NASA Technical Reports Server (NTRS)
Omidvar, K.
1980-01-01
Using the method of explicit summation over the intermediate states two-photon absorption cross sections in light and intermediate atoms based on the simplistic frozen-core approximation and LS coupling have been formulated. Formulas for the cross section in terms of integrals over radial wave functions are given. Two selection rules, one exact and one approximate, valid within the stated approximations are derived. The formulas are applied to two-photon absorptions in nitrogen, oxygen, and chlorine. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum-defect method have been used. A relationship between the cross section and the oscillator strengths is derived.
Intermediate boundary conditions for LOD, ADI and approximate factorization methods
NASA Technical Reports Server (NTRS)
Leveque, R. J.
1985-01-01
A general approach to determining the correct intermediate boundary conditions for dimensional splitting methods is presented. The intermediate solution U is viewed as a second order accurate approximation to a modified equation. Deriving the modified equation and using the relationship between this equation and the original equation allows us to determine the correct boundary conditions for U*. This technique is illustrated by applying it to locally one dimensional (LOD) and alternating direction implicit (ADI) methods for the heat equation in two and three space dimensions. The approximate factorization method is considered in slightly more generality.
Approximate analysis of electromagnetically coupled microstrip dipoles
NASA Astrophysics Data System (ADS)
Kominami, M.; Yakuwa, N.; Kusaka, H.
1990-10-01
A new dynamic analysis model for analyzing electromagnetically coupled (EMC) microstrip dipoles is proposed. The formulation is based on an approximate treatment of the dielectric substrate. Calculations of the equivalent impedance of two different EMC dipole configurations are compared with measured data and full-wave solutions. The agreement is very good.
Stability analysis of intermediate boundary conditions in approximate factorization schemes
NASA Technical Reports Server (NTRS)
South, J. C., Jr.; Hafez, M. M.; Gottlieb, D.
1986-01-01
The paper discusses the role of the intermediate boundary condition in the AF2 scheme used by Holst for simulation of the transonic full potential equation. It is shown that the treatment suggested by Holst led to a restriction on the time step and ways to overcome this restriction are suggested. The discussion is based on the theory developed by Gustafsson, Kreiss, and Sundstrom and also on the von Neumann method.
On the convergence of rational approximations of semigroups on intermediate spaces
NASA Astrophysics Data System (ADS)
Kovacs, Mihaly
2007-03-01
We generalize a result by Brenner and Thomee on the rate of convergence of rational approximation schemes for semigroups. Using abstract interpolation techniques we obtain convergence on a continuum of intermediate spaces between the Banach space X and the domain of a certain power of the generator of the semigroup. The sharpness of the results is also discussed.
Communication: Improved pair approximations in local coupled-cluster methods
Schwilk, Max; Werner, Hans-Joachim; Usvyat, Denis
2015-03-28
In local coupled cluster treatments the electron pairs can be classified according to the magnitude of their energy contributions or distances into strong, close, weak, and distant pairs. Different approximations are introduced for the latter three classes. In this communication, an improved simplified treatment of close and weak pairs is proposed, which is based on long-range cancellations of individually slowly decaying contributions in the amplitude equations. Benchmark calculations for correlation, reaction, and activation energies demonstrate that these approximations work extremely well, while pair approximations based on local second-order Møller-Plesset theory can lead to errors that are 1-2 orders of magnitude larger.
A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation
NASA Astrophysics Data System (ADS)
Doha, Eid; Bhrawy, Ali; Abdelkawy, Mohamed; Hafez, Ramy
2014-02-01
This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.
The coupled states approximation for scattering of two diatoms
NASA Technical Reports Server (NTRS)
Heil, T. G.; Kouri, D. J.; Green, S.
1978-01-01
The paper presents a detailed development of the coupled-states approximation for the general case of two colliding diatomic molecules. The high-energy limit of the exact Lippman-Schwinger equation is applied, and the analysis follows the Shimoni and Kouri (1977) treatment of atom-diatom collisions where the coupled rotor angular momentum and projection replace the single diatom angular momentum and projection. Parallels to the expression for the differential scattering amplitude, the opacity function, and the nondiagonality of the T matrix are reported. Symmetrized expressions and symmetrized coupled equations are derived. The present correctly labeled coupled-states theory is tested by comparing its calculated results with other computed results for three cases: H2-H2 collisions, ortho-para H2-H2 scattering, and H2-HCl.
Lewis Acid Coupled Electron Transfer of Metal-Oxygen Intermediates.
Fukuzumi, Shunichi; Ohkubo, Kei; Lee, Yong-Min; Nam, Wonwoo
2015-12-01
Redox-inactive metal ions and Brønsted acids that function as Lewis acids play pivotal roles in modulating the redox reactivity of metal-oxygen intermediates, such as metal-oxo and metal-peroxo complexes. The mechanisms of the oxidative CH bond cleavage of toluene derivatives, sulfoxidation of thioanisole derivatives, and epoxidation of styrene derivatives by mononuclear nonheme iron(IV)-oxo complexes in the presence of triflic acid (HOTf) and Sc(OTf)3 have been unified as rate-determining electron transfer coupled with binding of Lewis acids (HOTf and Sc(OTf)3 ) by iron(III)-oxo complexes. All logarithms of the observed second-order rate constants of Lewis acid-promoted oxidative CH bond cleavage, sulfoxidation, and epoxidation reactions of iron(IV)-oxo complexes exhibit remarkably unified correlations with the driving forces of proton-coupled electron transfer (PCET) and metal ion-coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes were taken into account. The binding of HOTf and Sc(OTf)3 to the metal-oxo moiety has been confirmed for Mn(IV) -oxo complexes. The enhancement of the electron-transfer reactivity of metal-oxo complexes by binding of Lewis acids increases with increasing the Lewis acidity of redox-inactive metal ions. Metal ions can also bind to mononuclear nonheme iron(III)-peroxo complexes, resulting in acceleration of the electron-transfer reduction but deceleration of the electron-transfer oxidation. Such a control on the reactivity of metal-oxygen intermediates by binding of Lewis acids provides valuable insight into the role of Ca(2+) in the oxidation of water to dioxygen by the oxygen-evolving complex in photosystem II. PMID:26404482
Optical quantum computation with cavities in the intermediate coupling region
NASA Astrophysics Data System (ADS)
Mei, F.; Yu, Y. F.; Feng, X. L.; Zhu, S. L.; Zhang, Z. M.
2010-07-01
Large-scale quantum computation is currently a hot area of research. The scalable quantum computation scheme with cavities originally proposed by Duan and Kimble (Phys. Rev. Lett., 92 (2004) 127902) is further developed here to operate in the intermediate coupling region, which not only greatly relaxes experimental demands on the Purcell factor, but also eliminates the need to consider internal trade-off between cavity quality and efficiency. In our scheme, by controlling the reflectivity of the input single-photon pulse in the cavity, we can realize local atom-photon and nonlocal atom-atom controlled phase-flip (CPF) gates. We also introduce a theoretical model to analyze the performance of our scheme under practical noise. Furthermore, we show that the nonlocal CPF gate can be used to realize a quantum repeater.
Excitonic couplings between molecular crystal pairs by a multistate approximation.
Aragó, Juan; Troisi, Alessandro
2015-04-28
In this paper, we present a diabatization scheme to compute the excitonic couplings between an arbitrary number of states in molecular pairs. The method is based on an algebraic procedure to find the diabatic states with a desired property as close as possible to that of some reference states. In common with other diabatization schemes, this method captures the physics of the important short-range contributions (exchange, overlap, and charge-transfer mediated terms) but it becomes particularly suitable in presence of more than two states of interest. The method is formulated to be usable with any level of electronic structure calculations and to diabatize different types of states by selecting different molecular properties. These features make the diabatization scheme presented here especially appropriate in the context of organic crystals, where several excitons localized on the same molecular pair may be found close in energy. In this paper, the method is validated on the tetracene crystal dimer, a well characterized case where the charge transfer (CT) states are closer in energy to the Frenkel excitons (FE). The test system was studied as a function of an external electric field (to explore the effect of changing the relative energy of the CT excited state) and as a function of different intermolecular distances (to probe the strength of the coupling between FE and CT states). Additionally, we illustrate how the approximation can be used to include the environment polarization effect. PMID:25933752
Quasilocalized charge approximation in strongly coupled plasma physics
Golden, Kenneth I.; Kalman, Gabor J.
2000-01-01
The quasilocalized charge approximation (QLCA) was proposed in 1990 [G. Kalman and K. I. Golden, Phys. Rev. A 41, 5516 (1990)] as a formalism for the analysis of the dielectric response tensor and collective mode dispersion in strongly coupled Coulomb liquids. The approach is based on a microscopic model in which the charges are quasilocalized on a short-time scale in local potential fluctuations. The authors review the application of the QLC approach to a variety of systems which can exhibit strongly coupled plasma behavior: (i) the one-component plasma (OCP) model in three dimensions (e.g., laser-cooled trapped ions) and (ii) in two dimensions (e.g., classical 2D electron liquid trapped above the free surface of liquid helium), (iii) binary ionic mixture in a neutralizing uniform background (e.g., carbon-oxygen white dwarf interiors), (iv) charged particle bilayers (e.g., semiconductor electronic bilayers), and (v) charged particles in polarizable background (e.g., laboratory dusty plasmas). (c) 2000 American Institute of Physics.
Excitonic couplings between molecular crystal pairs by a multistate approximation
Aragó, Juan Troisi, Alessandro
2015-04-28
In this paper, we present a diabatization scheme to compute the excitonic couplings between an arbitrary number of states in molecular pairs. The method is based on an algebraic procedure to find the diabatic states with a desired property as close as possible to that of some reference states. In common with other diabatization schemes, this method captures the physics of the important short-range contributions (exchange, overlap, and charge-transfer mediated terms) but it becomes particularly suitable in presence of more than two states of interest. The method is formulated to be usable with any level of electronic structure calculations and to diabatize different types of states by selecting different molecular properties. These features make the diabatization scheme presented here especially appropriate in the context of organic crystals, where several excitons localized on the same molecular pair may be found close in energy. In this paper, the method is validated on the tetracene crystal dimer, a well characterized case where the charge transfer (CT) states are closer in energy to the Frenkel excitons (FE). The test system was studied as a function of an external electric field (to explore the effect of changing the relative energy of the CT excited state) and as a function of different intermolecular distances (to probe the strength of the coupling between FE and CT states). Additionally, we illustrate how the approximation can be used to include the environment polarization effect.
Coupling of exciton-polaritons in low-Q coupled microcavities beyond the rotating wave approximation
NASA Astrophysics Data System (ADS)
Liu, Bin; Rai, Prabin; Grezmak, John; Twieg, Robert J.; Singer, Kenneth D.
2015-10-01
We have demonstrated coupling between a pair of ultrastrong light-matter coupled microcavities composed of neat glassy organic dye films between metallic (silver) mirrors at room temperature. Based upon our modified coupled oscillator model, we have observed that the degeneracy between the Rabi splittings associated with the symmetric and antisymmetric cavity modes is broken by the higher-order antiresonant terms in the Hamiltonian associated with the breakdown of the rotating wave approximation in the ultrastrong coupling regime. These results are in quantitative agreement with both experiment and transfer matrix modeling. The component cavities are characterized by Q factors around 12 and display a large vacuum Rabi splitting around 1.12 eV between the upper and lower polariton branches, which is about 52 % of the excited state energy, thus indicating ultrastrong coupling in each individual cavity. This large splitting is due to the large oscillator strength of the neat dye glass. We have also observed large polariton-induced incidence-side asymmetry in reflection spectra in a coupled cavity pair with one cavity having no exciton.
Intermediate couplings: NMR at the solids-liquids interface
NASA Astrophysics Data System (ADS)
Spence, Megan
2006-03-01
Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.
Serov, Vladislav V.
2011-12-15
We have implemented the paraxial approximation followed by the time-dependent Hartree-Fock method with a frozen core for the single impact ionization of atoms and two-atomic molecules. It reduces the original scattering problem to the solution of a five-dimensional time-dependent Schroedinger equation. Using this method, we calculated the multifold differential cross section of the impact single ionization of the helium atom, the hydrogen molecule, and the nitrogen molecule from the impact of intermediate-energy electrons. Our results for He and H{sub 2} are quite close to the experimental data. Surprisingly, for N{sub 2} the agreement is good for the paraxial approximation combined with first Born approximation but worse for pure paraxial approximation, apparently because of the insufficiency of the frozen-core approximation.
Continuum random-phase approximation for relativistic point coupling models
Daoutidis, J.; Ring, P.
2009-08-15
Continuum relativistic random-phase approximation (CRPA) is used to investigate collective excitation phenomena in several spherical nuclei along the periodic table. We start from relativistic mean-field calculations based on a covariant density functional with density-dependent zero-range forces. From the same functional an effective interaction is obtained as the second derivative with respect to the density. This interaction is used in relativistic CRPA calculations for the investigation of isoscalar monopole, isovector dipole, and isoscalar quadrupole resonances of spherical nuclei. In particular we study the low-lying E1 strength in the vicinity of the neutron evaporation threshold. The properties of the resonances, such as centroid energies and strengths distributions are compared with results of discrete RPA calculations for the same model as well as with experimental data.
Synchronization Experiments With A Global Coupled Model of Intermediate Complexity
NASA Astrophysics Data System (ADS)
Selten, Frank; Hiemstra, Paul; Shen, Mao-Lin
2013-04-01
In the super modeling approach an ensemble of imperfect models are connected through nudging terms that nudge the solution of each model to the solution of all other models in the ensemble. The goal is to obtain a synchronized state through a proper choice of connection strengths that closely tracks the trajectory of the true system. For the super modeling approach to be successful, the connections should be dense and strong enough for synchronization to occur. In this study we analyze the behavior of an ensemble of connected global atmosphere-ocean models of intermediate complexity. All atmosphere models are connected to the same ocean model through the surface fluxes of heat, water and momentum, the ocean is integrated using weighted averaged surface fluxes. In particular we analyze the degree of synchronization between the atmosphere models and the characteristics of the ensemble mean solution. The results are interpreted using a low order atmosphere-ocean toy model.
Intermediate vibrational coordinate localization with harmonic coupling constraints
NASA Astrophysics Data System (ADS)
Hanson-Heine, Magnus W. D.
2016-05-01
Optimized normal coordinates can significantly improve the speed and accuracy of vibrational frequency calculations. However, over-localization can occur when using unconstrained spatial localization techniques. The unintuitive mixtures of stretching and bending coordinates that result can make interpreting spectra more difficult and also cause artificial increases in mode-coupling during anharmonic calculations. Combining spatial localization with a constraint on the coupling between modes can be used to generate coordinates with properties in-between the normal and fully localized schemes. These modes preserve the diagonal nature of the mass-weighted Hessian matrix to within a specified tolerance and are found to prevent contamination between the stretching and bending vibrations of the molecules studied without a priori classification of the different types of vibration present. Relaxing the constraint can also be used to identify which normal modes form specific groups of localized modes. The new coordinates are found to center on more spatially delocalized functional groups than their fully localized counterparts and can be used to tune the degree of vibrational correlation energy during anharmonic calculations.
Intermediate vibrational coordinate localization with harmonic coupling constraints.
Hanson-Heine, Magnus W D
2016-05-28
Optimized normal coordinates can significantly improve the speed and accuracy of vibrational frequency calculations. However, over-localization can occur when using unconstrained spatial localization techniques. The unintuitive mixtures of stretching and bending coordinates that result can make interpreting spectra more difficult and also cause artificial increases in mode-coupling during anharmonic calculations. Combining spatial localization with a constraint on the coupling between modes can be used to generate coordinates with properties in-between the normal and fully localized schemes. These modes preserve the diagonal nature of the mass-weighted Hessian matrix to within a specified tolerance and are found to prevent contamination between the stretching and bending vibrations of the molecules studied without a priori classification of the different types of vibration present. Relaxing the constraint can also be used to identify which normal modes form specific groups of localized modes. The new coordinates are found to center on more spatially delocalized functional groups than their fully localized counterparts and can be used to tune the degree of vibrational correlation energy during anharmonic calculations. PMID:27250288
2013-01-01
The preparation of an advanced intermediate toward the synthesis of the jatrophane diterpene Pl-4 is described. The key step is a regioselective chelation-controlled lithiation of the (Z)-configured bromide in the corresponding vinyl dibromide precursor. The method outlined within this Article is suitable for the facile access of sterically hindered internal vinyl halides for further coupling reactions. PMID:23895274
Intermediate Coupling For Core-Level Excited States: Consequences For X-Ray Absorption Spectroscopy
Bagus, Paul S.; Sassi, Michel JPC; Rosso, Kevin M.
2015-04-15
The origin of the complex NEXAFS features of X-Ray Absorption, XAS, spectra in transition metal complexes is analyzed and interpreted in terms of the angular momentum coupling of the open shell electrons. Especially for excited configurations where a core-electron is promoted to an open valence shell, the angular momentum coupling is intermediate between the two limits of Russell- Saunders, RS, coupling where spin-orbit splitting of the electron shells is neglected and j-j coupling where this splitting is taken as dominant. The XAS intensities can be understood in terms of two factors: (1) The dipole selection rules that give the allowed excited RS multiplets and (2) The contributions of these allowed multiplets to the wavefunctions of the intermediate coupled levels. It is shown that the origin of the complex XAS spectra is due to the distribution of the RS allowed multiplets over several different intermediate coupled excited levels. The specific case that is analyzed is the L2,3 edge XAS of an Fe3+ cation, because this cation allows a focus on the angular momentum coupling to the exclusion of other effects; e.g., chemical bonding. Arguments are made that the properties identified for this atomic case are relevant for more complex materials. The analysis is based on the properties of fully relativistic, ab initio, many-body wavefunctions for the initial and final states of the XAS process. The wavefunction properties considered include the composition of the wavefunctions in terms of RS multiplets and the occupations of the spin-orbit split open shells; the latter vividly show whether the coupling is j-j or not.
Approximation to the quantum planar rotor coupled to a finite temperature bath
NASA Astrophysics Data System (ADS)
López Vázquez, P. C.; García, A.
2016-05-01
An approximation to the description of the dynamics of a quantum planar rotor coupled to a finite temperature bath is derived by considering a microscopic model of interaction based on an angular momentum exchange with two different environments coupled independently to the positive and negative angular momentum spectrum. A non-Lindblad master equation is derived for this microscopic model by using the Born–Markov approximation in the weak coupling limit. We show that under this approximation the rotor dynamics presents the correct damping behavior of the motion and the thermal state reached by the rotor is in the form of Boltzmann distribution. The case of the quantum rotor in an external uniform field and the quantum kicked rotor are briefly discussed as exemplification.
NASA Astrophysics Data System (ADS)
Morss, Rebecca E.; Battisti, David S.
2004-08-01
The Tropical Atmosphere Ocean (TAO) array of moored buoys in the tropical Pacific Ocean is a major source of data for understanding and predicting the El Niño Southern Oscillation (ENSO). Despite the importance of the TAO array, limited work has been performed to date on the number and locations of observations required to predict ENSO effectively. To address this issue, this study performs a series of observing system simulation experiments (OSSEs) with a linearized intermediate coupled ENSO model, stochastically forced. ENSO forecasts are simulated for a number of observing network configurations, and forecast skill averaged over 1000 years of simulated ENSO events is compared.The experiments demonstrate that an OSSE framework can be used with a linear, stochastically forced ENSO model to provide useful information about requirements for ENSO prediction. To the extent that the simplified model dynamics represent ENSO dynamics accurately, the experiments also suggest which types of observations in which regions are most important for ENSO prediction. The results indicate that, using this model and experimental setup, subsurface ocean observations are relatively unimportant for ENSO prediction when good information about sea surface temperature (SST) is available; adding subsurface observations primarily improves forecasts initialized in late summer. For short lead-time (1 2 month) forecasts, observations within approximately 3° of the equator are most important for skillful forecasts, while for longer lead-time forecasts, forecast skill is increased by including information at higher latitudes. For forecasts longer than a few months, the most important region for observations is the eastern equatorial Pacific, south of the equator; a secondary region of importance is the western equatorial Pacific. These regions correspond to those where the leading singular vector for the ENSO model has a large amplitude. In a continuation of this study, these results will be
Relativistic K-LL Auger spectra in the intermediate-coupling scheme with configuration interaction
NASA Technical Reports Server (NTRS)
Chen, M. H.; Crasemann, B.; Mark, H.
1980-01-01
Theoretical K-LL Auger spectra from relativistic Dirac-Hartree-Slater calculations in intermediate coupling with configuration interaction (ICWCI) are considered. Calculated transition rates for 25 elements with Z between 18 and 96, inclusive, are listed and compare well with experimental data. Relativistic effects are found to be important above Z equal to about 35, and ICWCI is necessary to describe the spectra for Z less than about 60.
Photons and baryons before atoms: Improving the tight-coupling approximation
NASA Astrophysics Data System (ADS)
Cyr-Racine, Francis-Yan; Sigurdson, Kris
2011-05-01
Prior to recombination photons, electrons, and atomic nuclei rapidly scattered and behaved, almost, like a single tightly-coupled photon-baryon plasma. We investigate here the accuracy of the tight-coupling approximation commonly used to numerically evolve the baryon and photon perturbation equations at early times. By solving the exact perturbations equations with a stiff solver starting deep in the radiation-dominated epoch, we find the level of inaccuracy introduced by resorting to the standard first-order tight-coupling approximation. We develop a new second-order approximation in the inverse Thomson opacity expansion and show that it closely tracks the full solution, at essentially no extra numerical cost. We find the bias on estimates of cosmological parameters introduced by the first-order approximation is, for most parameters, negligible. Finally, we show that our second-order approximation can be used to reduce the time needed to compute cosmic microwave background angular spectra by as much as ˜17%.
An, Heesun; Baeck, Kyoung Koo
2015-11-21
A fixed relation of α × β = 1.397 between the α- and β-parameters of a Lorentz function and a Laplace function that approximates nonadiabatic coupling terms and maximizes the overlap area between the two functions was found. The mixing angle corresponding to the geometric average between the potential couplings calculated using the individual path-integral of the two functions was then used in the construction of diabatic states and the coupling of the states. Employing the new method, the actual computation of nonadiabatic coupling terms at just a few geometries before and after the guessed conical intersection is enough, and the remaining steps are straightforward and almost automatic. The new method was tested for the one-dimensional LiF system and the two-dimensional space of the collinear case of NH3Cl, and promising results were achieved. PMID:26590522
NASA Astrophysics Data System (ADS)
An, Heesun; Baeck, Kyoung Koo
2015-11-01
A fixed relation of α × β = 1.397 between the α- and β-parameters of a Lorentz function and a Laplace function that approximates nonadiabatic coupling terms and maximizes the overlap area between the two functions was found. The mixing angle corresponding to the geometric average between the potential couplings calculated using the individual path-integral of the two functions was then used in the construction of diabatic states and the coupling of the states. Employing the new method, the actual computation of nonadiabatic coupling terms at just a few geometries before and after the guessed conical intersection is enough, and the remaining steps are straightforward and almost automatic. The new method was tested for the one-dimensional LiF system and the two-dimensional space of the collinear case of NH3Cl, and promising results were achieved.
Peng, Degao; Steinmann, Stephan N; van Aggelen, Helen; Yang, Weitao
2013-09-14
The recent proposal to determine the (exact) correlation energy based on pairing matrix fluctuations by van Aggelen et al. ["Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation," preprint arXiv:1306.4957 (2013)] revived the interest in the simplest approximation along this path: the particle-particle random phase approximation (pp-RPA). In this paper, we present an analytical connection and numerical demonstrations of the equivalence of the correlation energy from pp-RPA and ladder-coupled-cluster doubles. These two theories reduce to identical algebraic matrix equations and correlation energy expressions. The numerical examples illustrate that the correlation energy missed by pp-RPA in comparison with coupled-cluster singles and doubles is largely canceled out when considering reaction energies. This theoretical connection will be beneficial to design density functionals with strong ties to coupled-cluster theories and to study molecular properties at the pp-RPA level relying on well established coupled cluster techniques. PMID:24050333
Constant-coupling approximation study of spin-1 Blume-Capel model
NASA Astrophysics Data System (ADS)
Ekiz, Cesur
2016-07-01
In this paper, the equilibrium properties of spin-1 Blume-Capel model are studied by using constant-coupling approximation. The formulation is based on developed by Obokata and Oguchi method, where the dependence upon the thermodynamic variables is determined by a set of two-couple nonlinear algebraic equations. The temperature dependence of the order parameters is examined to characterize the nature (continuous or discontinuous) of the phase transitions and to obtain the metastable and unstable branches. For the system, the effect of the uniaxial anisotropy parameter to phase transitions and stable, metastable and unstable states is discussed on the simple cubic lattice with the coordination number z = 6.
Solis, Brian H.; Maher, Andrew G.; Dogutan, Dilek K.; Nocera, Daniel G.; Hammes-Schiffer, Sharon
2016-01-01
The development of more effective energy conversion processes is critical for global energy sustainability. The design of molecular electrocatalysts for the hydrogen evolution reaction is an important component of these efforts. Proton-coupled electron transfer (PCET) reactions, in which electron transfer is coupled to proton transfer, play an important role in these processes and can be enhanced by incorporating proton relays into the molecular electrocatalysts. Herein nickel porphyrin electrocatalysts with and without an internal proton relay are investigated to elucidate the hydrogen evolution mechanisms and thereby enable the design of more effective catalysts. Density functional theory calculations indicate that electrochemical reduction leads to dearomatization of the porphyrin conjugated system, thereby favoring protonation at the meso carbon of the porphyrin ring to produce a phlorin intermediate. A key step in the proposed mechanisms is a thermodynamically favorable PCET reaction composed of intramolecular electron transfer from the nickel to the porphyrin and proton transfer from a carboxylic acid hanging group or an external acid to the meso carbon of the porphyrin. The C–H bond of the active phlorin acts similarly to the more traditional metal-hydride by reacting with acid to produce H2. Support for the theoretically predicted mechanism is provided by the agreement between simulated and experimental cyclic voltammograms in weak and strong acid and by the detection of a phlorin intermediate through spectroelectrochemical measurements. These results suggest that phlorin species have the potential to perform unique chemistry that could prove useful in designing more effective electrocatalysts. PMID:26655344
Semigroup evolution in the Wigner-Weisskopf pole approximation with Markovian spectral coupling
Shikerman, F.; Peer, A.; Horwitz, L. P.
2011-07-15
We establish the relation between the Wigner-Weisskopf theory for the description of an unstable system and the theory of coupling to an environment. According to the Wigner-Weisskopf general approach, even within the pole approximation, the evolution of a total system subspace is not an exact semigroup for multichannel decay unless the projectors into eigenstates of the reduced evolution generator W(z) are orthogonal. With multichannel decay, the projectors must be evaluated at different pole locations z{sub {alpha}}{ne}z{sub {beta}}, and since the orthogonality relation does not generally hold at different values of z, the semigroup evolution is a poor approximation for the multichannel decay, even for very weak coupling. Nevertheless, if the theory is generalized to take into account interactions with an environment, one can ensure orthogonality of the W(z) projectors regardless of the number of poles. Such a possibility occurs when W(z), and hence its eigenvectors, is independent of z, which corresponds to the Markovian limit of the coupling to the continuum spectrum.
Semigroup evolution in the Wigner-Weisskopf pole approximation with Markovian spectral coupling
NASA Astrophysics Data System (ADS)
Shikerman, F.; Peer, A.; Horwitz, L. P.
2011-07-01
We establish the relation between the Wigner-Weisskopf theory for the description of an unstable system and the theory of coupling to an environment. According to the Wigner-Weisskopf general approach, even within the pole approximation, the evolution of a total system subspace is not an exact semigroup for multichannel decay unless the projectors into eigenstates of the reduced evolution generator W(z) are orthogonal. With multichannel decay, the projectors must be evaluated at different pole locations zα≠zβ, and since the orthogonality relation does not generally hold at different values of z, the semigroup evolution is a poor approximation for the multichannel decay, even for very weak coupling. Nevertheless, if the theory is generalized to take into account interactions with an environment, one can ensure orthogonality of the W(z) projectors regardless of the number of poles. Such a possibility occurs when W(z), and hence its eigenvectors, is independent of z, which corresponds to the Markovian limit of the coupling to the continuum spectrum.
NASA Astrophysics Data System (ADS)
Tejada, Ignacio G.; Brochard, Laurent; Lelièvre, Tony; Stoltz, Gabriel; Legoll, Frédéric; Cancès, Eric
2016-06-01
Molecular dynamics (MD) simulations involving reactive potentials can be used to model material failure. The empirical potentials which are used in such simulations are able to adapt to the atomic environment, at the expense of a significantly higher computational cost than non-reactive potentials. However, during a simulation of failure, the reactive ability is needed only in some limited parts of the system, where bonds break or form and the atomic environment changes. Therefore, simpler non-reactive potentials can be used in the remainder of the system, provided that such potentials reproduce correctly the behavior of the reactive potentials in this region, and that seamless coupling is ensured at the interface between the reactive and non-reactive regions. In this article, we propose a methodology to combine a reactive potential with a non-reactive approximation thereof, made of a set of harmonic pair and angle interactions and whose parameters are adjusted to predict the same energy, geometry and Hessian in the ground state of the potential. We present a methodology to construct the non-reactive approximation of the reactive potential, and a way to couple these two potentials. We also propose a criterion for on-the-fly substitution of the reactive potential by its non-reactive approximation during a simulation. We illustrate the correctness of this hybrid technique for the case of MD simulation of failure in two-dimensional graphene originally modeled with REBO potential.
Weak interplate coupling by seamounts and repeating M approximately 7 earthquakes.
Mochizuki, Kimihiro; Yamada, Tomoaki; Shinohara, Masanao; Yamanaka, Yoshiko; Kanazawa, Toshihiko
2008-08-29
Subducting seamounts are thought to increase the normal stress between subducting and overriding plates. However, recent seismic surveys and laboratory experiments suggest that interplate coupling is weak. A seismic survey in the Japan Trench shows that a large seamount is being subducted near a region of repeating earthquakes of magnitude M approximately 7. Both observed seismicity and the pattern of rupture propagation during the 1982 M 7.0 event imply that interplate coupling was weak over the seamount. A large rupture area with small slip occurred in front of the seamount. Its northern bound could be determined by a trace of multiple subducted seamounts. Whereas a subducted seamount itself may not define the rupture area, its width may be influenced by that of the seamount. PMID:18755973
Bishop, R. F.; Li, P. H. Y.
2011-04-15
An approximation hierarchy, called the lattice-path-based subsystem (LPSUBm) approximation scheme, is described for the coupled-cluster method (CCM). It is applicable to systems defined on a regular spatial lattice. We then apply it to two well-studied prototypical (spin-(1/2) Heisenberg antiferromagnetic) spin-lattice models, namely, the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the ground-state sublattice magnetization, and the quantum critical point. They are all in good agreement with those from such alternative methods as spin-wave theory, series expansions, quantum Monte Carlo methods, and the CCM using the alternative lattice-animal-based subsystem (LSUBm) and the distance-based subsystem (DSUBm) schemes. Each of the three CCM schemes (LSUBm, DSUBm, and LPSUBm) for use with systems defined on a regular spatial lattice is shown to have its own advantages in particular applications.
NASA Astrophysics Data System (ADS)
Bishop, R. F.; Li, P. H. Y.
2011-04-01
An approximation hierarchy, called the lattice-path-based subsystem (LPSUBm) approximation scheme, is described for the coupled-cluster method (CCM). It is applicable to systems defined on a regular spatial lattice. We then apply it to two well-studied prototypical (spin-(1)/(2) Heisenberg antiferromagnetic) spin-lattice models, namely, the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the ground-state sublattice magnetization, and the quantum critical point. They are all in good agreement with those from such alternative methods as spin-wave theory, series expansions, quantum Monte Carlo methods, and the CCM using the alternative lattice-animal-based subsystem (LSUBm) and the distance-based subsystem (DSUBm) schemes. Each of the three CCM schemes (LSUBm, DSUBm, and LPSUBm) for use with systems defined on a regular spatial lattice is shown to have its own advantages in particular applications.
On the relaxation of a two-level system: Beyond the weak-coupling approximation
NASA Astrophysics Data System (ADS)
Reichman, David R.; Silbey, Robert J.
1996-01-01
The model of two nondegenerate quantum levels coupled linearly and off-diagonally to a bath of quantum mechanical harmonic oscillators studied previously by Laird, Budimir, and Skinner is re-examined. Interpretations are made for both the fourth order population relaxation and dephasing processes. Some of the methods used are applied to the standard spin-boson problem. The question of experimental detection of predicted phenomena is discussed. An approximate method, based on a canonical transformation of the original Hamiltonian is proposed to study the problem.
NASA Astrophysics Data System (ADS)
Zheng, F.; Zhu, J.; Zhang, R. H.; Zhou, G. Q.
2006-07-01
A simple method for initializing intermediate coupled models (ICMs) using only sea surface temperature (SST) anomaly data is comprehensively tested in two sets of hindcasts with a new ICM. In the initialization scheme, both the magnitude of the nudging parameter and the duration of the assimilation are considered, and initial conditions for both atmosphere and ocean are generated by running the coupled model with SST anomalies nudged to the observations. A comparison with the observations indicates that the scheme can generate realistic thermal fields and surface dynamic fields in the equatorial Pacific through hindcast experiments. An ideal experiment is performed to get the optimal nudging parameters which include the nudging intensity and nudging time length. Twelve-month-long hindcast experiments are performed with the model over the period 1984-2003 and the period 1997-2003. Compared with the original prediction results, the model prediction skills are significantly improved by the nudging method especially beyond a 6-month lead time during the two different periods. Potential problems and further improvements are discussed regarding the new coupled assimilation system.
An approximate measurement invariance approach to within-couple relationship quality.
Chiorri, Carlo; Day, Thomas; Malmberg, Lars-Erik
2014-01-01
This study aimed at demonstrating the usefulness and flexibility of the Bayesian structural equation modeling approximate measurement invariance (BSEM-AMI) approach to within-couple data. The substantive aim of the study was investigating partner differences in the perception of relationship quality (RQ) in a sample of intact couples (n = 435) drawn from the first sweep of the Millenium Cohort Study. Configural, weak and strong invariance models were tested using both maximum likelihood (ML) and BSEM approaches. As evidence of a lack of strong invariance was found, full and partial AMI models were specified, allowing nine different prior variances or "wiggle rooms." Although we could find an adequately fitting BSEM-AMI model allowing for approximate invariance of all the intercepts, the two-step approach proposed by Muthén and Asparouhov (2013b) for identifying problematic parameters and applying AMI only to them provided less biased results. Findings similar to the ML partial invariance model, led us to conclude that women reported a higher RQ than men. The results of this study highlight the need to inspect parameterization indeterminacy (or alignment) and support the efficacy of the two-step approach to BSEM-AMI. PMID:25285082
Two-Dimensional Pattern-Coupled Sparse Bayesian Learning via Generalized Approximate Message Passing
NASA Astrophysics Data System (ADS)
Fang, Jun; Zhang, Lizao; Li, Hongbin
2016-06-01
We consider the problem of recovering two-dimensional (2-D) block-sparse signals with \\emph{unknown} cluster patterns. Two-dimensional block-sparse patterns arise naturally in many practical applications such as foreground detection and inverse synthetic aperture radar imaging. To exploit the block-sparse structure, we introduce a 2-D pattern-coupled hierarchical Gaussian prior model to characterize the statistical pattern dependencies among neighboring coefficients. Unlike the conventional hierarchical Gaussian prior model where each coefficient is associated independently with a unique hyperparameter, the pattern-coupled prior for each coefficient not only involves its own hyperparameter, but also its immediate neighboring hyperparameters. Thus the sparsity patterns of neighboring coefficients are related to each other and the hierarchical model has the potential to encourage 2-D structured-sparse solutions. An expectation-maximization (EM) strategy is employed to obtain the maximum a posterior (MAP) estimate of the hyperparameters, along with the posterior distribution of the sparse signal. In addition, the generalized approximate message passing (GAMP) algorithm is embedded into the EM framework to efficiently compute an approximation of the posterior distribution of hidden variables, which results in a significant reduction in computational complexity. Numerical results are provided to illustrate the effectiveness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Cheng, Chi Y.; Ryley, Matthew S.; Peach, Michael J. G.; Tozer, David J.; Helgaker, Trygve; Teale, Andrew M.
2015-07-01
The Tamm-Dancoff approximation (TDA) can be applied to the computation of excitation energies using time-dependent Hartree-Fock (TD-HF) and time-dependent density-functional theory (TD-DFT). In addition to simplifying the resulting response equations, the TDA has been shown to significantly improve the calculation of triplet excitation energies in these theories, largely overcoming issues associated with triplet instabilities of the underlying reference wave functions. Here, we examine the application of the TDA to the calculation of another response property involving triplet perturbations, namely the indirect nuclear spin-spin coupling constant. Particular attention is paid to the accuracy of the triplet spin-dipole and Fermi-contact components. The application of the TDA in HF calculations leads to vastly improved results. For DFT calculations, the TDA delivers improved stability with respect to geometrical variations but does not deliver higher accuracy close to equilibrium geometries. These observations are rationalised in terms of the ground- and excited-state potential energy surfaces and, in particular, the severity of the triplet instabilities associated with each method. A notable feature of the DFT results within the TDA is their similarity across a wide range of different functionals. The uniformity of the TDA results suggests that some conventional evaluations may exploit error cancellations between approximations in the functional forms and those arising from triplet instabilities. The importance of an accurate treatment of correlation for evaluating spin-spin coupling constants is highlighted by this comparison.
Semiquinone intermediates are involved in the energy coupling mechanism of E. coli complex I.
Narayanan, Madhavan; Leung, Steven A; Inaba, Yuta; Elguindy, Mahmoud M; Nakamaru-Ogiso, Eiko
2015-08-01
Complex I (NADH:quinone oxidoreductase) is central to cellular aerobic energy metabolism, and its deficiency is involved in many human mitochondrial diseases. Complex I translocates protons across the membrane using electron transfer energy. Semiquinone (SQ) intermediates appearing during catalysis are suggested to be key for the coupling mechanism in complex I. However, the existence of SQ has remained controversial due to the extreme difficulty in detecting unstable and low intensity SQ signals. Here, for the first time with Escherichia coli complex I reconstituted in proteoliposomes, we successfully resolved and characterized three distinct SQ species by EPR. These species include: fast-relaxing SQ (SQNf) with P1/2 (half-saturation power level)>50mW and a wider linewidth (12.8 G); slow-relaxing SQ (SQNs) with P1/2=2-3mW and a 10G linewidth; and very slow-relaxing SQ (SQNvs) with P1/2= ~0.1mW and a 7.5G linewidth. The SQNf signals completely disappeared in the presence of the uncoupler gramicidin D or squamotacin, a potent E. coli complex I inhibitor. The pH dependency of the SQNf signals correlated with the proton-pumping activities of complex I. The SQNs signals were insensitive to gramicidin D, but sensitive to squamotacin. The SQNvs signals were insensitive to both gramicidin D and squamotacin. Our deuterium exchange experiments suggested that SQNf is neutral, while SQNs and SQNvs are anion radicals. The SQNs signals were lost in the ΔNuoL mutant missing transporter module subunits NuoL and NuoM. The roles and relationships of the SQ intermediates in the coupling mechanism are discussed. PMID:25868873
NASA Astrophysics Data System (ADS)
Hu, Chunping; Sugino, Osamu; Watanabe, Kazuyuki
2014-02-01
The Tamm-Dancoff approximation (TDA), widely used in physics to decouple excitations and de-excitations, is well known to be good for the calculation of excitation energies but not for oscillator strengths. In particular, the sum rule is violated in the latter case. The same concern arises within the TDA in the calculation of nonadiabatic couplings (NACs) by time-dependent density functional theory (TDDFT), due to the similarities in the TDDFT formulations of NACs and oscillator strengths [C. Hu, H. Hirai, and O. Sugino, J. Chem. Phys. 127, 064103 (2007)]. In this study, we present a systematic evaluation of the performance of TDDFT/TDA for the calculation of NACs. In the cases we considered, including a variety of systems possessing Jahn-Teller and Renner-Teller intersections, as well as an example with accidental conical intersections, it is found that the TDDFT/TDA performs better than the full TDDFT, contrary to the conjecture that the TDA might cause the NAC results to deteriorate and violate the sum rule. The surprisingly good performance of the TDA for NACs is probably because the TDA can partially compensate for the local-density-approximation error and give better excitation energies in the vicinity of intersections of potential energy surfaces. Our study also shows that it is important to use the TDA based on the rigorous full-TDDFT formulation of NACs, instead of using it based on an alternative approximate formulation.
NASA Astrophysics Data System (ADS)
Shefer, V. A.; Shefer, O. V.
2015-01-01
We examine intermediate perturbed orbits proposed by the first author previously, defined from the two position vectors and three angular coordinates of a small celestial body. It is shown theoretically, that at a small reference time interval covering the measurements the approximation accuracy of real movements by these orbits corresponds approximately to the third order of osculation. The smaller reference interval of time, the better this correspondence. Laws of variation of the methodical errors in constructing intermediate orbits subject to the length of reference time interval are deduced. According to these laws, the convergence rate of the methods to the exact solution (upon reducing the reference interval of time) is higher by two orders of magnitude than in the case of conventional methods using the Keplerian unperturbed orbit. The considered orbits are among the most accurate in set of orbits of their class determined by the order of osculation. The theoretical results are validated by numerical examples.
Approximating bone ECM: Crosslinking directs individual and coupled osteoblast/osteoclast behavior.
Hwang, Mintai P; Subbiah, Ramesh; Kim, In Gul; Lee, Kyung Eun; Park, Jimin; Kim, Sang Heon; Park, Kwideok
2016-10-01
Osteoblast and osteoclast communication (i.e. osteocoupling) is an intricate process, in which the biophysical profile of bone ECM is an aggregate product of their activities. While the effect of microenvironmental cues on osteoblast and osteoclast maturation has been resolved into individual variables (e.g. stiffness or topography), a single cue can be limited with regards to reflecting the full biophysical scope of natural bone ECM. Additionally, the natural modulation of bone ECM, which involves collagenous fibril and elastin crosslinking via lysyl oxidase, has yet to be reflected in current synthetic platforms. Here, we move beyond traditional substrates and use cell-derived ECM to examine individual and coupled osteoblast and osteoclast behavior on a physiological platform. Specifically, preosteoblast-derived ECM is crosslinked with genipin, a biocompatible crosslinker, to emulate physiological lysyl oxidase-mediated ECM crosslinking. We demonstrate that different concentrations of genipin yield changes to ECM density, stiffness, and roughness while retaining biocompatibility. By approximating various bone ECM profiles, we examine how individual and coupled osteoblast and osteoclast behavior are affected. Ultimately, we demonstrate an increase in osteoblast and osteoclast differentiation on compact and loose ECM, respectively, and identify ECM crosslinking density as an underlying force in osteocoupling behavior. PMID:27376556
NASA Technical Reports Server (NTRS)
Monchick, L.; Green, S.
1977-01-01
Two dimensionality-reducing approximations, the j sub z-conserving coupled states (sometimes called the centrifugal decoupling) method and the effective potential method, were applied to collision calculations of He with CO and with HCl. The coupled states method was found to be sensitive to the interpretation of the centrifugal angular momentum quantum number in the body-fixed frame, but the choice leading to the original McGuire-Kouri expression for the scattering amplitude - and to the simplest formulas - proved to be quite successful in reproducing differential and gas kinetic cross sections. The computationally cheaper effective potential method was much less accurate.
NASA Astrophysics Data System (ADS)
Shu, Yu-Chen; Chern, I.-Liang; Chang, Chien C.
2014-10-01
Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule (1D63) which is double-helix shape and composed of hundreds of atoms.
Shu, Yu-Chen; Chern, I-Liang; Chang, Chien C.
2014-10-15
Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule ( (1D63)) which is double-helix shape and composed of hundreds of atoms.
Krause, Katharina; Bauer, Mirko; Klopper, Wim
2016-06-14
Theoretical description of phosphorescence lifetimes in the condensed phase requires a method that takes into account both spin-orbit coupling and solvent-solute interactions. To obtain such a method, we have coupled our recently developed two-component coupled-cluster method with singles and approximated doubles to a polarizable environment. With this new method, we investigate how different solvents effect the electronic phosphorescence energies and lifetimes of 4H-pyran-4-thione. PMID:27158835
Faller, Peter; Goussias, Charilaos; Rutherford, A William; Un, Sun
2003-07-22
The coupling of proton chemistry with redox reactions is important in many enzymes and is central to energy transduction in biology. However, the mechanistic details are poorly understood. Here, we have studied tyrosine oxidation, a reaction in which the removal of one electron from the amino acid is linked to the release of its phenolic proton. Using the unique photochemical properties of photosystem II, it was possible to oxidize the tyrosine at 1.8 K, a temperature at which proton and protein motions are limited. The state formed was detected by high magnetic field EPR as a high-energy radical intermediate trapped in an unprecedentedly electropositive environment. Warming of the protein allows this state to convert to a relaxed, stable form of the radical. The relaxation event occurs at 77 K and seems to involve proton migration and only a very limited movement of the protein. These reactions represent a stabilization process that prevents the back-reaction and determines the reactivity of the radical. PMID:12855767
Boga, C; Micheletti, G; Cino, S; Fazzini, S; Forlani, L; Zanna, N; Spinelli, D
2016-05-01
The reactions of 1,3,5-triaminobenzene derivatives with 2,3,4-trinitrothiophene and 2-bromo-3,4,5-trinitrothiophene gave new all-conjugated compounds bearing both an electron-withdrawing and an electron-donor moiety on the same unit. The reactions with 2,3,4-trinitrothiophene offered evidence, by NMR spectroscopy at low temperature, of the formation of new labile Wheland-Meisenheimer intermediates whereas at room temperature stable unexpected products derived from the attack of the nucleophile at C-4 with replacement of the nitro group were isolated. Their formation caused, in turn, the obtainment of a salt between 1-nitroso-2,4,6-triaminobenzenes and 2,4-dinitrothiophen-3-ol. The reactions with 2-bromo-3,4,5-trinitrothiophene produced in good yields the SNAr substitution product with the displacement of the bromide. All the new coupling products obtained are of applicative interest, considering the increasing concern for highly conjugated π-systems in solar energy conversion or optoelectronic devices. PMID:27075703
Specific heat of the two-dimensional Hubbard model at weak to intermediate coupling.
