Sample records for intermolecular transfer integral

  1. TDDFT study of twisted intramolecular charge transfer and intermolecular double proton transfer in the excited state of 4‧-dimethylaminoflavonol in ethanol solvent

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Shi, Ying; Cong, Lin; Li, Hui

    2015-02-01

    Time-dependent density functional theory method at the def-TZVP/B3LYP level was employed to investigate the intramolecular and intermolecular hydrogen bonding dynamics in the first excited (S1) state of 4‧-dimethylaminoflavonol (DMAF) monomer and in ethanol solution. In the DMAF monomer, we demonstrated that the intramolecular charge transfer (ICT) takes place in the S1 state. This excited state ICT process was followed by intramolecular proton transfer. Our calculated results are in good agreement with the mechanism proposed in experimental work. For the hydrogen-bonded DMAF-EtOH complex, it was demonstrated that the intermolecular hydrogen bonds can induce the formation of the twisted intramolecular charge transfer (TICT) state and the conformational twisting is along the C3-C4 bond. Moreover, the intermolecular hydrogen bonds can also facilitate the intermolecular double proton transfer in the TICT state. A stepwise intermolecular double proton transfer process was revealed. Therefore, the intermolecular hydrogen bonds can alter the mechanism of intramolecular charge transfer and proton transfer in the excited state for the DMAF molecule.

  2. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  3. Chemical Dynamics Simulations of Intermolecular Energy Transfer: Azulene + N2 Collisions.

    PubMed

    Kim, Hyunsik; Paul, Amit K; Pratihar, Subha; Hase, William L

    2016-07-14

    Chemical dynamics simulations were performed to investigate collisional energy transfer from highly vibrationally excited azulene (Az*) in a N2 bath. The intermolecular potential between Az and N2, used for the simulations, was determined from MP2/6-31+G* ab initio calculations. Az* is prepared with an 87.5 kcal/mol excitation energy by using quantum microcanonical sampling, including its 95.7 kcal/mol zero-point energy. The average energy of Az* versus time, obtained from the simulations, shows different rates of Az* deactivation depending on the N2 bath density. Using the N2 bath density and Lennard-Jones collision number, the average energy transfer per collision ⟨ΔEc⟩ was obtained for Az* as it is collisionally relaxed. By comparing ⟨ΔEc⟩ versus the bath density, the single collision limiting density was found for energy transfer. The resulting ⟨ΔEc⟩, for an 87.5 kcal/mol excitation energy, is 0.30 ± 0.01 and 0.32 ± 0.01 kcal/mol for harmonic and anharmonic Az potentials, respectively. For comparison, the experimental value is 0.57 ± 0.11 kcal/mol. During Az* relaxation there is no appreciable energy transfer to Az translation and rotation, and the energy transfer is to the N2 bath.

  4. Correlation of Intermolecular Acyl Transfer Reactivity with Noncovalent Lattice Interactions in Molecular Crystals: Toward Prediction of Reactivity of Organic Molecules in the Solid State.

    PubMed

    Krishnaswamy, Shobhana; Shashidhar, Mysore S

    2018-04-06

    Intermolecular acyl transfer reactivity in several molecular crystals was studied, and the outcome of the reactivity was analyzed in the light of structural information obtained from the crystals of the reactants. Minor changes in the molecular structure resulted in significant variations in the noncovalent interactions and packing of molecules in the crystal lattice, which drastically affected the facility of the intermolecular acyl transfer reactivity in these crystals. Analysis of the reactivity vs crystal structure data revealed dependence of the reactivity on electrophile···nucleophile interactions and C-H···π interactions between the reacting molecules. The presence of these noncovalent interactions augmented the acyl transfer reactivity, while their absence hindered the reactivity of the molecules in the crystal. The validity of these correlations allows the prediction of intermolecular acyl transfer reactivity in crystals and co-crystals of unknown reactivity. This crystal structure-reactivity correlation parallels the molecular structure-reactivity correlation in solution-state reactions, widely accepted as organic functional group transformations, and sets the stage for the development of a similar approach for reactions in the solid state.

  5. Exciplex: An Intermolecular Charge-Transfer Approach for TADF.

    PubMed

    Sarma, Monima; Wong, Ken-Tsung

    2018-04-03

    Organic materials that display thermally activated delayed fluorescence (TADF) are a striking class of functional materials that have witnessed a booming progress in recent years. In addition to pure TADF emitters achieved by the subtle manipulations of intramolecular charge transfer processes with sophisticated molecular structures, a new class of efficient TADF-based OLEDs with emitting layer formed by blending electron donor and acceptor molecules that involve intermolecular charge transfer have also been fabricated. In contrast to pure TADF materials, the exciplex-based systems can realize small ΔEST (0-0.05 eV) much more easily since the electron and hole are positioned on two different molecules, thereby giving small exchange energy. Consequently, exciplex-based OLEDs have the prospective to maximize the TADF contribution and achieve theoretical 100% internal quantum efficiency. Therefore, the challenging issue of achieving small ΔEST in organic systems could be solved. In this article, we summarize and discuss the latest and most significant developments regarding these rapidly evolving functional materials, wherein the majority of the reported exciplex forming systems are categorized into two sub-groups, viz. (a) exciplex as TADF emitters and (b) those as hosts for fluorescent, phosphorescent and TADF dopants according to their structural features and applications. The working mechanisms of the direct electroluminescence from the donor/acceptor interface and the exciplex-forming systems as co-host for the realization of high efficiency OLEDs are reviewed and discussed. This article delivers a summary of the current progresses and achievements of exciplex-based researches and points out the future challenges to trigger more research endeavors to this growing field.

  6. Mechanistic information from the first volume profile analysis for a reversible intermolecular electron-transfer reaction involving pentaammine(isonicotinamide)ruthenium and cytochrome c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baensch, B.; Meier, M.; Martinez, P.

    1994-10-12

    The reversible intermolecular electron-transfer reaction between pentaammine(isonicotinamide)ruthenium(II/III) and horse-heart cytochrome c iron(III/II) was subjected to a detailed kinetic and thermodynamic study as a function of temperature and pressure. Theoretical calculations based on the Marcus-Hush theory were employed to predict all rate and equilibrium constants as well as activation parameters. There is an excellent agreement between the kinetically and thermodynamically determined equilibrium constants and associated pressure parameters. These data are used to construct a volume profile for the overall process, from which it follows that the transition state lies halfway between the reactant and product states on a volume basis. Themore » reorganization in the transition state has reached a similar degree in both directions of the electron-transfer process and corresponds to a {lambda}{sup {double_dagger}} value of 0.44 for this reversible reaction. This is the first complete volume profile analysis for a reversible intermolecular electron-transfer reaction.« less

  7. Mechanism of Intermolecular Electron Transfer in Bionanostructures

    NASA Astrophysics Data System (ADS)

    Gruodis, A.; Galikova, N.; Šarka, K.; Saulė, R.; Batiuškaitė, D.; Saulis, G.

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Most patients are inoperable and hepatoma cells are resistant to conventional chemotherapies. Thus, the development of novel therapies for HCC treatment is of paramount importance. Amongst different alimentary factors, vitamin C and vitamin K3 In the present work, it has been shown that the treatment of mouse hepatoma MH-22A cells by vitamin C and vitamin K3 at the ratio of 100:1 greatly enhanced their cytotoxicity. When cells were subjected to vitamin C at 200 μM or to vitamin K3 at 2 μM separately, their viability reduced by only about 10%. However, when vitamins C and K3 were combined at the same concentrations, they killed more than 90% of cells. To elucidate the mechanism of the synergistic cytotoxicity of the C&K3 mixture, theoretical quantum-chemical analysis of the dynamics of intermolecular electron transfer (IET) processes within the complexes containing C (five forms) and K3 (one form) has been carried out. Optimization of the ground state complex geometry has been provided by means of GAUSSIAN03 package. Simulation of the IET has been carried out using NUVOLA package, in the framework of molecular orbitals (MO). The rate of IET has been calculated using Fermi Golden rule. The results of simulations allow us to create the preliminary model of the reaction pathway.

  8. Observation of aggregation triggered by Resonance Energy Transfer (RET) induced intermolecular pairing force.

    PubMed

    Pan, Xiaoyong; Wang, Weizhi; Ke, Lin; Zhang, Nan

    2017-07-20

    In this report, we showed the existence of RET induced intermolecular pairing force by comparing their fluorescence behaviors under room illumination vs standing in dark area for either PFluAnt solution or PFluAnt&PFOBT mixture. Their prominent emission attenuation under room illumination brought out the critical role of photo, i.e. RET induced intermolecular pairing force in induction of polymer aggregation. Constant UV-Vis absorption and fluorescence spectra in terms of both peak shapes and maximum wavelengths implied no chemical decomposition was involved. Recoverable fluorescence intensity, fluorescence lifetime as well as NMR spectra further exclude photo induced decomposition. The controllable on/off state of RET induced intermolecular pairing force was verified by the masking effect of outside PFluAnt solution which function as filter to block the excitation of inside PFluAnt and thus off the RET induced intermolecular pairing force. Theoretical calculation suggest that magnitude of RET induced intermolecular pairing force is on the same scale as that of van der Waals interaction. Although the absolute magnitude of RET induced intermolecular pairing force was not tunable, its effect can be magnified by intentionally turn it "on", which was achieved by irradiance with 5 W desk lamp in this report.

  9. The intermolecular interaction in D2 - CX4 and O2 - CX4 (X = F, Cl) systems: Molecular beam scattering experiments as a sensitive probe of the selectivity of charge transfer component.

    PubMed

    Cappelletti, David; Falcinelli, Stefano; Pirani, Fernando

    2016-10-07

    Gas phase collisions of a D 2 projectile by CF 4 and by CCl 4 targets have been investigated with the molecular beam technique. The integral cross section, Q, has been measured for both collisional systems in the thermal energy range and oscillations due to the quantum "glory" interference have been resolved in the velocity dependence of Q. The analysis of the measured Q(v) data provided novel information on the anisotropic potential energy surfaces of the studied systems at intermediate and large separation distances. The relative role of the most relevant types of contributions to the global interaction has been characterized. Extending the phenomenology of a weak intermolecular halogen bond, the present work demonstrates that while D 2 - CF 4 is basically bound through the balance between size (Pauli) repulsion and dispersion attraction, an appreciable intermolecular bond stabilization by charge transfer is operative in D 2 - CCl 4 . We also demonstrated that the present analysis is consistent with that carried out for the F( 2 P)-D 2 and Cl( 2 P)-D 2 systems, previously characterized by scattering experiments performed with state-selected halogen atom beams. A detailed comparison of the present and previous results on O 2 -CF 4 and O 2 -CCl 4 systems pinpointed striking differences in the behavior of hydrogen and oxygen molecules when they interact with the same partner, mainly due to the selectivity of the charge transfer component. The present work contributes to cast light on the nature and role of the intermolecular interaction in prototype systems, involving homo-nuclear diatoms and symmetric halogenated molecules.

  10. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rury, Aaron S., E-mail: arury@usc.edu; Sorenson, Shayne; Dawlaty, Jahan M.

    2016-03-14

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone,more » we find sub-cm{sup −1} oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.« less

  11. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid

    NASA Astrophysics Data System (ADS)

    Rury, Aaron S.; Sorenson, Shayne; Dawlaty, Jahan M.

    2016-03-01

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm-1 oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.

  12. Intermolecular hydrogen bond complexes by in situ charge transfer complexation of o-tolidine with picric and chloranilic acids

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2011-08-01

    A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA) 2] and [(o-TOL)(CA) 2] have been prepared. The 13C NMR, 1H NMR, 1H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH 2 groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic.

  13. Intermolecular hydrogen bond complexes by in situ charge transfer complexation of o-tolidine with picric and chloranilic acids.

    PubMed

    Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A

    2011-08-01

    A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA)(2)] and [(o-TOL)(CA)(2)] have been prepared. The (13)C NMR, (1)H NMR, (1)H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH(2) groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, ChuanXiang; Zhao, Yi, E-mail: yizhao@xmu.edu.cn, E-mail: liangwz@xmu.edu.cn; Liang, WanZhen, E-mail: yizhao@xmu.edu.cn, E-mail: liangwz@xmu.edu.cn

    2015-10-21

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra withmore » respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT.« less

  15. Ground state intermolecular proton transfer in the supersystems thymine-(H2O)n and thymine-(CH3OH)n, n = 1,2: a theoretical study.

    PubMed

    Delchev, Vassil B; Shterev, Ivan G

    2009-04-01

    Twelve binary and eight ternary supersystems between thymine and methanol, and water were investigated in the ground state at the B3LYP and MP2 levels of theory using B3LYP/6-311 + + G(d,p) basis functions. The thermodynamics of complex formations and the mechanisms of intermolecular proton transfers were clarified in order to find out the most stable H-boned system. It was established that the energy barriers of the water/methanol-assisted proton transfers are several times lower than those of the intramolecular proton transfers in the DNA/RNA bases. The X-ray powder spectra of thymine, and this precrystallized from water and methanol showed that water molecules are incorporated in the crystal lattice of thymine forming H-bridges between thymine molecules.

  16. Intermolecular interaction approach for TADF (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wong, Ken-Tsung

    2016-09-01

    Materials with thermally activated delayed fluorescence (TADF) have recently emerged as new fluorescent emitters for highly efficient organic light-emitting diodes (OLEDs). Molecule with TADF behavior needs to have a small singlet-triplet energy difference (ΔES-T) that allows the up-conversion from nonradiative triplet state (T1) to radiative singlet state (S1) via reverse intersystem crossing (RISC) process. Generally, molecules with small ΔES-T can be obtained via carefully manipulate the degree of "intramolecular" charge transfer (ICT) between electron-donating and -accepting components, such that the electron exchange energy that contributes to ΔES-T, can be minimized. Alternatively, excited state with small ΔES-T can be feasibly realized via "intermolecular" charge transfer occurring at the interface between spatially separating donor (D) and acceptor (A) molecules. Because the exchange energy decreases as the HOMO-LUMO separation distance increases, theoretically, the intermolecular D/A charge transfer state (or exciplex) should have rather small ΔES-T, leading to efficient TADF. However, it is still a challenge to access highly efficient exciplex systems. This is mainly because exciplex formation is commonly accompanied with a large red shift of emission spectra and long radiative lifetime, which tend to diminish photoluminescence quantum yield (PLQY) as well as electroluminescence (EL) performance. Until now, exciplex-based OLEDs with external quantum efficiency (EQE) above 10% are still limited. By judicious selection of donor and acceptor, the formation of efficient exciplex can be feasibly achieved. In this conference, our recent efforts on highly efficient exciplexes using C3-symmetry triazine acceptors and various donors, and their device characteristics will be presented.

  17. The effect of intermolecular hydrogen bonding on the fluorescence of a bimetallic platinum complex.

    PubMed

    Zhao, Guang-Jiu; Northrop, Brian H; Han, Ke-Li; Stang, Peter J

    2010-09-02

    The bimetallic platinum complexes are known as unique building blocks and arewidely utilized in the coordination-driven self-assembly of functionalized supramolecular metallacycles. Hence, photophysical study of the bimetallic platinum complexes will be very helpful for the understanding on the optical properties and further applications of coordination-driven self-assembled supramolecular metallacycles. Herein, we report steady-state and time-resolved spectroscopic experiments as well as quantum chemistry calculations to investigate the significant intermolecular hydrogen bonding effects on the intramolecular charge transfer (ICT) fluorescence of a bimetallic platinum compound 4,4'-bis(trans-Pt(PEt(3))(2)OTf)benzophenone 3 in solution. We demonstrated that the fluorescent state of compound 3 can be assigned as a metal-to-ligand charge transfer (MLCT) state. Moreover, it was observed that the formation of intermolecular hydrogen bonds can effectively lengthen the fluorescence lifetime of 3 in alcoholic solvents compared with that in hexane solvent. At the same time, the electronically excited states of 3 in solution are definitely changed by intermolecular hydrogen bonding interactions. As a consequence, we propose a new fluorescence modulation mechanism by hydrogen bonding to explain different fluorescence emissions of 3 in hydrogen-bonding solvents and nonhydrogen-bonding solvents.

  18. Production of low kinetic energy electrons and energetic ion pairs by Intermolecular Coulombic Decay.

    PubMed

    Hergenhahn, Uwe

    2012-12-01

    The paper gives an introduction into Interatomic and Intermolecular Coulombic Decay (ICD). ICD is an autoionization process, which contrary to Auger decay involves neighbouring sites of the initial vacancy as an integral part of the decay transition. As a result of ICD, slow electrons are produced which generally are known to be active in radiation damage. The author summarizes the properties of ICD and reviews a number of important experiments performed in recent years. Intermolecular Coulombic Decay can generally take place in weakly bonded aggregates in the presence of ionizing particles or ionizing radiation. Examples collected here mostly use soft X-rays produced by synchrotron radiation to ionize, and use rare-gas clusters, water clusters or solutes in a liquid jet to observe ICD after irradiation. Intermolecular Coulombic Decay is initiated by single ionization into an excited state. The subsequent relaxation proceeds via an ultra-fast energy transfer to a neighbouring site, where a second ionization occurs. Secondary electrons from ICD have clearly been identified in numerous systems. ICD can take place after primary ionization, as the second step of a decay cascade which also involves Auger decay, or after resonant excitation with an energy which exceeds the ionization potential of the system. ICD is expected to play a role whenever particles or radiation with photon energies above the ionization energies for inner valence electrons are present in weakly bonded matter, e.g., biological tissue. The process produces at the same time a slow electron and two charged atomic or molecular fragments, which will lead to structural changes around the ionized site.

  19. Conformation-based signal transfer and processing at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Li, Chao; Wang, Zhongping; Lu, Yan; Liu, Xiaoqing; Wang, Li

    2017-11-01

    Building electronic components made of individual molecules is a promising strategy for the miniaturization and integration of electronic devices. However, the practical realization of molecular devices and circuits for signal transmission and processing at room temperature has proven challenging. Here, we present room-temperature intermolecular signal transfer and processing using SnCl2Pc molecules on a Cu(100) surface. The in-plane orientations of the molecules are effectively coupled via intermolecular interaction and serve as the information carrier. In the coupled molecular arrays, the signal can be transferred from one molecule to another in the in-plane direction along predesigned routes and processed to realize logical operations. These phenomena enable the use of molecules displaying intrinsic bistable states as complex molecular devices and circuits with novel functions.

  20. Perturbation analyses of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Ueda, Hiroki R.

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the

  1. Perturbation analyses of intermolecular interactions.

    PubMed

    Koyama, Yohei M; Kobayashi, Tetsuya J; Ueda, Hiroki R

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the

  2. Chemical origin of blue- and redshifted hydrogen bonds: intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation.

    PubMed

    Li, An Yong

    2007-04-21

    Upon formation of a H bond Y...H-XZ, intramolecular hyperconjugation n(Z)-->sigma*(X-H) of the proton donor plays a key role in red- and blueshift characters of H bonds and must be introduced in the concepts of hyperconjugation and rehybridization. Intermolecular hyperconjugation transfers electron density from Y to sigma*(X-H) and causes elongation and stretch frequency redshift of the X-H bond; intramolecular hyperconjugation couples with intermolecular hyperconjugation and can adjust electron density in sigma*(X-H); rehybridization causes contraction and stretch frequency blueshift of the X-H bond on complexation. The three factors--intra- and intermolecular hyperconjugations and rehybridization--determine commonly red- or blueshift of the formed H bond. A proton donor that has strong intramolecular hyperconjugation often forms blueshifted H bonds.

  3. Photophysics of detection of explosive vapours via luminescence quenching of thin films: impact of inter-molecular interactions.

    PubMed

    Shoaee, Safa; Fan, Shengqiang; Burn, Paul L; Shaw, Paul E

    2016-09-21

    Fluorescence-based detection of explosive analytes requires an understanding of the nature of the excited state responsible for the luminescence response of a sensing material. Many measurements are carried out to elucidate the fundamental photophysical properties of an emissive material in solution. However, simple transfer of the understanding gained from the solution measurements to the solid-state can lead to errors. This is in part due to the absence of inter-molecular interactions of the chromophores in solution, which are present in the solid-state. To understand the role of inter-molecular interactions on the detection of explosive analytes we have chosen dendrimers from two different families, D1 and D2, which allow facile control of the inter-molecular interactions through the choice of dendrons and emissive chromophores. Using ultrafast transient absorption spectroscopy we find that the solution photoinduced absorption (PA) for both materials can be explained in terms of the generation of singlet excitons, which decay to the ground state, or intersystem cross (ISC) to form a triplet exciton. In neat films however, we observe different photophysical behaviours; first, ISC to the triplet state does not occur, and second, depending on the chromophore, charge transfer and charge separated states are formed. Furthermore, we find that when either dendrimer is interfaced with analyte vapour, the singlet state is strongly quenched, generating a charge transfer state that undergoes geminate recombination.

  4. Desensitization of metastable intermolecular composites

    DOEpatents

    Busse, James R [South Fork, CO; Dye, Robert C [Los Alamos, NM; Foley, Timothy J [Los Alamos, NM; Higa, Kelvin T [Ridgecrest, CA; Jorgensen, Betty S [Jemez Springs, NM; Sanders, Victor E [White Rock, NM; Son, Steven F [Los Alamos, NM

    2011-04-26

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  5. An isotopic mass effect on the intermolecular potential

    DOE PAGES

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    2015-09-28

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologuemore » thermodynamics.« less

  6. The intermolecular Pauson-Khand reaction.

    PubMed

    Gibson, Susan E; Mainolfi, Nello

    2005-05-13

    Five membered carbocycles are important building blocks for many biologically active molecules. Moreover, substituted cyclopentenones (e.g. cyclopentenone prostaglandins) exhibit characteristic biological activity. The efficiency and atom economy of the Pauson-Khand reaction render this process potentially one of the most attractive methods for the synthesis of such compounds. Although it was discovered in its intermolecular form, the scope of the intermolecular Pauson-Khand reaction has always been limited by the poor reactivity and selectivity of the alkene component. The past decade, especially the last three years, has seen concerted efforts to broaden the scope of this reaction. In this overview, we provide a comprehensive and critical coverage of the intermolecular Pauson-Khand reaction based on the reactivity characteristics of different classes of alkenes and a rationalization of successes and misfortunes in this area.

  7. Resonance energy transfer (RET)-Induced intermolecular pairing force: a tunable weak interaction and its application in SWNT separation.

    PubMed

    Pan, Xiaoyong; Chen, Hui; Wang, Wei Zhi; Ng, Siu Choon; Chan-Park, Mary B

    2011-07-21

    This paper explores evidence of an optically mediated interaction that is active in the separation mechanism of certain selective agents through consideration of the contrasting selective behaviors of two conjugated polymers with distinct optical properties. The involvement of a RET-induced intermolecular pairing force is implied by the different illumination response behaviors. The magnitude of this interaction scales with the external stimulus parameter, the illumination irradiance (I), and thus is tunable. This suggests a facile technique to modify the selectivity of polymers toward specific SWNT species by altering the polymer structure to adjust the corresponding intermolecular interaction. This is the first experimental verification and application of a RET-induced intermolecular pairing force to SWNT separation. With this kind of interaction taken into account, reasonable interpretation of some conflicting data, especially PLE maps, can be easily made. The above conclusion can be applied to other substances as long as they are electrically neutral and there is photon-induced RET between them. The significant magnitude of this interaction makes direct manipulation of molecules/particles possible and is expected to have applications in molecular engineering. © 2011 American Chemical Society

  8. Theoretical study of the transfer integral and density of states in spiro-linked triphenylamine derivatives.

    PubMed

    Kirkpatrick, James; Nelson, Jenny

    2005-08-22

    We present a method for calculating the parameters that control hopping transport in disordered molecular solids, i.e., the transfer integrals and the distribution of transport site energies. Average values of these parameters are obtained by performing quantum-chemical calculations on a large ensemble of bimolecular complexes in random relative orientations. The method is applied to triphenylamine (TPA) and three differently substituted spiro-linked phenylamine compounds, 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-MeOTAD), 2,2'7,7'-tetrakis-(N,N-diphenylhenylamino)-9,9'-spirobifluorene (spiro-TAD), and 2,2',7,7'-tetrakis-(N,N-di-m-methylphenylamino)-9,9'-spirobifluorene (spiro-m-TTB). In the case of TPA, the dependence of the root-mean-square hole transfer integral J on intermolecular separation r for the ensemble of relative orientations is compared with that obtained by performing the same calculations for a fixed, approximately cofacial, orientation of the two TPA molecules. The calculation for the disordered geometry predicts a larger localization radius r0, where J approximately exp(-r/r0), than the calculation for the fixed orientation and is in better agreement with experiment. In the case of the spiro-linked compounds, results from our method are compared with parameters extracted from time-of-flight mobility measurements analyzed with the Gaussian disorder model (GDM). We find that the highest occupied molecular-orbital (HOMO) energies of the bimolecular complexes are distributed on an asymmetric peak, whose width varies in qualitative agreement with the value of the energetic disorder sigma obtained from experimental data using the GDM. The mean-square hole transfer integral varies in accordance with the experimentally determined value of the mobility prefactor micro0. The differences between the differently substituted compounds are interpreted in terms of differences in the spatial extent of the wave function. Spiro

  9. Intra- and intermolecular fluorescence quenching of N-activated 4,5-dimethoxyphthalimides by sulfides, amines, and alkyl carboxylates.

    PubMed

    Griesbeck, Axel G; Schieffer, Stefan

    2003-02-01

    The fluorescent 4,5-dimethoxyphthalimides 1-10 were applied as sensors for intra- and intermolecular photoinduced electron transfer processes. Strong intramolecular fluorescence quenching was detected for the thioether 2 and the tertiary amine 3. The fluorescence of the carboxylic acids 4-7 is pH-dependent accounting for PET-quenching of the singlet excited phthalimide at pH > pKs. At low pH, chromophore protonation might contribute to moderate fluorescence quenching. The arylated phthalimides 9 and 10 show remarkable low fluorescence independent of pH and substituent pattern. Intermolecular fluorescence quenching was detected for the combinations of 1 with dimethyl sulfide, and 1 with triethylamine but not with metal carboxylates.

  10. Solvent empirical scales and their importance for the study of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Babusca, Daniela; Benchea, Andreea Celia; Morosanu, Ana Cezarina; Dimitriu, Dan Gheorghe; Dorohoi, Dana Ortansa

    2017-01-01

    The solvent empirical scales were developed in order to classify the solvents regarding their influence on the absorption or fluorescence spectra of different spectrally active molecules. The intermolecular interactions in binary solutions of three molecule having an intramolecular charge transfer visible absorption band are studied in this paper: 5-[2-(1,2,2,4-tetramethyl-1,2,3,4-tetrahydroquinolin-6-yl)-vinyl]-thiophene-2-carbaldehyde (QTC), 1-cyano-2-{5-[2-(1,2,2,4-tetramethyl-1,2,3,4-tetrahydroquinolin-6-yl)-vinyl]-thiophen-2-yl}-vinyl)-phosphonic acid diethyl ester (QTCP) and p-phenyl pyridazinium-p-nitro-phenacylid (PPNP). The solvent empirical scales with a single parameter (Z scale of Kosower, ET (30) or ETN scale of Reichardt and Dimroth) can be used to describe the strength of intermolecular interactions. The contributions of each type of interactions to the total spectral shift are evaluated using the solvent multiple parameters empirical scales defined by Kamlet and Taft and by Catalan et al.

  11. X-ray Intermolecular Structure Factor ( XISF ): separation of intra- and intermolecular interactions from total X-ray scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Q.; Benmore, C. J.; Yarger, J. L.

    2015-05-09

    XISFis a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained.XISFhas been optimized for performance and can separate intermolecular structure factors of complex molecules.

  12. Intramolecular vibrational energy redistribution and intermolecular energy transfer of benzene in supercritical CO 2: measurements from the gas phase up to liquid densities

    NASA Astrophysics Data System (ADS)

    von Benten, R.; Charvat, A.; Link, O.; Abel, B.; Schwarzer, D.

    2004-03-01

    Femtosecond pump probe spectroscopy was employed to measure intramolecular vibrational energy redistribution (IVR) and intermolecular vibrational energy transfer (VET) of benzene in the gas phase and in supercritical (sc) CO 2. We observe two IVR time scales the faster of which proceeds within τ IVR(1)<0.5 ps. The slower IVR component has a time constant of τ IVR(2)=(48±5) ps in the gas phase and in scCO 2 is accelerated by interactions with the solvent. At the highest CO 2 density it is reduced to τ IVR(2)=(6±1) ps. The corresponding IVR rate constants show a similar density dependence as the VET rate constants. Model calculations suggest that both quantities correlate with the local CO 2 density in the immediate surrounding of the benzene molecule.

  13. X-ray Intermolecular Structure Factor (XISF): separation of intra- and intermolecular interactions from total X-ray scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Q.; Benmore, C. J.; Yarger, J. L.

    2015-06-01

    XISF is a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained. XISF has been optimized for performance and can separate intermolecular structure factors of complex molecules.

  14. Intermolecular cope-type hydroamination of alkenes and alkynes using hydroxylamines.

    PubMed

    Moran, Joseph; Gorelsky, Serge I; Dimitrijevic, Elena; Lebrun, Marie-Eve; Bédard, Anne-Catherine; Séguin, Catherine; Beauchemin, André M

    2008-12-31

    The development of the Cope-type hydroamination as a method for the metal- and acid-free intermolecular hydroamination of hydroxylamines with alkenes and alkynes is described. Aqueous hydroxylamine reacts efficiently with alkynes in a Markovnikov fashion to give oximes and with strained alkenes to give N-alkylhydroxylamines, while unstrained alkenes are more challenging. N-Alkylhydroxylamines also display similar reactivity with strained alkenes and give modest to good yields with vinylarenes. Electron-rich vinylarenes lead to branched products while electron-deficient vinylarenes give linear products. A beneficial additive effect is observed with sodium cyanoborohydride, the extent of which is dependent on the structure of the hydroxylamine. The reaction conditions are found to be compatible with common protecting groups, free OH and NH bonds, as well as bromoarenes. Both experimental and theoretical results suggest the proton transfer step of the N-oxide intermediate is of vital importance in the intermolecular reactions of alkenes. Details are disclosed concerning optimization, reaction scope, limitations, and theoretical analysis by DFT, which includes a detailed molecular orbital description for the concerted hydroamination process and an exhaustive set of calculated potential energy surfaces for the reactions of various alkenes, alkynes, and hydroxylamines.

  15. Desensitization and recovery of metastable intermolecular composites

    DOEpatents

    Busse, James R [South Fork, CO; Dye, Robert C [Los Alamos, NM; Foley, Timothy J [Los Alamos, NM; Higa, Kelvin T [Ridgecrest, CA; Jorgensen, Betty S [Jemez Springs, NM; Sanders, Victor E [White Rock, NM; Son, Steven F [Los Alamos, NM

    2010-09-07

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  16. Subpiconewton intermolecular force microscopy.

    PubMed

    Tokunaga, M; Aoki, T; Hiroshima, M; Kitamura, K; Yanagida, T

    1997-02-24

    We refined scanning probe force microscopy to improve the sensitivity of force detection and control of probe position. Force sensitivity was increased by incorporating a cantilever with very low stiffness, 0.1 pN/ nm, which is over 1000-fold more flexible than is typically used in conventional atomic force microscopy. Thermal bending motions of the cantilever were reduced to less than 1 nm by exerting feed-back positioning with laser radiation pressure. The system was tested by measuring electrostatic repulsive forces or hydrophobic attractive forces in aqueous solutions. Subpiconewton intermolecular forces were resolved at controlled gaps in the nanometer range between the probe and a material surface. These levels of force and position sensitivity meet the requirements needed for future investigations of intermolecular forces between biological macromolecules such as proteins, lipids and DNA.

  17. Intermolecular orbital interaction in π systems

    NASA Astrophysics Data System (ADS)

    Zhao, Rundong; Zhang, Rui-Qin

    2018-04-01

    Intermolecular interactions, in regard to which people tend to emphasise the noncovalent van der Waals (vdW) forces when conducting investigations throughout chemistry, can influence the structure, stability and function of molecules and materials. Despite the ubiquitous nature of vdW interactions, a simplified electrostatic model has been popularly adopted to explain common intermolecular interactions, especially those existing in π-involved systems. However, this classical model has come under fire in revealing specific issues such as substituent effects, due to its roughness; and it has been followed in past decades by sundry explanations which sometimes bring in nebulous descriptions. In this account, we try to summarise and present a unified model for describing and analysing the binding mechanism of such systems from the viewpoint of energy decomposition. We also emphasise a commonly ignored factor - orbital interaction, pointing out that the noncovalent intermolecular orbital interactions actually exhibit similar bonding and antibonding phenomena as those in covalent bonds.

  18. Spin relaxation measurements of electrostatic bias in intermolecular exploration

    NASA Astrophysics Data System (ADS)

    Teng, Ching-Ling; Bryant, Robert G.

    2006-04-01

    We utilize the paramagnetic contribution to proton spin-lattice relaxation rate constants induced by freely diffusing charged paramagnetic centers to investigate the effect of charge on the intermolecular exploration of a protein by the small molecule. The proton NMR spectrum provided 255 resolved resonances that report how the explorer molecule local concentration varies with position on the surface. The measurements integrate over local dielectric constant variations, and, in principle, provide an experimental characterization of the surface free energy sampling biases introduced by the charge distribution on the protein. The experimental results for ribonuclease A obtained using positive, neutral, and negatively charged small nitroxide radicals are qualitatively similar to those expected from electrostatic calculations. However, while systematic electrostatic trends are apparent, the three different combinations of the data sets do not yield internally consistent values for the electrostatic contribution to the intermolecular free energy. We attribute this failure to the weakness of the electrostatic sampling bias for charged nitroxides in water and local variations in effective translational diffusion constant at the water-protein interface, which enters the nuclear spin relaxation equations for the nitroxide-proton dipolar coupling.

  19. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electronmore » acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.« less

  20. Phosphorescence and Energy Transfer in Rigid Solutions.

    ERIC Educational Resources Information Center

    Enciso, E.; Cabello, A.

    1980-01-01

    Describes an experiment which illustrates the general aspects of intermolecular energy transfer between triplet states in rigid solutions of organic compounds solved in an ethanol-ether mixture. Measurements of quenching and energy transfer processes are made using the chemicals of benzophenone and naphthalene. (CS)

  1. Quantitative tomographic imaging of intermolecular FRET in small animals

    PubMed Central

    Venugopal, Vivek; Chen, Jin; Barroso, Margarida; Intes, Xavier

    2012-01-01

    Forster resonance energy transfer (FRET) is a nonradiative transfer of energy between two fluorescent molecules (a donor and an acceptor) in nanometer range proximity. FRET imaging methods have been applied to proteomic studies and drug discovery applications based on intermolecular FRET efficiency measurements and stoichiometric measurements of FRET interaction as quantitative parameters of interest. Importantly, FRET provides information about biomolecular interactions at a molecular level, well beyond the diffraction limits of standard microscopy techniques. The application of FRET to small animal imaging will allow biomedical researchers to investigate physiological processes occurring at nanometer range in vivo as well as in situ. In this work a new method for the quantitative reconstruction of FRET measurements in small animals, incorporating a full-field tomographic acquisition system with a Monte Carlo based hierarchical reconstruction scheme, is described and validated in murine models. Our main objective is to estimate the relative concentration of two forms of donor species, i.e., a donor molecule involved in FRETing to an acceptor close by and a nonFRETing donor molecule. PMID:23243567

  2. Structural investigation of cellobiose dehydrogenase IIA: Insights from small angle scattering into intra- and intermolecular electron transfer mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodenheimer, Annette M.; O'Dell, William B.; Oliver, Ryan C.

    Background: Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized.Methods: Small-angle X-ray and neutron scattering measurements ofmore » oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa.Results: The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation.Conclusions: These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D.General significance: The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO.« less

  3. Structural investigation of cellobiose dehydrogenase IIA: Insights from small angle scattering into intra- and intermolecular electron transfer mechanisms

    DOE PAGES

    Bodenheimer, Annette M.; O'Dell, William B.; Oliver, Ryan C.; ...

    2018-01-31

    Background: Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized.Methods: Small-angle X-ray and neutron scattering measurements ofmore » oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa.Results: The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation.Conclusions: These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D.General significance: The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO.« less

  4. Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Förster energy transfer.

    PubMed

    Wang, Huan; Yue, Bailing; Xie, Zengqi; Gao, Bingrong; Xu, Yuanxiang; Liu, Linlin; Sun, Hongbo; Ma, Yuguang

    2013-03-14

    The orientation factor κ(2) ranging from 0 to 4, which depends on the relative orientation of the transition dipoles of the energy donor (D) and the energy acceptor (A) in space, is one of the pivotal factors deciding the efficiency and directionality of resonance energy transfer (RET) in a D-A molecular system. In this work, tetracene (Tc) and pentacene (Pc) are successfully doped in a trans-1,4-distyrylbenzene (DSB) crystalline lattice to form definite D-A mutually perpendicular transition dipole orientations. The cross D-A dipole arrangement results in an extremely small orientation factor, which is about two orders smaller than that in the disordered films. The energy transfer properties from the host (DSB) to the guest (Tc/Pc) were investigated in detail by steady-state as well as time-resolved fluorescence spectroscopy. Our experimental research results show that the small value of κ(2) allows less or partial energy transfer from the host (DSB) to the guest (Tc) in a wide range of guest concentration, with the Förster distance of around 1.5 nm. By controlling the doping concentrations in the Tc and Pc doubly doped DSB crystals, we demonstrate, as an example, for the first time the application of the restricted energy transfer by D-A cross transition dipole arrangement for preparation of a large-size, white-emissive organic crystal with the CIE coordinates of (0.36, 0.37) approaching an ideal white light. In contrast, Tc is also doped in an anthracene crystalline lattice to form head-to-tail D-A transition dipole alignment, which is proved to be highly effective to promote the intermolecular energy transfer. In this doped system, the orientation factor is relatively large and the Förster distance is around 7 nm.

  5. A general intermolecular force field based on tight-binding quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas

    2017-10-01

    A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.

  6. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    PubMed

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  7. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    PubMed Central

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  8. Gold(I)-Catalysed Hydroarylation of 1,3-Disubstituted Allenes with Efficient Axial-to-Point Chirality Transfer.

