induction therapy to improve beta-cell function early in the course of diabetes followed by maintenance therapy aimed at preserving this beneficial beta-cell effect. Ultimately, this approach may yield an optimized therapeutic strategy for the durable preservation of beta-cell function and consequent modification of the natural history of type 2 diabetes. PMID:25618275

  6. A Simple Matter of Life and Death—The Trials of Postnatal Beta-Cell Mass Regulation

    PubMed Central

    Tarabra, Elena; Pelengaris, Stella; Khan, Michael

    2012-01-01

    Pancreatic beta-cells, which secrete the hormone insulin, are the key arbiters of glucose homeostasis. Defective beta-cell numbers and/or function underlie essentially all major forms of diabetes and must be restored if diabetes is to be cured. Thus, the identification of the molecular regulators of beta-cell mass and a better understanding of the processes of beta-cell differentiation and proliferation may provide further insight for the development of new therapeutic targets for diabetes. This review will focus on the principal hormones and nutrients, as well as downstream signalling pathways regulating beta-cell mass in the adult. Furthermore, we will also address more recently appreciated regulators of beta-cell mass, such as microRNAs. PMID:22577380

  7. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    SciTech Connect

    Pi Jingbo; Zhang Qiang; Fu Jingqi; Woods, Courtney G.; Hou Yongyong; Corkey, Barbara E.; Collins, Sheila; Andersen, Melvin E.

    2010-04-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H{sub 2}O{sub 2}, act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.

  8. Assessment of beta-cell function and insulin secretion in subjects that underwent renal transplantation.

    PubMed

    Tura, Andrea; Hecking, Manfred; Wolzt, Michael; Saemann, Marcus D; Pacini, Giovanni

    2015-08-01

    In this study we aimed to assess the performance of various indices of beta-cell function derived from oral glucose tolerance test (OGTT) in subjects that underwent renal transplantation. Impaired insulin secretion seems in fact central for development of new onset diabetes after transplantation, but its assessment has not been systematically evaluated. Twenty subjects underwent a 75 g 2h-OGTT for measurement of glucose, insulin, C-peptide. OGTT indices of beta-cell function were either derived by mathematical modeling (yielding the reference index: glucose sensitivity) or were empirical: insulinogenic index (IGI), IGI derived indices, whole shape C-peptide (WHOSH_CP). Indices of beta cell function, showed significant correlation with glucose sensitivity (R(2)=0.40-0.86, all P<;0.003). The majority of beta-cell function indices provided comparable results also when subjects were divided into subgroups according to sex, age, body mass index, mean glycemia. In conclusion, in transplanted subjects OGTT empirical indices are typically acceptable for the estimation of beta-cell function. PMID:26736770

  9. New therapies aimed at the preservation or restoration of beta cell function in type 1 diabetes.

    PubMed

    Keymeulen, B

    2006-01-01

    Type 1 diabetes is caused by an immune-mediated destruction of the insulin-secreting beta cells in the pancreas. The disease can become clinically apparent at any age. At diagnosis, there is invariably some residual beta cell function and more so in adults than in children. Recent studies--including one conducted mainly in Belgium--have provided proof of principle that short-term anti-T-cell antibody treatment is able to preserve residual beta cell function for at least 18 months. The resultant stabilizing effect on metabolic control is expected to delay or limit chronic complications in these patients. With a similar goal in mind, nonuremic C-peptide negative patients are offered beta cell transplantation. The outcome of these implants looks promising but their final applicability hinges on finding ways to induce immune tolerance to the donor beta cells. A widespread application, however, will only occur if the shortage of viable human donor cells can be overcome. Both xenotransplantation and stem cell therapy provide possible strategies to solve this problem and represent areas of intense investigation. The ultimate goal is prevention of clinical disease. Studies by the Belgian Diabetes Registry and others in first degree family members of type 1 diabetic patients have refined the identification of individuals at very high risk of hyperglycaemia so that new immunological treatments can be tested in the prediabetic phase. PMID:17240745

  10. Species-Related Differences in the Proteome of Rat and Human Pancreatic Beta Cells

    PubMed Central

    Martens, G. A.

    2015-01-01

    The core proteomes of human and rat pancreatic beta cells were compared by label-free LC-MS/MS: this resulted in quantification of relative molar abundances of 707 proteins belonging to functional pathways of intermediary metabolism, protein synthesis, and cytoskeleton. Relative molar abundances were conserved both within and between pathways enabling the selection of a housekeeping network for geometric normalization and the analysis of potentially relevant differential expressions. Human beta cells differed from rat beta cells in their lower level of enzymes involved in glucose sensing (MDH1, PC, and ACLY) and upregulation of lysosomal enzymes. Human cells also expressed more heat shock proteins and radical scavenging systems: apart from SOD2, they expressed high levels of H2O2-scavenger peroxiredoxin 3 (PRDX3), confirmed by microarray, Western blotting, and microscopy. Besides conferring lower susceptibility to oxidative stress to human cells PRDX3 might also play a role in physiological redox regulation as, in rat, its expression was restricted to a beta cell subset with higher metabolic glucose responsiveness. In conclusion, although their core proteomic architecture is conserved, human and rat beta cells differ in their molar expression of key enzymes involved in glucose sensing and redox control. PMID:26064985

  11. Transcriptome landmarks of the functional maturity of rat beta-cells, from lactation to adulthood.

    PubMed

    Larqué, Carlos; Velasco, Myrian; Barajas-Olmos, Francisco; García-Delgado, Neyvis; Chávez-Maldonado, Juan Pablo; García-Morales, Jazmín; Orozco, Lorena; Hiriart, Marcia

    2016-07-01

    Research on the postnatal development of pancreatic beta-cells has become an important subject in recent years. Understanding the mechanisms that govern beta-cell postnatal maturation could bring new opportunities to therapeutic approaches for diabetes. The weaning period consists of a critical postnatal window for structural and physiologic maturation of rat beta-cells. To investigate transcriptome changes involved in the maturation of beta-cells neighboring this period, we performed microarray analysis in fluorescence-activated cell-sorted (FACS) beta-cell-enriched populations. Our results showed a variety of gene sets including those involved in the integration of metabolism, modulation of electrical activity, and regulation of the cell cycle that play important roles in the maturation process. These observations were validated using reverse hemolytic plaque assay, electrophysiological recordings, and flow cytometry analysis. Moreover, we suggest some unexplored pathways such as sphingolipid metabolism, insulin-vesicle trafficking, regulation of transcription/transduction by miRNA-30, trafficking proteins, and cell cycle proteins that could play important roles in the process mentioned above for further investigation. PMID:27220619

  12. Glucagon-like peptide-1 counteracts the detrimental effects of Advanced Glycation End-Products in the pancreatic beta cell line HIT-T 15

    SciTech Connect

    Puddu, A.; Storace, D.; Durante, A.; Odetti, P.; Viviani, G.L.

    2010-07-30

    Research highlights: {yields} GLP-1 prevents AGEs-induced cell death. {yields} GLP-1 prevents AGEs-induced oxidative stress. {yields} GLP-1 ameliorated AGEs-induced cell dysfunction. {yields} GLP-1 attenuates AGEs-induced RAGE increment. {yields} GLP-1 counteracts AGEs-induced pancreatic cell death and dysfunction. -- Abstract: Advanced Glycation End-Products (AGEs), a group of compounds resulting from the non-enzymatic reaction of reducing sugars with the free amino group of proteins, are implicated in diabetic complications. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T 15 to high concentrations of AGEs significantly decreases cell proliferation and insulin secretion, and affects transcription factors regulating insulin gene transcription. The glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases proinsulin biosynthesis, stimulates insulin secretion, and improves pancreatic beta-cell viability. The aim of this work was to investigate the effects of GLP-1 on the function and viability of HIT-T 15 cells cultured with AGEs. HIT-T 15 cells were cultured for 5 days in presence of AGEs alone, or supplemented with 10 nmol/l GLP-1. Cell viability, insulin secretion, redox balance, and expression of the AGEs receptor (RAGE) were then determined. The results showed that GLP-1 protected beta cell against AGEs-induced cell death preventing both apoptosis and necrosis. Moreover, addition of GLP-1 to the AGEs culture medium restored the redox balance, improved the responsiveness to glucose, and attenuated AGEs-induced RAGE expression. These findings provide evidence that GLP-1 protects beta cells from the dangerous effects of AGEs.

  13. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells

    PubMed Central

    Vomund, Anthony N.; Zinselmeyer, Bernd H.; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T.; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A.; Urano, Fumihiko; Unanue, Emil R.

    2015-01-01

    Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell–phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system. PMID:26324934

  14. Pluripotent stem cells, a potential source of beta-cells for diabetes therapy.

    PubMed

    Hansson, Mattias; Madsen, Ole D

    2010-04-01

    Although the reconstitution of a functional beta-cell mass by transplantation of isolated islets can restore euglycemia in the absence of insulin treatment, a shortage of donor material is one of the factors preventing the general use of cell replacement therapy for the treatment of type 1 diabetes mellitus (T1DM). Advances in the directed differentiation of pluripotent stem cells toward beta-cells via the stepwise recapitulation of embryonic development have generated proof of concept demonstrating that stem cells may be an appropriate source of cells for the generation of therapeutic beta-cells. However, progress toward a clinical application of this technology is slow and challenging. This review highlights some of the critical issues impeding the translation of stem cell-based diabetes therapies to the clinic. PMID:20336589

  15. Zip4 Mediated Zinc Influx Stimulates Insulin Secretion in Pancreatic Beta Cells

    PubMed Central

    Hardy, Alexandre B.; Prentice, Kacey J.; Froese, Sean; Liu, Ying; Andrews, Glen K.; Wheeler, Michael B.

    2015-01-01

    Zinc has an important role in normal pancreatic beta cell physiology as it regulates gene transcription, insulin crystallization and secretion, and cell survival. Nevertheless, little is known about how zinc is transported through the plasma membrane of beta cells and which of the class of zinc influx transporters (Zip) is involved. Zip4 was previously shown to be expressed in human and mouse beta cells; however, its function there is still unknown. Therefore, the aim of this study was to define the zinc transport role of Zip4 in beta cells. To investigate this, Zip4 was over-expressed in MIN6 beta cells using a pCMV6-Zip4GFP plasmid. Organelle staining combined with confocal microscopy showed that Zip4 exhibits a widespread localization in MIN6 cells. Time-lapse zinc imaging experiments showed that Zip4 increases cytoplasmic zinc levels. This resulted in increased granular zinc content and glucose-stimulated insulin secretion. Interestingly, it is unlikely that the increased glucose stimulated insulin secretion was triggered by a modulation of mitochondrial function, as mitochondrial membrane potential remained unchanged. To define the role of Zip4 in-vivo, we generated a beta cell-specific knockout mouse model (Zip4BKO). Deletion of the Zip4 gene was confirmed in Zip4BKO islets by PCR, RT-PCR, and immuno-histochemistry. Zip4BKO mice showed slightly improved glucose homeostasis but no change in insulin secretion during an oral glucose tolerance test. While Zip4 was not found to be essential for proper glucose homeostasis and insulin secretion in vivo in mice, this study also found that Zip4 mediates increases in cytoplasmic and granular zinc pools and stimulates glucose dependant insulin secretion in-vitro. PMID:25806541

  16. Precise expression of Fis1 is important for glucose responsiveness of beta cells.

    PubMed

    Schultz, Julia; Waterstradt, Rica; Kantowski, Tobias; Rickmann, Annekatrin; Reinhardt, Florian; Sharoyko, Vladimir; Mulder, Hindrik; Tiedge, Markus; Baltrusch, Simone

    2016-07-01

    Mitochondrial network functionality is vital for glucose-stimulated insulin secretion in pancreatic beta cells. Altered mitochondrial dynamics in pancreatic beta cells are thought to trigger the development of type 2 diabetes mellitus. Fission protein 1 (Fis1) might be a key player in this process. Thus, the aim of this study was to investigate mitochondrial morphology in dependence of beta cell function, after knockdown and overexpression of Fis1. We demonstrate that glucose-unresponsive cells with impaired glucose-stimulated insulin secretion (INS1-832/2) showed decreased mitochondrial dynamics compared with glucose-responsive cells (INS1-832/13). Accordingly, mitochondrial morphology visualised using MitoTracker staining differed between the two cell lines. INS1-832/2 cells formed elongated and clustered mitochondria, whereas INS1-832/13 cells showed a homogenous mitochondrial network. Fis1 overexpression using lentiviral transduction significantly improved glucose-stimulated insulin secretion and mitochondrial network homogeneity in glucose-unresponsive cells. Conversely, Fis1 downregulation by shRNA, both in primary mouse beta cells and glucose-responsive INS1-832/13 cells, caused unresponsiveness and significantly greater numbers of elongated mitochondria. Overexpression of FIS1 in primary mouse beta cells indicated an upper limit at which higher FIS1 expression reduced glucose-stimulated insulin secretion. Thus, FIS1 was overexpressed stepwise up to a high concentration in RINm5F cells using the RheoSwitch system. Moderate FIS1 expression improved glucose-stimulated insulin secretion, whereas high expression resulted in loss of glucose responsiveness and in mitochondrial artificial loop structures and clustering. Our data confirm that FIS1 is a key regulator in pancreatic beta cells, because both glucose-stimulated insulin secretion and mitochondrial dynamics were clearly adapted to precise expression levels of this fission protein. PMID:27179109

  17. A human beta cell line with drug inducible excision of immortalizing transgenes

    PubMed Central

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  18. Tissue-Specific Methylation of Human Insulin Gene and PCR Assay for Monitoring Beta Cell Death

    PubMed Central

    Husseiny, Mohamed I.; Kaye, Alexander; Zebadua, Emily; Kandeel, Fouad; Ferreri, Kevin

    2014-01-01

    The onset of metabolic dysregulation in type 1 diabetes (T1D) occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP) assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD) mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy. PMID:24722187

  19. Ryanodine receptors are involved in nuclear calcium oscillation in primary pancreatic {beta}-cells

    SciTech Connect

    Zheng, Ji; Chen, Zheng; Yin, Wenxuan; Miao, Lin; Zhou, Zhansong; Ji, Guangju

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We found that RyRs are expressed on the nuclear envelope in single primary pancreatic {beta}-cells and isolated nuclei. Black-Right-Pointing-Pointer We showed that the pattern of glucose-induced Ca{sup 2+} oscillation in the nucleus and cytosol was similar. Black-Right-Pointing-Pointer Our results demonstrate that ryanodine-sensitive Ca{sup 2+} stores exist and have function in the pancreatic {beta}-cell nucleus. -- Abstract: Ryanodine receptors (RyRs) are mainly located on the endoplasmic reticulum (ER) and play an important role in regulating glucose-induced cytosolic Ca{sup 2+} oscillation in pancreatic {beta}-cells. However, subcellular locations and functions of RyRs on other cell organelles such as nuclear envelope are not well understood. In order to investigate the role of RyRs in nuclear Ca{sup 2+} oscillation we designed and conducted experiments in intact primary pancreatic {beta}-cells. Immunocytochemistry was used to examine the expression of RYRs on the nuclear envelope. Confocal microscopy was used to evaluate the function of RYRs on the nuclear envelope. We found that RyRs are expressed on the nuclear envelope in single primary pancreatic {beta}-cells and isolated nuclei. Laser scanning confocal microscopy studies indicated that application of glucose to the cells co-incubated with Ca{sup 2+} indicator Fluo-4 AM and cell-permeable nuclear indicator Hoechst 33342 resulted in nuclear Ca{sup 2+} oscillation. The pattern of glucose-induced Ca{sup 2+} oscillation in the nucleus and cytosol was similar. The reduction of Ca{sup 2+} oscillation amplitude by ryanodine was much greater in the nucleus though both the cytosol and the nucleus Ca{sup 2+} amplitude decreased by ryanodine. Our results suggest that functional ryanodine receptors not only exist in endoplasmic reticulum but are also expressed in nuclear envelope of pancreatic {beta}-cells.