NASA Astrophysics Data System (ADS)
Roy, S.; Tremblay, A.-M. S.
2004-03-01
We show how, in the weak to intermediate coupling regime, the thermodynamics of the two-dimensional t-t'-U Hubbard model can be obtained from the Two-Particle Self-Consistent approach.[1] The results agree with Quantum Monte Carlo simulations. We then compute the specific heat and the double occupancy. Close to half-filling, the rapid decrease of double occupancy with decreasing temperature signals a growing antiferromagnetic correlation length and a concomitant pseudogap. The decrease in double occupancy corresponds to an increase in the local magnetic moment and to a decrease in potential energy. These phenomena manifest themselves as a low temperature peak in the specific heat. The high-temperature peak in the specific heat arises from the kinetic energy and is much less sensitive to antiferromagnetic correlations. We obtain the domain, in the temperature-doping plane, where a pseudogap appears and we study the evolution of this domain with U and t'. With a large enough frustration t', there is a complete suppression of the pseudogap. [1] Y.M. Vilk and A.-M.S. Tremblay, J. Phys. I France 7, 1309 (1997).
Mean state dependence of ENSO diversity resulting from an intermediate coupled model
NASA Astrophysics Data System (ADS)
Xie, Ruihuang; Jin, Fei-Fei; Mu, Mu
2016-04-01
ENSO diversity is referred to the event-to-event differences in the amplitude, longitudinal location of maximum sea surface temperature (SST) anomalies and evolutional mechanisms, as manifested in both observation data and climate model simulations. Previous studies argued that westerly wind burst (WWB) has strong influence on ENSO diversity. Here, we bring evidences, from a modified intermediate complexity Zebiak-Cane (ZC) coupled model, to illustrate that the ENSO diversity is also determined by the mean states. Stabilities of the linearized ZC model reveal that the mean state with weak (strong) wind stress and deep (shallow) thermocline prefers ENSO variation in the equitorial eastern (central) Pacific with a four-year (two-year) period. Weak wind stress and deep thermocline make the thermocline (TH) feedback the dominant contribution to the growth of ENSO SST anomalies, whereas the opposite mean state favors the zonal advective (ZA) feedback. Different leading dynamical SST-controller makes ENSO display its diversity. In a mean state that resembles the recent climate in the tropical Pacific, the four-year and two-year ENSO variations coexist with similar growth rate. Even without WWB forcing, the nonlinear integration results with adjusted parameters in this special mean state also present at least two types of El Niño, in which the maximum warming rates are contributed by either TH or ZA feedback. The consistency between linear and nonlinear model results indicates that the ENSO diversity is dependent on the mean states.
Faller, Peter; Goussias, Charilaos; Rutherford, A. William; Un, Sun
2003-01-01
The coupling of proton chemistry with redox reactions is important in many enzymes and is central to energy transduction in biology. However, the mechanistic details are poorly understood. Here, we have studied tyrosine oxidation, a reaction in which the removal of one electron from the amino acid is linked to the release of its phenolic proton. Using the unique photochemical properties of photosystem II, it was possible to oxidize the tyrosine at 1.8 K, a temperature at which proton and protein motions are limited. The state formed was detected by high magnetic field EPR as a high-energy radical intermediate trapped in an unprecedentedly electropositive environment. Warming of the protein allows this state to convert to a relaxed, stable form of the radical. The relaxation event occurs at 77 K and seems to involve proton migration and only a very limited movement of the protein. These reactions represent a stabilization process that prevents the back-reaction and determines the reactivity of the radical. PMID:12855767
NASA Astrophysics Data System (ADS)
Wu, Xinrong; Han, Guijun; Zhang, Shaoqing; Liu, Zhengyu
2016-02-01
Model error is a major obstacle for enhancing the forecast skill of El Niño-Southern Oscillation (ENSO). Among three kinds of model error sources—dynamical core misfitting, physical scheme approximation and model parameter errors, the model parameter errors are treatable by observations. Based on the Zebiak-Cane model, an ensemble coupled data assimilation system is established to study the impact of parameter optimization (PO) on ENSO predictions within a biased twin experiment framework. "Observations" of sea surface temperature anomalies drawn from the "truth" model are assimilated into a biased prediction model in which model parameters are erroneously set from the "truth" values. The degree by which the assimilation and prediction with or without PO recover the "truth" is a measure of the impact of PO. Results show that PO improves ENSO predictability—enhancing the seasonal-interannual forecast skill by about 18 %, extending the valid lead time up to 33 % and ameliorating the spring predictability barrier. Although derived from idealized twin experiments, results here provide some insights when a coupled general circulation model is initialized from the observing system.
Thermodynamics of dipolar hard spheres with low-to-intermediate coupling constants.
Elfimova, Ekaterina A; Ivanov, Alexey O; Camp, Philip J
2012-08-01
The thermodynamic properties of the dipolar hard-sphere fluid are studied using theory and simulation. A new theory is derived using a convenient mathematical approximation for the Helmholtz free energy relative to that for the hard-sphere fluid. The approximation is designed to give the correct low-density virial expansion. New theoretical and numerical results for the fourth virial coefficient are given. Predictions of thermodynamic functions for dipolar coupling constants λ=1 and 2 show excellent agreement with simulation results, even at the highest value of the particle volume fraction φ. For higher values of λ, there are deviations at high volume fractions, but the correct low-density behavior is retained. The theory is compared critically against the established thermodynamic perturbation theory; it gives significant improvements at low densities and is more convenient in terms of the required numerics. Dipolar hard spheres provide a basic model for ferrofluids, and the theory is accurate for typical experimental parameters λ
Ghosh, Debashree
2014-03-07
Hybrid quantum mechanics/molecular mechanics (QM/MM) methods provide an attractive way to closely retain the accuracy of the QM method with the favorable computational scaling of the MM method. Therefore, it is not surprising that QM/MM methods are being increasingly used for large chemical/biological systems. Hybrid equation of motion coupled cluster singles doubles/effective fragment potential (EOM-CCSD/EFP) methods have been developed over the last few years to understand the effect of solvents and other condensed phases on the electronic spectra of chromophores. However, the computational cost of this approach is still dominated by the steep scaling of the EOM-CCSD method. In this work, we propose and implement perturbative approximations to the EOM-CCSD method in this hybrid scheme to reduce the cost of EOM-CCSD/EFP. The timings and accuracy of this hybrid approach is tested for calculation of ionization energies, excitation energies, and electron affinities of microsolvated nucleic acid bases (thymine and cytosine), phenol, and phenolate.
In view of accelerating CFD simulations through coupling with vortex particle approximations
NASA Astrophysics Data System (ADS)
Papadakis, Giorgos; Voutsinas, Spyros G.
2014-06-01
In order to exploit the capabilities of Computational Fluid Dynamics in aerodynamic design, the cost should be reduced without compromising accuracy and consistency. In this direction a hybrid methodology is formulated within the context of domain decomposition. The strategy is to choose in each sub-domain the best performing method. Close to solid boundaries a grid-based Eulerian flow solver is used while in the far field the flow is described in Lagrangian coordinates using particle approximations. Aiming at consistently including compressible effects, particles carry mass, dilatation, vorticity and energy and the complete set of conservation laws is solved in Lagrangian coordinates. At software level, the URANS solver MaPFlow is coupled to the vortex code GENUVP. In the present paper the two dimensional formulation is given alongside with validation tests around airfoils in steady and inherently unsteady conditions. It is verified that: purely Eulerian and hybrid simulations are equivalent; the Eulerian domain in the hybrid solver can be effectively restricted to a layer 1.5 chord lengths wide; significant cost reduction reaching up to 1:3 ratio is achieved.
Ghosh, Debashree
2014-03-01
Hybrid quantum mechanics/molecular mechanics (QM/MM) methods provide an attractive way to closely retain the accuracy of the QM method with the favorable computational scaling of the MM method. Therefore, it is not surprising that QM/MM methods are being increasingly used for large chemical/biological systems. Hybrid equation of motion coupled cluster singles doubles/effective fragment potential (EOM-CCSD/EFP) methods have been developed over the last few years to understand the effect of solvents and other condensed phases on the electronic spectra of chromophores. However, the computational cost of this approach is still dominated by the steep scaling of the EOM-CCSD method. In this work, we propose and implement perturbative approximations to the EOM-CCSD method in this hybrid scheme to reduce the cost of EOM-CCSD/EFP. The timings and accuracy of this hybrid approach is tested for calculation of ionization energies, excitation energies, and electron affinities of microsolvated nucleic acid bases (thymine and cytosine), phenol, and phenolate. PMID:24606347
Yurkin, Maxim A; Min, Michiel; Hoekstra, Alfons G
2010-09-01
We compared three formulations of the discrete dipole approximation (DDA) for simulation of light scattering by particles with refractive indices m=10+10i , 0.1+i , and 1.6+0.01i . These formulations include the filtered coupled dipoles (FCD), the lattice dispersion relation (LDR) and the radiative reaction correction. We compared the number of iterations required for the convergence of the iterative solver (proportional to simulation time) and the accuracy of final results. We showed that the LDR performance for m=10+10i is especially bad, while the FCD is a good option for all cases studied. Moreover, we analyzed the detailed structure of DDA errors and the spectrum of the DDA interaction matrix to understand the performance of the FCD. In particular, this spectrum, obtained with the FCD for particles smaller than the wavelength, falls into the bounds, physically implied for the spectrum of the infinite-dimensional integral scattering operator, contrary to two other DDA formulations. Finally, such extreme refractive indices can now be routinely simulated using modern desktop computers using the publicly available ADDA code, which includes an efficient implementation of the FCD. PMID:21230209
NASA Astrophysics Data System (ADS)
Neese, Frank; Wennmohs, Frank; Hansen, Andreas
2009-03-01
Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol-1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500
Speeding up equation of motion coupled cluster theory with the chain of spheres approximation
NASA Astrophysics Data System (ADS)
Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert
2016-01-01
In the present paper, the chain of spheres exchange (COSX) approximation is applied to the highest scaling terms in the equation of motion (EOM) coupled cluster equations with single and double excitations, in particular, the terms involving integrals with four virtual labels. It is found that even the acceleration of this single term yields significant computational gains without compromising the desired accuracy of the method. For an excitation energy calculation on a cluster of five water molecules using 585 basis functions, the four virtual term is 9.4 times faster using COSX with a loose grid than using the canonical implementation, which yields a 2.6 fold acceleration for the whole of the EOM calculation. For electron attachment calculations, the four virtual term is 15 times and the total EOM calculation is 10 times faster than the canonical calculation for the same system. The accuracy of the new method was tested using Thiel's test set for excited states using the same settings and the maximum absolute deviation over the whole test set was found to be 12.945 cm-1 (59 μHartree) for excitation energies and 6.799 cm-1 (31 μHartree) for electron attachments. Using MP2 amplitudes for the ground state in combination with the parallel evaluation of the full EOM equations in the manner discussed in this paper enabled us to perform calculations for large systems. Electron affinity values for the two lowest states of a Zn protoporphyrine model compound (224 correlated electrons and 1120 basis functions) were obtained in 3 days 19 h using 4 cores of a Xeon E5-2670 processor allocating 10 GB memory per core. Calculating the lowest two excitation energies for trans-retinal (114 correlated electrons and 539 basis functions) took 1 day 21 h using eight cores of the same processor and identical memory allocation per core.
Speeding up equation of motion coupled cluster theory with the chain of spheres approximation.
Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert
2016-01-21
In the present paper, the chain of spheres exchange (COSX) approximation is applied to the highest scaling terms in the equation of motion (EOM) coupled cluster equations with single and double excitations, in particular, the terms involving integrals with four virtual labels. It is found that even the acceleration of this single term yields significant computational gains without compromising the desired accuracy of the method. For an excitation energy calculation on a cluster of five water molecules using 585 basis functions, the four virtual term is 9.4 times faster using COSX with a loose grid than using the canonical implementation, which yields a 2.6 fold acceleration for the whole of the EOM calculation. For electron attachment calculations, the four virtual term is 15 times and the total EOM calculation is 10 times faster than the canonical calculation for the same system. The accuracy of the new method was tested using Thiel's test set for excited states using the same settings and the maximum absolute deviation over the whole test set was found to be 12.945 cm(-1) (59 μHartree) for excitation energies and 6.799 cm(-1) (31 μHartree) for electron attachments. Using MP2 amplitudes for the ground state in combination with the parallel evaluation of the full EOM equations in the manner discussed in this paper enabled us to perform calculations for large systems. Electron affinity values for the two lowest states of a Zn protoporphyrine model compound (224 correlated electrons and 1120 basis functions) were obtained in 3 days 19 h using 4 cores of a Xeon E5-2670 processor allocating 10 GB memory per core. Calculating the lowest two excitation energies for trans-retinal (114 correlated electrons and 539 basis functions) took 1 day 21 h using eight cores of the same processor and identical memory allocation per core. PMID:26801015
NASA Astrophysics Data System (ADS)
Shefer, V. A.; Shefer, O. V.
2016-05-01
Intermediate perturbed orbits, which were proposed earlier by the first author and are calculated based on three position vectors and three measurements of angular coordinates of a small celestial body, are examined. Provided that the reference time interval encompassing the measurements is short, these orbits are close in the accuracy of approximation of actual motion to an orbit with fourth-order tangency. The shorter the reference time interval is, the better is the approximation. The laws of variation of the errors of methods for constructing such intermediate orbits with the length of the reference time interval are formulated. According to these laws, the rate of convergence of the methods to an exact solution in the process of shortening of the reference time interval is, in general, three orders of magnitude higher than that of conventional methods relying on an unperturbed Keplerian orbit. The considered orbits are among the most accurate of their class that is defined by the order of tangency. The obtained theoretical results are verified by numerical experiments on determining the orbit of 99942 Apophis.
Friese, Daniel H; Hättig, Christof; Ruud, Kenneth
2012-01-21
An implementation of two-photon absorption matrix elements using the approximate second-order coupled-cluster singles and doubles model CC2 is presented. In this implementation we use the resolution-of-the-identity approximation for the two-electron repulsion integrals to reduce the computational cost. To avoid storage of large arrays we introduce in addition a numerical Laplace transformation of orbital energy denominators for the response of the doubles amplitudes. The error due to the numerical Laplace transformation is found to be negligible. Using this new implementation, we performed a series of benchmark calculations on substituted benzene and azobenzene derivatives to get reference values for TD-DFT results. We show that results obtained with the Coulomb-attenuated B3LYP functional are in reasonable agreement with the coupled-cluster results, whereas other density functionals which do not have a long-range correction give considerably less accurate results. Applications to the AF240 dye molecule and a weakly bound molecular tweezer complex demonstrate that this new RI-CC2 implementation allows for the first time to compute two-photon absorption cross sections with a correlated wave function method for molecules with more than 70 atoms and to apply this method for benchmarking TD-DFT calculations on molecules which are of particular relevance for experimental studies of two-photon absorption. PMID:22130199
NASA Astrophysics Data System (ADS)
Chen, Zhenhua; Hoffmann, Mark R.
2012-07-01
A unitary wave operator, exp (G), G+ = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Møller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and
Friese, Daniel H; Winter, Nina O C; Balzerowski, Patrick; Schwan, Raffael; Hättig, Christof
2012-05-01
We present an implementation of static and frequency-dependent polarizabilities for the approximate coupled cluster singles and doubles model CC2 and static polarizabilities for second-order Mo̸ller-Plesset perturbation theory. Both are combined with the resolution-of-the-identity approximation for electron repulsion integrals to achieve unprecedented low operation counts, input-output, and disc space demands. To avoid the storage of double excitation amplitudes during the calculation of derivatives of density matrices, we employ in addition a numerical Laplace transformation for orbital energy denominators. It is shown that the error introduced by this approximation is negligible already with a small number of sampling points. Thereby an implementation of second-order one-particle properties is realized, which avoids completely the storage of quantities scaling with the fourth power of the system size. The implementation is tested on a set of organic molecules including large fused aromatic ring systems and the C(60) fullerene. It is demonstrated that exploiting symmetry and shared memory parallelization, second-order properties for such systems can be evaluated at the CC2 and MP2 level within a few hours of calculation time. As large scale applications, we present results for the 7-, 9-, and 11-ring helicenes. PMID:22583209
NASA Astrophysics Data System (ADS)
Hohenstein, Edward G.; Kokkila, Sara I. L.; Parrish, Robert M.; Martínez, Todd J.
2013-03-01
The second-order approximate coupled cluster singles and doubles method (CC2) is a valuable tool in electronic structure theory. Although the density fitting approximation has been successful in extending CC2 to larger molecules, it cannot address the steep O(N^5) scaling with the number of basis functions, N. Here, we introduce the tensor hypercontraction (THC) approximation to CC2 (THC-CC2), which reduces the scaling to O(N^4) and the storage requirements to O(N^2). We present an algorithm to efficiently evaluate the THC-CC2 correlation energy and demonstrate its quartic scaling. This implementation of THC-CC2 uses a grid-based least-squares THC (LS-THC) approximation to the density-fitted electron repulsion integrals. The accuracy of the CC2 correlation energy under these approximations is shown to be suitable for most practical applications.
Approximating electronically excited states with equation-of-motion linear coupled-cluster theory
Byrd, Jason N. Rishi, Varun; Perera, Ajith; Bartlett, Rodney J.
2015-10-28
A new perturbative approach to canonical equation-of-motion coupled-cluster theory is presented using coupled-cluster perturbation theory. A second-order Møller-Plesset partitioning of the Hamiltonian is used to obtain the well known equation-of-motion many-body perturbation theory equations and two new equation-of-motion methods based on the linear coupled-cluster doubles and linear coupled-cluster singles and doubles wavefunctions. These new methods are benchmarked against very accurate theoretical and experimental spectra from 25 small organic molecules. It is found that the proposed methods have excellent agreement with canonical equation-of-motion coupled-cluster singles and doubles state for state orderings and relative excited state energies as well as acceptable quantitative agreement for absolute excitation energies compared with the best estimate theory and experimental spectra.
NASA Astrophysics Data System (ADS)
Gráf, Lukáš; Čížek, Martin
2014-09-01
A two dimensional model for the electron interaction with molecular vibrations in molecular junctions is proposed. Alternatively the model can be applied to tunneling through a cylindrical nano-structure. The transmission function is calculated accurately numerically. The exact results are then compared with various approximations: (1) completely frozen vibrations for very light molecule, (2) Chase approximation for very heavy molecule, and (3) discrete-state-in-continuum model in resonant regime. The validity of these approximations is discussed in terms of the characteristic time-scales and coupling strengths. The excitation of the vibrational degree of freedom and the emergence of prominent threshold structures in the strong coupling regime are discussed in more details.
Zhou, Liangliang; Yi, Hong; Zhu, Lei; Qi, Xiaotian; Jiang, Hanpeng; Liu, Chao; Feng, Yuqi; Lan, Yu; Lei, Aiwen
2015-01-01
Highly selective radical/radical cross-coupling is paid more attention in bond formations. However, due to their intrinsic active properties, radical species are apt to achieve homo-coupling instead of cross-coupling, which makes the selective cross-coupling as a great challenge and almost untouched. Herein a notable strategy to accomplish direct radical/radical oxidative cross-coupling has been demonstrated, that is metal tuning a transient radical to a persistent radical intermediate followed by coupling with another transient radical. Here, a transient nitrogen-centered radical is tuned to a persistent radical complex by copper catalyst, followed by coupling with a transient allylic carbon-centered radical. Firstly, nitrogen-centered radical generated from N-methoxybenzamide stabilized by copper catalyst was successfully observed by EPR. Then DFT calculations revealed that a triplet diradical Cu(II) complex formed from the chelation N-methoxybenzamide nitrogen-centered radical to Cu(II) is a persistent radical species. Moreover, conceivable nitrogen-centered radical Cu(II) complex was observed by high-resolution electrospray ionization mass spectrometry (ESI-MS). Ultimately, various allylic amides derivatives were obtained in good yields by adopting this strategy, which might inspire a novel and promising landscape in radical chemistry. PMID:26525888
NASA Astrophysics Data System (ADS)
Zhou, Liangliang; Yi, Hong; Zhu, Lei; Qi, Xiaotian; Jiang, Hanpeng; Liu, Chao; Feng, Yuqi; Lan, Yu; Lei, Aiwen
2015-11-01
Highly selective radical/radical cross-coupling is paid more attention in bond formations. However, due to their intrinsic active properties, radical species are apt to achieve homo-coupling instead of cross-coupling, which makes the selective cross-coupling as a great challenge and almost untouched. Herein a notable strategy to accomplish direct radical/radical oxidative cross-coupling has been demonstrated, that is metal tuning a transient radical to a persistent radical intermediate followed by coupling with another transient radical. Here, a transient nitrogen-centered radical is tuned to a persistent radical complex by copper catalyst, followed by coupling with a transient allylic carbon-centered radical. Firstly, nitrogen-centered radical generated from N-methoxybenzamide stabilized by copper catalyst was successfully observed by EPR. Then DFT calculations revealed that a triplet diradical Cu(II) complex formed from the chelation N-methoxybenzamide nitrogen-centered radical to Cu(II) is a persistent radical species. Moreover, conceivable nitrogen-centered radical Cu(II) complex was observed by high-resolution electrospray ionization mass spectrometry (ESI-MS). Ultimately, various allylic amides derivatives were obtained in good yields by adopting this strategy, which might inspire a novel and promising landscape in radical chemistry.
Zhou, Liangliang; Yi, Hong; Zhu, Lei; Qi, Xiaotian; Jiang, Hanpeng; Liu, Chao; Feng, Yuqi; Lan, Yu; Lei, Aiwen
2015-01-01
Highly selective radical/radical cross-coupling is paid more attention in bond formations. However, due to their intrinsic active properties, radical species are apt to achieve homo-coupling instead of cross-coupling, which makes the selective cross-coupling as a great challenge and almost untouched. Herein a notable strategy to accomplish direct radical/radical oxidative cross-coupling has been demonstrated, that is metal tuning a transient radical to a persistent radical intermediate followed by coupling with another transient radical. Here, a transient nitrogen-centered radical is tuned to a persistent radical complex by copper catalyst, followed by coupling with a transient allylic carbon-centered radical. Firstly, nitrogen-centered radical generated from N-methoxybenzamide stabilized by copper catalyst was successfully observed by EPR. Then DFT calculations revealed that a triplet diradical Cu(II) complex formed from the chelation N-methoxybenzamide nitrogen-centered radical to Cu(II) is a persistent radical species. Moreover, conceivable nitrogen-centered radical Cu(II) complex was observed by high-resolution electrospray ionization mass spectrometry (ESI-MS). Ultimately, various allylic amides derivatives were obtained in good yields by adopting this strategy, which might inspire a novel and promising landscape in radical chemistry. PMID:26525888
Spencer, James S; Thom, Alex J W
2016-02-28
We describe further details of the stochastic coupled cluster method and a diagnostic of such calculations, the shoulder height, akin to the plateau found in full configuration interaction quantum Monte Carlo. We describe an initiator modification to stochastic coupled cluster theory and show that initiator calculations can at times be extrapolated to the unbiased limit. We apply this method to the 3D 14-electron uniform electron gas and present complete basis set limit values of the coupled cluster singles and doubles (CCSD) and previously unattainable coupled cluster singles and doubles with perturbative triples (CCSDT) correlation energies for up to r(s) = 2, showing a requirement to include triple excitations to accurately calculate energies at high densities. PMID:26931682
Wasilewski, J.; Staemmler, V.; Koch, S.
1988-08-01
Extensive ab initio calculations at coupled-electron-pair approximation and multireference configuration interaction levels have been performed for the two lowest states X /sup 2/..sigma../sup +/ and A/sup 2/Pi of HeNe/sup +/. Spin-orbit coupling has been included on a semiempirical basis in order to account for the strong mixing between the X /sup 2/..sigma../sub 1/2//sup +/ and A/sub 2//sup 2/Pi/sub 1/2/ components, which influences the properties of both these states in the experimentally observed region at large internuclear distances.
NASA Astrophysics Data System (ADS)
Roy, Susmita; Yashonath, Subramanian; Bagchi, Biman
2015-03-01
A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times—the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.
Remarkable coincidence for the top Yukawa coupling and an approximately massless bound state
Froggatt, C. D.; Nielsen, H. B.
2009-08-01
We calculate, with several corrections, the nonrelativistic binding by Higgs exchange and gluon exchange between six top and six antitop quarks (actually replaced by left-handed b quarks from time to time). The remarkable result is that, within our calculational accuracy of the order of 14% in the top-quark Yukawa coupling g{sub t}, the experimental running top-quark Yukawa coupling g{sub t}=0.935 happens to have just that value which gives a perfect cancellation of the unbound mass=12 top-quark masses by this binding energy. In other words the bound state is massless to the accuracy of our calculation. Our calculation is in disagreement with a similar calculation by Kuchiev et al., but this deviation may be explained by a phase transition. We and Kuchiev et al. compute on different sides of this phase transition.
Analysis, approximation, and computation of a coupled solid/fluid temperature control problem
NASA Technical Reports Server (NTRS)
Gunzburger, Max D.; Lee, Hyung C.
1993-01-01
An optimization problem is formulated motivated by the desire to remove temperature peaks, i.e., 'hot spots', along the bounding surfaces of containers of fluid flows. The heat equation of the solid container is coupled to the energy equations for the fluid. Heat sources can be located in the solid body, the fluid, or both. Control is effected by adjustments to the temperature of the fluid at the inflow boundary. Both mathematical analyses and computational experiments are given.
Use of Data to Improve Seasonal-to-Interannual Forecasts Simulated by Intermediate Coupled Models
NASA Technical Reports Server (NTRS)
Perigaud, C.; Cassou, C.; Dewitte, B.; Fu, L-L.; Neelin, J.
1999-01-01
This paper provides a detailed illustration that it can be much more beneficial for ENSO forecasting to use data to improve the model parameterizations rather than to modify the initial conditions to gain in consistency with the simulated coupled system.
Nuclear excitations as coupled one and two random-phase-approximation modes
NASA Astrophysics Data System (ADS)
Gambacurta, D.; Catara, F.; Grasso, M.; Sambataro, M.; Andrés, M. V.; Lanza, E. G.
2016-02-01
We present an extension of the random-phase approximation (RPA) where the RPA phonons are used as building blocks to construct the excited states. In our model, that we call double RPA (DRPA), we include up to two RPA phonons. This is an approximate and simplified way, with respect to the full second random-phase approximation (SRPA), to extend the RPA by including two-particle-two-hole configurations. Some limitations of the standard SRPA model, related to the violation of the stability condition, are not encountered in the DRPA. We also verify in this work that the energy-weighted sum rules are satisfied. The DRPA is applied to low-energy modes and giant resonances in the nucleus 16O. We show that the model (i) produces a global downwards shift of the energies with respect to the RPA spectra and (ii) provides a shift that is, however, strongly reduced compared to that generated by the standard SRPA. This model represents an alternative way of correcting for the SRPA anomalous energy shift, compared to a recently developed extension of the SRPA, where a subtraction procedure is applied. The DRPA provides results in good agreement with the experimental energies, with the exception of those low-lying states that have a dominant two-particle-two-hole nature. For describing such states, higher-order calculations are needed.
Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance
NASA Astrophysics Data System (ADS)
Mirza, Imran M.; Begzjav, Tuguldur
2016-04-01
Recently a new class of single-photon timed Dicke (TD) subradiant states has been introduced with possible applications in single-photon–based quantum information storage and on demand ultrafast retrieval (Scully M. O., Phys. Rev. Lett., 115 (2015) 243602). However, the influence of any kind of virtual processes on the decay of these new kind of subradiant states has been left as an open question. In the present paper, we focus on this problem in detail. In particular, we investigate how pure Fano-Agarwal couplings and other virtual processes arising from non-rotating wave approximation impact the decay of otherwise sub- and superradiant states. In addition to the overall virtual couplings among all TD states, we also focus on the dominant role played by the couplings between specific TD states.
Krause, Katharina; Klopper, Wim
2015-03-14
A generalization of the approximated coupled-cluster singles and doubles method and the algebraic diagrammatic construction scheme up to second order to two-component spinors obtained from a relativistic Hartree–Fock calculation is reported. Computational results for zero-field splittings of atoms and monoatomic cations, triplet lifetimes of two organic molecules, and the spin-forbidden part of the UV/Vis absorption spectrum of tris(ethylenediamine)cobalt(III) are presented.
Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo
2014-12-31
We reveal that electron-phonon systems described by the Holstein model on a bipartite lattice exhibit, away from half filling, a supersolid (SS) phase characterized by coexisting charge order (CO) and superconductivity (SC), and an accompanying quantum critical point (QCP). The SS phase, demonstrated by the dynamical mean-field theory with a quantum Monte Carlo impurity solver, emerges in the intermediate-coupling regime, where the peak of the Tc dome is located and the metal-insulator crossover occurs. On the other hand, in the weak- and strong-coupling regimes the CO-SC boundary is of first order with no intervening SS phases. The QCP is associated with the continuous transition from SS to SC and characterized by a reentrant behavior of the SS around it. We further show that the SS-SC transition is hallmarked by diverging charge fluctuations and a kink (peak) in the superfluid density. PMID:25615362
NASA Astrophysics Data System (ADS)
Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo
2014-12-01
We reveal that electron-phonon systems described by the Holstein model on a bipartite lattice exhibit, away from half filling, a supersolid (SS) phase characterized by coexisting charge order (CO) and superconductivity (SC), and an accompanying quantum critical point (QCP). The SS phase, demonstrated by the dynamical mean-field theory with a quantum Monte Carlo impurity solver, emerges in the intermediate-coupling regime, where the peak of the Tc dome is located and the metal-insulator crossover occurs. On the other hand, in the weak- and strong-coupling regimes the CO-SC boundary is of first order with no intervening SS phases. The QCP is associated with the continuous transition from SS to SC and characterized by a reentrant behavior of the SS around it. We further show that the SS-SC transition is hallmarked by diverging charge fluctuations and a kink (peak) in the superfluid density.
Gill, Michelle L; Palmer, Arthur G
2014-09-25
The present work demonstrates that NMR spin relaxation rate constants for molecules interconverting between states with different diffusion tensors can be modeled theoretically by combining orientational correlation functions for exchanging spherical molecules with locally isotropic approximations for the diffusion anisotropic tensors. The resulting expressions are validated by comparison with correlation functions obtained by Monte Carlo simulations and are accurate for moderate degrees of diffusion anisotropy typically encountered in investigations of globular proteins. The results are complementary to an elegant, but more complex, formalism that is accurate for all degrees of diffusion anisotropy [Ryabov, Y.; Clore, G. M.; Schwieters, C. D. J. Chem. Phys. 2012, 136, 034108]. PMID:25167331
Efficient Approximate Bayesian Computation Coupled With Markov Chain Monte Carlo Without Likelihood
Wegmann, Daniel; Leuenberger, Christoph; Excoffier, Laurent
2009-01-01
Approximate Bayesian computation (ABC) techniques permit inferences in complex demographic models, but are computationally inefficient. A Markov chain Monte Carlo (MCMC) approach has been proposed (Marjoram et al. 2003), but it suffers from computational problems and poor mixing. We propose several methodological developments to overcome the shortcomings of this MCMC approach and hence realize substantial computational advances over standard ABC. The principal idea is to relax the tolerance within MCMC to permit good mixing, but retain a good approximation to the posterior by a combination of subsampling the output and regression adjustment. We also propose to use a partial least-squares (PLS) transformation to choose informative statistics. The accuracy of our approach is examined in the case of the divergence of two populations with and without migration. In that case, our ABC–MCMC approach needs considerably lower computation time to reach the same accuracy than conventional ABC. We then apply our method to a more complex case with the estimation of divergence times and migration rates between three African populations. PMID:19506307
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.
2005-01-01
The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, denoted CCSD(T), has been used, in conjunction with approximate integral techniques, to compute highly accurate rovibrational spectroscopic constants of cyclopropenylidene, C3H2. The approximate integral technique was proposed in 1994 by Rendell and Lee in order to avoid disk storage and input/output bottlenecks, and today it will also significantly aid in the development of algorithms for distributed memory, massively parallel computer architectures. It is shown in this study that use of approximate integrals does not impact the accuracy of CCSD(T) calculations. In addition, the most accurate spectroscopic data yet for C3H2 is presented based on a CCSD(T)/cc-pVQZ quartic force field that is modified to include the effects of core-valence electron correlation. Cyclopropenylidene is of great astronomical and astrobiological interest because it is the smallest aromatic ringed compound to be positively identified in the interstellar medium, and is thus involved in the prebiotic processing of carbon and hydrogen. The singles and doubles coupled-cluster method that includes a perturbational estimate of
Sharma, S.P.; Huo, W.M.; Park, C.
1988-01-01
A theoretical study of vibrational excitations and dissociations of nitrogen undergoing a nonequilibrium relaxation process upon heating and cooling is reported. The rate coefficients for collisional induced vibrational transitions and transitions from a bound vibrational state into a dissociative state have been calculated using an extension of the theory originally proposed by Schwarz (SSH) et al. (1952). High-lying vibrational states and dissociative states were explicitly included but rotational energy transfer was neglected. The transition probabilities calculated from the SSH theory were fed into the master equation, which was integrated numerically to determine the population distribution of the vibrational states as well as bulk thermodynamic properties. The results show that: (1) the transition rates have a minimum near the middle of the bound vibrational levels, causing a bottleneck in the vibrational relaxation and dissociation rates; (2) high vibrational states are always in equilibrium with the dissociative state; (3) for the heating case, only the low vibrational states relax according to the Landau-Teller theory; (4) for the cooling case, vibrational relaxation cannot be described by a rate equation; (5) Park's (1985, 1988) two-temperature model is approximately valid; and (6) the average vibrational energy removed in dissociation is about 30 percent of the dissociation energy. 29 references.
Phase integral approximation for coupled ordinary differential equations of the Schroedinger type
Skorupski, Andrzej A.
2008-05-15
Four generalizations of the phase integral approximation (PIA) to sets of ordinary differential equations of Schroedinger type [u{sub j}{sup ''}(x)+{sigma}{sub k=1}{sup N}R{sub jk}(x)u{sub k}(x)=0, j=1,2,...,N] are described. The recurrence relations for higher order corrections are given in a form valid to arbitrary order and for the matrix R(x)[{identical_to}(R{sub jk}(x))] either Hermitian or non-Hermitian. For Hermitian and negative definite R(x) matrices, a Wronskian conserving PIA theory is formulated, which generalizes Fulling's current conserving theory pertinent to positive definite R(x) matrices. The idea of a modification of the PIA, which is well known for one equation [u{sup ''}(x)+R(x)u(x)=0], is generalized to sets. A simplification of Wronskian or current conserving theories is proposed which in each order eliminates one integration from the formulas for higher order corrections. If the PIA is generated by a nondegenerate eigenvalue of the R(x) matrix, the eliminated integration is the only one present. In that case, the simplified theory becomes fully algorithmic and is generalized to non-Hermitian R(x) matrices. The general theory is illustrated by a few examples automatically generated by using the author's program in MATHEMATICA published in e-print arXiv:0710.5406 [math-ph].
Electron-Phonon Coupling and Energy Flow in a Simple Metal beyond the Two-Temperature Approximation
NASA Astrophysics Data System (ADS)
Waldecker, Lutz; Bertoni, Roman; Ernstorfer, Ralph; Vorberger, Jan
2016-04-01
The electron-phonon coupling and the corresponding energy exchange are investigated experimentally and by ab initio theory in nonequilibrium states of the free-electron metal aluminium. The temporal evolution of the atomic mean-squared displacement in laser-excited thin freestanding films is monitored by femtosecond electron diffraction. The electron-phonon coupling strength is obtained for a range of electronic and lattice temperatures from density functional theory molecular dynamics simulations. The electron-phonon coupling parameter extracted from the experimental data in the framework of a two-temperature model (TTM) deviates significantly from the ab initio values. We introduce a nonthermal lattice model (NLM) for describing nonthermal phonon distributions as a sum of thermal distributions of the three phonon branches. The contributions of individual phonon branches to the electron-phonon coupling are considered independently and found to be dominated by longitudinal acoustic phonons. Using all material parameters from first-principles calculations except the phonon-phonon coupling strength, the prediction of the energy transfer from electrons to phonons by the NLM is in excellent agreement with time-resolved diffraction data. Our results suggest that the TTM is insufficient for describing the microscopic energy flow even for simple metals like aluminium and that the determination of the electron-phonon coupling constant from time-resolved experiments by means of the TTM leads to incorrect values. In contrast, the NLM describing transient phonon populations by three parameters appears to be a sufficient model for quantitatively describing electron-lattice equilibration in aluminium. We discuss the general applicability of the NLM and provide a criterion for the suitability of the two-temperature approximation for other metals.
NASA Astrophysics Data System (ADS)
Zhang, Yongfang; Wu, Peng; Guo, Bo; Lü, Yanjun; Liu, Fuxi; Yu, Yingtian
2015-01-01
The instability of the rotor dynamic system supported by oil journal bearing is encountered frequently, such as the half-speed whirl of the rotor, which is caused by oil film lubricant with nonlinearity. Currently, more attention is paid to the physical characteristics of oil film due to an oil-lubricated journal bearing being the important supporting component of the bearing-rotor systems and its nonlinear nature. In order to analyze the lubrication characteristics of journal bearings efficiently and save computational efforts, an approximate solution of nonlinear oil film forces of a finite length turbulent journal bearing with couple stress flow is proposed based on Sommerfeld and Ocvirk numbers. Reynolds equation in lubrication of a finite length turbulent journal bearing is solved based on multi-parametric principle. Load-carrying capacity of nonlinear oil film is obtained, and the results obtained by different methods are compared. The validation of the proposed method is verified, meanwhile, the relationships of load-carrying capacity versus eccentricity ratio and width-to-diameter ratio under turbulent and couple stress working conditions are analyzed. The numerical results show that both couple stress flow and eccentricity ratio have obvious influence on oil film pressure distribution, and the proposed method approximates the load-carrying capacity of turbulent journal bearings efficiently with various width-to-diameter ratios. This research proposes an approximate solution of oil film load-carrying capacity of turbulent journal bearings with different width-to-diameter ratios, which are suitable for high eccentricity ratios and heavy loads.
NASA Astrophysics Data System (ADS)
Yang, Mino; Skinner, J. L.
2011-10-01
The time-averaging approximation (TAA), originally developed to calculate vibrational line shapes for coupled chromophores using mixed quantum/classical methods, is reformulated. In the original version of the theory, time averaging was performed for the full one-exciton Hamiltonian, while herein the time averaging is performed on the coupling (off-diagonal) Hamiltonian in the interaction picture. As a result, the influence of the dynamic fluctuations of the transition energies is more accurately described. We compare numerical results of the two versions of the TAA with numerically exact results for the vibrational absorption line shape of the OH stretching modes in neat water. It is shown that the TAA in the interaction picture yields theoretical line shapes that are in better agreement with exact results.
NASA Technical Reports Server (NTRS)
Rendell, Alistair P.; Lee, Timothy J.
1994-01-01
By representing orbital products in an expansion basis, certain classes of two-electron integrals are approximated for use in CCSD(T) calculations (singles and doubles coupled-cluster plus a perturbational estimate of the effects of connected triple excitations). This leads to a very large reduction in disk storage and input/output requirements, with usually only a modest increase in computational effort. The new procedure will allow very large CCSD(T) calculations to be undertaken, limited only by available processor time. Using the molecular basis as the expansion basis, explicit numerical comparisons of equilibrium geometries, harmonic frequencies, and energy differences indicate that the error due to the use of approximate integrals is less than the error associated with truncation of the molecular basis set.
Krause, Katharina; Klopper, Wim
2013-11-21
Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn–Sham calculation accounting for spin–orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn–Sham calculations.
NASA Astrophysics Data System (ADS)
Krause, Katharina; Klopper, Wim
2013-11-01
Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn-Sham calculation accounting for spin-orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn-Sham calculations.
Chalupský, Jakub Yanai, Takeshi
2013-11-28
The derivation, implementation, and validation of a new approximation to the two-electron spin–orbit coupling (SOC) terms is reported. The approximation, referred to as flexible nuclear screening spin–orbit, is based on the effective one-electron spin–orbit operator and accounts for two-electron SOC effects by screening nuclear charges. A highly flexible scheme for the nuclear screening is developed, mainly using parameterization based on ab initio atomic SOC calculations. Tabulated screening parameters are provided for contracted and primitive Gaussian-type basis functions of the ANO-RCC basis set for elements from H to Cm. The strategy for their adaptation to any other Gaussian basis set is presented and validated. A model to correct for the effect of splitting of transition metal d orbitals on their SOC matrix elements is introduced. The method is applied to a representative set of molecules, and compared to exact treatment and other approximative approaches at the same level of relativistic theory. The calculated SOC matrix elements are in very good agreement with their “exact” values; deviation below 1% is observed on average. The presented approximation is considered to be generally applicable, simple to implement, highly efficient, and accurate.
NASA Astrophysics Data System (ADS)
Chalupský, Jakub; Yanai, Takeshi
2013-11-01
The derivation, implementation, and validation of a new approximation to the two-electron spin-orbit coupling (SOC) terms is reported. The approximation, referred to as flexible nuclear screening spin-orbit, is based on the effective one-electron spin-orbit operator and accounts for two-electron SOC effects by screening nuclear charges. A highly flexible scheme for the nuclear screening is developed, mainly using parameterization based on ab initio atomic SOC calculations. Tabulated screening parameters are provided for contracted and primitive Gaussian-type basis functions of the ANO-RCC basis set for elements from H to Cm. The strategy for their adaptation to any other Gaussian basis set is presented and validated. A model to correct for the effect of splitting of transition metal d orbitals on their SOC matrix elements is introduced. The method is applied to a representative set of molecules, and compared to exact treatment and other approximative approaches at the same level of relativistic theory. The calculated SOC matrix elements are in very good agreement with their "exact" values; deviation below 1% is observed on average. The presented approximation is considered to be generally applicable, simple to implement, highly efficient, and accurate.
NASA Astrophysics Data System (ADS)
Gorpas, Dimitris; Andersson-Engels, Stefan
2012-03-01
The solution of the forward problem in fluorescence molecular imaging is among the most important premises for the successful confrontation of the inverse reconstruction problem. To date, the most typical approach has been the application of the diffusion approximation as the forward model. This model is basically a first order angular approximation for the radiative transfer equation, and thus it presents certain limitations. The scope of this manuscript is to present the dual coupled radiative transfer equation and diffusion approximation model for the solution of the forward problem in fluorescence molecular imaging. The integro-differential equations of its weak formalism were solved via the finite elements method. Algorithmic blocks with cubature rules and analytical solutions of the multiple integrals have been constructed for the solution. Furthermore, specialized mapping matrices have been developed to assembly the finite elements matrix. As a radiative transfer equation based model, the integration over the angular discretization was implemented analytically, while quadrature rules were applied whenever required. Finally, this model was evaluated on numerous virtual phantoms and its relative accuracy, with respect to the radiative transfer equation, was over 95%, when the widely applied diffusion approximation presented almost 85% corresponding relative accuracy for the fluorescence emission.
NASA Astrophysics Data System (ADS)
Gao, Chuan; Wu, Xinrong; Zhang, Rong-Hua
2016-07-01
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
Solution of the Fröhlich polaron problem at intermediate couplings
NASA Astrophysics Data System (ADS)
Grusdt, Fabian; Shchadilova, Yulia E.; Rubtsov, Alexey N.; Demler, Eugene
2015-05-01
We develop a renormalization group approach for analyzing Fröhlich polarons and apply it to a problem of impurity atoms immersed in a Bose-Einstein condensate (BEC) of ultra cold atoms. Polaron energies obtained by our method are in excellent agreement with recent diagrammatic Monte Carlo calculations for a wide range of interaction strengths. We show analytically that the energy of the Fröhlich polaron in a BEC is logarithmically UV divergent, and present a regularization scheme. This allows us to make predictions for the polaron energy, which can be tested in future experiments. Furthermore we calculate the effective mass of polarons and find a smooth crossover from weak to strong coupling regimes. Our method can be generalized to non-equilibrium polaron problems.
NASA Astrophysics Data System (ADS)
König, Carolin; Schlüter, Nicolas; Neugebauer, Johannes
2013-01-01
In subsystem time-dependent density functional theory (TDDFT) [J. Neugebauer, J. Chem. Phys. 126, 134116 (2007), 10.1063/1.2713754] localized excitations are used to calculate delocalized excitations in large chromophore aggregates. We have extended this formalism to allow for the Tamm-Dancoff approximation (TDA). The resulting response equations have a form similar to a perturbative configuration interaction singles (CIS) approach. Thus, the inter-subsystem matrix elements in subsystem TDA can, in contrast to the full subsystem-TDDFT case, directly be interpreted as exciton coupling matrix elements. Here, we present the underlying theory of subsystem TDDFT within the TDA as well as first applications. Since for some classes of pigments, such as linear polyenes and carotenoids, TDA has been reported to perform better than full TDDFT, we also report applications of this formalism to exciton couplings in dimers of such pigments and in mixed bacteriochlorophyll-carotenoid systems. The improved description of the exciton couplings can be traced back to a more balanced description of the involved local excitations.