    PubMed

    Sutherland, Daniel R; Kinsman, Luke; Angiolini, Stuart M; Rosair, Georgina M; Lee, Ai-Lan

    2018-05-11

    Hydroarylation of enantioenriched 1,3-disubstituted allenes has the potential to proceed with axial-to-point chirality transfer to yield enantioenriched allylated (hetero)aryl compounds. However, the gold-catalysed intermolecular reaction was previously reported to occur with no chirality transfer owing to competing allene racemisation. Herein, we describe the development of the first intermolecular hydroarylations of allenes to proceed with efficient chirality transfer and summarise some of the key criteria for achieving high regio- and stereoselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A detailed study of intermolecular interactions, electronic and vibrational properties of the metal complex bis(uracilato)diammine copper(ii) dihydrate

    NASA Astrophysics Data System (ADS)

    Gramajo Feijoo, M.; Fernández-Liencres, M. P.; Gil, D. M.; Gómez, M. I.; Ben Altabef, A.; Navarro, A.; Tuttolomondo, M. E.

    2018-03-01

    Density Functional Theory (DFT) calculations were performed with the aim of investigating the vibrational, electronic and structural properties of [Cu(uracilato-N1)2 (NH3)2]ṡ2H2O complex. The IR and Raman spectra were recorded leading to a complete analysis of the normal modes of vibration of the metal complex. A careful study of the intermolecular interactions observed in solid state was performed by using the Hirshfeld surface analysis and their associated 2D fingerprint plots. The results indicated that the crystal packing is stabilized by Nsbnd H⋯O hydrogen bonds and π-stacking interactions. In addition, Csbnd H···π interactions were also observed. Time-dependent density functional theory (TD-DFT) calculations revealed that all the low-lying electronic states correspond to a mixture of intraligand charge transfer (ILCT) and ligand-to-metal charge transfer (LMCT) transitions. Finally, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) analysis were performed to shed light on the intermolecular interactions in the coordination sphere.

  10. Morphology and the Strength of Intermolecular Contact in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Matsuura, Yoshiki; Chernov, Alexander A.

    2002-01-01

    The strengths of intermolecular contacts (macrobonds) in four lysozyme crystals were estimated based on the strengths of individual intermolecular interatomic interaction pairs. The periodic bond chain of these macrobonds accounts for the morphology of protein crystals as shown previously. Further in this paper, the surface area of contact, polar coordinate representation of contact site, Coulombic contribution on the macrobond strength, and the surface energy of the crystal have been evaluated. Comparing location of intermolecular contacts in different polymorphic crystal modifications, we show that these contacts can form a wide variety of patches on the molecular surface. The patches are located practically everywhere on this surface except for the concave active site. The contacts frequently include water molecules, with specific intermolecular hydrogen-bonds on the background of non-specific attractive interactions. The strengths of macrobonds are also compared to those of other protein complex systems. Making use of the contact strengths and taking into account bond hydration we also estimated crystal-water interfacial energies for different crystal faces.

  11. A test of the significance of intermolecular vibrational coupling in isotopic fractionation

    DOE PAGES

    Herman, Michael F.; Currier, Robert P.; Peery, Travis B.; ...

    2017-07-15

    Intermolecular coupling of dipole moments is studied for a model system consisting of two diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as of the distance between the centers-of-mass of the two molecules. The calculations show that intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-AB intermolecular potential. This in turn alters the energies of the low-lying bound states of the dimers, producing isotope-dependent changes in the AB-AB dimer partition function. Explicit inclusion of intermolecular vibrationalmore » coupling then changes the predicted gas-dimer isotopic fractionation. In addition, a mass dependence in the intermolecular potential can also result in changes in the number of bound dimer states in an equilibrium mixture. This in turn leads to a significant dimer population shift in the model monomer-dimer equilibrium system considered here. Finally, the results suggest that intermolecular coupling terms should be considered when probing the origins of isotopic fractionation.« less

  12. Vehicle/engine integration. [orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Vinopal, T. J.; Florence, D. E.; Michel, R. W.; Brown, J. R.; Bergeron, R. P.; Weldon, V. A.

    1984-01-01

    VEHICLE/ENGINE Integration Issues are explored for orbit transfer vehicles (OTV's). The impact of space basing and aeroassist on VEHICLE/ENGINE integration is discussed. The AOTV structure and thermal protection subsystem weights were scaled as the vehicle length and surface was changed. It is concluded that for increased allowable payload lengths in a ground-based system, lower length-to-diameter (L/D) is as important as higher mixture ration (MR) in the range of mid L/D ATOV's. Scenario validity, geometry constraints, throttle levels, reliability, and servicing are discussed in the context of engine design and engine/vehicle integration.

  13. Photoinduced charge-transfer electronic excitation of tetracyanoethylene/tetramethylethylene complex in dichloromethane

    NASA Astrophysics Data System (ADS)

    Xu, Long-Kun; Bi, Ting-Jun; Ming, Mei-Jun; Wang, Jing-Bo; Li, Xiang-Yuan

    2017-07-01

    Based on the previous work on nonequilibrium solvation model by the authors, Intermolecular charge-transfer electronic excitation of tetracyanoethylene (TCE)/tetramethylethylene (TME) π -stacked complex in dichloromethane (DCM) has been investigated. For weak interaction correction, dispersion corrected functional DFT-D3 is adopted for geometry optimization. In order to identify the excitation metric, dipole moment components of each Cartesian direction, atomic charge, charge separation and Δr index are analyzed for TCE/TME complex. Calculation shows that the calculated excitation energy is dependent on the functional choice, when conjuncted with suitable time-dependent density functional, the modified nonequilibrium expression gives satisfied results for intermolecular charge-transfer electronic excitation.

  14. Diabatization for Time-Dependent Density Functional Theory: Exciton Transfers and Related Conical Intersections.

    PubMed

    Tamura, Hiroyuki

    2016-11-23

    Intermolecular exciton transfers and related conical intersections are analyzed by diabatization for time-dependent density functional theory. The diabatic states are expressed as a linear combination of the adiabatic states so as to emulate the well-defined reference states. The singlet exciton coupling calculated by the diabatization scheme includes contributions from the Coulomb (Förster) and electron exchange (Dexter) couplings. For triplet exciton transfers, the Dexter coupling, charge transfer integral, and diabatic potentials of stacked molecules are calculated for analyzing direct and superexchange pathways. We discuss some topologies of molecular aggregates that induce conical intersections on the vanishing points of the exciton coupling, namely boundary of H- and J-aggregates and T-shape aggregates, as well as canceled exciton coupling to the bright state of H-aggregate, i.e., selective exciton transfer to the dark state. The diabatization scheme automatically accounts for the Berry phase by fixing the signs of reference states while scanning the coordinates.

  15. Intermolecular artifacts in probe microscope images of C60 assemblies

    NASA Astrophysics Data System (ADS)

    Jarvis, Samuel Paul; Rashid, Mohammad Abdur; Sweetman, Adam; Leaf, Jeremy; Taylor, Simon; Moriarty, Philip; Dunn, Janette

    2015-12-01

    Claims that dynamic force microscopy has the capability to resolve intermolecular bonds in real space continue to be vigorously debated. To date, studies have been restricted to planar molecular assemblies with small separations between neighboring molecules. Here we report the observation of intermolecular artifacts over much larger distances in 2D assemblies of C60 molecules, with compelling evidence that in our case the tip apex is terminated by a C60 molecule (rather than the CO termination typically exploited in ultrahigh resolution force microscopy). The complete absence of directional interactions such as hydrogen or halogen bonding, the nonplanar structure of C60, and the fullerene termination of the tip apex in our case highlight that intermolecular artifacts are ubiquitous in dynamic force microscopy.

  16. Intermolecular cleavage by UmuD-like mutagenesis proteins

    PubMed Central

    McDonald, John P.; Frank, Ekaterina G.; Levine, Arthur S.; Woodgate, Roger

    1998-01-01

    The activity of a number of proteins is regulated by self-processing reactions. Elegant examples are the cleavage of the prokaryotic LexA and λCI transcriptional repressors and the UmuD-like mutagenesis proteins. Various studies support the hypothesis that LexA and λCI cleavage reactions are predominantly intramolecular in nature. The recently described crystal structure of the Escherichia coli UmuD′ protein (the posttranslational cleavage product of the UmuD protein) suggests, however, that the region of the protein corresponding to the cleavage site is at least 50 Å away from the catalytic active site. We considered the possibility, therefore, that the UmuD-like proteins might undergo self-processing that, in contrast to LexA and λCI, occurs via an intermolecular rather than intramolecular reaction. To test this hypothesis, we introduced into E. coli compatible plasmids with mutations at either the cleavage or the catalytic site of three UmuD-like proteins. Cleavage of these proteins only occurs in the presence of both plasmids, indicating that the reaction is indeed intermolecular in nature. Furthermore, this intermolecular reaction is completely dependent upon the multifunctional RecA protein and leads to the restoration of cellular mutagenesis in nonmutable E. coli strains. Intermolecular cleavage of a biotinylated UmuD active site mutant was also observed in vitro in the presence of the wild-type UmuD′ protein, indicating that in addition to the intact UmuD protein, the normal cleavage product (UmuD′) can also act as a classical enzyme. PMID:9465040

  17. Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Hestand, Nicholas J.

    The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J

  18. The effect of the intermolecular potential formulation on the state-selected energy exchange rate coefficients in N2-N2 collisions.

    PubMed

    Kurnosov, Alexander; Cacciatore, Mario; Laganà, Antonio; Pirani, Fernando; Bartolomei, Massimiliano; Garcia, Ernesto

    2014-04-05

    The rate coefficients for N2-N2 collision-induced vibrational energy exchange (important for the enhancement of several modern innovative technologies) have been computed over a wide range of temperature. Potential energy surfaces based on different formulations of the intramolecular and intermolecular components of the interaction have been used to compute quasiclassically and semiclassically some vibrational to vibrational energy transfer rate coefficients. Related outcomes have been rationalized in terms of state-to-state probabilities and cross sections for quasi-resonant transitions and deexcitations from the first excited vibrational level (for which experimental information are available). On this ground, it has been possible to spot critical differences on the vibrational energy exchange mechanisms supported by the different surfaces (mainly by their intermolecular components) in the low collision energy regime, though still effective for temperatures as high as 10,000 K. It was found, in particular, that the most recently proposed intermolecular potential becomes the most effective in promoting vibrational energy exchange near threshold temperatures and has a behavior opposite to the previously proposed one when varying the coupling of vibration with the other degrees of freedom. Copyright © 2014 Wiley Periodicals, Inc.

  19. MHD technology transfer, integration, and review committee

    NASA Astrophysics Data System (ADS)

    1990-05-01

    As part of Task 8 of the magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The TTIRC consists of an Executive Committee (EC) which acts as the governing body, and a General Committee (GC), also referred to as the main or full committee, consisting of representatives from the various POC contractors, participating universities and national laboratories, utilities, equipment suppliers, and other potential MHD users or investors. The purpose of the TTIRC is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the U.S. MHD Program. There are seven sections: introduction; Executive Committee and General Committee activity; Committee activities related to technology transfer; ongoing POC integration activities being performed under the auspices of the Executive Committee; recommendations passed on to the DOE by the Executive Committee; Planned activities for the next six months.

  20. The Role of Facebook in Fostering Transfer Student Integration

    ERIC Educational Resources Information Center

    Nehls, Kimberly

    2014-01-01

    Persistence of transfer students is greatly influenced by academic and social integration at receiving institutions. The purpose of this study was to examine how transfer students and student affairs professionals used Facebook during the initial transition to campus. Findings from 15 different institutional Facebook groups revealed that transfer…

  1. Laser Integration on Silicon Photonic Circuits Through Transfer Printing

    DTIC Science & Technology

    2017-03-10

    AFRL-AFOSR-UK-TR-2017-0019 Laser integration on silicon photonic circuits through transfer printing Gunther Roelkens UNIVERSITEIT GENT VZW Final...TYPE Final 3. DATES COVERED (From - To) 15 Sep 2015 to 14 Sep 2016 4. TITLE AND SUBTITLE Laser integration on silicon photonic circuits through...parallel integration of III-V lasers on silicon photonic integrated circuits. The report discusses the technological process that has been developed as

  2. Multidimensional intermolecular dynamics from tunable far-infrared laser spectroscopy: Angular-radial coupling in the intermolecular potential of argon--H sub 2 O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, R.C.; Saykally, R.J.

    1991-12-01

    Five new vibration--rotation tunneling states of Ar--H{sub 2}O (the {Sigma} and {Pi}(1{sub 11}) and the {Sigma} and {Pi}(2{sub 12}) internal rotor states and the {ital n}=1, {Pi}(1{sub 01}) stretching-internal rotor combination level) have been accessed by tunable far-infrared laser spectroscopy. The measured vibrational band origins of transitions to these states are within 2% of predictions made from an anisotropic three-dimensional intermolecular potential surface (denoted AW1) derived from a nonlinear least-squares fit to previous far-infrared spectral data (J. Phys. Chem. {bold 94}, 7991(1990)). This provides strong evidence that the AW1 intermolecular potential surface incorporates much of the essential physics of themore » intermolecular forces which bind the cluster. However, larger deviations from the predictions are found in the observed rotational term values. A detailed analysis of these deviations clearly demonstrates the need for even stronger angular-radial coupling in the Ar--H{sub 2}O intermolecular potential than the already substantial coupling present in the AW1 surface. Specifically, the presently observed {Sigma}(1{sub 11}) state and the {ital n}=1, {Sigma}(0{sub 00}) state are found to be approximately 65:35 mixtures of the basis states which represent pure stretching and internal rotation. The {Sigma}(2{sub 12}) level is found to be mixed just as strongly with {ital n}=2, {Sigma}(1{sub 01}). The formalism for accurately deperturbing vibration--rotation--tunneling states coupled by Coriolis interactions used in the above analysis is presented.« less

  3. TiO2 Photocatalysis in Aromatic "Redox Tag"-Guided Intermolecular Formal [2 + 2] Cycloadditions.

    PubMed

    Okada, Yohei; Maeta, Naoya; Nakayama, Kaii; Kamiya, Hidehiro

    2018-05-04

    Since the pioneering work by Macmillan, Yoon, and Stephenson, homogeneous photoredox catalysis has occupied a central place in new reaction development in the field of organic chemistry. While heterogeneous semiconductor photocatalysis has also been studied extensively, it has generally been recognized as a redox option in inorganic chemistry where such "photocatalysis" is most often used to catalyze carbon-carbon bond cleavage and not in organic chemistry where bond formation is usually the focal point. Herein, we demonstrate that titanium dioxide photocatalysis is a powerful redox option to construct carbon-carbon bonds by using intermolecular formal [2 + 2] cycloadditions as models. Synergy between excited electrons and holes generated upon irradiation is expected to promote the overall net redox neutral process. Key for the successful application is the use of a lithium perchlorate/nitromethane electrolyte solution, which exhibits remarkable Lewis acidity to facilitate the reactions of carbon-centered radical cations with carbon nucleophiles. The reaction mechanism is reasonably understood based on both intermolecular and intramolecular single electron transfer regulated by an aromatic "redox tag". Most of the reactions were completed in less than 30 min even in aqueous and/or aerobic conditions without the need for sacrificial reducing or oxidizing substrates generally required for homogeneous photoredox catalysis.

  4. The fragment spin difference scheme for triplet-triplet energy transfer coupling

    NASA Astrophysics Data System (ADS)

    You, Zhi-Qiang; Hsu, Chao-Ping

    2010-08-01

    To calculate the electronic couplings in both inter- and intramolecular triplet energy transfer (TET), we have developed the "fragment spin difference" (FSD) scheme. The FSD was a generalization from the "fragment charge difference" (FCD) method of Voityuk et al. [J. Chem. Phys. 117, 5607 (2002)] for electron transfer (ET) coupling. In FSD, the spin population difference was used in place of the charge difference in FCD. FSD is derived from the eigenstate energies and populations, and therefore the FSD couplings contain all contributions in the Hamiltonian as well as the potential overlap effect. In the present work, two series of molecules, all-trans-polyene oligomers and polycyclic aromatic hydrocarbons, were tested for intermolecular TET study. The TET coupling results are largely similar to those from the previously developed direct coupling scheme, with FSD being easier and more flexible in use. On the other hand, the Dexter's exchange integral value, a quantity that is often used as an approximate for the TET coupling, varies in a large range as compared to the corresponding TET coupling. To test the FSD for intramolecular TET, we have calculated the TET couplings between zinc(II)-porphyrin and free-base porphyrin separated by different numbers of p-phenyleneethynylene bridge units. Our estimated rate constants are consistent with experimentally measured TET rates. The FSD method can be used for both intermolecular and intramolecular TET, regardless of their symmetry. This general applicability is an improvement over most existing methodologies.

  5. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    PubMed Central

    Nagy, Peter I.

    2014-01-01

    A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have been surveyed. PMID:25353178

  6. High Pressure Optical Studies of the Thallous Halides and of Charge-Transfer Complexes

    NASA Astrophysics Data System (ADS)

    Jurgensen, Charles Willard

    High pressure was used to study the insulator -to-metal transition in sulfur and the thallous halides and to study the intermolecular interactions in charge -transfer complexes. The approach to the band overlap insulator -to-metal transition was studied in three thallous halides and sulfur by optical absorption measurements of the band gap as a function of pressure. The band gap of sulfur continuously decreases with pressure up to the insulator -to-metal transition which occurs between 450 and 485 kbars. The results on the thallous halides indicate that the indirect gap decreases more rapidly than the direct gap; the closing of the indirect gap is responsible for the observed insulator -to-metal transitions. High pressure electronic and vibrational spectroscopic measurements on the solid-state complexes of HMB-TCNE were used to study the intermolecular interactions of charge -transfer complexes. The vibrational frequency shifts indicate that the degree of charge transfer increases with pressure which is independently confirmed by an increase in the molar absorptivity of the electronic charge-transfer peak. Induction and dispersion forces contribute towards a red shift of the charge-transfer peak; however, charge-transfer resonance contributes toward a blue shift and this effect is dominant for the HMB-TCNE complexes. High pressure electronic spectra were used to study the effect of intermolecular interactions on the electronic states of TCNQ and its complexes. The red shifts with pressure of the electronic spectra of TCNQ and (TCNQ)(' -) in polymer media and of crystalline TCNQ can be understood in terms of Van der Waals interactions. None of the calculations which considered intradimer distance obtained the proper behavior for either the charge-transfer of the locally excited states of the complexes. The qualitative behavior of both states can be interpreted as the effect of increased mixing of the locally excited and charge transfer states.

  7. Enantioselective Intermolecular [2 + 2] Photocycloaddition Reactions of 2(1H)-Quinolones Induced by Visible Light Irradiation

    PubMed Central

    2016-01-01

    In the presence of a chiral thioxanthone catalyst (10 mol %) the title compounds underwent a clean intermolecular [2 + 2] photocycloaddition with electron-deficient olefins at λ = 419 nm. The reactions not only proceeded with excellent regio- and diastereoselectivity but also delivered the respective cyclobutane products with significant enantiomeric excess (up to 95% ee). Key to the success of the reactions is a two-point hydrogen bonding between quinolone and catalyst enabling efficient energy transfer and high enantioface differentiation. Preliminary work indicated that solar irradiation can be used for this process and that the substrate scope can be further expanded to isoquinolones. PMID:27268908

  8. Inner reorganization limiting electron transfer controlled hydrogen bonding: intra- vs. intermolecular effects.

    PubMed

    Martínez-González, Eduardo; Frontana, Carlos

    2014-05-07

    In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.

  9. Intermolecular Slip Mechanism in Tropocollagen Nanofibrils

    DTIC Science & Technology

    2009-01-01

    Imperfecta or Ehlers - Danlos Syndrome . REPORT DOCUMENTATION PAGE (SF298) (Continuation Sheet) Continuation for Block 13 ARO Report Number Intermolecular slip...our studies could advance our knowledge of mechan- isms underlying important collagen-related diseases like Osteogenesis Imperfecta or Ehlers - Danlos ... Syndrome . Keywords: Collagen; Shear; Nanomechanics; Steered mo- lecular dynamics; Adhesion strength; Materiomics 1. Introduction Collagen is the

  10. Entropy-Based Analysis and Bioinformatics-Inspired Integration of Global Economic Information Transfer

    PubMed Central

    An, Sungbae; Kwon, Young-Kyun; Yoon, Sungroh

    2013-01-01

    The assessment of information transfer in the global economic network helps to understand the current environment and the outlook of an economy. Most approaches on global networks extract information transfer based mainly on a single variable. This paper establishes an entirely new bioinformatics-inspired approach to integrating information transfer derived from multiple variables and develops an international economic network accordingly. In the proposed methodology, we first construct the transfer entropies (TEs) between various intra- and inter-country pairs of economic time series variables, test their significances, and then use a weighted sum approach to aggregate information captured in each TE. Through a simulation study, the new method is shown to deliver better information integration compared to existing integration methods in that it can be applied even when intra-country variables are correlated. Empirical investigation with the real world data reveals that Western countries are more influential in the global economic network and that Japan has become less influential following the Asian currency crisis. PMID:23300959

  11. Entropy-based analysis and bioinformatics-inspired integration of global economic information transfer.

    PubMed

    Kim, Jinkyu; Kim, Gunn; An, Sungbae; Kwon, Young-Kyun; Yoon, Sungroh

    2013-01-01

    The assessment of information transfer in the global economic network helps to understand the current environment and the outlook of an economy. Most approaches on global networks extract information transfer based mainly on a single variable. This paper establishes an entirely new bioinformatics-inspired approach to integrating information transfer derived from multiple variables and develops an international economic network accordingly. In the proposed methodology, we first construct the transfer entropies (TEs) between various intra- and inter-country pairs of economic time series variables, test their significances, and then use a weighted sum approach to aggregate information captured in each TE. Through a simulation study, the new method is shown to deliver better information integration compared to existing integration methods in that it can be applied even when intra-country variables are correlated. Empirical investigation with the real world data reveals that Western countries are more influential in the global economic network and that Japan has become less influential following the Asian currency crisis.

  12. The origins of the directionality of noncovalent intermolecular interactions.

    PubMed

    Wang, Changwei; Guan, Liangyu; Danovich, David; Shaik, Sason; Mo, Yirong

    2016-01-05

    The recent σ-hole concept emphasizes the contribution of electrostatic attraction to noncovalent bonds, and implies that the electrostatic force has an angular dependency. Here a set of clusters, which includes hydrogen bonding, halogen bonding, chalcogen bonding, and pnicogen bonding systems, is investigated to probe the magnitude of covalency and its contribution to the directionality in noncovalent bonding. The study is based on the block-localized wavefunction (BLW) method that decomposes the binding energy into the steric and the charge transfer (CT) (hyperconjugation) contributions. One unique feature of the BLW method is its capability to derive optimal geometries with only steric effect taken into account, while excluding the CT interaction. The results reveal that the overall steric energy exhibits angular dependency notably in halogen bonding, chalcogen bonding, and pnicogen bonding systems. Turning on the CT interactions further shortens the intermolecular distances. This bond shortening enhances the Pauli repulsion, which in turn offsets the electrostatic attraction, such that in the final sum, the contribution of the steric effect to bonding is diminished, leaving the CT to dominate the binding energy. In several other systems particularly hydrogen bonding systems, the steric effect nevertheless still plays the major role whereas the CT interaction is minor. However, in all cases, the CT exhibits strong directionality, suggesting that the linearity or near linearity of noncovalent bonds is largely governed by the charge-transfer interaction whose magnitude determines the covalency in noncovalent bonds. © 2015 Wiley Periodicals, Inc.

  13. Catalytic intermolecular carbon electrophile induced semipinacol rearrangement.

    PubMed

    Zhang, Qing-Wei; Zhang, Xiao-Bo; Li, Bao-Sheng; Xiang, Kai; Zhang, Fu-Min; Wang, Shao-Hua; Tu, Yong-Qiang

    2013-02-25

    A catalytic intermolecular carbon electrophile induced semipinacol rearrangement was realized and the asymmetric version was also preliminarily accomplished with 92% and 82% ee. The complex tricyclic system architecture with four continuous stereogenic centers could be achieved from simple starting materials in a single step under mild conditions.

  14. Theoretical studies of charge transfer and proton transfer complex formation between 3,5-dinitrobenzic acid and 1,2-dimethylimidazole

    NASA Astrophysics Data System (ADS)

    Afroz, Ziya; Faizan, Mohd.; Alam, Mohammad Jane; Ahmad, Shabbir; Ahmad, Afaq

    2018-05-01

    Natural atomic charge analysis and molecular electrostatic potential (MEP) surface analysis of hydrogen bonded charge transfer (HBCT) and proton transfer (PT) complex of 3,5-dinitrobenzoic acid (DNBA) and 1,2-dimethylimidazole (DMI) have been investigated by theoretical modelling using widely employed DFT/B3LYP/6-311G(d,p) level of theory. Along with this analysis, Hirshfeld surface study of the intermolecular interactions and associated 2D finger plot for reported PT complex between DNBA and DMI have been explored.

  15. Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures.

    PubMed

    Odahara, Takayuki; Odahara, Koji

    2016-04-01

    Mixtures of neutral salts and polyethylene glycol are used for various purposes in biological studies. Although the effects of each component of the mixtures are theoretically well investigated, comprehension of their integrated effects remains insufficient. In this work, their roles and effects as a precipitant were clarified by studying dependence of precipitation curves on salt concentration for integral membrane protein/detergent particles of different physicochemical properties. The dependence of precipitation curves was reasonably related to intermolecular interactions among relevant molecules such as protein, detergent and polyethylene glycol by considering their physicochemical properties. The obtained relationships are useful as basic information to learn the early stage of biological macromolecular associations. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Intramolecular and intermolecular vibrational energy relaxation of CH 2I 2 dissolved in supercritical fluid

    NASA Astrophysics Data System (ADS)

    Sekiguchi, K.; Shimojima, A.; Kajimoto, O.

    2002-04-01

    A pump-probe experiment was performed to examine vibrational population relaxation of diiodomethane (CH 2I 2) molecule dissolved in supercritical CO 2. Using an apparatus with femtosecond time resolution, we observed the contributions of intramolecular vibrational energy redistribution (IVR) and intermolecular vibrational energy transfer (VET) separately. IVR and VET rates were measured with varying solvent densities at a constant temperature. It is shown that the IVR rate is not density dependent while the VET rate increases with increasing density from 0.4 to 0.8 g cm-3. This observation suggests that the rate of the VET process is determined by solute-solvent collisions whereas the IVR rate is not much affected by solute-solvent interaction.

  17. Quantitative determination of conformational, dynamic, and kinetic parameters of a ligand-protein/DNA complex from a complete relaxation and conformational exchange matrix analysis of intermolecular transferred NOESY.

    PubMed

    Moseley, H N; Lee, W; Arrowsmith, C H; Krishna, N R

    1997-05-06

    We report a quantitative analysis of the 13C-edited intermolecular transferred NOESY (inter-TrNOESY) spectrum of the trp-repressor/operator complex (trp-rep/op) with [ul-13C/15N]-L-tryptophan corepressor using a computer program implementing complete relaxation and conformational exchange matrix (CORCEMA) methodology [Moseley et al. (1995) J. Magn. Reson. 108B, 243-261]. Using complete mixing time curves of three inter-TrNOESY peaks between the tryptophan and the Trp-rep/op, this self-consistent analysis determined the correlation time of the bound species (tauB = 13.5 ns) and the exchange off-rate (k(off) = 3.6 s(-1)) of the corepressor. In addition, the analysis estimated the correlation time of the free species (tauF approximately 0.15 ns). Also, we demonstrate the sensitivity of these inter-TrNOESY peaks to several factors including the k(off) and orientation of the tryptophan corepressor within the binding site. The analysis indicates that the crystal structure orientation for the corepressor is compatible with the solution NMR data.

  18. Intermolecular dynamics of substitued benzene and cyclohexane liquids, studied by femtosecond nonlinear-optical polarization spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.J.; Castner, E.W. Jr.

    Femtosecond time-resolved optical-heterodyne detected Raman-induced Kerr effect spectroscopy (OHD-RIKES) is shown to be a powerful and comprehensive tool for studying the intermolecular dynamics occurring in liquids. The observed dynamics include both the underdamped or coherent inertial motions, and the longer time scale diffusive relaxation. The inertial dynamics include phonon-like intermolecular vibrations, intermolecular collisions, and librational caging motions. Data are presented and analyzed for a series of five liquids: cyclohexane, methylcyclohexane, toluene, benzyl alcohol, and benzonitrile, listed in order of increasing polarity. We explore the effects of aromaticity (e.g., methylcyclohexane vs toluene), symmetry reduction (cyclohexane vs methylcyclohexane), and substitution effects (e.g.,more » substituted benzene series) on the ultrafast intermolecular dynamics, for a group of molecular liquids of similar size and volume. We analyze the intermolecular dynamics in both the time and frequency domains by means of Fourier transformations. When Fourier-transformed into the frequency domain, the OHD-RIKES ultrafast transients of the intermolecular dynamics can be directly compared with the frequency domain spectra obtained from the far-infrared absorption and depolarized Raman techniques. This is done using the Gaussian librational caging model of Lynden-Bell and Steele, which results in a power-law scaling relation between dipole and polarizability time correlation functions. 122 refs., 7 figs., 7 tabs.« less

  19. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    DOE PAGES

    Bai, Yang; He, Hui-Min; Li, Ying; ...

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field,more » the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H 2O) 2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.« less

  20. Plucking a hydrogen bond: A near infrared study of all four intermolecular modes in (DF)2

    NASA Astrophysics Data System (ADS)

    Davis, Scott; Anderson, David T.; Nesbitt, David J.

    1996-10-01

    The near ir combination band spectra of supersonically cooled (DF)2 in the 2900 to 3300 cm-1 region have been recorded with a high resolution slit jet spectrometer. Twelve vibration-rotation-tunneling (VRT) bands are observed, representing each of the four intermolecular modes (van der Waals stretch ν4, geared bend ν5, out-of-plane torsion ν6, and antigeared bend ν3) built as combination bands on either the ν1 (free) or ν2 (bound) DF stretches. Analysis of the rotationally resolved spectra provide spectroscopic constants, intermolecular frequencies, tunneling splittings, and predissociation rates as a function of both intra- and intermolecular excitation. The intermolecular frequencies demonstrate a small but systematic dependence on intramolecular mode, which is exploited to yield frequency predictions relevant to far-ir studies, as well as facilitate direct comparison with full 6-D quantum calculations on trial potential surfaces. The tunneling splittings demonstrate a much stronger dependence upon intermolecular mode, increasing by as much as an order of magnitude for geared bend excitation. Conversely, high resolution line shape analysis reveals that vibrational predissociation broadening is only modestly affected by intermolecular excitation, and instead exhibits mode specific behavior controlled predominantly by intramolecular excitation. Detailed H/D isotopic vibrational shifts are obtained by comparison with previous combination band studies of all four intermolecular modes in (HF)2. In contrast to the strong state mixing previously observed for (HF)2, the van der Waals stretch and geared bend degrees of freedom are largely decoupled in (DF)2, due to isotopically ``detuning'' of resonances between bend-stretch intermolecular vibrations. Four-dimensional quantum calculations of the (HF)2 and (DF)2 eigenfunctions indicate that the isotopic dependence of this bend-stretch resonance behavior is incorrectly predicted by current hydrogen bond potential

  1. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties.

    PubMed

    Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  2. Asymmetric intermolecular cobalt-catalyzed Pauson-Khand reaction using a P-stereogenic bis-phosphane.

    PubMed

    Orgué, Sílvia; León, Thierry; Riera, Antoni; Verdaguer, Xavier

    2015-01-16

    The asymmetric intermolecular and catalytic Pauson-Khand reaction has remained an elusive goal since Khand and Pauson discovered this transformation. Using a novel family of P-stereogenic phosphanes, we developed the first catalytic system with useful levels of enantioselection for the reaction of norbornadiene and trimethylsilylacetylene. The results demonstrate that Co-bisphosphane systems are sufficiently reactive and that they lead to high selectivity in the intermolecular process.

  3. Covalent intermolecular interaction of the nitric oxide dimer (NO)2

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zheng, Gui-Li; Lv, Gang; Geng, Yi-Zhao; Ji, Qing

    2015-09-01

    Covalent bonds arise from the overlap of the electronic clouds in the internucleus region, which is a pure quantum effect and cannot be obtained in any classical way. If the intermolecular interaction is of covalent character, the result from direct applications of classical simulation methods to the molecular system would be questionable. Here, we analyze the special intermolecular interaction between two NO molecules based on quantum chemical calculation. This weak intermolecular interaction, which is of covalent character, is responsible for the formation of the NO dimer, (NO)2, in its most stable conformation, a cis conformation. The natural bond orbital (NBO) analysis gives an intuitive illustration of the formation of the dimer bonding and antibonding orbitals concomitant with the breaking of the π bonds with bond order 0.5 of the monomers. The dimer bonding is counteracted by partially filling the antibonding dimer orbital and the repulsion between those fully or nearly fully occupied nonbonding dimer orbitals that make the dimer binding rather weak. The direct molecular mechanics (MM) calculation with the UFF force fields predicts a trans conformation as the most stable state, which contradicts the result of quantum mechanics (QM). The lesson from the investigation of this special system is that for the case where intermolecular interaction is of covalent character, a specific modification of the force fields of the molecular simulation method is necessary. Project supported by the National Natural Science Foundation of China (Grant Nos. 90403007 and 10975044), the Key Subject Construction Project of Hebei Provincial Universities, China, the Research Project of Hebei Education Department, China (Grant Nos. Z2012067 and Z2011133), the National Natural Science Foundation of China (Grant No. 11147103), and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y5

  4. Energetics of Intermolecular Hydrogen Bonds in a Hydrophobic Protein Cavity

    NASA Astrophysics Data System (ADS)

    Liu, Lan; Baergen, Alyson; Michelsen, Klaus; Kitova, Elena N.; Schnier, Paul D.; Klassen, John S.

    2014-05-01

    This work explores the energetics of intermolecular H-bonds inside a hydrophobic protein cavity. Kinetic measurements were performed on the gaseous deprotonated ions (at the -7 charge state) of complexes of bovine β-lactoglobulin (Lg) and three monohydroxylated analogs of palmitic acid (PA): 3-hydroxypalmitic acid (3-OHPA), 7-hydroxypalmitic acid (7-OHPA), and 16-hydroxypalmitic acid (16-OHPA). From the increase in the activation energy for the dissociation of the (Lg + X-OHPA)7- ions, compared with that of the (Lg + PA)7- ion, it is concluded that the -OH groups of the X-OHPA ligands participate in strong (5 - 11 kcal mol-1) intermolecular H-bonds in the hydrophobic cavity of Lg. The results of molecular dynamics (MD) simulations suggest that the -OH groups of 3-OHPA and 16-OHPA act as H-bond donors and interact with backbone carbonyl oxygens, whereas the -OH group of 7-OHPA acts as both H-bond donor and acceptor with nearby side chains. The capacity for intermolecular H-bonds within the Lg cavity, as suggested by the gas-phase measurements, does not necessarily lead to enhanced binding in aqueous solution. The association constant (Ka) measured for 7-OHPA [(2.3 ± 0.2) × 105 M-1] is similar to the value for the PA [(3.8 ± 0.1) × 105 M-1]; Ka for 3-OHPA [(1.1 ± 0.3) × 106 M-1] is approximately three-times larger, whereas Ka for 16-OHPA [(2.3 ± 0.2) × 104 M-1] is an order of magnitude smaller. Taken together, the results of this study suggest that the energetic penalty to desolvating the ligand -OH groups, which is necessary for complex formation, is similar in magnitude to the energetic contribution of the intermolecular H-bonds.

  5. Dancing Crystals: A Dramatic Illustration of Intermolecular Forces

    ERIC Educational Resources Information Center

    Mundell, Donald W.

    2007-01-01

    Crystals of naphthalene form on the surface of an acetone solution and dance about in an animated fashion illustrating surface tension, crystallization, and intermolecular forces. Additional experiments reveal the properties of the solution. Flows within the solutions can be visualized by various means. Previous demonstrations of surface motion…

  6. Enhancing SERS by Means of Supramolecular Charge Transfer

    NASA Technical Reports Server (NTRS)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  7. Distal [FeS]-Cluster Coordination in [NiFe]-Hydrogenase Facilitates Intermolecular Electron Transfer

    PubMed Central

    Petrenko, Alexander; Stein, Matthias

    2017-01-01

    Biohydrogen is a versatile energy carrier for the generation of electric energy from renewable sources. Hydrogenases can be used in enzymatic fuel cells to oxidize dihydrogen. The rate of electron transfer (ET) at the anodic side between the [NiFe]-hydrogenase enzyme distal iron–sulfur cluster and the electrode surface can be described by the Marcus equation. All parameters for the Marcus equation are accessible from Density Functional Theory (DFT) calculations. The distal cubane FeS-cluster has a three-cysteine and one-histidine coordination [Fe4S4](His)(Cys)3 first ligation sphere. The reorganization energy (inner- and outer-sphere) is almost unchanged upon a histidine-to-cysteine substitution. Differences in rates of electron transfer between the wild-type enzyme and an all-cysteine mutant can be rationalized by a diminished electronic coupling between the donor and acceptor molecules in the [Fe4S4](Cys)4 case. The fast and efficient electron transfer from the distal iron–sulfur cluster is realized by a fine-tuned protein environment, which facilitates the flow of electrons. This study enables the design and control of electron transfer rates and pathways by protein engineering. PMID:28067774

  8. Density-based Energy Decomposition Analysis for Intermolecular Interactions with Variationally Determined Intermediate State Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q.; Ayers, P.W.; Zhang, Y.

    2009-10-28

    The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these twomore » terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.« less

  9. Real-space identification of intermolecular bonding with atomic force microscopy.

    PubMed

    Zhang, Jun; Chen, Pengcheng; Yuan, Bingkai; Ji, Wei; Cheng, Zhihai; Qiu, Xiaohui

    2013-11-01

    We report a real-space visualization of the formation of hydrogen bonding in 8-hydroxyquinoline (8-hq) molecular assemblies on a Cu(111) substrate, using noncontact atomic force microscopy (NC-AFM). The atomically resolved molecular structures enable a precise determination of the characteristics of hydrogen bonding networks, including the bonding sites, orientations, and lengths. The observation of bond contrast was interpreted by ab initio density functional calculations, which indicated the electron density contribution from the hybridized electronic state of the hydrogen bond. Intermolecular coordination between the dehydrogenated 8-hq and Cu adatoms was also revealed by the submolecular resolution AFM characterization. The direct identification of local bonding configurations by NC-AFM would facilitate detailed investigations of intermolecular interactions in complex molecules with multiple active sites.