  20. In vitro effects of mycophenolic acid on survival, function, and gene expression of pancreatic beta-cells.

    PubMed

    Gallo, R; Natale, M; Vendrame, F; Boggi, U; Filipponi, F; Marchetti, P; Laghi Pasini, F; Dotta, F

    2012-12-01

    Post-transplant diabetes mellitus represents an important complication of prolonged immunosuppressive treatment after solid organ transplantation. The immunosuppressive toxicity, responsible for a persistent impairment of glucose metabolism in pancreatic islet-transplanted patients, is mainly attributed to calcineurin inhibitors and steroids, while other immunosuppressive molecules (azathioprine and mycophenolic acid, MPA) are considered not to have a toxic effect. In the present study, in vitro effects of MPA have been investigated in mouse beta-cell lines (βTC-1 and βTC-6) and in purified human pancreatic islets. βTC-1, βTC-6, and human pancreatic islets were exposed to various concentrations of MPA for different times. Consequently, we evaluated the viability, the induction of apoptosis, the glucose-stimulated insulin secretion, and the expression of β-cell function genes (Isl1, Pax6, Glut-2, glucokinase) and apoptosis-related genes (Bax and Bcl2). βTC-1, βTC-6, and human islets treated, respectively, for 48 and 72 h with 15-30 nM MPA showed altered islet architecture, as compared with control cells. We observed for βTC-1 and βTC-6 almost 70% reduction in cell viability; three to sixfold induction of TUNEL/apoptotic-positive cells quantified by FACS analysis. A twofold increase in apoptotic cells was observed in human islets after MPA exposure associated with strong inhibition of glucose-stimulated insulin secretion. Furthermore, we showed significant down-regulation of gene expression of molecules involved in β-cell function and increase rate between Bax/Bcl2. Our data demonstrate that MPA has an in vitro diabetogenic effect interfering at multiple levels with survival and function of murine and human pancreatic β-cells. PMID:22249339

  1. Role of Ink4a/Arf Locus in Beta Cell Mass Expansion under Physiological and Pathological Conditions

    PubMed Central

    Salas, Elisabet; Rabhi, Nabil; Froguel, Philippe; Annicotte, Jean-Sébastien

    2014-01-01

    The ARF/INK4A (Cdkn2a) locus includes the linked tumour suppressor genes p16INK4a and p14ARF (p19ARF in mice) that trigger the antiproliferative activities of both RB and p53. With beta cell self-replication being the primary source for new beta cell generation in adult animals, the network by which beta cell replication could be increased to enhance beta cell mass and function is one of the approaches in diabetes research. In this review, we show a general view of the regulation points at transcriptional and posttranslational levels of Cdkn2a locus. We describe the molecular pathways and functions of Cdkn2a in beta cell cycle regulation. Given that aging reveals increased p16Ink4a levels in the pancreas that inhibit the proliferation of beta cells and decrease their ability to respond to injury, we show the state of the art about the role of this locus in beta cell senescence and diabetes development. Additionally, we focus on two approaches in beta cell regeneration strategies that rely on Cdkn2a locus negative regulation: long noncoding RNAs and betatrophin. PMID:24672805

  2. Role of Ink4a/Arf locus in beta cell mass expansion under physiological and pathological conditions.

    PubMed

    Salas, Elisabet; Rabhi, Nabil; Froguel, Philippe; Annicotte, Jean-Sébastien

    2014-01-01

    The ARF/INK4A (Cdkn2a) locus includes the linked tumour suppressor genes p16INK4a and p14ARF (p19ARF in mice) that trigger the antiproliferative activities of both RB and p53. With beta cell self-replication being the primary source for new beta cell generation in adult animals, the network by which beta cell replication could be increased to enhance beta cell mass and function is one of the approaches in diabetes research. In this review, we show a general view of the regulation points at transcriptional and posttranslational levels of Cdkn2a locus. We describe the molecular pathways and functions of Cdkn2a in beta cell cycle regulation. Given that aging reveals increased p16Ink4a levels in the pancreas that inhibit the proliferation of beta cells and decrease their ability to respond to injury, we show the state of the art about the role of this locus in beta cell senescence and diabetes development. Additionally, we focus on two approaches in beta cell regeneration strategies that rely on Cdkn2a locus negative regulation: long noncoding RNAs and betatrophin. PMID:24672805

  3. TRPV6 channel modulates proliferation of insulin secreting INS-1E beta cell line.

    PubMed

    Skrzypski, M; Khajavi, N; Mergler, S; Szczepankiewicz, D; Kołodziejski, P A; Metzke, D; Wojciechowicz, T; Billert, M; Nowak, K W; Strowski, M Z

    2015-12-01

    Transient receptor potential channel vanilloid type 6 (TRPV6) is a non-selective cation channel with high permeability for Ca²⁺ ions. So far, the role of TRPV6 in pancreatic beta cells is unknown. In the present study, we characterized the role of TRPV6 in controlling calcium signaling, cell proliferation as well as insulin expression, and secretion in experimental INS-1E beta cell model. TRPV6 protein production was downregulated using siRNA by approx. 70%, as detected by Western blot. Intracellular free Ca²⁺ ([Ca²⁺]i) was measured by fluorescence Ca²⁺ imaging using fura-2. Calcineurin/NFAT signaling was analyzed using a NFAT reporter assay as well as a calcineurin activity assay. TRPV6 downregulation resulted in impaired cellular calcium influx. Its downregulation also reduced cell proliferation and decreased insulin mRNA expression. These changes were companied by the inhibition of the calcineurin/NFAT signaling. In contrast, insulin exocytosis was not affected by TRPV6 downregulation. In conclusion, this study demonstrates for the first time the expression of TRPV6 in INS-1E cells and rat pancreatic beta cells and describes its role in modulating calcium signaling, beta cell proliferation and insulin mRNA expression. In contrast, TRPV6 fails to influence insulin secretion. PMID:26384871

  4. Cellular Origins of Beta Cell Regeneration: a Legacy view of Historical Controversies

    PubMed Central

    Granger, Anne; Kushner, Jake A.

    2013-01-01

    Beta cell regeneration represents a major goal of therapy for diabetes. Unraveling the origin of beta cells during pancreatic regeneration could help restore a functional beta cell mass in diabetes patients. This scientific question has represented a longstanding interest still intensively investigated today. This review focuses on pioneering observations and subsequent theories made hundred years ago and describes how technical innovation helped resolve some, but not all, of the controversies generated by these early investigators. At the end of the nineteenth century, complete pancreatectomy demonstrated the crucial physiological role of the pancreas and its link to diabetes. Pancreatic injury models, including pancreatectomy and ductal ligation, allowed investigators to describe islet function and to assess the regenerative capacity of the pancreas. Three main theories were proposed to explain the origins of newly formed islets: 1) transdifferentiation of acinar cells into islets, 2) islet neogenesis, a process reminiscent of islet formation during embryonic development, and 3) replication of preexisting islet cells. Despite considerable technical innovation in the last fifty years, the origin of new adult beta cells remains highly controversial and the same three theories are still debated today. PMID:19765178

  5. Beta-cell metabolic alterations under chronic nutrient overload in rat and human islets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to assess multifactorial Beta-cell responses to metabolic perturbations in primary rat and human islets. Treatment of dispersed rat islet cells with elevated glucose and free fatty acids (FFAs, oleate:palmitate = 1:1 v/v) resulted in increases in the size and the number of ...

  6. Ataxin-10 interacts with O-GlcNAc transferase OGT in pancreatic {beta} cells

    SciTech Connect

    Andrali, Sreenath S.; Maerz, Pia; Oezcan, Sabire . E-mail: sozcan@uky.edu

    2005-11-11

    Several nuclear and cytoplasmic proteins in metazoans are modified by O-linked N-acetylglucosamine (O-GlcNAc). This modification is dynamic and reversible similar to phosphorylation and is catalyzed by the O-linked GlcNAc transferase (OGT). Hyperglycemia has been shown to increase O-GlcNAc levels in pancreatic {beta} cells, which appears to interfere with {beta}-cell function. To obtain a better understanding of the role of O-linked GlcNAc modification in {beta} cells, we have isolated OGT interacting proteins from a cDNA library made from the mouse insulinoma MIN6 cell line. We describe here the identification of Ataxin-10, encoded by the SCA10 (spinocerebellar ataxia type 10) gene as an OGT interacting protein. Mutations in the SCA10 gene cause progressive cerebellar ataxias and seizures. We demonstrate that SCA10 interacts with OGT in vivo and is modified by O-linked glycosylation in MIN6 cells, suggesting a novel role for the Ataxin-10 protein in pancreatic {beta} cells.

  7. Beta cell function and BMI in ethnically diverse children with newly diagnosed autoimmune type 1 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of our study was to examine the relationship between BMI and beta-cell function at diagnosis of autoimmune type 1 diabetes (T1D) in a large group of ethnically diverse children. Cross-sectional analysis of 524 children (60.8% White, 19.5% Hispanic, 14.5% African-American, 5.2% other n...

  8. Metabolomic profiling of amino acids and beta-cell function relative to insulin sensitivity in youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In longitudinal studies of adults, elevated amino acid (AA) concentrations predicted future type 2 diabetes mellitus (T2DM). The aim of the present investigation was to examine whether increased plasma AA concentrations are associated with impaired beta-cell function relative to insulin sensitivity ...

  9. Nuclear SREBP-1a causes loss of pancreatic {beta}-cells and impaired insulin secretion

    SciTech Connect

    Iwasaki, Yuko; Iwasaki, Hitoshi; Yatoh, Shigeru; Ishikawa, Mayumi; Kato, Toyonori; Matsuzaka, Takashi; Nakagawa, Yoshimi; Yahagi, Naoya; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2009-01-16

    Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic {beta}-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, {beta}{epsilon}{tau}{alpha}2, MafA, and IRS-2 were suppressed, partially explaining the loss and dysfunction of {beta}-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous {beta}-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts {beta}-cell mass and function.

  10. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function

    NASA Astrophysics Data System (ADS)

    Chen, Wansong; Zhang, Qiangzhe; Luk, Brian T.; Fang, Ronnie H.; Liu, Younian; Gao, Weiwei; Zhang, Liangfang

    2016-05-01

    The cell membrane cloaking technique has emerged as an intriguing strategy in nanomaterial functionalization. Coating synthetic nanostructures with natural cell membranes bestows the nanostructures with unique cell surface antigens and functions. Previous studies have focused primarily on development of cell membrane-coated spherical nanoparticles and the uses thereof. Herein, we attempt to extend the cell membrane cloaking technique to nanofibers, a class of functional nanomaterials that are drastically different from nanoparticles in terms of dimensional and mechanophysical characteristics. Using pancreatic beta cells as a model cell line, we demonstrate successful preparation of cell membrane-coated nanofibers and validate that the modified nanofibers possess an antigenic exterior closely resembling that of the source beta cells. When such nanofiber scaffolds are used to culture beta cells, both cell proliferation rate and function are significantly enhanced. Specifically, glucose-dependent insulin secretion from the cells is increased by near five-fold compared with the same beta cells cultured in regular, unmodified nanofiber scaffolds. Overall, coating cell membranes onto nanofibers could add another dimension of flexibility and controllability in harnessing cell membrane functions and offer new opportunities for innovative applications.

  11. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function.

    PubMed

    Chen, Wansong; Zhang, Qiangzhe; Luk, Brian T; Fang, Ronnie H; Liu, Younian; Gao, Weiwei; Zhang, Liangfang

    2016-05-21

    The cell membrane cloaking technique has emerged as an intriguing strategy in nanomaterial functionalization. Coating synthetic nanostructures with natural cell membranes bestows the nanostructures with unique cell surface antigens and functions. Previous studies have focused primarily on development of cell membrane-coated spherical nanoparticles and the uses thereof. Herein, we attempt to extend the cell membrane cloaking technique to nanofibers, a class of functional nanomaterials that are drastically different from nanoparticles in terms of dimensional and mechanophysical characteristics. Using pancreatic beta cells as a model cell line, we demonstrate successful preparation of cell membrane-coated nanofibers and validate that the modified nanofibers possess an antigenic exterior closely resembling that of the source beta cells. When such nanofiber scaffolds are used to culture beta cells, both cell proliferation rate and function are significantly enhanced. Specifically, glucose-dependent insulin secretion from the cells is increased by near five-fold compared with the same beta cells cultured in regular, unmodified nanofiber scaffolds. Overall, coating cell membranes onto nanofibers could add another dimension of flexibility and controllability in harnessing cell membrane functions and offer new opportunities for innovative applications. PMID:27139582

  12. Generating pancreatic beta-cells from embryonic stem cells by manipulating signaling pathways.

    PubMed

    Champeris Tsaniras, Spyridon; Jones, Peter M

    2010-07-01

    Type 1 diabetes results from an insufficiency of insulin production as a result of autoimmune destruction of the insulin-secreting pancreatic beta-cells. It can be treated by transplantation of islets of Langerhans from human donors, but widespread application of this therapy is restricted by the scarcity of donor tissue. Generation of functional beta-cells from embryonic stem (ES) cells in vitro could provide a source of an alternative graft material. Several ES cell differentiation protocols have reported the production of insulin-producing cells by mimicking the in vivo developmental stages of pancreatic organogenesis in which cells are transitioned through mesendoderm, definitive endoderm, foregut endoderm, pancreatic endoderm, and the endocrine precursor stage, until mature beta-cells are obtained. These studies provide proof of concept that recapitulating pancreatic development in vitro offers a useful strategy for generating beta-cells, but current differentiation protocols employ a bewildering variety of growth factors, mitogens, and pharmacological agents. In this review, we will attempt to clarify the functions of these agents in in vitro differentiation strategies by focusing on the intracellular signaling pathways through which they operate - phosphatidylinositol 3-kinase, transforming growth factor beta, Wnt/beta-catenin, Hedgehog, and Notch. PMID:20385725

  13. Nitric oxide stimulates insulin gene transcription in pancreatic {beta}-cells

    SciTech Connect

    Campbell, S.C. . E-mail: s.c.campbell@ncl.ac.uk; Richardson, H.; Ferris, W.F.; Butler, C.S.; Macfarlane, W.M.

    2007-02-23

    Recent studies have identified a positive role for nitric oxide (NO) in the regulation of pancreatic {beta}-cell function. The aim of this study was to determine the effects of short-term exposure to NO on {beta}-cell gene expression and the activity of the transcription factor PDX-1. NO stimulated the activity of the insulin gene promoter in Min6 {beta}-cells and endogenous insulin mRNA levels in both Min6 and isolated islets of Langerhans. Addition of wortmannin prior to NO stimulation blocked the observed increases in insulin gene promoter activity. Although NO addition stimulated the phosphorylation of p38, inhibition by SB203580 did not block the effect of NO on the insulin gene promoter. NO addition also stimulated both the nuclear accumulation and the DNA binding activity of PDX-1. This study has shown that over 24 h, NO stimulates insulin gene expression, PI-3-kinase activity and the activity of the critical {beta}-cell transcription factor PDX-1.

  14. Measuring beta-cell function relative to insulin sensitivity in youth: Does the hyperglycemic clamp suffice?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To compare beta-cell function relative to insulin sensitivity, disposition index (DI), calculated from two clamps (2cDI, insulin sensitivity from the hyperinsulinemic-euglycemic clamp and first-phase insulin from the hyperglycemic clamp) with the DI calculated from the hyperglycemic clamp alone (hcD...