NASA Astrophysics Data System (ADS)
Korona, Tatiana
2012-02-01
A possibility to calculate electron affinities (EAs) by a software devised for electron excitations is exploited to examine the accuracy of a partly local EA-EOM-CCSD method. In the proposed approach local approximations are applied to the ground-state coupled cluster wave function, while the EAs themselves are obtained in a full configurational space. The results of a numerical test for 14 molecules show that already with standard local settings the method reproduces the nonlocal EAs with the average error of 0.009 eV. Since the EA-EOM step of the calculation requires less computational resources than the computation of the CCSD ground state, the proposed hybrid approach can become a valuable tool for obtaining the EAs for molecules, which are too large for a canonical CCSD calculation, but still small enough for the EA-EOM step to be performed in a nonlocal way.
NASA Astrophysics Data System (ADS)
Barbier, Jean; Schülke, Christophe; Krzakala, Florent
2015-05-01
We study the behavior of approximate message-passing (AMP), a solver for linear sparse estimation problems such as compressed sensing, when the i.i.d matrices—for which it has been specifically designed—are replaced by structured operators, such as Fourier and Hadamard ones. We show empirically that after proper randomization, the structure of the operators does not significantly affect the performances of the solver. Furthermore, for some specially designed spatially coupled operators, this allows a computationally fast and memory efficient reconstruction in compressed sensing up to the information-theoretical limit. We also show how this approach can be applied to sparse superposition codes, allowing the AMP decoder to perform at large rates for moderate block length.
Goings, Joshua J.; Li, Xiaosong; Caricato, Marco; Frisch, Michael J.
2014-10-28
Methods for fast and reliable computation of electronic excitation energies are in short supply, and little is known about their systematic performance. This work reports a comparison of several low-scaling approximations to the equation of motion coupled cluster singles and doubles (EOM–CCSD) and linear-response coupled cluster singles and doubles (LR–CCSD) equations with other single reference methods for computing the vertical electronic transition energies of 11 small organic molecules. The methods, including second order equation-of-motion many-body perturbation theory (EOM–MBPT2) and its partitioned variant, are compared to several valence and Rydberg singlet states. We find that the EOM–MBPT2 method was rarely more than a tenth of an eV from EOM–CCSD calculated energies, yet demonstrates a performance gain of nearly 30%. The partitioned equation-of-motion approach, P–EOM–MBPT2, which is an order of magnitude faster than EOM–CCSD, outperforms the CIS(D) and CC2 in the description of Rydberg states. CC2, on the other hand, excels at describing valence states where P–EOM–MBPT2 does not. The difference between the CC2 and P–EOM–MBPT2 can ultimately be traced back to how each method approximates EOM–CCSD and LR–CCSD. The results suggest that CC2 and P–EOM–MBPT2 are complementary: CC2 is best suited for the description of valence states while P–EOM–MBPT2 proves to be a superior O(N{sup 5}) method for the description of Rydberg states.
NASA Astrophysics Data System (ADS)
Green, Timothy F. G.; Yates, Jonathan R.
2014-06-01
We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing the heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, 1J(P-Ag) and 2J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW.
NASA Astrophysics Data System (ADS)
Chiruta, D.; Jureschi, C.-M.; Linares, J.; Nasser, J.; Rotaru, A.
2015-11-01
In this paper the atom-phonon coupling model is applied to explain and illustrate the behavior of a linear chain of molecules in the case of spin crossover (SCO) compounds. It is well known that besides the system's cooperativity which influences the hysteretic behavior of SCO complexes, the size of the system also plays a determinant role. The system's properties are analyzed using a parabolic algorithm as a new method proposed herein for the first time in order to take into account the phonon contribution. Based on exact calculations, this method is closer to the reality and more efficient than the mean-field approximation (MFA). In particular, both the parabolic algorithm and the dynamic-matrix method are tested and compared and it is shown from the analysis of the system's behavior that large size can be handled without generating all the system states. We also analyzed the role of degeneracy, and the thermal variation of both the entropy and heat capacity in the ferromagnetic-like coupling case.
Green, Timothy F. G. Yates, Jonathan R.
2014-06-21
We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing the heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, {sup 1}J(P-Ag) and {sup 2}J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW.
NASA Astrophysics Data System (ADS)
Ivanov, A. N.; Wellenzohn, M.
2015-09-01
We analyze a nonrelativistic approximation of the Dirac equation for slow fermions, coupled to the chameleon field and torsion in the spacetime with the Schwarzschild metric, taken in the weak gravitational field of the Earth approximation. We follow the analysis of the Dirac equation in the curved spacetime with torsion, proposed by Kostelecky [Phys. Rev. D 69, 105009 (2004)], and apply the Foldy-Wouthuysen transformations. We derive the effective low-energy gravitational potentials for slow fermions, coupled to the gravitational field of the Earth, the chameleon field and to torsion with minimal and nonminimal couplings.
NASA Astrophysics Data System (ADS)
Ahmed, R.; Edwards, M. G.; Lamine, S.; Huisman, B. A. H.; Pal, M.
2015-03-01
A cell-centered control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulation is presented for discrete fracture-matrix simulations. The grid is aligned with the fractures and barriers which are then modeled as lower-dimensional interfaces located between the matrix cells in the physical domain. The nD pressure equation is solved in the matrix domain coupled with an (n - 1)D pressure equation solved in the fractures. The CVD-MPFA formulation naturally handles fractures with anisotropic permeabilities on unstructured grids. Matrix-fracture fluxes are expressed in terms of matrix and fracture pressures, and must be added to the lower-dimensional flow equation (called the transfer function). An additional transmission condition is used between matrix cells adjacent to low permeable fractures to link the velocity and pressure jump across the fractures. Numerical tests serve to assess the convergence and accuracy of the lower-dimensional fracture model for highly anisotropic fractures having different apertures and permeability tensors. A transport equation for tracer flow is coupled via the Darcy flux for single and intersecting fractures. The lower-dimensional approach for intersecting fractures avoids the more restrictive CFL condition corresponding to the equi-dimensional approximation with explicit time discretization. Lower-dimensional fracture model results are compared with hybrid-grid and equi-dimensional model results. Fractures and barriers are efficiently modeled by lower-dimensional interfaces which yield comparable results to those of the equi-dimensional model. Highly conductive fractures are modeled as lower-dimensional entities without the use of locally refined grids that are required by the equi-dimensional model, while pressure continuity across fractures is built into the model, without depending on the extra degrees of freedom which must be added locally by the hybrid-grid method. The lower-dimensional fracture
Bozkaya, Uğur
2016-04-20
An efficient implementation of the orbital-optimized linearized coupled-cluster double method with the density-fitting (DF-OLCCD) and Cholesky decomposition (CD-OLCCD) approximations is presented. The DF-OLCCD and CD-OLCCD methods are applied to a set of alkanes to compare the computational cost with the conventional orbital-optimized linearized coupled-cluster doubles (OLCCD) [U. Bozkaya and C. D. Sherrill, J. Chem. Phys., 2013, 139, 054104]. Our results demonstrate that the DF-OLCCD method provides substantially lower computational costs than OLCCD, and there are more than 9-fold reductions in the computational time for the largest member of the alkane set (C8H18). For barrier heights of hydrogen transfer reaction energies, the DF-OLCCD method again exhibits a substantially better performance than DF-LCCD, providing a mean absolute error of 0.9 kcal mol(-1), which is 7 times lower than that of DF-LCCD (6.2 kcal mol(-1)), and compared to MP2 (9.6 kcal mol(-1)) there is a more than 10-fold reduction in errors. Furthermore, the MAE value of DF-OLCCD is also lower than that of CCSD (1.2 kcal mol(-1)). For open-shell noncovalent interactions, the performance of DF-OLCCD is significantly better than that of MP2, DF-LCCD, and CCSD. Overall, the present application results indicate that the DF-OLCCD and CD-OLCCD methods are very promising for challenging open-shell systems as well as closed-shell molecular systems. PMID:27056800
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Lun, Lisa; Derby, Jeffrey J.
2009-12-01
A new, approximate block Newton (ABN) method is derived and tested for the coupled solution of nonlinear models, each of which is treated as a modular, black box. Such an approach is motivated by a desire to maintain software flexibility without sacrificing solution efficiency or robustness. Though block Newton methods of similar type have been proposed and studied, we present a unique derivation and use it to sort out some of the more confusing points in the literature. In particular, we show that our ABN method behaves like a Newton iteration preconditioned by an inexact Newton solver derived from subproblem Jacobians. The method is demonstrated on several conjugate heat transfer problems modeled after melt crystal growth processes. These problems are represented by partitioned spatial regions, each modeled by independent heat transfer codes and linked by temperature and flux matching conditions at the boundaries common to the partitions. Whereas a typical block Gauss-Seidel iteration fails about half the time for the model problem, quadratic convergence is achieved by the ABN method under all conditions studied here. Additional performance advantages over existing methods are demonstrated and discussed.
Bozkaya, Uğur; Sherrill, C David
2016-05-01
An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the "gradient terms": computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C10H22), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies. PMID:27155621
NASA Astrophysics Data System (ADS)
Bozkaya, Uǧur; Sherrill, C. David
2016-05-01
An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the "gradient terms": computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C10H22), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.
NASA Astrophysics Data System (ADS)
Aubourg, Quentin; Mordant, Nicolas
2016-04-01
energy cascade is clearly observed consistently with previous measurements. A large amount of data permits us to use higher order statistical tools to investigate directly the resonant interactions. We observe a strong presence of triadic interactions in our system, confirming the foundations of the weak wave turbulence theory. A significant part of these interactions are non-local and enable coupling between capillary and gravity waves. We also emphasize the role of approximate resonances that are made possible by the nonlinear spectral widening. The quasi-resonances increase significantly the number of wave interactions and in particular open the possibility of observing 3-wave coupling among gravity waves although 3-wave exact resonances are prohibited. These effects are being currently investigated in a larger size experiment using a 13m in diameter wave flume. Our observation raise the question of the importance of these approximate resonances of gravity waves in energy transfers both in the theory and in the ocean.
NASA Astrophysics Data System (ADS)
Zhang, Rong-Hua; Gao, Chuan
2016-03-01
An improved intermediate coupled model (ICM) is described for use in ENSO-related modeling in the tropical Pacific, with ten baroclinic modes included in the vertical and horizonatally varying stratification taken into account. One crucial component of the model is the way in which the subsurface entrainment temperature in the surface mixed layer (Te) is explicitly used to determine the sea surface temperature (SST) variability. An optimized procedure is developed to depict Te using inverse modeling from an SST anomaly equation and its empirical relationship with the sea surface pressure variability. The coupled system realistically produces interannual variability associated with ENSO cycles, with a dominant 4-year oscillation. The onset and development of El Niño events from this ICM are examined in view of the well-known delayed oscillator paradigm; an example is given for the evolution of La Niña conditions in model year 2 to El Niño conditions in year 4. Right after a La Niña event (e.g., in year 2), there is a clear signature of reflections at the western boundary in early year 2, with related equatorial signals propagating eastward along the equator into the eastern basin in middle year 2. However, these reflected signals on the equator do not directly lead to an onset of an El Niño event at that time. Instead, approximately 1-year delay, a major El Niño event is seen to develop in the following year (late year 3), at a time when there is no reflected signal explicitly from the western boundary, indicating that the origin of the El Niño event cannot be directly ascribed to the reflection processes. Instead, Kelvin waves in the ocean that actually triggers the El Niño event in early year 3 are generated by interior wind anomalies near the date line that are associated with the first appearance of warm SST anomalies off the equator. Persisted Te anomalies off the equator in the western tropical Pacific initiate the warm SST anomaly near the date line
NASA Astrophysics Data System (ADS)
Bugelmayer, M.; Roche, D. M.; Renssen, H.
2012-04-01
The influence of icebergs on the climate system is well known. On the one hand they act as a source of fresh water and on the other hand icebergs are a sink of latent heat. As a consequence icebergs clearly affect the ocean stratification and the formation of sea ice. The influence of icebergs on the climate system is especially important during so - called Heinrich events, which were periods with huge armadas of icebergs during the glacial climate. So far, icebergs have mostly been parameterized in global climate models as freshwater and heat fluxes. More recently, an iceberg module was used to generate bergs at specific locations. In this study a version of the Earth System Model of Intermediate Complexity, LOVECLIM, that includes a 3D dynamic - thermodynamic iceberg module (Jongma et al, 2008) is coupled to the Grenoble model for ice shelves and land ice (GRISLI, Ritz et al, 1997; 2001). Therefore, the icebergs are generated according to the amount of mass loss at the calving sites of GRISLI. The ice shelf model itself depends on the precipitation and temperature that is calculated by LOVECLIM. The calving rate of GRISLI is given back to the dynamic iceberg module in the form of an ice volume flux. The volume flux is taken to generate icebergs according to the size and mass distribution of Bigg et al. (1997). These bergs are then released at the same locations as the calving took place. In the present study we analyse the effect of moving icebergs on sea surface temperature, salinity and convection in comparison to an experiment where the ice volume that is lost by calving is given to the ocean directly as a freshwater flux at the calving site. Moreover, the influence of the start position of the icebergs on their tracks and on the ocean is investigated as we examine the differences between a model run using prescribed locations and the model run with the coupled ice shelf - iceberg model. All the experiments are done under preindustrial forcing.
Boess, Esther; Sureshkumar, Devarajulu; Sud, Abhishek; Wirtz, Cornelia; Farès, Christophe; Klussmann, Martin
2011-06-01
The mechanism of an aerobic copper-catalyzed oxidative coupling reaction with N-phenyl tetrahydroisoquinoline was investigated. The oxidized species formed from the reaction of the amine with the copper catalyst were analyzed by NMR-spectroscopy. An iminium dichlorocuprate was found to be the reactive intermediate and could be structurally characterized by X-ray crystallography. The effect of methanol to effectively stabilize the iminium ion was investigated and shown to be beneficial in an oxidative allylation reaction. PMID:21561084
Hermeline, F. )
1993-05-01
This paper deals with the approximation of Vlasov-Poisson and Vlasov-Maxwell equations. We present two coupled particle-finite volume methods which use the properties of Delaunay-Voronoi meshes. These methods are applied to benchmark calculations and engineering problems such as simulation of electron injector devices. 42 refs., 13 figs.
Lionetti, Davide; de Ruiter, Graham; Agapie, Theodor
2016-04-20
The reduction of nitric oxide (NO) to nitrous oxide (N2O) is a process relevant to biological chemistry as well as to the abatement of certain environmental pollutants. One of the proposed key intermediates in NO reduction is hyponitrite (N2O2(2-)), the product of reductive coupling of two NO molecules. We report the reductive coupling of NO by an yttrium-tricopper complex generating a trans-hyponitrite moiety supported by two μ-O-bimetallic (Y,Cu) cores, a previously unreported coordination mode. Reaction of the hyponitrite species with Brønsted acids leads to the generation of N2O, demonstrating the viability of the hyponitrite complex as an intermediate in NO reduction to N2O. The additional reducing equivalents stored in each tricopper unit are employed in a subsequent step for N2O reduction to N2, for an overall (partial) conversion of NO to N2. The combination of Lewis acid and multiple redox active metals facilitates this four electron conversion via an isolable hyponitrite intermediate. PMID:27028157
Wang, Tongtong; Schrempp, Michael; Berndhäuser, Andreas; Schiemann, Olav; Menche, Dirk
2015-08-21
A general new method for the highly concise synthesis of C-1-alkylated tetrahydroisoquinolines (THIQ) is reported. The CuCl2-catalyzed procedure is based on a coupling of nonfunctionalized THIQs with organozinc reagents under aerobic conditions. It proceeds in high yields and is broadly applicable to a wide range of substrates. It relies on a regioselective sp(3) C-H bond activation allowing for an sp(3)-sp(3) bond union under mild reaction conditions in a rapid and effective manner. Mechanistically it involves an iminium ion intermediate that is formed via an organic radical involving a single-electron-transfer process. For the first time for this type of reaction a radical intermediate has been proven by EPR spectroscopy. PMID:26252357
Khrapak, S. A.; Nosenko, V.; Morfill, G. E.; Merlino, R.
2009-04-15
We point out a deficiency in our previous analytic calculation of the ion drag force for conditions of the experiment by Nosenko et al. [Phys. Plasmas 14, 103702 (2007)]. An inaccurate approximation is corrected and the ion drag force is recalculated. The improved model yields better overall agreement with the experimental results as compared to the original calculation.
NASA Astrophysics Data System (ADS)
Ahlkrona, Josefin; Lötstedt, Per; Kirchner, Nina; Zwinger, Thomas
2016-03-01
We propose and implement a new method, called the Ice Sheet Coupled Approximation Levels (ISCAL) method, for simulation of ice sheet flow in large domains during long time-intervals. The method couples the full Stokes (FS) equations with the Shallow Ice Approximation (SIA). The part of the domain where SIA is applied is determined automatically and dynamically based on estimates of the modeling error. For a three dimensional model problem, ISCAL computes the solution substantially faster with a low reduction in accuracy compared to a monolithic FS. Furthermore, ISCAL is shown to be able to detect rapid dynamic changes in the flow. Three different error estimations are applied and compared. Finally, ISCAL is applied to the Greenland Ice Sheet on a quasi-uniform grid, proving ISCAL to be a potential valuable tool for the ice sheet modeling community.
NASA Astrophysics Data System (ADS)
Musial, Monika; Bartlett, Rodney J.
2008-12-01
The recently reported inclusion of the connected triples into the intermediate Hamiltonian realization of the Fock space coupled-cluster (IH-FS-CC) theory [M. Musial and R. J. Bartlett, J. Chem. Phys. 129, 044101 (2008)] is extended to produce the triplet states. This is done entirely in spatial orbitals on the basis of the double occupancy in the restricted Hartree Fock reference function. New equations for the triplet state amplitudes expressed in terms of the Goldstone diagrams are derived and implemented. Several applications show the usefulness of the IH-FS-CC scheme to describe the triplet states with the computational gains inherent to a spin-free implementation.
Lin, Chih-Ming; Angot, Ludovic
2008-06-15
The first Born approximation is applied to calculate the angular selectivity for different positions on the reconstructed image as a function of the object beam's optical axis angle theta(ob) and reference beam angle theta(rw) for a holographic data storage system that records the Fourier transform holograms in a medium with an infinite plane-wave reference beam. Results are compared with those calculated by the coupled-wave theory. PMID:18552937
Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields
NASA Astrophysics Data System (ADS)
Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric
2016-04-01
We introduce a non-Hermitian Schrödinger-type approximation of optical Bloch equations for two-level systems. This approximation provides a complete and accurate description of the coherence and decoherence dynamics in both weak and strong laser fields at the cost of losing accuracy in the description of populations. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.
Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields.
Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric
2016-04-21
We introduce a non-Hermitian Schrödinger-type approximation of optical Bloch equations for two-level systems. This approximation provides a complete and accurate description of the coherence and decoherence dynamics in both weak and strong laser fields at the cost of losing accuracy in the description of populations. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters. PMID:27389211
NASA Astrophysics Data System (ADS)
McClain, James; Lischner, Johannes; Watson, Thomas; Matthews, Devin A.; Ronca, Enrico; Louie, Steven G.; Berkelbach, Timothy C.; Chan, Garnet Kin-Lic
2016-06-01
We use ab initio coupled-cluster theory to compute the spectral function of the uniform electron gas at a Wigner-Seitz radius of rs=4 . The coupled-cluster approximations we employ go significantly beyond the diagrammatic content of state-of-the-art G W theory. We compare our calculations extensively to G W and G W -plus-cumulant theory, illustrating the strengths and weaknesses of these methods in capturing the quasiparticle and satellite features of the electron gas. Our accurate calculations further allow us to address the long-standing debate over the occupied bandwidth of metallic sodium. Our findings indicate that the future application of coupled-cluster theory to condensed phase material spectra is highly promising.
Badnell, N. R.; Ballance, C. P.
2014-04-20
Modeling the spectral emission of low-charge iron group ions enables the diagnostic determination of the local physical conditions of many cool plasma environments such as those found in H II regions, planetary nebulae, active galactic nuclei, etc. Electron-impact excitation drives the population of the emitting levels and, hence, their emissivities. By carrying-out Breit-Pauli and intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of Fe{sup 2+}, which both use the exact same atomic structure and the same close-coupling expansion, we demonstrate the validity of the application of the powerful ICFT method to low-charge iron group ions. This is in contradiction to the finding of Bautista et al., who carried-out ICFT and Dirac R-matrix calculations for the same ion. We discuss possible reasons.
NASA Astrophysics Data System (ADS)
Cullen, John M.; Zerner, Michael C.
1982-10-01
From the diagrammatic construction of the full coupled-cluster theory of all single and double excitations, a linearized theory, a direct configuration interaction theory (CISD), a CEPA-like theory, and a linked singles and doubles (LSD) theory are separated. These theories are then compared with one another, with the results from full fourth-order perturbation theory, and with exact results when available. The LSD model, corresponding to the removal of unlinked terms of the CISD, and its spin adapted version, appear most accurate in Pariser-Parr-Pople studies where the exact numbers are known. Examples within the localized bond model are given indicating that this model is also the most successful of those examined in generating not only the basis set correlation, but the necessary delocalization and polarization required to correct for the zeroth-order local description.
NASA Technical Reports Server (NTRS)
Glytsis, Elias N.; Brundrett, David L.; Gaylord, Thomas K.
1993-01-01
A review of the rigorous coupled-wave analysis as applied to the diffraction of electro-magnetic waves by gratings is presented. The analysis is valid for any polarization, angle of incidence, and conical diffraction. Cascaded and/or multiplexed gratings as well as material anisotropy can be incorporated under the same formalism. Small period rectangular groove gratings can also be modeled using approximately equivalent uniaxial homogeneous layers (effective media). The ordinary and extraordinary refractive indices of these layers depend on the gratings filling factor, the refractive indices of the substrate and superstrate, and the ratio of the freespace wavelength to grating period. Comparisons of the homogeneous effective medium approximations with the rigorous coupled-wave analysis are presented. Antireflection designs (single-layer or multilayer) using the effective medium models are presented and compared. These ultra-short period antireflection gratings can also be used to produce soft x-rays. Comparisons of the rigorous coupled-wave analysis with experimental results on soft x-ray generation by gratings are also included.
NASA Technical Reports Server (NTRS)
Sharma, Surendra P.; Huo, Winifred M.; Park, Chul
1988-01-01
A theoretical study of vibrational excitations and dissociations of nitrogen undergoing a nonequilibrium relaxation process upon heating and cooling is reported. The rate coefficients for collisional induced vibrational transitions and transitions from a bound vibrational state into a dissociative state have been calculated using an extension of the theory originally proposed by Schwarz (SSH) et al. (1952). High-lying vibrational states and dissociative states were explicitly included but rotational energy transfer was neglected. The transition probabilities calculated from the SSH theory were fed into the master equation, which was integrated numerically to determine the population distribution of the vibrational states as well as bulk thermodynamic properties. The results show that: (1) the transition rates have a minimum near the middle of the bound vibrational levels, causing a bottleneck in the vibrational relaxation and dissociation rates; (2) high vibrational states are always in equilibrium with the dissociative state; (3) for the heating case, only the low vibrational states relax according to the Landau-Teller theory; (4) for the cooling case, vibrational relaxation cannot be described by a rate equation; (5) Park's (1985, 1988) two-temperature model is approximately valid; and (6) the average vibrational energy removed in dissociation is about 30 percent of the dissociation energy.
NASA Astrophysics Data System (ADS)
Korotin, M. A.; Pchelkina, Z. V.; Skorikov, N. A.; Efremov, A. V.; Anisimov, V. I.
2016-07-01
Based on the coherent potential approximation, the method of calculating the electronic structure of nonstoichiometric and hyperstoichiometric compounds with strong electron correlations and spin-orbit coupling has been developed. This method can be used to study both substitutional and interstitial impurities, which is demonstrated based on the example of the hyperstoichiometric UO2.12 compound. The influence of the coherent potential on the electronic structure of compounds has been shown for the nonstoichiometric UO1.87 containing vacancies in the oxygen sublattice as substitutional impurities, for stoichiometric UO2 containing vacancies in the oxygen sublattice and oxygen as an interstitial impurity, and for hyperstoichiometric UO2.12 with excess oxygen also as interstitial impurity. In the model of the uniform distribution of impurities, which forms the basis of the coherent potential approximation, the energy spectrum of UO2.12 has a metal-like character.
NASA Astrophysics Data System (ADS)
Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur
2015-12-01
A novel cell-centred control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulation is presented for discrete fracture-matrix simulations on unstructured grids in three-dimensions (3D). The grid is aligned with fractures and barriers which are then modelled as lower-dimensional surface interfaces located between the matrix cells in the physical domain. The three-dimensional pressure equation is solved in the matrix domain coupled with a two-dimensional (2D) surface pressure equation solved over fracture networks via a novel surface CVD-MPFA formulation. The CVD-MPFA formulation naturally handles fractures with anisotropic permeabilities on unstructured grids. Matrix-fracture fluxes are expressed in terms of matrix and fracture pressures and define the transfer function, which is added to the lower-dimensional flow equation and couples the three-dimensional and surface systems. An additional transmission condition is used between matrix cells adjacent to low permeable fractures to couple the velocity and pressure jump across the fractures. Convergence and accuracy of the lower-dimensional fracture model is assessed for highly anisotropic fractures having a range of apertures and permeability tensors. A transport equation for tracer flow is coupled via the Darcy flux for single and intersecting fractures. The lower-dimensional approximation for intersecting fractures avoids the more restrictive CFL condition corresponding to the equi-dimensional approximation with explicit time discretisation. Lower-dimensional fracture model results are compared with equi-dimensional model results. Fractures and barriers are efficiently modelled by lower-dimensional interfaces which yield comparable results to those of the equi-dimensional model. Pressure continuity is built into the model across highly conductive fractures, leading to reduced local degrees of freedom in the CVD-MPFA approximation. The formulation is applied to geologically complex
NASA Astrophysics Data System (ADS)
Boettger, J. C.
2000-09-01
A simple approximation is developed for the two-electron spin-orbit coupling terms generated by the Douglas-Kroll-Hess transformation, in the context of density-functional theory (DFT). For the special case of an isolated atom, the two-electron spin-orbit matrix element for each pair of basis functions of type l is replaced with the spin-orbit matrix element for a point charge -Q(l) placed at the origin; where Q(l)=0,2,10,28,... . Application of this screened-nuclear-spin-orbit (SNSO) approximation to linear combination of Gaussian-type orbital (LCGTO) DFT calculations on Ce, Ta, and Pu atoms yields spin-orbit splittings that agree with results from a numerical solution of the Dirac-Kohn-Sham equations to within about 6%. This is a marked improvement over the nuclear-only spin-orbit approximation, which systematically overestimates spin-orbit splittings; in some cases by as much as 100%. Crystalline LCGTO DFT calculations on the fcc phases of the light-actinide metals Th-->Pu, using a multiatom generalization of the SNSO approximation, yield atomic volumes that are in excellent agreement with results from full-potential linear-augmented-plane-wave calculations.
Gallego, Daniel; Brück, Andreas; Irran, Elisabeth; Meier, Florian; Kaupp, Martin; Driess, Matthias; Hartwig, John F
2013-10-16
The first [ECE]Ni(II) pincer complexes with E = Si(II) and E = Ge(II) metallylene donor arms were synthesized via C-X (X = H, Br) oxidative addition, starting from the corresponding [EC(X)E] ligands. These novel complexes were fully characterized (NMR, MS, and XRD) and used as catalyst for Ni-catalyzed Sonogashira reactions. These catalysts allowed detailed information on the elementary steps of this catalytic reaction (transmetalation → oxidative addition → reductive elimination), resulting in the isolation and characterization of an unexpected intermediate in the transmetalation step. This complex, {[ECE]Ni acetylide → CuBr} contains both nickel and copper, with the copper bound to the alkyne π-system. Consistent with these unusual structural features, DFT calculations of the {[ECE]Ni acetylide → CuBr} intermediates revealed an unusual E-Cu-Ni three-center-two-electron bonding scheme. The results reveal a general reaction mechanism for the Ni-based Sonogashira coupling and broaden the application of metallylenes as strong σ-donor ligands for catalytic transformations. PMID:24053603
De-Miguel, Francisco F.; Santamaría-Holek, Iván; Noguez, Paula; Bustos, Carlos; Hernández-Lemus, Enrique; Rubí, J. Miguel
2012-01-01
Transmitter exocytosis from the neuronal soma is evoked by brief trains of high frequency electrical activity and continues for several minutes. Here we studied how active vesicle transport towards the plasma membrane contributes to this slow phenomenon in serotonergic leech Retzius neurons, by combining electron microscopy, the kinetics of exocytosis obtained from FM1-43 dye fluorescence as vesicles fuse with the plasma membrane, and a diffusion equation incorporating the forces of local confinement and molecular motors. Electron micrographs of neurons at rest or after stimulation with 1 Hz trains showed cytoplasmic clusters of dense core vesicles at 1.5±0.2 and 3.7±0.3 µm distances from the plasma membrane, to which they were bound through microtubule bundles. By contrast, after 20 Hz stimulation vesicle clusters were apposed to the plasma membrane, suggesting that transport was induced by electrical stimulation. Consistently, 20 Hz stimulation of cultured neurons induced spotted FM1-43 fluorescence increases with one or two slow sigmoidal kinetics, suggesting exocytosis from an equal number of vesicle clusters. These fluorescence increases were prevented by colchicine, which suggested microtubule-dependent vesicle transport. Model fitting to the fluorescence kinetics predicted that 52–951 vesicles/cluster were transported along 0.60–6.18 µm distances at average 11–95 nms−1 velocities. The ATP cost per vesicle fused (0.4–72.0), calculated from the ratio of the ΔGprocess/ΔGATP, depended on the ratio of the traveling velocity and the number of vesicles in the cluster. Interestingly, the distance-dependence of the ATP cost per vesicle was bistable, with low energy values at 1.4 and 3.3 µm, similar to the average resting distances of the vesicle clusters, and a high energy barrier at 1.6–2.0 µm. Our study confirms that active vesicle transport is an intermediate step for somatic serotonin exocytosis by Retzius neurons and provides a quantitative
NASA Astrophysics Data System (ADS)
Reineker, P.; Kühne, R.
1980-03-01
Starting from the stochastic Liouville equation of the full Haken-Strobl model, describing the coupled coherent and incoherent motion of excitons in molecular crystals, the Nakajima-Zwanzig generalized master equation (GME) for the probability of finding an exciton at a specific lattice site is derived by an exact straightforward evaluation of its memory function. Various recently derived generalized master equations describing the excition motion are obtained as limiting cases and the Born approximation is discussed. It is shown that, even in the case of nearest-neighbor interaction in the stochastic Liouville equation, in the GME generalized time-dependent transition rates evolve between non-nearest neighbors and that their time behavior shows damped oscillations. Applying the Born approximation to the GME, the range of the generalized transition rates reduces to that of the interaction in the stochastic Liouville equation. Furthermore in this approximation the transition rates show a purely exponential decay with increasing time. Taking into account the interaction with an arbitrary number of neighbors, the mean square displacement of the exciton motion is calculated exactly from the GME. Finally the GME is solved exactly in the general case and several limiting expressions are discussed.
NASA Astrophysics Data System (ADS)
Ramesh, N.; Cane, M. A.; Seager, R.
2014-12-01
The tropical Pacific Ocean has persistently cool sea surface temperature (SST) anomalies that last several years to a decade, with either no El Niño events or very few weak El Niño events. These have been shown to cause large-scale droughts in the extratropics[i], including the major North American droughts such as the 1930s Dust Bowl, and may also be responsible for modulating the global mean surface temperature[ii]. Here we show that two models with different levels of complexity - the Zebiak-Cane model and the Geophysical Fluid Dynamics Laboratory Coupled Model version 2.1 - are able to produce such periods in a realistic manner. We then test the predictability of these periods in the Zebiak-Cane model using an ensemble of experiments with perturbed initial states. Our results show that the cool mean state is modestly predictable, while the lack of El Niño events during these cool periods is not. These results have implications for our understanding of the origins of such persistent cool states and the possibility of improving predictions of large-scale droughts. Further, we apply this method of using an ensemble of model simulations with perturbed initial states to make retrospective forecasts and to forecast the mean state of the tropical Pacific Ocean for the upcoming decade. Our results suggest, albeit with low confidence, that the current cool mean state will persist. This could imply the continuation of the drier than normal conditions that have, in general, afflicted southwest North America since the 1997/98 El Niño, as well as the current pause in global warming. [i] C. Herweijer and R. Seager, "The global footprint of persistent extra-tropical drought in the instrumental era," International Journal of Climatology, vol. 28, pp. 1761-1774, 2008. [ii] G. A. Meehl, J. M. Arblaster, J. T. Fasullo, A. Hu and K. E. Trenberth, "Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods," Nature Climate Change, vol. 1, pp. 360
NASA Astrophysics Data System (ADS)
Cao, Cong; Wang, Chuan; Wang, Tie-Jun; Zhang, Ru
2013-12-01
We propose a basic scheme to construct a hybrid controlled phase-flip (CPF) gate between a flying pulse qubit and a stationary atomic qubit, assisted by a cavity input-output process for a low-Q cavity in the atom-cavity intermediate coupling region. The qubits can be encoded on the coherent states and ground states of the single-trapped L-level atom, respectively. We present a theoretical model of the hybrid CPF gate, whose basic strategy is to control the reflectivity of the input coherent optical pulse to obtain a phase shift conditioned by the different internal atomic states by adjusting the parameters of the cavity quantum electrodynamics (CQED) system. The resulting basic scheme can be used to construct nonlocal gates between remote atomic qubits confined in spatially separated cavities, and also for the generation of an atomic cluster state. The performance and experimental feasibilities of the proposed scheme indicate that it is robust against practical noise and feasible with current technologies. Thus, our scheme is applicable for use in large-scale quantum computation.
Hawke, B.C.
1963-02-26
This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)
Gluon Thermodynamics at Intermediate Coupling
Andersen, Jens O.; Strickland, Michael; Su Nan
2010-03-26
We calculate the thermodynamic functions of Yang-Mills theory to three-loop order using the hard-thermal-loop perturbation theory reorganization of finite temperature quantum field theory. We show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T{approx}2-3T{sub c}.
NASA Astrophysics Data System (ADS)
Trautz, Andrew; Illangasekare, Tissa; Rodriguez-Iturbe, Ignacio; Helmig, Rainer; Heck, Katharina
2016-04-01
Past investigations of coupled land-atmosphere-vegetative processes have been constrained to two extremes, small laboratory bench-scale and field scale testing. In recognition of the limitations of studying the scale-dependency of these fundamental processes at either extreme, researchers have recently begun to promote the use of experimentation at intermediary scales between the bench and field scales. A requirement for employing intermediate scale testing to refine heat and mass transport theory regarding land-atmosphere-vegetative processes is high spatial-temporal resolution datasets generated under carefully controlled experimental conditions in which both small and field scale phenomena can be observed. Field experimentation often fails these criteria as a result of sensor network limitations as well as the natural complexities and uncertainties introduced by heterogeneity and constantly changing atmospheric conditions. Laboratory experimentation, which is used to study three-dimensional (3-D) processes, is often conducted in 2-D test systems as a result of space, instrumentation, and cost constraints. In most flow and transport problems, 2-D testing is not considered a serious limitation because the bypassing of flow and transport due to geo-biochemical heterogeneities can still be studied. Constraining the study of atmosphere-soil-vegetation interactions to 2-D systems introduces a new challenge given that the soil moisture dynamics associated with these interactions occurs in three dimensions. This is an important issue that needs to be addressed as evermore intricate and specialized experimental apparatuses like the climate-controlled wind tunnel-porous media test system at CESEP are being constructed and used for these types of studies. The purpose of this study is to therefore investigate the effects of laboratory experimental dimensionality on observed soil moisture dynamics in the context of bare-soil evaporation and evapotranspiration
NASA Astrophysics Data System (ADS)
Johnston, S.; Abdel-Hafiez, M.; Harnagea, L.; Grinenko, V.; Bombor, D.; Krupskaya, Y.; Hess, C.; Wurmehl, S.; Wolter, A. U. B.; Büchner, B.; Rosner, H.; Drechsler, S.-L.
2014-04-01
We report a low-temperature specific heat study of high-quality single crystals of the heavily hole-doped superconductor Ca0.32Na0.68Fe2As2. This compound exhibits bulk superconductivity with a transition temperature Tc≈34 K, which is evident from the magnetization, transport, and specific heat measurements. The zero-field data manifest a significant electronic specific heat in the normal state with a Sommerfeld coefficient γ ≈53 mJ/mol K2. Using a multiband Eliashberg analysis, we demonstrate that the dependence of the zero-field specific heat in the superconducting state is well described by a three-band model with an unconventional s± pairing symmetry and gap magnitudes Δi of approximately 2.35, 7.48, and -7.50 meV. Our analysis indicates a non-negligible attractive intraband coupling, which contributes significantly to the relatively high value of Tc. The Fermi surface averaged repulsive and attractive coupling strengths are of comparable size and outside the strong coupling limit frequently adopted for describing high-Tc iron pnictide superconductors. We further infer a total mass renormalization of the order of five, including the effects of correlations and electron-boson interactions.
NASA Astrophysics Data System (ADS)
Zheng, Fei; Zhu, Jiang
2016-02-01
How to design a reliable ensemble prediction strategy with considering the major uncertainties of a forecasting system is a crucial issue for performing an ensemble forecast. In this study, a new stochastic perturbation technique is developed to improve the prediction skills of El Niño-Southern Oscillation (ENSO) through using an intermediate coupled model. We first estimate and analyze the model uncertainties from the ensemble Kalman filter analysis results through assimilating the observed sea surface temperatures. Then, based on the pre-analyzed properties of model errors, we develop a zero-mean stochastic model-error model to characterize the model uncertainties mainly induced by the missed physical processes of the original model (e.g., stochastic atmospheric forcing, extra-tropical effects, Indian Ocean Dipole). Finally, we perturb each member of an ensemble forecast at each step by the developed stochastic model-error model during the 12-month forecasting process, and add the zero-mean perturbations into the physical fields to mimic the presence of missing processes and high-frequency stochastic noises. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-year hindcast experiments, which are initialized from the same initial conditions and differentiated by whether they consider the stochastic perturbations. The comparison results show that the stochastic perturbations have a significant effect on improving the ensemble-mean prediction skills during the entire 12-month forecasting process. This improvement occurs mainly because the nonlinear terms in the model can form a positive ensemble-mean from a series of zero-mean perturbations, which reduces the forecasting biases and then corrects the forecast through this nonlinear heating mechanism.
Frisch, E.; Johnson, C.G.
1962-05-15
A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)
NASA Technical Reports Server (NTRS)
Choi, B. H.; Poe, R. T.
1977-01-01
A detailed vibrational-rotational (V-R) close-coupling formulation of electron-diatomic-molecule scattering is developed in which the target molecular axis is chosen to be the z-axis and the resulting coupled differential equation is solved in the moving body-fixed frame throughout the entire interaction region. The coupled differential equation and asymptotic boundary conditions in the body-fixed frame are given for each parity, and procedures are outlined for evaluating V-R transition cross sections on the basis of the body-fixed transition and reactance matrix elements. Conditions are discussed for obtaining identical results from the space-fixed and body-fixed formulations in the case where a finite truncated basis set is used. The hybrid theory of Chandra and Temkin (1976) is then reformulated, relevant expressions and formulas for the simultaneous V-R transitions of the hybrid theory are obtained in the same forms as those of the V-R close-coupling theory, and distorted-wave Born-approximation expressions for the cross sections of the hybrid theory are presented. A close-coupling approximation that conserves the internuclear axis component of the incident electronic angular momentum (l subscript z-prime) is derived from the V-R close-coupling formulation in the moving body-fixed frame.
Williams, Vanessa M; Kong, Jong Rock; Ko, Byoung Joon; Mantri, Yogita; Brodbelt, Jennifer S; Baik, Mu-Hyun; Krische, Michael J
2009-11-11
The catalytic mechanism of the hydrogen-mediated coupling of acetylene to carbonyl compounds and imines has been examined using three techniques: (a) ESI-MS and ESI-CAD-MS analyses, (b) computational modeling, and (c) experiments wherein putative reactive intermediates are diverted to alternate reaction products. ESI-MS analysis of reaction mixtures from the hydrogen-mediated reductive coupling of acetylene to alpha-ketoesters or N-benzenesulfonyl aldimines corroborate a catalytic mechanism involving C horizontal lineX (X = O, NSO(2)Ph) insertion into a cationic rhodacyclopentadiene obtained by way of acetylene oxidative dimerization with subsequent Brønsted acid cocatalyzed hydrogenolysis of the resulting oxa- or azarhodacycloheptadiene. Hydrogenation of 1,6-diynes in the presence of alpha-ketoesters provides analogous coupling products. ESI mass spectrometric analysis again corroborates a catalytic mechanism involving carbonyl insertion into a cationic rhodacyclopentadiene. For all ESI-MS experiments, the structural assignments of ions are supported by multistage collisional activated dissociation (CAD) analyses. Further support for the proposed catalytic mechanism derives from experiments aimed at the interception of putative reactive intermediates and their diversion to alternate reaction products. For example, rhodium-catalyzed coupling of acetylene to an aldehyde in the absence of hydrogen or Brønsted acid cocatalyst provides the corresponding (Z)-butadienyl ketone, which arises from beta-hydride elimination of the proposed oxarhodacycloheptadiene intermediate, as corroborated by isotopic labeling. Additionally, the putative rhodacyclopentadiene intermediate obtained from the oxidative coupling of acetylene is diverted to the product of reductive [2 + 2 + 2] cycloaddition when N-p-toluenesulfonyl-dehydroalanine ethyl ester is used as the coupling partner. The mechanism of this transformation also is corroborated by isotopic labeling. Computer model studies
NASA Astrophysics Data System (ADS)
Zhang, Shu-Qun; Chen, Zhi-De
2014-02-01
We present nonperturbative treatment of the vacuum field bath for two cases, a two-level emitter (TLE) in free space and a lossy TLE coupled to a cavity mode (CM), and the condition that guarantees the validity of the perturbative treatment in both cases is studied. It is shown that the perturbative treatment in the first case is always valid for a real system. In the second case, nevertheless, the perturbative treatment ignores a coupling term, which can bring effects similar to a phonon bath, e.g., coupling renormalization, off-resonance assisted feeding, and pure dephasing inside the resonance region. All of these effects are important for understanding the experimental observations, including the far-off-resonance cavity fluorescence and the additional CM line inside the resonance region in the strong coupling regime.
NASA Astrophysics Data System (ADS)
Capdeville, Y.; Gung, Y.; Romanowicz, B.
2002-12-01
The spectral element method (SEM) has recently been adapted successfully for global spherical earth wave propagation applications. Its advantage is that it provides a way to compute exact seismograms in a 3D earth, without restrictions on the size or wavelength of lateral heterogeneity at any depth, and can handle diffraction and other interactions with major structural boundaries. Its disadvantage is that it is computationally heavy. In order to partly address this drawback, a coupled SEM/normal mode method was developed (Capdeville et al., 2000). This enables us to more efficiently compute bodywave seismograms to realistically short periods (10s or less). In particular, the coupled SEM/normal mode method is a powerful tool to test the validity of some analytical approximations that are currently used in global waveform tomography, and that are considerably faster computationally. Here, we focus on several approximations based on normal mode perturbation theory: the classical "path-average approximation" (PAVA) introduced by Woodhouse and Dziewonski (1984) and well suited for fundamental mode surface waves (1D sensitivity kernels); the non-linear asymptotic coupling theory (NACT), which introduces coupling between mode branches and 2D kernels in the vertical plane containing the source and the receiver (Li and Tanimoto, 1993; Li and Romanowicz, 1995); an extension of NACT which includes out of plane focusing terms computed asymptotically (e.g. Romanowicz, 1987) and introduces 3D kernels; we also consider first order perturbation theory without asymptotic approximations, such as developed for example by Dahlen et al. (2000). We present the results of comparisons of realistic seismograms for different models of heterogeneity, varying the strength and sharpness of the heterogeneity and its location in depth in the mantle. We discuss the consequences of different levels of approximations on our ability to resolve 3D heterogeneity in the earth's mantle.
PLASIM-GENIE: a new intermediate complexity AOGCM
NASA Astrophysics Data System (ADS)
Holden, P. B.; Edwards, N. R.; Fraedrich, K.; Kirk, E.; Lunkeit, F.; Zhu, X.
2015-12-01
We describe the development, tuning and climate of PLASIM-GENIE, a new intermediate complexity Atmosphere-Ocean Global Climate Model (AOGCM), built by coupling the Planet Simulator to the GENIE earth system model. PLASIM-GENIE supersedes "GENIE-2", a coupling of GENIE to the Reading IGCM. It has been developed to join the limited number of models that bridge the gap between EMICS with simplified atmospheric dynamics and state of the art AOGCMs. A 1000 year simulation with PLASIM-GENIE requires approximately two weeks on a single node of a 2.1 GHz AMD 6172 CPU. An important motivation for intermediate complexity models is the evaluation of uncertainty. We here demonstrate the tractability of PLASIM-GENIE ensembles by deriving a "subjective" tuning of the model with a 50 member ensemble of 1000 year simulations.