  10. Student Understanding of Intermolecular Forces: A Multimodal Study

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Williams, Leah C.; Underwood, Sonia M.

    2015-01-01

    The ability to use representations of molecular structure to predict the macroscopic properties of a substance is central to the development of a robust understanding of chemistry. Intermolecular forces (IMFs) play an important role in this process because they provide a mechanism for how and why molecules interact. In this study, we investigate…

  11. Hydration and distance dependence of intermolecular shearing between collagen molecules in a model microfibril.

    PubMed

    Gautieri, Alfonso; Pate, Monica I; Vesentini, Simone; Redaelli, Alberto; Buehler, Markus J

    2012-08-09

    In vertebrates, collagen tissues are the main component responsible for force transmission. In spite of the physiological importance of these phenomena, force transmission mechanisms are still not fully understood, especially at smaller scales, including in particular collagen molecules and fibrils. Here we investigate the mechanism of molecular sliding between collagen molecules within a fibril, by shearing a central molecule in a hexagonally packed bundle mimicking the collagen microfibril environment, using varied lateral distance between the molecules in both dry and solvated conditions. In vacuum, the central molecule slides under a stick-slip mechanism that is due to the characteristic surface profile of collagen molecules, enhanced by the breaking and reformation of H-bonds between neighboring collagen molecules. This mechanism is consistently observed for varied lateral separations between molecules. The high shearing force (>7 nN) found for the experimentally observed intermolecular distance (≈1.1 nm) suggests that in dry samples the fibril elongation mechanism relies almost exclusively on molecular stretching, which may explain the higher stiffnesses found in dry fibrils. When hydrated, the slip-stick behavior is observed only below 1.3 nm of lateral distance, whereas above 1.3 nm the molecule shears smoothly, showing that the water layer has a strong lubricating effect. Moreover, the average force required to shear is approximately the same in solvated as in dry conditions (≈2.5 nN), which suggests that the role of water at the intermolecular level includes the transfer of load between molecules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Investigation of intermolecular interaction of binary mixture of acrylonitrile with bromobenzene

    NASA Astrophysics Data System (ADS)

    Deshmukh, S. D.; Pattebahadur, K. L.; Mohod, A. G.; Patil, S. S.; Khirade, P. W.

    2018-04-01

    In this paper, study of binary mixture of Acrylonitrile (ACN)with Bromobenzene(BB) has been carried out at eleven concentrations at room temperature. The determined density(ρ) and refractive index (nD) values of binary mixture are used to calculate the excess properties of mixture over the entire composition range. The aforesaid parameters are used to calculate excess parameters and fitted to the Redlich-Kister equation to determine the bj coefficients. From the above parameters, intermolecular interaction and dynamics of molecules of binary mixture at molecular level are discussed. The Conformational analysis of the intermolecular interaction between Acrylonitrile and Bromobenzene is supported by the FTIR spectra.

  13. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity.

    PubMed

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J V

    2016-12-08

    TMEM16A and TMEM16B are plasma membrane proteins with Ca 2+ -dependent Cl - channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the "activating domain" to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca 2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl - transport.

  14. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity

    PubMed Central

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J. V.

    2016-01-01

    TMEM16A and TMEM16B are plasma membrane proteins with Ca2+-dependent Cl− channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the “activating domain” to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl− transport. PMID:27929144

  15. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity

    NASA Astrophysics Data System (ADS)

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J. V.

    2016-12-01

    TMEM16A and TMEM16B are plasma membrane proteins with Ca2+-dependent Cl- channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the “activating domain” to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl- transport.

  16. Lateral Transfer Students: The Role of Housing in Social Integration and Transition

    ERIC Educational Resources Information Center

    Utter, Mary; DeAngelo, Linda

    2015-01-01

    Social integration for lateral transfer students (four-to-four-year) is promoted by a living environment that encourages learning about campus, connecting to resources, and developing peer groups. Interviews with 27 lateral transfer students revealed that those who had previously lived on campus had expectations that residence halls would provide…

  17. Catalytic Intermolecular Pauson - Khand Reactions in Supercritical Ethylene.

    PubMed

    Jeong; Hwang

    2000-02-01

    Ethylene is not only a substrate, but also a solvent: Catalytic intermolecular Pauson - Khand reactions of terminal alkynes were carried out in supercritical ethylene to provide 2-substituted cyclopentenones in moderate to high yields [Eq. (1)]. Under these conditions, even a low pressure of CO (5 atm) is sufficient for the reaction to take place.

  18. Effect of dynamic disorder on charge transport along a pentacene chain

    NASA Astrophysics Data System (ADS)

    Böhlin, J.; Linares, M.; Stafström, S.

    2011-02-01

    The lattice equation of motion and a numerical solution of the time-dependent Schrödinger equation provide us with a microscopic picture of charge transport in highly ordered molecular crystals. We have chosen the pentacene single crystal as a model system, and we study charge transport as a function of phonon-mode time-dependent fluctuations in the intermolecular electron transfer integral. For comparison, we include similar fluctuations also in the intramolecular potentials. The variance in these energy quantities is closely related to the temperature of the system. The pentacene system is shown to be very sensitive to fluctuation in the intermolecular transfer integral, revealing a transition from adiabatic to nonadiabatic polaron transport for increasing temperatures. The extension of the polaron at temperatures above 200 K is limited by the electron localization length rather than the interplay between the electron transfer integral and the electron-phonon coupling strength.

  19. Signatures of Solvation Thermodynamics in Spectra of Intermolecular Vibrations

    PubMed Central

    2017-01-01

    This study explores the thermodynamic and vibrational properties of water in the three-dimensional environment of solvated ions and small molecules using molecular simulations. The spectrum of intermolecular vibrations in liquid solvents provides detailed information on the shape of the local potential energy surface, which in turn determines local thermodynamic properties such as the entropy. Here, we extract this information using a spatially resolved extension of the two-phase thermodynamics method to estimate hydration water entropies based on the local vibrational density of states (3D-2PT). Combined with an analysis of solute–water and water–water interaction energies, this allows us to resolve local contributions to the solvation enthalpy, entropy, and free energy. We use this approach to study effects of ions on their surrounding water hydrogen bond network, its spectrum of intermolecular vibrations, and resulting thermodynamic properties. In the three-dimensional environment of polar and nonpolar functional groups of molecular solutes, we identify distinct hydration water species and classify them by their characteristic vibrational density of states and molecular entropies. In each case, we are able to assign variations in local hydration water entropies to specific changes in the spectrum of intermolecular vibrations. This provides an important link for the thermodynamic interpretation of vibrational spectra that are accessible to far-infrared absorption and Raman spectroscopy experiments. Our analysis provides unique microscopic details regarding the hydration of hydrophobic and hydrophilic functional groups, which enable us to identify interactions and molecular degrees of freedom that determine relevant contributions to the solvation entropy and consequently the free energy. PMID:28783431

  20. Learning about Intermolecular Interactions from the Cambridge Structural Database

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.

    2012-01-01

    A clear understanding and appreciation of noncovalent interactions, especially hydrogen bonding, are vitally important to students of chemistry and the life sciences, including biochemistry, molecular biology, pharmacology, and medicine. The opportunities afforded by the IsoStar knowledge base of intermolecular interactions to enhance the…

  1. Technology Transfer in Integrated Forest Pest Management in the South

    Treesearch

    Gerard D. Hertel; Susan J. Branham; Kenneth M. Swain; [Editors

    1985-01-01

    A synopsis of the technology transfer activities of the Forest Service's Integrated Pest Management Research, Development and Applications Program for Bark Beetles of Southern Pines, and the Southern Region, 1980-85, with emphasis on State demonstration projects and user involvement.

  2. Study of intermolecular interactions in binary mixtures of ethanol in methanol

    NASA Astrophysics Data System (ADS)

    Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.

    2016-05-01

    Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.

  3. Knowing How and Knowing Why: Testing the Effect of Instruction Designed for Cognitive Integration on Procedural Skills Transfer

    ERIC Educational Resources Information Center

    Cheung, Jeffrey J. H.; Kulasegaram, Kulamakan M.; Woods, Nicole N.; Moulton, Carol-anne; Ringsted, Charlotte V.; Brydges, Ryan

    2018-01-01

    Transfer is a desired outcome of simulation-based training, yet evidence for how instructional design features promote transfer is lacking. In clinical reasoning, transfer is improved when trainees experience instruction integrating basic science explanations with clinical signs and symptoms. To test whether integrated instruction has similar…

  4. An integrated experimental and theoretical reaction path search: analyses of the multistage reaction of an ionized diethylether dimer involving isomerization, proton transfer, and dissociation.

    PubMed

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka

    2018-05-30

    An ionization-induced multistage reaction of an ionized diethylether (DEE) dimer involving isomerization, proton transfer, and dissociation is investigated by combining infrared (IR) spectroscopy, tandem mass spectrometry, and a theoretical reaction path search. The vertically-ionized DEE dimer isomerizes to a hydrogen-bonded cluster of protonated DEE and the [DEE-H] radical through barrierless intermolecular proton transfer from the CH bond of the ionized moiety. This isomerization process is confirmed by IR spectroscopy and the theoretical reaction path search. The multiple dissociation pathways following the isomerization are analyzed by tandem mass spectrometry. The isomerized cluster dissociates stepwise into a [protonated DEE-acetaldehyde (AA)] cluster, protonated DEE, and protonated AA. The structure of the fragment ion is also analyzed by IR spectroscopy. The reaction map of the multistage processes is revealed through a harmony of these experimental and theoretical methods.

  5. A wireless energy transfer platform, integrated at the bedside.

    PubMed

    De Clercq, Hans; Puers, Robert

    2013-01-01

    This paper presents the design of a wireless energy transfer platform, integrated at the bedside. The system contains a matrix of identical inductive power transmitters, which are optimised to provide power to a wearable sensor network, with the purpose of wirelessly recording vital signals over an extended period of time. The magnetic link, operates at a transfer frequency of 6.78MHz and is able to transfer a power of 3.3mW to the remote side at an inter-coil distance of 100mm. The total efficiency of the power link is 26%. Moreover, the platform is able to dynamically determine the position of freely moving sensor nodes and selectively induce a magnetic field in the area where the sensor nodes are positioned. As a result, the patient will not be subjected to unnecessary radiation and the specific absorption rate standards are met more easily.

  6. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    NASA Astrophysics Data System (ADS)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  7. Theoretical Investigation of Charge Transfer in Metal Organic Frameworks for Electrochemical Device Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwardhan, Sameer; Schatz, George C.

    For electrochemical device applications metal organic frameworks (MOFs) must exhibit suitable conduction properties. To this end, we have performed computational studies of intermolecular charge transfer in MOFs consisting of hexa-ZrIV nodes and tetratopic carboxylate linkers. This includes an examination of the electronic structure of linkers that are derived from tetraphenyl benzene 1, tetraphenyl pyrene 2, and tetraphenyl porphyrin 3 molecules. These results are used to determine charge transfer propensities in MOFs, within the framework of Marcus theory, including an analysis of the key parameters (charge transfer integral t, reorganization energy λ, and free energy change ΔG0) and evaluation of figuresmore » of merit for charge transfer based on the chemical structures of the linkers. This qualitative analysis indicates that delocalization of the HOMO/LUMO on terminal substituents increases t and decreases λ, while weaker binding to counterions decreases ΔG0, leading to better charge transfer propensity. Subsequently, we study hole transfer in the linker 2 containing MOFs, NU-901 and NU-1000, in detail and describe mechanisms (hopping and superexchange) that may be operative under different electrochemical conditions. Comparisons with experiment are provided where available. On the basis of the redox and catalytic activity of nodes and linkers, we propose three possible schemes for constructing electrochemical devices for catalysis. We believe that the results of this study will lay the foundation for future experimental work on this topic.« less

  8. Terahertz laser spectroscopy of the water dimer intermolecular vibrations. I. (D2O)2

    NASA Astrophysics Data System (ADS)

    Braly, L. B.; Cruzan, J. D.; Liu, K.; Fellers, R. S.; Saykally, R. J.

    2000-06-01

    Terahertz laser VRT spectra of the water dimer consisting of 731 transitions measured with an average precision of 2 MHz and involving four (D2O)2 intermolecular vibrations (one previously published) have been measured between 65 and 104 cm-1. The precisely determined energy level patterns differ both qualitatively and quantitatively from the predictions of several dimer potentials tested, and reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by standard normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. Particularly, the 83 cm-1 (acceptor wag) and 90 cm-1 (D2O)2 (acceptor twist) vibrations interact through a Coriolis perturbation. These spectra provide the basis for our recent determination of the water pair potential. The corresponding data set for (H2O)2 is presented in an accompanying paper.

  9. Applications of free-electron lasers to measurements of energy transfer in biopolymers and materials

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn S.; Johnson, J. B.; Kozub, John A.; Tribble, Jerri A.; Wagner, Katrina

    1992-08-01

    Free-electron lasers (FELs) provide tunable, pulsed radiation in the infrared. Using the FEL as a pump beam, we are investigating the mechanisms for energy transfer between localized vibrational modes and between vibrational modes and lattice or phonon modes. Either a laser-Raman system or a Fourier transform infrared (FTIR) spectrometer will serve as the probe beam, with the attribute of placing the burden of detection on two conventional spectroscopic techniques that circumvent the limited response of infrared detectors. More specifically, the Raman effect inelastically shifts an exciting laser line, typically a visible frequency, by the energy of the vibrational mode; however, the shifted Raman lines also lie in the visible, allowing for detection with highly efficient visible detectors. With regards to FTIR spectroscopy, the multiplex advantage yields a distinct benefit for infrared detector response. Our group is investigating intramolecular and intermolecular energy transfer processes in both biopolymers and more traditional materials. For example, alkali halides contain a number of defect types that effectively transfer energy in an intermolecular process. Similarly, the functioning of biopolymers depends on efficient intramolecular energy transfer. Understanding these mechanisms will enhance our ability to modify biopolymers and materials with applications to biology, medecine, and materials science.

  10. Early Integration and Other Outcomes for Community College Transfer Students

    ERIC Educational Resources Information Center

    D'Amico, Mark M.; Dika, Sandra L.; Elling, Theodore W.; Algozzine, Bob; Ginn, Donna J.

    2014-01-01

    The purpose of this study was to explore academic and social integration and other outcomes for community college transfer students. The study used Tinto's ("Leaving college: Rethinking the causes and cures of student attrition," 1993) "Longitudinal Model of Institutional Departure" and Deil-Amen's ("J Higher…

  11. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    PubMed

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  12. Communication: Density functional theory overcomes the failure of predicting intermolecular interaction energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podeszwa, Rafal; Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716; Szalewicz, Krzysztof

    2012-04-28

    Density-functional theory (DFT) revolutionized the ability of computational quantum mechanics to describe properties of matter and is by far the most often used method. However, all the standard variants of DFT fail to predict intermolecular interaction energies. In recent years, a number of ways to go around this problem has been proposed. We show that some of these approaches can reproduce interaction energies with median errors of only about 5% in the complete range of intermolecular configurations. Such errors are comparable to typical uncertainties of wave-function-based methods in practical applications. Thus, these DFT methods are expected to find broad applicationsmore » in modelling of condensed phases and of biomolecules.« less

  13. Vibrational coherence in polar solutions of Zn(II) tetrakis(N-methylpyridyl)porphyrin with Soret-band excitation: rapidly damped intermolecular modes with clustered solvent molecules and slowly damped intramolecular modes from the porphyrin macrocycle.

    PubMed

    Dillman, Kevin L; Shelly, Katherine R; Beck, Warren F

    2009-04-30

    covalency; the strongest modulations are observed in acetonitrile and dimethylsulfoxide. The results strongly support a structural assignment of the low-frequency modes that are coupled to the primary and secondary electron-transfer reactions in photosynthetic reaction centers to intermolecular modes between the redox-active chromophores and first-solvation shell groups from the surrounding protein, and an important additional function of the intermolecular modes in the stabilization of charged intermediates is suggested.

  14. The intermolecular vibrations of the water dimer

    NASA Astrophysics Data System (ADS)

    Braly, Linda Beth

    Terahertz laser spectra of water dimer intermolecular vibrations have yielded four (D2O)2 VRT bands (one previously published) and five (H2O)2 VRT bands measured with ca. 1 MHz precision and assigned between 65 and 142 cm-1. The results differ both qualitatively and quantitatively from the predictions of popular, effective pair potentials tested. The spectra also reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by a normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as between different vibrations. In particular the 102.1 cm-1 (H2O) 2 band assigned as the acceptor wag has two types of perturbations. The first perturbation involves coupling of two of the tunneling components between the Ka = 0 and 1 levels similar to that occurring in ground state between Ka = 0 and 1 levels. This is treated with an effective Coriolis coupling constant. These seconded perturbation involves one tunneling component with Ka = 1 coupling with a tunneling component with Ka = 0 of the 108 cm-1 acceptor twist vibration. A more detailed Coriolis coupling scheme is required to deperturb these states. Also it is indicated that the 103.1 cm-1 (H2O) 2 band assigned as the donor in-plane bend is coupled to the acceptor wag resulting in a lowering of the in-plane bend frequency and raising the acceptor wag frequency. In addition the 141 cm-1 (H2O)2 band shows perturbations which could not be. resolved at this time. And the 83 cm-1 (acceptor wag) and 90 cm-1 (D2O)2 (acceptor twist) band are perturbing one another through a Coriolis interaction. A subset of the (D2O)2 data have been used in an ongoing effort to determine an accurate IPS via least-squares fitting to an analytical form. The results from the most recent fit which produced VRT(ASP- W)II are presented and compared with the experimental data. The IPS was used to calculate the eigenstates of the water dimer

  15. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers.

    PubMed

    Zhang, Rui; Guo, Jing; Liu, Yuanfa; Chen, Shuang; Zhang, Sen; Yu, Yue

    2018-06-01

    Sodium alginate (SA) and antarctic krill protein (AKP) were blended to fabricate the SA/AKP composite fibers by the conventional wet spinning method using 5% CaCl 2 as coagulation solution. The sodium salt was added to the SA/AKP solution to adjust the ionization degree and intermolecular interaction of composite system. The main purpose of this study is to investigate the influences of sodium salt types (NaCl, CH 3 COONa, Na 2 SO 4 ) on the intermolecular interaction of SA/AKP composite fibers. The intermolecular interaction, morphology, crystallinity, thermal stability and mechanical properties of SA/AKP composite fibers were analyzed by fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), x-ray diffraction (XRD), thermogravimetric analysis (TGA). The results show that the types of sodium salt have obvious influences on the content of both β-sheet, intermolecular hydrogen bond, breaking strength and surface morphology in SA/AKP composite fibers, but have a negligible effect on the crystallinity and thermal stability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuanhang; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu

    2015-07-28

    Three-body and higher intermolecular interactions can play an important role in molecular condensed phases. Recent benchmark calculations found problematic behavior for many widely used density functional approximations in treating 3-body intermolecular interactions. Here, we demonstrate that the combination of second-order Møller-Plesset (MP2) perturbation theory plus short-range damped Axilrod-Teller-Muto (ATM) dispersion accurately describes 3-body interactions with reasonable computational cost. The empirical damping function used in the ATM dispersion term compensates both for the absence of higher-order dispersion contributions beyond the triple-dipole ATM term and non-additive short-range exchange terms which arise in third-order perturbation theory and beyond. Empirical damping enables this simplemore » model to out-perform a non-expanded coupled Kohn-Sham dispersion correction for 3-body intermolecular dispersion. The MP2 plus ATM dispersion model approaches the accuracy of O(N{sup 6}) methods like MP2.5 or even spin-component-scaled coupled cluster models for 3-body intermolecular interactions with only O(N{sup 5}) computational cost.« less

  17. Evidence for charge-trapping inducing polymorphic structural-phase transition in pentacene.

    PubMed

    Ando, Masahiko; Kehoe, Tom B; Yoneya, Makoto; Ishii, Hiroyuki; Kawasaki, Masahiro; Duffy, Claudia M; Minakata, Takashi; Phillips, Richard T; Sirringhaus, Henning

    2015-01-07

    Trapped-charge-induced transformation of pentacene polymorphs is observed by using in situ Raman spectroscopy and molecular dynamics simulations reveal that the charge should be localized in pentacene molecules at the interface with static intermolecular disorder along the long axis. Quantum chemical calculations of the intermolecular transfer integrals suggest the disorder to be large enough to induce Anderson-type localization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Transfer Printing Method to Obtain Polarized Light Emission in Organic Light-Emitting Device

    NASA Astrophysics Data System (ADS)

    Noh, Hee Yeon; Park, Chang-sub; Park, Ji-Sub; Kang, Shin-Won; Kim, Hak-Rin

    2012-06-01

    We demonstrate a transfer printing method to obtain polarized light emission in organic light-emitting devices (OLEDs). On a rubbed self-assembled monolayer (SAM), a spin-coated liquid crystalline light-emissive polymer is aligned along the rubbing direction because of the anisotropic interfacial intermolecular interaction. Owing to the low surface energy of the SAM surface, the light-emissive layer was easily transferred to a patterned poly(dimethylsiloxane) (PDMS) stamp surface without degrading the ordering. Finally, a polarized light-emissive OLED device was prepared by transferring the patterned light-emissive layer to the charge transport layer of the OLED structure.

  19. Transition-density-fragment interaction combined with transfer integral approach for excitation-energy transfer via charge-transfer states

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuhiro J.

    2012-07-01

    A transition-density-fragment interaction (TDFI) combined with a transfer integral (TI) method is proposed. The TDFI method was previously developed for describing electronic Coulomb interaction, which was applied to excitation-energy transfer (EET) [K. J. Fujimoto and S. Hayashi, J. Am. Chem. Soc. 131, 14152 (2009)] and exciton-coupled circular dichroism spectra [K. J. Fujimoto, J. Chem. Phys. 133, 124101 (2010)]. In the present study, the TDFI method is extended to the exchange interaction, and hence it is combined with the TI method for applying to the EET via charge-transfer (CT) states. In this scheme, the overlap correction is also taken into account. To check the TDFI-TI accuracy, several test calculations are performed to an ethylene dimer. As a result, the TDFI-TI method gives a much improved description of the electronic coupling, compared with the previous TDFI method. Based on the successful description of the electronic coupling, the decomposition analysis is also performed with the TDFI-TI method. The present analysis clearly shows a large contribution from the Coulomb interaction in most of the cases, and a significant influence of the CT states at the small separation. In addition, the exchange interaction is found to be small in this system. The present approach is useful for analyzing and understanding the mechanism of EET.

  20. State-transfer simulation in integrated waveguide circuits

    NASA Astrophysics Data System (ADS)

    Latmiral, L.; Di Franco, C.; Mennea, P. L.; Kim, M. S.

    2015-08-01

    Spin-chain models have been widely studied in terms of quantum information processes, for instance for the faithful transmission of quantum states. Here, we investigate the limitations of mapping this process to an equivalent one through a bosonic chain. In particular, we keep in mind experimental implementations, which the progress in integrated waveguide circuits could make possible in the very near future. We consider the feasibility of exploiting the higher dimensionality of the Hilbert space of the chain elements for the transmission of a larger amount of information, and the effects of unwanted excitations during the process. Finally, we exploit the information-flux method to provide bounds to the transfer fidelity.

  1. Connecting Protein Structure to Intermolecular Interactions: A Computer Modeling Laboratory

    ERIC Educational Resources Information Center

    Abualia, Mohammed; Schroeder, Lianne; Garcia, Megan; Daubenmire, Patrick L.; Wink, Donald J.; Clark, Ginevra A.

    2016-01-01

    An understanding of protein folding relies on a solid foundation of a number of critical chemical concepts, such as molecular structure, intra-/intermolecular interactions, and relating structure to function. Recent reports show that students struggle on all levels to achieve these understandings and use them in meaningful ways. Further, several…

  2. Determining the Intermolecular Potential Energy in a Gas: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Olbregts, J.; Walgraeve, J. P.

    1976-01-01

    Describes an experiment in which gas viscosity coefficients over a large temperature range are used to determine the parameters of the intermolecular potential energy and other properties such as virial coefficients. (MLH)

  3. Electrostatic properties of the pyrimethamine-2,4-dihydroxybenzoic acid cocrystal in methanol studied using transferred electron-density parameters.

    PubMed

    Faroque, Muhammad Umer; Noureen, Sajida; Ahmed, Maqsood; Tahir, Muhammad Nawaz

    2018-01-01

    The crystal structure of the cocrystal salt form of the antimalarial drug pyrimethamine with 2,4-dihydroxybenzoic acid in methanol [systematic name: 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2,4-dihydroxybenzoate methanol monosolvate, C 12 H 14 ClN 4 + ·C 7 H 5 O 4 - ·CH 3 OH] has been studied using X-ray diffraction data collected at room temperature. The crystal structure was refined using the classical Independent Atom Model (IAM) and the Multipolar Atom Model by transferring electron-density parameters from the ELMAM2 database. The Cl atom was refined anharmonically. The results of both refinement methods have been compared. The intermolecular interactions have been characterized on the basis of Hirshfeld surface analysis and topological analysis using Bader's theory of Atoms in Molecules. The results show that the molecular assembly is built primarily on the basis of charge transfer between 2,4-dihydroxybenzoic acid and pyrimethamine, which results in strong intermolecular hydrogen bonds. This fact is further validated by the calculation of the electrostatic potential based on transferred electron-density parameters.

  4. Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells.

    PubMed

    Zhou, Yuhua; Yang, Jing; Su, Haibin; Zeng, Jie; Jiang, San Ping; Goddard, William A

    2014-04-02

    We have developed for fuel cells a novel proton exchange membrane (PEM) using inorganic phosphotungstic acid (HPW) as proton carrier and mesoporous silica as matrix (HPW-meso-silica) . The proton conductivity measured by electrochemical impedance spectroscopy is 0.11 S cm(-1) at 90 °C and 100% relative humidity (RH) with a low activation energy of ∼14 kJ mol(-1). In order to determine the energetics associated with proton migration within the HPW-meso-silica PEM and to determine the mechanism of proton hopping, we report density functional theory (DFT) calculations using the generalized gradient approximation (GGA). These DFT calculations revealed that the proton transfer process involves both intramolecular and intermolecular proton transfer pathways. When the adjacent HPWs are close (less than 17.0 Å apart), the calculated activation energy for intramolecular proton transfer within a HPW molecule is higher (29.1-18.8 kJ/mol) than the barrier for intermolecular proton transfer along the hydrogen bond. We find that the overall barrier for proton movement within the HPW-meso-silica membranes is determined by the intramolecular proton transfer pathway, which explains why the proton conductivity remains unchanged when the weight percentage of HPW on meso-silica is above 67 wt %. In contrast, the activation energy of proton transfer on a clean SiO2 (111) surface is computed to be as high as ∼40 kJ mol(-1), confirming the very low proton conductivity on clean silica surfaces observed experimentally.

  5. Measurements of the Influence of Integral Length Scale on Stagnation Region Heat Transfer

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James; Ching, Chang Y.

    1994-01-01

    The purpose was twofold: first, to determine if a length scale existed that would cause the greatest augmentation in stagnation region heat transfer for a given turbulence intensity and second, to develop a prediction tool for stagnation heat transfer in the presence of free stream turbulence. Toward this end, a model with a circular leading edge was fabricated with heat transfer gages in the stagnation region. The model was qualified in a low turbulence wind tunnel by comparing measurements with Frossling's solution for stagnation region heat transfer in a laminar free stream. Five turbulence generating grids were fabricated; four were square mesh, biplane grids made from square bars. Each had identical mesh to bar width ratio but different bar widths. The fifth grid was an array of fine parallel wires that were perpendicular to the axis of the cylindrical leading edge. Turbulence intensity and integral length scale were measured as a function of distance from the grids. Stagnation region heat transfer was measured at various distances downstream of each grid. Data were taken at cylinder Reynolds numbers ranging from 42,000 to 193,000. Turbulence intensities were in the range 1.1 to 15.9 percent while the ratio of integral length scale to cylinder diameter ranged from 0.05 to 0.30. Stagnation region heat transfer augmentation increased with decreasing length scale. An optimum scale was not found. A correlation was developed that fit heat transfer data for the square bar grids to within +4 percent. The data from the array of wires were not predicted by the correlation; augmentation was higher for this case indicating that the degree of isotropy in the turbulent flow field has a large effect on stagnation heat transfer. The data of other researchers are also compared with the correlation.

  6. Ab Initio and Analytic Intermolecular Potentials for Ar–CH3OH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasic, Uros; Alexeev, Yuri; Vayner, Grigoriy

    2006-09-20

    Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar–CH₃y6tOH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH₃OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar–C, Ar–O, Ar–H(C), and Ar–H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol¯¹, and adding an additional r¯¹n term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar–CH₃OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. Themore » structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol¯¹ with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol¯¹ smaller than this value. The well depths of the other two minima are within 0.16 kcal mol¯¹ of the global minimum. The analytic Ar–CH₃OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol¯1 of the ab initio values. Combining this Ar–CH₃OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.« less

  7. ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: structure and transfer.

    PubMed

    Michael, Geovana Brenner; Kadlec, Kristina; Sweeney, Michael T; Brzuszkiewicz, Elzbieta; Liesegang, Heiko; Daniel, Rolf; Murray, Robert W; Watts, Jeffrey L; Schwarz, Stefan

    2012-01-01

    Integrative and conjugative elements (ICEs) have not been detected in Pasteurella multocida. In this study the multiresistance ICEPmu1 from bovine P. multocida was analysed for its core genes and its ability to conjugatively transfer into strains of the same and different genera. ICEPmu1 was identified during whole genome sequencing. Coding sequences were predicted by bioinformatic tools and manually curated using the annotation software ERGO. Conjugation into P. multocida, Mannheimia haemolytica and Escherichia coli recipients was performed by mating assays. The presence of ICEPmu1 and its circular intermediate in the recipient strains was confirmed by PCR and sequence analysis. Integration sites were sequenced. Susceptibility testing of the ICEPmu1-carrying recipients was conducted by broth microdilution. The 82 214 bp ICEPmu1 harbours 88 genes. The core genes of ICEPmu1, which are involved in excision/integration and conjugative transfer, resemble those found in a 66 641 bp ICE from Histophilus somni. ICEPmu1 integrates into a tRNA(Leu) and is flanked by 13 bp direct repeats. It is able to conjugatively transfer to P. multocida, M. haemolytica and E. coli, where it also uses a tRNA(Leu) for integration and produces closely related 13 bp direct repeats. PCR assays and susceptibility testing confirmed the presence and the functional activity of the ICEPmu1-associated resistance genes in the recipient strains. The observation that the multiresistance ICEPmu1 is present in a bovine P. multocida and can easily spread across strain and genus boundaries underlines the risk of a rapid dissemination of multiple resistance genes, which will distinctly decrease the therapeutic options.

  8. Using Molecular Dynamics Simulation to Reinforce Student Understanding of Intermolecular Forces

    ERIC Educational Resources Information Center

    Burkholder, Phillip R.; Purser, Gordon H.; Cole, Renee S.

    2008-01-01

    Intermolecular forces play an important role in many aspects of chemistry ranging from inorganic to biological chemistry. These forces dictate molecular conformation, species aggregation (including self-assembly), trends in solubility and boiling points, adsorption characteristics, viscosity, phase changes, surface tension, capillary action, vapor…

  9. Ultraviolet Absorption Induces Hydrogen-Atom Transfer in G⋅C Watson-Crick DNA Base Pairs in Solution.

    PubMed

    Röttger, Katharina; Marroux, Hugo J B; Grubb, Michael P; Coulter, Philip M; Böhnke, Hendrik; Henderson, Alexander S; Galan, M Carmen; Temps, Friedrich; Orr-Ewing, Andrew J; Roberts, Gareth M

    2015-12-01

    Ultrafast deactivation pathways bestow photostability on nucleobases and hence preserve the structural integrity of DNA following absorption of ultraviolet (UV) radiation. One controversial recovery mechanism proposed to account for this photostability involves electron-driven proton transfer (EDPT) in Watson-Crick base pairs. The first direct observation is reported of the EDPT process after UV excitation of individual guanine-cytosine (G⋅C) Watson-Crick base pairs by ultrafast time-resolved UV/visible and mid-infrared spectroscopy. The formation of an intermediate biradical species (G[-H]⋅C[+H]) with a lifetime of 2.9 ps was tracked. The majority of these biradicals return to the original G⋅C Watson-Crick pairs, but up to 10% of the initially excited molecules instead form a stable photoproduct G*⋅C* that has undergone double hydrogen-atom transfer. The observation of these sequential EDPT mechanisms across intermolecular hydrogen bonds confirms an important and long debated pathway for the deactivation of photoexcited base pairs, with possible implications for the UV photochemistry of DNA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Diastereoselective intermolecular Pauson-Khand reactions of chiral cyclopropenes.

    PubMed

    Pallerla, Mahesh K; Fox, Joseph M

    2005-08-04

    In this Letter, it is demonstrated that the unusual reactivity of cyclopropenes can increase the scope and utility of intermolecular Pauson-Khand reactions. The well-defined chiral environment of cyclopropenes has a powerful influence on the diastereoselectivity of the reactions and leads to the production of a single cyclopentenone in each of the described cases. The cyclopropane ring strongly influences the stereochemistry of reactions at the enone, and the three-membered ring can subsequently be cleaved under mild conditions. [reaction: see text

  11. Genetic plasticity of the Shigella virulence plasmid is mediated by intra- and inter-molecular events between insertion sequences.

    PubMed

    Pilla, Giulia; McVicker, Gareth; Tang, Christoph M

    2017-09-01

    Acquisition of a single copy, large virulence plasmid, pINV, led to the emergence of Shigella spp. from Escherichia coli. The plasmid encodes a Type III secretion system (T3SS) on a 30 kb pathogenicity island (PAI), and is maintained in a bacterial population through a series of toxin:antitoxin (TA) systems which mediate post-segregational killing (PSK). The T3SS imposes a significant cost on the bacterium, and strains which have lost the plasmid and/or genes encoding the T3SS grow faster than wild-type strains in the laboratory, and fail to bind the indicator dye Congo Red (CR). Our aim was to define the molecular events in Shigella flexneri that cause loss of Type III secretion (T3S), and to examine whether TA systems exert positional effects on pINV. During growth at 37°C, we found that deletions of regions of the plasmid including the PAI lead to the emergence of CR-negative colonies; deletions occur through intra-molecular recombination events between insertion sequences (ISs) flanking the PAI. Furthermore, by repositioning MvpAT (which belongs to the VapBC family of TA systems) near the PAI, we demonstrate that the location of this TA system alters the rearrangements that lead to loss of T3S, indicating that MvpAT acts both globally (by reducing loss of pINV through PSK) as well as locally (by preventing loss of adjacent sequences). During growth at environmental temperatures, we show for the first time that pINV spontaneously integrates into different sites in the chromosome, and this is mediated by inter-molecular events involving IS1294. Integration leads to reduced PAI gene expression and impaired secretion through the T3SS, while excision of pINV from the chromosome restores T3SS function. Therefore, pINV integration provides a reversible mechanism for Shigella to circumvent the metabolic burden imposed by pINV. Intra- and inter-molecular events between ISs, which are abundant in Shigella spp., mediate plasticity of S. flexneri pINV.

  12. Technology CAD for integrated circuit fabrication technology development and technology transfer

    NASA Astrophysics Data System (ADS)

    Saha, Samar

    2003-07-01

    In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.

  13. Small Molecule Activation by Intermolecular Zr(IV)-Phosphine Frustrated Lewis Pairs.

    PubMed

    Metters, Owen J; Forrest, Sebastian J K; Sparkes, Hazel A; Manners, Ian; Wass, Duncan F

    2016-02-17

    We report intermolecular transition metal frustrated Lewis pairs (FLPs) based on zirconocene aryloxide and phosphine moieties that exhibit a broad range of small molecule activation chemistry that has previously been the preserve of only intramolecular pairs. Reactions with D2, CO2, THF, and PhCCH are reported. By contrast with previous intramolecular examples, these systems allow facile access to a variety of steric and electronic characteristics at the Lewis acidic and Lewis basic components, with the three-step syntheses of 10 new intermolecular transition metal FLPs being reported. Systematic variation to the phosphine Lewis base is used to unravel steric considerations, with the surprising conclusion that phosphines with relatively small Tolman steric parameters not only give highly reactive FLPs but are often seen to have the highest selectivity for the desired product. DOSY NMR spectroscopic studies on these systems reveal for the first time the nature of the Lewis acid/Lewis base interactions in transition metal FLPs of this type.

  14. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  15. An intermolecular heterobimetallic system for photocatalytic water reduction.

    PubMed

    Hansen, Sven; Klahn, Marcus; Beweries, Torsten; Rosenthal, Uwe

    2012-04-01

    Teamwork: A new intermolecular heterobimetallic system for photocatalytic water reduction, consisting of a photosensitizer of the type [Ru(bpy)(2)(L)](PF(6))(2) (L=bidentate ligand), a dichloro palladium complex PdCl(2)(L) serving as the water reduction catalyst, and triethyl amine as electron donor, is presented. Variations of the ligand as well as of the palladium source results in a significant improvement of the performance of the catalyst system. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Probing hydrogen bond potentials via combination band spectroscopy: A near infrared study of the geared bend/van der Waals stretch intermolecular modes in (HF)2

    NASA Astrophysics Data System (ADS)

    Anderson, David T.; Davis, Scott; Nesbitt, David J.

    1996-04-01

    High resolution near infrared spectra of the two lowest frequency intermolecular modes in HF-stretch excited states of (HF)2 have been characterized using a slit-jet infrared spectrometer. In the spectral region surveyed, ten vibration-rotation-tunneling (VRT) bands are observed and assigned to the low frequency ``van der Waals stretch'' (ν4) and ``geared bend'' (ν5) intermolecular modes, in combination with either the hydrogen bond acceptor (ν1) or donor (ν2) high-frequency intramolecular HF stretches. Analysis of the rotationally resolved spectra provide intermolecular frequencies, rotational constants, tunneling splittings, and predissociation rates for the ν4/ν5 intermolecular excited states. The intermolecular vibrational frequencies in the combination states display a systematic dependence on intramolecular redshift that allows far-IR intermolecular frequencies to be reliably extrapolated from the near-IR data. Approximately tenfold increases in the hydrogen bond interconversion tunneling splittings with either ν4 or ν5 excitation indicate that both intermolecular modes correlate strongly to the tunneling coordinate. The high resolution VRT line shapes reveal mode specific predissociation broadening sensitive predominantly to intramolecular excitation, with weaker but significant additional effects due to low frequency intermolecular excitation. Analysis of the high resolution spectroscopic data for these ν4 and ν5 combination bands suggests strong state mixing between what has previously been considered van der Waals stretch and geared bend degrees of freedom.