  15. Ethnic differences in insulin sensitivity and beta-cell function among Asian men

    PubMed Central

    Tan, V M H; Lee, Y S; Venkataraman, K; Khoo, E Y H; Tai, E S; Chong, Y S; Gluckman, P; Leow, M K S; Khoo, C M

    2015-01-01

    Background and objectives: Lean Asian Indians are less insulin sensitive compared with Chinese and Malays, but the pancreatic beta-cell function among these ethnic groups has yet to be studied in depth. We aimed to study beta-cell function in relation to insulin sensitivity among individuals of Chinese, Malay and Asian-Indian ethnicity living in Singapore. Subjects and methods: This is a sub-group analysis of 59 normoglycemic lean (body mass index (BMI) <23 kg m−2) adult males (14 Chinese, 21 Malays and 24 Asian Indians) from the Singapore Adults Metabolism Study. Insulin sensitivity was determined using fasting state indices (homeostatic model assessment—insulin resistance), the euglycemic-hyperinsulinemic clamp (ISI-clamp) and a liquid mixed-meal tolerance test (LMMTT) (Matsuda insulin sensitivity index (ISI-Mat)). Beta-cell function was assessed using fasting state indices (homeostatic model assessment—beta-cell function) and from the LMMTT (insulinogenic index and insulin secretion index). The oral disposition index (DI), a measure of beta-cell function relative to insulin sensitivity during the LMMTT, was calculated as a product of ISI-Mat and insulin secretion index. Results: Asian Indians had higher waist circumference and percent body fat than Chinese and Malays despite similar BMI. Overall, Asian Indians were the least insulin sensitive whereas the Chinese were most insulin sensitive. Asian Indians had higher beta-cell function compared with Chinese or Malays but these were not statistically different. Malays had the highest incremental area under the curve for glucose during LMMTT compared with Asian Indians and Chinese. However, there were no significant ethnic differences in the incremental insulin area under the curve. The oral DI was the lowest in Malays, followed by Asian Indians and Chinese. Conclusion: Among lean Asians, Chinese are the most insulin sensitive whereas Asian Indians are the least insulin sensitive. However, Malays

  16. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells

    PubMed Central

    2013-01-01

    Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382

  17. Therapies aimed at preservation or restoration of beta cell function in type 1 diabetes.

    PubMed

    Keymeulen, B

    2008-01-01

    Type 1 diabetes is caused by an immune mediated destruction of the insulin-secreting beta cells in the pancreas. The disease can become clinically apparent at any age. At clinical diagnosis, there is invariably some residual beta cell function. Recent studies--including one mainly conducted in Belgium--have provided proof of principle that short-term humanized anti-T-cell antibody treatment is able to preserve residual beta cell function for at least 18 months in adult type 1 diabetic patients with a recent clinical onset of disease. The effect of anti-T-cell antibody treatment is more pronounced among patients with initial higher residual beta-cell function. The resultant stabilizing effect on metabolic control is expected to delay chronic complications and avoid hypoglycemia in these patients. With a similar goal in mind, non-uremic C-peptide negative type 1 diabetic patients are offered beta cell transplantation. During the last years the one year survival of these grafts under immune suppression with Anti-Thymocyte-Globulin, tacrolimus and mycophenolate mofetil exceeds 80% with virtually no cases of primary non-function. Widespread application will however only occur if ways are found to induce operational graft tolerance and the shortage of viable human donor cells can be overcome. Both islet xenotransplantation and stem cell therapy provide possible strategies to solve this problem and represent areas of intense investigation. The ultimate goal is prevention of clinical disease. Studies by the Belgian Diabetes Registry and others in first degree family members of type 1 diabetic patients have refined identification of individuals at very high risk of hyperglycemia so that new immunological treatments can be tested in the prediabetic phase. PMID:18630722

  18. Minireview: beta-cell replacement therapy for diabetes in the 21st century: manipulation of cell fate by directed differentiation.

    PubMed

    Yechoor, Vijay; Chan, Lawrence

    2010-08-01

    Pancreatic beta-cell failure underlies type 1 diabetes; it also contributes in an essential way to type 2 diabetes. beta-Cell replacement is an important component of any cure for diabetes. The current options of islet and pancreas transplantation are not satisfactory as definitive forms of therapy. Here, we review strategies for induced de novo pancreatic beta-cell formation, which depend on the targeted differentiation of cells into pancreatic beta-cells. With this objective in mind, one can manipulate the fate of three different types of cells: 1) from terminally differentiated cells, e.g. exocrine pancreatic cells, into beta-cells; 2) from multipotent adult stem cells, e.g. hepatic oval cells, into pancreatic islets; and 3) from pluripotent stem cells, e.g. embryonic stem cells and induced pluripotent stem cells, into beta-cells. We will examine the pros and cons of each strategy as well as the hurdles that must be overcome before these approaches to generate new beta-cells will be ready for clinical application. PMID:20219891

  19. Effects of antidiabetic agents on pancreatic beta-cell function in gestational diabetes: is there enough evidence?

    PubMed

    Tura, Andrea; Göbl, Christian; Pacini, Giovanni

    2016-01-01

    Gestational diabetes mellitus (GDM) is typically characterized by the presence of insulin resistance. However, recent studies showed that both insulin resistance and pancreatic beta-cell function impairment may contribute to the development of type 2 diabetes in women with history of GDM. In fact, beta-cell function decline was found as significant predictor of later disease in former GDM women progressing towards type 2 diabetes. Despite the evidence of the relevance of beta-cell function quantification in GDM, a low number of studies focused on the effects of GDM treatments on beta-cell function. We briefly present the evidence of the effects on beta-cell function of pharmacological agents, as well as nutrition supplements or medical nutrition therapy, used in the management of GDM. We found that few studies reported information on beta-cell function effects in GDM, despite some agents, such as glyburide, are well known insulin secretagogues. Therefore, further studies should be carried out to clearly assess the effects on beta-cell function of the treatments in GDM women. PMID:26609764

  20. Immune responses to an encapsulated allogeneic islet {beta}-cell line in diabetic NOD mice

    SciTech Connect

    Black, Sasha P. . E-mail: Sasha.Black@ca.crl.com; Constantinidis, Ioannis; Cui, Hong; Tucker-Burden, Carol; Weber, Collin J.; Safley, Susan A.

    2006-02-03

    Our goal is to develop effective islet grafts for treating type 1 diabetes. Since human islets are scarce, we evaluated the efficacy of a microencapsulated insulin-secreting conditionally transformed allogeneic {beta}-cell line ({beta}TC-tet) in non-obese diabetic mice treated with tetracycline to inhibit cell growth. Relatively low serum levels of tetracycline controlled proliferation of {beta}TC-tet cells without inhibiting effective control of hyperglycemia in recipients. There was no significant host cellular reaction to the allografts or host cell adherence to microcapsules, and host cytokine levels were similar to those of sham-operated controls. We conclude that encapsulated allogeneic {beta}-cell lines may be clinically relevant, because they effectively restore euglycemia and do not elicit a strong cellular immune response following transplantation. To our knowledge, this is First extensive characterization of the kinetics of host cellular and cytokine responses to an encapsulated islet cell line in an animal model of type 1 diabetes.

  1. Can we make surrogate beta-cells better than the original?

    PubMed

    Weir, Gordon C

    2004-06-01

    Insufficient pancreatic beta-cell mass is fundamental to the pathogenesis of both types 1 and 2 diabetes and constitutes the basis for the goal of beta-cell replacement therapy. Current methods for isolating islets from organ donor pancreases do not come close to supplying all in need, thus providing a compelling need to find new sources of insulin-producing cells. Possible sources include generation of cells from embryonic stem cells (ESC), adult stem/precursor cells, transdifferentiation of other cell types and xenodonors. Bioengineering can be used to improve secretory performance and strengthen cells to better withstand the challenges of transplantation. Strategies include protection against hypoxia, inflammation, and immune attack. PMID:15125898

  2. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice

    PubMed Central

    Baeyens, Luc; Lemper, Marie; Leuckx, Gunter; De Groef, Sofie; Bonfanti, Paola; Stangé, Geert; Shemer, Ruth; Nord, Christoffer; Scheel, David W.; Pan, Fong C.; Ahlgren, Ulf; Gu, Guoqiang; Stoffers, Doris A.; Dor, Yuval; Ferrer, Jorge; Gradwohl, Gerard; Wright, Christopher VE; Van de Casteele, Mark; German, Michael S.; Bouwens, Luc; Heimberg, Harry

    2014-01-01

    Reprogramming of pancreatic exocrine cells into cells resembling beta cells may provide a strategy for treating diabetes. Here we show that transient administration of epidermal growth factor and ciliary neurotrophic factor to adult mice with chronic hyperglycemia efficiently stimulates the conversion of terminally differentiated acinar cells to beta-like cells. Newly generated beta-like cells are epigenetically reprogrammed, functional and glucose-responsive, and reinstate normal glycemic control for up to 248 days. The regenerative process depends on Stat3 signaling and requires a threshold number of Neurogenin 3 (Ngn3) expressing acinar cells. In contrast to previous work demonstrating in vivo conversion of acinar cells to beta-like cells by viral delivery of exogenous transcription factors, our approach achieves acinar-to-beta cell reprogramming through transient cytokine exposure rather than genetic modification. PMID:24240391

  3. ER stress in pancreatic beta cells: the thin red line between adaptation and failure.

    PubMed

    Eizirik, Decio L; Cnop, Miriam

    2010-01-01

    Secretory cells, such as pancreatic beta cells, face the challenge of increasing protein synthesis severalfold during acute or chronic stimulation. This poses a burden on the endoplasmic reticulum (ER), the organelle where proinsulin synthesis and folding takes place. Thus, beta cells use various adaptive mechanisms to adjust the functional capacity of the ER to the prevailing demand. These check-and-balance mechanisms are collectively known as the unfolded protein response (UPR). It remains unclear how UPR signaling is ultimately regulated and what delineates the boundaries between a physiological and a pathological response. New discoveries point to the divergent effects of acute and chronic metabolic fluxes and chemical ER stressors on the formation of complexes among UPR transducers, scaffold proteins, and phosphatases. These and other findings provide a first glimpse on how different signals trigger diverging UPR outcomes. PMID:20179270

  4. Age-related differences in the pancreatic beta-cell response to hyperglycemia after eccentric exercise.

    PubMed

    Krishnan, R K; Hernandez, J M; Williamson, D L; O'Gorman, D J; Evans, W J; Kirwan, J P

    1998-09-01

    Eccentric exercise (ECC) causes muscle damage, insulin resistance, and increased pancreatic beta-cell secretion in young individuals. However, the effects of age on the pancreatic beta-cell response to glucose after ECC are unknown. Hyperglycemic clamps (180 min, 10.0 mM) were performed on eight young (age 22 +/- 1 yr) and eight older (age 66 +/- 2 yr) healthy sedentary males without exercise (CONT) and 48 h after ECC. ECC increased (P < 0.02) muscle soreness ratings and plasma creatine kinase concentrations in both groups. Insulin and C-peptide secretions were similar between young and older subjects during CONT clamps. ECC increased (P < 0.05) first-phase (0-10 min) C-peptide area under the curve in young (4.2 +/- 0.4 vs. 3.7 +/- 0.6 nM . min; ECC vs. CONT, respectively) but not in older subjects (3.2 +/- 0.7 vs. 3.5 +/- 0.7 nM . min; ECC vs. CONT), with significant group differences (P < 0.02). Indeed, ECC repressed (P < 0.05) first-phase peak C-peptide concentrations in older subjects (0. 93 +/- 0.16 vs. 1.12 +/- 0.11 nM; ECC vs. CONT). Moreover, first-phase C-peptide-to-insulin molar ratios suggest age-related differences (P < 0.05) in insulin/C-peptide clearance after ECC. Furthermore, the observed C-peptide response after ECC was related to abdominal adiposity [r = -0.62, P < 0.02, and r = -0.66, P < 0. 006, for first and second (10-180 min) phases, respectively]. In conclusion, older individuals did not exhibit the compensatory increase in beta-cell secretion observed among young individuals after ECC. Thus, with increasing age, the pancreatic beta-cell may be less responsive to the physiological stress associated with ECC. PMID:9725813

  5. Sodium arsenite impairs insulin secretion and transcription in pancreatic {beta}-cells

    SciTech Connect

    Diaz-Villasenor, Andrea; Sanchez-Soto, M. Carmen; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia; Hiriart, Marcia . E-mail: mhiriart@ifc.unam.mx

    2006-07-01

    Human studies have shown that chronic inorganic arsenic (iAs) exposure is associated with a high prevalence and incidence of type 2 diabetes. However, the mechanism(s) underlying this effect are not well understood, and practically, there is no information available on the effects of arsenic on pancreatic {beta}-cells functions. Thus, since insulin secreted by the pancreas plays a crucial role in maintaining glucose homeostasis, our aim was to determine if sodium arsenite impairs insulin secretion and mRNA expression in single adult rat pancreatic {beta}-cells. Cells were treated with 0.5, 1, 2, 5 and 10 {mu}M sodium arsenite and incubated for 72 and 144 h. The highest dose tested (10 {mu}M) decreased {beta}-cell viability, by 33% and 83%, respectively. Insulin secretion and mRNA expression were evaluated in the presence of 1 and 5 {mu}M sodium arsenite. Basal insulin secretion, in 5.6 mM glucose, was not significantly affected by 1 or 5 {mu}M treatment for 72 h, but basal secretion was reduced when cells were exposed to 5 {mu}M sodium arsenite for 144 h. On the other hand, insulin secretion in response to 15.6 mM glucose decreased with sodium arsenite in a dose-dependent manner in such a way that cells were no longer able to distinguish between different glucose concentrations. We also showed a significant decrease in insulin mRNA expression of cells exposed to 5 {mu}M sodium arsenite during 72 h. Our data suggest that arsenic may contribute to the development of diabetes mellitus by impairing pancreatic {beta}-cell functions, particularly insulin synthesis and secretion.

  6. Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells.

    PubMed Central

    Pérez-Armendariz, M; Roy, C; Spray, D C; Bennett, M V

    1991-01-01

    Coupling between beta cells through gap junctions has been postulated as a principal mechanism of electrical synchronization of glucose-induced activity throughout the islet of Langerhans. We characterized junctional conductance between isolated pairs of mouse pancreatic beta cells by whole-cell recording with two independent patch-clamp circuits. Most pairs were coupled (67%, n = 155), although the mean junctional conductance (gj) (215 +/- 110 pS) was lower than reported in other tissues. Coupling could be recorded for long periods, up to 40 min. Voltage imposed across the junctional or nonjunctional membranes had no effect on gj. Up to several hours of treatment to increase intracellular cAMP levels did not affect gj. Electrically coupled pairs did not show transfer of the dye Lucifer yellow. Octanol (2 mM) reversibly decreased gj. Lower concentrations of octanol (0.5 mM) and heptanol (0.5 mM) than required to uncouple beta cells decreased voltage-dependent K+ and Ca2+ currents in nonjunctional membranes. Although gj recorded in these experiments would be expected to be provided by current flowing through only a few channels of the unitary conductance previously reported for other gap junctions, no unitary junctional currents were observed even during reversible suppression of gj by octanol. This result suggests either that the single channel conductance of gap junction channels between beta cells is smaller than in other tissues (less than 20 pS) or that the small mean conductance is due to transitions between open and closed states that are too rapid or too slow to be resolved. Images FIGURE 1 FIGURE 5 PMID:2015391

  7. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells

    PubMed Central

    Hasni Ebou, Moina; Singh-Estivalet, Amrit; Launay, Jean-Marie; Callebert, Jacques; Tronche, François; Ferré, Pascal; Gautier, Jean-François; Guillemain, Ghislaine; Bréant, Bernadette

    2016-01-01

    Diabetes is a major complication of chronic Glucocorticoids (GCs) treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1) and 2 (Tph2), leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells. PMID:26901633

  8. Properties of the Ca-activated K+ channel in pancreatic beta-cells.

    PubMed

    Atwater, I; Rosario, L; Rojas, E

    1983-12-01

    The existence of [Ca2+]i-activated K+-channels in the pancreatic beta-cell membrane is based in two observations: quinine inhibits K+-permeability and, increasing intracellular Ca2+ stimulates it. The changes in K+-permeability of the beta-cell have been monitored electrically by combining measurements of the dependence of the membrane potential on external K+ concentration and input resistance. The changes in the passive 42K and 86Rb efflux from the whole islet have been measured directly. Intracellular Ca2+ has been increased by various means, including increasing extracellular Ca2+, addition of the Ca2+-ionophore A23187 or noradrenaline and application of mitochondrial uncouplers and blockers. In addition to quinine, many other substances have been found to inhibit or modulate the [Ca2+]i-activated K+-channel. The most important of these is the natural stimulus for insulin secretion, glucose. Glucose may inhibit K+-permeability by lowering intracellular Ca2+. Glibenclamide, a hypoglycaemic sulphonylurea, is about 25 times more active than quinine in blocking the K+-channel in beta-cells. The methylxanthines, c-AMP, various calmodulin inhibitors and Ba2+ also inhibit K+-permeability. Genetically diabetic mice have been studied and show an alteration in the [Ca2+]i-activated K+-channel. It is concluded that the [Ca2+]i-activated K+-channel plays a major role in the normal function of the pancreatic beta-cell. The study of its properties should prove valuable for the understanding and treatment of diabetes. PMID:6323007

  9. The Microtubule-Associated Protein Tau and Its Relevance for Pancreatic Beta Cells

    PubMed Central

    Maj, Magdalena; Hoermann, Gregor; Rasul, Sazan; Base, Wolfgang; Wagner, Ludwig; Attems, Johannes

    2016-01-01

    Structural and biochemical alterations of the microtubule-associated protein tau (MAPT) are associated with degenerative disorders referred to as tauopathies. We have previously shown that MAPT is present in human islets of Langerhans, human insulinomas, and pancreatic beta-cell line models, with biophysical similarities to the pathological MAPT in the brain. Here, we further studied MAPT in pancreatic endocrine tissue to better understand the mechanisms that lead to functional dysregulation of pancreatic beta cells. We found upregulation of MAPT protein expression in human insulinomas when compared to human pancreatic islets of Langerhans and an imbalance between MAPT isoforms in insulinomas tissue. We cloned one 3-repeat domain MAPT and transduced this into a beta-cell derived rodent cell line Rin-5F. Proliferation experiments showed higher growth rates and metabolic activities of cells overexpressing MAPT protein. We observed that a MAPT overexpressing cell line demonstrates altered insulin transcription, translation, and insulin secretion rates. We found the relative insulin secretion rates were significantly decreased in a MAPT overexpressing cell line and these findings could be confirmed using partial MAPT knock-down cell lines. Our findings support that MAPT may play an important role in insulin granule trafficking and indicate the importance of balanced MAPT phosphorylation and dephosphorylation for adequate insulin release. PMID:26824039

  10. GLP-1 receptor antagonist as a potential probe for pancreatic {beta}-cell imaging

    SciTech Connect

    Mukai, Eri; Toyoda, Kentaro; Kimura, Hiroyuki; Kawashima, Hidekazu; Fujimoto, Hiroyuki; Ueda, Masashi; Temma, Takashi; Hirao, Konomu; Nagakawa, Kenji; Saji, Hideo; Inagaki, Nobuya

    2009-11-20

    We examined exendin(9-39), an antagonist of glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), as a potential probe for imaging of pancreatic {beta}-cells. To evaluate in vitro receptor specificity, binding assay was performed using dispersed mouse islet cells. Binding assay showed competitive inhibition of [{sup 125}I]BH-exendin(9-39) binding by non-radioactive exendin(9-39). To assess in vivo selectivity, the biodistribution was evaluated by intravenous administration of [{sup 125}I]BH-exendin(9-39) to mice. Radioactivity of harvested pancreas reached highest levels at 60 and 120 min among organs examined except lung. Pre-administration of excess non-radioactive exendin(9-39) remarkably and specifically blocked the radioactivity of pancreas. After [{sup 125}I]BH-exendin(9-39) injection into transgenic mice with pancreatic {beta}-cells expressing GFP, fluorescent and radioactive signals of sections of pancreas were evaluated with an image analyzer. Imaging analysis showed that the fluorescent GFP signals and the radioactive signals were correspondingly located. Thus, the GLP-1R antagonist exendin(9-39) may serve as a useful probe for pancreatic {beta}-cell imaging.