Compact intermediates in RNA folding
Woodson, S.A.
2011-12-14
Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.
NASA Astrophysics Data System (ADS)
Shedge, Sapana V.; Pal, Sourav; Köster, Andreas M.
2011-07-01
Recently, two non-iterative approaches have been proposed to calculate response properties within density functional theory (DFT). These approaches are auxiliary density perturbation theory (ADPT) and the non-iterative approach to the coupled-perturbed Kohn-Sham (NIA-CPKS) method. Though both methods are non-iterative, they use different techniques to obtain the perturbed Kohn-Sham matrix. In this Letter, for the first time, both of these two independent methods have been used for the calculation of dipole-quadrupole polarizabilities. To validate these methods, three tetrahedral molecules viz., P4,CH4 and adamantane (C10H16) have been used as examples. The comparison with MP2 and CCSD proves the reliability of the methodology.
NASA Astrophysics Data System (ADS)
Jin, Liya; Ganopolski, Andrey; Chen, Fahu; Claussen, Martin; Wang, Huijun
2005-09-01
An Earth system model of intermediate complexity has been used to investigate the sensitivity of simulated global climate to gradually increased snow and glacier cover over the Tibetan Plateau for the last 9000 years (9 kyr). The simulations show that in the mid-Holocene at about 6 kyr before present (BP) the imposed ice sheets over the Tibetan Plateau induces summer precipitation decreases strongly in North Africa and South Asia, and increases in Southeast Asia. The response of vegetation cover to the imposed ice sheets over the Tibetan Plateau is not synchronous in South Asia and in North Africa, showing an earlier and, hence, a more rapid decrease in vegetation cover in North Africa from 9 to 6 kyr BP while it has almost no influence on that in south Asia until 5 kyr BP. The simulation results suggest that the snow and glacier environment over the Tibetan Plateau is an important factor for Holocene climate variability in North Africa, South Asia and Southeast Asia.
Intermediate state trapping of a voltage sensor
Lacroix, Jérôme J.; Pless, Stephan A.; Maragliano, Luca; Campos, Fabiana V.; Galpin, Jason D.; Ahern, Christopher A.; Roux, Benoît
2012-01-01
Voltage sensor domains (VSDs) regulate ion channels and enzymes by undergoing conformational changes depending on membrane electrical signals. The molecular mechanisms underlying the VSD transitions are not fully understood. Here, we show that some mutations of I241 in the S1 segment of the Shaker Kv channel positively shift the voltage dependence of the VSD movement and alter the functional coupling between VSD and pore domains. Among the I241 mutants, I241W immobilized the VSD movement during activation and deactivation, approximately halfway between the resting and active states, and drastically shifted the voltage activation of the ionic conductance. This phenotype, which is consistent with a stabilization of an intermediate VSD conformation by the I241W mutation, was diminished by the charge-conserving R2K mutation but not by the charge-neutralizing R2Q mutation. Interestingly, most of these effects were reproduced by the F244W mutation located one helical turn above I241. Electrophysiology recordings using nonnatural indole derivatives ruled out the involvement of cation-Π interactions for the effects of the Trp inserted at positions I241 and F244 on the channel’s conductance, but showed that the indole nitrogen was important for the I241W phenotype. Insight into the molecular mechanisms responsible for the stabilization of the intermediate state were investigated by creating in silico the mutations I241W, I241W/R2K, and F244W in intermediate conformations obtained from a computational VSD transition pathway determined using the string method. The experimental results and computational analysis suggest that the phenotype of I241W may originate in the formation of a hydrogen bond between the indole nitrogen atom and the backbone carbonyl of R2. This work provides new information on intermediate states in voltage-gated ion channels with an approach that produces minimum chemical perturbation. PMID:23183699
Nick, Thomas U; Lee, Wankyu; Kossmann, Simone; Neese, Frank; Stubbe, JoAnne; Bennati, Marina
2015-01-14
Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides in all organisms. In all Class Ia RNRs, initiation of nucleotide diphosphate (NDP) reduction requires a reversible oxidation over 35 Å by a tyrosyl radical (Y122•, Escherichia coli) in subunit β of a cysteine (C439) in the active site of subunit α. This radical transfer (RT) occurs by a specific pathway involving redox active tyrosines (Y122 ⇆ Y356 in β to Y731 ⇆ Y730 ⇆ C439 in α); each oxidation necessitates loss of a proton coupled to loss of an electron (PCET). To study these steps, 3-aminotyrosine was site-specifically incorporated in place of Y356-β, Y731- and Y730-α, and each protein was incubated with the appropriate second subunit β(α), CDP and effector ATP to trap an amino tyrosyl radical (NH2Y•) in the active α2β2 complex. High-frequency (263 GHz) pulse electron paramagnetic resonance (EPR) of the NH2Y•s reported the gx values with unprecedented resolution and revealed strong electrostatic effects caused by the protein environment. (2)H electron-nuclear double resonance (ENDOR) spectroscopy accompanied by quantum chemical calculations provided spectroscopic evidence for hydrogen bond interactions at the radical sites, i.e., two exchangeable H bonds to NH2Y730•, one to NH2Y731• and none to NH2Y356•. Similar experiments with double mutants α-NH2Y730/C439A and α-NH2Y731/Y730F allowed assignment of the H bonding partner(s) to a pathway residue(s) providing direct evidence for colinear PCET within α. The implications of these observations for the PCET process within α and at the interface are discussed. PMID:25516424
Multimode approximation for {sup 238}U photofission at intermediate energies
Demekhina, N. A.; Karapetyan, G. S.
2008-01-15
The yields of products originating from {sup 238}U photofission are measured at the bremsstrahlung endpoint energies of 50 and 3500 MeV. Charge and mass distributions of fission fragments are obtained. Symmetric and asymmetric channels in {sup 238}U photofission are singled out on the basis of the model of multimode fission. This decomposition makes it possible to estimate the contributions of various fission components and to calculate the fissilities of {sup 238}U in the photon-energy regions under study.
Multimode approximation for {sup 238}U photofission at intermediate energies
Demekhina, N. A. Karapetyan, G. S.
2008-01-15
The yields of products originating from {sup 238}U photofission are measured at the Bremsstrahlung endpoint energies of 50 and 3500 MeV. Charge and mass distributions of fission fragments are obtained. Symmetric and asymmetric channels in {sup 238}U photofission are singled out on the basis of the model of multimode fission. This decomposition makes it possible to estimate the contributions of various fission components and to calculate the fissilities of {sup 238}U in the photon-energy regions under study.
Nuclear reactions at intermediate energies
NASA Astrophysics Data System (ADS)
Shyam, Radhey
2016-05-01
In the domain of Nuclear reactions at intermediate energies, the QCD coupling constant αs is large enough (~ 0.3 - 0.5) to render the perturbative calculational techniques inapplicable. In this regime the quarks are confined into colorless hadrons and it is expected that effective field theories of hadron interactions via exchange of hadrons, provide useful tools to describe such reactions. In this contribution we discuss the application of one such theory, the effective Lagrangian model, in describing the hadronic reactions at intermediate energies whose measurements are the focus of a vast international experimental program.
nu. (nu-bar)+d. --> nu. (nu-bar)+n+p at intermediate energies
Singh, S.K.; Khan, S.A.
1981-03-01
The deuteron disintegration processes ..nu..(nu-bar)+d..--> nu..(nu-bar)+n+p have been studied at intermediate energies in impulse approximation using closure over the final dinucleon states. The disintegration cross section sigma has been discussed as a function of neutrino (antineutrino) energy in various SU(2) x U(1) models for the helicity conserving weak neutral currents. A discussion on the helicity flipping weak neutral currents models of S, P, T couplings is also given.
Intermediate Symmetries in the Spontaneous Breaking of Supersymmetric SO(10)
NASA Astrophysics Data System (ADS)
Buccella, F.; Savoy, C. A.
We study the supersymmetric spontaneous symmetry breaking of SO(10) into SU(3) ⊗ SU(2) ⊗ U(1) for the most physically interesting cases of SU(5) or flipped SU(5) ⊗ U(1) intermediate symmetries. The first case is more easily realized while the second one requires a fine-tuning condition on the parameters of the superpotential. This is because in the case of SU(5) symmetry there is at most one singlet of the residual symmetry in each SO(10) irreducible representation. We also point out on more general grounds in supersymmetric GUTs that some intermediate symmetries can be exactly realized and others can only be approximated by fine-tuning. In the first category, there could occur some tunneling between the vacua with exact and approximate intermediate symmetry. The flipped SU(5) ⊗ U(1) symmetry improves the unification of gauge couplings if (B-L) is broken by ∥(B-L)∥ =1 scalars yielding right-handed neutrino masses below 1014 GeV.
Tuna, Deniz; Lefrancois, Daniel; Wolański, Łukasz; Gozem, Samer; Schapiro, Igor; Andruniów, Tadeusz; Dreuw, Andreas; Olivucci, Massimo
2015-12-01
As a minimal model of the chromophore of rhodopsin proteins, the penta-2,4-dieniminium cation (PSB3) poses a challenging test system for the assessment of electronic-structure methods for the exploration of ground- and excited-state potential-energy surfaces, the topography of conical intersections, and the dimensionality (topology) of the branching space. Herein, we report on the performance of the approximate linear-response coupled-cluster method of second order (CC2) and the algebraic-diagrammatic-construction scheme of the polarization propagator of second and third orders (ADC(2) and ADC(3)). For the ADC(2) method, we considered both the strict and extended variants (ADC(2)-s and ADC(2)-x). For both CC2 and ADC methods, we also tested the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) variants. We have explored several ground- and excited-state reaction paths, a circular path centered around the S1/S0 surface crossing, and a 2D scan of the potential-energy surfaces along the branching space. We find that the CC2 and ADC methods yield a different dimensionality of the intersection space. While the ADC methods yield a linear intersection topology, we find a conical intersection topology for the CC2 method. We present computational evidence showing that the linear-response CC2 method yields a surface crossing between the reference state and the first response state featuring characteristics that are expected for a true conical intersection. Finally, we test the performance of these methods for the approximate geometry optimization of the S1/S0 minimum-energy conical intersection and compare the geometries with available data from multireference methods. The present study provides new insight into the performance of linear-response CC2 and polarization-propagator ADC methods for molecular electronic spectroscopy and applications in computational photochemistry. PMID:26642989
Two-photon excitation cross-section in light and intermediate atoms
NASA Technical Reports Server (NTRS)
Omidvar, K.
1980-01-01
The method of explicit summation over the intermediate states is used along with LS coupling to derive an expression for two-photon absorption cross section in light and intermediate atoms in terms of integrals over radial wave functions. Two selection rules, one exact and one approximate, are also derived. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum defect method are used. A relationship between the cross section and the oscillator strengths is derived. Cross sections due to selected transitions in nitrogen, oxygen, and chlorine are given. The expression for the cross section is useful in calculating the two-photon absorption in light and intermediate atoms.
Heat pipe transient response approximation
NASA Astrophysics Data System (ADS)
Reid, Robert S.
2002-01-01
A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper. .
Self-consistent quasiparticle random-phase approximation for a multilevel pairing model
Hung, N. Quang; Dang, N. Dinh
2007-11-15
Particle-number projection within the Lipkin-Nogami (LN) method is applied to the self-consistent quasiparticle random-phase approximation (SCQRPA), which is tested in an exactly solvable multilevel pairing model. The SCQRPA equations are numerically solved to find the energies of the ground and excited states at various numbers {omega} of doubly degenerate equidistant levels. The use of the LN method allows one to avoid the collapse of the BCS (QRPA) to obtain the energies of the ground and excited states as smooth functions of the interaction parameter G. The comparison between results given by different approximations such as the SCRPA, QRPA, LNQRPA, SCQRPA, and LNSCQRPA is carried out. Although the use of the LN method significantly improves the agreement with the exact results in the intermediate coupling region, we found that in the strong coupling region the SCQRPA results are closest to the exact ones.
Rasin, A.
1994-04-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Random Phase Approximation in Surface Chemistry: Water Splitting on Iron.
Karlický, František; Lazar, Petr; Dubecký, Matúš; Otyepka, Michal
2013-08-13
The reaction of water with zero-valent iron (anaerobic corrosion) is a complex chemical process involving physisorption and chemisorption events. We employ random phase approximation (RPA) along with gradient-corrected and hybrid density functional theory (DFT) functionals to study the reaction of water with the Fe atom and Fe(100) surface. We show that the involvement of the exact electron exchange and nonlocal correlation effects in RPA improves the description of all steps of the reaction on the Fe surface with respect to standard [meaning local density approximation (LDA) or generalized gradient approximation (GGA)] DFT methods. The reaction profile calculated by range-separated hybrid functional HSE06 agrees reasonably well with the RPA profile, which makes HSE06 a computationally less demanding alternative to RPA. We also investigate the reaction of the Fe atom with water using DFT, RPA, and coupled-cluster through the perturbative triples complete basis set [CCSD(T)-3s3p-DKH/CBS] method. Local DFT methods significantly underestimate reaction barriers, while the reaction kinetics and thermodynamics from RPA agree with the reference CCSD(T) data. Both systems, i.e., the Fe atom and Fe(100), provide the same reaction mechanism, indicating that anaerobic corrosion is a stepwise process involving one-electron steps, with the first reaction step (formation of the HFeOH intermediate) representing the rate-limiting step. PMID:26584120
Approximate Analysis of Semiconductor Laser Arrays
NASA Technical Reports Server (NTRS)
Marshall, William K.; Katz, Joseph
1987-01-01
Simplified equation yields useful information on gains and output patterns. Theoretical method based on approximate waveguide equation enables prediction of lateral modes of gain-guided planar array of parallel semiconductor lasers. Equation for entire array solved directly using piecewise approximation of index of refraction by simple functions without customary approximation based on coupled waveguid modes of individual lasers. Improved results yield better understanding of laser-array modes and help in development of well-behaved high-power semiconductor laser arrays.
An approximation based global optimization strategy for structural synthesis
NASA Technical Reports Server (NTRS)
Sepulveda, A. E.; Schmit, L. A.
1991-01-01
A global optimization strategy for structural synthesis based on approximation concepts is presented. The methodology involves the solution of a sequence of highly accurate approximate problems using a global optimization algorithm. The global optimization algorithm implemented consists of a branch and bound strategy based on the interval evaluation of the objective function and constraint functions, combined with a local feasible directions algorithm. The approximate design optimization problems are constructed using first order approximations of selected intermediate response quantities in terms of intermediate design variables. Some numerical results for example problems are presented to illustrate the efficacy of the design procedure setforth.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.
Intermediate Strength Gravitational Lensing
Irwin, John
2005-03-17
Weak lensing is found in the correlations of shear in {approx}10{sup 4} galaxy images, strong lensing is detected by the obvious distortion of a single galaxy image, whereas intermediate lensing requires detection of less obvious curvature in several neighboring galaxies. Small impact-parameter lensing causes a sextupole distortion whose orientation is correlated with the quadrupole distortion (shear). By looking within a field for the spatial correlation of this sextupole-quadrupole correlation, an intermediate lensing regime is observed. This technique requires correction for the sextupole as well as the quadrupole content of the PSF. We remove the HST PSF and uncover intermediate lensing in the Hubble deep fields. Correlations of the type expected are found.
Calculator Function Approximation.
ERIC Educational Resources Information Center
Schelin, Charles W.
1983-01-01
The general algorithm used in most hand calculators to approximate elementary functions is discussed. Comments on tabular function values and on computer function evaluation are given first; then the CORDIC (Coordinate Rotation Digital Computer) scheme is described. (MNS)
Adiabatic approximation for the density matrix
NASA Astrophysics Data System (ADS)
Band, Yehuda B.
1992-05-01
An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. PMID:25528318
Micromechanical properties of keratin intermediate filament networks.
Sivaramakrishnan, Sivaraj; DeGiulio, James V; Lorand, Laszlo; Goldman, Robert D; Ridge, Karen M
2008-01-22
Keratin intermediate filaments (KIFs) form cytoskeletal KIF networks that are essential for the structural integrity of epithelial cells. However, the mechanical properties of the in situ network have not been defined. Particle-tracking microrheology (PTM) was used to obtain the micromechanical properties of the KIF network in alveolar epithelial cells (AECs), independent of other cytoskeletal components, such as microtubules and microfilaments. The storage modulus (G') at 1 Hz of the KIF network decreases from the perinuclear region (335 dyn/cm(2)) to the cell periphery (95 dyn/cm(2)), yielding a mean value of 210 dyn/cm(2). These changes in G' are inversely proportional to the mesh size of the network, which increases approximately 10-fold from the perinuclear region (0.02 microm(2)) to the cell periphery (0.3 microm(2)). Shear stress (15 dyn/cm(2) for 4 h) applied across the surface of AECs induces a more uniform distribution of KIF, with the mesh size of the network ranging from 0.02 microm(2) near the nucleus to only 0.04 microm(2) at the cell periphery. This amounts to a 40% increase in the mean G'. The storage modulus of the KIF network in the perinuclear region accurately predicts the shear-induced deflection of the cell nucleus to be 0.87 +/- 0.03 microm. The high storage modulus of the KIF network, coupled with its solid-like rheological behavior, supports the role of KIF as an intracellular structural scaffold that helps epithelial cells to withstand external mechanical forces. PMID:18199836
Hispanic American Heritage, Intermediate.
ERIC Educational Resources Information Center
Shepherd, Mike
This resource book features the cultural heritage of Hispanics living within the United States and includes ideas, materials, and activities to be used with students in the intermediate grades and middle school. This book explores the definition of the term "Hispanic Americans" and suggests a multilayered population with a variety of cultural…
English 200: Intermediate Composition
ERIC Educational Resources Information Center
Ritter, Kelly
2005-01-01
"English 200: Intermediate Composition" is a program elective for English majors and a writing-intensive elective for nonmajors at Southern Connecticut State University (SCSU), a comprehensive institution of 11,000 undergraduate and graduate (master's level) students. English 200 is described in the departmental course catalog as a course "in…
Water oxidation: Intermediate identification
NASA Astrophysics Data System (ADS)
Cowan, Alexander J.
2016-08-01
The slow kinetics of light-driven water oxidation on haematite is an important factor limiting the material's efficiency. Now, an intermediate of the water-splitting reaction has been identified offering hope that the full mechanism will soon be resolved.
INTERMEDIATE READINGS IN TAGALOG.
ERIC Educational Resources Information Center
BOWEN, J. DONALD, ED.
THE SECOND IN A SERIES OF TEXTS DESIGNED TO HELP THE STUDENT ACHIEVE AN UNDERSTANDING OF FILIPINO CULTURE AND ACQUIRE ENOUGH PROFICIENCY IN TAGALOG TO COMMUNICATE EASILY AND MEANINGFULLY, THESE INTERMEDIATE READINGS ARE COORDINATED WITH THE EDITOR'S "BEGINNING TAGALOG" (ED 014 696). INCLUDED IN PART I ARE READINGS WRITTEN ESPECIALLY FOR THIS TEXT…
GLOSSARY TO INTERMEDIATE HINDI.
ERIC Educational Resources Information Center
Wisconsin Univ., Madison. Indian Language and Area Center.
INCLUDED IN THIS GLOSSARY ARE THE VOCABULARY ITEMS FOR THE READINGS IN "INTERMEDIATE HINDI." THE ITEMS ARE ARRANGED BY SELECTION IN SERIAL ORDER. EACH ENTRY INCLUDES NAGARI (DEVANAGARI) SCRIPT SPELLING, A NOTATION OF THE FORM CLASS, AND A SHORT ENGLISH GLOSS. THESE TWO VOLUMES ARE ALSO AVAILABLE AS A SET FOR $7.00 FROM THE COLLEGE PRINTING…
SPACE: Intermediate Level Modules.
ERIC Educational Resources Information Center
Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.
These modules were developed to assist teachers at the intermediate level to move away from extensive skill practice and toward more meaningful interdisciplinary learning. This packet, to be used by teachers in the summer Extended Learning Program, provides detailed thematic lesson plans matched to the Indiana Curriculum Proficiency Guide. The…
Intermediate Cambodian Reader.
ERIC Educational Resources Information Center
Huffman, Franklin E., Ed.; Proum, Im, Ed.
This book is a sequel to the "Cambodian System of Writing and Beginning Reader." It is intended to serve as an intermediate reader to develop the student's ability to the point of reading Cambodian texts with the aid of a dictionary. Part One of the book consists of 37 readings, graded in length and difficulty, and selected to provide a wide range…
Covariant approximation averaging
NASA Astrophysics Data System (ADS)
Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph
2015-06-01
We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.
Fast approximate motif statistics.
Nicodème, P
2001-01-01
We present in this article a fast approximate method for computing the statistics of a number of non-self-overlapping matches of motifs in a random text in the nonuniform Bernoulli model. This method is well suited for protein motifs where the probability of self-overlap of motifs is small. For 96% of the PROSITE motifs, the expectations of occurrences of the motifs in a 7-million-amino-acids random database are computed by the approximate method with less than 1% error when compared with the exact method. Processing of the whole PROSITE takes about 30 seconds with the approximate method. We apply this new method to a comparison of the C. elegans and S. cerevisiae proteomes. PMID:11535175
The Guiding Center Approximation
NASA Astrophysics Data System (ADS)
Pedersen, Thomas Sunn
The guiding center approximation for charged particles in strong magnetic fields is introduced here. This approximation is very useful in situations where the charged particles are very well magnetized, such that the gyration (Larmor) radius is small compared to relevant length scales of the confinement device, and the gyration is fast relative to relevant timescales in an experiment. The basics of motion in a straight, uniform, static magnetic field are reviewed, and are used as a starting point for analyzing more complicated situations where more forces are present, as well as inhomogeneities in the magnetic field -- magnetic curvature as well as gradients in the magnetic field strength. The first and second adiabatic invariant are introduced, and slowly time-varying fields are also covered. As an example of the use of the guiding center approximation, the confinement concept of the cylindrical magnetic mirror is analyzed.
Monotone Boolean approximation
Hulme, B.L.
1982-12-01
This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application for the analysis of noncoherent fault trees and event tree sequences.
Modeling of intermediate phase growth
Umantsev, A.
2007-01-15
We introduced a continuum method for modeling of intermediate phase growth and numerically simulated three common experimental situations relevant to the physical metallurgy of soldering: growth of intermetallic compound layer from an unlimited amount of liquid and solid solders and growth of the compound from limited amounts of liquid solder. We found qualitative agreements with the experimental regimes of growth in all cases. For instance, the layer expands in both directions with respect to the base line when it grows from solid solder, and grows into the copper phase when the solder is molten. The quantitative agreement with the sharp-interface approximation was also achieved in these cases. In the cases of limited amounts of liquid solder we found the point of turnaround when the compound/solder boundary changed the direction of its motion. Although such behavior had been previously observed experimentally, the simulations revealed important information: the turnaround occurs approximately at the time of complete saturation of solder with copper. This result allows us to conclude that coarsening of the intermetallic compound structure starts only after the solder is practically saturated with copper.
Intermediate Bandgap Solar Cells From Nanostructured Silicon
Black, Marcie
2014-10-30
This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.
Approximating Integrals Using Probability
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.; Caudle, Kyle A.
2005-01-01
As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…
Multicriteria approximation through decomposition
Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |
1997-12-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
Multicriteria approximation through decomposition
Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.
1998-06-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
Intermediate water recovery system
NASA Technical Reports Server (NTRS)
Deckman, G.; Anderson, A. R. (Editor)
1973-01-01
A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.
Approximate Bruechner orbitals in electron propagator calculations
Ortiz, J.V.
1999-12-01
Orbitals and ground-state correlation amplitudes from the so-called Brueckner doubles approximation of coupled-cluster theory provide a useful reference state for electron propagator calculations. An operator manifold with hold, particle, two-hole-one-particle and two-particle-one-hole components is chosen. The resulting approximation, third-order algebraic diagrammatic construction [2ph-TDA, ADC (3)] and 3+ methods. The enhanced versatility of this approximation is demonstrated through calculations on valence ionization energies, core ionization energies, electron detachment energies of anions, and on a molecule with partial biradical character, ozone.
Optimizing the Zeldovich approximation
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.
1994-01-01
We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment
K-LL Auger transition probabilities for elements with low and intermediate atomic numbers
NASA Technical Reports Server (NTRS)
Chen, M. H.; Crasemann, B.
1973-01-01
Radiationless K-LL transition probabilities have been calculated nonrelativistically in j-j coupling and in intermediate coupling, without and with configuration interaction, for elements with atomic numbers from 13 to 47. The system is treated as a coupled two-hole configuration. The single-particle radial wave functions required in the calculation of radial matrix elements, and in the calculation of mixing coefficients in the intermediate-coupling scheme, were obtained from Green's atomic independent-particle model. Comparison with previous theoretical work and with experimental data is made. The effects of intermediate coupling, configuration interaction, and relativity are noted.
Chalasani, P.; Saias, I.; Jha, S.
1996-04-08
As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.
Beyond the Kirchhoff approximation
NASA Technical Reports Server (NTRS)
Rodriguez, Ernesto
1989-01-01
The three most successful models for describing scattering from random rough surfaces are the Kirchhoff approximation (KA), the small-perturbation method (SPM), and the two-scale-roughness (or composite roughness) surface-scattering (TSR) models. In this paper it is shown how these three models can be derived rigorously from one perturbation expansion based on the extinction theorem for scalar waves scattering from perfectly rigid surface. It is also shown how corrections to the KA proportional to the surface curvature and higher-order derivatives may be obtained. Using these results, the scattering cross section is derived for various surface models.
Approximate analytic solutions to the NPDD: Short exposure approximations
NASA Astrophysics Data System (ADS)
Close, Ciara E.; Sheridan, John T.
2014-04-01
There have been many attempts to accurately describe the photochemical processes that take places in photopolymer materials. As the models have become more accurate, solving them has become more numerically intensive and more 'opaque'. Recent models incorporate the major photochemical reactions taking place as well as the diffusion effects resulting from the photo-polymerisation process, and have accurately described these processes in a number of different materials. It is our aim to develop accessible mathematical expressions which provide physical insights and simple quantitative predictions of practical value to material designers and users. In this paper, starting with the Non-Local Photo-Polymerisation Driven Diffusion (NPDD) model coupled integro-differential equations, we first simplify these equations and validate the accuracy of the resulting approximate model. This new set of governing equations are then used to produce accurate analytic solutions (polynomials) describing the evolution of the monomer and polymer concentrations, and the grating refractive index modulation, in the case of short low intensity sinusoidal exposures. The physical significance of the results and their consequences for holographic data storage (HDS) are then discussed.
Comments on intermediate-scale models
NASA Astrophysics Data System (ADS)
Ellis, J.; Enqvist, K.; Nanopoulos, D. V.; Olive, K.
1987-04-01
Some superstring-inspired models employ intermediate scales m1 of gauge symmetry breaking. Such scales should exceed 10 16 GeV in order to avoid prima facie problems with baryon decay through heavy particles and non-perturbative behaviour of the gauge couplings above mI. However, the intermediate-scale phase transition does not occur until the temperature of the Universe falls below O( mw), after which an enormous excess of entropy is generated. Moreover, gauge symmetry breaking by renormalization group-improved radiative corrections is inapplicable because the symmetry-breaking field has no renormalizable interactions at scales below mI. We also comment on the danger of baryon and lepton number violation in the effective low-energy theory.
Countably QC-Approximating Posets
Mao, Xuxin; Xu, Luoshan
2014-01-01
As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σc(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730
Approximate Bayesian multibody tracking.
Lanz, Oswald
2006-09-01
Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting principled occlusion reasoning have been proposed but are yet unpractical for online applications. This paper presents a new solution which effectively manages the trade-off between reliable modeling and computational efficiency. The Hybrid Joint-Separable (HJS) filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation. Computational efficiency is achieved by employing a Markov random field approximation to joint dynamics and an incremental algorithm for posterior update with an appearance likelihood that implements a physically-based model of the occlusion process. A particle filter implementation is proposed which achieves accurate tracking during partial occlusions, while in cases of complete occlusion, tracking hypotheses are bound to estimated occlusion volumes. Experiments show that the proposed algorithm is efficient, robust, and able to resolve long-term occlusions between targets with identical appearance. PMID:16929730
Approximations for the free evolution of self-gravitating quantum particles
NASA Astrophysics Data System (ADS)
Großardt, André
2016-08-01
The evolution of the center-of-mass wave function for a mesoscopic particle according to the Schrödinger-Newton equation can be approximated by a harmonic potential if the wave function is narrow compared to the size of the mesoscopic particle. It was noticed by Colin et al. [Phys. Rev. A 93, 062102 (2016).], 10.1103/PhysRevA.93.062102 that, in the regime where self-gravitational effects are weak, intermediate and wider wave functions may be approximated by a harmonic potential as well but with a width-dependent coupling, leading to a time evolution that is determined only by a differential equation for the width of a Gaussian wave function as a single parameter. Such an approximation results in considerably less computational effort in order to predict the self-gravitational effects on the wave-function dynamics. Here, we provide an alternative approach to this kind of approximation, including a rigorous derivation of the equations of motion for an initially Gaussian wave packet under the assumption that its shape is conserved. Our result deviates to some degree from the result by Colin et al. [Phys. Rev. A 93, 062102 (2016).], 10.1103/PhysRevA.93.062102, specifically in the limit of wide wave functions.
[Bond selective chemistry beyond the adiabatic approximation
Butler, L.J.
1993-02-28
The adiabatic Born-Oppenheimer potential energy surface approximation is not valid for reaction of a wide variety of energetic materials and organic fuels; coupling between electronic states of reacting species plays a key role in determining the selectivity of the chemical reactions induced. This research program initially studies this coupling in (1) selective C-Br bond fission in 1,3- bromoiodopropane, (2) C-S:S-H bond fission branching in CH[sub 3]SH, and (3) competition between bond fission channels and H[sub 2] elimination in CH[sub 3]NH[sub 2].
Approximation by hinge functions
Faber, V.
1997-05-01
Breiman has defined {open_quotes}hinge functions{close_quotes} for use as basis functions in least squares approximations to data. A hinge function is the max (or min) function of two linear functions. In this paper, the author assumes the existence of smooth function f(x) and a set of samples of the form (x, f(x)) drawn from a probability distribution {rho}(x). The author hopes to find the best fitting hinge function h(x) in the least squares sense. There are two problems with this plan. First, Breiman has suggested an algorithm to perform this fit. The author shows that this algorithm is not robust and also shows how to create examples on which the algorithm diverges. Second, if the author tries to use the data to minimize the fit in the usual discrete least squares sense, the functional that must be minimized is continuous in the variables, but has a derivative which jumps at the data. This paper takes a different approach. This approach is an example of a method that the author has developed called {open_quotes}Monte Carlo Regression{close_quotes}. (A paper on the general theory is in preparation.) The author shall show that since the function f is continuous, the analytic form of the least squares equation is continuously differentiable. A local minimum is solved for by using Newton`s method, where the entries of the Hessian are estimated directly from the data by Monte Carlo. The algorithm has the desirable properties that it is quadratically convergent from any starting guess sufficiently close to a solution and that each iteration requires only a linear system solve.
Conformational dynamics through an intermediate
NASA Astrophysics Data System (ADS)
Garai, Ashok; Zhang, Yaojun; Dudko, Olga K.
2014-04-01
The self-assembly of biological and synthetic nanostructures commonly proceeds via intermediate states. In living systems in particular, the intermediates have the capacity to tilt the balance between functional and potentially fatal behavior. This work develops a statistical mechanical treatment of conformational dynamics through an intermediate under a variable force. An analytical solution is derived for the key experimentally measurable quantity—the distribution of forces at which a conformational transition occurs. The solution reveals rich kinetics over a broad range of parameters and enables one to locate the intermediate and extract the activation barriers and rate constants.
Approximate gauge symemtry of composite vector bosons
Suzuki, Mahiko
2010-06-01
It can be shown in a solvable field theory model that the couplings of the composite vector mesons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in more an intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.
Approximate gauge symmetry of composite vector bosons
NASA Astrophysics Data System (ADS)
Suzuki, Mahiko
2010-08-01
It can be shown in a solvable field theory model that the couplings of the composite vector bosons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in a more intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.
NASA Astrophysics Data System (ADS)
Bondi, M.; Marchã, M. J. M.; Dallacasa, D.; Stanghellini, C.
2001-08-01
The 200-mJy sample, defined by Marchã et al., contains about 60 nearby, northern, flat-spectrum radio sources. In particular, the sample has proved effective at finding nearby radio-selected BL Lac objects with radio luminosities comparable to those of X-ray-selected objects, and low-luminosity flat-spectrum weak emission-line radio galaxies (WLRGs). The 200-mJy sample contains 23 BL Lac objects (including 6 BL Lac candidates) and 19 WLRGs. We will refer to these subsamples as the 200-mJy BL Lac sample and the 200-mJy WLRG sample, respectively. We have started a systematic analysis of the morphological pc-scale properties of the 200-mJy radio sources using VLBI observations. This paper presents VLBI observations at 5 and 1.6GHz of 14 BL Lac objects and WLRGs selected from the 200-mJy sample. The pc-scale morphology of these objects is briefly discussed. We derive the radio beaming parameters of the 200-mJy BL Lac objects and WLRGs and compare them with those of other BL Lac samples and with a sample of FR I radio galaxies. The overall broad-band radio, optical and X-ray properties of the 200-mJy BL Lac sample are discussed and compared with those of other BL Lac samples, radio- and X-ray-selected. We find that the 200-mJy BL Lac objects fill the gap between HBL and LBL objects in the colour-colour plot, and have intermediate αXOX as expected in the spectral energy distribution unification scenario. Finally, we briefly discuss the role of the WLRGs.
Masonry. Performance Objectives. Intermediate Course.
ERIC Educational Resources Information Center
Thompson, Moses
Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for an intermediate masonry course. These materials, developed for a two-semester (3 hours daily) course, are designed to provide the student with the skills and knowledge necessary for entry level employment in the field…
Printing. Performance Objectives. Intermediate Course.
ERIC Educational Resources Information Center
Seivert, Chester
Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for an intermediate printing course. The materials were developed for a two-semester (3 hours daily) course with specialized classroom, shop, and practical experiences designed to enable the student to develop proficiency…
Welding. Performance Objectives. Intermediate Course.
ERIC Educational Resources Information Center
Vincent, Kenneth
Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…
Faddeev random-phase approximation for molecules
Degroote, Matthias; Van Neck, Dimitri; Barbieri, Carlo
2011-04-15
The Faddeev random-phase approximation is a Green's function technique that makes use of Faddeev equations to couple the motion of a single electron to the two-particle-one-hole and two-hole-one-particle excitations. This method goes beyond the frequently used third-order algebraic diagrammatic construction method: all diagrams involving the exchange of phonons in the particle-hole and particle-particle channel are retained, but the phonons are now described at the level of the random-phase approximation, which includes ground-state correlations, rather than at the Tamm-Dancoff approximation level, where ground-state correlations are excluded. Previously applied to atoms, this paper presents results for small molecules at equilibrium geometry.
NASA Astrophysics Data System (ADS)
Gholibeigian, Kazem; Gholibeigian, Hassan
2016-04-01
On March 13, 1989 the entire province of Quebec Blackout by solar storm during solar cycle 22. The solar storm of 1859, also known as the Carrington event, was a powerful geomagnetic solar storm during solar cycle 10. The solar storm of 2012 during solar cycle 24 was of similar magnitude, but it passed Earth's orbit without striking the plane. All of these solar storms occurred in the peak of 11 yearly solar cycles. In this way, the White House in its project which is focusing on hazards from solar system, in a new strategy and action plan to increase protection from damaging solar emissions, should focus on coupling of the matched Gravity and Electromagnetic Fields)GEFs) of the Sun with Jupiter and its moons together. On the other hand, in solar system, the Jupiter's gravity has largest effect to the Sun's core and its dislocation, because the gravity force between the Jupiter and the Sun is 11.834 times, In addition overlapping of the solar cycles with the Jupiter's orbit period is 11.856 years. These observable factors lead us to the effect of the Jupiter and Sun gravity fields coupling as the main cause of the approximately 11 years duration for solar cycles. Its peak in each cycle is when the Jupiter is in nearest portion to the Sun in its orbit. In this way, the other planets in their coupling with Sun help to the variations and strengthening solar cycles. [Gholibeigian, 7/24/2015http://adsabs.harvard.edu/abs/2014EGU]. In other words, the both matched GEFs are generating by the large scale forced convection system inside the stars and planets [Gholibeigian et. al, AGU Fall Meeting 2015]. These two fields are couple and strengthening each other. The Jupiter with its 67 moons generate the largest coupled and matched GEFs in its core and consequently strongest effect on the Sun's core. Generation and coupling of the Jupiter's GEFs with its moons like Europa, Io and Ganymede make this planet of thousands of times brighter and many times bigger than Earth as the
Neutrino interactions with nucleons and nuclei at intermediate energies
Alvarez-Ruso, L.; Leitner, T.; Mosel, U.
2006-07-11
We investigate neutrino-nucleus collisions at intermediate energies incorporating quasielastic scattering and {delta}(1232) excitation as elementary processes, together with Fermi motion, Pauli blocking and mean-field potentials in the nuclear medium. A full coupled-channel treatment of final state interactions is achieved with a semiclassical BUU transport model. Results for inclusive reactions and nucleon knockout are presented.
Exponentially modified QCD coupling
Cvetic, Gorazd; Valenzuela, Cristian
2008-04-01
We present a specific class of models for an infrared-finite analytic QCD coupling, such that at large spacelike energy scales the coupling differs from the perturbative one by less than any inverse power of the energy scale. This condition is motivated by the Institute for Theoretical and Experimental Physics operator product expansion philosophy. Allowed by the ambiguity in the analytization of the perturbative coupling, the proposed class of couplings has three parameters. In the intermediate energy region, the proposed coupling has low loop-level and renormalization scheme dependence. The present modification of perturbative QCD must be considered as a phenomenological attempt, with the aim of enlarging the applicability range of the theory of the strong interactions at low energies.
Improved approximations for control augmented structural synthesis
NASA Technical Reports Server (NTRS)
Thomas, H. L.; Schmit, L. A.
1990-01-01
A methodology for control-augmented structural synthesis is presented for structure-control systems which can be modeled as an assemblage of beam, truss, and nonstructural mass elements augmented by a noncollocated direct output feedback control system. Truss areas, beam cross sectional dimensions, nonstructural masses and rotary inertias, and controller position and velocity gains are treated simultaneously as design variables. The structural mass and a control-system performance index can be minimized simultaneously, with design constraints placed on static stresses and displacements, dynamic harmonic displacements and forces, structural frequencies, and closed-loop eigenvalues and damping ratios. Intermediate design-variable and response-quantity concepts are used to generate new approximations for displacements and actuator forces under harmonic dynamic loads and for system complex eigenvalues. This improves the overall efficiency of the procedure by reducing the number of complete analyses required for convergence. Numerical results which illustrate the effectiveness of the method are given.
Recent advances in approximation concepts for optimum structural design
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois M.; Haftka, Raphael T.
1991-01-01
The basic approximation concepts used in structural optimization are reviewed. Some of the most recent developments in that area since the introduction of the concept in the mid-seventies are discussed. The paper distinguishes between local, medium-range, and global approximations; it covers functions approximations and problem approximations. It shows that, although the lack of comparative data established on reference test cases prevents an accurate assessment, there have been significant improvements. The largest number of developments have been in the areas of local function approximations and use of intermediate variable and response quantities. It also appears that some new methodologies are emerging which could greatly benefit from the introduction of new computer architecture.
Intermediate ions in the atmosphere
NASA Astrophysics Data System (ADS)
Tammet, Hannes; Komsaare, Kaupo; Hõrrak, Urmas
2014-01-01
Intermediate air ions are charged nanometer-sized aerosol particles with an electric mobility of about 0.03-0.5 cm2 V- 1 s- 1 and a diameter of about 1.5-7.5 nm. Intensive studies of new particle formation provided good knowledge about intermediate ions during burst events of atmospheric aerosol nucleation. Information about intermediate ions during quiet periods between the bursts remained poor. The new mobility analyzer SIGMA can detect air ions at concentrations of mobility fractions of about 1 cm- 3 and enables studying intermediate ions during quiet periods. It became evident that intermediate ions always exist in atmospheric air and should be considered an indicator and a mediator of aerosol nucleation. The annual average concentration of intermediate ions of one polarity in Tartu, Estonia, was about 40 cm- 3 while 5% of the measurements showed a concentration of less than 10 cm- 3. The fraction concentrations in logarithmic 1/8-decade mobility bins between 0.1 and 0.4 cm2 V- 1 s- 1 often dropped below 1 cm- 3. The bursts of intermediate ions at stations separated by around 100 km appeared to be correlated. The lifespan of intermediate ions in the atmosphere is a few minutes, and they cannot be carried by wind over long distances. Thus the observed long-range correlation of intermediate ions is explained by simultaneous changes in air composition in widely spaced stations. A certain amount of intermediate ion bursts, predominantly of negative polarity, are produced by the balloelectric effect at the splashing of water drops during rain. These bursts are usually excluded when speaking about new particle formation because the balloelectric particles are assumed not to grow to the size of the Aitken mode. The mobility distribution of balloelectric ions is uniform in shape in all measurements. The maximum is located at a mobility of about 0.2 cm2 V- 1 s- 1, which corresponds to the diameter of particles of about 2.5 nm.
Cavity approximation for graphical models.
Rizzo, T; Wemmenhove, B; Kappen, H J
2007-07-01
We reformulate the cavity approximation (CA), a class of algorithms recently introduced for improving the Bethe approximation estimates of marginals in graphical models. In our formulation, which allows for the treatment of multivalued variables, a further generalization to factor graphs with arbitrary order of interaction factors is explicitly carried out, and a message passing algorithm that implements the first order correction to the Bethe approximation is described. Furthermore, we investigate an implementation of the CA for pairwise interactions. In all cases considered we could confirm that CA[k] with increasing k provides a sequence of approximations of markedly increasing precision. Furthermore, in some cases we could also confirm the general expectation that the approximation of order k , whose computational complexity is O(N(k+1)) has an error that scales as 1/N(k+1) with the size of the system. We discuss the relation between this approach and some recent developments in the field. PMID:17677405
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-12-22
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Structural optimization with approximate sensitivities
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.
1994-01-01
Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.
Approximate Genealogies Under Genetic Hitchhiking
Pfaffelhuber, P.; Haubold, B.; Wakolbinger, A.
2006-01-01
The rapid fixation of an advantageous allele leads to a reduction in linked neutral variation around the target of selection. The genealogy at a neutral locus in such a selective sweep can be simulated by first generating a random path of the advantageous allele's frequency and then a structured coalescent in this background. Usually the frequency path is approximated by a logistic growth curve. We discuss an alternative method that approximates the genealogy by a random binary splitting tree, a so-called Yule tree that does not require first constructing a frequency path. Compared to the coalescent in a logistic background, this method gives a slightly better approximation for identity by descent during the selective phase and a much better approximation for the number of lineages that stem from the founder of the selective sweep. In applications such as the approximation of the distribution of Tajima's D, the two approximation methods perform equally well. For relevant parameter ranges, the Yule approximation is faster. PMID:17182733
NASA Technical Reports Server (NTRS)
Eggers, P. E.; Mueller, J. J.
1969-01-01
New design of segmented couples incorporates an intermediate junction contacted by pressure, and eliminates transition members that bond materials differing in thermal expansion. Development of a reproducible and reliable intermediate junction between PbTe and SiGe will be applicable to direct conversion of energy.
Kinetically Competent Intermediate(s) in the Translocation Step of Protein Synthesis
Pan, Dongli; Kirillov, Stanislav V.; Cooperman, Barry S.
2007-01-01
SUMMARY Translocation requires large-scale movements of ribosome-bound tRNAs. Using tRNAs that are proflavin-labeled and single turnover rapid kinetics assays, we identify one or possibly two kinetically competent intermediates in translocation. EF-G.GTP binding to the pretranslocation (PRE) complex and GTP hydrolysis is rapidly followed by formation of the securely identified intermediate complex (INT), which is more slowly converted to the posttranslocation (POST) complex. Peptidyl tRNA within the INT complex occupies a hybrid site, having puromycin reactivity intermediate between those of the PRE and POST complexes. Thiostrepton and viomycin inhibit INT formation, whereas spectinomycin selectively inhibits INT disappearance. The effects of other translocation modulators suggest that EF-G-dependent GTP hydrolysis is more important for INT complex formation than for INT complex conversion to POST complex, and that subtle changes in tRNA structure influence coupling of tRNA movement to EF-G.GTP-induced conformational changes. PMID:17317625
A Cool Business: Trapping Intermediates on the submillisecond time scale
NASA Astrophysics Data System (ADS)
Yeh, Syun-Ru
2004-03-01
The freeze-quenching technique is extremely useful for trapping meta-stable intermediates populated during fast chemical or biochemical reactions. The application of this technique, however, is limited by the long mixing time of conventional solution mixers and the slow freezing time of cryogenic fluids. To overcome these problems, we have designed and tested a novel microfluidic silicon mixer equipped with a new freeze-quenching device, with which reactions can be followed down to 50 microseconds. In the microfluidic silicon mixer, seven vertical pillars with 10 micrometer diameter are arranged perpendicular to the flow direction and in a staggered fashion in the 450 picoliter mixing chamber to enhance turbulent mixing. The mixed solution jet, with a cross-section of 10 micrometer by 100 micrometer, exits from the microfluidic silicon mixer with a linear flow velocity of 20 m/sec. It instantaneously freezes on one of two rotating copper wheels maintained at 77 K and is subsequently ground into an ultra-fine powder. The ultra-fine frozen powder exhibits excellent spectral quality, high packing factor and can be readily transferred between spectroscopic observation cells. The microfluidic mixer was tested by the reaction between azide and myoglobin at pH 5.0. It was found that complete mixing was achieved within the mixing dead-time of the mixer (20 microseconds) and the first observable point for this coupled device was determined to be 50 microseconds, which is approximately two orders of magnitude faster than commercially available instruments. Several new applications of this device in ultra-fast biological reactions will be presented. Acknowledgements: This work is done in collaboration with Dr. Denis Rousseau and is supported by the NIH Grants HL65465 to S.-R.Y. and GM67814 to D.L.R.