  17. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    NASA Astrophysics Data System (ADS)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical

  18. Development of highly accurate approximate scheme for computing the charge transfer integral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pershin, Anton; Szalay, Péter G.

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, itmore » was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.« less

  19. From intermolecular interactions to structures and properties of a novel cocrystal explosive: a first-principles study.

    PubMed

    Zhang, Lei; Wu, Ji-Zhou; Jiang, Sheng-Li; Yu, Yi; Chen, Jun

    2016-09-29

    By employing a first-principles method, we conducted a thorough study on a novel cocrystal explosive 1 : 1 NTO : TZTN and gained insight into the interaction-structure-property interrelationship. Mulliken bond orders, Hirshfeld surfaces, intermolecular binding energies, packing coefficients, and oxygen balance were calculated to analyze the intermolecular interactions and structures of the cocrystal explosive. The cocrystallization of NTO and TZTN molecules enhances the intermolecular binding force, which drives the synthesis of the cocrystal. However, the cocrystallization decreases the molecular packing density along the closest packed directions, which reduces the density by 10.5% and deteriorates the oxygen balance. All of these lead to a reduction in the detonation performance compared to NTO explosives. We have also proposed a new method to evaluate the impact sensitivity according to the lattice dynamics calculation. The cocrystal explosive has a lower impact sensitivity than TZTN but higher than NTO, which agrees well with experiments.

  20. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    DOE PAGES

    Hathwar, Venkatesha R.; Sist, Mattia; Jørgensen, Mads R. V.; ...

    2015-08-14

    Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically,more » the presence of C π...C πinteractions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. Finally, the quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.« less

  1. Frenkel-Charge-Transfer exciton intermixing theory for molecular crystals with two isolated Frenkel exciton states.

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor; Popescu, Adrian

    We develop an analytical theory for the intra-intermolecular exciton intermixing in periodic 1D chains of planar organic molecules with two isolated low-lying Frenkel exciton states, typical of copper phthalocyanine (CuPc) and other transition metal phthalocyanine molecules. We formulate the Hamiltonian and use the exact Bogoliubov diagonalization procedure to derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer (CT) exciton state. By comparing our theoretical spectrum with available experimental CuPc absorption data, we obtain the parameters of the Frenkel-CT exciton intermixing in CuPc thin films. The two Frenkel exciton states here are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the CT exciton, showing the coupling constant 0.17 eV in agreement with earlier electron transport experiments. Our results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines. DOE-DE-SC0007117 (I.B.), UNC-GA ROI Grant (A.P.).

  2. Charge-transfer crystallites as molecular electrical dopants

    PubMed Central

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-01-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems. PMID:26440403

  3. Transference and insight in psychotherapy with gay and bisexual male clients: the role of sexual orientation identity integration.

    PubMed

    Mohr, Jonathan J; Fuertes, Jairo N; Stracuzzi, Thomas I

    2015-03-01

    Clinical writing has suggested that the therapeutic process and relationship in work with lesbian, gay, and bisexual clients may be influenced by the extent to which clients have accepted their sexual orientation and developed a social network supportive of their sexual orientation, a construct we refer to as sexual orientation identity integration. The present cross-sectional study investigated this proposition by examining the identity integration ratings of 90 gay and bisexual male clients in relation to elements of treatment as rated by both the therapist (insight, negative transference, working alliance, session depth, and client improvement) and client (working alliance, session depth, and client improvement). Participants were male-male therapy dyads recruited from lesbian, gay, and bisexual-affirming practices. Client identity integration was negatively associated with transference, and positively associated with ratings of insight, alliance, depth, and improvement. Insight, but not transference, uniquely mediated the positive association between identity integration and most indicators of therapeutic quality. Results from an exploratory model suggested that transference may indirectly influence therapeutic quality by serving as a barrier to insight. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  4. Reactivity III: An Advanced Course in Integrated Organic, Inorganic, and Biochemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Jakubowski, Henry V.

    2017-01-01

    Reactivity III is a new course that presents chemical reactions from the domains of organic, inorganic, and biochemistry that are not readily categorized by electrophile-nucleophile interactions. Many of these reactions involve the transfer of a single electron, in either an intermolecular fashion in the case of oxidation/reduction reactions or an…

  5. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer

    NASA Astrophysics Data System (ADS)

    Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.

    2017-12-01

    The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.

  6. Terahertz laser spectroscopy of the water dimer intermolecular vibrations. II. (H2O)2

    NASA Astrophysics Data System (ADS)

    Braly, L. B.; Liu, K.; Brown, M. G.; Keutsch, F. N.; Fellers, R. S.; Saykally, R. J.

    2000-06-01

    Terahertz VRT laser spectra of four (H2O)2 intermolecular vibrations consisting of 362 transitions have been measured between 87 and 108 cm-1 with ca. 2 MHz precision. The results differ both qualitatively and quantitatively from the predictions of dimer potentials tested. The spectra also reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. In particular the 102.1 cm-1 (H2O)2 vibration assigned as the acceptor wag (ν8) exhibits two types of perturbations. In one of these a component of Ka=1 coupling with a tunneling component of Ka=0 in the 108 cm-1 acceptor twist (ν11) vibration. There is also an indication that the 103.1 cm-1 (H2O)2 band assigned as the donor in-plane bend (ν6) is coupled to the acceptor wag resulting in a lower of the in-plane bend frequency and a higher acceptor wag frequency. Detailed analysis of the VRT levels confirms the extreme nonrigidity of this complex, indicating that the use of approximate models with reduced dimensionality to calculate its properties are likely to fail.

  7. Highly Stereoselective Intermolecular Haloetherification and Haloesterification of Allyl Amides

    PubMed Central

    Soltanzadeh, Bardia; Jaganathan, Arvind; Staples, Richard J.

    2016-01-01

    An organocatalytic and highly regio-, diastereo-, and enantioselective intermolecular haloetherification and haloesterification reaction of allyl amides is reported. A variety of alkene substituents and substitution patterns are compatible with this chemistry. Notably, electronically unbiased alkene substrates exhibit exquisite regio- and diastereoselectivity for the title transformation. We also demonstrate that the same catalytic system can be used in both chlorination and bromination reactions of allyl amides with a variety of nucleophiles with little or no modification. PMID:26110812

  8. Asymmetric intermolecular Pauson-Khand reaction of symmetrically substituted alkynes.

    PubMed

    Ji, Yining; Riera, Antoni; Verdaguer, Xavier

    2009-10-01

    The asymmetric intermolecular Pauson-Khand reaction of symmetric alkynes has been accomplished for the first time. N-Phosphino-p-tolylsulfinamide (PNSO) ligands have been identified as efficient ligands in this process. The chirality of the cobalt S-bonded sulfinyl moiety was found to direct olefin insertion into one of the two possible cobalt-carbon bonds in the alkyne complex. Reaction of symmetric alkynes allows for a simplified experimental protocol since there is no need for separation of diastereomeric complexes.

  9. Evaluation of coupling terms between intra- and intermolecular vibrations in coarse-grained normal-mode analysis: Does a stronger acid make a stiffer hydrogen bond?

    NASA Astrophysics Data System (ADS)

    Houjou, Hirohiko

    2011-10-01

    Using theory of harmonic normal-mode vibration analysis, we developed a procedure for evaluating the anisotropic stiffness of intermolecular forces. Our scheme for coarse-graining of molecular motions is modified so as to account for intramolecular vibrations in addition to relative translational/rotational displacement. We applied this new analytical scheme to four carboxylic acid dimers, for which coupling between intra- and intermolecular vibrations is crucial for determining the apparent stiffness of the intermolecular double hydrogen bond. The apparent stiffness constant was analyzed on the basis of a conjunct spring model, which defines contributions from true intermolecular stiffness and molecular internal stiffness. Consequently, the true intermolecular stiffness was in the range of 43-48 N m-1 for all carboxylic acids studied, regardless of the molecules' acidity. We concluded that the difference in the apparent stiffness can be attributed to differences in the internal stiffness of the respective molecules.

  10. Intermolecular interactions and the thermodynamic properties of supercritical fluids.

    PubMed

    Yigzawe, Tesfaye M; Sadus, Richard J

    2013-05-21

    The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.

  11. Terahertz laser spectroscopy of the water dimer intermolecular vibrations. I. (D{sub 2}O){sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braly, L. B.; Cruzan, J. D.; Liu, K.

    Terahertz laser VRT spectra of the water dimer consisting of 731 transitions measured with an average precision of 2 MHz and involving four (D{sub 2}O){sub 2} intermolecular vibrations (one previously published) have been measured between 65 and 104 cm{sup -1}. The precisely determined energy level patterns differ both qualitatively and quantitatively from the predictions of several dimer potentials tested, and reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by standard normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. Particularly, themore » 83 cm{sup -1} (acceptor wag) and 90 cm{sup -1} (D{sub 2}O){sub 2} (acceptor twist) vibrations interact through a Coriolis perturbation. These spectra provide the basis for our recent determination of the water pair potential. The corresponding data set for (H{sub 2}O){sub 2} is presented in an accompanying paper. (c) 2000 American Institute of Physics.« less

  12. Evaluation of coupling terms between intra- and intermolecular vibrations in coarse-grained normal-mode analysis: does a stronger acid make a stiffer hydrogen bond?

    PubMed

    Houjou, Hirohiko

    2011-10-21

    Using theory of harmonic normal-mode vibration analysis, we developed a procedure for evaluating the anisotropic stiffness of intermolecular forces. Our scheme for coarse-graining of molecular motions is modified so as to account for intramolecular vibrations in addition to relative translational/rotational displacement. We applied this new analytical scheme to four carboxylic acid dimers, for which coupling between intra- and intermolecular vibrations is crucial for determining the apparent stiffness of the intermolecular double hydrogen bond. The apparent stiffness constant was analyzed on the basis of a conjunct spring model, which defines contributions from true intermolecular stiffness and molecular internal stiffness. Consequently, the true intermolecular stiffness was in the range of 43-48 N m(-1) for all carboxylic acids studied, regardless of the molecules' acidity. We concluded that the difference in the apparent stiffness can be attributed to differences in the internal stiffness of the respective molecules. © 2011 American Institute of Physics

  13. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design.

    PubMed

    Berry, David J; Steed, Jonathan W

    2017-08-01

    As small molecule drugs become harder to develop and less cost effective for patient use, efficient strategies for their property improvement become increasingly important to global health initiatives. Improvements in the physical properties of Active Pharmaceutical Ingredients (APIs), without changes in the covalent chemistry, have long been possible through the application of binary component solids. This was first achieved through the use of pharmaceutical salts, within the last 10-15years with cocrystals and more recently coamorphous systems have also been consciously applied to this problem. In order to rationally discover the best multicomponent phase for drug development, intermolecular interactions need to be considered at all stages of the process. This review highlights the current thinking in this area and the state of the art in: pharmaceutical multicomponent phase design, the intermolecular interactions in these phases, the implications of these interactions on the material properties and the pharmacokinetics in a patient. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Charge-transfer contributions to the excitonic coupling matrix element in BODIPY-based energy transfer cassettes

    NASA Astrophysics Data System (ADS)

    Spiegel, J. Dominik; Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M.

    2017-01-01

    BODIPY-based dyads serve as model systems for the investigation of excitation energy transfer (EET). Through-space EET is brought about by direct and exchange interactions between the transition densities of donor and acceptor localized states. The presence of a molecular linker gives rise to additional charge transfer (CT) contributions. Here, we present a novel approach for the calculation of the excitonic coupling matrix element (ECME) including CT contributions which is based on supermolecular one-electron transition density matrices (STD). The validity of the approach is assessed for a model system of two π -stacked ethylene molecules at varying intermolecular separation. Wave functions and electronic excitation energies of five EET cassettes comprising anthracene as exciton donor and BODIPY as exciton acceptor are obtained by the redesigned combined density functional theory and multireference configuration interaction (DFT/MRCI-R) method. CT contributions to the ECME are shown to be important in the covalently linked EET cassettes.

  15. Mechanism of intermolecular hydroacylation of vinylsilanes catalyzed by a rhodium(I) olefin complex: a DFT study.

    PubMed

    Meng, Qingxi; Shen, Wei; Li, Ming

    2012-03-01

    Density functional theory (DFT) was used to investigate the Rh(I)-catalyzed intermolecular hydroacylation of vinylsilane with benzaldehyde. All intermediates and transition states were optimized completely at the B3LYP/6-31G(d,p) level (LANL2DZ(f) for Rh). Calculations indicated that Rh(I)-catalyzed intermolecular hydroacylation is exergonic, and the total free energy released is -110 kJ mol(-1). Rh(I)-catalyzed intermolecular hydroacylation mainly involves the active catalyst CA2, rhodium-alkene-benzaldehyde complex M1, rhodium-alkene-hydrogen-acyl complex M2, rhodium-alkyl-acyl complex M3, rhodium-alkyl-carbonyl-phenyl complex M4, rhodium-acyl-phenyl complex M5, and rhodium-ketone complex M6. The reaction pathway CA2 + R2 → M1b → T1b → M2b → T2b1 → M3b1 → T4b → M4b → T5b → M5b → T6b → M6b → P2 is the most favorable among all reaction channels of Rh(I)-catalyzed intermolecular hydroacylation. The reductive elimination reaction is the rate-determining step for this pathway, and the dominant product predicted theoretically is the linear ketone, which is consistent with Brookhart's experiments. Solvation has a significant effect, and it greatly decreases the free energies of all species. The use of the ligand Cp' (Cp' = C(5)Me(4)CF(3)) decreased the free energies in general, and in this case the rate-determining step was again the reductive elimination reaction.

  16. Rh-Catalyzed Intermolecular Reactions of α-Alkyl-α-Diazo Carbonyl Compounds with Selectivity over β-Hydride Migration.

    PubMed

    DeAngelis, Andrew; Panish, Robert; Fox, Joseph M

    2016-01-19

    Rh-carbenes derived from α-diazocarbonyl compounds have found broad utility across a remarkable range of reactivity, including cyclopropanation, cyclopropenation, C-H insertions, heteroatom-hydrogen insertions, and ylide forming reactions. However, in contrast to α-aryl or α-vinyl-α-diazocarbonyl compounds, the utility of α-alkyl-α-diazocarbonyl compounds had been moderated by the propensity of such compounds to undergo intramolecular β-hydride migration to give alkene products. Especially challenging had been intermolecular reactions involving α-alkyl-α-diazocarbonyl compounds. This Account discusses the historical context and prior limitations of Rh-catalyzed reactions involving α-alkyl-α-diazocarbonyl compounds. Early studies demonstrated that ligand and temperature effects could influence chemoselectivity over β-hydride migration. However, effects were modest and conflicting conclusions had been drawn about the influence of sterically demanding ligands on β-hydride migration. More recent advances have led to a more detailed understanding of the reaction conditions that can promote intermolecular reactivity in preference to β-hydride migration. In particular, the use of bulky carboxylate ligands and low reaction temperatures have been key to enabling intermolecular cyclopropenation, cyclopropanation, carbonyl ylide formation/dipolar cycloaddition, indole C-H functionalization, and intramolecular bicyclobutanation with high chemoselectivity over β-hydride migration. Cyclic α-diazocarbonyl compounds have been shown to be particularly resilient toward β-hydride migration and are the first class of compounds that can engage in intermolecular reactivity in the presence of tertiary β-hydrogens. DFT calculations were used to propose that for cyclic α-diazocarbonyl compounds, ring constraints relieve steric interaction for intermolecular reactions and thereby accelerate the rate of intermolecular reactivity relative to intramolecular

  17. Graphoepitaxy integration and pattern transfer of lamellar silicon-containing high-chi block copolymers

    NASA Astrophysics Data System (ADS)

    Bézard, P.; Chevalier, X.; Legrain, A.; Navarro, C.; Nicolet, C.; Fleury, G.; Cayrefourcq, I.; Tiron, R.; Zelsmann, M.

    2018-03-01

    In this work, we present our recent achievements on the integration and transfer etching of a novel silicon-containing high-χ block copolymer for lines/spaces applications. Developed carbo-silane BCPs are synthesized under industrial conditions and present periodicities as low as 14 nm. A full directed self-assembly by graphoepitaxy process is shown using standard photolithography stacks and all processes are performed on 300 mm wafer compatible tools. Specific plasma processes are developed to isolate perpendicular lamellae and sub-12 nm features are finally transferred into silicon substrates. The quality of the final BCP hard mask (CDU, LWR, LER) are also investigated. Finally, thanks to the development of dedicated neutral layers and top-coats allowing perpendicular orientations, it was possible to investigate plasma etching experiments on full-sheets at 7 nm resolution, opening the way to the integration of these polymers in chemoepitaxy stacks.

  18. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicatemore » that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.« less

  19. Asymmetric intermolecular Pauson-Khand reactions of unstrained olefins: the (o-dimethylamino)phenylsulfinyl group as an efficient chiral auxiliary.

    PubMed

    Rodríguez Rivero, Marta; De La Rosa, Juan Carlos; Carretero, Juan Carlos

    2003-12-10

    The first asymmetric version of intermolecular Pauson-Khand reactions of unstrained alkenes is described. Generally simple acyclic alkenes exhibit low reactivity and regioselectivity in intermolecular Pauson-Khand reactions; however, o-(dimethylamino)phenyl vinyl sulfoxide reacts under very mild conditions with a wide variety of terminal alkynes in a completely regioselective and highly stereoselective manner. The utility of the resulting 5-sulfinyl-2-cyclopentenones in asymmetric synthesis is illustrated by a very short enantioselective synthesis of the antibiotic (-)-pentenomycin I.

  20. An integrated orthognathic surgery system for virtual planning and image-guided transfer without intermediate splint.

    PubMed

    Kim, Dae-Seung; Woo, Sang-Yoon; Yang, Hoon Joo; Huh, Kyung-Hoe; Lee, Sam-Sun; Heo, Min-Suk; Choi, Soon-Chul; Hwang, Soon Jung; Yi, Won-Jin

    2014-12-01

    Accurate surgical planning and transfer of the planning in orthognathic surgery are very important in achieving a successful surgical outcome with appropriate improvement. Conventionally, the paper surgery is performed based on a 2D cephalometric radiograph, and the results are expressed using cast models and an articulator. We developed an integrated orthognathic surgery system with 3D virtual planning and image-guided transfer. The maxillary surgery of orthognathic patients was planned virtually, and the planning results were transferred to the cast model by image guidance. During virtual planning, the displacement of the reference points was confirmed by the displacement from conventional paper surgery at each procedure. The results of virtual surgery were transferred to the physical cast models directly through image guidance. The root mean square (RMS) difference between virtual surgery and conventional model surgery was 0.75 ± 0.51 mm for 12 patients. The RMS difference between virtual surgery and image-guidance results was 0.78 ± 0.52 mm, which showed no significant difference from the difference of conventional model surgery. The image-guided orthognathic surgery system integrated with virtual planning will replace physical model surgical planning and enable transfer of the virtual planning directly without the need for an intermediate splint. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Integrated controls and health monitoring for chemical transfer propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Binder, Michael P.

    1990-01-01

    NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed.

  2. Studying Intermolecular Forces with a Dual Gas Chromatography and Boiling Point Investigation

    ERIC Educational Resources Information Center

    Cunningham, William Patrick; Xia, Ian; Wickline, Kaitlyn; Huitron, Eric Ivan Garcia; Heo, Jun

    2018-01-01

    A procedure for the study of structural differences and intermolecular attraction between ethanol and 1-butanol based in laboratory work is described. This study provides comparisons of data retrieved from both a determination of boiling point and gas chromatography traces for the mixture. The methodology reported here should provide instructors…

  3. Solute-solvent contact by intermolecular cross relaxation. I. The nature of the water-hydrophobic interface.

    PubMed

    Nordstierna, Lars; Yushmanov, Pavel V; Furó, István

    2006-08-21

    Intermolecular cross-relaxation rates between solute and solvent were measured by {1H} 19F nuclear magnetic resonance experiments in aqueous molecular solutions of ammonium perfluoro-octanoate and sodium trifluoroacetate. The experiments performed at three different magnetic fields provide frequency-dependent cross-relaxation rates which demonstrate clearly the lack of extreme narrowing for nuclear spin relaxation by diffusionally modulated intermolecular interactions. Supplemented by suitable intramolecular cross-relaxation, longitudinal relaxation, and self-diffusion data, the obtained cross-relaxation rates are evaluated within the framework of recent relaxation models and provide information about the hydrophobic hydration. In particular, water dynamics around the trifluoromethyl group in ammonium perfluoro-octanoate are more retarded than that in the smaller trifluoroacetate.

  4. Contrasting intermolecular and intramolecular exciplex formation of a 1,4-dicyano-2-methylnaphthalene-N,N-dimethyl-p-toluidine dyad.

    PubMed

    Imoto, Mitsutaka; Ikeda, Hiroshi; Fujii, Takayuki; Taniguchi, Hisaji; Tamaki, Akihiro; Takeda, Motonori; Mizuno, Kazuhiko

    2010-05-07

    An intramolecular exciplex is formed upon excitation of the cyclohexane solution of the 1,4-dicyano-2-methylnaphthalene-N,N-dimethyl-p-toluidine dyad, but little if any intramolecular CT complex exists in the ground state of this substance in solution. In contrast, in the crystalline state, the dyad forms an intermolecular mixed-stack CT complex in the ground state and an intermolecular exciplex when it is photoexcited.

  5. Regioselectivity in intermolecular Pauson-Khand reactions of dissymmetric fluorinated alkynes.

    PubMed

    Kizirian, Jean-Claude; Aiguabella, Nuria; Pesquer, Albert; Fustero, Santos; Bello, Paula; Verdaguer, Xavier; Riera, Antoni

    2010-12-17

    Stoichiometric and catalytic intermolecular Pauson-Khand reactions (PKRs) of dissymmetric fluorinated alkynes were performed, affording regioselectively α-fluorinated cyclopentenones. Ethyl 4,4,4-trifluorobutynoate was an excellent substrate; its reaction with norbornadiene gave the corresponding PKR adduct in good yield and complete regioselectivity. Conjugate addition of nitroalkanes or cyanide to this adduct is stereospecific and entails concomitant loss of a trifluoromethyl group. This reaction can be exploited to prepare cyclopentenones featuring quaternary centers.

  6. Investigating Practices in Teacher Education That Promote and Inhibit Technology Integration Transfer in Early Career Teachers

    ERIC Educational Resources Information Center

    Brenner, Aimee M.; Brill, Jennifer M.

    2016-01-01

    The purpose of this study was to identify instructional technology integration strategies and practices in preservice teacher education that contribute to the transfer of technology integration knowledge and skills to the instructional practices of early career teachers. This study used a two-phase, sequential explanatory strategy. Data were…

  7. Direct measurements of intermolecular forces by chemical force microscopy

    NASA Astrophysics Data System (ADS)

    Vezenov, Dmitri Vitalievich

    1999-12-01

    Detailed description of intermolecular forces is key to understanding a wide range of phenomena from molecular recognition to materials failure. The unique features of atomic force microscopy (AFM) to make point contact force measurements with ultra high sensitivity and to generate spatial maps of surface topography and forces have been extended to include measurements between well-defined organic molecular groups. Chemical modification of AFM probes with self-assembled monolayers (SAMs) was used to make them sensitive to specific molecular interactions. This novel chemical force microscopy (CFM) technique was used to probe forces between different molecular groups in a range of environments (vacuum, organic liquids and aqueous solutions); measure surface energetics on a nanometer scale; determine pK values of the surface acid and base groups; measure forces to stretch and unbind a short synthetic DNA duplex and map the spatial distribution of specific functional groups and their ionization state. Studies of adhesion forces demonstrated the important contribution of hydrogen bonding to interactions between simple organic functionalities. The chemical identity of the tip and substrate surfaces as well as the medium had a dramatic effect on adhesion between model monolayers. A direct correlation between surface free energy and adhesion forces was established. The adhesion between epoxy polymer and model mixed SAMs varied with the amount of hydrogen bonding component in the monolayers. A consistent interpretation of CFM measurements in polar solvents was provided by contact mechanics models and intermolecular force components theory. Forces between tips and surfaces functionalized with SAMs terminating in acid or base groups depended on their ionization state. A novel method of force titration was introduced for highly local characterization of the pK's of surface functional groups. The pH-dependent changes in friction forces were exploited to map spatially the

  8. Salting Effects as an Illustration of the Relative Strength of Intermolecular Forces

    ERIC Educational Resources Information Center

    Person, Eric C.; Golden, Donnie R.; Royce, Brenda R.

    2010-01-01

    This quick and inexpensive demonstration of the salting of an alcohol out of an aqueous solution illustrates the impact of intermolecular forces on solubility using materials familiar to many students. Ammonium sulfate (fertilizer) is added to an aqueous 35% solution of isopropyl alcohol (rubbing alcohol and water) containing food coloring as a…

  9. Computational attributes of the integral form of the equation of transfer

    NASA Technical Reports Server (NTRS)

    Frankel, J. I.

    1991-01-01

    Difficulties can arise in radiative and neutron transport calculations when a highly anisotropic scattering phase function is present. In the presence of anisotropy, currently used numerical solutions are based on the integro-differential form of the linearized Boltzmann transport equation. This paper, departs from classical thought and presents an alternative numerical approach based on application of the integral form of the transport equation. Use of the integral formalism facilitates the following steps: a reduction in dimensionality of the system prior to discretization, the use of symbolic manipulation to augment the computational procedure, and the direct determination of key physical quantities which are derivable through the various Legendre moments of the intensity. The approach is developed in the context of radiative heat transfer in a plane-parallel geometry, and results are presented and compared with existing benchmark solutions. Encouraging results are presented to illustrate the potential of the integral formalism for computation. The integral formalism appears to possess several computational attributes which are well-suited to radiative and neutron transport calculations.

  10. Uncovering the decision-making work of transferring dying patients home from critical care units: An integrative review.

    PubMed

    Lin, Yanxia; Myall, Michelle; Jarrett, Nikki

    2017-12-01

    To understand how decisions are made to transfer dying patients home from critical care units. Many people prefer a home death, but a high proportion die in critical care units. Transferring dying patients home is recognized to be complex but transfer decision-making itself remains unclear. Integrative review. Seven bibliographic databases (origin-2015), grey literature and reference lists were searched. An integrative review method was used to synthesize data from diverse sources. Papers were selected through title and abstract screening and full-text reviewing, using inclusion and exclusion criteria derived from review questions. Following quality appraisal, data were extracted and synthesized using normalization process theory as a framework. The number of patients transferred home ranged from 1-346, with most papers reporting on the transfer of one or two patients. Four themes regarding transfer decision-making work were generated: divergent views and practice, multiple stakeholders' involvement in decision-making, collective work and limited understanding of individuals' experiences. The practice of transferring patients home to die and its decision-making varies internationally and is usually influenced by the care system, culture or religion. It is less common to transfer patients home to die from critical care units in western societies. A better understanding of the decision-making work was obtained but mainly from the perspective of hospital-based healthcare professionals. Further research is needed to develop decision-making practice guidance to facilitate patients' wishes to die at home. © 2017 John Wiley & Sons Ltd.

  11. Intermolecular interactions between imidazole derivatives intercalated in layered solids. Substituent group effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, M.; Lemus-Santana, A.A.; Rodríguez-Hernández, J.

    2013-08-15

    This study sheds light on the intermolecular interactions between imidazole derive molecules (2-methyl-imidazole, 2-ethyl-imidazole and benzimidazole) intercalated in T[Ni(CN){sub 4}] layers to form a solid of formula unit T(ImD){sub 2}[Ni(CN){sub 4}]. These hybrid inorganic–organic solids were prepared by soft chemical routes and their crystal structures solved and refined from X-ray powder diffraction data. The involved imidazole derivative molecules were found coordinated through the pyridinic N atom to the axial positions for the metal T in the T[Ni(CN){sub 4}] layer. In the interlayers region ligand molecules from neighboring layers remain stacked in a face-to-face configuration through dipole–dipole and quadrupole–quadrupole interactions. Thesemore » intermolecular interactions show a pronounced dependence on the substituent group and are responsible for an ImD-pillaring concatenation of adjacent layers. This is supported by the structural information and the recorded magnetic data in the 2–300 K temperature range. The samples containing Co and Ni are characterized by presence of spin–orbit coupling and pronounced temperature dependence for the effective magnetic moment except for 2-ethyl-imidazole related to the local distortion for the metal coordination environment. For this last one ligand a weak ferromagnetic ordering ascribed to a super-exchange interaction between T metals from neighboring layers through the ligands π–π interaction was detected. - Graphical abstract: In the interlayers region imidazole derivative molecules are oriented according to their dipolar and quadrupolar interactions and minimizing the steric impediment. Highlights: • Imidazole derivatives intercalation compounds. • Intermolecular interaction between intercalated imidazole derivatives. • Hybrid inorganic–organic solids. • Pi–pi interactions and ferromagnetic coupling. • Dipolar and quadrupolar interactions between intercalated imidazole derivatives.« less

  12. Identification and measurement of intermolecular interaction in polyester/polystyrene blends by FTIR-photoacoustic spectrometry

    USDA-ARS?s Scientific Manuscript database

    Fourier transform infrared photoacoustic spectrometry was used to reveal and identify n-p type intermolecular interaction formed in plastic comprising binary blends of polystyrene and a biodegradable polymer, either polylactic acid, polycaprolactone or poly(tetramethyleneadipate-co-terephthalate)....

  13. THE INTERACTION OF PARAMAGNETIC RELAXATION REAGENTS WITH INTRA- AND INTERMOLECULAR HYDROGEN BONDED PHENOLS

    EPA Science Inventory

    Intermolecular electron-nuclear 13-C relaxation times (T(1)sup e's) from solutions containing the paramagnetic relaxation reagent (PARR), Cr(acac)3, used in conjunction with 13-C T(1)'s in diamagnetic solutions (intramolecular 13-C - (1)H dipolar T(1)'s) provide a significant inc...

  14. Greenhouse effect in planetary atmospheres caused by molecular symmetry breaking in intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Vigasin, A. A.; Mokhov, I. I.

    2017-03-01

    It is believed that the greenhouse effect is related to the parameters of absorption spectra of polyatomic molecules, usually trace gases, in planetary atmospheres. The main components of all known atmospheres of celestial bodies are symmetrical molecules that do not possess the dipole-allowed purely rotational (and in the case of diatomic molecules, vibrational-rotational) absorption spectrum. Upon increased pressure, a weak absorption appears, induced by intermolecular interaction, which can lead to a greenhouse effect. The contribution of the induced absorption in radiative forcing of a dense atmosphere may amount to a few or even tens of W/m2. In conditions typical for the atmospheres of terrestrial planets (including paleoatmospheres), the collision-induced absorption and associated greenhouse effect may lead to an increase in surface temperature above the freezing point of water. There is a correlation between the temperature of an atmosphere and the intermolecular bonding energy of gases that dominate in planetary atmospheres of the Solar System.

  15. Lowest energy Frenkel and charge transfer exciton intermixing in one-dimensional copper phthalocyanine molecular lattice

    NASA Astrophysics Data System (ADS)

    Bondarev, I. V.; Popescu, A.; Younts, R. A.; Hoffman, B.; McAfee, T.; Dougherty, D. B.; Gundogdu, K.; Ade, H. W.

    2016-11-01

    We report the results of the combined experimental and theoretical studies of the low-lying exciton states in crystalline copper phthalocyanine. We derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer exciton state and compare it with temperature dependent optical absorption spectra measured experimentally, to obtain the parameters of the Frenkel-charge-transfer exciton intermixing. The two Frenkel exciton states are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the charge transfer exciton, showing the coupling constant 0.17 eV which agrees with earlier experimental measurements. These results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines.

  16. Robust singlet fission in pentacene thin films with tuned charge transfer interactions.

    PubMed

    Broch, K; Dieterle, J; Branchi, F; Hestand, N J; Olivier, Y; Tamura, H; Cruz, C; Nichols, V M; Hinderhofer, A; Beljonne, D; Spano, F C; Cerullo, G; Bardeen, C J; Schreiber, F

    2018-03-05

    Singlet fission, the spin-allowed photophysical process converting an excited singlet state into two triplet states, has attracted significant attention for device applications. Research so far has focused mainly on the understanding of singlet fission in pure materials, yet blends offer the promise of a controlled tuning of intermolecular interactions, impacting singlet fission efficiencies. Here we report a study of singlet fission in mixtures of pentacene with weakly interacting spacer molecules. Comparison of experimentally determined stationary optical properties and theoretical calculations indicates a reduction of charge-transfer interactions between pentacene molecules with increasing spacer molecule fraction. Theory predicts that the reduced interactions slow down singlet fission in these blends, but surprisingly we find that singlet fission occurs on a timescale comparable to that in pure crystalline pentacene. We explain the observed robustness of singlet fission in such mixed films by a mechanism of exciton diffusion to hot spots with closer intermolecular spacings.

  17. Bacterial Conversion of Hydroxylamino Aromatic Compounds by both Lyase and Mutase Enzymes Involves Intramolecular Transfer of Hydroxyl Groups

    PubMed Central

    Nadeau, Lloyd J.; He, Zhongqi; Spain, Jim C.

    2003-01-01

    Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H218O did not indicate any 18O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was 18O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups. PMID:12732549

  18. Key characteristics of knowledge transfer and exchange in healthcare: integrative literature review.

    PubMed

    Pentland, Duncan; Forsyth, Kirsty; Maciver, Donald; Walsh, Mike; Murray, Richard; Irvine, Linda; Sikora, Simon

    2011-07-01

    This paper presents the results of a review of literature relating to knowledge transfer and exchange in healthcare. Treatment, planning and policy decisions in contemporary nursing and healthcare should be based on sound evidence wherever possible, but research knowledge remains generally underused. Knowledge transfer and exchange initiatives aim to facilitate the accessibility, application and production of evidence and may provide solutions to this challenge. This review was conducted to help inform the design and implementation of knowledge transfer and exchange activities for a large healthcare organization. Databases: ASSIA, Business Source Premier, CINAHL, PsychInfo, Medline and the Cochrane Database of Systematic Reviews. An integrative literature review was carried out including an extensive literature search. English language systematic reviews, literature reviews, primary quantitative and qualitative papers and grey literature of high relevance evaluating, describing or discussing knowledge transfer or exchange activities in healthcare were included for review (January 1990-September 2009). Thirty-three papers were reviewed (four systematic reviews, nine literature reviews, one environmental scan, nine empirical studies and ten case studies). Robust research into knowledge transfer and exchange in healthcare is limited. Analysis of a wide range of evidence indicates a number of commonly featured characteristics but further evaluation of these activities would benefit their application in facilitating evidence-based practice in nursing. © 2011 The Authors. Journal of Advanced Nursing © 2011 Blackwell Publishing Ltd.

  19. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    PubMed Central

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  20. Programmable display of DNA-protein chimeras for controlling cell-hydrogel interactions via reversible intermolecular hybridization.

    PubMed

    Zhang, Zhaoyang; Li, Shihui; Chen, Niancao; Yang, Cheng; Wang, Yong

    2013-04-08

    Extensive studies have been recently carried out to achieve dynamic control of cell-material interactions primarily through physicochemical stimulation. The purpose of this study was to apply reversible intermolecular hybridization to program cell-hydrogel interactions in physiological conditions based on DNA-antibody chimeras and complementary oligonucleotides. The results showed that DNA oligonucleotides could be captured to and released from the immobilizing DNA-functionalized hydrogels with high specificity via DNA hybridization. Accordingly, DNA-antibody chimeras were captured to the hydrogels, successfully inducing specific cell attachment. The cell attachment to the hydrogels reached the plateau at approximately half an hour after the functionalized hydrogels and the cells were incubated together. The attached cells were rapidly released from the bound hydrogels when triggering complementary oligonucleotides were introduced to the system. However, the capability of the triggering complementary oligonucleotides in releasing cells was affected by the length of intermolecular hybridization. The length needed to be at least more than 20 base pairs in the current experimental setting. Notably, because the procedure of intermolecular hybridization did not involve any harsh condition, the released cells maintained the same viability as that of the cultured cells. The functionalized hydrogels also exhibited the potential to catch and release cells repeatedly. Therefore, this study demonstrates that it is promising to regulate cell-material interactions dynamically through the DNA-programmed display of DNA-protein chimeras.

  1. Integrated locating of helicopter stations and helipads for wounded transfer under demand location uncertainty.

    PubMed

    Bozorgi-Amiri, Ali; Tavakoli, Shayan; Mirzaeipour, Hossein; Rabbani, Masoud

    2017-03-01

    Health emergency medical service (HEMS) plays an important role in reducing injuries by providing advanced medical care in the shortest time and reducing the transfer time to advanced treatment centers. In the regions without ground relief coverage, it would be faster to transfer emergency patients to the hospital by a helicopter. In this paper, an integer nonlinear programming model is presented for the integrated locating of helicopter stations and helipads by considering uncertainty in demand points. We assume three transfer modes: (1) direct transfer by an ambulance, (2) transfer by an ambulance to a helicopter station and then to the hospital by a helicopter, (3) transfer by an ambulance to a predetermined point and then to the hospital by a helicopter. We also assume that demands occur in a square-shaped area, in which each side follows a uniform distribution. It is also assumed that demands in an area decrease errors in the distances between each two cities. The purpose of this model is to minimize the transfer time from demand points to the hospital by considering different modes. The proposed model is examined in terms of validity and applicability in Lorestan Province and a sensitivity analysis is also conducted on the total allocated budget. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Vehicular Integration of Wireless Power Transfer Systems and Hardware Interoperability Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C; Campbell, Steven L; Seiber, Larry Eugene

    Several wireless charging methods are under development or available as an aftermarket option in the light-duty automotive market. However, there are not a sufficient number of studies detailing the vehicle integration methods, particularly a complete vehicle integration with higher power levels. This paper presents the design, development, implementation, and vehicle integration of wireless power transfer (WPT)-based electric vehicle (EV) charging systems for various test vehicles. Before having the standards effective, it is expected that WPT technology first will be integrated as an aftermarket retrofitting approach. Inclusion of this technology on production vehicles is contingent upon the release of the internationalmore » standards. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction, high frequency power inverter, high frequency isolation transformer, coupling coils, vehicle side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, and communications, systems are presented. Aftermarket conversion approaches including the WPT on-board charger (OBC) integration, WPT CHAdeMO integration, and WPT direct battery connection scenarios are described. The experiments are carried out using the integrated vehicles and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies.« less

  3. Thermodynamic curvature for attractive and repulsive intermolecular forces

    NASA Astrophysics Data System (ADS)

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2013-09-01

    The thermodynamic curvature scalar R for the Lennard-Jones system is evaluated in phase space, including vapor, liquid, and solid state. We paid special attention to the investigation of R along vapor-liquid, liquid-solid, and vapor-solid equilibria. Because R is a measure of interaction strength, we traced out the line R=0 dividing the phase space into regions with effectively attractive (R<0) or repulsive (R>0) interactions. Furthermore, we analyzed the dependence of R on the strength of attraction applying a perturbation ansatz proposed by Weeks-Chandler-Anderson. Our results show clearly a transition from R>0 (for poorly repulsive interaction) to R<0 when loading attraction in the intermolecular potential.