  11. Modulation of Ionic Channels and Insulin Secretion by Drugs and Hormones in Pancreatic Beta Cells.

    PubMed

    Velasco, Myrian; Díaz-García, Carlos Manlio; Larqué, Carlos; Hiriart, Marcia

    2016-09-01

    Pancreatic beta cells, unique cells that secrete insulin in response to an increase in glucose levels, play a significant role in glucose homeostasis. Glucose-stimulated insulin secretion (GSIS) in pancreatic beta cells has been extensively explored. In this mechanism, glucose enters the cells and subsequently the metabolic cycle. During this process, the ATP/ADP ratio increases, leading to ATP-sensitive potassium (KATP) channel closure, which initiates depolarization that is also dependent on the activity of TRP nonselective ion channels. Depolarization leads to the opening of voltage-gated Na(+) channels (Nav) and subsequently voltage-dependent Ca(2+) channels (Cav). The increase in intracellular Ca(2+) triggers the exocytosis of insulin-containing vesicles. Thus, electrical activity of pancreatic beta cells plays a central role in GSIS. Moreover, many growth factors, incretins, neurotransmitters, and hormones can modulate GSIS, and the channels that participate in GSIS are highly regulated. In this review, we focus on the principal ionic channels (KATP, Nav, and Cav channels) involved in GSIS and how classic and new proteins, hormones, and drugs regulate it. Moreover, we also discuss advances on how metabolic disorders such as metabolic syndrome and diabetes mellitus change channel activity leading to changes in insulin secretion. PMID:27436126

  12. In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use.

    PubMed

    Eriksson, Olof; Laughlin, Maren; Brom, Maarten; Nuutila, Pirjo; Roden, Michael; Hwa, Albert; Bonadonna, Riccardo; Gotthardt, Martin

    2016-07-01

    Radiotracer imaging is characterised by high in vivo sensitivity, with a detection limit in the lower picomolar range. Therefore, radiotracers represent a valuable tool for imaging pancreatic beta cells. High demands are made of radiotracers for in vivo imaging of beta cells. Beta cells represent only a small fraction of the volume of the pancreas (usually 1-3%) and are scattered in the tiny islets of Langerhans throughout the organ. In order to be able to measure a beta cell-specific signal, one has to rely on highly specific tracer molecules because current in vivo imaging technologies do not allow the resolution of single islets in humans non-invasively. Currently, a considerable amount of preclinical data are available for several radiotracers and three are under clinical evaluation. We summarise the current status of the evaluation of these tracer molecules and put forward recommendations for their further evaluation. PMID:27094935

  13. Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity.

    PubMed

    Schaffer, Ashleigh E; Taylor, Brandon L; Benthuysen, Jacqueline R; Liu, Jingxuan; Thorel, Fabrizio; Yuan, Weiping; Jiao, Yang; Kaestner, Klaus H; Herrera, Pedro L; Magnuson, Mark A; May, Catherine Lee; Sander, Maike

    2013-01-01

    All pancreatic endocrine cell types arise from a common endocrine precursor cell population, yet the molecular mechanisms that establish and maintain the unique gene expression programs of each endocrine cell lineage have remained largely elusive. Such knowledge would improve our ability to correctly program or reprogram cells to adopt specific endocrine fates. Here, we show that the transcription factor Nkx6.1 is both necessary and sufficient to specify insulin-producing beta cells. Heritable expression of Nkx6.1 in endocrine precursors of mice is sufficient to respecify non-beta endocrine precursors towards the beta cell lineage, while endocrine precursor- or beta cell-specific inactivation of Nkx6.1 converts beta cells to alternative endocrine lineages. Remaining insulin(+) cells in conditional Nkx6.1 mutants fail to express the beta cell transcription factors Pdx1 and MafA and ectopically express genes found in non-beta endocrine cells. By showing that Nkx6.1 binds to and represses the alpha cell determinant Arx, we identify Arx as a direct target of Nkx6.1. Moreover, we demonstrate that Nkx6.1 and the Arx activator Isl1 regulate Arx transcription antagonistically, thus establishing competition between Isl1 and Nkx6.1 as a critical mechanism for determining alpha versus beta cell identity. Our findings establish Nkx6.1 as a beta cell programming factor and demonstrate that repression of alternative lineage programs is a fundamental principle by which beta cells are specified and maintained. Given the lack of Nkx6.1 expression and aberrant activation of non-beta endocrine hormones in human embryonic stem cell (hESC)-derived insulin(+) cells, our study has significant implications for developing cell replacement therapies. PMID:23382704

  14. Evidence for glucagon-like peptide-1 receptor signaling to activate ATP-sensitive potassium channels in pancreatic beta cells.

    PubMed

    Kwon, Hye-Jung; Park, Hyun-Sun; Park, Sung-Hee; Park, Jae-Hyung; Shin, Su-Kyung; Song, Seung Eun; Hwang, Meeyul; Cho, Ho-Chan; Song, Dae-Kyu

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a gut peptide that promotes insulin release from pancreatic beta cells. GLP-1 has been shown to confer glucose-insensitive beta cells with glucose sensitivity by modulation of the activity of the ATP-sensitive potassium (KATP) channel. The channel closing effect of GLP-1, interacting with corresponding G-protein-coupled receptors, has been well established; however, to our knowledge, no study has shown whether GLP-1 directly induces activation of beta-cell KATP channels. Here, we aimed to evaluate whether the activation of beta-cell KATP channels by GLP-1 exists and affects intracellular Ca(2+) levels ([Ca(2+)]i). KATP channel activity was measured in isolated rat pancreatic beta cells by whole-cell perforated patch-clamp recordings with a diazoxide-containing pipette solution. Changes in [Ca(2+)]i and the subcellular localization of KATP channels were observed using the calcium-sensitive dye fura-4/AM and anti-Kir6.2 antibodies in INS-1 beta cells, respectively. To eliminate the well-known inhibitory effects of GLP-1 on KATP channel activity, channels were fully inhibited by pretreatment with methyl pyruvate and epigallocatechin-3-gallate. In the pretreated beta cells, GLP-1 and exendin-4 promptly activated the channels, reducing [Ca(2+)]i. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 blocked the effects of GLP-1 on channel activity. Moreover, phosphatidylinositol-3,4,5-trisphosphate mimicked the effects of GLP-1. These results suggested that beta-cell GLP-1 receptor signaling involved activation of KATP channels via a PI3K-dependent pathway. This alternative mechanism of GLP-1 function may act as a negative feedback pathway, modulating the glucose-dependent GLP-1 inhibition on KATP channel activity. PMID:26655814

  15. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    PubMed

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. PMID:26348137

  16. Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice.

    PubMed

    Liu, Yun-Zi; Cheng, Xiaoyun; Zhang, Ting; Lee, Sojin; Yamauchi, Jun; Xiao, Xiangwei; Gittes, George; Qu, Shen; Jiang, Chun-Lei; Dong, H Henry

    2016-07-01

    Hypertriglyceridemia results from increased production and decreased clearance of triglyceride-rich very low-density lipoproteins, a pathological condition that accounts for heightened risk of ischemic vascular diseases in obesity and type 2 diabetes. Despite its intimate association with insulin resistance, whether hypertriglyceridemia constitutes an independent risk for beta cell dysfunction in diabetes is unknown. Answering this fundamental question is stymied by the fact that hypertriglyceridemia is intertwined with hyperglycemia and insulin resistance in obese and diabetic subjects. To circumvent this limitation, we took advantage of apolipoprotein C3 (ApoC3)-transgenic mice, a model with genetic predisposition to hypertriglyceridemia. We showed that ApoC3-transgenic mice, as opposed to age/sex-matched wild-type littermates, develop hypertriglyceridemia with concomitant elevations in plasma cholesterol and non-esterified fatty acid levels. Anti-insulin and anti-glucagon dual immunohistochemistry in combination with morphometric analysis revealed that ApoC3-transgenic and wild-type littermates had similar beta cell and alpha cell masses as well as islet size and architecture. These effects correlated with similar amplitudes of glucose-stimulated insulin secretion and similar degrees of postprandial glucose excursion in ApoC3-transgenic versus wild-type littermates. Oil Red O histology did not visualize lipid infiltration into islets, correlating with the lack of ectopic triglyceride and cholesterol depositions in the pancreata of ApoC3-transgenic versus wild-type littermates. ApoC3-transgenic mice, despite persistent hypertriglyceridemia, maintained euglycemia under both fed and fasting conditions without manifestation of insulin resistance and fasting hyperinsulinemia. Thus, hypertriglyceridemia per se is not an independent risk factor for beta cell dysfunction in ApoC3 transgenic mice. PMID:27226540

  17. Ascorbic acid recycling by cultured beta cells: effects of increased glucose metabolism.

    PubMed

    Steffner, Robert J; Wu, Lan; Powers, Alvin C; May, James M

    2004-11-15

    Ascorbic acid is necessary for optimal insulin secretion from pancreatic islets. We evaluated ascorbate recycling and whether it is impaired by increased glucose metabolism in the rat beta-cell line INS-1. INS-1 cells, engineered with the potential for overexpression of glucokinase under the control of a tetracycline-inducible gene expression system, took up and reduced dehydroascorbic acid to ascorbate in a concentration-dependent manner that was optimal in the presence of physiologic D-glucose concentrations. Ascorbate uptake did not affect intracellular GSH concentrations. Whereas depletion of GSH in culture to levels about 25% of normal also did not affect the ability of the cells to reduce dehydroascorbic acid, more severe acute GSH depletion to less than 10% of normal levels did impair dehydroascorbic acid reduction. Culture of inducible cells in 11.8 mM D-glucose and doxycycline for 48 h enhanced glucokinase activity, increased glucose utilization, abolished D-glucose-dependent insulin secretion, and increased generation of reactive oxygen species. The latter may have contributed to subsequent decreases in the ability of the cells both to maintain intracellular ascorbate and to recycle it from dehydroascorbic acid. Cultured beta cells have a high capacity to recycle ascorbate, but this is sensitive to oxidant stress generated by increased glucose metabolism due to culture in high glucose concentrations and increased glucokinase expression. Impaired ascorbate recycling as a result of increased glucose metabolism may have implications for the role of ascorbate in insulin secretion in diabetes mellitus and may partially explain glucose toxicity in beta cells. PMID:15477012

  18. Junctophilin 3 expresses in pancreatic beta cells and is required for glucose-stimulated insulin secretion.

    PubMed

    Li, L; Pan, Z-F; Huang, X; Wu, B-W; Li, T; Kang, M-X; Ge, R-S; Hu, X-Y; Zhang, Y-H; Ge, L-J; Zhu, D-Y; Wu, Y-L; Lou, Y-J

    2016-01-01

    It is well accepted that junctophilin (JPHs) isoforms act as a physical bridge linking plasma membrane and endoplasmic reticulum (ER) for channel crosstalk in excitable cells. Our purpose is to investigate whether JPHs are involved in the proper communication between Ca(2+) influx and subsequent Ca(2+) amplification in pancreatic beta cells, thereby participating in regulating insulin secretion. The expression of JPH isoforms was examined in human and mouse pancreatic tissues, and JPH3 expression was found in both the beta cells. In mice, knockdown of Jph3 (si-Jph3) in islets decreased glucose-stimulated insulin secretion (GSIS) accompanied by mitochondrial function impairment. Si-Jph3 lowered the insulin secretory response to Ca(2+) signaling in the presence of glucose, and reduced [Ca(2+)]c transient amplitude triggered by caffeine. Si-Jph3 also attenuated mitofusin 2 expression, thereby disturbing the spatial organization of ER-mitochondria contact in islets. These results suggest that the regulation of GSIS by the KATP channel-independent pathways is partly impaired due to decrease of JPH3 expression in mouse islets. JPH3 also binds to type 2 ryanodine receptors (RyR2) in mouse and human pancreatic tissues, which might contribute to Ca(2+) release amplification in GSIS. This study demonstrates some previously unrecognized findings in pancreatic tissues: (1) JPH3 expresses in mouse and human beta cells; (2) si-Jph3 in mouse primary islets impairs GSIS in vitro; (3) impairment in GSIS in si-Jph3 islets is due to changes in RyR2-[Ca(2+)]c transient amplitude and ER-mitochondria contact. PMID:27336719

  19. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin

    PubMed Central

    Wakae-Takada, N.; Xuan, S.; Watanabe, K.; Meda, P.; Leibel, R. L.

    2014-01-01

    Aims/hypothesis In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. Methods We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). Results In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. Conclusions/interpretation The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function. PMID:23354125

  20. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation.

    PubMed

    Fernández-Millán, E; Martín, M A; Goya, L; Lizárraga-Mollinedo, E; Escrivá, F; Ramos, S; Álvarez, C

    2016-06-01

    Oxidative stress plays an important role in the development of beta-cell dysfunction and insulin resistance, two major pathophysiological abnormalities of type 2 diabetes. Expression levels of antioxidant enzymes in beta cells are very low, rendering them more susceptible to damage caused by reactive oxygen species (ROS). Although the antioxidant effects of glucagon-like peptide-1 (GLP-1) and its analogs have been previously reported, the exact mechanisms involved are still unclear. In this study, we demonstrated that GLP-1 was able to effectively inhibit oxidative stress and cell death of INS-1E beta cells induced by the pro-oxidant tert-butyl hydroperoxide (tert-BOOH). Incubation with GLP-1 enhanced cellular levels of glutathione and the activity of its related enzymes, glutathione-peroxidase (GPx) and -reductase (GR) in beta cells. However, inhibition of ERK, but not of the PI3K/AKT pathway abolished, at least in part, the antioxidant effect of GLP-1. Moreover, ERK activation seems to be protein kinase A (PKA)-dependent because inhibition of PKA with H-89 was sufficient to block the GLP-1-derived protective effect on beta cells. GLP-1 likewise increased the synthesis of GR and favored the translocation of the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Glucose-stimulated insulin secretion was also preserved in beta-cells challenged with tert-BOOH but pre-treated with GLP-1, probably through the down-regulation of the mitochondrial uncoupling-protein2 (UCP2). Thus, our results provide additional mechanisms of action of GLP-1 to prevent oxidative damage in beta cells through the modulation of signaling pathways involved in antioxidant enzyme regulation. PMID:26968794

  1. Measurements of insulin responses as predictive markers of pancreatic beta-cell mass in normal and beta-cell-reduced lean and obese Göttingen minipigs in vivo.