Mathematical algorithms for approximate reasoning
NASA Technical Reports Server (NTRS)
Murphy, John H.; Chay, Seung C.; Downs, Mary M.
1988-01-01
Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away
Exponential approximations in optimal design
NASA Technical Reports Server (NTRS)
Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.
1990-01-01
One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.
Approximate factorization with source terms
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Chyu, W. J.
1991-01-01
A comparative evaluation is made of three methodologies with a view to that which offers the best approximate factorization error. While two of these methods are found to lead to more efficient algorithms in cases where factors which do not contain source terms can be diagonalized, the third method used generates the lowest approximate factorization error. This method may be preferred when the norms of source terms are large, and transient solutions are of interest.
Approximating random quantum optimization problems
NASA Astrophysics Data System (ADS)
Hsu, B.; Laumann, C. R.; Läuchli, A. M.; Moessner, R.; Sondhi, S. L.
2013-06-01
We report a cluster of results regarding the difficulty of finding approximate ground states to typical instances of the quantum satisfiability problem k-body quantum satisfiability (k-QSAT) on large random graphs. As an approximation strategy, we optimize the solution space over “classical” product states, which in turn introduces a novel autonomous classical optimization problem, PSAT, over a space of continuous degrees of freedom rather than discrete bits. Our central results are (i) the derivation of a set of bounds and approximations in various limits of the problem, several of which we believe may be amenable to a rigorous treatment; (ii) a demonstration that an approximation based on a greedy algorithm borrowed from the study of frustrated magnetism performs well over a wide range in parameter space, and its performance reflects the structure of the solution space of random k-QSAT. Simulated annealing exhibits metastability in similar “hard” regions of parameter space; and (iii) a generalization of belief propagation algorithms introduced for classical problems to the case of continuous spins. This yields both approximate solutions, as well as insights into the free energy “landscape” of the approximation problem, including a so-called dynamical transition near the satisfiability threshold. Taken together, these results allow us to elucidate the phase diagram of random k-QSAT in a two-dimensional energy-density-clause-density space.
Learning through Literature: Geography, Intermediate.
ERIC Educational Resources Information Center
Sterling, Mary Ellen
This resource book provides specific strategies and activities for integrating the intermediate geography curriculum with related children's literature selections. The book includes the following sections: (1) "World Geography Overview"; (2) "Oceans"; (3) "Polar Regions"; (4) "Islands"; (5) "Rain Forests"; (6) "Mountains"; (7) "Forests"; (8)…
Intermediality and the Child Performer
ERIC Educational Resources Information Center
Budd, Natasha
2016-01-01
This report details examples of praxis in the creation and presentation of "Joy Fear and Poetry": an intermedial theatre performance in which children aged 7-12 years generated aesthetic gestures using a range of new media forms. The impetus for the work's development was a desire to make an intervention into habituated patterns of…
Material Voices: Intermediality and Autism
ERIC Educational Resources Information Center
Trimingham, Melissa; Shaughnessy, Nicola
2016-01-01
Autism continues to be regarded enigmatically; a community that is difficult to access due to perceived disruptions of interpersonal connectedness. Through detailed observations of two children participating in the Arts and Humanities Research Council funded project "Imagining Autism: Drama, Performance and Intermediality as Interventions for…
Susu Intermediate Course. Final Report.
ERIC Educational Resources Information Center
Sangster, Linda W.; Faber, Emmanuel
This intermediate text in Susu is intended to provide the student of Susu with further practice on the grammatical constructions learned in the Basic Course. (See related document AL 001 956.) It is also intended to provide the student with some practice in reading Susu, and to help him gain some appreciation of the cultural life of the Susu in…
Intermediate Filaments: A Historical Perspective
Oshima, Robert G.
2007-01-01
Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years. PMID:17493611
Intermediate Nepali Structure. Volume 1.
ERIC Educational Resources Information Center
Verma, M. K.; Sharma, T. N.
This volume is made up of 20 lessons and is part of a comprehensive course in intermediate Nepali. It explains and illustrates the basic structures of Nepali grammar through lessons which include different tense forms, postpositions, conditionals, comparatives, and other structural elements. The first lesson is devoted specifically to guiding…
Cestina pro Pokrocile (Intermediate Czech).
ERIC Educational Resources Information Center
Kabat, Grazyna; And Others
The textbook in intermediate Czech is designed for second-year students of the language and those who already have a basic knowledge of Czech grammar and vocabulary. It is appropriate for use in a traditional college language classroom, the business community, or a government language school. It can be covered in a year-long conventional…
Probing the non-native H helix translocation in apomyoglobin folding intermediates.
Aoto, Phillip C; Nishimura, Chiaki; Dyson, H Jane; Wright, Peter E
2014-06-17
Apomyoglobin folds via sequential helical intermediates that are formed by rapid collapse of the A, B, G, and H helix regions. An equilibrium molten globule with a similar structure is formed near pH 4. Previous studies suggested that the folding intermediates are kinetically trapped states in which folding is impeded by non-native packing of the G and H helices. Fluorescence spectra of mutant proteins in which cysteine residues were introduced at several positions in the G and H helices show differential quenching of W14 fluorescence, providing direct evidence of translocation of the H helix relative to helices A and G in both the kinetic and equilibrium intermediates. Förster resonance energy transfer measurements show that a 5-({2-[(acetyl)amino]ethyl}amino)naphthalene-1-sulfonic acid acceptor coupled to K140C (helix H) is closer to Trp14 (helix A) in the equilibrium molten globule than in the native state, by a distance that is consistent with sliding of the H helix in an N-terminal direction by approximately one helical turn. Formation of an S108C-L135C disulfide prevents H helix translocation in the equilibrium molten globule by locking the G and H helices into their native register. By enforcing nativelike packing of the A, G, and H helices, the disulfide resolves local energetic frustration and facilitates transient docking of the E helix region onto the hydrophobic core but has only a small effect on the refolding rate. The apomyoglobin folding landscape is highly rugged, with several energetic bottlenecks that frustrate folding; relief of any one of the major identified bottlenecks is insufficient to speed progression to the transition state. PMID:24857522
Large intermediate-depth earthquakes and the subduction process
NASA Astrophysics Data System (ADS)
Astiz, Luciana; Lay, Thorne; Kanamori, Hiroo
1988-12-01
This study provides an overview of intermediate-depth earthquake phenomena, placing emphasis on the larger, tectonically significant events, and exploring the relation of intermediate-depth earthquakes to shallower seismicity. Especially, we examine whether intermediate-depth events reflect the state of interplate coupling at subduction zones, and whether this activity exhibits temporal changes associated with the occurrence of large underthrusting earthquakes. Historic record of large intraplate earthquakes ( mB ≥ 7.0) in this century shows that the New Hebrides and Tonga subduction zones have the largest number of large intraplate events. Regions associated with bends in the subducted lithosphere also have many large events (e.g. Altiplano and New Ireland). We compiled a catalog of focal mechanisms for events that occurred between 1960 and 1984 with M > 6 and depth between 40 and 200 km. The final catalog includes 335 events with 47 new focal mechanisms, and is probably complete for earthquakes with mB ≥ 6.5. For events with M ≥ 6.5, nearly 48% of the events had no aftershocks and only 15% of the events had more than five aftershocks within one week of the mainshock. Events with more than ten aftershocks are located in regions associated with bends in the subducted slab. Focal mechanism solutions for intermediate-depth earthquakes with M > 6.8 can be grouped into four categories: (1) Normal-fault events (44%), and (2) reverse-fault events (33%), both with a strike nearly parallel to the trench axis. (3) Normal or reverse-fault events with a strike significantly oblique to the trench axis (10%), and (4) tear-faulting events (13%). The focal mechanisms of type 1 events occur mainly along strongly or moderately coupled subduction zones where a down-dip extensional stress prevails in a gently dipping plate. In contrast, along decoupled subduction zones great normal-fault earthquakes occur at shallow depths (e.g., the 1977 Sumbawa earthquake in Indonesia). Type
Nanoscale insight into C-C coupling on cobalt nanoparticles.
Lewis, E A; Murphy, C J; Pronschinske, A; Liriano, M L; Sykes, E C H
2014-09-11
The Ullmann coupling of bromobenzene to biphenyl on Co nanoparticles proceeds below room temperature via an intermediate in which phenyl groups are bound directly to metallic Co. A similar surface-bound benzyl intermediate is observed for coupling of benzylbromide to bibenzyl on Co. PMID:25051314
Strong washout approximation to resonant leptogenesis
NASA Astrophysics Data System (ADS)
Garbrecht, Björn; Gautier, Florian; Klaric, Juraj
2014-09-01
We show that the effective decay asymmetry for resonant Leptogenesis in the strong washout regime with two sterile neutrinos and a single active flavour can in wide regions of parameter space be approximated by its late-time limit ɛ=Xsin(2varphi)/(X2+sin2varphi), where X=8πΔ/(|Y1|2+|Y2|2), Δ=4(M1-M2)/(M1+M2), varphi=arg(Y2/Y1), and M1,2, Y1,2 are the masses and Yukawa couplings of the sterile neutrinos. This approximation in particular extends to parametric regions where |Y1,2|2gg Δ, i.e. where the width dominates the mass splitting. We generalise the formula for the effective decay asymmetry to the case of several flavours of active leptons and demonstrate how this quantity can be used to calculate the lepton asymmetry for phenomenological scenarios that are in agreement with the observed neutrino oscillations. We establish analytic criteria for the validity of the late-time approximation for the decay asymmetry and compare these with numerical results that are obtained by solving for the mixing and the oscillations of the sterile neutrinos. For phenomenologically viable models with two sterile neutrinos, we find that the flavoured effective late-time decay asymmetry can be applied throughout parameter space.
Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus
Sarff, J.S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Stoneking, M.R. ); Assadi, S. ); Sidikman, K.L. )
1992-11-01
Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in k-space. The strength of nonlinear three-wave interactions satisfying the sum rules m[sub 1] + m[sub 2] = m[sub 3] and n[sub 1] + n[sub 2] = n[sub 3] is measured by the bicoherency. In the RFP, m=l, n[approximately]2R/a (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two m=l modes coupled to an m=2 mode and the coupling of intermediate toroidal modes, e.g., n=6 and 7 coupled to n=13. These experimental bispectral features agree with predicted bispectral features derived from MHD computation. However, in the experiment, enhanced coupling occurs in the crash'' phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade.
Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus
Sarff, J.S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Stoneking, M.R.; Assadi, S.; Sidikman, K.L.
1992-11-01
Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in ``k-space. The strength of nonlinear three-wave interactions satisfying the sum rules m{sub 1} + m{sub 2} = m{sub 3} and n{sub 1} + n{sub 2} = n{sub 3} is measured by the bicoherency. In the RFP, m=l, n{approximately}2R/a (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two m=l modes coupled to an m=2 mode and the coupling of intermediate toroidal modes, e.g., n=6 and 7 coupled to n=13. These experimental bispectral features agree with predicted bispectral features derived from MHD computation. However, in the experiment, enhanced coupling occurs in the ``crash`` phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade.
Model of cosmology and particle physics at an intermediate scale
Bastero-Gil, M.; Di Clemente, V.; King, S. F.
2005-05-15
We propose a model of cosmology and particle physics in which all relevant scales arise in a natural way from an intermediate string scale. We are led to assign the string scale to the intermediate scale M{sub *}{approx}10{sup 13} GeV by four independent pieces of physics: electroweak symmetry breaking; the {mu} parameter; the axion scale; and the neutrino mass scale. The model involves hybrid inflation with the waterfall field N being responsible for generating the {mu} term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The large scale structure of the Universe is generated by the lightest right-handed sneutrino playing the role of a coupled curvaton. We show that the correct curvature perturbations may be successfully generated providing the lightest right-handed neutrino is weakly coupled in the seesaw mechanism, consistent with sequential dominance.
Wavelet Sparse Approximate Inverse Preconditioners
NASA Technical Reports Server (NTRS)
Chan, Tony F.; Tang, W.-P.; Wan, W. L.
1996-01-01
There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.
Approximate entropy of network parameters.
West, James; Lacasa, Lucas; Severini, Simone; Teschendorff, Andrew
2012-04-01
We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches. PMID:22680542
Approximate entropy of network parameters
NASA Astrophysics Data System (ADS)
West, James; Lacasa, Lucas; Severini, Simone; Teschendorff, Andrew
2012-04-01
We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches.
Relativistic regular approximations revisited: An infinite-order relativistic approximation
Dyall, K.G.; van Lenthe, E.
1999-07-01
The concept of the regular approximation is presented as the neglect of the energy dependence of the exact Foldy{endash}Wouthuysen transformation of the Dirac Hamiltonian. Expansion of the normalization terms leads immediately to the zeroth-order regular approximation (ZORA) and first-order regular approximation (FORA) Hamiltonians as the zeroth- and first-order terms of the expansion. The expansion may be taken to infinite order by using an un-normalized Foldy{endash}Wouthuysen transformation, which results in the ZORA Hamiltonian and a nonunit metric. This infinite-order regular approximation, IORA, has eigenvalues which differ from the Dirac eigenvalues by order E{sup 3}/c{sup 4} for a hydrogen-like system, which is a considerable improvement over the ZORA eigenvalues, and similar to the nonvariational FORA energies. A further perturbation analysis yields a third-order correction to the IORA energies, TIORA. Results are presented for several systems including the neutral U atom. The IORA eigenvalues for all but the 1s spinor of the neutral system are superior even to the scaled ZORA energies, which are exact for the hydrogenic system. The third-order correction reduces the IORA error for the inner orbitals to a very small fraction of the Dirac eigenvalue. {copyright} {ital 1999 American Institute of Physics.}
Vacancy-rearrangement theory in the first Magnus approximation
Becker, R.L.
1984-01-01
In the present paper we employ the first Magnus approximation (M1A), a unitarized Born approximation, in semiclassical collision theory. We have found previously that the M1A gives a substantial improvement over the first Born approximation (B1A) and can give a good approximation to a full coupled channels calculation of the mean L-shell vacancy probability per electron, p/sub L/, when the L-vacancies are accompanied by a K-shell vacancy (p/sub L/ is obtained experimentally from measurements of K/sub ..cap alpha../-satellite intensities). For sufficiently strong projectile-electron interactions (sufficiently large Z/sub p/ or small v) the M1A ceases to reproduce the coupled channels results, but it is accurate over a much wider range of Z/sub p/ and v than the B1A. 27 references.
NASA Astrophysics Data System (ADS)
Fox, Benjamin D.; Selby, Neil D.; Heyburn, Ross; Woodhouse, John H.
2012-09-01
Estimating reliable depths for shallow seismic sources is important in both seismo-tectonic studies and in seismic discrimination studies. Surface wave excitation is sensitive to source depth, especially at intermediate and short-periods, owing to the approximate exponential decay of surface wave displacements with depth. A new method is presented here to retrieve earthquake source parameters from regional and teleseismic intermediate period (100-15 s) fundamental-mode surface wave recordings. This method makes use of advances in mapping global dispersion to allow higher frequency surface wave recordings at regional and teleseismic distances to be used with more confidence than in previous studies and hence improve the resolution of depth estimates. Synthetic amplitude spectra are generated using surface wave theory combined with a great circle path approximation, and a grid of double-couple sources are compared with the data. Source parameters producing the best-fitting amplitude spectra are identified by minimizing the least-squares misfit in logarithmic amplitude space. The F-test is used to search the solution space for statistically acceptable parameters and the ranges of these variables are used to place constraints on the best-fitting source. Estimates of focal mechanism, depth and scalar seismic moment are determined for 20 small to moderate sized (4.3 ≤Mw≤ 6.4) earthquakes. These earthquakes are situated across a wide range of geographic and tectonic locations and describe a range of faulting styles over the depth range 4-29 km. For the larger earthquakes, comparisons with other studies are favourable, however existing source determination procedures, such as the CMT technique, cannot be performed for the smaller events. By reducing the magnitude threshold at which robust source parameters can be determined, the accuracy, especially at shallow depths, of seismo-tectonic studies, seismic hazard assessments, and seismic discrimination investigations can
Gadgets, approximation, and linear programming
Trevisan, L.; Sudan, M.; Sorkin, G.B.; Williamson, D.P.
1996-12-31
We present a linear-programming based method for finding {open_quotes}gadgets{close_quotes}, i.e., combinatorial structures reducing constraints of one optimization problems to constraints of another. A key step in this method is a simple observation which limits the search space to a finite one. Using this new method we present a number of new, computer-constructed gadgets for several different reductions. This method also answers a question posed by on how to prove the optimality of gadgets-we show how LP duality gives such proofs. The new gadgets improve hardness results for MAX CUT and MAX DICUT, showing that approximating these problems to within factors of 60/61 and 44/45 respectively is N P-hard. We also use the gadgets to obtain an improved approximation algorithm for MAX 3SAT which guarantees an approximation ratio of .801. This improves upon the previous best bound of .7704.
Approximating the largest eigenvalue of network adjacency matrices
NASA Astrophysics Data System (ADS)
Restrepo, Juan G.; Ott, Edward; Hunt, Brian R.
2007-11-01
The largest eigenvalue of the adjacency matrix of a network plays an important role in several network processes (e.g., synchronization of oscillators, percolation on directed networks, and linear stability of equilibria of network coupled systems). In this paper we develop approximations to the largest eigenvalue of adjacency matrices and discuss the relationships between these approximations. Numerical experiments on simulated networks are used to test our results.
Mechanics of vimentin intermediate filaments
NASA Technical Reports Server (NTRS)
Wang, Ning; Stamenovic, Dimitrijie
2002-01-01
It is increasingly evident that the cytoskeleton of living cells plays important roles in mechanical and biological functions of the cells. Here we focus on the contribution of intermediate filaments (IFs) to the mechanical behaviors of living cells. Vimentin, a major structural component of IFs in many cell types, is shown to play an important role in vital mechanical and biological functions such as cell contractility, migration, stiffness, stiffening, and proliferation.
Pythagorean Approximations and Continued Fractions
ERIC Educational Resources Information Center
Peralta, Javier
2008-01-01
In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…
Branching of keratin intermediate filaments.
Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward
2016-06-01
Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation. PMID:27039023
NASA Astrophysics Data System (ADS)
Metz, P. D.
The feasibility of ground coupling for various heat pump systems was investigated. Analytical heat flow models were developed to approximate design ground coupling devices for use in solar heat pump space conditioning systems. A digital computer program called GROCS (GRound Coupled Systems) was written to model 3-dimensional underground heat flow in order to simulate the behavior of ground coupling experiments and to provide performance predictions which have been compared to experimental results. GROCS also has been integrated with TRNSYS. Soil thermal property and ground coupling device experiments are described. Buried tanks, serpentine earth coils in various configurations, lengths and depths, and sealed vertical wells are being investigated. An earth coil used to heat a house without use of resistance heating is described.
Chemical Laws, Idealization and Approximation
NASA Astrophysics Data System (ADS)
Tobin, Emma
2013-07-01
This paper examines the notion of laws in chemistry. Vihalemm ( Found Chem 5(1):7-22, 2003) argues that the laws of chemistry are fundamentally the same as the laws of physics they are all ceteris paribus laws which are true "in ideal conditions". In contrast, Scerri (2000) contends that the laws of chemistry are fundamentally different to the laws of physics, because they involve approximations. Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34-50, 2000) agree that the laws of chemistry are operationally different to the laws of physics, but claim that the distinction between exact and approximate laws is too simplistic to taxonomise them. Approximations in chemistry involve diverse kinds of activity and often what counts as a scientific law in chemistry is dictated by the context of its use in scientific practice. This paper addresses the question of what makes chemical laws distinctive independently of the separate question as to how they are related to the laws of physics. From an analysis of some candidate ceteris paribus laws in chemistry, this paper argues that there are two distinct kinds of ceteris paribus laws in chemistry; idealized and approximate chemical laws. Thus, while Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34--50, 2000) are correct to point out that the candidate generalisations in chemistry are diverse and heterogeneous, a distinction between idealizations and approximations can nevertheless be used to successfully taxonomise them.
Self-Consistent Random Phase Approximation
NASA Astrophysics Data System (ADS)
Rohr, Daniel; Hellgren, Maria; Gross, E. K. U.
2012-02-01
We report self-consistent Random Phase Approximation (RPA) calculations within the Density Functional Theory. The calculations are performed by the direct minimization scheme for the optimized effective potential method developed by Yang et al. [1]. We show results for the dissociation curve of H2^+, H2 and LiH with the RPA, where the exchange correlation kernel has been set to zero. For H2^+ and H2 we also show results for RPAX, where the exact exchange kernel has been included. The RPA, in general, over-correlates. At intermediate distances a maximum is obtained that lies above the exact energy. This is known from non-self-consistent calculations and is still present in the self-consistent results. The RPAX energies are higher than the RPA energies. At equilibrium distance they accurately reproduce the exact total energy. In the dissociation limit they improve upon RPA, but are still too low. For H2^+ the RPAX correlation energy is zero. Consequently, RPAX gives the exact dissociation curve. We also present the local potentials. They indicate that a peak at the bond midpoint builds up with increasing bond distance. This is expected for the exact KS potential.[4pt] [1] W. Yang, and Q. Wu, Phys. Rev. Lett., 89, 143002 (2002)
Revisiting the envelope approximation: Gravitational waves from bubble collisions
NASA Astrophysics Data System (ADS)
Weir, David J.
2016-06-01
We study the envelope approximation and its applicability to first-order phase transitions in the early Universe. We demonstrate that the power laws seen in previous studies exist independently of the nucleation rate. We also compare the envelope approximation prediction to results from large-scale phase transition simulations. For phase transitions where the contribution to gravitational waves from scalar fields dominates over that from the coupled plasma of light particles, the envelope approximation is in agreement, giving a power spectrum of the same form and order of magnitude. In all other cases the form and amplitude of the gravitational wave power spectrum is markedly different and new techniques are required.
One sign ion mobile approximation
NASA Astrophysics Data System (ADS)
Barbero, G.
2011-12-01
The electrical response of an electrolytic cell to an external excitation is discussed in the simple case where only one group of positive and negative ions is present. The particular case where the diffusion coefficients of the negative ions, Dm, is very small with respect to that of the positive ions, Dp, is considered. In this framework, it is discussed under what conditions the one mobile approximation, in which the negative ions are assumed fixed, works well. The analysis is performed by assuming that the external excitation is sinusoidal with circular frequency ω, as that used in the impedance spectroscopy technique. In this framework, we show that there exists a circular frequency, ω*, such that for ω > ω*, the one mobile ion approximation works well. We also show that for Dm ≪ Dp, ω* is independent of Dm.
Testing the frozen flow approximation
NASA Technical Reports Server (NTRS)
Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro
1993-01-01
We investigate the accuracy of the frozen-flow approximation (FFA), recently proposed by Matarrese, et al. (1992), for following the nonlinear evolution of cosmological density fluctuations under gravitational instability. We compare a number of statistics between results of the FFA and n-body simulations, including those used by Melott, Pellman & Shandarin (1993) to test the Zel'dovich approximation. The FFA performs reasonably well in a statistical sense, e.g. in reproducing the counts-in-cell distribution, at small scales, but it does poorly in the crosscorrelation with n-body which means it is generally not moving mass to the right place, especially in models with high small-scale power.
An approximation theory for the identification of linear thermoelastic systems
NASA Technical Reports Server (NTRS)
Rosen, I. G.; Su, Chien-Hua Frank
1990-01-01
An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.
Approximate Counting of Graphical Realizations
2015-01-01
In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations. PMID:26161994
Computer Experiments for Function Approximations
Chang, A; Izmailov, I; Rizzo, S; Wynter, S; Alexandrov, O; Tong, C
2007-10-15
This research project falls in the domain of response surface methodology, which seeks cost-effective ways to accurately fit an approximate function to experimental data. Modeling and computer simulation are essential tools in modern science and engineering. A computer simulation can be viewed as a function that receives input from a given parameter space and produces an output. Running the simulation repeatedly amounts to an equivalent number of function evaluations, and for complex models, such function evaluations can be very time-consuming. It is then of paramount importance to intelligently choose a relatively small set of sample points in the parameter space at which to evaluate the given function, and then use this information to construct a surrogate function that is close to the original function and takes little time to evaluate. This study was divided into two parts. The first part consisted of comparing four sampling methods and two function approximation methods in terms of efficiency and accuracy for simple test functions. The sampling methods used were Monte Carlo, Quasi-Random LP{sub {tau}}, Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin Hypercubes. The function approximation methods utilized were Multivariate Adaptive Regression Splines (MARS) and Support Vector Machines (SVM). The second part of the study concerned adaptive sampling methods with a focus on creating useful sets of sample points specifically for monotonic functions, functions with a single minimum and functions with a bounded first derivative.
Approximate reasoning using terminological models
NASA Technical Reports Server (NTRS)
Yen, John; Vaidya, Nitin
1992-01-01
Term Subsumption Systems (TSS) form a knowledge-representation scheme in AI that can express the defining characteristics of concepts through a formal language that has a well-defined semantics and incorporates a reasoning mechanism that can deduce whether one concept subsumes another. However, TSS's have very limited ability to deal with the issue of uncertainty in knowledge bases. The objective of this research is to address issues in combining approximate reasoning with term subsumption systems. To do this, we have extended an existing AI architecture (CLASP) that is built on the top of a term subsumption system (LOOM). First, the assertional component of LOOM has been extended for asserting and representing uncertain propositions. Second, we have extended the pattern matcher of CLASP for plausible rule-based inferences. Third, an approximate reasoning model has been added to facilitate various kinds of approximate reasoning. And finally, the issue of inconsistency in truth values due to inheritance is addressed using justification of those values. This architecture enhances the reasoning capabilities of expert systems by providing support for reasoning under uncertainty using knowledge captured in TSS. Also, as definitional knowledge is explicit and separate from heuristic knowledge for plausible inferences, the maintainability of expert systems could be improved.
Approximate Counting of Graphical Realizations.
Erdős, Péter L; Kiss, Sándor Z; Miklós, István; Soukup, Lajos
2015-01-01
In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations. PMID:26161994
Role of Intermediate Filaments in Vesicular Traffic
Margiotta, Azzurra; Bucci, Cecilia
2016-01-01
Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621
Role of Intermediate Filaments in Vesicular Traffic.
Margiotta, Azzurra; Bucci, Cecilia
2016-01-01
Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621
Bond selective chemistry beyond the adiabatic approximation
Butler, L.J.
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
The LMC Intermediate and Populations
NASA Astrophysics Data System (ADS)
Olszewski, E. W.
I will discuss our current understanding of the intermediate and old populations of the LMC. Dominant themes will be what those populations tell us about the relative ages of the oldest components of the Milky Way and LMC, what they tell us about the star formation history of the LMC, and what they tell us about the presence or absence of a halo (as we understand that term in the Milky Way) in the LMC. Topics not discussed at previous Magellanic Cloud meetings include the ages of the oldest LMC clusters from HST data, and the seeming lack of agreement between deep luminosity function analyses and distributions of abundances of red giants.
Strong washout approximation to resonant leptogenesis
Garbrecht, Björn; Gautier, Florian; Klaric, Juraj E-mail: florian.gautier@tum.de
2014-09-01
We show that the effective decay asymmetry for resonant Leptogenesis in the strong washout regime with two sterile neutrinos and a single active flavour can in wide regions of parameter space be approximated by its late-time limit ε=Xsin(2φ)/(X{sup 2}+sin{sup 2}φ), where X=8πΔ/(|Y{sub 1}|{sup 2}+|Y{sub 2}|{sup 2}), Δ=4(M{sub 1}-M{sub 2})/(M{sub 1}+M{sub 2}), φ=arg(Y{sub 2}/Y{sub 1}), and M{sub 1,2}, Y{sub 1,2} are the masses and Yukawa couplings of the sterile neutrinos. This approximation in particular extends to parametric regions where |Y{sub 1,2}|{sup 2}>> Δ, i.e. where the width dominates the mass splitting. We generalise the formula for the effective decay asymmetry to the case of several flavours of active leptons and demonstrate how this quantity can be used to calculate the lepton asymmetry for phenomenological scenarios that are in agreement with the observed neutrino oscillations. We establish analytic criteria for the validity of the late-time approximation for the decay asymmetry and compare these with numerical results that are obtained by solving for the mixing and the oscillations of the sterile neutrinos. For phenomenologically viable models with two sterile neutrinos, we find that the flavoured effective late-time decay asymmetry can be applied throughout parameter space.
Methods of approximation of reference fields of different classes
NASA Astrophysics Data System (ADS)
Kolesova, Valentina I.
1993-11-01
The summary geomagnetic field on the reference field for the regional anomalies is surface of the Earth consists of the follow- the sum of the main geomagnetic field and ing components: the intermediate anomalies. Since the components mentioned above have the F0 = Fm + Fim + Fr + F1 + F (1) different space-spectral characteristics, different methods are used for the analytiwhere cal descriptions. The main geomagnetic field, being the global reference field, is approximated by F0 - the observed geomagnetic field the optimal way as a spherical harmonic Fm - the main geomagnetic field series [1]: Fim - the field of the intermediate anoma- n lies Fr - the field of the regional anomalies X = (g cosm\\ + n=i m=O F1 - the field of the local anomalies, - the external geomagnetic field.
Improved non-approximability results
Bellare, M.; Sudan, M.
1994-12-31
We indicate strong non-approximability factors for central problems: N{sup 1/4} for Max Clique; N{sup 1/10} for Chromatic Number; and 66/65 for Max 3SAT. Underlying the Max Clique result is a proof system in which the verifier examines only three {open_quotes}free bits{close_quotes} to attain an error of 1/2. Underlying the Chromatic Number result is a reduction from Max Clique which is more efficient than previous ones.
Quantum tunneling beyond semiclassical approximation
NASA Astrophysics Data System (ADS)
Banerjee, Rabin; Ranjan Majhi, Bibhas
2008-06-01
Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.
Fermion tunneling beyond semiclassical approximation
NASA Astrophysics Data System (ADS)
Majhi, Bibhas Ranjan
2009-02-01
Applying the Hamilton-Jacobi method beyond the semiclassical approximation prescribed in R. Banerjee and B. R. Majhi, J. High Energy Phys.JHEPFG1029-8479 06 (2008) 09510.1088/1126-6708/2008/06/095 for the scalar particle, Hawking radiation as tunneling of the Dirac particle through an event horizon is analyzed. We show that, as before, all quantum corrections in the single particle action are proportional to the usual semiclassical contribution. We also compute the modifications to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. Finally, the coefficient of the logarithmic correction to entropy is shown to be related with the trace anomaly.
Generalized Gradient Approximation Made Simple
Perdew, J.P.; Burke, K.; Ernzerhof, M.
1996-10-01
Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}
The structural physical approximation conjecture
NASA Astrophysics Data System (ADS)
Shultz, Fred
2016-01-01
It was conjectured that the structural physical approximation (SPA) of an optimal entanglement witness is separable (or equivalently, that the SPA of an optimal positive map is entanglement breaking). This conjecture was disproved, first for indecomposable maps and more recently for decomposable maps. The arguments in both cases are sketched along with important related results. This review includes background material on topics including entanglement witnesses, optimality, duality of cones, decomposability, and the statement and motivation for the SPA conjecture so that it should be accessible for a broad audience.
White Dwarfs in Intermediate Polars
NASA Astrophysics Data System (ADS)
Belle, Kunegunda E.; Sion, E. M.
2009-01-01
Intermediate polars (IPs), magnetic cataclysmic variables (CVs) in which the white dwarf (WD) has an intermediate strength magnetic field (B< 5 MG), present an interesting laboratory for the study of the evolution of CVs as they contain elements of both non-magnetic and magnetic systems. Do magnetic CVs and IPs evolve in the same manner as non-magnetic systems? One answer in this puzzle may come from understanding the nature of the white dwarf in a magnetic CV. Standard CV evolution theory predicts a white dwarf temperature for a given CV orbital period and accretion rate. By investigating the temperature of white dwarfs in IPs and comparing the temperatures to those predicted from theory, we can learn where IPs fit into the model of CV evolution. Here we present the results of our continued study of the nature of WDs in IPs. We compare temperatures derived from model fits to UV spectra with temperatures calculated based on the accretion rate and binary orbital period. Our preliminary results indicate that IPs follow the general trend of magnetic CVs containing cooler WDs than non-magnetic CVs.
Wavelet Approximation in Data Assimilation
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Atlas, Robert (Technical Monitor)
2002-01-01
Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.
Plasma Physics Approximations in Ares
Managan, R. A.
2015-01-08
Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, F_{n}( μ/θ ), the chemical potential, μ or ζ = ln(1+e^{ μ/θ} ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for A^{α} (ζ ),A^{β} (ζ ), ζ, f(ζ ) = (1 + e^{-μ/θ})F_{1/2}(μ/θ), F_{1/2}'/F_{1/2}, F_{c}^{α}, and F_{c}^{β}. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.
Substrate radical intermediates in soluble methane monooxygenase
Liu Aimin; Jin Yi; Zhang Jingyan; Brazeau, Brian J.; Lipscomb, John D. . E-mail: lipsc001@umn.edu
2005-12-09
EPR spin-trapping experiments were carried out using the three-component soluble methane monooxygenase (MMO). Spin-traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), {alpha}-4-pyridyl-1-oxide N-tert-butylnitrone (POBN), and nitrosobenzene (NOB) were used to investigate the possible formation of substrate radical intermediates during catalysis. In contrast to a previous report, the NADH-coupled oxidations of various substrates did not produce any trapped radical species when DMPO or POBN was present. However, radicals were detected by these traps when only the MMO reductase component and NADH were present. DMPO and POBN were found to be weak inhibitors of the MMO reaction. In contrast, NOB is a strong inhibitor for the MMO-catalyzed nitrobenzene oxidation reaction. When NOB was used as a spin-trap in the complete MMO system with or without substrate, EPR signals from an NOB radical were detected. We propose that a molecule of NOB acts simultaneously as a substrate and a spin-trap for MMO, yielding the long-lived radical and supporting a stepwise mechanism for MMO.
Intrinsic Josephson Junctions with Intermediate Damping
NASA Astrophysics Data System (ADS)
Warburton, Paul A.; Saleem, Sajid; Fenton, Jon C.; Speller, Susie; Grovenor, Chris R. M.
2011-03-01
In cuprate superconductors, adjacent cuprate double-planes are intrinsically Josephson-coupled. For bias currents perpendicular to the planes, the current-voltage characteristics correspond to those of an array of underdamped Josephson junctions. We will discuss our experiments on sub-micron Tl-2212 intrinsic Josephson junctions (IJJs). The dynamics of the IJJs at the plasma frequency are moderately damped (Q ~ 8). This results in a number of counter-intuitive observations, including both a suppression of the effect of thermal fluctuations and a shift of the skewness of the switching current distributions from negative to positive as the temperature is increased. Simulations confirm that these phenomena result from repeated phase slips as the IJJ switches from the zero-voltage to the running state. We further show that increased dissipation counter-intuitively increases the maximum supercurrent in the intermediate damping regime (PRL vol. 103, art. no. 217002). We discuss the role of environmental dissipation on the dynamics and describe experiments with on-chip lumped-element passive components in order control the environment seen by the IJJs. Work supported by EPSRC.
Racah materials: role of atomic multiplets in intermediate valence systems
Shick, A. B.; Havela, L.; Lichtenstein, A. I.; Katsnelson, M. I.
2015-01-01
We address the long-standing mystery of the nonmagnetic insulating state of the intermediate valence compound SmB6. Within a combination of the local density approximation (LDA) and an exact diagonalization (ED) of an effective discrete Anderson impurity model, the intermediate valence ground state with the f-shell occupation 〈n4f〉 = 5.6 is found for the Sm atom in SmB6. This ground state is a singlet, and the first excited triplet state ~3 meV higher in the energy. SmB6 is a narrow band insulator already in LDA, with the direct band gap of ~10 meV. The electron correlations increase the band gap which now becomes indirect. Thus, the many-body effects are relevant to form the indirect band gap, crucial for the idea of “topological Kondo insulator" in SmB6. Also, an actinide analog PuB6 is considered, and the intermediate valence singlet ground state is found for the Pu atom. We propose that [Sm, Pu]B6 belong to a new class of the intermediate valence materials with the multi-orbital “Kondo-like" singlet ground-state. Crucial role of complex spin-orbital f n–f n+1 multiplet structure differently hybridized with ligand states in such Racah materials is discussed. PMID:26490021
Gravitropism in roots of intermediate-starch mutants of Arabidopsis
NASA Technical Reports Server (NTRS)
Kiss, J. Z.; Wright, J. B.; Caspar, T.
1996-01-01
Gravitropism was studied in roots of wild type (WT) Arabidopsis thaliana (L.) Heynh. (strain Wassilewskija) and three starch-deficient mutants that were generated by T-DNA insertional mutagenesis. One of these mutants was starchless while the other two were intermediate mutants, which had 51% and 60%, respectively, of the WT amount of starch as determined by light and electron microscopy. The four parameters used to assay gravitropism were: orientation during vertical growth, time course of curvature, induction, and intermittent stimulation experiments. WT roots were much more responsive to gravity than were roots of the starchless mutant, and the intermediate starch mutants exhibited an intermediate graviresponse. Our data suggest that lowered starch content in the mutants primarily affects gravitropism rather than differential growth because both phototropic curvature and growth rates were approximately equal among all four genotypes. Since responses of intermediate-starch mutants were closer to the WT response than to the starchless mutant, it appears that 51-60% of the WT level of starch is near the threshold amount needed for full gravitropic sensitivity. While other interpretations are possible, the data are consistent with the starch statolith hypothesis for gravity perception in that the degree of graviresponsiveness is proportional to the total mass of plastids per cell.
Modeling intermediate band solar cells: a roadmap to high efficiency
NASA Astrophysics Data System (ADS)
Krich, Jacob J.; Trojnar, Anna H.; Feng, Liang; Hinzer, Karin; Walker, Alexandre W.
2014-03-01
Intermediate band (IB) photovoltaics have the potential to be highly efficient and cost effective solar cells. When the IB concept was proposed in 1997, there were no known intermediate band materials. In recent years, great progress has been made in developing materials with intermediate bands, though power conversion efficiencies have remained low. To understand the material requirements to increase IB device efficiencies, we must develop good models for their behavior under bias and illumination. To evaluate potential IB materials, we present a figure of merit, consisting of parameters that can be measured without solar cell fabrication. We present a new model for IB devices, including the behavior of their junctions with n- and p-type semiconductors. Using a depletion approximation, we present analytic approximations for the boundary conditions of the minority carrier diffusion equations. We compare the analytic results to Synopsys Sentaurus device models. We use this model to find the optimal thickness of the IB region based on material parameters. For sufficiently poor IB materials, the optimal thickness is zero - i.e., the device is more efficient without the IB material at all. We show the minimum value of the figure of merit required for an IB to improve the efficiency of a device, providing a clear goal for the quality of future IB materials.
Intermediate endpoint biomarkers for lung cancer chemoprevention
NASA Astrophysics Data System (ADS)
MacAulay, Calum E.; Lam, Stephen; Klein-Parker, Helga; Gazdar, Adi; Guillaud, Martial; Payne, Peter W.; Le Riche, Jean C.; Dawe, Chris; Band, Pierre; Palcic, Branko
1998-04-01
Given the demographics of current and ex-smoking populations in North America, lung cancer will be a major problem in the foreseeable future. Early detection and treatment of lung cancer holds great promise for the management of this disease. Unlike cervical cancer, the physical, complete removal/destruction of all dysplastic lesions in the bronchial tree is not possible; however, treatment of the lesions using a chemopreventive agent is. Intermediate biomarkers have been used to screen promising chemopreventive agents for larger population studies. We have examined the natural history of lung cancer development by following a group of subjects at high risk of developing lung cancer using fluorescence endoscopy to identify the areas of abnormality for biopsy. Approximately 900 biopsies have been collected in this fashion and graded by at least two experienced, expert pathologists. Using an interactive version of the Cyto-Savant (Oncometrics Imaging Corp.), cytometric and tissue architectural data were collected from these biopsies. Using only the data from the normal and invasive cancer biopsies, quantitative morphometric and architectural indices were generated and calculated for all the collected biopsies. These indices were compared with Loss of Heterozygosity (LOH) of ten sites commonly associated with cancer. These results and the application of these quantitative measures to two small chemoprevention studies will be reported.
Interplay of approximate planning strategies.
Huys, Quentin J M; Lally, Níall; Faulkner, Paul; Eshel, Neir; Seifritz, Erich; Gershman, Samuel J; Dayan, Peter; Roiser, Jonathan P
2015-03-10
Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or "options." PMID:25675480
Approximating metal-insulator transitions
NASA Astrophysics Data System (ADS)
Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej
2015-12-01
We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.
Strong shock implosion, approximate solution
NASA Astrophysics Data System (ADS)
Fujimoto, Y.; Mishkin, E. A.; Alejaldre, C.
1983-01-01
The self-similar, center-bound motion of a strong spherical, or cylindrical, shock wave moving through an ideal gas with a constant, γ= cp/ cv, is considered and a linearized, approximate solution is derived. An X, Y phase plane of the self-similar solution is defined and the representative curved of the system behind the shock front is replaced by a straight line connecting the mappings of the shock front with that of its tail. The reduced pressure P(ξ), density R(ξ) and velocity U1(ξ) are found in closed, quite accurate, form. Comparison with numerically obtained results, for γ= {5}/{3} and γ= {7}/{5}, is shown.
Intermediate Filaments in Caenorhabditis elegans.
Zuela, Noam; Gruenbaum, Yosef
2016-01-01
More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses. PMID:26795488
Evidence for photogenerated intermediate hole polarons in ZnO.
Sezen, Hikmet; Shang, Honghui; Bebensee, Fabian; Yang, Chengwu; Buchholz, Maria; Nefedov, Alexei; Heissler, Stefan; Carbogno, Christian; Scheffler, Matthias; Rinke, Patrick; Wöll, Christof
2015-01-01
Despite their pronounced importance for oxide-based photochemistry, optoelectronics and photovoltaics, only fairly little is known about the polaron lifetimes and binding energies. Polarons represent a crucial intermediate step populated immediately after dissociation of the excitons formed in the primary photoabsorption process. Here we present a novel approach to studying photoexcited polarons in an important photoactive oxide, ZnO, using infrared (IR) reflection-absorption spectroscopy (IRRAS) with a time resolution of 100 ms. For well-defined (10-10) oriented ZnO single-crystal substrates, we observe intense IR absorption bands at around 200 meV exhibiting a pronounced temperature dependence. On the basis of first-principles-based electronic structure calculations, we assign these features to hole polarons of intermediate coupling strength. PMID:25902307
GPR91: expanding the frontiers of Krebs cycle intermediates.
de Castro Fonseca, Matheus; Aguiar, Carla J; da Rocha Franco, Joao Antônio; Gingold, Rafael N; Leite, M Fatima
2016-01-01
Since it was discovered, the citric acid cycle has been known to be central to cell metabolism and energy homeostasis. Mainly found in the mitochondrial matrix, some of the intermediates of the Krebs cycle are also present in the blood stream. Currently, there are several reports that indicate functional roles for Krebs intermediates out of its cycle. Succinate, for instance, acts as an extracellular ligand by binding to a G-protein coupled receptor, known as GPR91, expressed in kidney, liver, heart, retinal cells and possibly many other tissues, leading to a wide array of physiological and pathological effects. Through GPR91, succinate is involved in functions such as regulation of blood pressure, inhibition of lipolysis in white adipose tissue, development of retinal vascularization, cardiac hypertrophy and activation of stellate hepatic cells by ischemic hepatocytes. Along the current review, these new effects of succinate through GPR91 will be explored and discussed. PMID:26759054
Approximate Riemann solvers for the Godunov SPH (GSPH)
NASA Astrophysics Data System (ADS)
Puri, Kunal; Ramachandran, Prabhu
2014-08-01
The Godunov Smoothed Particle Hydrodynamics (GSPH) method is coupled with non-iterative, approximate Riemann solvers for solutions to the compressible Euler equations. The use of approximate solvers avoids the expensive solution of the non-linear Riemann problem for every interacting particle pair, as required by GSPH. In addition, we establish an equivalence between the dissipative terms of GSPH and the signal based SPH artificial viscosity, under the restriction of a class of approximate Riemann solvers. This equivalence is used to explain the anomalous “wall heating” experienced by GSPH and we provide some suggestions to overcome it. Numerical tests in one and two dimensions are used to validate the proposed Riemann solvers. A general SPH pairing instability is observed for two-dimensional problems when using unequal mass particles. In general, Ducowicz Roe's and HLLC approximate Riemann solvers are found to be suitable replacements for the iterative Riemann solver in the original GSPH scheme.
Rotation-vibrational states of H3+ and the adiabatic approximation.