  4. Stochastic Integration H∞ Filter for Rapid Transfer Alignment of INS.

    PubMed

    Zhou, Dapeng; Guo, Lei

    2017-11-18

    The performance of an inertial navigation system (INS) operated on a moving base greatly depends on the accuracy of rapid transfer alignment (RTA). However, in practice, the coexistence of large initial attitude errors and uncertain observation noise statistics poses a great challenge for the estimation accuracy of misalignment angles. This study aims to develop a novel robust nonlinear filter, namely the stochastic integration H ∞ filter (SIH ∞ F) for improving both the accuracy and robustness of RTA. In this new nonlinear H ∞ filter, the stochastic spherical-radial integration rule is incorporated with the framework of the derivative-free H ∞ filter for the first time, and the resulting SIH ∞ F simultaneously attenuates the negative effect in estimations caused by significant nonlinearity and large uncertainty. Comparisons between the SIH ∞ F and previously well-known methodologies are carried out by means of numerical simulation and a van test. The results demonstrate that the newly-proposed method outperforms the cubature H ∞ filter. Moreover, the SIH ∞ F inherits the benefit of the traditional stochastic integration filter, but with more robustness in the presence of uncertainty.

  5. Intermolecular vibrational modes and H-bond interactions in crystalline urea investigated by terahertz spectroscopy and theoretical calculation

    NASA Astrophysics Data System (ADS)

    Zhao, Yonghong; Li, Zhi; Liu, Jianjun; Hu, Cong; Zhang, Huo; Qin, Binyi; Wu, Yifang

    2018-01-01

    The characteristic absorption spectra of crystalline urea in 0.6-1.8 THz region have been measured by terahertz time-domain spectroscopy at room temperature experimentally. Five broad absorption peaks were observed at 0.69, 1.08, 1.27, 1.47 and 1.64 THz respectively. Moreover, density functional theory (DFT) calculation has been performed for the isolated urea molecule, and there is no infrared intensity in the region below 1.8 THz. This means that single molecule calculations are failure to predict the experimental spectra of urea crystals. To simulate these spectra, calculations on a cluster of seven urea molecules using M06-2X and B3LYP-D3 are performed, and we found that M06-2X perform better. The observed THz vibrational modes are assigned to bending and torsional modes related to the intermolecular H-bond interactions with the help of potential energy distribution (PED) method. Using the reduced-density-gradient (RDG) analysis, the positions and types of intermolecular H-bond interactions in urea crystals are visualized. Therefore, we can confirm that terahertz spectroscopy can be used as an effective means to detect intermolecular H-bond interactions in molecular crystals.

  6. Reversing the stereoselectivity of the intermolecular Pauson-Khand reaction: formation of endo-fused norbornadiene adducts.

    PubMed

    Rios, Ramon; Pericàs, Miquel A; Moyano, Albert; Maestro, Miguel A; Mahía, José

    2002-04-04

    [reaction: see text] An unprecedented endo-selective and regioselective intermolecular Pauson-Khand reaction takes place when heterobimetallic (Mo-Co) complexes derived from N-(2-alkynoyl)oxazolidinones or sultams are heated in the presence of norbornadiene.

  7. A catalytic tethering strategy: simple aldehydes catalyze intermolecular alkene hydroaminations.

    PubMed

    MacDonald, Melissa J; Schipper, Derek J; Ng, Peter J; Moran, Joseph; Beauchemin, André M

    2011-12-21

    Herein we describe a catalytic tethering strategy in which simple aldehyde precatalysts enable, through temporary intramolecularity, room-temperature intermolecular hydroamination reactivity and the synthesis of vicinal diamines. The catalyst allows the formation of a mixed aminal from an allylic amine and a hydroxylamine, resulting in a facile intramolecular hydroamination event. The promising enantioselectivities obtained with a chiral aldehyde also highlight the potential of this catalytic tethering approach in asymmetric catalysis and demonstrate that efficient enantioinduction relying only on temporary intramolecularity is possible. © 2011 American Chemical Society

  8. Catching the role of anisotropic electronic distribution and charge transfer in halogen bonded complexes of noble gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartocci, Alessio; Cappelletti, David; Pirani, Fernando

    2015-05-14

    The systems studied in this work are gas-phase weakly bound adducts of the noble-gas (Ng) atoms with CCl{sub 4} and CF{sub 4}. Their investigation was motivated by the widespread current interest for the intermolecular halogen bonding (XB), a structural motif recognized to play a role in fields ranging from elementary processes to biochemistry. The simulation of the static and dynamic behaviors of complex systems featuring XB requires the formulation of reliable and accurate model potentials, whose development relies on the detailed characterization of strength and nature of the interactions occurring in simple exemplary halogenated systems. We thus selected the prototypicalmore » Ng-CCl{sub 4} and Ng-CF{sub 4} and performed high-resolution molecular beam scattering experiments to measure the absolute scale of their intermolecular potentials, with high sensitivity. In general, we expected to probe typical van der Waals interactions, consisting of a combination of size (exchange) repulsion with dispersion/induction attraction. For the He/Ne-CF{sub 4}, the analysis of the glory quantum interference pattern, observable in the velocity dependence of the integral cross section, confirmed indeed this expectation. On the other hand, for the He/Ne/Ar-CCl{sub 4}, the scattering data unravelled much deeper potential wells, particularly for certain configurations of the interacting partners. The experimental data can be properly reproduced only including a shifting of the repulsive wall at shorter distances, accompanied by an increased role of the dispersion attraction, and an additional short-range stabilization component. To put these findings on a firmer ground, we performed, for selected geometries of the interacting complexes, accurate theoretical calculations aimed to evaluate the intermolecular interaction and the effects of the complex formation on the electron charge density of the constituting moieties. It was thus ascertained that the adjustments of the potential

  9. Thz Spectroscopy and DFT Modeling of Intermolecular Vibrations in Hydrophobic Amino Acids

    NASA Astrophysics Data System (ADS)

    Williams, michael R. C.; Aschaffenburg, Daniel J.; Schmuttenmaer, Charles A.

    2013-06-01

    Vibrations that involve intermolecular displacements occur in molecular crystals at frequencies in the 0.5-5 THz range (˜15-165 cm^{-1}), and these motions are direct indicators of the interaction potential between the molecules. The intermolecular potential energy surface of crystalline hydrophobic amino acids is inherently interesting simply because of the wide variety of forces (electrostatic, dipole-dipole, hydrogen-bonding, van der Waals) that are present. Furthermore, an understanding of these particular interactions is immediately relevant to important topics like protein conformation and pharmaceutical polymorphism. We measured the low-frequency absorption spectra of several polycrystalline hydrophobic amino acids using THz time-domain spectroscopy, and in addition we carried out DFT calculations using periodic boundary conditions and an exchange-correlation functional that accounts for van der Waals dispersion forces. We chose to investigate a series of similar amino acids with closely analogous unit cells (leucine, isoleucine, and allo-isoleucine, in racemic or pseudo-racemic mixtures). This allows us to consider trends in the vibrational spectra as a function of small changes in molecular arrangement and/or crystal geometry. In this way, we gain confidence that peak assignments are not based on serendipitous similarities between calculated and observed features.

  10. An ab initio study of intermolecular interactions of nitromethane dimer and nitromethane trimer.

    PubMed

    Li, Jinshan; Zhao, Feng; Jing, Fuqian

    2003-02-01

    Different geometries of nitromethane dimer and nitromethane trimer have been fully optimized employing the density functional theory B3LYP method and the 6-31++G** basis set. Three-body interaction energy has been obtained with the ab initio supermolecular approach at the levels of MP2/6-31++G**//B3LYP/6-31++G** and MP2/aug-cc-pVDZ//B3LYP/6-31++G**. The internal rotation of methyl group induced by intermolecular interaction has been observed theoretically. For the optimized structures of nitromethane dimer, the strength of C--H...O--N H-bond ranges from -9.0 to -12.4 kJ mol(-1) at the MP2/aug-cc-pVDZ//B3LYP/6-31++G** level, and the B3LYP method underestimates the interaction strength compared with the MP2 method, while MP2/6-31++G**//B3LYP/6-31++G** calculated DeltaE(C) is within 2.5 kJ mol(-1) of the corresponding value at the MP4(SDTQ)/6-31G**//B3LYP/6-31++G** level. The analytic atom-atom intermolecular potential has been successfully regressed by using the MP2/6-31++G**//B3LYP/6-31++G** calculated interaction energies of nitromethane dimer. For the optimized structures of nitromethane trimer the three-body interaction energies occupy small percentage of corresponding total binding energies, but become important for the compressed nitromethane explosive. In addition, it has been discovered that the three-body interaction energy in the cyclic nitromethane trimer is more and more negative as intermolecular distances decrease from 2.2 to 1.7 A. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 345-352, 2003

  11. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining.

    PubMed

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L; Tomkinson, Alan E; Tainer, John A; Ellenberger, Tom

    2015-08-18

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Optical properties of azobenzene-functionalized self-assembled monolayers: Intermolecular coupling and many-body interactions

    NASA Astrophysics Data System (ADS)

    Cocchi, Caterina; Moldt, Thomas; Gahl, Cornelius; Weinelt, Martin; Draxl, Claudia

    2016-12-01

    In a joint theoretical and experimental work, the optical properties of azobenzene-functionalized self-assembled monolayers (SAMs) are studied at different molecular packing densities. Our results, based on density-functional and many-body perturbation theory, as well as on differential reflectance (DR) spectroscopy, shed light on the microscopic mechanisms ruling photo-absorption in these systems. While the optical excitations are intrinsically excitonic in nature, regardless of the molecular concentration, in densely packed SAMs intermolecular coupling and local-field effects are responsible for a sizable weakening of the exciton binding strength. Through a detailed analysis of the character of the electron-hole pairs, we show that distinct excitations involved in the photo-isomerization at low molecular concentrations are dramatically broadened by intermolecular interactions. Spectral shifts in the calculated DR spectra are in good agreement with the experimental results. Our findings represent an important step forward to rationalize the excited-state properties of these complex materials.

  13. High-Level Ab Initio Calculations of Intermolecular Interactions: Heavy Main-Group Element π-Interactions.

    PubMed

    Krasowska, Małgorzata; Schneider, Wolfgang B; Mehring, Michael; Auer, Alexander A

    2018-05-02

    This work reports high-level ab initio calculations and a detailed analysis on the nature of intermolecular interactions of heavy main-group element compounds and π systems. For this purpose we have chosen a set of benchmark molecules of the form MR 3 , in which M=As, Sb, or Bi, and R=CH 3 , OCH 3 , or Cl. Several methods for the description of weak intermolecular interactions are benchmarked including DFT-D, DFT-SAPT, MP2, and high-level coupled cluster methods in the DLPNO-CCSD(T) approximation. Using local energy decomposition (LED) and an analysis of the electron density, details of the nature of this interaction are unraveled. The results yield insight into the nature of dispersion and donor-acceptor interactions in this type of system, including systematic trends in the periodic table, and also provide a benchmark for dispersion interactions in heavy main-group element compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors.

    PubMed

    Zhang, Jing; De Groote, Andreas; Abbasi, Amin; Loi, Ruggero; O'Callaghan, James; Corbett, Brian; Trindade, António José; Bower, Christopher A; Roelkens, Gunther

    2017-06-26

    A 4-channel silicon photonics transceiver array for Point-to-Point (P2P) fiber-to-the-home (FTTH) optical networks at the central office (CO) side is demonstrated. A III-V O-band photodetector array was integrated onto the silicon photonic transmitter through transfer printing technology, showing a polarization-independent responsivity of 0.39 - 0.49 A/W in the O-band. The integrated PDs (30 × 40 μm 2 mesa) have a 3 dB bandwidth of 11.5 GHz at -3 V bias. Together with high-speed C-band silicon ring modulators whose bandwidth is up to 15 GHz, operation of the transceiver array at 10 Gbit/s is demonstrated. The use of transfer printing for the integration of the III-V photodetectors allows for an efficient use of III-V material and enables the scalable integration of III-V devices on silicon photonics wafers, thereby reducing their cost.

  15. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    PubMed

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  16. Nature and potency interactions of the hydrogen bond through the NBO analysis for charge transfer complex between 2-amino-4-hydroxy-6-methylpyrimidine and 2,3-pyrazinedicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Afroz, Ziya; Alam, Mohammad Jane; Bhat, Sheeraz Ahmad; Ahmad, Shabbir; Ahmad, Afaq

    2018-05-01

    The intermolecular interactions in complex formation between 2-amino-4-hydroxy-6-methylpyrimidine (AHMP) and 2,3-pyrazinedicarboxylicacid (PDCA) have been explored using density functional theory calculations. The isolated 1:1 molecular geometry of proton transfer (PT) complex between AHMP and PDCA has been optimized on a counterpoise corrected potential energy surface (PES) at DFT-B3LYP/6-31G(d,p) level of theory in the gaseous phase. Further, the formation of hydrogen bonded charge transfer (HBCT) complex between PDCA and AHMP has been also discussed. PT energy barrier between two extremes is calculated using potential energy surface (PES) scan by varying bond length. The intermolecular interactions have been analyzed from theoretical perspective of natural bond orbital (NBO) analysis. In addition, the interaction energy between molecular fragments involved in the complex formation has been also computed by counterpoise procedure at same level of theory.

  17. Benzylic Fluorination of Aza-Heterocycles Induced by Single-Electron Transfer to Selectfluor.

    PubMed

    Danahy, Kelley E; Cooper, Julian C; Van Humbeck, Jeffrey F

    2018-04-23

    A selective and mild method for the benzylic fluorination of aromatic azaheterocycles with Selectfluor is described. These reactions take place by a previously unreported mechanism, in which electron transfer from the heterocyclic substrate to the electrophilic fluorinating agent Selectfluor eventually yields a benzylic radical, thus leading to the desired C-F bond formation. This mechanism enables high intra- and intermolecular selectivity for aza-heterocycles over other benzylic components with similar C-H bond-dissociation energies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Intermolecular Interaction between Phosphatidylcholine and Sulfobetaine Lipid: A Combination of Lipids with Antiparallel Arranged Headgroup Charge.

    PubMed

    Aikawa, Tatsuo; Yokota, Keisuke; Kondo, Takeshi; Yuasa, Makoto

    2016-10-05

    Intermolecular interactions between lipid molecules are important when designing lipid bilayer interfaces, which have many biomedical applications such as in drug delivery vehicles and biosensors. Phosphatidylcholine, a naturally occurring lipid, is the most common lipid found in organisms. Its chemical structure has a negatively charged phosphate linkage, adjacent to an ester linkage in a glycerol moiety, and a positively charged choline group, placed at the terminus of the molecule. Recently, several types of synthetic lipids that have headgroups with the opposite charge to that of phosphatidylcholine have emerged; that is, a positively charged ammonium group is present adjacent to the ester linkage in their glycerol moiety and a negatively charged group is placed at their terminus. These types of lipids constitute a new class of soft material. The aim of this study was to determine how such lipids, with antiparallel arranged headgroup charge, interact with naturally occurring phosphatidylcholines. We synthesized 1,2-dipalmitoyl-sn-glycero-3-sulfobetaine (DPSB) to represent a reversed-head lipid; 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) was used to represent a naturally occurring phospholipid. The intermolecular interaction between these lipids was investigated using surface pressure-area (π-A) isotherms of the lipid monolayer at the air/water interface. We found that the extrapolated area and excess free energy of the mixed monolayer deviated negatively when compared with the ideal values from additivity. Moreover, differential scanning calorimetry of the lipid mixture in aqueous dispersion showed that the gel-to-liquid crystal transition temperature increased compared with that of each pure lipid composition. These results clearly indicate that DPSB preferably interacts with DPPC in the mixture. We believe that the attraction between the oppositely charged headgroups of these lipids reinforces the intermolecular interaction. Our results provide

  19. Cooperative drought adaptation: Integrating infrastructure development, conservation, and water transfers into adaptive policy pathways

    NASA Astrophysics Data System (ADS)

    Zeff, Harrison B.; Herman, Jonathan D.; Reed, Patrick M.; Characklis, Gregory W.

    2016-09-01

    A considerable fraction of urban water supply capacity serves primarily as a hedge against drought. Water utilities can reduce their dependence on firm capacity and forestall the development of new supplies using short-term drought management actions, such as conservation and transfers. Nevertheless, new supplies will often be needed, especially as demands rise due to population growth and economic development. Planning decisions regarding when and how to integrate new supply projects are fundamentally shaped by the way in which short-term adaptive drought management strategies are employed. To date, the challenges posed by long-term infrastructure sequencing and adaptive short-term drought management are treated independently, neglecting important feedbacks between planning and management actions. This work contributes a risk-based framework that uses continuously updating risk-of-failure (ROF) triggers to capture the feedbacks between short-term drought management actions (e.g., conservation and water transfers) and the selection and sequencing of a set of regional supply infrastructure options over the long term. Probabilistic regional water supply pathways are discovered for four water utilities in the "Research Triangle" region of North Carolina. Furthermore, this study distinguishes the status-quo planning path of independent action (encompassing utility-specific conservation and new supply infrastructure only) from two cooperative formulations: "weak" cooperation, which combines utility-specific conservation and infrastructure development with regional transfers, and "strong" cooperation, which also includes jointly developed regional infrastructure to support transfers. Results suggest that strong cooperation aids utilities in meeting their individual objectives at substantially lower costs and with less overall development. These benefits demonstrate how an adaptive, rule-based decision framework can coordinate integrated solutions that would not be

  20. Rh(I)-Catalyzed Intermolecular Hydroacylation: Enantioselective Cross-Coupling of Aldehydes and Ketoamides

    PubMed Central

    2015-01-01

    Under Rh(I) catalysis, α-ketoamides undergo intermolecular hydroacylation with aliphatic aldehydes. A newly designed Josiphos ligand enables access to α-acyloxyamides with high atom-economy and enantioselectivity. On the basis of mechanistic and kinetic studies, we propose a pathway in which rhodium plays a dual role in activating the aldehyde for cross-coupling. A stereochemical model is provided to rationalize the sense of enantioinduction observed. PMID:24937681

  1. Empirical solvent-mediated potentials hold for both intra-molecular and inter-molecular inter-residue interactions.

    PubMed Central

    Keskin, O.; Bahar, I.; Badretdinov, A. Y.; Ptitsyn, O. B.; Jernigan, R. L.

    1998-01-01

    Whether knowledge-based intra-molecular inter-residue potentials are valid to represent inter-molecular interactions taking place at protein-protein interfaces has been questioned in several studies. Differences in the chain connectivity effect and in residue packing geometry between interfaces and single chain monomers have been pointed out as possible sources of distinct energetics for the two cases. In the present study, the interfacial regions of protein-protein complexes are examined to extract inter-molecular inter-residue potentials, using the same statistical methods as those previously adopted for intra-molecular residue pairs. Two sets of energy parameters are derived, corresponding to solvent-mediation and "average residue" mediation. The former set is shown to be highly correlated (correlation coefficient 0.89) with that previously obtained for inter-residue interactions within single chain monomers, while the latter exhibits a weaker correlation (0.69) with its intra-molecular counterpart. In addition to the close similarity of intra- and inter-molecular solvent-mediated potentials, they are shown to be significantly more residue-specific and thereby discriminative compared to the residue-mediated ones, indicating that solvent-mediation plays a major role in controlling the effective inter-residue interactions, either at interfaces, or within single monomers. Based on this observation, a reduced set of energy parameters comprising 20 one-body and 3 two-body terms is proposed (as opposed to the 20 x 20 tables of inter-residue potentials), which reproduces the conventional 20 x 20 tables with a correlation coefficient of 0.99. PMID:9865952

  2. Estimation of Some Parameters from Morse-Morse-Spline-Van Der Waals Intermolecular Potential

    NASA Astrophysics Data System (ADS)

    Coroiu, I.

    2007-04-01

    Some parameters such as transport cross-sections and isotopic thermal diffusion factor have been calculated from an improved intermolecular potential, Morse-Morse-Spline-van der Waals (MMSV) potential proposed by R.A. Aziz et al. The treatment was completely classical and no corrections for quantum effects were made. The results would be employed for isotope separations of different spherical and quasi-spherical molecules.

  3. Ultracompact Implantable Design With Integrated Wireless Power Transfer and RF Transmission Capabilities.

    PubMed

    Sun, Guilin; Muneer, Badar; Li, Ying; Zhu, Qi

    2018-04-01

    This paper presents an ultracompact design of biomedical implantable devices with integrated wireless power transfer (WPT) and RF transmission capabilities for implantable medical applications. By reusing the spiral coil in an implantable device, both RF transmission and WPT are realized without the performance degradation of both functions in ultracompact size. The complete theory of WPT based on magnetic resonant coupling is discussed and the design methodology of an integrated structure is presented in detail, which can guide the design effectively. A system with an external power transmitter and implantable structure is fabricated to validate the proposed approach. The experimental results show that the implantable structure can receive power wirelessly at 39.86 MHz with power transfer efficiency of 47.2% and can also simultaneously radiate at 2.45 GHz with an impedance bandwidth of 10.8% and a gain of -15.71 dBi in the desired direction. Furthermore, sensitivity analyses are carried out with the help of experiment and simulation. The results reveal that the system has strong tolerance to the nonideal conditions. Additionally, the specific absorption rate distribution is evaluated in the light of strict IEEE standards. The results reveal that the implantable structure can receive up to 115 mW power from an external transmitter and radiate 6.4 dB·m of power safely.

  4. Energy transfer upon collision of selectively excited CO2 molecules: State-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows.

    PubMed

    Lombardi, A; Faginas-Lago, N; Pacifici, L; Grossi, G

    2015-07-21

    Carbon dioxide molecules can store and release tens of kcal/mol upon collisions, and such an energy transfer strongly influences the energy disposal and the chemical processes in gases under the extreme conditions typical of plasmas and hypersonic flows. Moreover, the energy transfer involving CO2 characterizes the global dynamics of the Earth-atmosphere system and the energy balance of other planetary atmospheres. Contemporary developments in kinetic modeling of gaseous mixtures are connected to progress in the description of the energy transfer, and, in particular, the attempts to include non-equilibrium effects require to consider state-specific energy exchanges. A systematic study of the state-to-state vibrational energy transfer in CO2 + CO2 collisions is the focus of the present work, aided by a theoretical and computational tool based on quasiclassical trajectory simulations and an accurate full-dimension model of the intermolecular interactions. In this model, the accuracy of the description of the intermolecular forces (that determine the probability of energy transfer in molecular collisions) is enhanced by explicit account of the specific effects of the distortion of the CO2 structure due to vibrations. Results show that these effects are important for the energy transfer probabilities. Moreover, the role of rotational and vibrational degrees of freedom is found to be dominant in the energy exchange, while the average contribution of translations, under the temperature and energy conditions considered, is negligible. Remarkable is the fact that the intramolecular energy transfer only involves stretching and bending, unless one of the colliding molecules has an initial symmetric stretching quantum number greater than a threshold value estimated to be equal to 7.

  5. Advances in chemoselective intermolecular cross-benzoin-type condensation reactions.

    PubMed

    Gaggero, Nicoletta; Pandini, Stefano

    2017-08-23

    The intermolecular cross-benzoin and acyloin condensation reactions are powerful approaches to α-hydroxy carbonyls in a single step. However, their potentiality suffers from the occurrence of side reactions including self-condensation and the formation of the undesired cross-acyloin. The broad range of azolium salt precatalysts available confers high tunability to NHC mediated benzoin condensation, assuring a good level of selectivity to the direct coupling between two non-equivalent aldehydes. Many efforts have also been devoted to the design of strategies that expand the range of suitable reaction partners beyond the traditional aldehydes and to the discovery of novel umpolung catalytic systems. The synthesis of both racemic and enantiomerically enriched acyloins is reviewed.

  6. Terahertz laser spectroscopy of the water dimer intermolecular vibrations. II. (H{sub 2}O){sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braly, L. B.; Liu, K.; Brown, M. G.

    Terahertz VRT laser spectra of four (H{sub 2}O){sub 2} intermolecular vibrations consisting of 362 transitions have been measured between 87 and 108 cm{sup -1} with ca. 2 MHz precision. The results differ both qualitatively and quantitatively from the predictions of dimer potentials tested. The spectra also reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. In particular the 102.1 cm{sup -1} (H{sub 2}O){sub 2} vibration assigned as the acceptor wag ({nu}{sub 8})more » exhibits two types of perturbations. In one of these a component of K{sub a}=1 coupling with a tunneling component of K{sub a}=0 in the 108 cm{sup -1} acceptor twist ({nu}{sub 11}) vibration. There is also an indication that the 103.1 cm{sup -1} (H{sub 2}O){sub 2} band assigned as the donor in-plane bend ({nu}{sub 6}) is coupled to the acceptor wag resulting in a lower of the in-plane bend frequency and a higher acceptor wag frequency. Detailed analysis of the VRT levels confirms the extreme nonrigidity of this complex, indicating that the use of approximate models with reduced dimensionality to calculate its properties are likely to fail. (c) 2000 American Institute of Physics.« less

  7. Intermolecular Structural Change for Thermoswitchable Polymeric Photosensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Wooram; Park, Sin-Jung; Cho, Soojeong

    2016-08-17

    A switchable photosensitizer (PS), which can be activated at a spe-cific condition beside light, has tremendous advantages for photo-dynamic therapy (PDT). Herein, we developed a thermo-switchable polymeric photosensitizer (T-PPS) by conjugating PS (Pheophor-bide-a, PPb-a) to a temperature-responsive polymer backbone of biocompatible hydroxypropyl cellulose (HPC). Self-quenched PS molecules linked in close proximity by pi-pi stacking in T-PPS were easily transited to an active monomeric state by the tempera-ture induced phase transition of polymer backbones. The tempera-ture responsive inter-molecular interaction changes of PS molecules in T-PPS were demonstrated in synchrotron small-angle X-ray scattering (SAXS) and UV-Vis spectrophotometer analysis. The T-PPS allowed switchablemore » activation and synergistically enhanced cancer cell killing effect at the hyperthermia temperature (45 °C). Our developed T-PPS has the considerable potential not only as a new class of photomedicine in clinics but also as a biosensor based on temperature responsiveness.« less

  8. The study of intermolecular interactions in NLO crystal melaminium chloride hemihydrate using DFT simulation and Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Sangeetha, K.; Kumar, V. R. Suresh; Marchewka, M. K.; Binoy, J.

    2018-05-01

    Since, the intermolecular interactions play a crucial role in the formation of crystalline network, its analysis throws light on structure dependent crystalline properties. In the present study, DFT based vibrational spectral investigation has been performed in the stretching region (3500 cm-1 - 2800 cm-1) of IR and Raman spectra of melaminium chloride hemihydrates. The intermolecular interaction has been investigated by analyzing the half width of the OH and NH stretching profile of the deconvoluted spectra. Correlation of vibrational spectra with Hirshfeld surface analysis and finger print plot has been contemplated and molecular docking studies has been performed on melaminium chloride hemihydrate to assess its role in the drug transport mechanism and toxicity to human body.

  9. Interplay of a non-conjugative integrative element and a conjugative plasmid in the spread of antibiotic resistance via suicidal plasmid transfer from an aquaculture Vibrio isolate.

    PubMed

    Nonaka, Lisa; Yamamoto, Tatsuya; Maruyama, Fumito; Hirose, Yuu; Onishi, Yuki; Kobayashi, Takeshi; Suzuki, Satoru; Nomura, Nobuhiko; Masuda, Michiaki; Yano, Hirokazu

    2018-01-01

    The capture of antimicrobial resistance genes (ARGs) by mobile genetic elements (MGEs) plays a critical role in resistance acquisition for human-associated bacteria. Although aquaculture environments are recognized as important reservoirs of ARGs, intra- and intercellular mobility of MGEs discovered in marine organisms is poorly characterized. Here, we show a new pattern of interspecies ARGs transfer involving a 'non-conjugative' integrative element. To identify active MGEs in a Vibrio ponticus isolate, we conducted whole-genome sequencing of a transconjugant obtained by mating between Escherichia coli and Vibrio ponticus. This revealed integration of a plasmid (designated pSEA1) into the chromosome, consisting of a self-transmissible plasmid backbone of the MOBH group, ARGs, and a 13.8-kb integrative element Tn6283. Molecular genetics analysis suggested a two-step gene transfer model. First, Tn6283 integrates into the recipient chromosome during suicidal plasmid transfer, followed by homologous recombination between the Tn6283 copy in the chromosome and that in the newly transferred pSEA1. Tn6283 is unusual among integrative elements in that it apparently does not encode transfer function and its excision barely generates unoccupied donor sites. Thus, its movement is analogous to the transposition of insertion sequences rather than to that of canonical integrative and conjugative elements. Overall, this study reveals the presence of a previously unrecognized type of MGE in a marine organism, highlighting diversity in the mode of interspecies gene transfer.

  10. A quantitative analysis of weak intermolecular interactions & quantum chemical calculations (DFT) of novel chalcone derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavda, Bhavin R., E-mail: chavdabhavin9@gmail.com; Dubey, Rahul P.; Patel, Urmila H.

    The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb –London –Paulimore » (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.« less

  11. Green synthesis, characterization and some physico-chemical studies on a novel intermolecular compound; 4-nitro-o-phenylenediamine-N, N-dimethylaminobenzaldehyde system

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Singh, Manjeet; Rai, R. N.

    2017-09-01

    An inter-molecular compound (IMC) L1 was synthesized by taking 1:1 molar ratio of p-nitro-o-phenylenediamine (NOPDA) and N, N-dimethylaminobenzaldehyde (DMAB) via thermally initiated solid state reaction. It was characterized by X-ray diffraction, spectral and optical studies. The single crystal of the (L1) was grown from saturated solution of ethanol using slow evaporation technique at 29 °C. From the single crystal X-ray diffraction analysis, it can be inferred that it crystallizes in triclinic unit cell with P-1 space group (CCDC No 1422765). Absorption spectrum of IMC (L1) shows a band at 318 nm attributed to the intra-molecular charge-transfer (ICT) excited state absorption and the other band at 376 nm is due to n→π* transition. The IMC (L1) shows a strong fluorescence at 418 nm with a Stokes shift (≈100 nm) and quantum efficiency (0.22) upon excitation in methyl alcohol at 318 nm.

  12. Role of dbnd NOH intermolecular interactions in oxime derivatives via Crystal structure, Hirshfeld surface, PIXELC and DFT calculations

    NASA Astrophysics Data System (ADS)

    Purushothaman, Gayathri; Thiruvenkatam, Vijay

    2017-11-01

    Oximes are building block of organic synthesis and they have wide range applications in laboratories, industries, and pharmaceutical as antidotes. Herein we report the crystal structures of oxime derivative Beta-p-Dimethylaminodeoxybenzionoxime (I) and o-Chloro-p-dimethylaminodeoxybenzion (II) the precursor molecule of o-Chloro-p-dimethylaminodeoxybenzionoxime and their intermolecular interactions studies through Hirshfeld surface & 2D-fingerprint plot analysis along with PIXELC and DFT calculations. The packing arrangements in I and II are driven by Osbnd H⋯N and Osbnd H⋯C interactions respectively. The Osbnd H⋯N hydrogen bonding in I facilitates the formation of the dimer with the motif of R (22(6)), whereas in II absence of oxime moiety (dbnd NOH) restricts the dimer formation. The 2D-fingerprint plot shows the close contacts for the intermolecular interactions in I & II. The PIXELC calculation of II suggests Osbnd H⋯C contributes for intermolecular interaction that stabilizes the crystal packing with the total energy value of 60.4 kcal/mol. The DFT calculation using B3LYP with 6-311G (d, p) functional set for both the derivatives shows a small deviation in the benzene ring (I) and chlorobenzene ring (II) with the RMSD value of 0.5095 Å and 0.8472 Å respectively.

  13. Intermolecular correlations are necessary to explain diffuse scattering from protein crystals

    DOE PAGES

    Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph

    2018-02-21

    Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less

  14. Intermolecular correlations are necessary to explain diffuse scattering from protein crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph

    Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less

  15. Integrating information from disparate sources: the Walter Reed National Surgical Quality Improvement Program Data Transfer Project.

    PubMed

    Nelson, Victoria; Nelson, Victoria Ruth; Li, Fiona; Green, Susan; Tamura, Tomoyoshi; Liu, Jun-Min; Class, Margaret

    2008-11-06

    The Walter Reed National Surgical Quality Improvement Program Data Transfer web module integrates with medical and surgical information systems, and leverages outside standards, such as the National Library of Medicine's RxNorm, to process surgical and risk assessment data. Key components of the project included a needs assessment with nurse reviewers and a data analysis for federated (standards were locally controlled) data sources. The resulting interface streamlines nurse reviewer workflow by integrating related tasks and data.

  16. Cooperative Drought Adaptation: Integrating Infrastructure Development, Conservation, and Water Transfers into Adaptive Policy Pathways

    NASA Astrophysics Data System (ADS)

    Zeff, H. B.; Characklis, G. W.; Reed, P. M.; Herman, J. D.

    2015-12-01

    Water supply policies that integrate portfolios of short-term management decisions with long-term infrastructure development enable utilities to adapt to a range of future scenarios. An effective mix of short-term management actions can augment existing infrastructure, potentially forestalling new development. Likewise, coordinated expansion of infrastructure such as regional interconnections and shared treatment capacity can increase the effectiveness of some management actions like water transfers. Highly adaptable decision pathways that mix long-term infrastructure options and short-term management actions require decision triggers capable of incorporating the impact of these time-evolving decisions on growing water supply needs. Here, we adapt risk-based triggers to sequence a set of potential infrastructure options in combination with utility-specific conservation actions and inter-utility water transfers. Individual infrastructure pathways can be augmented with conservation or water transfers to reduce the cost of meeting utility objectives, but they can also include cooperatively developed, shared infrastructure that expands regional capacity to transfer water. This analysis explores the role of cooperation among four water utilities in the 'Research Triangle' region of North Carolina by formulating three distinct categories of adaptive policy pathways: independent action (utility-specific conservation and supply infrastructure only), weak cooperation (utility-specific conservation and infrastructure development with regional transfers), and strong cooperation (utility specific conservation and jointly developed of regional infrastructure that supports transfers). Results suggest that strong cooperation aids the utilities in meeting their individual objections at substantially lower costs and with fewer irreversible infrastructure options.

  17. Highly chemoselective intermolecular cross-benzoin reactions using an ad hoc designed novel N-heterocyclic carbene catalyst.

    PubMed

    Delany, Eoghan G; Connon, Stephen J

    2018-01-31

    The design of a novel N-heterocyclic carbene catalyst incorporating a bulky yet highly electron-deficient N-aryl substituent has allowed the development of an efficient protocol for the first highly chemoselective intermolecular benzoin condensations between two non-identical aromatic aldehydes.

  18. Interfacial Charge Transfer States in Condensed Phase Systems

    NASA Astrophysics Data System (ADS)

    Vandewal, Koen

    2016-05-01

    Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.

  19. Decomposition of Intermolecular Interactions in the Crystal Structure of Some Diacetyl Platinum(II) Complexes: Combined Hirshfeld, AIM, and NBO Analyses.

    PubMed

    Soliman, Saied M; Barakat, Assem

    2016-12-06

    Intermolecular interactions play a vital role in crystal structures. Therefore, we conducted a topological study, using Hirshfeld surfaces and atom in molecules (AIM) analysis, to decompose and analyze, respectively, the different intermolecular interactions in six hydrazone-diacetyl platinum(II) complexes. Using AIM and natural bond orbital (NBO) analyses, we determined the type, nature, and strength of the interactions. All the studied complexes contain C-H⋯O interactions, and the presence of bond critical points along the intermolecular paths underlines their significance. The electron densities (ρ(r)) at the bond critical points (0.0031-0.0156 e/a₀³) fall within the typical range for H-bonding interactions. Also, the positive values of the Laplacian of the electron density (∇²ρ(r)) revealed the depletion of electronic charge on the interatomic path, another characteristic feature of closed-shell interactions. The ratios of the absolute potential energy density to the kinetic energy density (| V (r)|/ G (r)) and ρ(r) are highest for the O2⋯H15-N3 interaction in [Pt(COMe)₂(2-pyCMe=NNH₂)] (1); hence, this interaction has the highest covalent character of all the O⋯H intermolecular interactions. Interestingly, in [Pt(COMe)₂(H₂NN=CMe-CMe=NNH₂)] (3), there are significant N-H⋯Pt interactions. Using the NBO method, the second-order interaction energies, E (2) , of these interactions range from 3.894 to 4.061 kJ/mol. Furthermore, the hybrid Pt orbitals involved in these interactions are comprised of d xy , d xz , and s atomic orbitals.

  20. Intermolecular interactions between σ- and π-holes of bromopentafluorobenzene and pyridine: computational and experimental investigations.

    PubMed

    Yang, Fang-Ling; Yang, Xing; Wu, Rui-Zhi; Yan, Chao-Xian; Yang, Fan; Ye, Weichun; Zhang, Liang-Wei; Zhou, Pan-Pan

    2018-04-25

    The characters of σ- and π-holes of bromopentafluorobenzene (C6F5Br) enable it to interact with an electron-rich atom or group like pyridine which possesses an electron lone-pair N atom and a π ring. Theoretical studies of intermolecular interactions between C6F5Br and C5H5N have been carried out at the M06-2X/aug-cc-pVDZ level without and with the counterpoise method, together with single point calculations at M06-2X/TZVP, wB97-XD/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels. The σ- and π-holes of C6F5Br exhibiting positive electrostatic potentials make these sites favorably interact with the N atom and the π ring of C5H5N with negative electrostatic potentials, leading to five different dimers connected by a σ-holen bond, a σ-holeπ bond or a π-holeπ bond. Their geometrical structures, characteristics, nature and spectroscopy behaviors were systematically investigated. EDA analyses reveal that the driving forces in these dimers are different. NCI, QTAIM and NBO analyses confirm the existence of intermolecular interactions formed via σ- and π-holes of C6F5Br and the N atom and the π ring of C5H5N. The experimental IR and Raman spectra gave us important information about the formation of molecular complexes between C6F5Br and C5H5N. We expect that the results could provide valuable insights into the investigation of intermolecular interactions involving σ- and π-holes.