    PubMed

    Larsen, Marianne O; Rolin, Bidda; Sturis, Jeppe; Wilken, Michael; Carr, Richard D; Pørksen, Niels; Gotfredsen, Carsten F

    2006-04-01

    At present, the best available estimators of beta-cell mass in humans are those based on measurement of insulin levels or appearance rates in the circulation. In several animal models, these estimators have been validated against beta-cell mass in lean animals. However, as many diabetic humans are obese, a correlation between in vivo tests and beta-cell mass must be evaluated over a range of body weights to include different levels of insulin sensitivity. For this purpose, obese (n = 10) and lean (n = 25) Göttingen minipigs were studied. Beta-cell mass had been reduced (n = 16 lean, n = 5 obese) with a combination of nicotinamide (67 mg/kg) and streptozotocin (125 mg/kg), acute insulin response (AIR) to intravenous glucose and/or arginine was tested, pulsatile insulin secretion was evaluated by deconvolution (n = 30), and beta-cell mass was determined histologically. AIR to 0.3 (r(2) = 0.4502, P < 0.0001) or 0.6 g/kg glucose (r(2) = 0.6806, P < 0.0001), 67 mg/kg arginine (r(2) = 0.5730, P < 0.001), and maximum insulin concentration (r(2) = 0.7726, P < 0.0001) were all correlated to beta-cell mass when evaluated across study groups, and regression lines were not different between lean and obese groups except for AIR to 0.3 g/kg glucose. Baseline pulse mass was not significantly correlated to beta-cell mass across the study groups (r(2) = 0.1036, NS), whereas entrained pulse mass did show a correlation across groups (r(2) = 0.4049, P < 0.001). This study supports the use of in vivo tests of insulin responses to evaluate beta-cell mass over a range of body weights in the minipig. Extensive stimulation of insulin secretion by a combination of glucose and arginine seems to give the best correlation to beta-cell mass. PMID:16278249

  2. Beta Cell Formation in vivo Through Cellular Networking, Integration and Processing (CNIP) in Wild Type Adult Mice.

    PubMed

    Doiron, Bruno; Hu, Wenchao; DeFronzo, Ralph A

    2016-01-01

    Insulin replacement therapy is essential in type 1 diabetic individuals and is required in ~40- 50% of type 2 diabetics during their lifetime. Prior attempts at beta cell regeneration have relied upon pancreatic injury to induce beta cell proliferation, dedifferentiation and activation of the embryonic pathway, or stem cell replacement. We report an alternative method to transform adult non-stem (somatic) cells into pancreatic beta cells. The Cellular Networking, Integration and Processing (CNIP) approach targets cellular mechanisms involved in pancreatic function in the organ's adult state and utilizes a synergistic mechanism that integrates three important levels of cellular regulation to induce beta cell formation: (i) glucose metabolism, (ii) membrane receptor function, and (iii) gene transcription. The aim of the present study was to induce pancreatic beta cell formation in vivo in adult animals without stem cells and without dedifferentiating cells to recapitulate the embryonic pathway as previously published (1-3). Our results employing CNIP demonstrate that: (i) insulin secreting cells can be generated in adult pancreatic tissue in vivo and circumvent the problem of generating endocrine (glucagon and somatostatin) cells that exert deleterious effects on glucose homeostasis, and (ii) longterm normalization of glucose tolerance and insulin secretion can be achieved in a wild type diabetic mouse model. The CNIP cocktail has the potential to be used as a preventative or therapeutic treatment or cure for both type 1 and type 2 diabetes. PMID:26696016

  3. BACE2 is stored in secretory granules of mouse and rat pancreatic beta cells.

    PubMed

    Finzi, Giovanna; Franzi, Francesca; Placidi, Claudia; Acquati, Francesco; Palumbo, Elisa; Russo, Antonella; Taramelli, Roberto; Sessa, Fausto; La Rosa, Stefano

    2008-01-01

    BACE2 is a protease homologous to BACE1 protein, an enzyme involved in the amyloid formation of Alzheimer disease (AD). However, despite the high homology between these two proteins, the biological role of BACE2 is still controversial, even though a few studies have suggested a pathogenetic role in sporadic inclusion-body myositis and hereditary inclusion-body myopathy, which are characterized by vacuolization of muscular fibers with intracellular deposits of proteins similar to those found in the brain of AD patients. Although BACE2 has also been identified in the pancreas, its function remains unknown and its specific localization in different pancreatic cell types has not been definitively ascertained. For these reasons, the authors have investigated the cellular and subcellular localization of BACE2 in normal rodent pancreases. BACE2 immunoreactivity was found in secretory granules of beta cells, co-stored with insulin and IAPP, while it was lacking in the other endocrine and exocrine cell types. The presence of BACE2 in secretory granules of beta cells suggests that it may play a role in diabetes-associated amyloidogenesis. PMID:19117266

  4. Evidence for a slowly exchangeable pool of calcium in the pancreatic beta cell plasma membrane.

    PubMed Central

    Gylfe, E; Hellman, B

    1982-01-01

    1. Exposure to media deprived of Ca2+ resulted in prompt and transient stimulation of 45Ca efflux from beta cell-rich pancreatic islets microdissected from ob/ob-mice and to some extent also from the isolated neurohypophysis. 2. Particular high efflux rates were reached when the Ca2+-deficient medium contained EGTA, but there was no effect of the chelator on the total amount of radioactivity mobilized from the islets. 3. The removal of extracellular Ca2+ was less effective in promoting the 45Ca efflux in the absence of Na+ and no stimulatory response was seen in the presence of 1 mM-La3+. 4. The 45Ca washout was stimulated whether or not the media used for the loading or subsequent perifusion of the islets were supplemented with 20 mM-D-glucose. However, there was no response to a second exposure to a Ca2+-deficient medium even subsequent to redistribution of intracellular calcium induced by temporary lowering of the temperature. 5. It is suggested that the islet 45Ca released by the removal of extracellular Ca2+ originates from a distinct plasma membrane pool which is exchanged slowly compared to most of the calcium at the beta cell periphery. PMID:6752376

  5. Iron Regulation of Pancreatic Beta-Cell Functions and Oxidative Stress.

    PubMed

    Backe, Marie Balslev; Moen, Ingrid Wahl; Ellervik, Christina; Hansen, Jakob Bondo; Mandrup-Poulsen, Thomas

    2016-07-17

    Dietary advice is the cornerstone in first-line treatment of metabolic diseases. Nutritional interventions directed at these clinical conditions mainly aim to (a) improve insulin resistance by reducing energy-dense macronutrient intake to obtain weight loss and (b) reduce fluctuations in insulin secretion through avoidance of rapidly absorbable carbohydrates. However, even in the majority of motivated patients selected for clinical trials, massive efforts using this approach have failed to achieve lasting efficacy. Less attention has been given to the role of micronutrients in metabolic diseases. Here, we review the evidence that highlights (a) the importance of iron in pancreatic beta-cell function and dysfunction in diabetes and (b) the integrative pathophysiological effects of tissue iron levels in the interactions among the beta cell, gut microbiome, hypothalamus, innate and adaptive immune systems, and insulin-sensitive tissues. We propose that clinical trials are warranted to clarify the impact of dietary or pharmacological iron reduction on the development of metabolic disorders. PMID:27146016

  6. Chemiluminescence Imaging of Superoxide Anion Detects Beta-Cell Function and Mass

    PubMed Central

    Bronsart, Laura L.; Stokes, Christian; Contag, Christopher H.

    2016-01-01

    Superoxide anion is produced during normal cellular respiration and plays key roles in cellular physiology with its dysregulation being associated with a variety of diseases. Superoxide anion is a short-lived molecule and, therefore, its homeostatic regulation and role in biology and disease requires dynamic quantification with fine temporal resolution. Here we validated coelenterazine as a reporter of intracellular superoxide anion concentration and used it as a dynamic measure both in vitro and in vivo. Chemiluminescence was dependent upon superoxide anion levels, including those produced during cellular respiration, and concentrations varied both kinetically and temporally in response to physiologically relevant fluctuations in glucose levels. In vivo imaging with coelenterazine revealed that beta cells of the pancreas have increased levels of superoxide anion, which acted as a measure of beta-cell function and mass and could predict the susceptibility of mice to diabetes mellitus. Glucose response and regulation are key elements of cellular physiology and organismal biology, and superoxide anion appears to play a fundamental and dynamic role in both of these processes. PMID:26752052

  7. Detection of C-Peptide in Urine as a Measure of Ongoing Beta Cell Function.

    PubMed

    McDonald, T J; Perry, M H

    2016-01-01

    C-peptide is a protein secreted by the pancreatic beta cells in equimolar quantities with insulin, following the cleavage of proinsulin into insulin. Measurement of C-peptide is used as a surrogate marker of endogenous insulin secretory capacity. Assessing C-peptide levels can be useful in classifying the subtype of diabetes as well as assessing potential treatment choices in the management of diabetes.Standard measures of C-peptide involve blood samples collected either fasted or, most often, after a fixed stimulus (such as oral glucose, mixed meal, or IV glucagon). Despite the established clinical utility of blood C-peptide measurement, its widespread use is limited. In many instances this is due to perceived practical restrictions associated with sample collection.Urine C-peptide measurement is an attractive noninvasive alternative to blood measures of beta-cell function. Urine C-peptide creatinine ratio measured in a single post stimulated sample has been shown to be a robust, reproducible measure of endogenous C-peptide which is stable for three days at room temperature when collected in boric acid. Modern high sensitivity immunoassay technologies have facilitated measurement of C-peptide down to single picomolar concentrations. PMID:27083170

  8. Maternal diabetes, programming of beta-cell disorders and intergenerational risk of type 2 diabetes.

    PubMed

    Chavey, A; Ah Kioon, M-D; Bailbé, D; Movassat, J; Portha, B

    2014-11-01

    A substantial body of evidence suggests that an abnormal intra-uterine milieu elicited by maternal metabolic disturbances as diverse as malnutrition, placental insufficiency, diabetes and obesity may be able to programme susceptibility of the foetus to later develop chronic degenerative diseases such as obesity, hypertension, cardiovascular diseases and type 2 diabetes (T2D). As insulin-producing cells have been placed centre stage in the development of T2D, this review examines developmental programming of the beta-cell mass (BCM) in various rodent models of maternal protein restriction, calorie restriction, overnutrition and diabetes. The main message is that whatever the initial maternal insult (F0 generation) and whether alone or in combination, it gives rise to the same programmed BCM outcome in the daughter generation (F1). The altered BCM phenotype in F1 females prohibits normal BCM adaptation during pregnancy and, thus, diabetes (gestational diabetes) ensues. This gestational diabetes is then passed from one generation (F1) to the next (F2, F3 and so on). This review highlights a number of studies that have identified epigenetic mechanisms that may contribute to altered BCM development and beta-cell failure, as observed in diabetes. In addition to their role in instilling the programmed defect, these non-genomic mechanisms may also be involved in its intergenerational transmission. PMID:24948417

  9. Beta cell antigens in type 1 diabetes: triggers in pathogenesis and therapeutic targets

    PubMed Central

    Mauvais, François-Xavier; Diana, Julien; van Endert, Peter

    2016-01-01

    Research focusing on type 1 diabetes (T1D) autoantigens aims to explore our understanding of these beta cell proteins in order to design assays for monitoring the pathogenic autoimmune response, as well as safe and efficient therapies preventing or stopping it. In this review, we will discuss progress made in the last 5 years with respect to mechanistic understanding, diagnostic monitoring, and therapeutic modulation of the autoantigen-specific cellular immune response in T1D. Some technical progress in monitoring tools has been made; however, the potential of recent technologies for highly multiplexed exploration of human cellular immune responses remains to be exploited in T1D research, as it may be the key to the identification of surrogate markers of disease progression that are still wanting. Detailed analysis of autoantigen recognition by T cells suggests an important role of non-conventional antigen presentation and processing in beta cell-directed autoimmunity, but the impact of this in human T1D has been little explored. Finally, therapeutic administration of autoantigens to T1D patients has produced disappointing results. The application of novel modes of autoantigen administration, careful translation of mechanistic understanding obtained in preclinical studies and in vitro with human cells, and combination therapies including CD3 antibodies may help to make autoantigen-based immunotherapy for T1D a success story in the future. PMID:27158463

  10. Cereulide food toxin, beta cell function and diabetes: Facts and hypotheses.

    PubMed

    Vangoitsenhoven, Roman; Maris, Michael; Overbergh, Lut; Van Loco, Joris; Mathieu, Chantal; Van der Schueren, Bart

    2015-07-01

    The incidence of both type 1 and type 2 diabetes is increasing and although environmental pollutants are believed to be potential culprits, the extent to which they can be held responsible remains uncertain. Some bacterial strains of the Bacillus cereus produce a toxin, cereulide, which is frequently found in starchy meals and which is difficult to eradicate from the food chain as it is highly resistant to heat, acidity and proteolysis. While cereulide is well known to cause acute emetic toxicity when ingested at high doses, several in vitro studies have shown that also extremely low doses of cereulide can be toxic, with beta cells being particularly sensitive. Mechanistically, such low doses impair the mitochondrial activity of the beta cells thereby leading to hampered insulin secretion and cell death, both key traits in the pathophysiology of diabetes. In vivo studies of chronic or repeated low dose exposure to cereulide are currently lacking, but should be performed to further clarify the true relevance of cereulide as a potential environmental contributor to the ongoing diabetes epidemic. PMID:25998918

  11. Relationship Between Beta Cell Dysfunction and Severity of Disease Among Critically Ill Children

    PubMed Central

    Liu, Ping-Ping; Lu, Xiu-Lan; Xiao, Zheng-Hui; Qiu, Jun; Zhu, Yi-Min

    2016-01-01

    Abstract Although beta cell dysfunction has been proved to predict prognosis among humans and animals, its prediction on severity of disease remains unclear among children. The present study was aimed to examine the relationship between beta cell dysfunction and severity of disease among critically ill children. This prospective study included 1146 critically ill children, who were admitted to Pediatric Intensive Care Unit (PICU) of Hunan Children's Hospital from November 2011 to August 2013. Information on characteristics, laboratory tests, and prognostic outcomes was collected. Homeostasis model assessment (HOMA)-β, evaluating beta cell function, was used to divide all participants into 4 groups: HOMA-β = 100% (group I, n = 339), 80% ≤ HOMA-β < 100% (group II, n = 71), 40% ≤ HOMA-β < 80% (group III, n = 293), and HOMA-β < 40% (group IV, n = 443). Severity of disease was assessed using the worst Sequential Organ Failure Assessment (SOFA) score, Pediatric Risk of Mortality (PRISM) III score, incidence of organ damage, septic shock, multiple organ dysfunction syndrome (MODS), mechanical ventilation (MV) and mortality. Logistic regression analysis was used to evaluate the risk of developing poor outcomes among patients in different HOMA-β groups, with group I as the reference group. Among 1146 children, incidence of HOMA-β < 100% was 70.41%. C-peptide and insulin declined with the decrement of HOMA-β (P < 0.01). C-reactive protein and procalcitonin levels, rather than white blood cell, were significantly different among 4 groups (P < 0.01). In addition, the worst SOFA score and the worst PRISMIII score increased with declined HOMA-β. For example, the worst SOFA score in group I, II, III, and IV was 1.55 ± 1.85, 1.71 ± 1.93, 1.92 ± 1.63, and 2.18 ± 1.77, respectively. Furthermore, patients with declined HOMA-β had higher risk of developing septic shock, MODS, MV, and mortality, even after adjusting age

  12. Phosphorylation events implicating p38 and PI3K mediate tungstate-effects in MIN6 beta cells

    SciTech Connect

    Piquer, Sandra; Gomis, Ramon . E-mail: rgomis@clinic.ub.es

    2007-06-29

    Oral administration of sodium tungstate is an effective treatment for diabetes in animal models. Several lines of evidence indicate the pancreatic beta cell as one of the targets of tungstate action. Here, we examined the molecular mechanism by which this compound exerts its effects on the beta cell line MIN6. Tungstate treatment induced phosphorylation and subsequent activation of p38 and PI3K which in turn are implicated in tungstate PDX-1 nuclear localization and activation. Although no effect was observed in glucose-induced insulin secretion we found that tungstate activates basal insulin release, a process driven, at least in part, by activation of p38. These results show a direct involvement of p38 and PI3K phosphorylation in the mechanism of action of tungstate in the beta cell.