Alijah, Alexander; Hinze, Juergen
2006-11-15
We discuss recent progress in the calculation and identification of rotation-vibrational states of H3+ at intermediate energies up to 13,000 cm(-1). Our calculations are based on the potential energy surface of Cencek et al. which is of sub-microhartree accuracy. As this surface includes diagonal adiabatic and relativistic corrections to the fixed nuclei electronic energies, the remaining discrepancies between our calculated and experimental data should be due to the neglect of non-adiabatic coupling to excited electronic states in the calculations. To account for this, our calculated energy values were adjusted empirically by a simple correction formula. Based on our understanding of the adiabatic approximation, we suggest two new approaches to account for the off-diagonal adiabatic correction, which should work; however, they have not been tested yet for H3+. Theoretical predictions made for the above-barrier energy region of recent experimental interest are accurate to 0.35 cm(-1) or better. PMID:17015396
Rotating a Rashba-coupled Fermi gas in two dimensions
NASA Astrophysics Data System (ADS)
Doko, E.; Subaşı, A. L.; Iskin, M.
2016-03-01
We analyze the interplay of adiabatic rotation and Rashba spin-orbit coupling on the BCS-BEC evolution of a harmonically trapped Fermi gas in two dimensions under the assumption that vortices are not excited. First, by taking the trapping potential into account via both the semiclassical and exact quantum-mechanical approaches, we firmly establish the parameter regime where the noninteracting gas forms a ring-shaped annulus. Then, by taking the interactions into account via the BCS mean-field approximation, we study the pair-breaking mechanism that is induced by rotation, i.e., the Coriolis effects. In particular, we show that the interplay allows for the possibility of creating either an isolated annulus of rigidly rotating normal particles that is disconnected from the central core of nonrotating superfluid pairs or an intermediate mediator phase where the superfluid pairs and normal particles coexist as a partially rotating gapless superfluid.
Recent advances in modeling fission cross sections over intermediate structures
Bouland, Olivier; Lynn, J. Eric; Talou, Patrick
2009-01-01
More accurate fission cross section calculations in presence of underlying intermediate structure are strongly desired. This paper recalls the common approximations used below the fission threshold and quantifies their impact. In particular, an exact expanded R-matrix Monte Carlo calculation of the intermediate structure, deeply mixed with the fluctuations of the class-I and II decay amplitudes, is shown. This paper also insists on the microscopic structure of the level densities as a function of the nucleus deformation and show preliminary neutron induced fission cross section calculations for {sup 239}Pu and {sup 240}Pu using newly calculated combinatorial level densities. Comparisons with recent evaluated and measured fission cross sections are made.
Hydration thermodynamics beyond the linear response approximation.
Raineri, Fernando O
2016-10-19
The solvation energetics associated with the transformation of a solute molecule at infinite dilution in water from an initial state A to a final state B is reconsidered. The two solute states have different potentials energies of interaction, [Formula: see text] and [Formula: see text], with the solvent environment. Throughout the A [Formula: see text] B transformation of the solute, the solvation system is described by a Hamiltonian [Formula: see text] that changes linearly with the coupling parameter ξ. By focusing on the characterization of the probability density [Formula: see text] that the dimensionless perturbational solute-solvent interaction energy [Formula: see text] has numerical value y when the coupling parameter is ξ, we derive a hierarchy of differential equation relations between the ξ-dependent cumulant functions of various orders in the expansion of the appropriate cumulant generating function. On the basis of this theoretical framework we then introduce an inherently nonlinear solvation model for which we are able to find analytical results for both [Formula: see text] and for the solvation thermodynamic functions. The solvation model is based on the premise that there is an upper or a lower bound (depending on the nature of the interactions considered) to the amplitude of the fluctuations of Y in the solution system at equilibrium. The results reveal essential differences in behavior for the model when compared with the linear response approximation to solvation, particularly with regards to the probability density [Formula: see text]. The analytical expressions for the solvation properties show, however, that the linear response behavior is recovered from the new model when the room for the thermal fluctuations in Y is not restricted by the existence of a nearby bound. We compare the predictions of the model with the results from molecular dynamics computer simulations for aqueous solvation, in which either (1) the solute
Function approximation in inhibitory networks.
Tripp, Bryan; Eliasmith, Chris
2016-05-01
In performance-optimized artificial neural networks, such as convolutional networks, each neuron makes excitatory connections with some of its targets and inhibitory connections with others. In contrast, physiological neurons are typically either excitatory or inhibitory, not both. This is a puzzle, because it seems to constrain computation, and because there are several counter-examples that suggest that it may not be a physiological necessity. Parisien et al. (2008) showed that any mixture of excitatory and inhibitory functional connections could be realized by a purely excitatory projection in parallel with a two-synapse projection through an inhibitory population. They showed that this works well with ratios of excitatory and inhibitory neurons that are realistic for the neocortex, suggesting that perhaps the cortex efficiently works around this apparent computational constraint. Extending this work, we show here that mixed excitatory and inhibitory functional connections can also be realized in networks that are dominated by inhibition, such as those of the basal ganglia. Further, we show that the function-approximation capacity of such connections is comparable to that of idealized mixed-weight connections. We also study whether such connections are viable in recurrent networks, and find that such recurrent networks can flexibly exhibit a wide range of dynamics. These results offer a new perspective on computation in the basal ganglia, and also perhaps on inhibitory networks within the cortex. PMID:26963256
Interplay of approximate planning strategies
Huys, Quentin J. M.; Lally, Níall; Faulkner, Paul; Eshel, Neir; Seifritz, Erich; Gershman, Samuel J.; Dayan, Peter; Roiser, Jonathan P.
2015-01-01
Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or “options.” PMID:25675480
Multidimensional stochastic approximation Monte Carlo.
Zablotskiy, Sergey V; Ivanov, Victor A; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}). PMID:27415383
Decision analysis with approximate probabilities
NASA Technical Reports Server (NTRS)
Whalen, Thomas
1992-01-01
This paper concerns decisions under uncertainty in which the probabilities of the states of nature are only approximately known. Decision problems involving three states of nature are studied. This is due to the fact that some key issues do not arise in two-state problems, while probability spaces with more than three states of nature are essentially impossible to graph. The primary focus is on two levels of probabilistic information. In one level, the three probabilities are separately rounded to the nearest tenth. This can lead to sets of rounded probabilities which add up to 0.9, 1.0, or 1.1. In the other level, probabilities are rounded to the nearest tenth in such a way that the rounded probabilities are forced to sum to 1.0. For comparison, six additional levels of probabilistic information, previously analyzed, were also included in the present analysis. A simulation experiment compared four criteria for decisionmaking using linearly constrained probabilities (Maximin, Midpoint, Standard Laplace, and Extended Laplace) under the eight different levels of information about probability. The Extended Laplace criterion, which uses a second order maximum entropy principle, performed best overall.
Multidimensional stochastic approximation Monte Carlo
NASA Astrophysics Data System (ADS)
Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .
Ginell, W.S.
1982-03-17
A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.
Ginell, William S.
1989-04-25
A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.
Experiments in intermediate energy physics
Dehnhard, D.
2003-02-28
Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.
Intermediate Energy Metabolism of Leptospira
Baseman, J. B.; Cox, C. D.
1969-01-01
Metabolic studies were performed on three representative serotypes of Leptospira: a water isolate designated B16 and two pathogenic serotypes, pomona and schueffneri. Examination of whole cells of B16 for their ability to oxidize various substrates revealed that oleate significantly stimulated oxygen uptake. The respiratory quotient of 0.7 implied that oleate was degraded to carbon dioxide and water. Other substrates, such as carbohydrates, alcohols, intermediates of the citric acid cycle, and short-chain acids, including selected amino acids, did not stimulate endogenous respiration of whole cells. No oxygen uptake could be measured when cell-free extracts were tested with the substrates used with whole cells. Enzymatic analyses of cell-free extracts of the three strains demonstrated enzymes of the citric acid cycle, enzymes of the glycolytic and pentose pathways, and the general acyl coenzyme A dehydrogenase required for β-oxidation of fatty acids. Strain B16 and the two pathogenic serotypes appeared to possess similar metabolic capabilities. Enzymatic data might also explain the apparent inability of B16 to oxidize other substrates; kinases necessary for activation of common nonphosphorylated compounds were not detected in leptospiral extracts. These findings emphasized the dependence of leptospiral growth upon long-chain fatty acids. PMID:5776541
Approximate theory for radial filtration/consolidation
Tiller, F.M.; Kirby, J.M.; Nguyen, H.L.
1996-10-01
Approximate solutions are developed for filtration and subsequent consolidation of compactible cakes on a cylindrical filter element. Darcy`s flow equation is coupled with equations for equilibrium stress under the conditions of plane strain and axial symmetry for radial flow inwards. The solutions are based on power function forms involving the relationships of the solidosity {epsilon}{sub s} (volume fraction of solids) and the permeability K to the solids effective stress p{sub s}. The solutions allow determination of the various parameters in the power functions and the ratio k{sub 0} of the lateral to radial effective stress (earth stress ratio). Measurements were made of liquid and effective pressures, flow rates, and cake thickness versus time. Experimental data are presented for a series of tests in a radial filtration cell with a central filter element. Slurries prepared from two materials (Microwate, which is mainly SrSO{sub 4}, and kaolin) were used in the experiments. Transient deposition of filter cakes was followed by static (i.e., no flow) conditions in the cake. The no-flow condition was accomplished by introducing bentonite which produced a nearly impermeable layer with negligible flow. Measurement of the pressure at the cake surface and the transmitted pressure on the central element permitted calculation of k{sub 0}.
Gopakumar, Geetha; Das, Bhanu Pratap; Chaudhuri, R. K.; Mukherjee, D.; Hirao, K.
2007-01-07
The authors present the results of their calculation for the parity nonconserving 5p{sup 6}6s{sub 1/2}{yields}5p{sup 6}5d{sub 3/2} transition in Ba{sup +} using the relativistic coupled-cluster theory in the singles, doubles, and partial triples approximation. The contributions from the leading intermediate states are explicitly considered. It is found that the largest contribution comes from the |5p{sup 6}6p{sub 1/2}> state. Their results are in reasonable agreement with other calculations.
Doorway states in the random-phase approximation
De Pace, A.; Molinari, A.; Weidenmüller, H.A.
2014-12-15
By coupling a doorway state to a sea of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.
Ionization of barium through a coherent excitation of two bound intermediate states
NASA Astrophysics Data System (ADS)
Luc-Koenig, E.; Aymar, M.; Millet, M.; Lecomte, J.-M.; Lyras, A.
We have investigated theoretically the asymmetrical photoionization yields into the 6s1/2, 5d3/2 and 5d5/2 continuum channels of atomic barium observed by Wang, Chen and Elliott [Phys. Rev. Lett. 77, 2416 (1996)] in the study of coherent control through two-color resonant interfering paths. The atomic parameters obtained from a theoretical approach based on a combination of jj-coupled eigenchannel R-matrix and Multichannel Quantum Defect Theory are used to analyze the photoionization spectra from the and 6s7p states with polarized light beams. The studied energy range includes the 6p7p autoionizing resonances. The dynamics of the two-color photoionization is governed by the coherent excitation of the 6s6p and intermediate states. This excitation is described as an adiabatic process in the rotating wave approximation. The influence of the radiative decay, spatial distribution of the intensities of the laser beams and hyperfine interaction is discussed.
Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress.
Levitan, Orly; Dinamarca, Jorge; Zelzion, Ehud; Lun, Desmond S; Guerra, L Tiago; Kim, Min Kyung; Kim, Joomi; Van Mooy, Benjamin A S; Bhattacharya, Debashish; Falkowski, Paul G
2015-01-13
Diatoms are unicellular algae that accumulate significant amounts of triacylglycerols as storage lipids when their growth is limited by nutrients. Using biochemical, physiological, bioinformatics, and reverse genetic approaches, we analyzed how the flux of carbon into lipids is influenced by nitrogen stress in a model diatom, Phaeodactylum tricornutum. Our results reveal that the accumulation of lipids is a consequence of remodeling of intermediate metabolism, especially reactions in the tricarboxylic acid and the urea cycles. Specifically, approximately one-half of the cellular proteins are cannibalized; whereas the nitrogen is scavenged by the urea and glutamine synthetase/glutamine 2-oxoglutarate aminotransferase pathways and redirected to the de novo synthesis of nitrogen assimilation machinery, simultaneously, the photobiological flux of carbon and reductants is used to synthesize lipids. To further examine how nitrogen stress triggers the remodeling process, we knocked down the gene encoding for nitrate reductase, a key enzyme required for the assimilation of nitrate. The strain exhibits 40-50% of the mRNA copy numbers, protein content, and enzymatic activity of the wild type, concomitant with a 43% increase in cellular lipid content. We suggest a negative feedback sensor that couples photosynthetic carbon fixation to lipid biosynthesis and is regulated by the nitrogen assimilation pathway. This metabolic feedback enables diatoms to rapidly respond to fluctuations in environmental nitrogen availability. PMID:25548193
Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress
Levitan, Orly; Dinamarca, Jorge; Zelzion, Ehud; Lun, Desmond S.; Guerra, L. Tiago; Kim, Min Kyung; Kim, Joomi; Van Mooy, Benjamin A. S.; Bhattacharya, Debashish; Falkowski, Paul G.
2015-01-01
Diatoms are unicellular algae that accumulate significant amounts of triacylglycerols as storage lipids when their growth is limited by nutrients. Using biochemical, physiological, bioinformatics, and reverse genetic approaches, we analyzed how the flux of carbon into lipids is influenced by nitrogen stress in a model diatom, Phaeodactylum tricornutum. Our results reveal that the accumulation of lipids is a consequence of remodeling of intermediate metabolism, especially reactions in the tricarboxylic acid and the urea cycles. Specifically, approximately one-half of the cellular proteins are cannibalized; whereas the nitrogen is scavenged by the urea and glutamine synthetase/glutamine 2-oxoglutarate aminotransferase pathways and redirected to the de novo synthesis of nitrogen assimilation machinery, simultaneously, the photobiological flux of carbon and reductants is used to synthesize lipids. To further examine how nitrogen stress triggers the remodeling process, we knocked down the gene encoding for nitrate reductase, a key enzyme required for the assimilation of nitrate. The strain exhibits 40–50% of the mRNA copy numbers, protein content, and enzymatic activity of the wild type, concomitant with a 43% increase in cellular lipid content. We suggest a negative feedback sensor that couples photosynthetic carbon fixation to lipid biosynthesis and is regulated by the nitrogen assimilation pathway. This metabolic feedback enables diatoms to rapidly respond to fluctuations in environmental nitrogen availability. PMID:25548193
Tecmer, Paweł Visscher, Lucas; Severo Pereira Gomes, André; Knecht, Stefan
2014-07-28
We present a study of the electronic structure of the [UO{sub 2}]{sup +}, [UO{sub 2}]{sup 2} {sup +}, [UO{sub 2}]{sup 3} {sup +}, NUO, [NUO]{sup +}, [NUO]{sup 2} {sup +}, [NUN]{sup −}, NUN, and [NUN]{sup +} molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin–orbit coupling and Gaunt interactions are compared to results obtained with the Dirac–Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity)
Nuclear structure at intermediate energies
Bonner, B.E.; Mutchler, G.S.
1991-09-30
The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do.
Physical Applications of a Simple Approximation of Bessel Functions of Integer Order
ERIC Educational Resources Information Center
Barsan, V.; Cojocaru, S.
2007-01-01
Applications of a simple approximation of Bessel functions of integer order, in terms of trigonometric functions, are discussed for several examples from electromagnetism and optics. The method may be applied in the intermediate regime, bridging the "small values regime" and the "asymptotic" one, and covering, in this way, an area of great…
Air Conditioning. Performance Objectives. Intermediate Course.
ERIC Educational Resources Information Center
Long, William
Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…
Business Machine Maintenance. Performance Objectives. Intermediate Course.
ERIC Educational Resources Information Center
McMinn, Robert
Several intermediate performance objectives and corresponding criterion measures are listed for each of 28 terminal objectives presented in this guide for an intermediate business machine maintenance course at the secondary level. (For the basic course guide see CE 010 949.) Titles of the 28 terminal objective sections are Career Opportunities,…
Marine Engine Mechanics. Performance Objectives. Intermediate Course.
ERIC Educational Resources Information Center
Jones, Marion
Several intermediate performance objectives and corresponding criterion measures are presented for each of ten terminal objectives for a two-semester course (3 hours daily). This 540-hour intermediate course includes advanced troubleshooting techniques on outboard marine engines, inboard-outboard marine engines, inboard marine engines, boat…
[Intermediate phenotype studies in psychiatric disorder].
Hashimoto, Ryota
2016-02-01
The concept of intermediate phenotype was proposed by Dr. Weinberger of the National Institute of Mental Health (NIMH). The risk genes for mental disorders define intermediate phenotypes, neurobiological characteristics observed in psychiatric disorders, and intermediate phenotypes increase the risk of mental disorders. The author worked at Dr. Weinberger's laboratory, and after returning home, introduced the concept to Japan, creating a term "Chukanhyogengata" to translate "intermediate phenotype". Intermediate phenotype has been proposed as a tool for the identification of risk genes for mental disorders, spreading the concept as a biomarker for the bridging between genes and behaviors. Intermediate phenotype studies later became one of the main pillars of psychiatric research. As a large number of data and samples are needed for intermediate phenotype research, we built a research resource database that combines the brain phenotype and bioresources. We performed genome-wide association analysis of cognitive decline in schizophrenia and identified the DEGS2 gene using this sample. This research resource database was developed for a multicenter study by COCORO (Cognitive Genetics Collaborative Research Organization). COCORO carried out genome-wide association analysis of the gray matter volume of the superior temporal gyrus and identified genome-wide significant loci. In this paper, we introduce the concept and history of intermediate phenotype study of mental illness and the latest trends. We hope to contribute to the future development of mental illness research through translational research. PMID:27044135
Radio and Television Servicing. Intermediate Course.
ERIC Educational Resources Information Center
Campbell, Guy; And Others
Several intermediate performance objectives and corresponding criterion measures are listed for each of 32 terminal objectives for an intermediate (second year) radio/TV servicing course. This 1-year course (3 hours daily) was designed to provide the student with the basic skills and knowledges necessary for entry level employment in the Radio/TV…
Appliance Services. Intermediate Course. Career Education.
ERIC Educational Resources Information Center
Killough, Joseph
Several intermediate performance objectives and corresponding criterion measures are listed for each of 16 terminal objectives for an intermediate appliance repair course. The materials were developed for a 36-week course (3 hours daily) covering the areas of refrigeration, maintenance, repair, and troubleshooting of refrigerators and air…
Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.
ERIC Educational Resources Information Center
Jones, Marion
Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…
Liver resection for intermediate hepatocellular carcinoma
Yi, Peng-Sheng; Zhang, Ming; Zhao, Ji-Tong; Xu, Ming-Qing
2016-01-01
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in China. The Barcelona Clinic Liver Cancer (BCLC) staging system is regarded as the gold standard staging system for HCC, classifying HCC as early, intermediate, or advanced. For intermediate HCC, trans-catheter arterial chemoembolization (TACE) is recommended as the optimal strategy by the BCLC guideline. This review investigates whether liver resection is better than TACE for intermediate HCC. Based on published studies, we compare the survival benefits and complications of liver resection and TACE for intermediate HCC. We also compare the survival benefits of liver resection in early and intermediate HCC. We find that liver resection can achieve better or at least comparable survival outcomes compared with TACE for intermediate HCC; however, we do not observe a significant difference between liver resection and TACE in terms of safety and morbidity. We conclude that liver resection may improve the short- and long-term survival of carefully selected intermediate HCC patients, and the procedure may be safely performed in the management of intermediate HCC. PMID:27190577
Automotive Body Repair. Performance Objectives. Intermediate Course.
ERIC Educational Resources Information Center
Lang, Thomas
Several intermediate performance objectives and corresponding criterion measures are listed for each of 10 terminal objectives for an intermediate automotive body repair and refinishing course. The materials were developed for a two-semester (3 hours daily) course for specialized classrooms, shop, and practical experiences designed to enable the…
Diesel Mechanics. Performance Objectives. Intermediate Course.
ERIC Educational Resources Information Center
Tidwell, Joseph
Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives for an intermediate diesel mechanics course (two semesters, 3 hours daily) designed for high school students who upon completion would be ready for an on-the-job training experience in diesel service and repair. Through…
39 CFR 3001.39 - Intermediate decisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 39 Postal Service 1 2010-07-01 2010-07-01 false Intermediate decisions. 3001.39 Section 3001.39... Applicability § 3001.39 Intermediate decisions. (a) Initial decision by presiding officer. In any proceedings in... certify and file with the Secretary, a copy of the record of the hearing and his/her initial decision...
Some Intermediate-Level Violin Concertos.
ERIC Educational Resources Information Center
Abramson, Michael
1997-01-01
Contends that many violin students attempt difficult concertos before they are technically or musically prepared. Identifies a variety of concertos at the intermediate and advanced intermediate-level for students to study and master before attempting the advanced works by Bach and Mozart. Includes concertos by Vivaldi, Leclair, Viotti, Haydn,…
BETTER EDUCATION THROUGH EFFECTIVE INTERMEDIATE UNITS.
ERIC Educational Resources Information Center
RHODES, ALVIN E.
AN INTERMEDIATE EDUCATION UNIT, ORGANIZED AT THE REGIONAL LEVEL AND COVERING SUFFICIENT AREA TO WARRANT EMPLOYMENT OF A STAFF OF SPECIALISTS, IS CAPABLE OF OFFERING A WIDE VARIETY OF ESSENTIAL SERVICES, AND THUS OCCUPIES A UNIQUE NICHE IN THE EDUCATIONAL SETTING. THE ACTIVITIES OF AN INTERMEDIATE UNIT MAY BE CATEGORIZED INTO (1) ARTICULATIVE, OR…
Gutzwiller approximation in strongly correlated electron systems
NASA Astrophysics Data System (ADS)
Li, Chunhua
concepts and techniques are developed to study the Mott transition in inhomogeneous electronic superstructures. The latter is termed "SuperMottness" which is shown to be a general framework that unifies the two paradigms in the physics of strong electronic correlation: Mott transition and Wigner crystallization. A cluster Gutzwiller approximation (CGA) approach is developed that treats the local ( U) and extended Coulomb interactions (V) on equal footing. It is shown with explicit calculations that the Mott-Wigner metal-insulator transition can take place far away from half-filling. The mechanism by which a superlattice potential enhances the correlation effects and the tendency towards local moment formation is investigated and the results reveal a deeper connection among the strongly correlated inhomogeneous electronic states, the Wigner-Mott physics, and the multiorbital Mott physics that can all be united under the notion of SuperMottness. It is proposed that doping into a superMott insulator can lead to coexistence of local moment and itinerant carriers. The last part of the thesis studies the possible Kondo effect that couples the local moment and the itinerant carriers. In connection to the sodium rich phases of the cobaltates, a new Kondo lattice model is proposed where the itinerant carriers form a Stoner ferromagnet. The competition between the Kondo screening and the Stoner ferromagnetism is investigated when the conduction band is both at and away from half-filling.
Producing approximate answers to database queries
NASA Technical Reports Server (NTRS)
Vrbsky, Susan V.; Liu, Jane W. S.
1993-01-01
We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.
Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.
2009-01-01
The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I <= Z <= 28 (H -- Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior' of an idealized spacecraft
Space-angle approximations in the variational nodal method.
Lewis, E. E.; Palmiotti, G.; Taiwo, T.
1999-03-12
The variational nodal method is formulated such that the angular and spatial approximations maybe examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate approximations are coupled to the primal hybrid finite element treatment of the spatial variables. Within this framework, two classes of spatial trial functions are presented: (1) orthogonal polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic approximations. The resulting accuracy and computing costs are compared.
Non-perturbative QCD amplitudes in quenched and eikonal approximations
Fried, H.M.; Grandou, T.; Sheu, Y.-M.
2014-05-15
Even though approximated, strong coupling non-perturbative QCD amplitudes remain very difficult to obtain. In this article, in eikonal and quenched approximations at least, physical insights are presented that rely on the newly-discovered property of effective locality. The present article also provides a more rigorous mathematical basis for the crude approximations used in the previous derivation of the binding potential of quarks and nucleons. Furthermore, the techniques of Random Matrix calculus along with Meijer G-functions are applied to analyze the generic structure of fermionic amplitudes in QCD. - Highlights: • We discuss the physical insight of effective locality to QCD fermionic amplitudes. • We show that an unavoidable delta function goes along with the effective locality property. • The generic structure of QCD fermion amplitudes is obtained through Random Matrix calculus.
NASA Astrophysics Data System (ADS)
Bock, J. J.; Gundersen, J.; Lee, A. T.; Richards, P. L.; Wollack, E.
2009-03-01
This paper describes contributions to the CMBpol Technology Study Workshop concerning optical coupling structures. These are structures in or near the focal plane which convert the free space wave to a superconducting microstrip on a SI wafer, or to the waveguide input to a HEMT receiver. In addition to an introduction and conclusions by the editor, this paper includes independent contributions by Bock on 'Planar Antenna-Coupled Bolometers for CMB Polarimetry', by Gunderson and Wollack on 'Millimeter-Wave Platlet Feeds', and by Lee on 'Multi-band Dual-Polarization Lens-coupled Planar Antennas for Bolometric CMB polarimetry.'
Troposphere-lower-stratosphere connection in an intermediate complexity model.
NASA Astrophysics Data System (ADS)
Ruggieri, Paolo; King, Martin; Kucharski, Fred; Buizza, Roberto; Visconti, Guido
2016-04-01
The dynamical coupling between the troposphere and the lower stratosphere has been investigated using a low-top, intermediate complexity model provided by the Abdus Salam International Centre for Theoretical Physics (SPEEDY). The key question that we wanted to address is whether a simple model like SPEEDY can be used to understand troposphere-stratosphere interactions, e.g. forced by changes of sea-ice concentration in polar arctic regions. Three sets of experiments have been performed. Firstly, a potential vorticity perspective has been applied to understand the wave-like forcing of the troposphere on the stratosphere and to provide quantitative information on the sub seasonal variability of the coupling. Then, the zonally asymmetric, near-surface response to a lower-stratospheric forcing has been analysed in a set of forced experiments with an artificial heating imposed in the extra-tropical lower stratosphere. Finally, the lower-stratosphere response sensitivity to tropospheric initial conditions has been examined. Results indicate how SPEEDY captures the physics of the troposphere-stratosphere connection but also show the lack of stratospheric variability. Results also suggest that intermediate-complexity models such as SPEEDY could be used to investigate the effects that surface forcing (e.g. due to sea-ice concentration changes) have on the troposphere and the lower stratosphere.
Expression profiling of the intermediate and late stages of poxvirus replication.
Yang, Zhilong; Reynolds, Sara E; Martens, Craig A; Bruno, Daniel P; Porcella, Stephen F; Moss, Bernard
2011-10-01
The double-stranded DNA genome of vaccinia virus (VACV), the prototype poxvirus, contains approximately 200 open reading frames (ORFs) that are transcribed at early, intermediate, and late stages of infection. Previous high-throughput deep RNA sequencing allowed us to map 118 VACV early genes that are expressed before viral DNA replication and 93 postreplicative genes. However, the intermediate- and late-stage postreplicative genes could not be differentiated. Here, we synchronized infections with a reversible inhibitor of DNA replication and used a VACV mutant that conditionally transcribes late genes to sequence the two classes of mRNAs. In addition, each postreplicative ORF was individually expressed under conditions that distinguished intermediate and late classes. We identified 38 VACV genes that belong to the late class and 53 that belong to the intermediate class, with some of the latter continuing to be expressed late. These data allowed us to prepare a genome-wide early, intermediate, and late transcription map. Inspection of sequences upstream of these ORFs revealed distinctive characteristics of intermediate and late promoters and suggested that some promoters have intermediate and late elements. The intermediate genes encoded many DNA binding/packaging and core-associated proteins in addition to late transcription factors; the late genes encoded many morphogenesis and mature virion membrane proteins, including those involved in entry, in addition to early transcription factors. The top-ranked antigens for CD4(+) T cells and B cells were mainly intermediate rather than late gene products. The differentiation of intermediate and late genes may enhance understanding of poxvirus replication and lead to improvements in expression vectors and recombinant vaccines. PMID:21795349
Spin-orbit-coupled quantum gases
NASA Astrophysics Data System (ADS)
Radic, Juraj
The dissertation explores the effects of synthetic spin-orbit coupling on the behaviour of quantum gases in several different contexts. We first study realistic methods to create vortices in spin-orbit-coupled (SOC) Bose-Einstein condensates (BEC). We propose two different methods to induce thermodynamically stable static vortex configurations: (1) to rotate both the Raman lasers and the anisotropic trap; and (2) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. We solve the Gross-Pitaevskii equation for several experimentally relevant regimes and find new interesting effects such as spatial separation of left- and right-moving spin-orbit-coupled condensates, and the appearance of unusual vortex arrangements. Next we consider cold atoms in an optical lattice with synthetic SOC in the Mott-insulator regime. We calculate the parameters of the corresponding tight-binding model and derive the low-energy spin Hamiltonian which is a combination of Heisenberg model, quantum compass model and Dzyaloshinskii-Moriya interaction. We find that the Hamiltonian supports a rich classical phase diagram with collinear, spiral and vortex phases. Next we study the time evolution of the magnetization in a Rashba spin-orbit-coupled Fermi gas, starting from a fully-polarized initial state. We model the dynamics using a Boltzmann equation, which we solve in the Hartree-Fock approximation. The resulting non-linear system of equations gives rise to three distinct dynamical regimes controlled by the ratio of interaction and spin-orbit-coupling strength lambda: for small lambda, the magnetization decays to zero. For intermediate lambda, it displays undamped oscillations about zero and for large lambda, a partially magnetized state is dynamically stabilized. Motivated by an interesting stripe phase which appears in BEC with SOC [Li et al., Phys. Rev. Lett. 108, 225301 (2011)], we study the finite-temperature phase diagram of a pseudospin-1/2 Bose gas with
Structure of a low-population binding intermediate in protein-RNA recognition
Bardaro, Michael F.; Aprile, Francesco A.; Varani, Gabriele; Vendruscolo, Michele
2016-01-01
The interaction of the HIV-1 protein transactivator of transcription (Tat) and its cognate transactivation response element (TAR) RNA transactivates viral transcription and represents a paradigm for the widespread occurrence of conformational rearrangements in protein-RNA recognition. Although the structures of free and bound forms of TAR are well characterized, the conformations of the intermediates in the binding process are still unknown. By determining the free energy landscape of the complex using NMR residual dipolar couplings in replica-averaged metadynamics simulations, we observe two low-population intermediates. We then rationally design two mutants, one in the protein and another in the RNA, that weaken specific nonnative interactions that stabilize one of the intermediates. By using surface plasmon resonance, we show that these mutations lower the release rate of Tat, as predicted. These results identify the structure of an intermediate for RNA-protein binding and illustrate a general strategy to achieve this goal with high resolution. PMID:27286828
Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2008-01-01
A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.
An approximation technique for jet impingement flow
Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.
2015-03-10
The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.
Comparison of two Pareto frontier approximations
NASA Astrophysics Data System (ADS)
Berezkin, V. E.; Lotov, A. V.
2014-09-01
A method for comparing two approximations to the multidimensional Pareto frontier in nonconvex nonlinear multicriteria optimization problems, namely, the inclusion functions method is described. A feature of the method is that Pareto frontier approximations are compared by computing and comparing inclusion functions that show which fraction of points of one Pareto frontier approximation is contained in the neighborhood of the Edgeworth-Pareto hull approximation for the other Pareto frontier.
Intermediate-term earthquake prediction.
Keilis-Borok, V I
1996-01-01
An earthquake of magnitude M and linear source dimension L(M) is preceded within a few years by certain patterns of seismicity in the magnitude range down to about (M - 3) in an area of linear dimension about 5L-10L. Prediction algorithms based on such patterns may allow one to predict approximately 80% of strong earthquakes with alarms occupying altogether 20-30% of the time-space considered. An area of alarm can be narrowed down to 2L-3L when observations include lower magnitudes, down to about (M - 4). In spite of their limited accuracy, such predictions open a possibility to prevent considerable damage. The following findings may provide for further development of prediction methods: (i) long-range correlations in fault system dynamics and accordingly large size of the areas over which different observed fields could be averaged and analyzed jointly, (ii) specific symptoms of an approaching strong earthquake, (iii) the partial similarity of these symptoms worldwide, (iv) the fact that some of them are not Earth specific: we probably encountered in seismicity the symptoms of instability common for a wide class of nonlinear systems. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:11607660
Fractal Trigonometric Polynomials for Restricted Range Approximation
NASA Astrophysics Data System (ADS)
Chand, A. K. B.; Navascués, M. A.; Viswanathan, P.; Katiyar, S. K.
2016-05-01
One-sided approximation tackles the problem of approximation of a prescribed function by simple traditional functions such as polynomials or trigonometric functions that lie completely above or below it. In this paper, we use the concept of fractal interpolation function (FIF), precisely of fractal trigonometric polynomials, to construct one-sided uniform approximants for some classes of continuous functions.
ERIC Educational Resources Information Center
Bauer, Heather; Burno, Carolyn; Millstone, Teresa
2009-01-01
The purpose of this research project was to increase constructive behavior of intermediate grade students through the use of the response cost strategy. Approximately 70 students participated in this study. Three teacher researchers conducted the research in an elementary school and two middle schools in different counties near a major mid-western…
ERIC Educational Resources Information Center
SMITH, GARY R.
THE CAPACITY OF INTERMEDIATE PUPILS TO UNDERSTAND AND RETAIN GENERALIZATIONS RELATED TO SIMPLE MACHINES, ELECTRICAL ENERGY, AND HEAT ENERGY WAS INVESTIGATED. A STRATIFIED RANDOM SAMPLE OF APPROXIMATELY 1,200 FOURTH, FIFTH, AND SIXTH GRADE PUPILS WAS SELECTED FROM THE METROPOLITAN DETROIT AREA. GENERALIZATIONS FOR THE THREE PHYSICAL SCIENCE AREAS…
A unified approach to the Darwin approximation
Krause, Todd B.; Apte, A.; Morrison, P. J.
2007-10-15
There are two basic approaches to the Darwin approximation. The first involves solving the Maxwell equations in Coulomb gauge and then approximating the vector potential to remove retardation effects. The second approach approximates the Coulomb gauge equations themselves, then solves these exactly for the vector potential. There is no a priori reason that these should result in the same approximation. Here, the equivalence of these two approaches is investigated and a unified framework is provided in which to view the Darwin approximation. Darwin's original treatment is variational in nature, but subsequent applications of his ideas in the context of Vlasov's theory are not. We present here action principles for the Darwin approximation in the Vlasov context, and this serves as a consistency check on the use of the approximation in this setting.
An analytic Pade-motivated QCD coupling
Martinez, H. E.; Cvetic, G.
2010-08-04
We consider a modification of the Minimal Analytic (MA) coupling of Shirkov and Solovtsov. This modified MA (mMA) coupling reflects the desired analytic properties of the space-like observables. We show that an approximation by Dirac deltas of its discontinuity function {rho} is equivalent to a Pade(rational) approximation of the mMA coupling that keeps its analytic structure. We propose a modification to mMA that, as preliminary results indicate, could be an improvement in the evaluation of low-energy observables compared with other analytic couplings.
Interaction function of oscillating coupled neurons
Dodla, Ramana; Wilson, Charles J.
2013-01-01
Large scale simulations of electrically coupled neuronal oscillators often employ the phase coupled oscillator paradigm to understand and predict network behavior. We study the nature of the interaction between such coupled oscillators using weakly coupled oscillator theory. By employing piecewise linear approximations for phase response curves and voltage time courses, and parameterizing their shapes, we compute the interaction function for all such possible shapes and express it in terms of discrete Fourier modes. We find that reasonably good approximation is achieved with four Fourier modes that comprise of both sine and cosine terms. PMID:24229210
Intermediate/Advanced Research Design and Statistics
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Robert
2009-01-01
The purpose of this module is To provide Institutional Researchers (IRs) with an understanding of the principles of advanced research design and the intermediate/advanced statistical procedures consistent with such designs
The deterioration of intermediate moisture foods
NASA Technical Reports Server (NTRS)
Labruza, T. P.
1971-01-01
Deteriorative reactions are low and food quality high if intermediate moisture content of a food is held at a water activity of 0.6 to 0.75. Information is of interest to food processing and packaging industry.
Bursts of intermediate ions in atmospheric air
NASA Astrophysics Data System (ADS)
Hõrrak, U.; Salm, J.; Tammet, H.
1998-06-01
The mobility spectrum of air ions has been measured at Tahkuse Observatory in Estonia for several years. The average concentration of intermediate ions with mobilities of 0.05-0.5 cm2 V-1 s-1 in atmospheric air is about 50 cm-3. On the level of this low background, high concentration bursts of intermediate air ions occur occasionally. A burst can be followed by subsequent evolution of intermediate ions into larger ones. To explain the bursts of intermediate air ions, two hypotheses can be advanced: (1)A burst of neutral particles occurs due to homogeneous nucleation, and the particles are charged by the attachment of cluster ions. (2) The cluster ions grow by ion-induced nucleation in proper environmental conditions.
Data requirements for intermediate energy nuclear applications
Pearlstein, S.
1990-01-01
Several applications that include spallation neutron sources, space radiation effects, biomedical isotope production, accelerator shielding and radiation therapy make use of intermediate energy nuclear data extending to several GeV. The overlapping data needs of these applications are discussed in terms of what projectiles, targets and reactions are of interest. Included is a discussion of what is generally known about these data and what is needed to facilitate their use in intermediate energy applications. 40 refs., 2 figs., 2 tabs.
Two pathways of carbon dioxide catalyzed oxidative coupling of phenol by peroxynitrite.
Papina, Alina A; Koppenol, Willem H
2006-03-01
Carbon dioxide catalyzed oxidative coupling of phenol by peroxynitrite occurs by two pathways distinguished by the isomer ratio of 2,2'- to 4,4'-biphenols. As already established, at neutral pH and moderate phenol concentrations, both biphenols are formed in comparable yields by the coupling of two phenoxyl radicals. However, at high pH and phenol concentration, 2,2'-biphenol is the only identified coupled product, and its formation does not involve phenoxyl radicals. Instead, under these conditions, a previously unreported long-lived (t(1/2) approximately 10 s at pH 10 and 1 mM phenol) diamagnetic intermediate with an absorption maximum at 400 nm is observed. This intermediate is formed from phenolate concomitantly with the decay of peroxynitrite and disappears via reaction with phenol [k = (2.4 +/- 0.1) x 10 M(-)(1) s(-)(1) at pH 10.5] to form 2,2'-biphenol. We also find that para-benzoquinone, previously unreported, is formed in up to 5% yield relative to the initial peroxynitrite concentration. The appearance of an absorption band above 500 nm, which might be due to quinhydrone, indicates that hydroquinone is a likely para-benzoquinone precursor. The dependence of para-benzoquinone yields on pH and phenol concentration suggests that its formation is related to the nonradical pathway of 2,2'-biphenol formation. This novel nonradical pathway of 2,2'-biphenol formation might be relevant to the mechanisms of reaction of phenolic antioxidants with peroxynitrite. The existence of two distinct pathways of biphenol formation implies that, apart from a CO(3)(*)(-)/NO(2)(*) radical pair, another reactive intermediate is formed during the carbon dioxide catalyzed decay of peroxynitrite. PMID:16544942
NASA Technical Reports Server (NTRS)
Reswick, J. B.; Mooney, V.; Bright, C. W.; Owens, L. J. (Inventor)
1979-01-01
A coupling for use in an apparatus for connecting a prosthesis to the bone of a stump of an amputated limb is described which permits a bio-compatible carbon sleeve forming a part of the prosthesis connector to float so as to prevent disturbing the skin seal around the carbon sleeve. The coupling includes a flexible member interposed between a socket that is inserted within an intermedullary cavity of the bone and the sleeve. A lock pin is carried by the prosthesis and has a stem portion which is adapted to be coaxially disposed and slideably within the tubular female socket for securing the prosthesis to the stump. The skin around the percutaneous carbon sleeve is able to move as a result of the flexing coupling so as to reduce stresses caused by changes in the stump shape and/or movement between the bone and the flesh portion of the stump.
Babelay, E.F.
1962-02-13
A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)
Fretting about FRET: Failure of the Ideal Dipole Approximation
Muñoz-Losa, Aurora; Curutchet, Carles; Krueger, Brent P.; Hartsell, Lydia R.; Mennucci, Benedetta
2009-01-01
Abstract With recent growth in the use of fluorescence-detected resonance energy transfer (FRET), it is being applied to complex systems in modern and diverse ways where it is not always clear that the common approximations required for analysis are applicable. For instance, the ideal dipole approximation (IDA), which is implicit in the Förster equation, is known to break down when molecules get “too close” to each other. Yet, no clear definition exists of what is meant by “too close”. Here we examine several common fluorescent probe molecules to determine boundaries for use of the IDA. We compare the Coulombic coupling determined essentially exactly with a linear response approach with the IDA coupling to find the distance regimes over which the IDA begins to fail. We find that the IDA performs well down to roughly 20 Å separation, provided the molecules sample an isotropic set of relative orientations. However, if molecular motions are restricted, the IDA performs poorly at separations beyond 50 Å. Thus, isotropic probe motions help mask poor performance of the IDA through cancellation of error. Therefore, if fluorescent probe motions are restricted, FRET practitioners should be concerned with not only the well-known κ2 approximation, but also possible failure of the IDA. PMID:19527638
Fretting about FRET: failure of the ideal dipole approximation.
Muñoz-Losa, Aurora; Curutchet, Carles; Krueger, Brent P; Hartsell, Lydia R; Mennucci, Benedetta
2009-06-17
With recent growth in the use of fluorescence-detected resonance energy transfer (FRET), it is being applied to complex systems in modern and diverse ways where it is not always clear that the common approximations required for analysis are applicable. For instance, the ideal dipole approximation (IDA), which is implicit in the Förster equation, is known to break down when molecules get "too close" to each other. Yet, no clear definition exists of what is meant by "too close". Here we examine several common fluorescent probe molecules to determine boundaries for use of the IDA. We compare the Coulombic coupling determined essentially exactly with a linear response approach with the IDA coupling to find the distance regimes over which the IDA begins to fail. We find that the IDA performs well down to roughly 20 A separation, provided the molecules sample an isotropic set of relative orientations. However, if molecular motions are restricted, the IDA performs poorly at separations beyond 50 A. Thus, isotropic probe motions help mask poor performance of the IDA through cancellation of error. Therefore, if fluorescent probe motions are restricted, FRET practitioners should be concerned with not only the well-known kappa2 approximation, but also possible failure of the IDA. PMID:19527638
Mediterranean intermediate circulation estimated from Argo data in 2003-2010
NASA Astrophysics Data System (ADS)
Menna, M.; Poulain, P. M.
2010-03-01
Data from 38 Argo profiling floats are used to describe the intermediate Mediterranean currents for the period October 2003-January 2010. These floats were programmed to execute 5-day cycles, to drift at a neutral parking depth of 350 m and measure temperature and salinity profiles from either 700 or 2000 m up to the surface. At the end of each cycle the floats remained at the sea surface for about 6 h, enough time to be localised and transmit the data to the Argos satellite system. The Argos positions were used to determine the float surface and intermediate displacements. At the surface, the float motion was approximated by a linear displacement and inertial motion. Intermediate velocities estimates were used to investigate the Mediterranean circulation at 350 m, to compute the pseudo-Eulerian statistics and to study the influence of bathymetry on the intermediate currents. Maximum speeds, as large as 33 cm/s, were found northeast of the Balearic Islands (western basin) and in the Ierapetra eddy (eastern basin). Typical speeds in the main along-slope currents (Liguro-Provençal-Catalan, Algerian and Libyo-Egyptian Currents) were ~20 cm/s. In the central and western part of Mediterranean basin, the pseudo-Eulerian statistics show typical intermediate circulation pathways which can be related to the motion of Levantine Intermediate Water. In general our results agree with the qualitative intermediate circulation schemes proposed in the literature, except in the southern Ionian where we found westward-flowing intermediate currents. Fluctuating currents appeared to be usually larger than the mean flow. Intermediate currents were found to be essentially parallel to the isobaths over most of the areas characterized by strong bathymetry gradients, in particular, in the vicinity of the continental slopes.
Meek, Garrett A; Levine, Benjamin G
2014-07-01
Spikes in the time-derivative coupling (TDC) near surface crossings make the accurate integration of the time-dependent Schrödinger equation in nonadiabatic molecular dynamics simulations a challenge. To address this issue, we present an approximation to the TDC based on a norm-preserving interpolation (NPI) of the adiabatic electronic wave functions within each time step. We apply NPI and two other schemes for computing the TDC in numerical simulations of the Landau-Zener model, comparing the simulated transfer probabilities to the exact solution. Though NPI does not require the analytical calculation of nonadiabatic coupling matrix elements, it consistently yields unsigned population transfer probability errors of ∼0.001, whereas analytical calculation of the TDC yields errors of 0.0-1.0 depending on the time step, the offset of the maximum in the TDC from the beginning of the time step, and the coupling strength. The approximation of Hammes-Schiffer and Tully yields errors intermediate between NPI and the analytical scheme. PMID:26279558
Plasma transport theory spanning weak to strong coupling
Daligault, Jérôme; Baalrud, Scott D.
2015-06-29
We describe some of the most striking characteristics of particle transport in strongly coupled plasmas across a wide range of Coulomb coupling strength. We then discuss the effective potential theory, which is an approximation that was recently developed to extend conventional weakly coupled plasma transport theory into the strongly coupled regime in a manner that is practical to evaluate efficiently.