  1. Mass Transfer in a Nanoscale Material Enhanced by an Opposing Flux

    NASA Astrophysics Data System (ADS)

    Chmelik, Christian; Bux, Helge; Caro, Jürgen; Heinke, Lars; Hibbe, Florian; Titze, Tobias; Kärger, Jörg

    2010-02-01

    Diffusion is known to be quantified by measuring the rate of molecular fluxes in the direction of falling concentration. In contrast with intuition, considering methanol diffusion in a novel type of nanoporous material (MOF ZIF-8), this rate has now been found to be enhanced rather than slowed down by an opposing flux of labeled molecules. In terms of the key quantities of random particle movement, this result means that the self-diffusivity exceeds the transport diffusivity. It is rationalized by considering the strong intermolecular interaction and the dominating role of intercage hopping in mass transfer in the systems under study.

  2. Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic molecules probed by the methods of vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Semenov, M. A.; Blyzniuk, Iu. N.; Bolbukh, T. V.; Shestopalova, A. V.; Evstigneev, M. P.; Maleev, V. Ya.

    2012-09-01

    By the methods of vibrational spectroscopy (Infrared and Raman) the investigation of the hetero-association of biologically active aromatic compounds: flavin-mononucleotide (FMN), ethidium bromide (EB) and proflavine (PRF) was performed in aqueous solutions. It was shown that between the functional groups (Cdbnd O and NH2) the intermolecular hydrogen bonds are formed in the hetero-complexes FMN-EB and FMN-PRF, additionally stabilizing these structures. An estimation of the enthalpy of Н-bonding obtained from experimental shifts of carbonyl vibrational frequencies has shown that the H-bonds do not dominate in the magnitude of experimentally measured total enthalpy of the hetero-association reactions. The main stabilization is likely due to intermolecular interactions of the molecules in these complexes and their interaction with water environment.

  3. Theory of Excitation Transfer between Two-Dimensional Semiconductor and Molecular Layers

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Verdenhalven, Eike; Bieniek, Björn; Rinke, Patrick; Knorr, Andreas; Richter, Marten

    2018-04-01

    The geometry-dependent energy transfer rate from an electrically pumped inorganic semiconductor quantum well into an organic molecular layer is studied theoretically. We focus on Förster-type nonradiative excitation transfer between the organic and inorganic layers and include quasimomentum conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial charges calculated from density-functional theory are used to calculate the coupling elements. The partial charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic-organic system. For instance, the transfer efficiency is improved by up to 2 orders of magnitude by tuning the spatial arrangement of the molecules on the surface: Parameters of importance are the molecular packing density along the effective molecular dipole axis and the distance between the molecules and the surface. We also observe that the device performance strongly depends on the orientation of the molecular dipole moments relative to the substrate dipole moments determined by the inorganic crystal structure. Moreover, the operating regime is identified where inscattering dominates over unwanted backscattering from the molecular layer into the substrate.

  4. Tetramethylnorbornadiene, a versatile alkene for cyclopentenone synthesis through intermolecular Pauson-Khand reactions.

    PubMed

    Revés, Marc; Lledó, Agustí; Ji, Yining; Blasi, Emma; Riera, Antoni; Verdaguer, Xavier

    2012-07-06

    1,2,3,4-Tetramethyl-bicyclo[2.2.1]hepta-2,5-diene (TMNBD, for tetramethylnorbornadiene) has been prepared and used successfully as an acetylene equivalent in the synthesis of substituted cyclopentenones. TMNBD is easily accessible on a multigram scale and displays excellent reactivity toward the intermolecular Pauson-Khand reaction. Conjugate additions on the resulting tricyclic compounds proceed with exquisite diastereoselectivity. The retro-Diels-Alder reaction of these TMNBD derivatives occurs under much smoother conditions than those required for its norbornadiene homologues.

  5. IHF-independent assembly of the Tn10 strand transfer transpososome: implications for inhibition of disintegration.

    PubMed

    Stewart, Barry J; Wardle, Simon J; Haniford, David B

    2002-08-15

    The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This strand transfer transpososome (STT) does appear to support an intermolecular disintegration reaction, but only at a very low level. Strikingly, assembly of the STT is not dependent on IHF, a host protein that is required for de novo assembly of all previously characterized Tn10 transpososomes. We suggest that disintegration substrates are able to form both transposon end and target type contacts with transposase because of their enhanced conformational flexibility. This probably allows the conformation of DNA within the complex that prevents the destructive disintegration reaction, and is responsible for relaxing the DNA sequence requirements for STT formation relative to other Tn10 transpososomes.

  6. IHF-independent assembly of the Tn10 strand transfer transpososome: implications for inhibition of disintegration

    PubMed Central

    Stewart, Barry J.; Wardle, Simon J.; Haniford, David B.

    2002-01-01

    The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This strand transfer transpososome (STT) does appear to support an intermolecular disintegration reaction, but only at a very low level. Strikingly, assembly of the STT is not dependent on IHF, a host protein that is required for de novo assembly of all previously characterized Tn10 transpososomes. We suggest that disintegration substrates are able to form both transposon end and target type contacts with transposase because of their enhanced conformational flexibility. This probably allows the conformation of DNA within the complex that prevents the destructive disintegration reaction, and is responsible for relaxing the DNA sequence requirements for STT formation relative to other Tn10 transpososomes. PMID:12169640

  7. Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1982-01-01

    Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.

  8. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  9. Ultrafast dynamics of liquid water: Energy relaxation and transfer processes of the OH stretch and the HOH bend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2015-08-27

    The vibrational energy relaxation and transfer processes of the OH stretching and the HOH bending vibrations in liquid water are investigated via the theoretical calculation of the pump-probe spectra obtained from non-equilibrium molecular dynamics simulations with the TTM3-F interaction potential. The excitation of the OH stretch induces an instantaneous response of the high frequency librational motions in the 600-1000 cm-1 range. In addition, the excess energy of the OH stretch of a water molecule quickly transfers to the OH stretches of molecules in its first hydration shell with a time constant of ~50 fs, followed by relaxation to the HOHmore » bends of the surrounding molecules with a time constant of 230 fs. The excitation of the HOH bend also results in the ultrafast excitation of the high frequency librational motions. The energy of the excited HOH bend of a water molecule decays, with a time constant of 200 fs, mainly to the relaxation of the HOH bends of its surrounding molecules. The energies of the HOH bends were found to transfer quickly to the intermolecular motions via the coupling with the high frequency librational motions. The excess energy of the OH stretch or the HOH bend relaxes to the high frequency intermolecular librational motions and eventually to the hot ground state with a time scale of ~1 ps via the coupling with the librational and translational motions. The energy relaxation and transfer processes were found to depend on the local hydrogen bonding network; the relaxations of the excess energy of the OH stretch and the HOH bend of four- and five-coordinated molecules are faster than those of a three-coordinated molecule due to the delocalization of the vibrational motions of the former (four- and five-coordinated molecules) compared to those of the later (three-coordinated molecules). The present results highlight the importance of the high frequency intermolecular librational modes in facilitating the ultrafast energy relaxation

  10. Intermolecular rhodium-catalyzed [2 + 2 + 2] carbocyclization reactions of 1,6-enynes with symmetrical and unsymmetrical alkynes†

    PubMed Central

    Andrew Evans, P.; Sawyer, James R.; Lai, Kwong Wah; Huffman, John C.

    2006-01-01

    The crossed intermolecular rhodium-catalyzed [2 + 2 + 2] carbocyclization of carbon and heteroatom tethered 1,6-enynes can be accomplished with symmetrical and unsymmetrical alkynes, to afford the corresponding bicyclohexadienes in an efficient and highly selective manner. PMID:16075089

  11. Structural variability and the nature of intermolecular interactions in Watson-Crick B-DNA base pairs.

    PubMed

    Czyznikowska, Z; Góra, R W; Zaleśny, R; Lipkowski, P; Jarzembska, K N; Dominiak, P M; Leszczynski, J

    2010-07-29

    A set of nearly 100 crystallographic structures was analyzed using ab initio methods in order to verify the effect of the conformational variability of Watson-Crick guanine-cytosine and adenine-thymine base pairs on the intermolecular interaction energy and its components. Furthermore, for the representative structures, a potential energy scan of the structural parameters describing mutual orientation of the base pairs was carried out. The results were obtained using the hybrid variational-perturbational interaction energy decomposition scheme. The electron correlation effects were estimated by means of the second-order Møller-Plesset perturbation theory and coupled clusters with singles and doubles method adopting AUG-cc-pVDZ basis set. Moreover, the characteristics of hydrogen bonds in complexes, mimicking those appearing in B-DNA, were evaluated using topological analysis of the electron density. Although the first-order electrostatic energy is usually the largest stabilizing component, it is canceled out by the associated exchange repulsion in majority of the studied crystallographic structures. Therefore, the analyzed complexes of the nucleic acid bases appeared to be stabilized mainly by the delocalization component of the intermolecular interaction energy which, in terms of symmetry adapted perturbation theory, encompasses the second- and higher-order induction and exchange-induction terms. Furthermore, it was found that the dispersion contribution, albeit much smaller in terms of magnitude, is also a vital stabilizing factor. It was also revealed that the intermolecular interaction energy and its components are strongly influenced by four (out of six) structural parameters describing mutual orientation of bases in Watson-Crick pairs, namely shear, stagger, stretch, and opening. Finally, as a part of a model study, much of the effort was devoted to an extensive testing of the UBDB databank. It was shown that the databank quite successfully reproduces the

  12. A Catalytic, Brønsted Base Strategy for Intermolecular Allylic C—H Amination

    PubMed Central

    Reed, Sean A.; Mazzotti, Anthony R.; White, M. Christina

    2009-01-01

    A Brønsted base activation mode for oxidative, Pd(II)/sulfoxide catalyzed, intermolecular C—H allylic amination is reported. N,N-diisopropylethylamine was found to promote amination of unactivated terminal olefins, forming the corresponding linear allylic amine products with high levels of stereo-, regio-, and chemoselectivity. The predictable and high selectivity of this C—H oxidation method enables late-stage incorporation of nitrogen into advanced synthetic intermediates and natural products. PMID:19645492

  13. Intermolecular interaction studies of glyphosate with water

    NASA Astrophysics Data System (ADS)

    Manon, Priti; Juglan, K. C.; Kaur, Kirandeep; Sethi, Nidhi; Kaur, J. P.

    2017-07-01

    The density (ρ), viscosity (η) and ultrasonic velocity (U) of glyphosate with water have been measured on different ultrasonic frequency ranges from 1MHz, 2MHz, 3MHz & 5MHz by varying concentrations (0.05%, 0.10%, 0.15%, 0.20%, 0.25%, 0.30%, 0.35%, & 0.40%) at 30°C. The specific gravity bottle, Ostwald's viscometer and quartz crystal interferometer were used to determine density (ρ), viscosity (η) and ultrasonic velocity (U). These three factors contribute in evaluating the other parameters as acoustic impedance (Z), adiabatic compressibility (β), relaxation time (τ), intermolecular free length (Lf), free volume (Vf), ultrasonic attenuation (α/f2), Rao's constant (R), Wada's constant (W) and relative strength (R). Solute-solvent interaction is confirmed by ultrasonic velocity and viscosity values, which increases with increase in concentration indicates stronger association between solute and solvent molecules. With rise in ultrasonic frequency the interaction between the solute and solvent particles decreases. The linear variations in Rao's constant and Wada's constant suggest the absence of complex formation.

  14. Absolute protein-protein association rate constants from flexible, coarse-grained Brownian dynamics simulations: the role of intermolecular hydrodynamic interactions in barnase-barstar association.

    PubMed

    Frembgen-Kesner, Tamara; Elcock, Adrian H

    2010-11-03

    Theory and computation have long been used to rationalize the experimental association rate constants of protein-protein complexes, and Brownian dynamics (BD) simulations, in particular, have been successful in reproducing the relative rate constants of wild-type and mutant protein pairs. Missing from previous BD studies of association kinetics, however, has been the description of hydrodynamic interactions (HIs) between, and within, the diffusing proteins. Here we address this issue by rigorously including HIs in BD simulations of the barnase-barstar association reaction. We first show that even very simplified representations of the proteins--involving approximately one pseudoatom for every three residues in the protein--can provide excellent reproduction of the absolute association rate constants of wild-type and mutant protein pairs. We then show that simulations that include intermolecular HIs also produce excellent estimates of association rate constants, but, for a given reaction criterion, yield values that are decreased by ∼35-80% relative to those obtained in the absence of intermolecular HIs. The neglect of intermolecular HIs in previous BD simulation studies, therefore, is likely to have contributed to the somewhat overestimated absolute rate constants previously obtained. Consequently, intermolecular HIs could be an important component to include in accurate modeling of the kinetics of macromolecular association events. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i

  16. Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic molecules probed by the methods of vibrational spectroscopy.

    PubMed

    Semenov, M A; Blyzniuk, Iu N; Bolbukh, T V; Shestopalova, A V; Evstigneev, M P; Maleev, V Ya

    2012-09-01

    By the methods of vibrational spectroscopy (Infrared and Raman) the investigation of the hetero-association of biologically active aromatic compounds: flavin-mononucleotide (FMN), ethidium bromide (EB) and proflavine (PRF) was performed in aqueous solutions. It was shown that between the functional groups (CO and NH(2)) the intermolecular hydrogen bonds are formed in the hetero-complexes FMN-EB and FMN-PRF, additionally stabilizing these structures. An estimation of the enthalpy of Н-bonding obtained from experimental shifts of carbonyl vibrational frequencies has shown that the H-bonds do not dominate in the magnitude of experimentally measured total enthalpy of the hetero-association reactions. The main stabilization is likely due to intermolecular interactions of the molecules in these complexes and their interaction with water environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The salutary effect of an integrated system on the rate of repeat CT scanning in transferred trauma patients: Improved costs and efficiencies.

    PubMed

    Bledsoe, Joseph; Liepert, Amy E; Allen, Todd L; Dong, Li; Hemingway, Jamon; Majercik, Sarah; Gardner, Scott; Stevens, Mark H

    2017-08-01

    Duplication of Computed Tomography (CT) scanning in trauma patients has been a source of quality waste in healthcare and potential harm for patients. Integrated and regional health systems have been shown to promote opportunities for efficiencies, cost savings and increased safety. This study evaluated traumatically injured patients who required transfer to a Level One Trauma Center (TC) from either within a vertically integrated healthcare system (IN) or from an out-of-network (OON) hospital. We found the rate of repeat CT scanning, radiology costs and total costs for day one of hospitalization to be significantly lower for trauma patients transferred from an IN hospital as compared to those patients transferred from OON hospitals. The inefficiencies and waste often associated with transferred patients can be mitigated and strategies to do so are necessary to reduce costs in the current healthcare environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Transfer of care and offload delay: continued resistance or integrative thinking?

    PubMed

    Schwartz, Brian

    2015-11-01

    The disciplines of paramedicine and emergency medicine have evolved synchronously over the past four decades, linked by emergency physicians with expertise in prehospital care. Ambulance offload delay (OD) is an inevitable consequence of emergency department overcrowding (EDOC) and compromises the care of the patient on the ambulance stretcher in the emergency department (ED), as well as paramedic emergency medical service response in the community. Efforts to define transfer of care from paramedics to ED staff with a view to reducing offload time have met with resistance from both sides with different agendas. These include the need to return paramedics to serve the community versus the lack of ED capacity to manage the patient. Innovative solutions to other system issues, such as rapid access to trauma teams, reducing door-to-needle time, and improving throughput in the ED to reduce EDOC, have been achieved by involving all stakeholders in an integrative thinking process. Only by addressing this issue in a similar integrative process will solutions to OD be realized.

  19. Synthesis of benzimidazoles by potassium tert-butoxide-promoted intermolecular cyclization reaction of 2-iodoanilines with nitriles.

    PubMed

    Xiang, Shi-Kai; Tan, Wen; Zhang, Dong-Xue; Tian, Xian-Li; Feng, Chun; Wang, Bi-Qin; Zhao, Ke-Qing; Hu, Ping; Yang, Hua

    2013-11-14

    The synthesis of benzimidazoles by intermolecular cyclization reaction of 2-iodoanilines with nitriles has been developed. These reactions proceeded without the aid of any transition metals or ligands and just using KOBu(t) as the base. A variety of substituted benzimidazole derivatives can be synthesized by the approach.

  20. Assessing many-body contributions to intermolecular interactions of the AMOEBA force field using energy decomposition analysis of electronic structure calculations.

    PubMed

    Demerdash, Omar; Mao, Yuezhi; Liu, Tianyi; Head-Gordon, Martin; Head-Gordon, Teresa

    2017-10-28

    In this work, we evaluate the accuracy of the classical AMOEBA model for representing many-body interactions, such as polarization, charge transfer, and Pauli repulsion and dispersion, through comparison against an energy decomposition method based on absolutely localized molecular orbitals (ALMO-EDA) for the water trimer and a variety of ion-water systems. When the 2- and 3-body contributions according to the many-body expansion are analyzed for the ion-water trimer systems examined here, the 3-body contributions to Pauli repulsion and dispersion are found to be negligible under ALMO-EDA, thereby supporting the validity of the pairwise-additive approximation in AMOEBA's 14-7 van der Waals term. However AMOEBA shows imperfect cancellation of errors for the missing effects of charge transfer and incorrectness in the distance dependence for polarization when compared with the corresponding ALMO-EDA terms. We trace the larger 2-body followed by 3-body polarization errors to the Thole damping scheme used in AMOEBA, and although the width parameter in Thole damping can be changed to improve agreement with the ALMO-EDA polarization for points about equilibrium, the correct profile of polarization as a function of intermolecular distance cannot be reproduced. The results suggest that there is a need for re-examining the damping and polarization model used in the AMOEBA force field and provide further insights into the formulations of polarizable force fields in general.

  1. Assessing many-body contributions to intermolecular interactions of the AMOEBA force field using energy decomposition analysis of electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Demerdash, Omar; Mao, Yuezhi; Liu, Tianyi; Head-Gordon, Martin; Head-Gordon, Teresa

    2017-10-01

    In this work, we evaluate the accuracy of the classical AMOEBA model for representing many-body interactions, such as polarization, charge transfer, and Pauli repulsion and dispersion, through comparison against an energy decomposition method based on absolutely localized molecular orbitals (ALMO-EDA) for the water trimer and a variety of ion-water systems. When the 2- and 3-body contributions according to the many-body expansion are analyzed for the ion-water trimer systems examined here, the 3-body contributions to Pauli repulsion and dispersion are found to be negligible under ALMO-EDA, thereby supporting the validity of the pairwise-additive approximation in AMOEBA's 14-7 van der Waals term. However AMOEBA shows imperfect cancellation of errors for the missing effects of charge transfer and incorrectness in the distance dependence for polarization when compared with the corresponding ALMO-EDA terms. We trace the larger 2-body followed by 3-body polarization errors to the Thole damping scheme used in AMOEBA, and although the width parameter in Thole damping can be changed to improve agreement with the ALMO-EDA polarization for points about equilibrium, the correct profile of polarization as a function of intermolecular distance cannot be reproduced. The results suggest that there is a need for re-examining the damping and polarization model used in the AMOEBA force field and provide further insights into the formulations of polarizable force fields in general.

  2. Di-isodityrosine is the intermolecular cross-link of isodityrosine-rich extensin analogs cross-linked in vitro.

    PubMed

    Held, Michael A; Tan, Li; Kamyab, Abdolreza; Hare, Michael; Shpak, Elena; Kieliszewski, Marcia J

    2004-12-31

    Extensins are cell wall hydroxyproline-rich glycoproteins that form covalent networks putatively involving tyrosyl and lysyl residues in cross-links catalyzed by one or more extensin peroxidases. The precise cross-links remain to be chemically identified both as network components in muro and as enzymic products generated in vitro with native extensin monomers as substrates. However, some extensin monomers contain variations within their putative cross-linking motifs that complicate cross-link identification. Other simpler extensins are recalcitrant to isolation including the ubiquitous P3-type extensin whose major repetitive motif, Hyp)(4)-Ser-Hyp-Ser-(Hyp)(4)-Tyr-Tyr-Tyr-Lys, is of particular interest, not least because its Tyr-Tyr-Tyr intramolecular isodityrosine cross-link motifs are also putative candidates for further intermolecular cross-linking to form di-isodityrosine. Therefore, we designed a set of extensin analogs encoding tandem repeats of the P3 motif, including Tyr --> Phe and Lys --> Leu variations. Expression of these P3 analogs in Nicotiana tabacum cells yielded glycoproteins with virtually all Pro residues hydroxylated and subsequently arabinosylated and with likely galactosylated Ser residues. This was consistent with earlier analyses of P3 glycopeptides isolated from cell wall digests and the predictions of the Hyp contiguity hypothesis. The tyrosine-rich P3 analogs also contained isodityrosine, formed in vivo. Significantly, these isodityrosine-containing analogs were further cross-linked in vitro by an extensin peroxidase to form the tetra-tyrosine intermolecular cross-link amino acid di-isodityrosine. This is the first identification of an inter-molecular cross-link amino acid in an extensin module and corroborates earlier suggestions that di-isodityrosine represents one mechanism for cross-linking extensins in muro.

  3. Intermolecular electron-transfer mechanisms via quantitative structures and ion-pair equilibria for self-exchange of anionic (dinitrobenzenide) donors.

    PubMed

    Rosokha, Sergiy V; Lü, Jian-Ming; Newton, Marshall D; Kochi, Jay K

    2005-05-25

    Definitive X-ray structures of "separated" versus "contact" ion pairs, together with their spectral (UV-NIR, ESR) characterizations, provide the quantitative basis for evaluating the complex equilibria and intrinsic (self-exchange) electron-transfer rates for the potassium salts of p-dinitrobenzene radical anion (DNB(-)). Three principal types of ion pairs, K(L)(+)DNB(-), are designated as Classes S, M, and C via the specific ligation of K(+) with different macrocyclic polyether ligands (L). For Class S, the self-exchange rate constant for the separated ion pair (SIP) is essentially the same as that of the "free" anion, and we conclude that dinitrobenzenide reactivity is unaffected when the interionic distance in the separated ion pair is r(SIP) > or =6 Angstroms. For Class M, the dynamic equilibrium between the contact ion pair (with r(CIP) = 2.7 Angstroms) and its separated ion pair is quantitatively evaluated, and the rather minor fraction of SIP is nonetheless the principal contributor to the overall electron-transfer kinetics. For Class C, the SIP rate is limited by the slow rate of CIP right arrow over left arrow SIP interconversion, and the self-exchange proceeds via the contact ion pair by default. Theoretically, the electron-transfer rate constant for the separated ion pair is well-accommodated by the Marcus/Sutin two-state formulation when the precursor in Scheme 2 is identified as the "separated" inner-sphere complex (IS(SIP)) of cofacial DNB(-)/DNB dyads. By contrast, the significantly slower rate of self-exchange via the contact ion pair requires an associative mechanism (Scheme 3) in which the electron-transfer rate is strongly governed by cationic mobility of K(L)(+) within the "contact" precursor complex (IS(CIP)) according to the kinetics in Scheme 4.

  4. Applications and Analogies: Phototherapy and the Treatment of Hyperbilirubinemia: A Demonstration of Intra- versus Intermolecular Hydrogen Bonding.

    ERIC Educational Resources Information Center

    Wilbraham, Antony C.

    1984-01-01

    Background information and procedures are provided for a demonstration of intramolecular versus intermolecular hydrogen bonding. The demonstration is based on structural changes in bilirubin molecules which lead to changes in physical properties. A list of further investigations to try is included. (JN)

  5. Spectroscopic determination of the intermolecular potential energy surface for Ar-NH3

    NASA Astrophysics Data System (ADS)

    Schmuttenmaer, C. A.; Cohen, R. C.; Saykally, R. J.

    1994-07-01

    The three-dimensional intermolecular potential energy surface (IPS) for Ar-NH3 has been determined from a least-squares fit to 61 far infrared and microwave vibration-rotation-tunneling (VRT) measurements and to temperature-dependent second virial coefficients. The three intermolecular coordinates (R,θ,φ) are treated without invoking any approximations regarding their separability, and the NH3 inversion-tunneling motion is included adiabatically. A surface with 13 variable parameters has been optimized to accurately reproduce the spectroscopic observables, using the collocation method to treat the coupled multidimensional dynamics within a scattering formalism. Anisotropy in the IPS is found to significantly mix the free rotor basis functions. The 149.6 cm-1 global minimum on this surface occurs with the NH3 symmetry axis nearly perpendicular to the van der Waals bond axis (θ=96.6°), at a center-of-mass separation of 3.57 Å, and with the Ar atom midway between two of the NH3 hydrogen atoms (φ=60°). The position of the global minimum is very different from the center-of-mass distance extracted from microwave spectroscopic studies. Long-range (R≳3.8 Å) attractive interactions are greatest when either a N-H bond or the NH3 lone pair is directed toward the argon. Comparisons with ab initio surfaces for this molecule as well as the experimentally determined IPS for Ar-H2O are presented.

  6. Intermolecular interactions and aggregation of fac-tris(2-phenylpyridinato-C2,N)iridium(III) in nonpolar solvents.

    PubMed

    Takayasu, Satoshi; Suzuki, Takayoshi; Shinozaki, Kazuteru

    2013-08-15

    The intermolecular interaction and aggregation of the neutral complex fac-tris(2-phenylpyridinato-C(2),N)iridium(III) (fac-Ir(ppy)3) in solution was investigated. Intermolecular interactions were found to effectively decrease the luminescence lifetime via self-quenching with increasing fac-Ir(ppy)3 concentrations. A Stern-Volmer plot for quenching in acetonitrile was linear, due to bimolecular self-quenching, but curved in toluene as the result of excimer formation. (1)H NMR spectra demonstrated a monomer-aggregate equilibrium which resulted in spectral shifts depending on solvent polarity. X-ray crystallography provided structural information concerning the aggregate, which is based on a tetramer consisting of two Δ-fac-Ir(ppy)3-Λ-fac-Ir(ppy)3 pairs. Offset π-π stacking of ppy ligands and electrostatic dipole-dipole interactions between complex molecules play an important role in the formation of these molecular pairs.

  7. A Hands-On Activity to Build Mastery of Intermolecular Forces and Its Impacts on Student Learning

    ERIC Educational Resources Information Center

    Bruck, Laura B.

    2016-01-01

    The intermolecular forces activity presented in this article is designed to foster concept-building through students' use of concrete, manipulative objects, and it was developed to be pedagogically sound. Data analysis via pre- and posttesting and subsequent exam questions indicated that students who had the opportunity to participate in the…

  8. Intermolecular Vibrations of Hydrophobic Amino Acids

    NASA Astrophysics Data System (ADS)

    Williams, Michael Roy Casselman

    Hydrophobic amino acids interact with their chemical environment through a combination of electrostatic, hydrogen bonding, dipole, induced dipole, and dispersion forces. These interactions all have their own characteristic energy scale and distance dependence. The low-frequency (0.1-5 THz, 5-150 cm-1) vibrational modes of amino acids in the solid state are a direct indicator of the interactions between the molecules, which include interactions between an amino acid functional group and its surroundings. This information is central to understanding the dynamics and morphology of proteins. The alpha-carbon is a chiral center for all of the hydrophobic amino acids, meaning that they exist in two forms, traditionally referred to as L- and D-enantiomers. This nomenclature indicates which direction the molecule rotates plane-polarized visible light (levorotory and dextrorotory). Chiral a-amino acids in proteins are exclusively the L-variety In the solid state, the crystal lattice of the pure L-enantiomer is the mirror image of the D-enantiomer crystal lattice. These solids are energetically identical. Enantiomers also have identical spectroscopic properties except when the measurement is polarization sensitive. A mixture of equal amounts D- and L-amino acid enantiomers can crystallize into a racemic (DL-) structure that is different from that of the pure enantiomers. Whether a solution of both enantiomers will crystallize into a racemic form or spontaneously resolve into a mixture of separate D- and L-crystals largely depends on the interactions between molecules available in the various possible configurations. This is an active area of research. Low-frequency vibrations with intermolecular character are very sensitive to changes in lattice geometry, and consequently the vibrational spectra of racemic crystals are usually quite distinct from the spectra of the crystals of the corresponding pure enantiomers in the far-infrared (far-IR). THz time-domain spectroscopy (THz

  9. Molecular and ionic diffusion in aqueous - deep eutectic solvent mixtures: probing inter-molecular interactions using PFG NMR.

    PubMed

    D'Agostino, Carmine; Gladden, Lynn F; Mantle, Mick D; Abbott, Andrew P; Ahmed, Essa I; Al-Murshedi, Azhar Y M; Harris, Robert C

    2015-06-21

    Pulsed field gradient (PFG) NMR has been used to probe self-diffusion of molecular and ionic species in aqueous mixtures of choline chloride (ChCl) based deep eutectic solvents (DESs), in order to elucidate the effect of water on motion and inter-molecular interactions between the different species in the mixtures, namely the Ch(+) cation and hydrogen bond donor (HBD). The results reveal an interesting and complex behaviour of such mixtures at a molecular level. In general, it is observed that the hydroxyl protons ((1)H) of Ch(+) and the hydrogen bond donor have diffusion coefficients significantly different from those measured for their parent molecules when water is added. This indicates a clear and significant change in inter-molecular interactions. In aqueous Ethaline, the hydroxyl species of Ch(+) and HBD show a stronger interaction with water as water is added to the system. In the case of Glyceline, water has little effect on both hydroxyl proton diffusion of Ch(+) and HBD. In Reline, it is likely that water allows the formation of small amounts of ammonium hydroxide. The most surprising observation is from the self-diffusion of water, which is considerably higher that expected from a homogeneous liquid. This leads to the conclusion that Reline and Glyceline form mixtures that are inhomogeneous at a microscopic level despite the hydrophilicity of the salt and HBD. This work shows that PFG NMR is a powerful tool to elucidate both molecular dynamics and inter-molecular interactions in complex liquid mixtures, such as the aqueous DES mixtures.

  10. Visualizing the orientational dependence of an intermolecular potential

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Rashid, Mohammad A.; Jarvis, Samuel P.; Dunn, Janette L.; Rahe, Philipp; Moriarty, Philip

    2016-02-01

    Scanning probe microscopy can now be used to map the properties of single molecules with intramolecular precision by functionalization of the apex of the scanning probe tip with a single atom or molecule. Here we report on the mapping of the three-dimensional potential between fullerene (C60) molecules in different relative orientations, with sub-Angstrom resolution, using dynamic force microscopy (DFM). We introduce a visualization method which is capable of directly imaging the variation in equilibrium binding energy of different molecular orientations. We model the interaction using both a simple approach based around analytical Lennard-Jones potentials, and with dispersion-force-corrected density functional theory (DFT), and show that the positional variation in the binding energy between the molecules is dominated by the onset of repulsive interactions. Our modelling suggests that variations in the dispersion interaction are masked by repulsive interactions even at displacements significantly larger than the equilibrium intermolecular separation.

  11. An Integrative Model of Organizational Learning and Social Capital on Effective Knowledge Transfer and Perceived Organizational Performance

    ERIC Educational Resources Information Center

    Rhodes, Jo; Lok, Peter; Hung, Richard Yu-Yuan; Fang, Shih-Chieh

    2008-01-01

    Purpose: The purpose of this paper is to set out to examine the relationships of organizational learning, social capital and the effectiveness of knowledge transfer and perceived organisational performance. Integrating organizational learning capability with social capital networks to shape a holistic knowledge sharing and management enterprise…

  12. An interative solution of an integral equation for radiative transfer by using variational technique

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.

    1973-01-01

    An effective iterative technique is introduced to solve a nonlinear integral equation frequently associated with radiative transfer problems. The problem is formulated in such a way that each step of an iterative sequence requires the solution of a linear integral equation. The advantage of a previously introduced variational technique which utilizes a stepwise constant trial function is exploited to cope with the nonlinear problem. The method is simple and straightforward. Rapid convergence is obtained by employing a linear interpolation of the iterative solutions. Using absorption coefficients of the Milne-Eddington type, which are applicable to some planetary atmospheric radiation problems. Solutions are found in terms of temperature and radiative flux. These solutions are presented numerically and show excellent agreement with other numerical solutions.

  13. Optimization of intermolecular potential parameters for the CO2/H2O mixture.

    PubMed

    Orozco, Gustavo A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2014-10-02

    Monte Carlo simulations in the Gibbs ensemble were used to obtain optimized intermolecular potential parameters to describe the phase behavior of the mixture CO2/H2O, over a range of temperatures and pressures relevant for carbon capture and sequestration processes. Commonly used fixed-point-charge force fields that include Lennard-Jones 12-6 (LJ) or exponential-6 (Exp-6) terms were used to describe CO2 and H2O intermolecular interactions. For force fields based on the LJ functional form, changes of the unlike interactions produced higher variations in the H2O-rich phase than in the CO2-rich phase. A major finding of the present study is that for these potentials, no combination of unlike interaction parameters is able to adequately represent properties of both phases. Changes to the partial charges of H2O were found to produce significant variations in both phases and are able to fit experimental data in both phases, at the cost of inaccuracies for the pure H2O properties. By contrast, for the Exp-6 case, optimization of a single parameter, the oxygen-oxygen unlike-pair interaction, was found sufficient to give accurate predictions of the solubilities in both phases while preserving accuracy in the pure component properties. These models are thus recommended for future molecular simulation studies of CO2/H2O mixtures.

  14. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide.

    PubMed

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the N-H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N-H···S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Oriented covalent immobilization of antibodies for measurement of intermolecular binding forces between zipper-like contact surfaces of split inteins.

    PubMed

    Sorci, Mirco; Dassa, Bareket; Liu, Hongwei; Anand, Gaurav; Dutta, Amit K; Pietrokovski, Shmuel; Belfort, Marlene; Belfort, Georges

    2013-06-18

    In order to measure the intermolecular binding forces between two halves (or partners) of naturally split protein splicing elements called inteins, a novel thiol-hydrazide linker was designed and used to orient immobilized antibodies specific for each partner. Activation of the surfaces was achieved in one step, allowing direct intermolecular force measurement of the binding of the two partners of the split intein (called protein trans-splicing). Through this binding process, a whole functional intein is formed resulting in subsequent splicing. Atomic force microscopy (AFM) was used to directly measure the split intein partner binding at 1 μm/s between native (wild-type) and mixed pairs of C- and N-terminal partners of naturally occurring split inteins from three cyanobacteria. Native and mixed pairs exhibit similar binding forces within the error of the measurement technique (~52 pN). Bioinformatic sequence analysis and computational structural analysis discovered a zipper-like contact between the two partners with electrostatic and nonpolar attraction between multiple aligned ion pairs and hydrophobic residues. Also, we tested the Jarzynski's equality and demonstrated, as expected, that nonequilibrium dissipative measurements obtained here gave larger energies of interaction as compared with those for equilibrium. Hence, AFM coupled with our immobilization strategy and computational studies provides a useful analytical tool for the direct measurement of intermolecular association of split inteins and could be extended to any interacting protein pair.

  16. An Efficient Method to Evaluate Intermolecular Interaction Energies in Large Systems Using Overlapping Multicenter ONIOM and the Fragment Molecular Orbital Method

    PubMed Central

    Asada, Naoya; Fedorov, Dmitri G.; Kitaura, Kazuo; Nakanishi, Isao; Merz, Kenneth M.

    2012-01-01

    We propose an approach based on the overlapping multicenter ONIOM to evaluate intermolecular interaction energies in large systems and demonstrate its accuracy on several representative systems in the complete basis set limit at the MP2 and CCSD(T) level of theory. In the application to the intermolecular interaction energy between insulin dimer and 4′-hydroxyacetanilide at the MP2/CBS level, we use the fragment molecular orbital method for the calculation of the entire complex assigned to the lowest layer in three-layer ONIOM. The developed method is shown to be efficient and accurate in the evaluation of the protein-ligand interaction energies. PMID:23050059

  17. Oxygen Transfer in Moving Bed Biofilm Reactor and Integrated Fixed Film Activated Sludge Processes.

    PubMed

    2017-11-17

    A demonstrated approach to design the, so-called, medium-bubble air diffusion network for oxygen transfer into the aerobic zone(s) of moving bed biofilm reactor (MBBR) and integrated fixed-film activated sludge (IFAS) processes is described in this paper. Operational full-scale biological water resource recovery systems treating municipal sewerage demonstrate that medium-bubble air diffusion networks designed using the method presented here provide reliable service. Further improvement is possible, however, as knowledge gaps prevent more rational process designs. Filling such knowledge gaps can potentially result in higher performing and more economical systems. Small-scale system testing demonstrates significant enhancement of oxygen transfer capacity due to the presence of media, but quantification of such effects in full-scale systems is lacking, and is needed. Establishment of the relationship between diffuser submergence, aeration rate, and biofilm carrier fill fraction will enhance MBBR and IFAS aerobic process design, cost, and performance. Limited testing of full-scale systems is available to allow computation of alpha valuess. As with clean water testing of full-scale systems, further full-scale testing under actual operating conditions is required to more fully quantify MBBR and IFAS system oxygen transfer performance under a wide range of operating conditions. Control of MBBR and IFAS aerobic zone oxygen transfer systems can be optimized by recognizing that varying residual dissolved oxygen (DO) concentrations are needed, depending on operating conditions. For example, the DO concentration in the aerobic zone of nitrifying IFAS processes can be lowered during warm weather conditions when greater suspended growth nitrification can occur, resulting in the need for reduced nitrification by the biofilm compartment. Further application of oxygen transfer control approaches used in activated sludge systems to MBBR and IFAS systems, such as ammonia-based oxygen

  18. Mulliken Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    NASA Astrophysics Data System (ADS)

    Rosokha, S. V.; Newton, M. D.; Head-Gordon, M.; Kochi, J. K.

    2006-05-01

    The paramagnetic [1:1] encounter complex (TCNE)2-rad is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor ( TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE)2-rad by its intervalence absorption band at the solvent-dependent wavelength of λIV ˜ 1500 nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of HDA = 1000 cm -1. The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of HDA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy ( λ) and the electronic coupling element ( HDA) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes.