  13. Bulk-like endocytosis plays an important role in the recycling of insulin granules in pancreatic beta cells.

    PubMed

    Wen, Du; Xue, Yanhong; Liang, Kuo; Yuan, Tianyi; Lu, Jingze; Zhao, Wei; Xu, Tao; Chen, Liangyi

    2012-08-01

    Although bulk endocytosis has been found in a number of neuronal and endocrine cells, the molecular mechanism and physiological function of bulk endocytosis remain elusive. In pancreatic beta cells, we have observed bulk-like endocytosis evoked both by flash photolysis and trains of depolarization. Bulk-like endocytosis is a clathrin-independent process that is facilitated by enhanced extracellular Ca(2+) entry and suppressed by the inhibition of dynamin function. Moreover, defects in bulk-like endocytosis are accompanied by hyperinsulinemia in primary beta cells dissociated from diabetic KKAy mice, which suggests that bulk-like endocytosis plays an important role in maintaining the exo-endocytosis balance and beta cell secretory capability. PMID:22729398

  14. [A preliminary study on the mechanism of impaired beta cell function in monosodium glutamate obese rat with insulin resistance].

    PubMed

    Liu, Shuai-Nan; Liu, Quan; Shen, Zhu-Fang

    2008-11-01

    This study is to evaluate beta cell function and investigate the mechanism of impaired pancreatic islet beta cell function in monosodium glutamate (MSG) obese rat with insulin resistance, an animal model of metabolic syndrome. Insulin tolerance test was used to screen MSG obese rats with insulin resistance. Blood concentrations of glucose, triglyceride, total cholesterol and insulin were determined. Beta cell function was assessed with hyperglycemic clamp technique. The morphological alterations in pancreas and changes of islet beta cell mass were evaluated by hematoxylin-eosin (HE) and Gomori aldehyde fuchsin staining. Lipid, oxidative stress relevant factors, nitric oxide (NO) level and activity of ATPase in pancreas and pancreatic mitochondrial were tested. The MSG obese rats with insulin resistance could be validated as a typical metabolic syndrome animal model possessing increased fasting plasma triglycerides and insulin (P < 0. 001), markedly decreased weight indices of pancreas and impaired glucose-stimulated insulin secretion. Hematoxylin-eosin (HE) and Gomori aldehyde fuchsin staining showed increased adipocytes and fibroplasia deposition in pancreas and reduced beta cell mass. The increased contents of triglyceride and NO level, the decreased SOD levels and activities of total ATPase (P < 0.001), Na+-K+-ATPase (P < 0.001) and Ca2+-Mg2+-ATPase (P < 0.01) were observed in pancreas and its mitochondria versus normal rat. The study demonstrates that accumulation of lipids in pancreas could lead to increased systemic indicators of inflammation, such as NO, which may influence the activities of several kinds of ATPase in cell membranes and interfere the ion transport, substance metabolism and energy production in pancreas. Finally the MSG obese rats characterized with metabolic syndrome displayed an impairment of beta cell function. PMID:19239028

  15. Differential effects of three echovirus strains on cell lysis and insulin secretion in beta cell derived lines.

    PubMed

    Sarmiento, Luis; Medina, Anya; Aziz, Kosrat; Anagandula, Mahesh; Cabrera-Rode, Eduardo; Fex, Malin; Frisk, Gun; Cilio, Corrado M

    2016-06-01

    In an earlier study, infection of human pancreatic islets with epidemic strains of echovirus (E4, E16, E30), with proven but differently ability to induce islet autoimmunity, resulted either in a severe damage (i.e., E16 and E30) or proceeded without visible changes in infected islets (i.e., E4). In this study, the ability of these strains to replicate in beta cells and the consequence of such an infection for beta cell lysis and beta cell function was studied in the pancreatic beta cell lines INS-1, MIN6, and NIT-1. The strains of E16 and E30 did replicate in INS1, MIN6, and NIT1 cells and resulted in a pronounced cytopathic effect within 3 days following infection. By contrast, E4 replicated in all examined insulinoma cells with no apparent cell destruction. The insulin release in response to high glucose stimulation was hampered in all infected cells (P < 0.05) when no evidence of cytolysis was present; however, the adverse effect of E16 and E30 on insulin secretion appeared to be higher than that of the E4 strain. The differential effects of echovirus infection on cell lysis, and beta cell function in the rodent insulinoma INS1, MIN6, and NIT 1 cells reflect those previously obtained in primary human islets and support the notion that the insulin-producing beta cells can harbor a non-cytopathic viral infection. J. Med. Virol. 88:971-978, 2016. © 2015 Wiley Periodicals, Inc. PMID:26629879

  16. Hepatocyte nuclear factor 3beta is involved in pancreatic beta-cell-specific transcription of the pdx-1 gene.

    PubMed Central

    Wu, K L; Gannon, M; Peshavaria, M; Offield, M F; Henderson, E; Ray, M; Marks, A; Gamer, L W; Wright, C V; Stein, R

    1997-01-01

    The mammalian homeobox gene pdx-1 is expressed in pluripotent precursor cells in the dorsal and ventral pancreatic bud and duodenal endoderm, which will produce the pancreas and the rostral duodenum. In the adult, pdr-1 is expressed principally within insulin-secreting pancreatic islet beta cells and cells of the duodenal epithelium. Our objective in this study was to localize sequences within the mouse pdx-1 gene mediating selective expression within the islet. Studies of transgenic mice in which a genomic fragment of the mouse pdx-1 gene from kb -4.5 to +8.2 was used to drive a beta-galactosidase reporter showed that the control sequences sufficient for appropriate developmental and adult specific expression were contained within this region. Three nuclease-hypersensitive sites, located between bp -2560 and -1880 (site 1), bp -1330 and -800 (site 2), and bp -260 and +180 (site 3), were identified within the 5'-flanking region of the endogenous pdx-1 gene. Pancreatic beta-cell-specific expression was shown to be controlled by sequences within site 1 from an analysis of the expression pattern of various pdr-1-herpes simplex virus thymidine kinase promoter expression constructs in transfected beta-cell and non-beta-cell lines. Furthermore, we also established that this region was important in vivo by demonstrating that expression from a site 1-driven beta-galactosidase reporter construct was directed to islet beta-cells in transgenic mice. The activity of the site 1-driven constructs was reduced substantially in beta-cell lines by mutating a hepatocyte nuclear factor 3 (HNF3)-like site located between nucleotides -2007 and -1996. Gel shift analysis indicated that HNF3beta present in islet beta cells binds to this element. Immunohistochemical studies revealed that HNF3beta was present within the nuclei of almost all islet beta cells and subsets of pancreatic acinar cells. Together, these results suggest that HNF3beta, a key regulator of endodermal cell lineage

  17. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    SciTech Connect

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  18. Lack of lipotoxicity effect on {beta}-cell dysfunction in ketosis-prone type 2 diabetes.

    PubMed

    Umpierrez, Guillermo E; Smiley, Dawn; Robalino, Gonzalo; Peng, Limin; Gosmanov, Aidar R; Kitabchi, Abbas E

    2010-03-01

    OBJECTIVE Over half of newly diagnosed obese African Americans with diabetic ketoacidosis (DKA) discontinue insulin therapy and go through a period of near-normoglycemia remission. This subtype of diabetes is known as ketosis-prone type 2 diabetes (KPDM). RESEARCH DESIGN AND METHODS To investigate the role of lipotoxicity on beta-cell function, eight obese African Americans with KPDM, eight obese subjects with type 2 diabetes with severe hyperglycemia without ketosis (ketosis-resistant type 2 diabetes), and nine nondiabetic obese control subjects underwent intravenous infusion of 20% intralipid at 40 ml/h for 48 h. beta-Cell function was assessed by changes in insulin and C-peptide concentration during infusions and by changes in acute insulin response to arginine stimulation (AIR(arg)) before and after lipid infusion. RESULTS The mean time to discontinue insulin therapy was 11.0 +/- 8.0 weeks in KPDM and 9.6 +/- 2.2 weeks in ketosis-resistant type 2 diabetes (P = NS). At remission, KPDM and ketosis-resistant type 2 diabetes had similar glucose (94 +/- 14 vs. 109 +/- 20 mg/dl), A1C (5.7 +/- 0.4 vs. 6.3 +/- 1.1%), and baseline AIR(arg) response (34.8 +/- 30 vs. 64 +/- 69 microU/ml). P = NS despite a fourfold increase in free fatty acid (FFA) levels (0.4 +/- 0.3 to 1.8 +/- 1.1 mmol/l, P < 0.01) during the 48-h intralipid infusion; the response to AIR(arg) stimulation, as well as changes in insulin and C-peptide levels, were similar among obese patients with KPDM, patients with ketosis-resistant type 2 diabetes, and nondiabetic control subjects. CONCLUSIONS Near-normoglycemia remission in obese African American patients with KPDM and ketosis-resistant type 2 diabetes is associated with a remarkable recovery in basal and stimulated insulin secretion. A high FFA level by intralipid infusion for 48 h was not associated with beta-cell decompensation (lipotoxicity) in KPDM patients. PMID:20028938

  19. Continuous subcutaneous infusion of glucagon by portable pump in non beta cell tumor hypoglycemia.

    PubMed

    Houlbert, D; Altman, J J; Lageron, A; Capeau, J; Dahan, R; Friedberg, G; Wassef, M; Poffenbarger, P L; Segrestaa, J M

    1985-04-01

    Subcutaneous infusion of glucagon by portable pump appears to give very effective symptomatic relief from non beta cell tumor hypoglycemia when surgery, radiotherapy and chemotherapy are impossible or ineffective. This mode of glucagon administration was proposed in a patient who had severe nocturnal hypoglycemic attacks. The aim of the study was to specify the modes of utilization and to test the efficiency and the tolerance of this treatment. Glucagon was infused at 400 micrograms/h during every 12 hour night. Because of the hepatic action of glucagon it is very important to use this treatment with an adequate diet and to stop the infusion during the day to reconstitute the glycogen overload. This mode of glucagon administration was very effective in over 6 months of use and well tolerated. PMID:4007224

  20. Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes?

    PubMed

    Kahraman, Sevim; Okawa, Erin R; Kulkarni, Rohit N

    2016-08-01

    Diabetes is a progressive disease affecting millions of people worldwide. There are several medications and treatment options to improve the life quality of people with diabetes. One of the strategies for the treatment of diabetes could be the use of human pluripotent stem cells or induced pluripotent stem cells. The recent advances in differentiation of stem cells into insulin-secreting beta-like cells in vitro make the transplantation of the stem cell-derived beta-like cells an attractive approach for treatment of type 1 and type 2 diabetes. While stem cell-derived beta-like cells provide an unlimited cell source for beta cell replacement therapies, these cells can also be used as a platform for drug screening or modeling diseases. PMID:27313072

  1. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells.

    PubMed

    Wagner, Thomas F J; Loch, Sabine; Lambert, Sachar; Straub, Isabelle; Mannebach, Stefanie; Mathar, Ilka; Düfer, Martina; Lis, Annette; Flockerzi, Veit; Philipp, Stephan E; Oberwinkler, Johannes

    2008-12-01

    Transient receptor potential (TRP) cation channels are renowned for their ability to sense diverse chemical stimuli. Still, for many members of this large and heterogeneous protein family it is unclear how their activity is regulated and whether they are influenced by endogenous substances. On the other hand, steroidal compounds are increasingly recognized to have rapid effects on membrane surface receptors that often have not been identified at the molecular level. We show here that TRPM3, a divalent-permeable cation channel, is rapidly and reversibly activated by extracellular pregnenolone sulphate, a neuroactive steroid. We show that pregnenolone sulphate activates endogenous TRPM3 channels in insulin-producing beta cells. Application of pregnenolone sulphate led to a rapid calcium influx and enhanced insulin secretion from pancreatic islets. Our results establish that TRPM3 is an essential component of an ionotropic steroid receptor enabling unanticipated crosstalk between steroidal and insulin-signalling endocrine systems. PMID:18978782

  2. Matrix metalloproteinases, T cell homing and beta-cell mass in type 1 diabetes.

    PubMed

    Savinov, Alexei Y; Strongin, Alex Y

    2009-01-01

    The pathogenesis of type 1 diabetes begins with the activation of autoimmune T killer cells and is followed by their homing into the pancreatic islets. After penetrating the pancreatic islets, T cells directly contact and destroy insulin-producing beta cells. This review provides an overview of the dynamic interactions which link T cell membrane type-1 matrix metalloproteinase (MT1-MMP) and the signaling adhesion CD44 receptor with T cell transendothelial migration and the subsequent homing of the transmigrated cells to the pancreatic islets. MT1-MMP regulates the functionality of CD44 in diabetogenic T cells. By regulating the functionality of T cell CD44, MT1-MMP mediates the transition of T cell adhesion to endothelial cells to the transendothelial migration of T cells, thus, controlling the rate at which T cells home into the pancreatic islets. As a result, the T cell MT1-MMP-CD44 axis controls the severity of the disease. Inhibition of MT1-MMP proteolysis of CD44 using highly specific and potent synthetic inhibitors, which have been clinically tested in cancer patients, reduces the rate of transendothelial migration and the homing of T cells. Result is a decrease in the net diabetogenic efficiency of T cells and a restoration of beta cell mass and insulin production in NOD mice. The latter is a reliable and widely used model of type I diabetes in humans. Overall, existing experimental evidence suggests that there is a sound mechanistic rationale for clinical trials of the inhibitors of T cell MT1-MMP in human type 1 diabetes patients. PMID:19251049

  3. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses.

    PubMed

    Rijkelijkhuizen, Josina M; McQuarrie, Kelly; Girman, Cynthia J; Stein, Peter P; Mari, Andrea; Holst, Jens J; Nijpels, Giel; Dekker, Jacqueline M

    2010-04-01

    The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate postprandial insulin release from the beta-cells. We investigated the effects of 3 standardized meals with different caloric and nutritional content in terms of postprandial glucose, insulin, glucagon, and incretin responses. In a randomized crossover study, 18 subjects with type 2 diabetes mellitus and 6 healthy volunteers underwent three 4-hour meal tolerance tests (small carbohydrate [CH]-rich meal, large CH-rich meal, and fat-rich meal). Non-model-based and model-based estimates of beta-cell function and incremental areas under the curve of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP were calculated. Mixed models and Friedman tests were used to test for differences in meal responses. The large CH-rich meal and fat-rich meal resulted in a slightly larger insulin response as compared with the small CH-rich meal and led to a slightly shorter period of hyperglycemia, but only in healthy subjects. Model-based insulin secretion estimates did not show pronounced differences between meals. Both in healthy individuals and in those with diabetes, more CH resulted in higher GLP-1 release. In contrast with the other meals, GIP release was still rising 2 hours after the fat-rich meal. The initial glucagon response was stimulated by the large CH-rich meal, whereas the fat-rich meal induced a late glucagon response. Fat preferentially stimulates GIP secretion, whereas CH stimulates GLP-1 secretion. Differences in meal size and composition led to differences in insulin and incretin responses but not to differences in postprandial glucose levels of the well-controlled patients with diabetes. PMID:19846181

  4. Role of humoral beta-cell autoimmunity in type 1 diabetes.

    PubMed

    Knip, Mikael; Siljander, Heli; Ilonen, Jorma; Simell, Olli; Veijola, Riitta

    2016-07-01

    Islet cell antibodies (ICA) were found for the first time more than 40 yr ago in patients with autoimmune endocrine deficiencies, including type 1 diabetes (T1D). ICA detected by indirect immunofluorescence represent a heterogeneous group of autoantibodies targeting a series of biochemical autoantigens, such as the protein tyrosine phosphatase related islet antigen 2 (IA-2), the 65 kD isoform of glutamic acid decarboxylase (GA65), and zinc transporter 8 (ZnT8) as well as currently unidentified autoantigens. The general view is that the diabetes-associated autoantibodies are not directly involved in beta-cell destruction but function as biomarkers of an ongoing destructive process. The diabetes-associated autoantibodies remain the strongest predictive marker for future development of T1D. Positivity for multiple (≥2) autoantibodies is highly predictive of clinical disease both among first-degree relatives and in the general population. Autoantibody titers are highly variable during the preclinical phase, but in many cases the titers tend to decrease before diagnosis. The first signs of beta-cell autoimmunity may appear early during the first months of life. The majority of those individuals diagnosed with T1D before puberty seroconvert to autoantibody positivity before the age of 3 yr. The natural course and duration of preclinical diabetes vary substantially from one individual to another. The characteristics of the isotype-specific response during preclinical diabetes appear to be antigen-specific. Diabetes-associated autoantibodies may be useful surrogate markers of the subsequent development of T1D in primary prevention trials. T1D may occur, albeit rarely, in the absence of any signs of humoral autoimmunity at diagnosis. PMID:27411432

  5. Serpine1 Mediates Porphyromonas gingivalis Induced Insulin Secretion in the Pancreatic Beta Cell Line MIN6

    PubMed Central

    Bhat, Uppoor G.; Watanabe, Keiko

    2015-01-01

    Periodontitis is an inflammatory disease resulting in destruction of gingiva and alveolar bone caused by an exuberant host immunological response to periodontal pathogens. Results from a number of epidemiological studies indicate a close association between diabetes and periodontitis. Results from cross-sectional studies indicate that subjects with periodontitis have a higher odds ratio of developing insulin resistance (IR). However, the mechanisms by which periodontitis influences the development of diabetes are not known. Results from our previous studies using an animal model of periodontitis suggest that periodontitis accelerates the onset of hyperinsulinemia and IR. In addition, LPS from a periodontal pathogen, Porphyromonas gingivalis (Pg), stimulates Serpine1 expression in the pancreatic beta cell line MIN6. Based on these observations, we hypothesized that a periodontal pathogen induces hyperinsulinemia and Serpine1 may be involved in this process. To test this hypothesis, we co-incubated Pg with the pancreatic beta cell line MIN6 and measured the effect on insulin secretion by MIN6 cells. We further determined the involvement of Serpine1 in insulin secretion by downregulating Serpine1 expression. Our results indicated that Pg stimulated insulin secretion by approximately 3.0 fold under normoglycemic conditions. In a hyperglycemic state, Pg increased insulin secretion by 1.5 fold. Pg significantly upregulated expression of the Serpine1 gene and this was associated with increased secretion of insulin by MIN6 cells. However, cells with downregulated Serpine1 expression were resistant to Pg stimulated insulin secretion under normoglycemic conditions. We conclude that the periodontal pathogen, Pg, induced insulin secretion by MIN6 cells and this induction was, in part, Serpine1 dependent. Thus, Serpine1 may play a pivotal role in insulin secretion during the accelerated development of hyperinsulinemia and the resulting IR in the setting of periodontitis. PMID

  6. Beta-cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to Type 2 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using the hyperglycemic and euglycemic clamp, we demonstrated impaired Beta-cell function in obese youth with increasing dysglycemia. Herein we describe oral glucose tolerance test (OGTT)-modeled Beta-cell function and incretin effect in obese adolescents spanning the range of glucose tolerance. Bet...