Microeconomic Concepts Students Should Learn before Intermediate Macroeconomics.
ERIC Educational Resources Information Center
Salemi, Michael K.
1996-01-01
Identifies four microeconomic concepts students should learn before entering the study of intermediate macroeconomics. Included are relative prices, general versus partial equilibrium, constrained optimization, and the nature of production concepts. Recommends making intermediate microeconomics a prerequisite for intermediate macroeconomics. (MJP)
Constructive approximate interpolation by neural networks
NASA Astrophysics Data System (ADS)
Llanas, B.; Sainz, F. J.
2006-04-01
We present a type of single-hidden layer feedforward neural networks with sigmoidal nondecreasing activation function. We call them ai-nets. They can approximately interpolate, with arbitrary precision, any set of distinct data in one or several dimensions. They can uniformly approximate any continuous function of one variable and can be used for constructing uniform approximants of continuous functions of several variables. All these capabilities are based on a closed expression of the networks.
Solving Nonlinear Coupled Differential Equations
NASA Technical Reports Server (NTRS)
Mitchell, L.; David, J.
1986-01-01
Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.
Transition modes in Ising networks: an approximate theory for macromolecular recognition.
Keating, S; Di Cera, E
1993-01-01
For a statistical lattice, or Ising network, composed of N identical units existing in two possible states, 0 and 1, and interacting according to a given geometry, a set of values can be found for the mean free energy of the 0-->1 transition of a single unit. Each value defines a transition mode in an ensemble of nu N = 3N - 2N possible values and reflects the role played by intermediate states in shaping the energetics of the system as a whole. The distribution of transition modes has a number of intriguing properties. Some of them apply quite generally to any Ising network, regardless of its dimension, while others are specific for each interaction geometry and dimensional embedding and bear on fundamental aspects of analytical number theory. The landscape of transition modes encapsulates all of the important thermodynamic properties of the network. The free energy terms defining the partition function of the system can be derived from the modes by simple transformations. Classical mean-field expressions can be obtained from consideration of the properties of transition modes in a rather straightforward way. The results obtained in the analysis of the transition mode distributions have been used to develop an approximate treatment of the problem of macromolecular recognition. This phenomenon is modeled as a cooperative process that involves a number of recognition subsites across an interface generated by the binding of two macromolecular components. The distribution of allowed binding free energies for the system is shown to be a superposition of Gaussian terms with mean and variance determined a priori by the theory. Application to the analysis of the biologically interaction of thrombin with hirudin has provided some useful information on basic aspects of the interaction, such as the number of recognition subsites involved and the energy balance for binding and cooperative coupling among them. Our results agree quite well with information derived independently
Piecewise linear approximation for hereditary control problems
NASA Technical Reports Server (NTRS)
Propst, Georg
1990-01-01
This paper presents finite-dimensional approximations for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems, when a quadratic cost integral must be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in the case where the cost integral ranges over a finite time interval, as well as in the case where it ranges over an infinite time interval. The arguments in the last case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense.
NASA Astrophysics Data System (ADS)
Schwarz, J. M.; Zhang, Tao
2015-03-01
The actin cytoskeleton provides the cell with structural integrity and allows it to change shape to crawl along a surface, for example. The actin cytoskeleton can be modeled as a semiflexible biopolymer network that modifies its morphology in response to both external and internal stimuli. Just inside the inner nuclear membrane of a cell exists a network of filamentous lamin that presumably protects the heart of the cell nucleus--the DNA. Lamins are intermediate filaments that can also be modeled as semiflexible biopolymers. It turns out that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins that bridge the outer and inner nuclear membranes. We, therefore, probe the consequences of such a coupling via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the cytoskeletal network. Such study could have implications for mechanical mechanisms of the regulation of transcription, since DNA--yet another semiflexible polymer--contains lamin-binding domains, and, thus, widen the field of epigenetics.
Spin-polarized Hartree-Fock approximation at nonzero temperatures
NASA Astrophysics Data System (ADS)
Hong, Suklyun; Mahan, G. D.
1995-06-01
The Hartree-Fock exchange energy is calculated for the spin-polarized electron gas at nonzero temperatures. This calculation is done self-consistently in that the Hartree-Fock self-energy is included self-consistently in the Fermi-Dirac occupation numbers while performing a coupling constant integral. The internal energy and entropy are also considered. We calculate the first and second derivatives of the exchange energy, internal energy, and entropy with respect to number density and/or spin polarization density, which are used for calculations of response functions such as the compressibility and polarization. One should have in mind that our exchange-only scheme using the coupling-constant-integral formalism is different from the usual Hartree-Fock approximation at nonzero temperatures and is indeed its self-consistent generalization.
Anisotropic electromagnetic wave propagation modeling using parabolic approximations
NASA Astrophysics Data System (ADS)
Brent, R. I.; Siegmann, W. L.; Jacobson, M. J.; Jacyna, G. M.
1990-12-01
A new method for the investigation of anisotropic electromagnetic wave propagation in the atmosphere is developed using parabolic approximations. Model equations for the electric field components are formulated which include the effects of both the inhomogeneous atmosphere and the static magnetic field of the earth. Application of parabolic-type approximations produces different systems of coupled parabolic equations. Each is valid for different relative magnitudes of components of the electric field. All admissible cases are then synthesized into one system which can be numerically examined, yielding solutions without a priori knowledge of electric field ratios. A specific example is presented and examined to understand static magnetic field effects on electromagnetic wave propagation. The influences of the earth's magnetic field are discussed and displayed in terms of electric components and the Poynting vector. Results demonstrate that the geomagnetic field can significantly influence HF atmospheric propagation.
Elster, C.; Gloeckle, W.
1997-03-01
Transition potentials for elastic p-d scattering and the coupled processes p+{sup 3}He {r_arrow} p+{sup 3}He and n+{sup 3}He {r_arrow} d+d are derived in the Faddeev-Yakubovsky framework with special emphasis on leading order terms, which are expected to be valid at intermediate energies. In addition, equations for the fragmentations {sup 3}He(p,ppp)n and {sup 3}He(p,pp)d are derived within the same framework. Again leading order terms for intermediate energies are considered. {copyright} {ital 1997} {ital The American Physical Society}
Grand unified theories with dimension-5 interactions: Gauge unification and intermediate scales
Chakrabortty, Joydeep; Raychaudhuri, Amitava
2010-03-01
Dimension-5 corrections to the gauge kinetic term of grand unified theories may capture effects of quantum gravity or string compactification. Such operators modify the usual gauge coupling unification prediction in a calculable manner. Here we examine SU(5), SO(10), and E(6) grand unified theories in the light of all such permitted operators and calculate the impact on the intermediate scales and the unification program. We show that in many cases at least one intermediate scale can be lowered to even 1-10 TeV, where a neutral Z{sup '} and possibly other states are expected.
Wiedner, Eric S; Bullock, R Morris
2016-07-01
A large variety of molecular cobalt complexes are used as electrocatalysts for H2 production, but the key cobalt hydride intermediates are frequently difficult to detect and characterize due to their high reactivity. We report that a combination of variable scan rate cyclic voltammetry and foot-of-the-wave analysis (FOWA) can be used to detect transient Co(III)H and Co(II)H intermediates of electrocatalytic H2 production by [Co(II)(P(tBu)2N(Ph)2)(CH3CN)3](2+) and Co(II)(dmgBF2)2(CH3CN)2. In both cases, reduction of a transient catalytic intermediate occurs at a potential that coincides with the Co(II/I) couple. Each reduction displays quasireversible electron-transfer kinetics, consistent with reduction of a Co(III)H intermediate to Co(II)H, which is then protonated by acid to generate H2. A bridge-protonated Co(I) species was ruled out as a catalytic intermediate for Co(II)(dmgBF2)2(CH3CN)2 from voltammograms recorded at 1000 psi of H2. Density functional theory was used to calculate Co(III)-H and Co(II)-H bond strengths for both catalysts. Despite having very different ligands, the cobalt hydrides of both catalysts possess nearly identical heterolytic and homolytic Co-H bond strengths for the Co(III)H and Co(II)H intermediates. PMID:27300721
2 π production in the Giessen coupled-channels model
NASA Astrophysics Data System (ADS)
Shklyar, V.; Lenske, H.; Mosel, U.
2016-04-01
The coupled-channels Lagrangian approach underlying the Giessen model (GiM) is extended to describe the π N →π N ,2 π N scattering in the resonance energy region. As a feasibility study we investigate single- and double-pion production up to the second resonance region. The 2 π N production has been significantly improved by using the isobar approximation with σ N and π Δ (1232 ) in the intermediate state. The three-body unitarity is maintained up to an interference pattern between the isobar subchannels. The scattering amplitudes are obtained as a solution of the Bethe-Salpeter equation in the K -matrix approximation. As a first application we perform a partial-wave analysis of the π N →π N ,π0π0N reactions in the Roper resonance region. We obtain Rσ N(1440 ) =27-9+4% and Rπ Δ(1440 ) =12-3+5% for the σ N and π Δ (1232 ) decay branching ratios of N*(1440 ) , respectively. The extracted π N inelasticities and reaction amplitudes are consistent with the results from other groups.
Relaxation approximation in the theory of shear turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, Robert
1995-01-01
Leslie's perturbative treatment of the direct interaction approximation for shear turbulence (Modern Developments in the Theory of Turbulence, 1972) is applied to derive a time dependent model for the Reynolds stresses. The stresses are decomposed into tensor components which satisfy coupled linear relaxation equations; the present theory therefore differs from phenomenological Reynolds stress closures in which the time derivatives of the stresses are expressed in terms of the stresses themselves. The theory accounts naturally for the time dependence of the Reynolds normal stress ratios in simple shear flow. The distortion of wavenumber space by the mean shear plays a crucial role in this theory.
Corrections to the thin wall approximation in general relativity
NASA Technical Reports Server (NTRS)
Garfinkle, David; Gregory, Ruth
1989-01-01
The question is considered whether the thin wall formalism of Israel applies to the gravitating domain walls of a lambda phi(exp 4) theory. The coupled Einstein-scalar equations that describe the thick gravitating wall are expanded in powers of the thickness of the wall. The solutions of the zeroth order equations reproduce the results of the usual Israel thin wall approximation for domain walls. The solutions of the first order equations provide corrections to the expressions for the stress-energy of the wall and to the Israel thin wall equations. The modified thin wall equations are then used to treat the motion of spherical and planar domain walls.
Optics in the Multipole Approximation: From Atomic Systems to Solids
CHOW, WENG W.; KNORR, ANDREAS; KOCH, STEPHAN W.
1999-09-13
Starting from the microscopic light-matter interaction in form of the minimal coupling Hamiltonian, the multipole approximation for the optical response of localized electrons in atomic systems is extended to delocalized electrons in solids. A spatial averaging procedure is used to derive the electromagnetic sources for macroscopic Maxwell's equations as well as the corresponding many particle Hamiltonian on a coarse grained length scale. The results are illustrated for semiconductor bulk material up to quadruple moments for the interband transitions, where gauge invariant equations of motion for the optical response are obtained.
An approximate local thermodynamic nonequilibrium radiation model for air
NASA Technical Reports Server (NTRS)
Gally, Thomas A.; Carlson, Leland A.
1992-01-01
A radiatively coupled viscous shock layer analysis program which includes chemical and thermal nonequilibrium is used to calculate stagnation point flow profiles for typical aeroassisted orbital transfer vehicle conditions. Two methods of predicting local thermodynamic nonequilibrium radiation effects are used as a first and second order approximation to this phenomena. Tabulated results for both nitrogen and air freestreams are given with temperature, species, and radiation profiles for some air conditions. Two body solution results are shown for 45 and 60 degree hyperboloid bodies at 12 km/sec and 80 km altitude. The presented results constitute an advancement in the engineering modeling of radiating nonequilibrium reentry flows.
Non-Abelian gauge invariance and the infrared approximation
Cho, H.h.; Fried, H.M.; Grandou, T.
1988-02-15
Two constructions are given of infrared approximations, defined by a nonlocal configuration-space restrictions, which preserve the local, non-Abelian gauge invariance of SU(N) two-dimensional QCD (QCD/sub 2/). These continuum infrared methods are used to estimate the quenched order parameter
NASA Astrophysics Data System (ADS)
Nag, Tanay
2016-06-01
We take a central spin model (CSM), consisting of a one-dimensional environmental Ising spin chain and a single qubit connected globally to all the spins of the environment, to study the excess energy (EE) of the environment and the logarithm of decoherence factor namely, generalized fidelity susceptibility per site (GFSS), associated with the qubit under a periodic driving of the transverse field term of environment across its critical point using the Floquet theory. The coupling to the qubit, prepared in a pure state, with the transverse field of the spin chain yields two sets of EE corresponding to the two species of Floquet operators. In the limit of weak coupling, we derive an approximated expression of GFSS after an infinite number of driving period which can successfully estimate the low- and intermediate-frequency behavior of GFSS obtained numerically with a large number of time periods. Our main focus is to analytically investigate the effect of system-environment coupling strength on the EEs and GFSS and relate the behavior of GFSS to EEs as a function of frequency by plausible analytical arguments. We explicitly show that the low-frequency beatinglike pattern of GFSS is an outcome of two frequencies, causing the oscillations in the two branches of EEs, that are dependent on the coupling strength. In the intermediate frequency regime, dip structure observed in GFSS can be justified by the resonance peaks of EEs at those coupling parameter-dependent frequencies; high-frequency saturation behavior of EEs and GFSS are controlled by the same static Hamiltonian and the associated saturation values are related to the coupling strength.
Engine With Regression and Neural Network Approximators Designed
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2001-01-01
At the NASA Glenn Research Center, the NASA engine performance program (NEPP, ref. 1) and the design optimization testbed COMETBOARDS (ref. 2) with regression and neural network analysis-approximators have been coupled to obtain a preliminary engine design methodology. The solution to a high-bypass-ratio subsonic waverotor-topped turbofan engine, which is shown in the preceding figure, was obtained by the simulation depicted in the following figure. This engine is made of 16 components mounted on two shafts with 21 flow stations. The engine is designed for a flight envelope with 47 operating points. The design optimization utilized both neural network and regression approximations, along with the cascade strategy (ref. 3). The cascade used three algorithms in sequence: the method of feasible directions, the sequence of unconstrained minimizations technique, and sequential quadratic programming. The normalized optimum thrusts obtained by the three methods are shown in the following figure: the cascade algorithm with regression approximation is represented by a triangle, a circle is shown for the neural network solution, and a solid line indicates original NEPP results. The solutions obtained from both approximate methods lie within one standard deviation of the benchmark solution for each operating point. The simulation improved the maximum thrust by 5 percent. The performance of the linear regression and neural network methods as alternate engine analyzers was found to be satisfactory for the analysis and operation optimization of air-breathing propulsion engines (ref. 4).
Evaluating the Accuracy of Hessian Approximations for Direct Dynamics Simulations.
Zhuang, Yu; Siebert, Matthew R; Hase, William L; Kay, Kenneth G; Ceotto, Michele
2013-01-01
Direct dynamics simulations are a very useful and general approach for studying the atomistic properties of complex chemical systems, since an electronic structure theory representation of a system's potential energy surface is possible without the need for fitting an analytic potential energy function. In this paper, recently introduced compact finite difference (CFD) schemes for approximating the Hessian [J. Chem. Phys.2010, 133, 074101] are tested by employing the monodromy matrix equations of motion. Several systems, including carbon dioxide and benzene, are simulated, using both analytic potential energy surfaces and on-the-fly direct dynamics. The results show, depending on the molecular system, that electronic structure theory Hessian direct dynamics can be accelerated up to 2 orders of magnitude. The CFD approximation is found to be robust enough to deal with chaotic motion, concomitant with floppy and stiff mode dynamics, Fermi resonances, and other kinds of molecular couplings. Finally, the CFD approximations allow parametrical tuning of different CFD parameters to attain the best possible accuracy for different molecular systems. Thus, a direct dynamics simulation requiring the Hessian at every integration step may be replaced with an approximate Hessian updating by tuning the appropriate accuracy. PMID:26589009
Spline approximations for nonlinear hereditary control systems
NASA Technical Reports Server (NTRS)
Daniel, P. L.
1982-01-01
A sline-based approximation scheme is discussed for optimal control problems governed by nonlinear nonautonomous delay differential equations. The approximating framework reduces the original control problem to a sequence of optimization problems governed by ordinary differential equations. Convergence proofs, which appeal directly to dissipative-type estimates for the underlying nonlinear operator, are given and numerical findings are summarized.
Quirks of Stirling's Approximation
ERIC Educational Resources Information Center
Macrae, Roderick M.; Allgeier, Benjamin M.
2013-01-01
Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…
Taylor approximations of multidimensional linear differential systems
NASA Astrophysics Data System (ADS)
Lomadze, Vakhtang
2016-06-01
The Taylor approximations of a multidimensional linear differential system are of importance as they contain a complete information about it. It is shown that in order to construct them it is sufficient to truncate the exponential trajectories only. A computation of the Taylor approximations is provided using purely algebraic means, without requiring explicit knowledge of the trajectories.
Approximation for nonresonant beam target fusion reactivities
Mikkelsen, D.R.
1988-11-01
The beam target fusion reactivity for a monoenergetic beam in a Maxwellian target is approximately evaluated for nonresonant reactions. The approximation is accurate for the DD and TT fusion reactions to better than 4% for all beam energies up to 300 keV and all ion temperatures up to 2/3 of the beam energy. 12 refs., 1 fig., 1 tab.
Computing Functions by Approximating the Input
ERIC Educational Resources Information Center
Goldberg, Mayer
2012-01-01
In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their…
Diagonal Pade approximations for initial value problems
Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.
1987-06-01
Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab.
Inversion and approximation of Laplace transforms
NASA Technical Reports Server (NTRS)
Lear, W. M.
1980-01-01
A method of inverting Laplace transforms by using a set of orthonormal functions is reported. As a byproduct of the inversion, approximation of complicated Laplace transforms by a transform with a series of simple poles along the left half plane real axis is shown. The inversion and approximation process is simple enough to be put on a programmable hand calculator.
An approximation for inverse Laplace transforms
NASA Technical Reports Server (NTRS)
Lear, W. M.
1981-01-01
Programmable calculator runs simple finite-series approximation for Laplace transform inversions. Utilizing family of orthonormal functions, approximation is used for wide range of transforms, including those encountered in feedback control problems. Method works well as long as F(t) decays to zero as it approaches infinity and so is appliable to most physical systems.
Linear radiosity approximation using vertex radiosities
Max, N. Lawrence Livermore National Lab., CA ); Allison, M. )
1990-12-01
Using radiosities computed at vertices, the radiosity across a triangle can be approximated by linear interpolation. We develop vertex-to-vertex form factors based on this linear radiosity approximation, and show how they can be computed efficiently using modern hardware-accelerated shading and z-buffer technology. 9 refs., 4 figs.
An approximate model for pulsar navigation simulation
NASA Astrophysics Data System (ADS)
Jovanovic, Ilija; Enright, John
2016-02-01
This paper presents an approximate model for the simulation of pulsar aided navigation systems. High fidelity simulations of these systems are computationally intensive and impractical for simulating periods of a day or more. Simulation of yearlong missions is done by abstracting navigation errors as periodic Gaussian noise injections. This paper presents an intermediary approximate model to simulate position errors for periods of several weeks, useful for building more accurate Gaussian error models. This is done by abstracting photon detection and binning, replacing it with a simple deterministic process. The approximate model enables faster computation of error injection models, allowing the error model to be inexpensively updated throughout a simulation. Testing of the approximate model revealed an optimistic performance prediction for non-millisecond pulsars with more accurate predictions for pulsars in the millisecond spectrum. This performance gap was attributed to noise which is not present in the approximate model but can be predicted and added to improve accuracy.
Approximating maximum clique with a Hopfield network.
Jagota, A
1995-01-01
In a graph, a clique is a set of vertices such that every pair is connected by an edge. MAX-CLIQUE is the optimization problem of finding the largest clique in a given graph and is NP-hard, even to approximate well. Several real-world and theory problems can be modeled as MAX-CLIQUE. In this paper, we efficiently approximate MAX-CLIQUE in a special case of the Hopfield network whose stable states are maximal cliques. We present several energy-descent optimizing dynamics; both discrete (deterministic and stochastic) and continuous. One of these emulates, as special cases, two well-known greedy algorithms for approximating MAX-CLIQUE. We report on detailed empirical comparisons on random graphs and on harder ones. Mean-field annealing, an efficient approximation to simulated annealing, and a stochastic dynamics are the narrow but clear winners. All dynamics approximate much better than one which emulates a "naive" greedy heuristic. PMID:18263357
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Symmetry-protected intermediate trivial phases in quantum spin chains
NASA Astrophysics Data System (ADS)
Kshetrimayum, Augustine; Tu, Hong-Hao; Orús, Román
2016-06-01
Symmetry-protected trivial (SPt) phases of matter are the product-state analog of symmetry-protected topological (SPT) phases. This means, SPt phases can be adiabatically connected to a product state by some path that preserves the protecting symmetry. Moreover, SPt and SPT phases can be adiabatically connected to each other when interaction terms that break the symmetries protecting the SPT order are added in the Hamiltonian. It is also known that spin-1 SPT phases in quantum spin chains can emerge as effective intermediate phases of spin-2 Hamiltonians. In this paper we show that a similar scenario is also valid for SPt phases. More precisely, we show that for a given spin-2 quantum chain, effective intermediate spin-1 SPt phases emerge in some regions of the phase diagram, these also being adiabatically connected to nontrivial intermediate SPT phases. We characterize the phase diagram of our model by studying quantities such as the entanglement entropy, symmetry-related order parameters, and 1-site fidelities. Our numerical analysis uses matrix product states and the infinite time evolving block decimation method to approximate ground states of the system in the thermodynamic limit. Moreover, we provide a field theory description of the possible quantum phase transitions between the SPt phases. Together with the numerical results, such a description shows that the transitions may be described by conformal field theories with central charge c =1 . Our results are in agreement with, and further generalize, those of Y. Fuji, F. Pollmann, and M. Oshikawa [Phys. Rev. Lett. 114, 177204 (2015), 10.1103/PhysRevLett.114.177204].
Hyaluronic acid-N-hydroxysuccinimide: a useful intermediate for bioconjugation.
Luo, Y; Prestwich, G D
2001-01-01
Hyaluronic acid (HA) is an abundant nonsulfated glycosaminoglycan component of synovial fluid and the extracellular matrix. HA is an important building block for biocompatible and biointeractive materials with applications in drug delivery, tissue engineering, wound repair, and viscosupplementation. Herein we describe the synthesis and characterization of HA-N-succinimide, an activated ester of the glucuronic acid moiety. This HA-active ester intermediate is a precursor for fluorescent probes, drug-polymer conjugates, and cross-linked hydrogels. As a demonstration, we used HA-NHS to prepare HA-BODIPY by coupling with the hydrazide derivative of the fluor. Intracellular uptake of HA-BODIPY into human ovarian cancer cells, which overexpress cell-surface HA receptors, was visualized using confocal microscopy. PMID:11716704
Structures of the ribosome in intermediate states of ratcheting
Zhang, Wen; Dunkle, Jack; Cate, Jamie H. D.
2010-01-01
Summary Structures of the E. coli 70S ribosome show how the large and small subunits rotate to facilitate protein synthesis. Protein biosynthesis on the ribosome requires repeated cycles of ratcheting, which couples rotation of the two ribosomal subunits with respect to each other and swiveling of the head domain of the small subunit. However, the molecular basis for how the two ribosomal subunits rearrange contacts with each other during ratcheting while remaining stably associated is not known. Here we describe x-ray crystal structures of the intact Escherichia coli ribosome, either in the apo form (3.5 Å resolution) or with one (4.0 Å res) or two (4.0 Å res) anticodon stem-loop tRNA mimics bound, that reveal intermediate states of intersubunit rotation. In the structures, the interface between the small and large ribosomal subunits rearranges in discrete steps along the ratcheting pathway. Positioning of the head domain of the small subunit is controlled by interactions with the large subunit and with the tRNA bound in the peptidyl-tRNA site. The intermediates observed here provide insight into how tRNAs move into the hybrid state of binding that precedes the final steps of mRNA and tRNA translocation. PMID:19696352
Structures of the Ribosome in Intermediate States of Ratcheting
Zhang, Wen; Dunkle, Jack A.; Cate, Jamie H.D.
2009-10-21
Protein biosynthesis on the ribosome requires repeated cycles of ratcheting, which couples rotation of the two ribosomal subunits with respect to each other, and swiveling of the head domain of the small subunit. However, the molecular basis for how the two ribosomal subunits rearrange contacts with each other during ratcheting while remaining stably associated is not known. Here, we describe x-ray crystal structures of the intact Escherichia coli ribosome, either in the apo-form (3.5 angstrom resolution) or with one (4.0 angstrom resolution) or two (4.0 angstrom resolution) anticodon stem-loop tRNA mimics bound, that reveal intermediate states of intersubunit rotation. In the structures, the interface between the small and large ribosomal subunits rearranges in discrete steps along the ratcheting pathway. Positioning of the head domain of the small subunit is controlled by interactions with the large subunit and with the tRNA bound in the peptidyl-tRNA site. The intermediates observed here provide insight into how tRNAs move into the hybrid state of binding that precedes the final steps of mRNA and tRNA translocation.
Intermediate load-center photovoltaic application experiments
Burgess, E. L.
1980-01-01
A total of nine intermediate load-center photovoltaic systems were carried into the construction phase this year. These nine systems range in size from 20 to 225 kW/sub p/ electrical output and total almost 1 MW/sub p/. They are being installed in a diverse set of applications and locations and represent the bulk of the photovoltaic initial system evaluation experiments (ISEE) for the intermediate load-center sector. Each of these experiments are briefly described and the status of the construction phase is given for each project.
Intermediate-energy nuclear chemistry workshop
Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.
1981-05-01
This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.
Blue outliers among intermediate redshift quasars
NASA Astrophysics Data System (ADS)
Marziani, P.; Sulentic, J. W.; Stirpe, G. M.; Dultzin, D.; Del Olmo, A.; Martínez-Carballo, M. A.
2016-01-01
[OIII]λ 5007 "blue outliers"—that are suggestive of outflows in the narrow line region of quasars—appear to be much more common at intermediate z (high luminosity) than at low z. About 40~% of quasars in a Hamburg ESO intermediate z sample of 52 sources qualify as "blue outliers" (i.e., quasars with [OIII]λλ 4959,5007 lines showing large systematic blueshifts with respect to rest frame). We discuss major findings on what has become an intriguing field in active galactic nuclei research and stress the relevance of "blue outliers" to feedback and host galaxy evolution.
Warm anisotropic inflation with bulk viscous pressure in intermediate era
NASA Astrophysics Data System (ADS)
Sharif, M.; Saleem, Rabia
2015-03-01
The aim of this paper is to study the warm inflation during intermediate era in the framework of locally rotationally symmetric Bianchi type I universe model. We assume that the universe is composed of inflaton and imperfect fluid having radiation and bulk viscous pressure. To this end, dynamical equations (first model field equation and energy conservation equations) under slow-roll approximation and in high dissipative regime are constructed. A necessary condition is developed for the realization of this anisotropic model. We assume both dissipation and bulk viscous coefficients variable as well as constant. We evaluate entropy density, scalar (tensor) power spectra, their corresponding spectral indices, tensor-scalar ratio and running of spectral index in terms of inflaton. These cosmological parameters are constrained using recent Planck and WMAP7 probe.
Phase chaos in coupled oscillators.
Popovych, Oleksandr V; Maistrenko, Yuri L; Tass, Peter A
2005-06-01
A complex high-dimensional chaotic behavior, phase chaos, is found in the finite-dimensional Kuramoto model of coupled phase oscillators. This type of chaos is characterized by half of the spectrum of Lyapunov exponents being positive and the Lyapunov dimension equaling almost the total system dimension. Intriguingly, the strongest phase chaos occurs for intermediate-size ensembles. Phase chaos is a common property of networks of oscillators of very different natures, such as phase oscillators, limit-cycle oscillators, and chaotic oscillators, e.g., Rössler systems. PMID:16089804
Phase chaos in coupled oscillators
NASA Astrophysics Data System (ADS)
Popovych, Oleksandr V.; Maistrenko, Yuri L.; Tass, Peter A.
2005-06-01
A complex high-dimensional chaotic behavior, phase chaos, is found in the finite-dimensional Kuramoto model of coupled phase oscillators. This type of chaos is characterized by half of the spectrum of Lyapunov exponents being positive and the Lyapunov dimension equaling almost the total system dimension. Intriguingly, the strongest phase chaos occurs for intermediate-size ensembles. Phase chaos is a common property of networks of oscillators of very different natures, such as phase oscillators, limit-cycle oscillators, and chaotic oscillators, e.g., Rössler systems.
Coupling coefficient of gain-guided lasers
NASA Technical Reports Server (NTRS)
Katz, J.; Kapon, E.; Lindsey, C.; Margalit, S.; Yariv, A.
1984-01-01
An analytical model is presented for the coupling coefficient for two gain-guided coupled waveguides, e.g., semiconductor laser arrays. A common parabolic gain distribution is assumed for the lasers, and the effective dielectric constant distribution is approximated in terms of the bulk refraction index, wavelength, power filling factor, and the antiguiding factor. The fundamental mode is then formulated and used in an integral for the coupling coefficient. The dependence of the coefficient of various waveguide parameters is described.
APPROXIMATING LIGHT RAYS IN THE SCHWARZSCHILD FIELD
Semerák, O.
2015-02-10
A short formula is suggested that approximates photon trajectories in the Schwarzschild field better than other simple prescriptions from the literature. We compare it with various ''low-order competitors'', namely, with those following from exact formulas for small M, with one of the results based on pseudo-Newtonian potentials, with a suitably adjusted hyperbola, and with the effective and often employed approximation by Beloborodov. Our main concern is the shape of the photon trajectories at finite radii, yet asymptotic behavior is also discussed, important for lensing. An example is attached indicating that the newly suggested approximation is usable—and very accurate—for practically solving the ray-deflection exercise.
Detecting Gravitational Waves using Pade Approximants
NASA Astrophysics Data System (ADS)
Porter, E. K.; Sathyaprakash, B. S.
1998-12-01
We look at the use of Pade Approximants in defining a metric tensor for the inspiral waveform template manifold. By using this method we investigate the curvature of the template manifold and the number of templates needed to carry out a realistic search for a Gravitational Wave signal. By comparing this method with the normal use of Taylor Approximant waveforms we hope to show that (a) Pade Approximants are a superior method for calculating the inspiral waveform, and (b) the number of search templates needed, and hence computing power, is reduced.
Alternative approximation concepts for space frame synthesis
NASA Technical Reports Server (NTRS)
Lust, R. V.; Schmit, L. A.
1985-01-01
A method for space frame synthesis based on the application of a full gamut of approximation concepts is presented. It is found that with the thoughtful selection of design space, objective function approximation, constraint approximation and mathematical programming problem formulation options it is possible to obtain near minimum mass designs for a significant class of space frame structural systems while requiring fewer than 10 structural analyses. Example problems are presented which demonstrate the effectiveness of the method for frame structures subjected to multiple static loading conditions with limits on structural stiffness and strength.
Approximate knowledge compilation: The first order case
Val, A. del
1996-12-31
Knowledge compilation procedures make a knowledge base more explicit so as make inference with respect to the compiled knowledge base tractable or at least more efficient. Most work to date in this area has been restricted to the propositional case, despite the importance of first order theories for expressing knowledge concisely. Focusing on (LUB) approximate compilation, our contribution is twofold: (1) We present a new ground algorithm for approximate compilation which can produce exponential savings with respect to the previously known algorithm. (2) We show that both ground algorithms can be lifted to the first order case preserving their correctness for approximate compilation.
Adiabatic approximation for nucleus-nucleus scattering
Johnson, R.C.
2005-10-14
Adiabatic approximations to few-body models of nuclear scattering are described with emphasis on reactions with deuterons and halo nuclei (frozen halo approximation) as projectiles. The different ways the approximation should be implemented in a consistent theory of elastic scattering, stripping and break-up are explained and the conditions for the theory's validity are briefly discussed. A formalism which links few-body models and the underlying many-body system is outlined and the connection between the adiabatic and CDCC methods is reviewed.
Information geometry of mean-field approximation.
Tanaka, T
2000-08-01
I present a general theory of mean-field approximation based on information geometry and applicable not only to Boltzmann machines but also to wider classes of statistical models. Using perturbation expansion of the Kullback divergence (or Plefka expansion in statistical physics), a formulation of mean-field approximation of general orders is derived. It includes in a natural way the "naive" mean-field approximation and is consistent with the Thouless-Anderson-Palmer (TAP) approach and the linear response theorem in statistical physics. PMID:10953246
Symmetric rotating-wave approximation for the generalized single-mode spin-boson system
Albert, Victor V.; Scholes, Gregory D.; Brumer, Paul
2011-10-15
The single-mode spin-boson model exhibits behavior not included in the rotating-wave approximation (RWA) in the ultra and deep-strong coupling regimes, where counter-rotating contributions become important. We introduce a symmetric rotating-wave approximation that treats rotating and counter-rotating terms equally, preserves the invariances of the Hamiltonian with respect to its parameters, and reproduces several qualitative features of the spin-boson spectrum not present in the original rotating-wave approximation both off-resonance and at deep-strong coupling. The symmetric rotating-wave approximation allows for the treatment of certain ultra- and deep-strong coupling regimes with similar accuracy and mathematical simplicity as does the RWA in the weak-coupling regime. Additionally, we symmetrize the generalized form of the rotating-wave approximation to obtain the same qualitative correspondence with the addition of improved quantitative agreement with the exact numerical results. The method is readily extended to higher accuracy if needed. Finally, we introduce the two-photon parity operator for the two-photon Rabi Hamiltonian and obtain its generalized symmetric rotating-wave approximation. The existence of this operator reveals a parity symmetry similar to that in the Rabi Hamiltonian as well as another symmetry that is unique to the two-photon case, providing insight into the mathematical structure of the two-photon spectrum, significantly simplifying the numerics, and revealing some interesting dynamical properties.
NASA Astrophysics Data System (ADS)
Noah-Vanhoucke, Joyce E.; Andersen, Hans C.
2007-08-01
We use computer simulation results for a dense Lennard-Jones fluid for a range of temperatures to test the accuracy of various binary collision approximations for the memory function for density fluctuations in liquids. The approximations tested include the moderate density approximation of the generalized Boltzmann-Enskog memory function (MGBE) of Mazenko and Yip [Statistical Mechanics. Part B. Time-Dependent Processes, edited by B. J. Berne (Plenum, New York, 1977)], the binary collision approximation (BCA) and the short time approximation (STA) of Ranganathan and Andersen [J. Chem. Phys. 121, 1243 (2004); J. Phys. Chem. 109, 21437 (2005)] and various other approximations we derived by using diagrammatic methods. The tests are of two types. The first is a comparison of the correlation functions predicted by each approximate memory function with the simulation results, especially for the self-longitudinal current correlation (SLCC) function. The second is a direct comparison of each approximate memory function with a memory function numerically extracted from the correlation function data. The MGBE memory function is accurate at short times but decays to zero too slowly and gives a poor description of the correlation function at intermediate times. The BCA is exact at zero time, but it predicts a correlation function that diverges at long times. The STA gives a reasonable description of the SLCC but does not predict the correct temperature dependence of the negative dip in the function that is associated with caging at low temperatures. None of the other binary collision approximations is a systematic improvement on the STA. The extracted memory functions have a rapidly decaying short time part, much like the STA, and a much smaller, more slowly decaying part of the type predicted by a mode coupling theory. Theories that use mode coupling commonly include a binary collision term in the memory function but do not discuss in detail the nature of that term. It is
29 CFR 452.123 - Elections of intermediate body officers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 2 2013-07-01 2013-07-01 false Elections of intermediate body officers. 452.123 Section... intermediate body officers. Section 401(d) states that officers of intermediate bodies shall be elected either... intermediate bodies. Such delegates may therefore participate in the election of officers of...
29 CFR 452.123 - Elections of intermediate body officers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 2 2014-07-01 2014-07-01 false Elections of intermediate body officers. 452.123 Section... intermediate body officers. Section 401(d) states that officers of intermediate bodies shall be elected either... intermediate bodies. Such delegates may therefore participate in the election of officers of...
29 CFR 452.123 - Elections of intermediate body officers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 2 2012-07-01 2012-07-01 false Elections of intermediate body officers. 452.123 Section... intermediate body officers. Section 401(d) states that officers of intermediate bodies shall be elected either... intermediate bodies. Such delegates may therefore participate in the election of officers of...
29 CFR 452.123 - Elections of intermediate body officers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 2 2010-07-01 2010-07-01 false Elections of intermediate body officers. 452.123 Section... intermediate body officers. Section 401(d) states that officers of intermediate bodies shall be elected either... intermediate bodies. Such delegates may therefore participate in the election of officers of...
29 CFR 452.123 - Elections of intermediate body officers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 2 2011-07-01 2011-07-01 false Elections of intermediate body officers. 452.123 Section... intermediate body officers. Section 401(d) states that officers of intermediate bodies shall be elected either... intermediate bodies. Such delegates may therefore participate in the election of officers of...
NASA Technical Reports Server (NTRS)
Rosenbaum, Bernard J. (Inventor)
2000-01-01
A system for coupling a vascular overflow graft or cannula to a heart pump. A pump pipe outlet is provided with an external tapered surface which receives the end of a compressible connula. An annular compression ring with a tapered internal bore surface is arranged about the cannula with the tapered internal surface in a facing relationship to the external tapered surface. The angle of inclination of the tapered surfaces is converging such that the spacing between the tapered surfaces decreases from one end of the external tapered surface to the other end thereby providing a clamping action of the tapered surface on a cannula which increases as a function of the length of cannula segment between the tapered surfaces. The annular compression ring is disposed within a tubular locking nut which threadedly couples to the pump and provides a compression force for urging the annular ring onto the cannula between the tapered surfaces. The nut has a threaded connection to the pump body. The threaded coupling to the pump body provides a compression force for the annular ring. The annular ring has an annular enclosure space in which excess cannula material from the compression between the tapered surfaces to "bunch up" in the space and serve as an enlarged annular ring segment to assist holding the cannula in place. The clamped cannula provides a seamless joint connection to the pump pipe outlet where the clamping force is uniformly applied to the cannula because of self alignment of the tapered surfaces. The nut can be easily disconnected to replace the pump if necessary.
Phenomenological Magnetic Model in Tsai-Type Approximants
NASA Astrophysics Data System (ADS)
Sugimoto, Takanori; Tohyama, Takami; Hiroto, Takanobu; Tamura, Ryuji
Recent neutron diffraction study has reported a curious ferromagnetism in Tsai-type approximants Au-Si-RE (RE=Tb,Dy,Ho), which have the same local structure as quasi-crystals with a translational symmetry simultaneously. In these materials, magnetic moments of rare-earth atoms have a single-ion anisotropy determined locally via spin-orbit coupling around crystal fields satisfying a distorted icosahedral crystal structure. We phenomenologically propose a possible magnetic model reproducing the magnetic structure and the thermodynamical quantities. The corresponding energies of the single-ion anisotropy and RKKY exchange couplings are also estimated by comparing magnetization curves and susceptibility of our model and experiments. Moreover, simulated annealing calculations with the energies in our model coincide with the strange ferromagnetism. In conclusion, a distortion of icosahedral cluster in body-centered cubic structure plays a key role to emerge the peculiar magnetic structure. Our magnetic model does not only explain magnetic behaviors in quasi-crystal approximants, but also can approach to a coexistence of a long-ranged order and a quasi-periodicity.
Teacher Education for the Intermediate School Staff.
ERIC Educational Resources Information Center
Stainbrook, James R., Jr.
The aim of this 1970 investigation was to analyze the professional education of Indiana's intermediate school teachers. This analysis involved a comparison of the data collected from middle and junior high school teachers. Results obtained from the junior high school teachers were also utilized in a second comparison with the findings from a…
The intermediate anomaly. [satellite orbit integration
NASA Technical Reports Server (NTRS)
Nacozy, P.
1977-01-01
Time transformations of the equation dt = cr to the n ds, where s is a variable called the intermediate anomaly, are known to reduce global error in the solution of gravitational systems obtained by numerical integration. Attention is given to the Sundman time transformation, and its relation to equations of Keplerian elliptical motion.
THE INTERMEDIATE UNIT IN IOWA. (TITLE SUPPLIED).
ERIC Educational Resources Information Center
MESSERLI, JOHN H.
THE INTERMEDIATE UNIT IS A MODEL WHICH WOULD ENABLE TWO OR MORE SCHOOL DISTRICTS TO DEVELOP SEVERAL COOPERATIVE EDUCATIONAL PROGRAMS. REASONS PRESENTED FOR FORMING SUCH A UNIT INCLUDE THE RECOGNITION THAT A MAJORITY OF RURAL SCHOOL DISTRICTS CANNOT BE SELF SUFFICIENT AND THAT SUCH A COOPERATIVE PLAN MAY EFFECT GREAT SAVINGS TO SCHOOL SYSTEMS. ONE…
What Should be Taught in Intermediate Macroeconomics?
ERIC Educational Resources Information Center
de Araujo, Pedro; O'Sullivan, Roisin; Simpson, Nicole B.
2013-01-01
A lack of consensus remains on what should form the theoretical core of the undergraduate intermediate macroeconomic course. In determining how to deal with the Keynesian/classical divide, instructors must decide whether to follow the modern approach of building macroeconomic relationships from micro foundations, or to use the traditional approach…
A new intermediate in the Prins reaction
Fukuda, Takeshi; Yamazaki, Shoko
2013-01-01
Summary Two Prins reactions were investigated by the use of DFT calculations. A model composed of R–CH=CH2 + H3O+(H2O)13 + (H2C=O)2, R = Me and Ph, was adopted to trace reaction paths. For both alkenes, the concerted path forming 1,3-diols was obtained as the rate determining step (TS1). TS stands for a transition state. From the 1,3-diol, a bimolecular elimination (TS2) leads to the allylic alcohol as the first channel. In the second channel, the 1,3-diol was converted via TS3 into an unprecedented hemiacetal intermediate, HO–CH2–O–CH(R)–CH2–CH2–OH. This intermediate undergoes ring closure (TS4), affording the 1,3-dioxane product. The intermediate is of almost the same stability as the product, and two species were suggested to be in a state of equilibrium. While the geometry of TS1 appears to be forwarded to that of a carbocation intermediate, the cation disappeared through the enlargement of the water cluster. Dynamical calculations of a classical trajectory using the atom-centered density matrix propagation molecular dynamics model on the four TSs were carried out, and results of IRC calculations were confirmed by them. PMID:23532354
A new intermediate in the Prins reaction.
Yamabe, Shinichi; Fukuda, Takeshi; Yamazaki, Shoko
2013-01-01
Two Prins reactions were investigated by the use of DFT calculations. A model composed of R-CH=CH2 + H3O(+)(H2O)13 + (H2C=O)2, R = Me and Ph, was adopted to trace reaction paths. For both alkenes, the concerted path forming 1,3-diols was obtained as the rate determining step (TS1). TS stands for a transition state. From the 1,3-diol, a bimolecular elimination (TS2) leads to the allylic alcohol as the first channel. In the second channel, the 1,3-diol was converted via TS3 into an unprecedented hemiacetal intermediate, HO-CH2-O-CH(R)-CH2-CH2-OH. This intermediate undergoes ring closure (TS4), affording the 1,3-dioxane product. The intermediate is of almost the same stability as the product, and two species were suggested to be in a state of equilibrium. While the geometry of TS1 appears to be forwarded to that of a carbocation intermediate, the cation disappeared through the enlargement of the water cluster. Dynamical calculations of a classical trajectory using the atom-centered density matrix propagation molecular dynamics model on the four TSs were carried out, and results of IRC calculations were confirmed by them. PMID:23532354
Giano Intermediate School: The Parent Factor
ERIC Educational Resources Information Center
Rourke, James; Hartzman, Marlene
2009-01-01
On a Wednesday morning at Giano Intermediate School in West Covina, California, 25 mothers and fathers sit in rapt attention, many taking notes, as a school counselor outlines the morning's Parent Chat. The session is devoted to exploring how well the parents know their children. Parents complete a questionnaire that asks them to answer such…
Unveiling the crucial intermediates in androgen production.
Mak, Piotr J; Gregory, Michael C; Denisov, Ilia G; Sligar, Stephen G; Kincaid, James R
2015-12-29
Ablation of androgen production through surgery is one strategy against prostate cancer, with the current focus placed on pharmaceutical intervention to restrict androgen synthesis selectively, an endeavor that could benefit from the enhanced understanding of enzymatic mechanisms that derives from characterization of key reaction intermediates. The multifunctional cytochrome P450 17A1 (CYP17A1) first catalyzes the typical hydroxylation of its primary substrate, pregnenolone (PREG) and then also orchestrates a remarkable C17-C20 bond cleavage (lyase) reaction, converting the 17-hydroxypregnenolone initial product to dehydroepiandrosterone, a process representing the first committed step in the biosynthesis of androgens. Now, we report the capture and structural characterization of intermediates produced during this lyase step: an initial peroxo-anion intermediate, poised for nucleophilic attack on the C20 position by a substrate-associated H-bond, and the crucial ferric peroxo-hemiacetal intermediate that precedes carbon-carbon (C-C) bond cleavage. These studies provide a rare glimpse at the actual structural determinants of a chemical transformation that carries profound physiological consequences. PMID:26668369
Moroccan Arabic Intermediate Reader, Part II.
ERIC Educational Resources Information Center
Alami, Wali A.; Hodge, Carlton T., Ed.