  19. Intermolecular Modes between LH2 Bacteriochlorophylls and Protein Residues: The Effect on the Excitation Energies.

    PubMed

    Anda, André; De Vico, Luca; Hansen, Thorsten

    2017-06-08

    Light-harvesting system 2 (LH2) executes the primary processes of photosynthesis in purple bacteria; photon absorption, and energy transportation to the reaction center. A detailed mechanistic insight into these operations is obscured by the complexity of the light-harvesting systems, particularly by the chromophore-environment interaction. In this work, we focus on the effects of the protein residues that are ligated to the bacteriochlorophylls (BChls) and construct potential energy surfaces of the ground and first optically excited state for the various BChl-residue systems where we in each case consider two degrees of freedom in the intermolecular region. We find that the excitation energies are only slightly affected by the considered modes. In addition, we see that axial ligands and hydrogen-bonded residues have opposite effects on both excitation energies and oscillator strengths by comparing to the isolated BChls. Our results indicate that only a small part of the chromophore-environment interaction can be associated with the intermolecular region between a BChl and an adjacent residue, but that it may be possible to selectively raise or lower the excitation energy at the axial and planar residue positions, respectively.

  20. Stronger Intermolecular Forces or Closer Molecular Spacing? Key Impact Factor Research of Gelator Self-Assembly Mechanism.

    PubMed

    Chen, Si; An, Zhihang; Tong, Xiaoqian; Chen, Yining; Ma, Meng; Shi, Yanqin; Wang, Xu

    2017-12-19

    The benzene ring of low-molecular-weight gelators provides strong intermolecular forces but increases molecular spacing during self-assembly. To explore both of the above influences on the gel properties, we synthesize two gelators (Glu-CBZ and Glu-DPA) consisting of the same terminal long side chain but different aliphatic functional groups. The aliphatic functional groups are carbobenzoxy group and diphenyl phosphate group. The self-assembly driving forces, self-organization patterns, network morphologies, rheological properties, and the influences of solvents are researched through 1 H NMR spectra, Fourier transform infrared spectra, field-emission scanning electron microscopy images, rheological characterizations curves, tube-inversion experiment, and calculation of van't Hoff plots. The results show that the carbobenzoxy group of Glu-CBZ makes molecules pack more tightly such that it improves the gel properties during static equilibrium. Whereas the diphenyl phosphate group of Glu-DPA provides stronger intermolecular forces, performing outstandingly during dynamic equilibrium. It is advantageous to further investigate the competitive relationship in gel system between the increased number of functional groups and the consequent steric effect.

  1. Project SQUID: The Viscosity of the Isotopes of Hydrogen and Their Intermolecular Force Potentials

    DTIC Science & Technology

    1963-12-01

    values of the pseudo- Lennard - Jones potential for either hydrogen o- deuteriua. On the present evidence, and cn the present evidence alone, it would...W4drogesror deuterium forces the conclusion that neither gas obeys a lenrArd- Jones six- twelve potential , it is, nevertheless, useful to discuss the values...VISCOSITY OF THE ISOTOPES OF HYDROGEN AND THEIR INTERMOLECULAR FORCE POTENTIALS * by S. Kestir and A Nagashima Broow University December 1963 PROJECT SQUID

  2. Intra- versus intermolecular electron transfer in radical nucleophilic aromatic substitution of dihalo(hetero)arenes – a tool for estimating π-conjugation in aromatic systems† †Electronic supplementary information (ESI) available: Experimental details and procedures, 1H and 13C NMR data, GC traces and mass spectra. CCDC 1526301 and 1526302. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc00100b Click here for additional data file. Click here for additional data file.

    PubMed Central

    Janhsen, B.; Daniliuc, C. G.

    2017-01-01

    In this paper, the application of the double radical nucleophilic aromatic substitution (SRN1) in various dihalogenated, mostly diiodinated, π-conjugated systems as a tool for qualitatively estimating their π-conjugation is described. This approach uses electron delocalisation as a measure of π-conjugation. Electron injection into the π-system is achieved via reaction of an intermediate aryl radical, itself generated from a dihalogenated π-system via SET-reduction of the C–I bond and subsequent reaction with a thiolate anion. The generated arene radical anion can then further react with the second aryl-halogen moiety within the π-system via an intramolecular electron transfer process. The efficiency of this intramolecular electron transfer is related to the π-conjugation of the radical anion. If the π-conjugation within the aromatic unit is weak, the arene radical anion reacts via an intermolecular ET with the starting dihalide. The intramolecular ET process delivers a product of a double SRN1 substitution whereas the intermolecular ET pathway provides a product of a mono- SRN1 substitution. By simple product analysis of mono- versus double substitution, π-conjugation can be qualitatively evaluated. This mechanistic tool is applied to various dihalogenated π-conjugated systems and the results are discussed within the context of π-conjugation. The conjugation mode within the π-system and the length of the aromatic system are varied, and the effect of relative positioning of the two halides within small π-systems is also addressed. PMID:28580099

  3. Controlled Self-Assembly of Low-Dimensional Alq3 Nanostructures from 1D Nanowires to 2D Plates via Intermolecular Interactions

    NASA Astrophysics Data System (ADS)

    Gu, Jianmin; Yin, Baipeng; Fu, Shaoyan; Jin, Cuihong; Liu, Xin; Bian, Zhenpan; Li, Jianjun; Wang, Lu; Li, Xiaoyu

    2018-03-01

    Due to the intense influence of the shape and size of the photon building blocks on the limitation and guidance of optical waves, an important strategy is the fabrication of different structures. Herein, organic semiconductor tris-(8-hydroxyquinoline)aluminium (Alq3) nanostructures with controllable morphology, ranging from one-dimensional nanowires to two-dimensional plates, have been prepared through altering intermolecular interactions with employing the anti-solvent diffusion cooperate with solvent-volatilization induced self-assembly method. The morphologies of the formed nanostructures, which are closely related to the stacking modes of the molecules, can be exactly controlled by altering the polarity of anti-solvents that can influence various intermolecular interactions. The synthesis strategy reported here can potentially be extended to other functional organic nanomaterials.

  4. Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)

    PubMed Central

    Roos, Michael; Uhl, Benedikt; Künzel, Daniela; Hoster, Harry E; Groß, Axel

    2011-01-01

    Summary The competition between intermolecular interactions and long-range lateral variations in the substrate–adsorbate interaction was studied by scanning tunnelling microscopy (STM) and force field based calculations, by comparing the phase formation of (sub-) monolayers of the organic molecules (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4-(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) and (ii) 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA) on graphene/Ru(0001). For PTCDA adsorption, a 2D adlayer phase was formed, which extended over large areas, while for 3,3'-BTP adsorption linear or ring like structures were formed, which exclusively populated the areas between the maxima of the moiré structure of the buckled graphene layer. The consequences for the competing intermolecular interactions and corrugation in the adsorption potential are discussed and compared with the theoretical results. PMID:22003444

  5. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azar, Richard Julian, E-mail: julianazar2323@berkeley.edu; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu

    2015-05-28

    Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidationmore » of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order.« less

  6. Electron Transfer Activity of a de Novo Designed Copper Center in a Three-Helix Bundle Fold

    PubMed Central

    Plegaria, Jefferson S.; Herrero, Christian; Quaranta, Annamaria; Pecoraro, Vincent L.

    2017-01-01

    In this work, we characterized the intermolecular ET property of a de novo designed metallopeptide using laser-flash photolysis. α3D-CH3 is three-helix bundle peptide that was designed to contain a copper ET site found in the β-barrel fold of native cupredoxins. The ET activity of Cuα3D-CH3 was determined using five different photosensitizers. By exhibiting a complete depletion of the photo-oxidant and the successive formation of a Cu(II) species at 400 nm, the transient and generated spectra demonstrated an ET transfer reaction between the photo-oxidant and Cu(I)α3D-CH3. This observation illustrated our success in integrating an ET center within a de novo designed scaffold. From the kinetic traces at 400 nm, first-order and bimolecular rate constants of 105 s−1 and 108 M−1 s−1 were derived. Moreover, a Marcus equation analysis on the rate versus driving force study produced a reorganization energy of 1.1 eV, demonstrating that the helical fold of α3D requires further structural optimization to efficiently perform ET. PMID:26427552

  7. Energy transfer dynamics and kinetics of elementary processes (promoted) by gas-phase CO2 -N2 collisions: Selectivity control by the anisotropy of the interaction.

    PubMed

    Lombardi, Andrea; Pirani, Fernando; Laganà, Antonio; Bartolomei, Massimiliano

    2016-06-15

    In this work, we exploit a new formulation of the potential energy and of the related computational procedures, which embodies the coupling between the intra and intermolecular components, to characterize possible propensities of the collision dynamics in energy transfer processes of interest for simulation and control of phenomena occurring in a variety of equilibrium and nonequilibrium environments. The investigation reported in the paper focuses on the prototype CO2 -N2 system, whose intramolecular component of the interaction is modeled in terms of a many body expansion while the intermolecular component is modeled in terms of a recently developed bonds-as-interacting-molecular-centers' approach. The main advantage of this formulation of the potential energy surface is that of being (a) truly full dimensional (i.e., all the variations of the coordinates associated with the molecular vibrations and rotations on the geometrical and electronic structure of the monomers, are explicitly taken into account without freezing any bonds or angles), (b) more flexible than other usual formulations of the interaction and (c) well suited for fitting procedures better adhering to accurate ab initio data and sensitive to experimental arrangement dependent information. Specific attention has been given to the fact that a variation of vibrational and rotational energy has a higher (both qualitative and quantitative) impact on the energy transfer when a more accurate formulation of the intermolecular interaction (with respect to that obtained when using rigid monomers) is adopted. This makes the potential energy surface better suited for the kinetic modeling of gaseous mixtures in plasma, combustion and atmospheric chemistry computational applications. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Study of intermolecular interactions in binary mixtures of 2'-chloro-4-methoxy-3-nitro benzil in various solvents and at different concentrations by the measurement of acoustic properties.

    PubMed

    Nithya, G; Thanuja, B; Kanagam, Charles C

    2013-01-01

    Density (ρ), ultrasonic velocity (u), adiabatic compressibility (β), apparent molar volume (Ø), acoustic impedance (Z), intermolecular free length (L(f)), relative association (RA) of binary mixtures of 2'-chloro-4-methoxy-3-nitro benzil (abbreviated as 2CBe) in ethanol, acetonitrile, chloroform, dioxane and benzene were measured at different concentrations at 298 K. Several useful parameters such as excess density, excess ultrasonic velocity, excess adiabatic compressibility, excess apparent molar volume, excess acoustic impedance and excess intermolecular free length have been calculated. These parameters are used to explain the nature of intermolecular interactions taking place in the binary mixture. The above study is useful in understanding the solute--solvent interactions occurring in different concentrations at room temperature. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Ultrasonic studies of intermolecular interactions in binary mixtures of 4-methoxy benzoin with various solvents: Excess molar functions of ultrasonic parameters at different concentrations and in different solvents.

    PubMed

    Thanuja, B; Nithya, G; Kanagam, Charles C

    2012-11-01

    Density (ρ), ultrasonic velocity (U), for the binary mixtures of 4-methoxy benzoin (4MB) with ethanol, chloroform, acetonitrile, benzene, and di-oxane were measured at 298K. The solute-solvent interactions and the effect of the polarity of the solvent on the type of intermolecular interactions are discussed here. From the above data, adiabatic compressibility (β), intermolecular free length (L(f)), acoustic impedance (Z), apparent molar volume (Ø), relative association (RA) have been calculated. Other useful parameters such as excess density, excess velocity and excess adiabatic compressibility have also been calculated. These parameters were used to study the nature and extent of intermolecular interactions between component molecules in the binary mixtures. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Projectile containing metastable intermolecular composites and spot fire method of use

    DOEpatents

    Asay, Blaine W.; Son, Steven F.; Sanders, V. Eric; Foley, Timothy; Novak, Alan M.; Busse, James R.

    2012-07-31

    A method for altering the course of a conflagration involving firing a projectile comprising a powder mixture of oxidant powder and nanosized reductant powder at velocity sufficient for a violent reaction between the oxidant powder and the nanosized reductant powder upon impact of the projectile, and causing impact of the projectile at a location chosen to draw a main fire to a spot fire at such location and thereby change the course of the conflagration, whereby the air near the chosen location is heated to a temperature sufficient to cause a spot fire at such location. The invention also includes a projectile useful for such method and said mixture preferably comprises a metastable intermolecular composite.

  11. Integral Method for the Assessment of U-RANS Effectiveness in Non-Equilibrium Flows and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Pond, Ian; Edabi, Alireza; Dubief, Yves; White, Christopher

    2015-11-01

    Reynolds Average Navier Stokes (RANS) modeling has established itself as a critical design tool in many engineering applications, thanks to its superior computational efficiency. The drawbacks of RANS models are well known, but not necessarily well understood: poor prediction of transition, non equilibrium flows, mixing and heat transfer, to name the ones relevant to our study. In the present study, we use a DNS of a reciprocating channel flow driven by an oscillating pressure gradient to test several low- and high-Reynolds RANS models. Temperature is introduced as a passive scalar to study heat transfer modeling. Low-Reynolds models manage to capture the overall physics of wall shear and heat flux well, yet with some phase discrepancies, whereas high Reynolds models fail. Under the microscope of the integral method for wall shear and wall heat flux, the qualitative agreement appears more serendipitous than driven by the ability of the models to capture the correct physics. The integral method is shown to be more insightful in the benchmarking of RANS models than the typical comparisons of statistical quantities. The authors acknowledges the support of NSF and DOE under grant NSF/DOE 1258697 (VT) and 1258702 (NH).

  12. Integrating some mind and brain views of transference: the phenomena.

    PubMed

    Levin, F M

    1997-01-01

    Because understanding the underpinnings of transferential learning allows the analyst to more effectively exploit transference in the clinical situation, as well as to advance psychoanalytic theory, the functions and mechanisms of transference phenomena in learning are subjected to an interdisciplinary analysis. Through transference the brain creates hierarchical databases that make emotional sense of the world, especially the world of human relationships. Transference plays a role in defense and resistance clinically; less explored but equally important is the adaptive potential of transference and its effect on an individual's readiness for structural change through the activation of working memory. Most investigators within psychoanalysis have not considered the importance of similarity judgments and memory priming, especially as these help to explain why transference and its proper handling are effective in treatment. Yet there are complex relationships among transference, similarity judgment, and memory priming that tie together psychoanalysis, cognitive psychology, and neurophysiology. Evidence increasingly suggests a relationship between transference and the transfer of knowledge between various content domains (databases) of mind and brain, which is essential to cognitive and emotional learning. There are indications as well that transference decisively facilitates learning readiness ("windows") in general by means of two of its components: free association and spontaneous (self-initiated) activity. The important question of which mind/brain mechanisms motivate transference is not yet understood comprehensively. However, Vygotsky's work on the zone of proximal development (ZPD), M.Stern's teleonomic theory, schema theory, and neural network theory offer further insights into what motivates transference.

  13. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    PubMed

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  14. Kinetics of proton transfer from tetra(4-nitro-5- tert-butyl)phthalocyanine to nitrogen-containing bases in benzene

    NASA Astrophysics Data System (ADS)

    Petrov, O. A.; Kuzmina, E. L.; Maizlish, V. E.; Rodionov, A. V.

    2014-01-01

    The acid-basic interaction between tetra(4-nitro-5- tert-butyl)phthalocyanine and pyridine, 2-methylpyridine, morpholine, piperidine, n-butylamine, diethylamine, and triethylamine in benzene is studied. It is found that the intermolecular transfer of protons of NH groups from tetra(4-nitro-5- tert-butyl)phthalocyanine to morpholine and diethylamine is characterized by unusually low values of the reaction constant rates. The effect of the structure of tetra(4-nitro-5- tert-butyl)phthalocyanine and tetra(3-nitro-5- tert-butyl)phthalocyanine, and of the nature of the base on the kinetic parameters of acid-base interaction is demonstrated. A structure is proposed for complexes with the transfer of displaced phthalocyanines' protons. It is found that they undergo decomposition over time.

  15. Excited-state proton transfer dynamics of firefly's chromophore D-luciferin in DMSO-water binary mixture.

    PubMed

    Kuchlyan, Jagannath; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Sarkar, Nilmoni

    2014-12-04

    In this article we have investigated intermolecular excited-state proton transfer (ESPT) of firefly's chromophore D-luciferin in DMSO-water binary mixtures using steady-state and time-resolved fluorescence spectroscopy. The unusual behavior of DMSO-water binary mixture as reported by Bagchi et al. (J. Phys. Chem. B 2010, 114, 12875-12882) was also found using D-luciferin as intermolecular ESPT probe. The binary mixture has given evidence of its anomalous nature at low mole fractions of DMSO (below XD = 0.4) in our systematic investigation. Upon excitation of neutral D-luciferin molecule, dual fluorescence emissions (protonated and deprotonated form) are observed in DMSO-water binary mixture. A clear isoemissive point in the time-resolved area normalized emission spectra further indicates two emissive species in the excited state of D-luciferin in DMSO-water binary mixture. DMSO-water binary mixtures of different compositions are fascinating hydrogen bonding systems. Therefore, we have observed unusual changes in the fluorescence emission intensity, fluorescence quantum yield, and fluorescence lifetime of more hydrogen bonding sensitive anionic form of D-luciferin in low DMSO content of DMSO-water binary mixture.

  16. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil.

    PubMed

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-05

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400cm(-1)) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the NH stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular NH⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-01

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  18. Communication: THz absorption spectrum of the CO2-H2O complex: observation and assignment of intermolecular van der Waals vibrations.

    PubMed

    Andersen, J; Heimdal, J; Mahler, D W; Nelander, B; Larsen, R Wugt

    2014-03-07

    Terahertz absorption spectra have been recorded for the weakly bound CO2-H2O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H2O subunit have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems' flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm(-1) from the class of intermolecular van der Waals vibrations is proposed and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm(-1) for the dissociation energy D0.

  19. Intermolecular vibrations of (CH2)2O-HF and -DF hydrogen bonded complexes investigated by Fourier transform infrared spectroscopy and ab initio calculations.

    PubMed

    Cirtog, M; Asselin, P; Soulard, P; Madebène, B; Alikhani, M E

    2010-10-14

    A series of Fourier transform infrared spectra (FTIR) of the hydrogen bonded complexes (CH(2))(2)O-HF and -DF have been recorded in the 50-750 cm(-1) range up to 0.1 cm(-1) resolution in a static cell maintained at near room temperature. The direct observation of three intermolecular transitions enabled us to perform band contour analysis of congested cell spectra and to determine reliable rovibrational parameters such as intermolecular frequencies, rovibrational and anharmonic coupling constants involving two l(1) and l(2) librations and one σ stretching intermolecular motion. Inter-inter anharmonic couplings could be identified between ν(l(1)), ν(l(2)), ν(σ) and the two lowest frequency bending modes. The positive sign of coupling constants (opposite with respect to acid stretching intra-inter ones) reveals a weakening of the hydrogen bond upon intermolecular excitation. The four rovibrational parameters ν(σ) and x(σj) (j = σ, δ(1), δ(2)) derived in the present far-infrared study and also in a previous mid-infrared one [Phys. Chem. Chem. Phys. 2005, 1, 592] make deviations appear smaller than 1% for frequencies and 12% for coupling constants which gives confidence to the reliability of the data obtained. Anharmonic frequencies obtained at the MP2 level with Aug-cc-pvTZ basis set agree well with experimental values over a large set of frequencies and coupling constants. An estimated anharmonic corrected value of the dissociation energy D for both oxirane-HF (2424 cm(-1)) and -DF (2566 cm(-1)) has been derived using a level of theory as high as CCSD(T)/Aug-cc-pvQZ, refining the harmonic value previously calculated for oxirane-HF with the MP2 method and a smaller basis set. Finally, contrary to short predissociation lifetimes evidenced for acid stretching excited states, any homogeneous broadening related to vibrational dynamics of (CH(2))(2)O-HF and -DF has been observed within the three highest frequency intermolecular states, as expected with low

  20. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces

    PubMed Central

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M.; Otero, Roberto; Gallego, José M.; Ballester, Pablo; Galan-Mascaros, José R.; Ecija, David

    2016-01-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure. PMID:26964764

  1. Energy and charge transfer in ionized argon coated water clusters.

    PubMed

    Kočišek, J; Lengyel, J; Fárník, M; Slavíček, P

    2013-12-07

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H2O)n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar(+) and water occurs above the threshold; at higher electron energies above ~28 eV, an excitonic transfer process between Ar(+)* and water opens leading to new products Ar(n)H(+) and (H2O)(n)H(+). On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H2O)(n)H2(2+) and (H2O)(n)(2+) ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.

  2. Integrated analysis of energy transfers in elastic-wave turbulence.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  3. Integration of Light Trapping Silver Nanostructures in Hydrogenated Microcrystalline Silicon Solar Cells by Transfer Printing

    PubMed Central

    Mizuno, Hidenori; Sai, Hitoshi; Matsubara, Koji; Takato, Hidetaka; Kondo, Michio

    2015-01-01

    One of the potential applications of metal nanostructures is light trapping in solar cells, where unique optical properties of nanosized metals, commonly known as plasmonic effects, play an important role. Research in this field has, however, been impeded owing to the difficulty of fabricating devices containing the desired functional metal nanostructures. In order to provide a viable strategy to this issue, we herein show a transfer printing-based approach that allows the quick and low-cost integration of designed metal nanostructures with a variety of device architectures, including solar cells. Nanopillar poly(dimethylsiloxane) (PDMS) stamps were fabricated from a commercially available nanohole plastic film as a master mold. On this nanopatterned PDMS stamps, Ag films were deposited, which were then transfer-printed onto block copolymer (binding layer)-coated hydrogenated microcrystalline Si (µc-Si:H) surface to afford ordered Ag nanodisk structures. It was confirmed that the resulting Ag nanodisk-incorporated µc-Si:H solar cells show higher performances compared to a cell without the transfer-printed Ag nanodisks, thanks to plasmonic light trapping effect derived from the Ag nanodisks. Because of the simplicity and versatility, further device application would also be feasible thorough this approach. PMID:26575244

  4. On the nature of intramolecular vibrational energy transfer in dense molecular environments

    NASA Astrophysics Data System (ADS)

    von Benten, Rebekka S.; Abel, Bernd

    2010-12-01

    Transient femtosecond-IR-pump-UV-absorption probe-spectroscopy has been employed to shed light on the nature of intramolecular vibrational energy transfer (IVR) in dense molecular environments ranging from the diluted gas phase to the liquid. A general feature in our experiments and those of others is that IVR proceeds via multiple timescales if overtones or combination vibrations of high frequency modes are excited. It has been found that collisions enhance IVR if its (slower) timescales can compete with collisions. This enhancement is, however, much more weaker and rather inefficient as opposed to the effect of collisions on intermolecular energy transfer which is well known. In a series of experiments we found that IVR depends not significantly on the average energy transferred in a collision but rather on the number of collisions. The collisions are much less efficient in affecting IVR than VET. We conclude that collision induced broadening of vibrational energy levels reduces the energy gaps and enhances existing couplings between tiers. The present results are an important step forward to rationalize and understand apparently different and not consistent results from different groups on different molecular systems between gas and liquid phases.

  5. Integrated genomic and interfacility patient-transfer data reveal the transmission pathways of multidrug-resistant Klebsiella pneumoniae in a regional outbreak.

    PubMed

    Snitkin, Evan S; Won, Sarah; Pirani, Ali; Lapp, Zena; Weinstein, Robert A; Lolans, Karen; Hayden, Mary K

    2017-11-22

    Development of effective strategies to limit the proliferation of multidrug-resistant organisms requires a thorough understanding of how such organisms spread among health care facilities. We sought to uncover the chains of transmission underlying a 2008 U.S. regional outbreak of carbapenem-resistant Klebsiella pneumoniae by performing an integrated analysis of genomic and interfacility patient-transfer data. Genomic analysis yielded a high-resolution transmission network that assigned directionality to regional transmission events and discriminated between intra- and interfacility transmission when epidemiologic data were ambiguous or misleading. Examining the genomic transmission network in the context of interfacility patient transfers (patient-sharing networks) supported the role of patient transfers in driving the outbreak, with genomic analysis revealing that a small subset of patient-transfer events was sufficient to explain regional spread. Further integration of the genomic and patient-sharing networks identified one nursing home as an important bridge facility early in the outbreak-a role that was not apparent from analysis of genomic or patient-transfer data alone. Last, we found that when simulating a real-time regional outbreak, our methodology was able to accurately infer the facility at which patients acquired their infections. This approach has the potential to identify facilities with high rates of intra- or interfacility transmission, data that will be useful for triggering targeted interventions to prevent further spread of multidrug-resistant organisms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Metal-Free Photoinduced Electron Transfer-Atom Transfer Radical Polymerization Integrated with Bioinspired Polydopamine Chemistry as a Green Strategy for Surface Engineering of Magnetic Nanoparticles.

    PubMed

    Yang, Yang; Liu, Xuegang; Ye, Gang; Zhu, Shan; Wang, Zhe; Huo, Xiaomei; Matyjaszewski, Krzysztof; Lu, Yuexiang; Chen, Jing

    2017-04-19

    Developing green and efficient technologies for surface modification of magnetic nanoparticles (MNPs) is of crucial importance for their biomedical and environmental applications. This study reports, for the first time, a novel strategy by integrating metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) with the bioinspired polydopamine (PDA) chemistry for controlled architecture of functional polymer brushes from MNPs. Conformal PDA encapsulation layers were initially generated on the surfaces of MNPs, which served as the protective shells while providing an ideal platform for tethering 2-bromo-2-phenylacetic acid (BPA), a highly efficient initiator. Metal-free PET-ATRP technique was then employed for controlled architecture of poly(glycidyl methacrylate) (PGMA) brushes from the core-shell MNPs by using diverse organic dyes as photoredox catalysts. Impacts of light sources (including UV and visible lights), photoredox catalysts, and polymerization time on the composition and morphology of the PGMA brushes were investigated. Moreover, the versatility of the PGMA-functionalized core-shell MNPs was demonstrated by covalent attachment of ethylenediamine (EDA), a model functional molecule, which afforded the MNPs with improved hydrophilicity, dispersibility, and superior binding ability to uranyl ions. The green methodology by integrating metal-free PET-ATRP with facile PDA chemistry would provide better opportunities for surface modification of MNPs and miscellaneous nanomaterials for biomedical and electronic applications.

  7. Copper-catalyzed intermolecular and regioselective aminofluorination of styrenes: facile access to β-fluoro-N-protected phenethylamines.

    PubMed

    Saavedra-Olavarría, Jorge; Arteaga, Gean C; López, Jhon J; Pérez, Edwin G

    2015-02-25

    A copper-catalyzed regio- and intermolecular aminofluorination of styrenes has been developed. In this reaction Ph-I=N-Ts and Et3N·3HF act as nitrogen and fluorine sources, respectively. The obtained β-fluoro-N-Ts-phenethylamines can be N-alkylated with subsequent deprotection affording the corresponding β-fluoro-N-alkylated phenethylamines, which are interesting building blocks for compounds acting on neuronal targets.

  8. Quaternary structure assessment of ICln by fluorescence resonance energy transfer (FRET) in vivo.

    PubMed

    Schmidt, Sabine; Jakab, Martin; Costa, Ivano; Fürst, Johannes; Ravasio, Andrea; Paulmichl, Markus; Botta, Guido; Ritter, Markus

    2009-01-01

    ICln is a ubiquitously expressed multifunctional protein that plays a critical role in regulatory volume decrease after cell swelling. The majority of ICln is localized in the cytosol and a small fraction of ICln associates with the plasma membrane. In artificial lipid bilayers ICln forms ion channels, and a putative channel model predicts the association of at least two ICln molecules to form a functional ion-conducting pore. Oligomers of ICln have been demonstrated in cytosolic fractions of different cells by native PAGE and gel filtration analysis, but these data have not yet been verified in vivo, and the basis of ICln homooligomerization is unknown. In silico prediction of the quaternary structure of ICln from its primary structure predicts that ICln forms a dimer, and that the C-terminus of ICln may be essential for the intermolecular interaction. To explore the quaternary structure of ICln in living NIH3T3 fibroblasts, we performed fluorescence resonance energy transfer (FRET) experiments using eCFP (donor) and eYFP (acceptor) fused to the C- and/or N-termini of both full length wild type ICln and of C-terminal truncation mutants thereof (ICln(159) and ICln(134)). FRET was assessed by the acceptor photobleaching technique. Here we show that ICln forms oligomers in vivo, and demonstrate intermolecular FRET between the C-, but not the N-termini of full length ICln. In the truncation mutant ICln(159) oligomerization occurs and intermolecular FRET between N-termini can be detected, which indicates that the C-terminus of ICln sterically interferes with interactions between N-termini in full length ICln oligomers. In cells expressing the truncation mutant ICln(134) no FRET between C- and/or N-termini could be measured, suggesting the absence of interaction and a role of amino acids P135-Q159 in the oligomerization of ICln. Copyright 2009 S. Karger AG, Basel.

  9. Exploring contribution of intermolecular interactions in supramolecular layered assembly of naphthyridine co-crystals: Insights from Hirshfeld surface analysis of their crystalline states

    NASA Astrophysics Data System (ADS)

    Seth, Saikat Kumar; Das, Nirmal Kumar; Aich, Krishnendu; Sen, Debabrata; Fun, Hoong-Kun; Goswami, Shyamaprasad

    2013-09-01

    Co-crystals of 1a and 1b have been prepared by slow evaporation of the solutions of mixtures of 2,7-dimethyl-1,8-naphthyridine (1), urea (a) and thiourea (b). The structures of the complexes are determined by the single crystal X-ray diffraction and a detailed investigation of the crystal packing and classification of intermolecular interactions is presented by means of Hirshfeld surface analysis which is of considerable current interest in crystal engineering. The X-ray study reveals that the co-crystal formers are envisioned to produce N-H⋯N hydrogen bond as well as N-H⋯O/N-H⋯S pair-wise hydrogen bonds and also the weaker aromatic π⋯π interactions which cooperatively take part in the crystal packing. The recurring feature of the self-assembly in the compounds is the appearance of the molecular ribbon through multiple hydrogen bonding which are further stacked into molecular layers by π⋯π stacking interactions. Hirshfeld surface analysis for visually analyzing intermolecular interactions in crystal structures employing molecular surface contours and 2D Fingerprint plots have been used to examine molecular shapes. Crystal structure analysis supported with the Hirshfeld surface and fingerprint plots enabled the identification of the significant intermolecular interactions.

  10. Intermolecular symmetry-adapted perturbation theory study of large organic complexes.

    PubMed

    Heßelmann, Andreas; Korona, Tatiana

    2014-09-07

    Binding energies for the complexes of the S12L database by Grimme [Chem. Eur. J. 18, 9955 (2012)] were calculated using intermolecular symmetry-adapted perturbation theory combined with a density-functional theory description of the interacting molecules. The individual interaction energy decompositions revealed no particular change in the stabilisation pattern as compared to smaller dimer systems at equilibrium structures. This demonstrates that, to some extent, the qualitative description of the interaction of small dimer systems may be extrapolated to larger systems, a method that is widely used in force-fields in which the total interaction energy is decomposed into atom-atom contributions. A comparison of the binding energies with accurate experimental reference values from Grimme, the latter including thermodynamic corrections from semiempirical calculations, has shown a fairly good agreement to within the error range of the reference binding energies.

  11. Cascade oxime formation, cyclization to a nitrone, and intermolecular dipolar cycloaddition.

    PubMed

    Furnival, Rachel C; Saruengkhanphasit, Rungroj; Holberry, Heather E; Shewring, Jonathan R; Guerrand, Hélène D S; Adams, Harry; Coldham, Iain

    2016-11-22

    Simple haloaldehydes, including enolisable aldehydes, were found to be suitable for the formation of cyclic products by cascade (domino) condensation, cyclisation, dipolar cycloaddition chemistry. This multi-component reaction approach to heterocyclic compounds was explored by using hydroxylamine, a selection of aldehydes, and a selection of activated dipolarophiles. Initial condensation gives intermediate oximes that undergo cyclisation with displacement of halide to give intermediate nitrones; these nitrones undergo in situ intermolecular dipolar cycloaddition reactions to give isoxazolidines. The cycloadducts from using dimethyl fumarate were treated with zinc/acetic acid to give lactam products and this provides an easy way to prepare pyrrolizinones, indolizinones, and pyrrolo[2,1-a]isoquinolinones. The chemistry is illustrated with a very short synthesis of the pyrrolizidine alkaloid macronecine and a formal synthesis of petasinecine.

  12. [Hand reconstruction by microsurgical free toe transfer].

    PubMed

    Stamate, T; Budurcă, A R; Hermeziu, Oana

    2003-01-01

    Reconstruction of complex hand mutilations with multi-digital or thumb amputations are best treated with microsurgical toe transfers. We present the results of the first 15 cases operated by the first author, of which 12 are thumb reconstructions (6 great toe and 6 second toe transfers) and 3 long fingers reconstructions with combined second and third toe transfers. There were no microsurgical complications. Cortical integration and functional integration was achieved for all transferred toes, with discriminatory sensibility (m2PD between 5 and 13 mm) and active mobility range between 30 and 60 degrees.

  13. Molecular dynamics simulations of fluid methane properties using ab initio intermolecular interaction potentials.

    PubMed

    Chao, Shih-Wei; Li, Arvin Huang-Te; Chao, Sheng D

    2009-09-01

    Intermolecular interaction energy data for the methane dimer have been calculated at a spectroscopic accuracy and employed to construct an ab initio potential energy surface (PES) for molecular dynamics (MD) simulations of fluid methane properties. The full potential curves of the methane dimer at 12 symmetric conformations were calculated by the supermolecule counterpoise-corrected second-order Møller-Plesset (MP2) perturbation theory. Single-point coupled cluster with single and double and perturbative triple excitations [CCSD(T)] calculations were also carried out to calibrate the MP2 potentials. We employed Pople's medium size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). For each conformer, the intermolecular carbon-carbon separation was sampled in a step 0.1 A for a range of 3-9 A, resulting in a total of 732 configuration points calculated. The MP2 binding curves display significant anisotropy with respect to the relative orientations of the dimer. The potential curves at the complete basis set (CBS) limit were estimated using well-established analytical extrapolation schemes. A 4-site potential model with sites located at the hydrogen atoms was used to fit the ab initio potential data. This model stems from a hydrogen-hydrogen repulsion mechanism to explain the stability of the dimer structure. MD simulations using the ab initio PES show quantitative agreements on both the atom-wise radial distribution functions and the self-diffusion coefficients over a wide range of experimental conditions. Copyright 2008 Wiley Periodicals, Inc.

  14. Intermolecular Interactions and Electrostatic Properties of the [beta]-Hydroquinone Apohost: Implications for Supramolecular Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clausen, Henrik F.; Chen, Yu-Sheng; Jayatilaka, Dylan

    2012-02-07

    The crystal structure of the {beta}-polymorph of hydroquinone ({beta}-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated withmore » the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/{angstrom}{sup 2} (0.27 V/{angstrom}) 1 {angstrom} along the 3-fold axis and 0.0105 e/{angstrom}{sup 2} (0.15 V/{angstrom}) 1 {angstrom} along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule.« less

  15. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory.

    PubMed

    Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael

    2012-08-14

    Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

  16. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips

    NASA Astrophysics Data System (ADS)

    Mönig, Harry; Amirjalayer, Saeed; Timmer, Alexander; Hu, Zhixin; Liu, Lacheng; Díaz Arado, Oscar; Cnudde, Marvin; Strassert, Cristian Alejandro; Ji, Wei; Rohlfing, Michael; Fuchs, Harald

    2018-05-01

    Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.

  17. Effects of p-(Trifluoromethoxy)benzyl and p-(Trifluoromethoxy)phenyl Molecular Architecture on the Performance of Naphthalene Tetracarboxylic Diimide-Based Air-Stable n-Type Semiconductors.

    PubMed

    Zhang, Dongwei; Zhao, Liang; Zhu, Yanan; Li, Aiyuan; He, Chao; Yu, Hongtao; He, Yaowu; Yan, Chaoyi; Goto, Osamu; Meng, Hong

    2016-07-20

    N,N'-Bis(4-trifluoromethoxyphenyl) naphthalene-1,4,5,8-tetracarboxylic acid diimide (NDI-POCF3) and N,N'-bis(4-trifluoromethoxybenzyl) naphthalene-1,4,5,8-tetracarboxylic acid diimide (NDI-BOCF3) have similar optical and electrochemical properties with a deep LUMO level of approximately 4.2 eV, but exhibit significant differences in electron mobility and molecular packing. NDI-POCF3 exhibits nondetectable charge mobility. Interestingly, NDI-BOCF3 shows air-stable electron transfer performance with enhanced mobility by increasing the deposition temperature onto the octadecyltrichlorosilane (OTS)-modified SiO2/Si substrates and achieves electron mobility as high as 0.7 cm(2) V(-1) s(-1) in air. The different mobilities of those two materials can be explained by several factors including thin-film morphology and crystallinity. In contrast to the poor thin-film morphology and crystallinity of NDI-POCF3, NDI-BOCF3 exhibits larger grain sizes and improved crystallinities due to the higher deposition temperature. In addition, the theoretical calculated transfer integrals of the intermolecular lowest unoccupied molecular orbital (LUMO) of the two materials further show that a large intermolecular orbital overlap of NDI-BOCF3 can transfer electron more efficiently than NDI-POCF3 in thin-film transistors. On the basis of fact that the theoretical calculations are consistent with the experimental results, it can be concluded that the p-(trifluoromethoxy) benzyl (BOCF3) molecular architecture on the former position of the naphthalene tetracarboxylic diimides (NDI) core provides a more effective way to enhance the intermolecular electron transfer property than the p-(trifluoromethoxy) phenyl (POCF3) group for the future design of NDI-related air-stable n-channel semiconductor.