  7. Induction of beta-cell resistance to hypoxia and technologies for oxygen delivery to transplanted pancreatic islets.

    PubMed

    Lazard, Daniel; Vardi, Pnina; Bloch, Konstantin

    2012-09-01

    Hypoxia is believed to be a crucial factor involved in cell adaptation to environmental stress. Islet transplantation, especially with immunoisolated islets, interrupts vascular connections, resulting in the substantially decreased delivery of oxygen and nutrients to islet cells. Insulin-producing pancreatic beta cells are known to be highly susceptible to oxygen deficiency. Such susceptibility to hypoxia is believed to be one of the main causes of beta-cell death in the post-transplantation period. Different strategies have been developed for the protection of beta cells against hypoxic injury and for oxygen delivery to transplanted islets. The enhancement of beta-cell defense properties against hypoxia has been achieved using various techniques such as gene transfection, drug supplementation, co-culturing with stem cells and cell selection. Technologies for oxygen delivery to transplanted islets include local neovascularization of subcutaneous sites, electrochemical and photosynthetic oxygen generation, oxygen refuelling of bio-artificial pancreas and whole body oxygenation by using hyperbaric therapy. Progress in the field of oxygen technologies for islet transplantation requires a multidisciplinary approach to explore and optimize the interaction between components of the biological system and different technological processes. This review article focuses mainly on the recently developed strategies for oxygenation and protection from hypoxic injury - to achieve stable and long-term normoglycaemia in diabetic patients with transplanted pancreatic islets. PMID:22389124

  8. Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns

    PubMed Central

    Markovič, Rene; Stožer, Andraž; Gosak, Marko; Dolenšek, Jurij; Marhl, Marko; Rupnik, Marjan Slak

    2015-01-01

    Collective beta cell activity in islets of Langerhans is critical for the supply of insulin within an organism. Even though individual beta cells are intrinsically heterogeneous, the presence of intercellular coupling mechanisms ensures coordinated activity and a well-regulated exocytosis of insulin. In order to get a detailed insight into the functional organization of the syncytium, we applied advanced analytical tools from the realm of complex network theory to uncover the functional connectivity pattern among cells composing the intact islet. The procedure is based on the determination of correlations between long temporal traces obtained from confocal functional multicellular calcium imaging of beta cells stimulated in a stepwise manner with a range of physiological glucose concentrations. Our results revealed that the extracted connectivity networks are sparse for low glucose concentrations, whereas for higher stimulatory levels they become more densely connected. Most importantly, for all ranges of glucose concentration beta cells within the islets form locally clustered functional sub-compartments, thereby indicating that their collective activity profiles exhibit a modular nature. Moreover, we show that the observed non-linear functional relationship between different network metrics and glucose concentration represents a well-balanced setup that parallels physiological insulin release. PMID:25598507

  9. A quantitative study of sodium tungstate protective effect on pancreatic beta cells in streptozotocin-induced diabetic rats.

    PubMed

    Heidari, Zahra; Mahmoudzadeh-Sagheb, Hamidreza; Moudi, Bita

    2008-12-01

    Diabetes is a major public health problem. Development of new therapies that are able to improve glycemia management, cure diabetes, and can even protect from it, are of great interest. This study investigated the protective effect of sodium tungstate against STZ-induced beta-cell damages by means of stereological methods. Sixty rats were divided into six groups: control (C), tungstate-treated control (TC), STZ-induced diabetic (D), STZ-induced diabetic rats were treated by sodium tungstate from 1 week before STZ injection (TDB), food-restricted diabetic (FRD), and diabetic rats treated with sodium tungstate 1 week after STZ administration (TDA). Stereological estimation of pancreas volume, islets volume density, volume-weighted mean islets volume and mass of beta cells, islets, and pancreas and total number of islets were done. Islets volume density, volume-weighted mean islets volume, and mass of beta cells, islets, and pancreas of TDB group was significantly higher than D, FRD and TDA groups (P<0.001) and was comparable to controls (C and TC groups). Total number of islets, pancreas wet weight and volume did not show any significant changes between these groups (P>0.05). Results suggested that sodium tungstate preserves pancreatic beta cells from STZ-induced damages and diabetes induction in rats. PMID:18400503

  10. Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pancreatic islet contains high levels of zinc in granular vesicles of beta-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense core in secretory granules. In insulin-containing secretory granules, zin...

  11. Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns

    NASA Astrophysics Data System (ADS)

    Markovič, Rene; Stožer, Andraž; Gosak, Marko; Dolenšek, Jurij; Marhl, Marko; Rupnik, Marjan Slak

    2015-01-01

    Collective beta cell activity in islets of Langerhans is critical for the supply of insulin within an organism. Even though individual beta cells are intrinsically heterogeneous, the presence of intercellular coupling mechanisms ensures coordinated activity and a well-regulated exocytosis of insulin. In order to get a detailed insight into the functional organization of the syncytium, we applied advanced analytical tools from the realm of complex network theory to uncover the functional connectivity pattern among cells composing the intact islet. The procedure is based on the determination of correlations between long temporal traces obtained from confocal functional multicellular calcium imaging of beta cells stimulated in a stepwise manner with a range of physiological glucose concentrations. Our results revealed that the extracted connectivity networks are sparse for low glucose concentrations, whereas for higher stimulatory levels they become more densely connected. Most importantly, for all ranges of glucose concentration beta cells within the islets form locally clustered functional sub-compartments, thereby indicating that their collective activity profiles exhibit a modular nature. Moreover, we show that the observed non-linear functional relationship between different network metrics and glucose concentration represents a well-balanced setup that parallels physiological insulin release.

  12. Proinsulin maturation disorder is a contributor to the defect of subsequent conversion to insulin in {beta}-cells

    SciTech Connect

    Wang, Jie; Osei, Kwame

    2011-07-22

    Highlights: {yields} Primary proinsulin maturation disorder is inherent in Ins2{sup +/Akita} islets/{beta}-cells. {yields} A consequence is the inefficient conversion of proinsulin to insulin. {yields} Post-translational defects occur as well in the involved PC1/3 and PC2 convertases. {yields} Proinsulin maturation chaos results in defects in the following conversion process. {yields} A link of the proinsulin maturation disorder and hyperproinsulinemia is suggested. -- Abstract: Disproportionate hyperproinsulinemia is an indicator of {beta}-cell dysfunction in diabetes and the basis underlying this abnormality remains obscure. Recently, we have found proinsulin is an aggregation-prone molecule inherent with a low relative folding rate and maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) in normal {beta}-cells as a result of the integration of maturation and disposal processes. PIHO is susceptible to environmental and genetic influences. Perturbation of PIHO produces a number of toxic consequences with known association to {beta}-cell failure in diabetes. To explore whether the perturbation of PIHO has a link to disproportionate hyperproinsulinemia, we investigated proinsulin conversion and the involved prohormone convertase 1/3 (PC1/3) and 2 (PC2) in mouse Ins2{sup +/Akita} islets/{beta}-cells that preserve a primary PIHO disorder due to a mutation (C96Y) in the insulin 2 (Ins2) gene. Our metabolic-labeling studies found an increased ratio of proinsulin to insulin in the cellular or released proteins of Ins2{sup +/Akita} islets. Histological, metabolic-labeling, and RT-PCR analyses revealed decreases of the PC1/3 and PC2 immunoreactivities in the {beta}-cells of Ins2{sup +/Akita} islets in spite of no declines of these two convertases at the transcriptional and translational levels. Immunoblot analyses in cloned Ins2{sup +/Akita} {beta}-cells further confirmed the increased ratio of proinsulin

  13. Correlation of insulin resistance, beta cell function and insulin sensitivity with serum sFas and sFasL in newly diagnosed type 2 diabetes.

    PubMed

    Kumar, Hemant; Mishra, Manish; Bajpai, Surabhi; Pokhria, Deepa; Arya, Awadhesh Kumar; Singh, Rakesh Kumar; Tripathi, Kamlakar

    2013-08-01

    Pancreatic beta cell dysfunction and reduced insulin sensitivity are fundamental factors associated with glucotoxicity, lipotoxicity and oxidative stress in type 2 diabetic patients (T2DM). Diabetic milieu can induce apoptosis in several types of cells. The aim of present study was to compare circulating soluble apoptotic markers (sFas and sFas-L) with HOMA-IR, HOMA-%S, HOMA-%B in the serum of newly diagnosed T2DM and healthy subjects. For this study, 94 T2DM and 60 healthy subjects were enroled and evaluated for various parameters. Biochemical quantifications were performed with Syncron CX5 auto-analyzer. The levels of serum sFas-L, TNF-α and IL-6 were estimated by flowcytometry. The fasting serum insulin and sFas quantified by ELISA. HOMA-IR, HOMA-%S and HOMA-%B were calculated with HOMA calculator v2.2.2. The levels of TC, TG, LDL-C, VLDL-C were augmented and HDL declined significantly (P < 0.001) in diabetics. The levels of serum insulin, TNF-α, IL-6, sFas, HOMA-IR were raised (P < 0.001) and sFas-L, HOMA-%S and HOMA-%B were decreased significantly (P < 0.001) in T2DM subjects than healthy. In diabetics, serum sFas was positively correlated with HOMA-IR (r = 0.720, P < 0.001) and negatively with HOMA-%B (r = -0.642, P < 0.001) significantly while serum sFasL was negatively correlated with HOMA-IR (r = -0.483, P < 0.001) and positively with HOMA-%B (r = 0.466, P < 0.001) significantly. Further, the multivariate stepwise regression analysis shows that HOMA-IR contributes significantly to the variance of sFas and sFasL. Our findings suggest that the pancreatic beta cell dysfunction along with increased insulin resistance appears to be associated with apoptotic markers. PMID:21695404

  14. Impairment of Rat Fetal Beta-Cell Development by Maternal Exposure to Dexamethasone during Different Time-Windows

    PubMed Central

    Dumortier, Olivier; Theys, Nicolas; Ahn, Marie-Thérèse; Remacle, Claude; Reusens, Brigitte

    2011-01-01

    Aim Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas. Methods Pregnant Wistar rats received dexamethasone acetate in their drinking water (1 µg/ml) during the last week or throughout gestation. Fetuses and their pancreases were analyzed at day 15 and 21 of gestation. Morphometrical analysis was performed on pancreatic sections after immunohistochemistry techniques and insulin secretion was evaluated on fetal islets collected in vitro. Results Dexamethasone given the last week or throughout gestation reduced the beta-cell mass in 21-day-old fetuses by respectively 18% or 62%. This was accompanied by a defect in insulin secretion. The alpha-cell mass was reduced similarly. Neither islet vascularization nor beta-cell proliferation was affected when dexamethasone was administered during the last week, which was however the case when given throughout gestation. When given from the beginning of gestation, dexamethasone reduced the number of cells expressing the early marker of endocrine lineage neurogenin-3 when analyzed at 15 days of fetal age. Conclusions GCs reduce the beta- and alpha-cell mass by different mechanisms according to the stage of development during which the treatment was applied. In fetuses exposed to glucocorticoids the last week of gestation only, beta-cell mass is reduced due to impairment of beta-cell commitment, whereas in fetuses exposed throughout gestation, islet vascularization and lower beta-cell proliferation are involved as well, amplifying the reduction of the endocrine mass. PMID:21991320

  15. Adult Human Pancreatic Islet Beta-Cells Display Limited Turnover and Long Lifespan as Determined by In-Vivo Thymidine Analog Incorporation and Radiocarbon Dating

    SciTech Connect

    Perl, S; Kushner, J A; Buchholz, B A; Meeker, A K; Stein, G M; Hsieh, M; Kirby, M; Pechhold, S; Liu, E H; Harlan, D M; Tisdale, J F

    2010-03-15

    Diabetes mellitus results from an absolute or relative deficiency of insulin producing pancreatic beta-cells. The adult human beta-cell's turnover rate remains unknown. We employed novel techniques to examine adult human islet beta-cell turnover and longevity in vivo. Subjects enrolled in NIH clinical trials received thymidine analogues [iododeoxyuridine (IdU) or bromodeoxyuridine (BrdU)] 8-days to 4-years prior to death. Archival autopsy samples from ten patients (aged 17-74 years) were employed to assess beta-cell turnover by scoring nuclear analog labeling within insulin staining cells. Human adult beta-cell longevity was determined by estimating the cells genomic DNA integration of atmospheric carbon-14 ({sup 14}C). DNA was purified from pancreatic islets isolated from cadaveric donors; whole islet prep DNA was obtained from a 15 year old donor, and purified beta-cell DNA was obtained from two donors (age 48 and 80 years). {sup 14}C levels were then determined using accelerator mass spectrometry (AMS). Cellular 'birth date' was determined by comparing the subject's DNA {sup 14}C content relative to a well-established {sup 14}C atmospheric prevalence curve. In the two subjects less than age 20 years, 1-2% of the beta-cell nuclei co-stained for BrdU/IdU. No beta-cell nuclei co-stained in the eight patients more than 30 years old. Consistent with the BrdU/IdU turnover data, beta-cell DNA {sup 14}C content indicated the cells 'birth date' occurred within the subject's first 30 years of life. Under typical circumstances, adult human beta-cells and their cellular precursors are established by young adulthood.

  16. Properties of single potassium channels modulated by glucose in rat pancreatic beta-cells.

    PubMed Central

    Ashcroft, F M; Ashcroft, S J; Harrison, D E

    1988-01-01

    1. The patch clamp method has been used to examine the effect of glucose on single K+ channel currents recorded from cell-attached patches on dissociated rat pancreatic beta-cells. Patch pipettes contained a 140 mM-K+ solution. 2. In glucose-free solution three types of K+ channels were observed. Two of these, having conductances of around 50 pS (G-channel) and 20 pS when the external K+ concentration, [K+]0, was 140 mM, were active at the resting potential of the cell. The G-channel was observed in more patches and showed higher activity; it therefore appears to contribute the major fraction of the resting K+ permeability of the beta-cell. At membrane potentials positive to about +20 mV a third type of K+ channel, having a mean conductance of 120 pS, was activated. The open probability of this channel was strongly voltage dependent and increased with depolarization. 3. The reversal potential of the G-channel current was shifted 59 mV by a 10-fold change in external K+ (Na+ substitution) indicating the channel is highly K+ selective. The single-channel conductance varied with [K+]o as predicted from the Goldman-Hodgkin-Katz equation; at physiological [K+]o (5 mM-K+) an inward conductance of around 10 pS is predicted. The amplitude of the single-channel current showed a tendency to saturate with increasing [K+]o. 4. Single G-channel currents show burst kinetics indicating at least two closed states. The open and closed (gap) times within the bursts were distributed exponentially with time constants of 2.5 ms (tau o) and 0.5 ms (tau c1) respectively at the resting potential of the cell. There was little change in tau c1 over the voltage range -40 to 60 mV (pipette potential) but tau o increased slightly with membrane depolarization. 5. The addition of glucose to the bath solution produced a reversible, dose-dependent decrease in G-channel activity. This decrease results principally from a reduction in the frequency and duration of the bursts of openings with

  17. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    SciTech Connect

    Bagge, Annika; Clausen, Trine R.; Larsen, Sylvester; Ladefoged, Mette; Rosenstierne, Maiken W.; Larsen, Louise; Vang, Ole; Nielsen, Jens H.; Dalgaard, Louise T.