The first section of this companion volume to "Moroccan Arabic Intermediate Reader, Part I" (AL 002 041) presents the Arabic script version of the pre-drills in Lessons IA-IIB in that volume. The second and major section comprises 20 lessons consisting of pre-drills, texts, notes, and questions. All material in this volume appears in Arabic script…
Unveiling the crucial intermediates in androgen production
Mak, Piotr J.; Gregory, Michael C.; Denisov, Ilia G.; Sligar, Stephen G.; Kincaid, James R.
2015-01-01
Ablation of androgen production through surgery is one strategy against prostate cancer, with the current focus placed on pharmaceutical intervention to restrict androgen synthesis selectively, an endeavor that could benefit from the enhanced understanding of enzymatic mechanisms that derives from characterization of key reaction intermediates. The multifunctional cytochrome P450 17A1 (CYP17A1) first catalyzes the typical hydroxylation of its primary substrate, pregnenolone (PREG) and then also orchestrates a remarkable C17–C20 bond cleavage (lyase) reaction, converting the 17-hydroxypregnenolone initial product to dehydroepiandrosterone, a process representing the first committed step in the biosynthesis of androgens. Now, we report the capture and structural characterization of intermediates produced during this lyase step: an initial peroxo-anion intermediate, poised for nucleophilic attack on the C20 position by a substrate-associated H-bond, and the crucial ferric peroxo-hemiacetal intermediate that precedes carbon–carbon (C-C) bond cleavage. These studies provide a rare glimpse at the actual structural determinants of a chemical transformation that carries profound physiological consequences. PMID:26668369
A Concurrent Support Course for Intermediate Algebra
ERIC Educational Resources Information Center
Cooper, Cameron I.
2011-01-01
This article summarizes the creation and implementation of a concurrent support class for TRS 92--Intermediate Algebra, a developmental mathematics course at Fort Lewis College in Durango, Colorado. The concurrent course outlined in this article demonstrates a statistically significant increase in student success rates since its inception.…
Tape Lessons to Accompany Intermediate Nepali Reader.
ERIC Educational Resources Information Center
Verma, Manindra K.
These tape lessons follow the sequence of the intermediate Nepali Reader. There are 12 lessons each containing various types of exercises designed to increase listening, speaking, and reading skills. Each lesson contains the following types of exercises: (1) listening comprehension; (2) question answering; (3) repetition; and (4) multiple choice…
Membrane Fission: Model for Intermediate Structures
Kozlovsky, Yonathan; Kozlov, Michael M.
2003-01-01
Membrane budding-fission is a fundamental process generating intracellular carriers of proteins. Earlier works were focused only on formation of coated buds connected to the initial membrane by narrow membrane necks. We present the theoretical analysis of the whole pathway of budding-fission, including the crucial stage where the membrane neck undergoes fission and the carrier separates from the donor membrane. We consider two successive intermediates of the reaction: 1), a constricted membrane neck coming out of aperture of the assembling protein coat, and 2), hemifission intermediate resulting from self-fusion of the inner monolayer of the neck, while its outer monolayer remains continuous. Transformation of the constricted neck into the hemifission intermediate is driven by the membrane stress produced in the neck by the protein coat. Although apparently similar to hemifusion, the fission is predicted to have an opposite dependence on the monolayer spontaneous curvature. Analysis of the further stages of the process demonstrates that in all practically important cases the hemifission intermediate decays spontaneously into two separate membranes, thereby completing the fission process. We formulate the “job description” for fission proteins by calculating the energy they have to deliver and the radii of the protein coat aperture which have to be reached to drive the fission process. PMID:12829467
Teaching Vocabulary and Morphology in Intermediate Grades
ERIC Educational Resources Information Center
Palumbo, Anthony; Kramer-Vida, Louisa; Hunt, Carolyn V.
2015-01-01
Direct vocabulary instruction of Tier 2 and Tier 3 words in intermediate-grade curricula is an important tool of literacy instruction because English is a language grafted from many roots and has not developed a one-to-one phoneme-grapheme correspondence. In addition to knowing graphemes and phonemes, students must formally learn words that cross…
Graphing. USMES Intermediate "How To" Set.
ERIC Educational Resources Information Center
Agro, Sally; And Others
In this set of six booklets on graphing, intermediate grade students learn how to choose which kind of graph to make; make bar graphs, histograms, line graphs, and conversion graphs; and use graphs to compare two sets of data. The major emphasis in all Unified Sciences and Mathematics for Elementary Schools (USMES) units is on open-ended,…
Measuring. USMES Intermediate "How To" Set.
ERIC Educational Resources Information Center
Agro, Sally; And Others
In this set of five booklets on measuring, intermediate grade students learn how to use a stopwatch, choose the right tool to measure distance, use a trundle wheel, make a scale drawing, and find the speed of things. The major emphasis in all Unified Sciences and Mathematics for Elementary Schools (USMES) units is on open-ended, long-range…
Collecting Data. USMES Intermediate "How To" Set.
ERIC Educational Resources Information Center
Agro, Sally; And Others
In this set of six booklets on collecting data, intermediate grade students learn how to collect good data, round off and record data, do an experiment, make an opinion survey, and choose a sample. The major emphasis in all Unified Sciences and Mathematics for Elementary Schools (USMES) units is on open-ended, long-range investigations of real…
Simplifying Data. USMES Intermediate "How To" Set.
ERIC Educational Resources Information Center
Agro, Sally; And Others
In this set of six booklets on simplifying data, intermediate grade students learn how to tell what data show, find the median/mean/mode from sets of data, find different kinds of ranges, and use key numbers to compare two sets of data. The major emphasis in all Unified Sciences and Mathematics for Elementary Schools (USMES) units is on…
34 CFR 200.17 - Intermediate goals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 1 2010-07-01 2010-07-01 false Intermediate goals. 200.17 Section 200.17 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION TITLE I-IMPROVING THE ACADEMIC ACHIEVEMENT OF THE DISADVANTAGED Improving...
Changes to the Intermediate Accounting Course Sequence
ERIC Educational Resources Information Center
Davidson, Lesley H.; Francisco, William H.
2009-01-01
There is an ever-growing amount of information that must be covered in Intermediate Accounting courses. Due to recent accounting standards and the implementation of IFRS this trend is likely to continue. This report incorporates the results of a recent survey to examine the trend of spending more course time to cover this additional material.…
NTTC Course 215: Intermediate Water Examination.
ERIC Educational Resources Information Center
Department of the Navy, Washington, DC.
This publication is the examination booklet used for a home study course in water treatment. This course is the intermediate part of a series produced by the Department of the Navy. This publication is designed to be used in conjunction with a textbook. Each of the two examinations contained in this document are referenced to a section of the…
Renne Intermediate School Features Personalized Instruction.
ERIC Educational Resources Information Center
Profiles, Programs & Products, 1983
1983-01-01
Renne (Oregon) Intermediate School offers an innovative program of personalized instruction to students in grades 6-8. Teachers work closely with individual students, following a continuous progress curriculum which allows cross-grade-level placement in the core areas of math, reading, and language arts. Based on cooperative district planning, the…
Reactive intermediates: Radicals with multiple personalities
NASA Astrophysics Data System (ADS)
Forbes, Malcolm D. E.
2013-06-01
A combined theoretical and experimental approach has revealed that radicals can be significantly stabilized by the presence of a remote anionic site in the same molecule. This finding has implications for understanding and potentially controlling the reactivity of these important reactive intermediates.
A Survey of Techniques for Approximate Computing
Mittal, Sparsh
2016-03-18
Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less
Approximate probability distributions of the master equation
NASA Astrophysics Data System (ADS)
Thomas, Philipp; Grima, Ramon
2015-07-01
Master equations are common descriptions of mesoscopic systems. Analytical solutions to these equations can rarely be obtained. We here derive an analytical approximation of the time-dependent probability distribution of the master equation using orthogonal polynomials. The solution is given in two alternative formulations: a series with continuous and a series with discrete support, both of which can be systematically truncated. While both approximations satisfy the system size expansion of the master equation, the continuous distribution approximations become increasingly negative and tend to oscillations with increasing truncation order. In contrast, the discrete approximations rapidly converge to the underlying non-Gaussian distributions. The theory is shown to lead to particularly simple analytical expressions for the probability distributions of molecule numbers in metabolic reactions and gene expression systems.
An approximation method for electrostatic Vlasov turbulence
NASA Technical Reports Server (NTRS)
Klimas, A. J.
1979-01-01
Electrostatic Vlasov turbulence in a bounded spatial region is considered. An iterative approximation method with a proof of convergence is constructed. The method is non-linear and applicable to strong turbulence.
Linear Approximation SAR Azimuth Processing Study
NASA Technical Reports Server (NTRS)
Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.
1979-01-01
A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.
Approximation concepts for efficient structural synthesis
NASA Technical Reports Server (NTRS)
Schmit, L. A., Jr.; Miura, H.
1976-01-01
It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.
Some Recent Progress for Approximation Algorithms
NASA Astrophysics Data System (ADS)
Kawarabayashi, Ken-ichi
We survey some recent progress on approximation algorithms. Our main focus is the following two problems that have some recent breakthroughs; the edge-disjoint paths problem and the graph coloring problem. These breakthroughs involve the following three ingredients that are quite central in approximation algorithms: (1) Combinatorial (graph theoretical) approach, (2) LP based approach and (3) Semi-definite programming approach. We also sketch how they are used to obtain recent development.
Polynomial approximation of functions in Sobolev spaces
NASA Technical Reports Server (NTRS)
Dupont, T.; Scott, R.
1980-01-01
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.
Approximate Solutions Of Equations Of Steady Diffusion
NASA Technical Reports Server (NTRS)
Edmonds, Larry D.
1992-01-01
Rigorous analysis yields reliable criteria for "best-fit" functions. Improved "curve-fitting" method yields approximate solutions to differential equations of steady-state diffusion. Method applies to problems in which rates of diffusion depend linearly or nonlinearly on concentrations of diffusants, approximate solutions analytic or numerical, and boundary conditions of Dirichlet type, of Neumann type, or mixture of both types. Applied to equations for diffusion of charge carriers in semiconductors in which mobilities and lifetimes of charge carriers depend on concentrations.
Polynomial approximation of functions in Sobolev spaces
Dupont, T.; Scott, R.
1980-04-01
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomical plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.
Results of intermediate-scale hot isostatic press can experiments
Nelson, L.O.; Vinjamuri, K.
1995-05-01
Radioactive high-level waste (HLW) has been managed at the Idaho Chemical Processing Plant (ICPP) for a number of years. Since 1963, liquid HLW has been solidified into a granular solid (calcine). Presently, over 3,800 m{sup 3} of calcine is stored in partially-underground stainless steel bins. Four intermediate- scale HLW can tests (two 6-in OD {times} 12-in tall and two 4-in OD {times} 7-in tall) are described and compared to small-scale HIP can tests (1- to 3-in OD {times} 1- to 4.5-in tall). The intermediate-scale HIP cans were loaded with a 70/30 calcine/frit blend and HIPped at an off-site facility at 1050{degrees}C; and 20 ksi. The dimensions of two cans (4-in OD {times} 7-in tall) were monitored during the HIP cycle with eddy-current sensors. The sensor measurements indicated that can deformation occurs rapidly at 700{degrees}C; after which, there is little additional can shrinkage. HIP cans were subjected to a number of analyses including calculation of the overall packing efficiency (56 to 59%), measurement of glass-ceramic (3.0 to 3.2 g/cc), 14-day MCC-1 leach testing (total mass loss rates < 1 g/m{sup 2} day), and scanning electron microscopy (SEM). Based on these analyses, the glass-ceramic material produced in intermediate-scale cans is similar to material produced in small-scale cans. No major scale-up problems were indicated. Based on the packing efficiency observed in intermediate- and small-scale tests, the overall packing efficiency of production-scale (24-in OD {times} 36- to 190-in tall) cans would be approximately 64% for a pre-HIP right-circular cylinder geometry. An efficiency of 64% would represent a volume reduction factor of 2.5 over a candidate glass waste prepared at 33 wt% waste loading.
AmeriFlux US-Wi2 Intermediate red pine (IRP)
Chen, Jiquan
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Wi2 Intermediate red pine (IRP). Site Description - The Wisconsin Intermediate Red Pine site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. The intermediate red pine site is one of ten sites that collectively represent the successional stages of development in the predominant stand types of a physically homogeneous landscape. Thinned every 7 years until they reach 100 to 150 years of age, the red pine plantations of all ages occupy approximately 25% of the region.
An improved proximity force approximation for electrostatics
Fosco, Cesar D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.
2012-08-15
A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.
Alguire, Ethan C; Fatehi, Shervin; Shao, Yihan; Subotnik, Joseph E
2014-12-26
In a previous paper [ Fatehi , S. ; et al. J. Chem. Phys. 2013 , 139 , 124112 ], we demonstrated a practical method by which analytic derivative couplings of Boys-localized CIS states can be obtained. In this paper, we now apply that same method to the analysis of triplet-triplet energy transfer systems studied by Closs and collaborators [ Closs , G. L. ; et al. J. Am. Chem. Soc. 1988 , 110 , 2652 ]. For the systems examined, we are able to conclude that (i) the derivative coupling in the BoysOV basis is negligible, and (ii) the diabatic coupling will likely change little over the configuration space explored at room temperature. Furthermore, we propose and evaluate an approximation that allows for the inexpensive calculation of accurate diabatic energy gradients, called the "strictly diabatic" approximation. This work highlights the effectiveness of diabatic state analytic gradient theory in realistic systems and demonstrates that localized diabatic states can serve as an acceptable approximation to strictly diabatic states. PMID:24447246
Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald
2012-05-01
This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.
Obliquely propagating waves in the magnetized strongly coupled one-component plasma
Kählert, Hanno; Kalman, Gabor J.; Ott, Torben; Bonitz, Michael; Reynolds, Alexi
2013-05-15
The quasi-localized charge approximation is used to calculate the wave spectrum of the magnetized three-dimensional strongly coupled one-component plasma at arbitrary angles θ between the wave vector and the magnetic field axis. Three frequency branches are identified whose interplay is strongly determined by β=ω{sub c}/ω{sub p}, the ratio of the cyclotron frequency ω{sub c}, and the plasma frequency ω{sub p}. The frequency dispersion relations for the three principal modes along the magnetic field cross in the case β<1, which strongly affects the transition from parallel to perpendicular wave propagation. For β>1, the frequencies of the different branches are well separated, and the long-wavelength dispersion in the intermediate and upper branch changes sign as θ is varied from 0 to π/2. In addition to the frequencies, we also investigate the waves' polarization properties.
The Out-of-Equilibrium Time-Dependent Gutzwiller Approximation
NASA Astrophysics Data System (ADS)
Fabrizio, Michele
We review the recently proposed extension of the Gutzwiller approximation (Schirò and Fabrizio, Phys Rev Lett 105:076401, 2010), designed to describe the out-of-equilibrium time-evolution of a Gutzwiller-type variational wave function for correlated electrons. The method, which is strictly variational in the limit of infinite lattice-coordination, is quite general and flexible, and it is applicable to generic non-equilibrium conditions, even far beyond the linear response regime. As an application, we discuss the quench dynamics of a single-band Hubbard model at half-filling, where the method predicts a dynamical phase transition above a critical quench that resembles the sharp crossover observed by time-dependent dynamical mean field theory. We next show that one can actually define in some cases a multi-configurational wave function combination of a whole set of mutually orthogonal Gutzwiller wave functions. The Hamiltonian projected in that subspace can be exactly evaluated and is equivalent to a model of auxiliary spins coupled to non-interacting electrons, closely related to the slave-spin theories for correlated electron models. The Gutzwiller approximation turns out to be nothing but the mean-field approximation applied to that spin-fermion model, which displays, for any number of bands and integer fillings, a spontaneous Z 2 symmetry breaking that can be identified as the Mott insulator-to-metal transition.
Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S. E-mail: d.hernandez@uam.es E-mail: omena@ific.uv.es
2009-07-01
The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed.
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1983-10-04
An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.
On the accuracy of the 'decoupled l-dominant' approximation for atom-molecule scattering
NASA Technical Reports Server (NTRS)
Green, S.
1976-01-01
Cross sections for rotational excitation and spectral pressure broadening of HD, HCl, CO, and HCN due to collisions with low energy He atoms have been computed within the 'decoupled l-dominant' (DLD) approximation and are compared with accurate close coupling results and also with two similar approximations, the effective potential of Rabitz and the coupled states of McGuire and Kouri. DLD predictions of state-to-state cross sections are rather good, being only slightly less accurate than coupled states results. DLD is far superior to either the coupled states or effective potential methods for pressure broadening calculations, although it may not be uniformly of the quantitative accuracy desirable for obtaining intermolecular potentials from experimental data.
Parallel SVD updating using approximate rotations
NASA Astrophysics Data System (ADS)
Goetze, Juergen; Rieder, Peter; Nossek, J. A.
1995-06-01
In this paper a parallel implementation of the SVD-updating algorithm using approximate rotations is presented. In its original form the SVD-updating algorithm had numerical problems if no reorthogonalization steps were applied. Representing the orthogonalmatrix V (right singular vectors) using its parameterization in terms of the rotation angles of n(n - 1)/2 plane rotations these reorthogonalization steps can be avoided during the SVD-updating algorithm. This results in a SVD-updating algorithm where all computations (matrix vector multiplication, QRD-updating, Kogbetliantz's algorithm) are entirely based on the evaluation and application of orthogonal plane rotations. Therefore, in this form the SVD-updating algorithm is amenable to an implementation using CORDIC-based approximate rotations. Using CORDIC-based approximate rotations the n(n - 1)/2 rotations representing V (as well as all other rotations) are only computed to a certain approximation accuracy (in the basis arctan 2i). All necessary computations required during the SVD-updating algorithm (exclusively rotations) are executed with the same accuracy, i.e., only r << w (w: wordlength) elementary orthonormal (mu) rotations are used per plane rotation. Simulations show the efficiency of the implementation using CORDIC-based approximate rotations.
'LTE-diffusion approximation' for arc calculations
NASA Astrophysics Data System (ADS)
Lowke, J. J.; Tanaka, M.
2006-08-01
This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on De/W, where De is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode.
Approximate two layer (inviscid/viscous) methods to model aerothermodynamic environments
NASA Technical Reports Server (NTRS)
Dejarnette, Fred R.
1992-01-01
Approximate inviscid and boundary layer techniques for aerodynamic heating calculations are discussed. An inviscid flowfield solution is needed to provide surface pressures and boundary-layer edge properties. Modified Newtonian pressures coupled with an approximate shock shape will suffice for relatively simple shapes like sphere-cones with cone half-angles between 15 and 45 deg. More accurate approximate methods have been developed which make use of modified Maslen techniques. Slender and large angle sphere-cones and more complex shapes generally require an Euler code, like HALIS, to provide that information. The boundary-layer solution is reduced significantly by using the axisymmetric analog and approximate heating relations developed by Zoby, et al. (1981). Analysis is presented for the calculation of inviscid surface streamlines and metrics. Entropy-layer swallowing effects require coupling the inviscid and boundary-layer solutions.
Coherence Phenomena in Coupled Optical Resonators
NASA Technical Reports Server (NTRS)
Smith, D. D.; Chang, H.
2004-01-01
We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.
Johnson, Aaron George; Tranquilli, Marissa M.; Harris, Michael R.; Jarvo, Elizabeth R.
2015-01-01
A stereoselective synthesis of a bioactive triarylmethane is described. Key to the synthesis is a nickel-catalyzed Suzuki-Miyaura coupling which proceeds with retention at the benzylic center. This method is complementary to our previously reported nickel-catalyzed Kumada coupling which proceeds with inversion. Together, the two methods allow for efficient access to either enantiomer of biologically relevant triarylmethanes from a common enantioenriched intermediate. PMID:26085695
2015-01-01
Flavo-diiron proteins (FDPs) function as anaerobic nitric oxide scavengers in some microorganisms, catalyzing reduction of nitric to nitrous oxide. The FDP from Thermotoga maritima can be prepared in a deflavinated form with an intact diferric site (deflavo-FDP). Hayashi et al. [(2010) Biochemistry 49, 7040–7049] reported that reaction of NO with reduced deflavo-FDP produced substoichiometric N2O. Here we report a multispectroscopic approach to identify the iron species in the reactions of deflavo-FDP with NO. Mössbauer spectroscopy identified two distinct ferrous species after reduction of the antiferromagnetically coupled diferric site. Approximately 60% of the total ferrous iron was assigned to a diferrous species associated with the N2O-generating pathway. This pathway proceeds through successive diferrous-mononitrosyl (S = 1/2 FeII{FeNO}7) and diferrous-dinitrosyl (S = 0 [{FeNO}7]2) species that form within ∼100 ms of mixing of the reduced protein with NO. The diferrous-dinitrosyl intermediate converted to an antiferromagnetically coupled diferric species that was spectroscopically indistinguishable from that in the starting deflavinated protein. These diiron species closely resembled those reported for the flavinated FDP [Caranto et al. (2014) J. Am. Chem. Soc. 136, 7981–7992], and the time scales of their formation and decay were consistent with the steady state turnover of the flavinated protein. The remaining ∼40% of ferrous iron was inactive in N2O generation but reversibly bound NO to give an S = 3/2 {FeNO}7 species. The results demonstrate that N2O formation in FDPs can occur via conversion of S = 0 [{FeNO}7]2 to a diferric form without participation of the flavin cofactor. PMID:25144650
Separable approximations of two-body interactions
NASA Astrophysics Data System (ADS)
Haidenbauer, J.; Plessas, W.
1983-01-01
We perform a critical discussion of the efficiency of the Ernst-Shakin-Thaler method for a separable approximation of arbitrary two-body interactions by a careful examination of separable 3S1-3D1 N-N potentials that were constructed via this method by Pieper. Not only the on-shell properties of these potentials are considered, but also a comparison is made of their off-shell characteristics relative to the Reid soft-core potential. We point out a peculiarity in Pieper's application of the Ernst-Shakin-Thaler method, which leads to a resonant-like behavior of his potential 3SD1D. It is indicated where care has to be taken in order to circumvent drawbacks inherent in the Ernst-Shakin-Thaler separable approximation scheme. NUCLEAR REACTIONS Critical discussion of the Ernst-Shakin-Thaler separable approximation method. Pieper's separable N-N potentials examined on shell and off shell.
Approximate solutions of the hyperbolic Kepler equation
NASA Astrophysics Data System (ADS)
Avendano, Martín; Martín-Molina, Verónica; Ortigas-Galindo, Jorge
2015-12-01
We provide an approximate zero widetilde{S}(g,L) for the hyperbolic Kepler's equation S-g {{arcsinh}}(S)-L=0 for gin (0,1) and Lin [0,∞ ). We prove, by using Smale's α -theory, that Newton's method starting at our approximate zero produces a sequence that converges to the actual solution S( g, L) at quadratic speed, i.e. if S_n is the value obtained after n iterations, then |S_n-S|≤ 0.5^{2^n-1}|widetilde{S}-S|. The approximate zero widetilde{S}(g,L) is a piecewise-defined function involving several linear expressions and one with cubic and square roots. In bounded regions of (0,1) × [0,∞ ) that exclude a small neighborhood of g=1, L=0, we also provide a method to construct simpler starters involving only constants.
Ancilla-approximable quantum state transformations
Blass, Andreas; Gurevich, Yuri
2015-04-15
We consider the transformations of quantum states obtainable by a process of the following sort. Combine the given input state with a specially prepared initial state of an auxiliary system. Apply a unitary transformation to the combined system. Measure the state of the auxiliary subsystem. If (and only if) it is in a specified final state, consider the process successful, and take the resulting state of the original (principal) system as the result of the process. We review known information about exact realization of transformations by such a process. Then we present results about approximate realization of finite partial transformations. We not only consider primarily the issue of approximation to within a specified positive ε, but also address the question of arbitrarily close approximation.
Fast wavelet based sparse approximate inverse preconditioner
Wan, W.L.
1996-12-31
Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.
Approximation methods in gravitational-radiation theory
NASA Technical Reports Server (NTRS)
Will, C. M.
1986-01-01
The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.
On the Accuracy of the MINC approximation
Lai, C.H.; Pruess, K.; Bodvarsson, G.S.
1986-02-01
The method of ''multiple interacting continua'' is based on the assumption that changes in thermodynamic conditions of rock matrix blocks are primarily controlled by the distance from the nearest fracture. The accuracy of this assumption was evaluated for regularly shaped (cubic and rectangular) rock blocks with uniform initial conditions, which are subjected to a step change in boundary conditions on the surface. Our results show that pressures (or temperatures) predicted from the MINC approximation may deviate from the exact solutions by as much as 10 to 15% at certain points within the blocks. However, when fluid (or heat) flow rates are integrated over the entire block surface, MINC-approximation and exact solution agree to better than 1%. This indicates that the MINC approximation can accurately represent transient inter-porosity flow in fractured porous media, provided that matrix blocks are indeed subjected to nearly uniform boundary conditions at all times.
The Cell Cycle Switch Computes Approximate Majority
NASA Astrophysics Data System (ADS)
Cardelli, Luca; Csikász-Nagy, Attila
2012-09-01
Both computational and biological systems have to make decisions about switching from one state to another. The `Approximate Majority' computational algorithm provides the asymptotically fastest way to reach a common decision by all members of a population between two possible outcomes, where the decision approximately matches the initial relative majority. The network that regulates the mitotic entry of the cell-cycle in eukaryotes also makes a decision before it induces early mitotic processes. Here we show that the switch from inactive to active forms of the mitosis promoting Cyclin Dependent Kinases is driven by a system that is related to both the structure and the dynamics of the Approximate Majority computation. We investigate the behavior of these two switches by deterministic, stochastic and probabilistic methods and show that the steady states and temporal dynamics of the two systems are similar and they are exchangeable as components of oscillatory networks.
Substrate Activation by Iron Superoxo Intermediates
van der Donk, Wilfred A.; Krebs, Carsten; Bollinger, J. Martin
2010-01-01
A growing number of non-heme-iron oxygenases and oxidases catalyze reactions for which the well-established mechanistic paradigm involving a single C-H-bond cleaving intermediate of the Fe(IV)-oxo (ferryl) type [1] is insufficient to explain the chemistry. It is becoming clear that, in several of these cases, Fe(III)-superoxide complexes formed by simple addition of O2 to the reduced [Fe(II)] cofactor initiate substrate oxidation by abstracting hydrogen [2]. This substrate-oxidizing entry route into high-valent-iron intermediates makes possible an array of complex and elegant oxidation reactions without consumption of valuable reducing equivalents. Examples of this novel mechanistic strategy are discussed with the goal of bringing forth unifying principles. PMID:20951572
Intermediate filaments in small configuration spaces.
Nöding, Bernd; Köster, Sarah
2012-02-24
Intermediate filaments play a key role in cell mechanics. Apart from their great importance from a biomedical point of view, they also act as a very suitable micrometer-sized model system for semiflexible polymers. We perform a statistical analysis of the thermal fluctuations of individual filaments confined in microchannels. The small channel width and the resulting deflections at the walls give rise to a reduction of the configuration space by about 2 orders of magnitude. This circumstance enables us to precisely measure the intrinsic persistence length of vimentin intermediate filaments and to show that they behave as ideal wormlike chains; we observe that small fluctuations in perpendicular planes decouple. Furthermore, the inclusion of results for confined actin filaments demonstrates that the Odijk confinement regime is valid over at least 1 order of magnitude in persistence length. PMID:22463576
Studying Reaction Intermediates Formed at Graphenic Surfaces
NASA Astrophysics Data System (ADS)
Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil
2014-03-01
We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.
Exponential Approximations Using Fourier Series Partial Sums
NASA Technical Reports Server (NTRS)
Banerjee, Nana S.; Geer, James F.
1997-01-01
The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.
Approximation by fully complex multilayer perceptrons.
Kim, Taehwan; Adali, Tülay
2003-07-01
We investigate the approximation ability of a multilayer perceptron (MLP) network when it is extended to the complex domain. The main challenge for processing complex data with neural networks has been the lack of bounded and analytic complex nonlinear activation functions in the complex domain, as stated by Liouville's theorem. To avoid the conflict between the boundedness and the analyticity of a nonlinear complex function in the complex domain, a number of ad hoc MLPs that include using two real-valued MLPs, one processing the real part and the other processing the imaginary part, have been traditionally employed. However, since nonanalytic functions do not meet the Cauchy-Riemann conditions, they render themselves into degenerative backpropagation algorithms that compromise the efficiency of nonlinear approximation and learning in the complex vector field. A number of elementary transcendental functions (ETFs) derivable from the entire exponential function e(z) that are analytic are defined as fully complex activation functions and are shown to provide a parsimonious structure for processing data in the complex domain and address most of the shortcomings of the traditional approach. The introduction of ETFs, however, raises a new question in the approximation capability of this fully complex MLP. In this letter, three proofs of the approximation capability of the fully complex MLP are provided based on the characteristics of singularity among ETFs. First, the fully complex MLPs with continuous ETFs over a compact set in the complex vector field are shown to be the universal approximator of any continuous complex mappings. The complex universal approximation theorem extends to bounded measurable ETFs possessing a removable singularity. Finally, it is shown that the output of complex MLPs using ETFs with isolated and essential singularities uniformly converges to any nonlinear mapping in the deleted annulus of singularity nearest to the origin. PMID:12816570
Approximate Solutions for Flow with a Stretching Boundary due to Partial Slip
Filobello-Nino, U.; Vazquez-Leal, H.; Sarmiento-Reyes, A.; Benhammouda, B.; Jimenez-Fernandez, V. M.; Pereyra-Diaz, D.; Perez-Sesma, A.; Cervantes-Perez, J.; Huerta-Chua, J.; Sanchez-Orea, J.; Contreras-Hernandez, A. D.
2014-01-01
The homotopy perturbation method (HPM) is coupled with versions of Laplace-Padé and Padé methods to provide an approximate solution to the nonlinear differential equation that describes the behaviour of a flow with a stretching flat boundary due to partial slip. Comparing results between approximate and numerical solutions, we concluded that our results are capable of providing an accurate solution and are extremely efficient. PMID:27433526
Intermediate Temperature Water Heat Pipe Tests
NASA Technical Reports Server (NTRS)
Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.
2005-01-01
Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.
Intermediate Temperature Water Heat Pipe Tests
NASA Technical Reports Server (NTRS)
Devarakonda, Angirasa; Xiong, Daxi; Beach, Duane E.
2004-01-01
Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test Data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range.Fabrication and testing issues are being addressed.
[Diagnostics of approximal caries - literature review].
Berczyński, Paweł; Gmerek, Anna; Buczkowska-Radlińska, Jadwiga
2015-01-01
The most important issue in modern cariology is the early diagnostics of carious lesions, because only early detected lesions can be treated with as little intervention as possible. This is extremely difficult on approximal surfaces because of their anatomy, late onset of pain, and very few clinical symptoms. Modern diagnostic methods make dentists' everyday work easier, often detecting lesions unseen during visual examination. This work presents a review of the literature on the subject of modern diagnostic methods that can be used to detect approximal caries. PMID:27344873
Approximate convective heating equations for hypersonic flows
NASA Technical Reports Server (NTRS)
Zoby, E. V.; Moss, J. N.; Sutton, K.
1979-01-01
Laminar and turbulent heating-rate equations appropriate for engineering predictions of the convective heating rates about blunt reentry spacecraft at hypersonic conditions are developed. The approximate methods are applicable to both nonreacting and reacting gas mixtures for either constant or variable-entropy edge conditions. A procedure which accounts for variable-entropy effects and is not based on mass balancing is presented. Results of the approximate heating methods are in good agreement with existing experimental results as well as boundary-layer and viscous-shock-layer solutions.
Congruence Approximations for Entrophy Endowed Hyperbolic Systems
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Saini, Subhash (Technical Monitor)
1998-01-01
Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.
Characterizing inflationary perturbations: The uniform approximation
Habib, Salman; Heinen, Andreas; Heitmann, Katrin; Jungman, Gerard; Molina-Paris, Carmen
2004-10-15
The spectrum of primordial fluctuations from inflation can be obtained using a mathematically controlled, and systematically extendable, uniform approximation. Closed-form expressions for power spectra and spectral indices may be found without making explicit slow-roll assumptions. Here we provide details of our previous calculations, extend the results beyond leading-order in the approximation, and derive general error bounds for power spectra and spectral indices. Already at next-to-leading-order, the errors in calculating the power spectrum are less than a percent. This meets the accuracy requirement for interpreting next-generation cosmic microwave background observations.
HALOGEN: Approximate synthetic halo catalog generator
NASA Astrophysics Data System (ADS)
Avila Perez, Santiago; Murray, Steven
2015-05-01
HALOGEN generates approximate synthetic halo catalogs. Written in C, it decomposes the problem of generating cosmological tracer distributions (eg. halos) into four steps: generating an approximate density field, generating the required number of tracers from a CDF over mass, placing the tracers on field particles according to a bias scheme dependent on local density, and assigning velocities to the tracers based on velocities of local particles. It also implements a default set of four models for these steps. HALOGEN uses 2LPTic (ascl:1201.005) and CUTE (ascl:1505.016); the software is flexible and can be adapted to varying cosmologies and simulation specifications.
ANALOG QUANTUM NEURON FOR FUNCTIONS APPROXIMATION
A. EZHOV; A. KHROMOV; G. BERMAN
2001-05-01
We describe a system able to perform universal stochastic approximations of continuous multivariable functions in both neuron-like and quantum manner. The implementation of this model in the form of multi-barrier multiple-silt system has been earlier proposed. For the simplified waveguide variant of this model it is proved, that the system can approximate any continuous function of many variables. This theorem is also applied to the 2-input quantum neural model analogical to the schemes developed for quantum control.
Time-resolved heme protein intermediates
NASA Astrophysics Data System (ADS)
Rousseau, Denis
2005-03-01
To determine the enzymatic mechanisms of heme proteins, it is necessary to identify the intermediates along the catalytic pathway and measure the times of their formation and decay. Resonance Raman scattering spectra are especially powerful for obtaining such information as the electronic structure of the heme group and the nature of the ligand coordinated to the heme iron atom may be monitored. The oxygen intermediates of two physiologically important enzymes will be presented. Nitric oxide synthase (NOS) uses oxygen to convert arginine to NO and citrulline; and cytochrome c oxidase (CcO) reduces oxygen to water to support oxidative phosphorylation. The fate or the oxygen in each of these enzymes has been followed by resonance Raman scattering. In NOS the oxygen is slowly converted to an activated species that then reacts fast, whereas in CcO the oxygen is rapidly converted to a reactive species that subsequently reacts slowly. The properties of the intermediates and the origin of the differences between these enzymes will be discussed.
NASA Astrophysics Data System (ADS)
Jiang, Neng; Carlson, Richard W.; Guo, Jinhui
2011-07-01
Four intermediate to felsic igneous rocks from the Zhangjiakou region, along the northern margin of the North China craton, have magmatic zircon U-Pb ages from 122 to 144 Ma. Two of these samples have inherited zircon U-Pb ages of ~ 2.5 Ga, similar to the zircon ages of rocks from the surrounding granulite terrain. Zircons from two intermediate composition granulite xenoliths (JN0811 and JN0919) in the nearby Cenozoic Hannuoba basalts yield two groups of ages. The rims have concordant Mesozoic ages mostly between 120 and 145 Ma, coeval with the Mesozoic intermediate-felsic magmatism in the region, while the cores have discordant U-Pb ages with upper-intercepts of ~ 2.5 Ga, overlapping the zircon ages of granulite terrain rocks, and lower-intercept ages of ~ 130 Ma, approximating the ages of the Mesozoic intermediate-felsic magmatism. The Sr-Nd isotopic compositions of the Mesozoic intermediate-felsic igneous rocks are completely different from those expected for basaltic melts from either the lithospheric mantle or the asthenospheric mantle, precluding a derivation by extensive fractional crystallization of mantle-derived magmas. The lack of correlation between (86Sr/87Sr)i, εNd(t) and SiO2 for the Mesozoic igneous rocks, the very narrow range of zircon εHf(t) for individual intermediate-felsic igneous rocks, and simple binary mixing calculations argue against them being formed by mixing between mantle-derived magma and preexisting crust that has extremely evolved Sr-Nd isotopic compositions like granulite xenoliths JN0811 and JN0919. Hf isotopic compositions of the Mesozoic zircons and whole-rock geochemistry show that the granulite xenoliths with extremely evolved Sr-Nd isotopic compositions have not undergone partial melting during the Mesozoic and thus do not contribute to the Mesozoic intermediate-felsic magmas. Further comparisons show that the source rocks for the Mesozoic intermediate-felsic magmas likely were late Archean lower crustal rocks similar in
Exploring Granular Flows at Intermediate Velocities
NASA Astrophysics Data System (ADS)
Brodsky, E. E.; van der Elst, N.
2012-12-01
Geophysical and geomorphological flows often encompass a wide range of strain rates. Landslides accelerate from nearly static conditions to velocities in the range of meters/seconds. The rheology of granular flows for the end-members is moderately well-understood, but the constitutive low at intermediate velocities is largely unexplored. Here we present evidence that granular flows transition through a regime in which internally generated acoustic waves play a critical role in controlling rheology. In laboratory experiments on natural sand under shear in a commercial rheometer, we observe that the steady-state flows at intermediate velocities are compacted relative to the end members. In a confined volume, this compaction results in a decrease in stress on the boundaries. We establish the key role of the acoustic waves by measuring the noise generated by the shear flows with an accelerometer and then exciting the flow with similar amplitude noise under lower shear rate conditions. The observed compaction for a given amplitude noise is the same in both cases, regardless of whether the noise is generated internally by the grains colliding or artificially applied externally. The boundaries of this acoustically controlled regime can be successfully predicted through non-dimensional analysis balancing the overburden, acoustic pressure and granular inertial terms. In our laboratory experiments, this regime corresponds to 0.1 to 10 cm/s. The controlling role of acoustic waves in intermediate velocities is significant because: (1) Geological systems must pass through this regime on their route to instability. (2) Acoustic waves are much more efficiently generated by angular particles, likely to be found in natural samples, than by perfectly spherical particles, which are more tractable for laboratory and theoretical studies. Therefore, this regime is likely to be missed in many analog and computational approaches. (3) Different mineralogies and shapes result in different
Subsonic Aircraft With Regression and Neural-Network Approximators Designed
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2004-01-01
At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics
Progressive Image Coding by Hierarchical Linear Approximation.
ERIC Educational Resources Information Center
Wu, Xiaolin; Fang, Yonggang
1994-01-01
Proposes a scheme of hierarchical piecewise linear approximation as an adaptive image pyramid. A progressive image coder comes naturally from the proposed image pyramid. The new pyramid is semantically more powerful than regular tessellation but syntactically simpler than free segmentation. This compromise between adaptability and complexity…
Median Approximations for Genomes Modeled as Matrices.
Zanetti, Joao Paulo Pereira; Biller, Priscila; Meidanis, Joao
2016-04-01
The genome median problem is an important problem in phylogenetic reconstruction under rearrangement models. It can be stated as follows: Given three genomes, find a fourth that minimizes the sum of the pairwise rearrangement distances between it and the three input genomes. In this paper, we model genomes as matrices and study the matrix median problem using the rank distance. It is known that, for any metric distance, at least one of the corners is a [Formula: see text]-approximation of the median. Our results allow us to compute up to three additional matrix median candidates, all of them with approximation ratios at least as good as the best corner, when the input matrices come from genomes. We also show a class of instances where our candidates are optimal. From the application point of view, it is usually more interesting to locate medians farther from the corners, and therefore, these new candidates are potentially more useful. In addition to the approximation algorithm, we suggest a heuristic to get a genome from an arbitrary square matrix. This is useful to translate the results of our median approximation algorithm back to genomes, and it has good results in our tests. To assess the relevance of our approach in the biological context, we ran simulated evolution tests and compared our solutions to those of an exact DCJ median solver. The results show that our method is capable of producing very good candidates. PMID:27072561
Approximations For Controls Of Hereditary Systems
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1988-01-01
Convergence properties of controls, trajectories, and feedback kernels analyzed. Report discusses use of factorization techniques to approximate optimal feedback gains in finite-time, linear-regulator/quadratic-cost-function problem of system governed by retarded-functional-difference equations RFDE's with control delays. Presents approach to factorization based on discretization of state penalty leading to simple structure for feedback control law.
Revisiting Twomey's approximation for peak supersaturation
NASA Astrophysics Data System (ADS)
Shipway, B. J.
2015-04-01
Twomey's seminal 1959 paper provided lower and upper bound approximations to the estimation of peak supersaturation within an updraft and thus provides the first closed expression for the number of nucleated cloud droplets. The form of this approximation is simple, but provides a surprisingly good estimate and has subsequently been employed in more sophisticated treatments of nucleation parametrization. In the current paper, we revisit the lower bound approximation of Twomey and make a small adjustment that can be used to obtain a more accurate calculation of peak supersaturation under all potential aerosol loadings and thermodynamic conditions. In order to make full use of this improved approximation, the underlying integro-differential equation for supersaturation evolution and the condition for calculating peak supersaturation are examined. A simple rearrangement of the algebra allows for an expression to be written down that can then be solved with a single lookup table with only one independent variable for an underlying lognormal aerosol population. While multimodal aerosol with N different dispersion characteristics requires 2N+1 inputs to calculate the activation fraction, only N of these one-dimensional lookup tables are needed. No additional information is required in the lookup table to deal with additional chemical, physical or thermodynamic properties. The resulting implementation provides a relatively simple, yet computationally cheap, physically based parametrization of droplet nucleation for use in climate and Numerical Weather Prediction models.
Padé approximations and diophantine geometry
Chudnovsky, D. V.; Chudnovsky, G. V.
1985-01-01
Using methods of Padé approximations we prove a converse to Eisenstein's theorem on the boundedness of denominators of coefficients in the expansion of an algebraic function, for classes of functions, parametrized by meromorphic functions. This result is applied to the Tate conjecture on the effective description of isogenies for elliptic curves. PMID:16593552
Achievements and Problems in Diophantine Approximation Theory
NASA Astrophysics Data System (ADS)
Sprindzhuk, V. G.
1980-08-01
ContentsIntroduction I. Metrical theory of approximation on manifolds § 1. The basic problem § 2. Brief survey of results § 3. The principal conjecture II. Metrical theory of transcendental numbers § 1. Mahler's classification of numbers § 2. Metrical characterization of numbers with a given type of approximation § 3. Further problems III. Approximation of algebraic numbers by rationals § 1. Simultaneous approximations § 2. The inclusion of p-adic metrics § 3. Effective improvements of Liouville's inequality IV. Estimates of linear forms in logarithms of algebraic numbers § 1. The basic method § 2. Survey of results § 3. Estimates in the p-adic metric V. Diophantine equations § 1. Ternary exponential equations § 2. The Thue and Thue-Mahler equations § 3. Equations of hyperelliptic type § 4. Algebraic-exponential equations VI. The arithmetic structure of polynomials and the class number § 1. The greatest prime divisor of a polynomial in one variable § 2. The greatest prime divisor of a polynomial in two variables § 3. Square-free divisors of polynomials and the class number § 4. The general problem of the size of the class number Conclusion References
Approximation of virus structure by icosahedral tilings.
Salthouse, D G; Indelicato, G; Cermelli, P; Keef, T; Twarock, R
2015-07-01
Viruses are remarkable examples of order at the nanoscale, exhibiting protein containers that in the vast majority of cases are organized with icosahedral symmetry. Janner used lattice theory to provide blueprints for the organization of material in viruses. An alternative approach is provided here in terms of icosahedral tilings, motivated by the fact that icosahedral symmetry is non-crystallographic in three dimensions. In particular, a numerical procedure is developed to approximate the capsid of icosahedral viruses by icosahedral tiles via projection of high-dimensional tiles based on the cut-and-project scheme for the construction of three-dimensional quasicrystals. The goodness of fit of our approximation is assessed using techniques related to the theory of polygonal approximation of curves. The approach is applied to a number of viral capsids and it is shown that detailed features of the capsid surface can indeed be satisfactorily described by icosahedral tilings. This work complements previous studies in which the geometry of the capsid is described by point sets generated as orbits of extensions of the icosahedral group, as such point sets are by construction related to the vertex sets of icosahedral tilings. The approximations of virus geometry derived here can serve as coarse-grained models of viral capsids as a basis for the study of virus assembly and structural transitions of viral capsids, and also provide a new perspective on the design of protein containers for nanotechnology applications. PMID:26131897
Parameter Choices for Approximation by Harmonic Splines
NASA Astrophysics Data System (ADS)
Gutting, Martin
2016-04-01
The approximation by harmonic trial functions allows the construction of the solution of boundary value problems in geoscience, e.g., in terms of harmonic splines. Due to their localizing properties regional modeling or the improvement of a global model in a part of the Earth's surface is possible with splines. Fast multipole methods have been developed for some cases of the occurring kernels to obtain a fast matrix-vector multiplication. The main idea of the fast multipole algorithm consists of a hierarchical decomposition of the computational domain into cubes and a kernel approximation for the more distant points. This reduces the numerical effort of the matrix-vector multiplication from quadratic to linear in reference to the number of points for a prescribed accuracy of the kernel approximation. The application of the fast multipole method to spline approximation which also allows the treatment of noisy data requires the choice of a smoothing parameter. We investigate different methods to (ideally automatically) choose this parameter with and without prior knowledge of the noise level. Thereby, the performance of these methods is considered for different types of noise in a large simulation study. Applications to gravitational field modeling are presented as well as the extension to boundary value problems where the boundary is the known surface of the Earth itself.