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cells and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.

  18. OSTEOCYTE APOPTOSIS

    PubMed Central

    Jilka, Robert L.; Noble, Brendon; Weinstein, Robert S.

    2012-01-01

    Apoptotic death of osteocytes was recognized over 15 years ago, but its significance for bone homeostasis has remained elusive. A new paradigm has emerged that invokes osteocyte apoptosis as a critical event in the recruitment of osteoclasts to a specific site in response to skeletal unloading, fatigue damage, estrogen deficiency and perhaps in other states where bone must be removed. This is accomplished by yet to be defined signals emanating from dying osteocytes, which stimulate neighboring viable osteocytes to produce osteoclastogenic cytokines. The osteocyte apoptosis caused by chronic glucocorticoid administration does not increase osteoclasts; however, it does negatively impact maintenance of bone hydration, vascularity, and strength. PMID:23238124

  19. Thyrotropin releasing hormone (TRH) affects gene expression in pancreatic beta-cells.

    PubMed

    Luo, LuGuang; Yano, Naohiro

    2005-01-01

    Thyrotropin-releasing hormone (TRH), originally identified as a hypothalamic hormone, is expressed in the pancreas. The peptide has been shown to control glycemia, although the role of TRH in the pancreas has not yet been clarified. In quiescent INS-1 cells (rat immortalized beta-cell line), 200 nM of TRH for 24 hours significantly increased insulin levels in the culture medium and in cell extracts. In studies with gene array technology where about 60% to 75% of the 1081 genes were detected, TRH significantly stimulated multiple groups of gene expressions, including G-protein-coupled receptor and related signaling, such as insulin secretion, endoplasmic reticulum traffic mechanisms, cell-cycle regulators, protein turnover factors, DNA recombination, and growth factors. Noticeably, TRH suppressed the genes of proapoptotic Bcl-2-associated protein X, Bcl-xL/ Bcl-2-associated death promoter, and Fas. The multiple gene expressions in response to TRH in pancreatic cells suggest that the changed microenvironment brought about by TRH may influence beta-cellfunction. PMID:16392621

  20. The Sherman-Rinzel-Keizer model for bursting electrical activity in the pancreatic. beta. -cell

    SciTech Connect

    Pernarowski, M.; Kevorkian, J. . Dept. of Applied Mathematics); Miura, R.M. )

    1990-03-01

    Pancreatic {beta}-cells exhibit periodic bursting electrical activity (BEA) consisting of active and silent phases. The Sherman-Rinzel-Keizer (SRK) model of this phenomenon consists of three coupled first-order nonlinear differential equations which describe the dynamics of the membrane potential, the activation parameter for the voltage-gated potassium channel, and the intracellular calcium concentration. These equations are nondimensionalized and transformed into a Lienard differential equation coupled to a single first-order differential equation for the slowly changing nondimensional calcium concentration. Leading-order perturbation problems are derived for the silent and active phases of the BEA on slow and fast time scales. Numerical solutions of these leading-order problems are compared with those for the exact equation in their respective regions. The leading-order solution in the active phase has a limit cycle behavior with a slowly varying frequency. It is observed that the damping term'' in the Lienard equation is small numerically. 26 refs., 6 figs., 2 tabs.

  1. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels. PMID:19160674

  2. Usurping the mitochondrial supremacy: extramitochondrial sources of reactive oxygen intermediates and their role in beta cell metabolism and insulin secretion.

    PubMed

    Gray, Joshua P; Heart, Emma

    2010-05-01

    Insulin secretion from pancreatic beta cells is a process dependent on metabolism. While oxidative stress is a well-known inducer of beta cell toxicity and impairs insulin secretion, recent studies suggest that low levels of metabolically-derived reactive oxygen intermediates (ROI) also play a positive role in insulin secretion. Glucose metabolism is directly correlated with ROI production, particularly in beta cells in which glucose uptake is proportional to the extracellular concentration of glucose. Low levels of exogenously added ROI or quinones, which stimulate ROI production, positively affect insulin secretion, while antioxidants block insulin secretion, suggesting that ROI activate unidentified redox-sensitive signal transduction components within these cells. The mitochondria are one source of ROI: increased metabolic flux increases mitochondrial membrane potential resulting in electron leakage and adventitious ROI production. A second source of ROI are cytosolic and plasma membrane oxidoreductases which oxidize NAD(P)H and directly produce ROI through the reduction of molecular oxygen. The mechanism of ROI-mediated potentiation of insulin secretion remains an important topic for future study. PMID:20397883

  3. Glucagon-Like Peptide-1 Triggers Protective Pathways in Pancreatic Beta-Cells Exposed to Glycated Serum

    PubMed Central

    Puddu, Alessandra; Sanguineti, Roberta; Durante, Arianna; Nencioni, Alessio; Mach, François; Montecucco, Fabrizio; Viviani, Giorgio L.

    2013-01-01

    Advanced glycation end products (AGEs) might play a pathophysiological role in the development of diabetes and its complications. AGEs negatively affect pancreatic beta-cell function and the expression of transcriptional factors regulating insulin gene. Glucagon-like peptide-1 (GLP-1), an incretin hormone that regulates glucose homeostasis, might counteract the harmful effects of AGEs on the beta cells in culture. The aim of this study was to identify the intracellular mechanisms underlying GLP-1-mediated protection from AGE-induced detrimental activities in pancreatic beta cells. HIT-T15 cells were cultured for 5 days with glycated serum (GS, consisting in a pool of AGEs), in the presence or absence of 10 nmol/L GLP-1. After evaluation of oxidative stress, we determined the expression and subcellular localization of proteins involved in maintaining redox balance and insulin gene expression, such as nuclear factor erythroid-derived 2 (Nrf2), glutathione reductase, PDX-1, and MafA. Then, we investigated proinsulin production. The results showed that GS increased oxidative stress, reduced protein expression of all investigated factors through proteasome activation, and decreased proinsulin content. Furthermore, GS reduced ability of PDX-1 and MafA to bind DNA. Coincubation with GLP-1 reversed these GS-mediated detrimental effects. In conclusion, GLP-1, protecting cells against oxidants, triggers protective intercellular pathways in HIT-T15 cells exposed to GS. PMID:23737644

  4. GeneSpeed Beta Cell: An Online Genomics Data Repository and Analysis Resource Tailored for the Islet Cell Biologist

    PubMed Central

    Quayum, Nayeem; Kutchma, Alecksandr; Sarkar, Suparna A.; Juhl, Kirstine; Gradwohl, Gerard; Mellitzer, Georg; Hutton, John C.; Jensen, Jan

    2008-01-01

    Objective. We here describe the development of a freely available online database resource, GeneSpeed Beta Cell, which has been created for the pancreatic islet and pancreatic developmental biology investigator community. Research Design and Methods. We have developed GeneSpeed Beta Cell as a separate component of the GeneSpeed database, providing a genomics-type data repository of pancreas and islet-relevant datasets interlinked with the domain-oriented GeneSpeed database. Results. GeneSpeed Beta Cell allows the query of multiple published and unpublished select genomics datasets in a simultaneous fashion (multiexperiment viewing) and is capable of defining intersection results from precomputed analysis of such datasets (multidimensional querying). Combined with the protein-domain categorization/assembly toolbox provided by the GeneSpeed database, the user is able to define spatial expression constraints of select gene lists in a relatively rigid fashion within the pancreatic expression space. We provide several demonstration case studies of relevance to islet cell biology and development of the pancreas that provide novel insight into islet biology. Conclusions. The combination of an exhaustive domain-based compilation of the transcriptome with gene array data of interest to the islet biologist affords novel methods for multidimensional querying between individual datasets in a rapid fashion, presently not available elsewhere. PMID:18795106

  5. Induced ICER I{gamma} down-regulates cyclin A expression and cell proliferation in insulin-producing {beta} cells

    SciTech Connect

    Inada, Akari; Weir, Gordon C.; Bonner-Weir, Susan . E-mail: susan.bonner-weir@joslin.harvard.edu

    2005-04-15

    We have previously found that cyclin A expression is markedly reduced in pancreatic {beta}-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER I{gamma}) in transgenic mice. Here we further examined regulatory effects of ICER I{gamma} on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER I{gamma} directly repressed cyclin A gene transcription. In addition, upon ICER I{gamma} overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER I{gamma} on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER I{gamma} expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER I{gamma} in pancreatic {beta} cells. Since ICER I{gamma} is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting {beta}-cell proliferation.

  6. Furosemide reduces insulin release by inhibition of Cl sup minus and Ca sup 2+ fluxes in. beta. -cells

    SciTech Connect

    Sandstroem, P.E.; Sehlin, J. )

    1988-11-01

    The effect of furosemide on insulin release, glucose oxidation, {sup 36}Cl{sup {minus}} fluxes, and {sup 45}Ca{sup 2+} uptake was studied in isolated, {beta}-cell-rich pancreatic islets from ob/ob mice. Low concentrations of furosemide (0.01-0.1 mM) reduced the glucose-induced insulin release, whereas high doses (1-10 mM) increased basal and glucose-induced release. Furosemide at concentrations that reduced glucose-induced insulin release did not affect the islet production of {sup 14}CO{sub 2} from D-(U-{sup 14}C)glucose. The influx rate and equilibrium content of {sup 36}Cl{sup {minus}} were reduced by furosemide, whereas the basal and glucose-stimulated {sup 36}Cl{sup {minus}} efflux rates were unaffected. The glucose-induced uptake of {sup 45}Ca{sup 2+} was inhibited by furosemide. It is suggested that the diabetogenic action of furosemide may be due, at least in part, to direct inhibition of insulin release from the pancreatic {beta}-cells. This may be caused primarily by inhibition of an inwardly directed Cl{sup {minus}} pump, leading to a reduced transmembrane electrochemical gradient for chloride in the {beta}-cells. This reduced gradient in combination with unaltered Cl{sup {minus}} permeability may lead to decreased total outward Cl{sup {minus}} transport, a factor associated with stimulated calcium uptake and insulin release.

  7. Incretin Receptor Null Mice Reveal Key Role of GLP-1 but Not GIP in Pancreatic Beta Cell Adaptation to Pregnancy

    PubMed Central

    Moffett, R. Charlotte; Vasu, Srividya; Thorens, Bernard; Drucker, Daniel J.; Flatt, Peter R.

    2014-01-01

    Islet adaptations to pregnancy were explored in C57BL6/J mice lacking functional receptors for glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). Pregnant wild type mice and GIPRKO mice exhibited marked increases in islet and beta cell area, numbers of medium/large sized islets, with positive effects on Ki67/Tunel ratio favouring beta cell growth and enhanced pancreatic insulin content. Alpha cell area and glucagon content were unchanged but prohormone convertases PC2 and PC1/3 together with significant amounts of GLP-1 and GIP were detected in alpha cells. Knockout of GLP-1R abolished these islet adaptations and paradoxically decreased pancreatic insulin, GLP-1 and GIP. This was associated with abolition of normal pregnancy-induced increases in plasma GIP, L-cell numbers, and intestinal GIP and GLP-1 stores. These data indicate that GLP-1 but not GIP is a key mediator of beta cell mass expansion and related adaptations in pregnancy, triggered in part by generation of intra-islet GLP-1. PMID:24927416

  8. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    PubMed Central

    Boothe, Tobias; Lim, Gareth E.; Cen, Haoning; Skovsø, Søs; Piske, Micah; Li, Shu Nan; Nabi, Ivan R.; Gilon, Patrick; Johnson, James D.

    2016-01-01

    Objective The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. PMID:27110488

  9. Canine Fibroblast Growth Factor 21 Ameliorates Hyperglycemia Associated with Inhibiting Hepatic Gluconeogenesis and Improving Pancreatic Beta-Cell Survival in Diabetic Mice and Dogs

    PubMed Central

    Xu, Pengfei; Zhang, Yingjie; Jiang, Xinghao; Li, Junyan; Song, Liying; Khoso, Mir Hasson; Liu, Yunye; Wu, Qiang; Ren, Guiping; Li, Deshan

    2016-01-01

    Diabetes mellitus is a common endocrinopathy in dog. Fibroblast growth factor 21 (FGF-21) is a secreted protein, which is involved in glucose homeostasis. We speculate that the recombinant canine FGF-21 (cFGF-21) has the potential to become a powerful therapeutics to treat canine diabetes. The cFGF-21 gene was cloned and expressed in E. coli Rosetta (DE3). After purification, a cFGF-21 protein with the purity exceeding 95% was obtained. Mouse 3T3-L1 adipocytes and type 1 diabetic mice/dogs induced by STZ were used to examine the biological activity of cFGF-21 in vitro and in vivo, respectively. Results showed that cFGF-21 stimulated glucose uptake in adipocytes significantly in a dose-dependent manner, and reduced plasma glucose significantly in diabetic mice/dogs. After treatment with cFGF-21, the serum insulin level, glycosylated hemoglobin (HbA1c) level and the expressions of the hepatic gluconeogenesis genes (glucose-6-phosphatase, G6Pase and phosphoenolpyruvate carboxykinase, PCK) of the diabetic mice/dogs were attenuated significantly. In the mouse experiment, we also found that the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the expression of suppressor of cytokine signaling 3 (SOCS3) were up-regulated significantly in the livers after treatment. Histopathological and immunohistochemical results showed that treatment with cFGF-21 promoted recovery of pancreatic islets from STZ-induced apoptosis. Besides, we also found that treatment with cFGF-21 protected liver against STZ or hyperglycemia induced damage and the mechanism of this action associated with inhibiting oxidative stress. In conclusion, cFGF-21 represents a promising candidate for canine diabetes therapeutics. The mechanism of cFGF-21 ameliorates hyperglycemia associated with inhibiting hepatic gluconeogenesis by regulation of STAT3 signal pathway and improving pancreatic beta-cell survival. PMID:27203422

  10. Canine Fibroblast Growth Factor 21 Ameliorates Hyperglycemia Associated with Inhibiting Hepatic Gluconeogenesis and Improving Pancreatic Beta-Cell Survival in Diabetic Mice and Dogs.

    PubMed

    Xu, Pengfei; Zhang, Yingjie; Jiang, Xinghao; Li, Junyan; Song, Liying; Khoso, Mir Hasson; Liu, Yunye; Wu, Qiang; Ren, Guiping; Li, Deshan

    2016-01-01

    Diabetes mellitus is a common endocrinopathy in dog. Fibroblast growth factor 21 (FGF-21) is a secreted protein, which is involved in glucose homeostasis. We speculate that the recombinant canine FGF-21 (cFGF-21) has the potential to become a powerful therapeutics to treat canine diabetes. The cFGF-21 gene was cloned and expressed in E. coli Rosetta (DE3). After purification, a cFGF-21 protein with the purity exceeding 95% was obtained. Mouse 3T3-L1 adipocytes and type 1 diabetic mice/dogs induced by STZ were used to examine the biological activity of cFGF-21 in vitro and in vivo, respectively. Results showed that cFGF-21 stimulated glucose uptake in adipocytes significantly in a dose-dependent manner, and reduced plasma glucose significantly in diabetic mice/dogs. After treatment with cFGF-21, the serum insulin level, glycosylated hemoglobin (HbA1c) level and the expressions of the hepatic gluconeogenesis genes (glucose-6-phosphatase, G6Pase and phosphoenolpyruvate carboxykinase, PCK) of the diabetic mice/dogs were attenuated significantly. In the mouse experiment, we also found that the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the expression of suppressor of cytokine signaling 3 (SOCS3) were up-regulated significantly in the livers after treatment. Histopathological and immunohistochemical results showed that treatment with cFGF-21 promoted recovery of pancreatic islets from STZ-induced apoptosis. Besides, we also found that treatment with cFGF-21 protected liver against STZ or hyperglycemia induced damage and the mechanism of this action associated with inhibiting oxidative stress. In conclusion, cFGF-21 represents a promising candidate for canine diabetes therapeutics. The mechanism of cFGF-21 ameliorates hyperglycemia associated with inhibiting hepatic gluconeogenesis by regulation of STAT3 signal pathway and improving pancreatic beta-cell survival. PMID:27203422