  18. Rhodium-catalyzed Intra- and Intermolecular [5+2] Cycloaddition of 3-Acyloxy-1,4-enyne and Alkyne with Concomitant 1,2-Acyloxy Migration

    PubMed Central

    Shu, Xing-Zhong; Li, Xiaoxun; Shu, Dongxu; Huang, Suyu; Schienebeck, Casi M.; Zhou, Xin; Robichaux, Patrick J.; Tang, Weiping

    2012-01-01

    A new type of rhodium-catalyzed [5+2] cycloaddition was developed for the synthesis of seven-membered rings with diverse functionalities. The ring formation was accompanied by a 1,2-acyloxy migration event. The 5- and 2-carbon components of the cycloaddition are 3-acyloxy-1,4-enynes (ACEs) and alkynes respectively. Cationic rhodium (I) catalysts worked most efficiently for the intramolecular cycloaddition, while only neutral rhodium (I) complexes could facilitate the intermolecular reaction. In both cases, electron-poor phosphite or phosphine ligands often improved the efficiency of the cycloadditions. The scope of ACEs and alkynes was investigated in both intra- and intermolecular reactions. The resulting seven-membered ring products have three double bonds that could be selectively functionalized. PMID:22364320

  19. Streptococcal group B integrative and mobilizable element IMESag-rpsI encodes a functional relaxase involved in its transfer

    PubMed Central

    Lorenzo-Diaz, Fabian; Fernández-Lopez, Cris; Douarre, Pierre-Emmanuel; Baez-Ortega, Adrian; Flores, Carlos; Glaser, Philippe

    2016-01-01

    Streptococcus agalactiae or Group B Streptococcus (GBS) are opportunistic bacteria that can cause lethal sepsis in children and immuno-compromised patients. Their genome is a reservoir of mobile genetic elements that can be horizontally transferred. Among them, integrative and conjugative elements (ICEs) and the smaller integrative and mobilizable elements (IMEs) primarily reside in the bacterial chromosome, yet have the ability to be transferred between cells by conjugation. ICEs and IMEs are therefore a source of genetic variability that participates in the spread of antibiotic resistance. Although IMEs seem to be the most prevalent class of elements transferable by conjugation, they are poorly known. Here, we have studied a GBS-IME, termed IMESag-rpsI, which is widely distributed in GBS despite not carrying any apparent virulence trait. Analyses of 240 whole genomes showed that IMESag-rpsI is present in approximately 47% of the genomes, has a roughly constant size (approx. 9 kb) and is always integrated at a single location, the 3′-end of the gene encoding the ribosomal protein S9 (rpsI). Based on their genetic variation, several IMESag-rpsI types were defined (A–J) and classified in clonal complexes (CCs). CC1 was the most populated by IMESag-rpsI (more than 95%), mostly of type-A (71%). One CC1 strain (S. agalactiae HRC) was deep-sequenced to understand the rationale underlying type-A IMESag-rpsI enrichment in GBS. Thirteen open reading frames were identified, one of them encoding a protein (MobSag) belonging to the broadly distributed family of relaxases MOBV1. Protein MobSag was purified and, by a newly developed method, shown to cleave DNA at a specific dinucleotide. The S. agalactiae HRC-IMESag-rpsI is able to excise from the chromosome, as shown by the presence of circular intermediates, and it harbours a fully functional mobilization module. Further, the mobSag gene encoded by this mobile element is able to promote plasmid transfer among pneumococcal

  20. Streptococcal group B integrative and mobilizable element IMESag-rpsI encodes a functional relaxase involved in its transfer.

    PubMed

    Lorenzo-Diaz, Fabian; Fernández-Lopez, Cris; Douarre, Pierre-Emmanuel; Baez-Ortega, Adrian; Flores, Carlos; Glaser, Philippe; Espinosa, Manuel

    2016-10-01

    Streptococcus agalactiae or Group B Streptococcus (GBS) are opportunistic bacteria that can cause lethal sepsis in children and immuno-compromised patients. Their genome is a reservoir of mobile genetic elements that can be horizontally transferred. Among them, integrative and conjugative elements (ICEs) and the smaller integrative and mobilizable elements (IMEs) primarily reside in the bacterial chromosome, yet have the ability to be transferred between cells by conjugation. ICEs and IMEs are therefore a source of genetic variability that participates in the spread of antibiotic resistance. Although IMEs seem to be the most prevalent class of elements transferable by conjugation, they are poorly known. Here, we have studied a GBS-IME, termed IMESag-rpsI, which is widely distributed in GBS despite not carrying any apparent virulence trait. Analyses of 240 whole genomes showed that IMESag-rpsI is present in approximately 47% of the genomes, has a roughly constant size (approx. 9 kb) and is always integrated at a single location, the 3'-end of the gene encoding the ribosomal protein S9 (rpsI). Based on their genetic variation, several IMESag-rpsI types were defined (A-J) and classified in clonal complexes (CCs). CC1 was the most populated by IMESag-rpsI (more than 95%), mostly of type-A (71%). One CC1 strain (S. agalactiae HRC) was deep-sequenced to understand the rationale underlying type-A IMESag-rpsI enrichment in GBS. Thirteen open reading frames were identified, one of them encoding a protein (MobSag) belonging to the broadly distributed family of relaxases MOB V1 Protein MobSag was purified and, by a newly developed method, shown to cleave DNA at a specific dinucleotide. The S. agalactiae HRC-IMESag-rpsI is able to excise from the chromosome, as shown by the presence of circular intermediates, and it harbours a fully functional mobilization module. Further, the mobSag gene encoded by this mobile element is able to promote plasmid transfer among pneumococcal

  1. Crystal structures and intermolecular interactions of two novel antioxidant triazolyl-benzimidazole compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karayel, A., E-mail: matchlessjimmy@163.com, E-mail: yccaoh@hotmail.com; Özbey, S.; Ayhan-Kılcıgil, G.

    2015-12-15

    The crystal structures of 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(3-fluorophenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G6C) and 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(2-methylphenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G4C) have been determined by single-crystal X-ray diffraction. Benzimidazole ring systems in both molecules are planar. The triazole part is almost perpendicular to the phenyl and the benzimidazole parts of the molecules in order to avoid steric interactions between the rings. The crystal structures are stabilized by intermolecular hydrogen bonds between the amino group of the triazole and the nitrogen atom of benzimidazole of a neighboring molecule.

  2. Interplay of intermolecular interactions and flexibility to mediate glass forming ability and fragility: A study of chemical analogs

    NASA Astrophysics Data System (ADS)

    Saini, Manoj K.; Jin, Xiao; Wu, Tao; Liu, Yingdan; Wang, Li-Min

    2018-03-01

    We have investigated the enthalpic and dielectric relaxations of four groups of quinoline analogs having similar structural properties (i.e., rigidity, stiffness, and bulkiness) but a different steric character and the nature of intermolecular interactions and flexibility. The dielectric fragility index (md) and the enthalpic one (mH), determined by the Tool-Narayanaswamy-Moynihan-Hodge formalism, are comparable. Generally, for the four sets of molecules of similar structures, both the interactions and flexibility are found to be critical in making the large span of fragility (i.e., from 59 to 131) and glass forming ability. By contrast, individual impacts of the interaction and flexibility can only explain fragility partly among each group of isomers. We found that the molecules with high fragility are of relatively low liquid density, reflecting the joint impact of the interactions and flexibility. An interesting result is observed among the isomers that the molecules which are fragile have enhanced glass forming ability. The results are unveiling the joint impacts of molecular structure (flexibility) and intermolecular interaction on the molecular dynamics.

  3. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    PubMed

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  4. Development and Implementation of a Protein-Protein Binding Experiment to Teach Intermolecular Interactions in High School or Undergraduate Classrooms

    ERIC Educational Resources Information Center

    Johnson, Sadie M.; Javner, Cassidy; Hackel, Benjamin J.

    2017-01-01

    The goal of this study was to create an accessible, inexpensive, and engaging experiment to teach high school and undergraduate chemistry or biology students about intermolecular forces and how they contribute to the behavior of biomolecules. We developed an enzyme-linked immunosorbent assay (ELISA) to probe specific structure-function…

  5. Charge transfer complex in diketopyrrolopyrrole polymers and fullerene blends: Implication for organic solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Moghe, D.; Yu, P.; Kanimozhi, C.; Patil, S.; Guha, S.

    2012-02-01

    Copolymers based on diketopyrrolopyrrole (DPP) have recently gained potential in organic photovoltaics. When blended with another acceptor such as PCBM, intermolecular charge transfer occurs which may result in the formation of charge transfer (CT) states. We present here the spectral photocurrent characteristics of two donor-acceptor DPP based copolymers, PDPP-BBT and TDPP-BBT, blended with PCBM to identify the CT states. The spectral photocurrent measured using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) methods are compared with P3HT:PCBM, where the CT state is well known. PDPP-BBT:PCBM shows a stable CT state while TDPP-BBT does not. Our analysis shows that the larger singlet state energy difference between TDPP-BBT and PCBM along with the lower optical gap of TDPP-BBT obliterates the formation of a midgap CT state resulting in an enhanced photovoltaic efficiency over PDPP-BBT:PCBM.

  6. The origins of intra- and inter-molecular vibrational couplings: A case study of H{sub 2}O-Ar on full and reduced-dimensional potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long

    2016-01-07

    The origin and strength of intra- and inter-molecular vibrational coupling is difficult to probe by direct experimental observations. However, explicitly including or not including some specific intramolecular vibrational modes to study intermolecular interaction provides a precise theoretical way to examine the effects of anharmonic coupling between modes. In this work, a full-dimension intra- and inter-molecular ab initio potential energy surface (PES) for H{sub 2}O–Ar, which explicitly incorporates interdependence on the intramolecular (Q{sub 1},  Q{sub 2},  Q{sub 3}) normal-mode coordinates of the H{sub 2}O monomer, has been calculated. In addition, four analytic vibrational-quantum-state-specific PESs are obtained by least-squares fitting vibrationally averagedmore » interaction energies for the (v{sub 1},  v{sub 2},  v{sub 3}) =  (0,  0,  0), (0,  0,  1), (1,  0,  0), (0,  1,  0) states of H{sub 2}O to the three-dimensional Morse/long-range potential function. Each vibrationally averaged PES fitted to 442 points has root-mean-square (rms) deviation smaller than 0.15 cm{sup −1}, and required only 58 parameters. With the 3D PESs of H{sub 2}O–Ar dimer system, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. This showed that the resulting vibrationally averaged PESs provide good representations of the experimental infrared data, with rms discrepancies smaller than 0.02 cm{sup −1} for all three rotational branches of the asymmetric stretch fundamental transitions. The infrared band origin shifts associated with three fundamental bands of H{sub 2}O in H{sub 2}O–Ar complex are predicted for the first time and are found to be in good agreement with the (extrapolated) experimental values. Upon introduction of additional intramolecular degrees of freedom into the intermolecular potential energy surface, there

  7. FAD oxidizes the ERO1-PDI electron transfer chain: The role of membrane integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, Eszter; Nardai, Gabor; Mandl, Jozsef

    2005-12-16

    The molecular steps of the electron transfer in the endoplasmic reticulum from the secreted proteins during their oxidation are relatively unknown. We present here that flavine adenine dinucleotide (FAD) is a powerful oxidizer of the oxidoreductase system, Ero1 and PDI, besides the proteins of rat liver microsomes and HepG2 hepatoma cells. Inhibition of FAD transport hindered the action of FAD. Microsomal membrane integrity was mandatory for all FAD-related oxidation steps downstream of Ero1. The PDI inhibitor bacitracin could inhibit FAD-mediated oxidation of microsomal proteins and PDI, but did not hinder the FAD-driven oxidation of Ero1. Our data demonstrated that Ero1more » can utilize FAD as an electron acceptor and that FAD-driven protein oxidation goes through the Ero1-PDI pathway and requires the integrity of the endoplasmic reticulum membrane. Our findings prompt further studies to elucidate the membrane-dependent steps of PDI oxidation and the role of FAD in redox folding.« less

  8. Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Yahong; Duan, Yuping; Song, Lulu; Zheng, Daoyuan; Zhang, Mingxing; Zhao, Guangjiu

    2017-09-01

    The intramolecular charge transfer properties of a phenyl-end-capped aniline tetramer (ANIH) and a chloro-substituted derivative (ANICl) as organic semiconductors were theoretically studied through the first-principles calculation based on the Marcus-Hush theory. The reorganization energies, intermolecular electronic couplings, angular resolution anisotropic mobilities, and density of states of the two crystals were evaluated. The calculated results demonstrate that both ANIH and ANICl crystals show the higher electron transfer mobilities than the hole-transfer mobilities, which means that the two crystals should prefer to function as n-type organic semiconductors. Furthermore, the angle dependence mobilities of the two crystals show remarkable anisotropic character. The maximum mobility μmax of ANIH and ANICl crystals is 1.3893 and 0.0272 cm2 V-1 s-1, which appear at the orientation angles near 176°/356° and 119°/299° of a conducting channel on the a-b reference plane. It is synthetically evaluated that the ANIH crystal possesses relatively lower reorganization energy, higher electronic coupling, and electron transfer mobility, which means that the ANIH crystal may be the more ideal candidate as a high performance n-type organic semiconductor material. The systematic theoretical studies on organic crystals should be conducive to evaluating the charge-transport properties and designing higher performance organic semiconductor materials.

  9. Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors.

    PubMed

    Zhang, Yahong; Duan, Yuping; Song, Lulu; Zheng, Daoyuan; Zhang, Mingxing; Zhao, Guangjiu

    2017-09-21

    The intramolecular charge transfer properties of a phenyl-end-capped aniline tetramer (ANIH) and a chloro-substituted derivative (ANICl) as organic semiconductors were theoretically studied through the first-principles calculation based on the Marcus-Hush theory. The reorganization energies, intermolecular electronic couplings, angular resolution anisotropic mobilities, and density of states of the two crystals were evaluated. The calculated results demonstrate that both ANIH and ANICl crystals show the higher electron transfer mobilities than the hole-transfer mobilities, which means that the two crystals should prefer to function as n-type organic semiconductors. Furthermore, the angle dependence mobilities of the two crystals show remarkable anisotropic character. The maximum mobility μ max of ANIH and ANICl crystals is 1.3893 and 0.0272 cm 2 V -1 s -1 , which appear at the orientation angles near 176°/356° and 119°/299° of a conducting channel on the a-b reference plane. It is synthetically evaluated that the ANIH crystal possesses relatively lower reorganization energy, higher electronic coupling, and electron transfer mobility, which means that the ANIH crystal may be the more ideal candidate as a high performance n-type organic semiconductor material. The systematic theoretical studies on organic crystals should be conducive to evaluating the charge-transport properties and designing higher performance organic semiconductor materials.

  10. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    PubMed

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    PubMed Central

    Christensen, Anders S.; Elstner, Marcus; Cui, Qiang

    2015-01-01

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets. PMID:26328834

  12. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Elstner, Marcus

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculatedmore » at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.« less

  13. Topology-based modeling of intrinsically disordered proteins: balancing intrinsic folding and intermolecular interactions.

    PubMed

    Ganguly, Debabani; Chen, Jianhan

    2011-04-01

    Coupled binding and folding is frequently involved in specific recognition of so-called intrinsically disordered proteins (IDPs), a newly recognized class of proteins that rely on a lack of stable tertiary fold for function. Here, we exploit topology-based Gō-like modeling as an effective tool for the mechanism of IDP recognition within the theoretical framework of minimally frustrated energy landscape. Importantly, substantial differences exist between IDPs and globular proteins in both amino acid sequence and binding interface characteristics. We demonstrate that established Gō-like models designed for folded proteins tend to over-estimate the level of residual structures in unbound IDPs, whereas under-estimating the strength of intermolecular interactions. Such systematic biases have important consequences in the predicted mechanism of interaction. A strategy is proposed to recalibrate topology-derived models to balance intrinsic folding propensities and intermolecular interactions, based on experimental knowledge of the overall residual structure level and binding affinity. Applied to pKID/KIX, the calibrated Gō-like model predicts a dominant multistep sequential pathway for binding-induced folding of pKID that is initiated by KIX binding via the C-terminus in disordered conformations, followed by binding and folding of the rest of C-terminal helix and finally the N-terminal helix. This novel mechanism is consistent with key observations derived from a recent NMR titration and relaxation dispersion study and provides a molecular-level interpretation of kinetic rates derived from dispersion curve analysis. These case studies provide important insight into the applicability and potential pitfalls of topology-based modeling for studying IDP folding and interaction in general. Copyright © 2011 Wiley-Liss, Inc.

  14. Solvent Dependence of Double Proton Transfer in the Formic Acid-Formamidine Complex: Path Integral Molecular Dynamics Investigation.

    PubMed

    Kungwan, Nawee; Ngaojampa, Chanisorn; Ogata, Yudai; Kawatsu, Tsutomu; Oba, Yuki; Kawashima, Yukio; Tachikawa, Masanori

    2017-10-05

    Solvent dependence of double proton transfer in the formic acid-formamidine (FA-FN) complex at room temperature was investigated by means of ab initio path integral molecular dynamics (AIPIMD) simulation with taking nuclear quantum and thermal effects into account. The conductor-like screening model (COSMO) was applied for solvent effect. In comparison with gas phase, double proton delocalization between two heavy atoms (O and N) in FA-FN were observed with reduced proton transfer barrier height in low dielectric constant medium (<4.8). For dielectric constant medium at 4.8, the chance of finding these two protons are more pronounced due to the solvent effect which completely washes out the proton transfer barrier. In the case of higher dielectric constant medium (>4.8), the ionic species becomes more stable than the neutral ones and the formate anion and formamidium cation are thermodynamically stable. For ab initio molecular dynamics simulation, in low dielectric constant medium (<4.8) a reduction of proton transfer barrier with solvent effect is found to be less pronounced than the AIPIMD due to the absence of nuclear quantum effect. Moreover, the motions of FA-FN complex are significantly different with increasing dielectric constant medium. Such a difference is revealed in detail by the principal component analysis.

  15. Intermolecular G-quadruplex structure-based fluorescent DNA detection system.

    PubMed

    Zhou, Hui; Wu, Zai-Sheng; Shen, Guo-Li; Yu, Ru-Qin

    2013-03-15

    Adopting multi-donors to pair with one acceptor could improve the performance of fluorogenic detection probes. However, common dyes (e.g., fluorescein) in close proximity to each other would self-quench the fluorescence, and the fluorescence is difficult to restore. In this contribution, we constructed a novel "multi-donors-to-one acceptor" fluorescent DNA detection system by means of the intermolecular G-quadruplex (IGQ) structure-based fluorescence signal enhancement combined with the hairpin oligonucleotide. The novel IGQ-hairpin system was characterized using the p53 gene as the model target DNA. The proposed system showed an improved assay performance due to the introduction of IGQ-structure into fluorescent signaling probes, which could inhibit the background fluorescence and increase fluorescence restoration amplitude of fluoresceins upon target DNA hybridization. The proof-of-concept scheme is expected to provide new insight into the potential of G-quadruplex structure and promote the application of fluorescent oligonucleotide probes in fundamental research, diagnosis, and treatment of genetic diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Strategic directions and mechanisms in technology transfer

    NASA Technical Reports Server (NTRS)

    Mackin, Robert

    1992-01-01

    An outline summarizing the Working Panel discussion related to strategic directions for technology transfer is presented. Specific topics addressed include measuring success, management of technology, innovation and experimentation in the tech transfer process, integration of tech transfer into R&D planning, institutionalization of tech transfer, and policy/legislative resources.

  17. Intermolecular hydrogen bonded and self-assembled β-pleated sheet structures of β-sulfidocarbonyls

    NASA Astrophysics Data System (ADS)

    Hussain, Sahid; Das, Gopal; Chaudhuri, Mihir K.

    2007-06-01

    The three crystal structures of β-sulfidocarbonyls 1, 2 and 3 synthesized from the reaction of acryl amide with cystiene, 1,2-dithiol and 1,3-dithiols, respectively, in water catalyzed by borax, have been determined at 273 K. The characteristic features of the structures are self-assembly through intermolecular hydrogen bonding leading to infinite chains of molecules in one direction, in addition to the stacking of layers of such molecular chains in the perpendicular direction ultimately giving rise to β-pleated sheets of 3D molecular network involving N-H⋯O, C-H⋯O and C-H⋯S bonding in the crystal lattice.

  18. Probing Intermolecular Interactions in Binary Liquid Mixtures Using Femtosecond Laser-Induced Self-Defocusing.

    PubMed

    Maurya, Sandeep Kumar; Das, Dhiman; Goswami, Debabrata

    2016-06-13

    Photo-thermal behavior of binary liquid mixtures has been studied by high repetition rate (HRR) Z-scan technique with femtosecond laser pulses. Changes in the peak-valley difference in transmittance (ΔT P-V ) for closed aperture Z-scan experiments are indicative of thermal effects induced by HRR femtosecond laser pulses. We show such indicative results can have a far-reaching impact on molecular properties and intermolecular interactions in binary liquid mixtures. Spectroscopic parameters derived from this experimental technique show that the combined effect of physical and molecular properties of the constituent binary liquids can be related to the components of the binary liquid. © The Author(s) 2016.

  19. Rational design of cyclopropane-based chiral PHOX ligands for intermolecular asymmetric Heck reaction

    PubMed Central

    Rubina, Marina; Sherrill, William M; Barkov, Alexey Yu

    2014-01-01

    Summary A novel class of chiral phosphanyl-oxazoline (PHOX) ligands with a conformationally rigid cyclopropyl backbone was synthesized and tested in the intermolecular asymmetric Heck reaction. Mechanistic modelling and crystallographic studies were used to predict the optimal ligand structure and helped to design a very efficient and highly selective catalytic system. Employment of the optimized ligands in the asymmetric arylation of cyclic olefins allowed for achieving high enantioselectivities and significantly suppressing product isomerization. Factors affecting the selectivity and the rate of the isomerization were identified. It was shown that the nature of this isomerization is different from that demonstrated previously using chiral diphosphine ligands. PMID:25161709

  20. Synthesis of prostaglandin and phytoprostane B1 via regioselective intermolecular Pauson-Khand reactions.

    PubMed

    Vázquez-Romero, Ana; Cárdenas, Lydia; Blasi, Emma; Verdaguer, Xavier; Riera, Antoni

    2009-07-16

    A new approach to the synthesis of prostaglandin and phytoprostanes B(1) is described. The key step is an intermolecular Pauson-Khand reaction between a silyl-protected propargyl acetylene and ethylene. This reaction, promoted by NMO in the presence of 4 A molecular sieves, afforded the 3-tert-butyldimethylsilyloxymethyl-2-substituted-cyclopent-2-en-1-ones (III) in good yield and with complete regioselectivity. Deprotection of the silyl ether, followed by Swern oxidation, gave 3-formyl-2-substituted-cyclopent-2-en-1-ones (II). Julia olefination of the aldehydes II with the suitable chiral sulfone enabled preparation of PPB(1) type I and PGB(1).

  1. Hydrophile-lipophile balance of alkyl ethoxylated surfactants as a function of intermolecular energies.

    PubMed

    Urbina-Villalba, G; Rogel, E; Márquez, M L; Reif, I

    1994-06-01

    The semiempirical MNDO method has been used in order to examine the variation of the molecular properties of hydrocarbons CnH2n + 2 (with 1 < or = n < or = 19) and ethylene oxide chains CH3(CH2CH2O)mCH3 (with 1 < or = m < or = 19) as a function of their molecular length. Least-square fits of those properties have been calculated, along with two mathematical relations between the hydrophile-lipophile balance of alkyl-phenol ethoxylated surfactants and (1) the ratio of molecular lengths between their lipophilic and hydrophilic branches; (2) the intermolecular energies between the molecules of surfactant, water and hexane.

  2. The Transfer Achievement Program (TAP): Information Packet.

    ERIC Educational Resources Information Center

    Segura, Armando; Noseworthy, Victoria

    Santa Barbara City College (California) created the Transfer Achievement Program (TAP) to deliver an integrated and cohesive set of services to underrepresented students to help increase their transfer rate to four-year institutions. TAP provides students with a developmental map of transfer-related activities through the use of the Transfer Task…

  3. Probing intermolecular interactions in a diethylcarbamazine citrate salt by fast MAS 1H solid-state NMR spectroscopy and GIPAW calculations.

    PubMed

    Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P

    2017-10-01

    Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional 1 H, 13 C and 15 N and two-dimensional 1 H- 13 C and 14 N- 1 H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the 1 H, 13 C and 14 N/ 15 N resonances. A two-dimensional 1 H- 1 H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    NASA Astrophysics Data System (ADS)

    Basilevsky, M. V.; Odinokov, A. V.; Titov, S. V.; Mitina, E. A.

    2013-12-01

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/kBT where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 < 1 - 3) and for low (ξ0 ≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T → 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually

  5. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basilevsky, M. V.; Mitina, E. A.; Odinokov, A. V.

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, whichmore » describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ{sub 0}=ℏω{sub 0}/k{sub B}T where ω{sub 0} is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ{sub 0} < 1 − 3) and for low (ξ{sub 0}≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T→ 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate

  6. Golden rule kinetics of transfer reactions in condensed phase: the microscopic model of electron transfer reactions in disordered solid matrices.

    PubMed

    Basilevsky, M V; Odinokov, A V; Titov, S V; Mitina, E A

    2013-12-21

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/k(B)T where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 < 1 - 3) and for low (ξ0 ≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T → 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually

  7. Lightweight ECC based RFID authentication integrated with an ID verifier transfer protocol.

    PubMed

    He, Debiao; Kumar, Neeraj; Chilamkurti, Naveen; Lee, Jong-Hyouk

    2014-10-01

    The radio frequency identification (RFID) technology has been widely adopted and being deployed as a dominant identification technology in a health care domain such as medical information authentication, patient tracking, blood transfusion medicine, etc. With more and more stringent security and privacy requirements to RFID based authentication schemes, elliptic curve cryptography (ECC) based RFID authentication schemes have been proposed to meet the requirements. However, many recently published ECC based RFID authentication schemes have serious security weaknesses. In this paper, we propose a new ECC based RFID authentication integrated with an ID verifier transfer protocol that overcomes the weaknesses of the existing schemes. A comprehensive security analysis has been conducted to show strong security properties that are provided from the proposed authentication scheme. Moreover, the performance of the proposed authentication scheme is analyzed in terms of computational cost, communicational cost, and storage requirement.

  8. Intermolecular interactions in the condensed phase: Evaluation of semi-empirical quantum mechanical methods

    NASA Astrophysics Data System (ADS)

    Christensen, Anders S.; Kromann, Jimmy C.; Jensen, Jan H.; Cui, Qiang

    2017-10-01

    To facilitate further development of approximate quantum mechanical methods for condensed phase applications, we present a new benchmark dataset of intermolecular interaction energies in the solution phase for a set of 15 dimers, each containing one charged monomer. The reference interaction energy in solution is computed via a thermodynamic cycle that integrates dimer binding energy in the gas phase at the coupled cluster level and solute-solvent interaction with density functional theory; the estimated uncertainty of such calculated interaction energy is ±1.5 kcal/mol. The dataset is used to benchmark the performance of a set of semi-empirical quantum mechanical (SQM) methods that include DFTB3-D3, DFTB3/CPE-D3, OM2-D3, PM6-D3, PM6-D3H+, and PM7 as well as the HF-3c method. We find that while all tested SQM methods tend to underestimate binding energies in the gas phase with a root-mean-squared error (RMSE) of 2-5 kcal/mol, they overestimate binding energies in the solution phase with an RMSE of 3-4 kcal/mol, with the exception of DFTB3/CPE-D3 and OM2-D3, for which the systematic deviation is less pronounced. In addition, we find that HF-3c systematically overestimates binding energies in both gas and solution phases. As most approximate QM methods are parametrized and evaluated using data measured or calculated in the gas phase, the dataset represents an important first step toward calibrating QM based methods for application in the condensed phase where polarization and exchange repulsion need to be treated in a balanced fashion.

  9. Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations.

    PubMed

    Zgarbová, Marie; Otyepka, Michal; Sponer, Jirí; Hobza, Pavel; Jurecka, Petr

    2010-09-21

    The intermolecular interaction energy components for several molecular complexes were calculated using force fields available in the AMBER suite of programs and compared with Density Functional Theory-Symmetry Adapted Perturbation Theory (DFT-SAPT) values. The extent to which such comparison is meaningful is discussed. The comparability is shown to depend strongly on the intermolecular distance, which means that comparisons made at one distance only are of limited value. At large distances the coulombic and van der Waals 1/r(6) empirical terms correspond fairly well with the DFT-SAPT electrostatics and dispersion terms, respectively. At the onset of electronic overlap the empirical values deviate from the reference values considerably. However, the errors in the force fields tend to cancel out in a systematic manner at equilibrium distances. Thus, the overall performance of the force fields displays errors an order of magnitude smaller than those of the individual interaction energy components. The repulsive 1/r(12) component of the van der Waals expression seems to be responsible for a significant part of the deviation of the force field results from the reference values. We suggest that further improvement of the force fields for intermolecular interactions would require replacement of the nonphysical 1/r(12) term by an exponential function. Dispersion anisotropy and its effects are discussed. Our analysis is intended to show that although comparing the empirical and non-empirical interaction energy components is in general problematic, it might bring insights useful for the construction of new force fields. Our results are relevant to often performed force-field-based interaction energy decompositions.

  10. Testing electronic structure methods for describing intermolecular H...H interactions in supramolecular chemistry.

    PubMed

    Casadesús, Ricard; Moreno, Miquel; González-Lafont, Angels; Lluch, José M; Repasky, Matthew P

    2004-01-15

    In this article a wide variety of computational approaches (molecular mechanics force fields, semiempirical formalisms, and hybrid methods, namely ONIOM calculations) have been used to calculate the energy and geometry of the supramolecular system 2-(2'-hydroxyphenyl)-4-methyloxazole (HPMO) encapsulated in beta-cyclodextrin (beta-CD). The main objective of the present study has been to examine the performance of these computational methods when describing the short range H. H intermolecular interactions between guest (HPMO) and host (beta-CD) molecules. The analyzed molecular mechanics methods do not provide unphysical short H...H contacts, but it is obvious that their applicability to the study of supramolecular systems is rather limited. For the semiempirical methods, MNDO is found to generate more reliable geometries than AM1, PM3 and the two recently developed schemes PDDG/MNDO and PDDG/PM3. MNDO results only give one slightly short H...H distance, whereas the NDDO formalisms with modifications of the Core Repulsion Function (CRF) via Gaussians exhibit a large number of short to very short and unphysical H...H intermolecular distances. In contrast, the PM5 method, which is the successor to PM3, gives very promising results. Our ONIOM calculations indicate that the unphysical optimized geometries from PM3 are retained when this semiempirical method is used as the low level layer in a QM:QM formulation. On the other hand, ab initio methods involving good enough basis sets, at least for the high level layer in a hybrid ONIOM calculation, behave well, but they may be too expensive in practice for most supramolecular chemistry applications. Finally, the performance of the evaluated computational methods has also been tested by evaluating the energetic difference between the two most stable conformations of the host(beta-CD)-guest(HPMO) system. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 25: 99-105, 2004

  11. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated.

    PubMed

    Ivanov, Sergei D; Grant, Ian M; Marx, Dominik

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  12. Influence of pressure on the crystallization of systems characterized by different intermolecular attraction

    NASA Astrophysics Data System (ADS)

    Koperwas, K.; Affouard, F.; Gerges, J.; Valdes, L.-C.; Adrjanowicz, K.; Paluch, M.

    2017-12-01

    In this paper, we examine, in terms of the classical nucleation theory, how the strengthening of the attractive intermolecular interactions influences the crystallization process for systems like Lennard-Jones at different isobaric conditions. For this purpose, we modify the standard Lennard-Jones potential, and as a result, we obtain three different systems characterized by various strengths of attractive potentials occurring between molecules, which are in direct relationship to the physical quantities describing molecules, e.g., its polarizability or dipole moment. Based on performed analysis, we demonstrate that the molecular attraction primarily impacts the thermodynamics of the interface between liquid and crystal. This is reflected in the behavior of nucleation and overall crystallization rates during compression of the system.

  13. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria.

    PubMed

    Bershtein, Shimon; Serohijos, Adrian W R; Bhattacharyya, Sanchari; Manhart, Michael; Choi, Jeong-Mo; Mu, Wanmeng; Zhou, Jingwen; Shakhnovich, Eugene I

    2015-10-01

    Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular

  14. The relationship between recollection, knowledge transfer, and student attitudes towards chemistry

    NASA Astrophysics Data System (ADS)

    Odeleye, Oluwatobi Omobonike

    Certain foundational concepts, including acid-base theory, chemical bonding and intermolecular forces (IMFs), appear throughout the undergraduate chemistry curriculum. The level of understanding of these foundational concepts influences the ability of students to recognize the relationships between sub-disciplines in chemistry. The purpose of this study was to investigate the relationship between student attitudes towards chemistry and their abilities to recollect and transfer knowledge of IMFs, a foundational concept, to their daily lives as well as to other classes. Data were collected using surveys, interviews and classroom observations, and analyzed using qualitative methods. The data show that while most students were able to function at lower levels of thinking by providing a definition of IMFs, majority were unable to function at higher levels of thinking as evidenced by their inability to apply their knowledge of IMFs to their daily lives and other classes. The results of this study suggest a positive relationship between students' abilities to recollect knowledge and their abilities to transfer that knowledge. The results also suggest positive relationships between recollection abilities of students and their attitudes towards chemistry as well as their transfer abilities and attitudes towards chemistry. Recommendations from this study include modifications of pedagogical techniques in ways that facilitate higher-level thinking and emphasize how chemistry applies not only to daily life, but also to other courses.

  15. Highly Efficient Intramolecular Electrochemiluminescence Energy Transfer for Ultrasensitive Bioanalysis of Aflatoxin M1.

    PubMed

    Liu, Jia-Li; Zhao, Min; Zhuo, Ying; Chai, Ya-Qin; Yuan, Ruo

    2017-02-03

    The intermolecular electrochemiluminescence resonance energy transfer (ECL-RET) between luminol and Ru(bpy) 3 2+ was studied extensively to achieve the sensitive bioanalysis owing to the perfect spectral overlap of the donor and acceptor, but it still suffers from the challenging issue of low energy-transfer efficiency. The intramolecular ECL-RET towards the novel ECL compound containing the donor of luminol and the acceptor of Ru(bpy) 2 (mcpbpy) 2+ (Lum-Ru) was designed and investigated. With the high-efficient ECL-RET in one molecule, the highly intense ECL signal of Lum-Ru was obtained owing to the short path of energy transmission and less energy loss between luminol and Ru(bpy) 2 (mcpbpy) 2+ . Lum-Ru was further applied to construct a signal-off electrochemiluminescence (ECL) aptasensor for ultrasensitive detection of a harsh carcinogen of Aflatoxin M1 (AFM1). This sensing platform also provides a significant boost for the trace detection of other biomolecules in clinical analysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structure of Poly(dialkylsiloxane) Melts:  Comparisons of Wide-Angle X-ray Scattering, Molecular Dynamics Simulations, and Integral Equation Theory

    DOE PAGES

    Habenschuss, Anton; Tsige, Mesfin; Curro, John G.; ...

    2007-08-21

    Here, wide-angle X-ray scattering, molecular dynamics (MD) simulations, and integral equation theory are used to study the structure of poly(diethylsiloxane) (PDES), poly(ethylmethylsiloxane) (PEMS), and poly(dimethylsiloxane) (PDMS) melts. The structure functions of PDES, PEMS, and PDMS are similar, but systematic trends in the intermolecular packing are observed. The local intramolecular structure is extracted from the experimental structure functions. The bond distances and bond angles obtained, including the large Si-O-Si angle, are in good agreement with the explicit atom (EA) and united atom (UA) potentials used in the simulations and theory and from other sources. Very good agreement is found between themore » MD simulations using the EA potentials and the experimental scattering results. Good agreement is also found between the polymer reference interaction site model (PRISM theory) and the UA MD simulations. The intermolecular structure is examined experimentally using an appropriately weighted radial distribution function and with theory and simulation using intermolecular site/site pair correlation functions. Finally, experiment, simulation, and theory show systematic increases in the chain/chain packing distances in the siloxanes as the number of sites in the pendant side chains is increased.« less

  17. Graphene-enhanced intermolecular interaction at interface between copper- and cobalt-phthalocyanines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Wei-Dong; Center of Super-Diamond and Advanced Films; Huang, Shu-Ping

    2015-10-07

    Interfacial electronic structures of copper-phthalocyanine (CuPc), cobalt-phthalocyanine (CoPc), and graphene were investigated experimentally by using photoelectron spectroscopy. While the CuPc/graphene interface shows flat band structure and negligible interfacial dipole indicating quite weak molecule-substrate interaction, the CuPc/CoPc/graphene interface shows a large interfacial dipole and obvious energy level bending. Controlled experiments ruled out possible influences from the change in film structure of CuPc and pure π–π interaction between CoPc and CuPc. Analysis based on X-ray photoelectron spectroscopy and density functional theory reveals that the decrease in the work function for the CuPc/CoPc/graphene system is induced by the intermolecular interaction between CuPc andmore » CoPc which is enhanced owning to the peculiar electronic properties at the CoPc-graphene interface.« less

  18. Brief history of intermolecular and intersurface forces in complex fluid systems.

    PubMed

    Israelachvili, Jacob; Ruths, Marina

    2013-08-06

    We review the developments of ideas, concepts, and theories of intermolecular and intersurface forces and how these were influenced (or ignored) by observations of nature and, later, systematic experimentation. The emphasis of this review is on the way things gradually changed: experimentation replaced rhetoric, measurement and quantification replaced hand waving, energy replaced force in calculations, discrete atoms replaced the (continuum) aether, thermodynamics replaced mechanistic models, randomness and probability replaced certainty, and delicate experiments on the subnanoscale revealed fascinating self-assembling structures and complex behavior of even the simplest systems. We conclude by discussing today's unresolved challenges: how complex "dynamic" multicomponent--especially living biological--systems that receive a continuous supply of energy can be far from equilibrium and not even in any steady state. Such systems, never static but evolving in both space and time, are still far from being understood both experimentally and theoretically.

  19. Effect of Intermolecular Distance on Surface-Plasmon-Assisted Catalysis.

    PubMed

    Wu, Shiwei; Liu, Yu; Ma, Caiqing; Wang, Jing; Zhang, Yao; Song, Peng; Xia, Lixin

    2018-06-26

    4-Aminothiophenol (PATP) and 4-aminophenyl disulfide (APDS) in contact with silver will form H 2 N-C 6 H 4 -S-Ag (PATP-Ag), and under the conditions of surface-enhanced Raman spectroscopy (SERS), a coupling reaction will generate 4,4-dimercaptoazobenzene (DMAB). DMAB is strongly Raman-active, showing strong peaks at ν ≈ 1140, 1390, and 1432 cm -1 , and is widely used in surface-plasmon-assisted catalysis. Using APDS, PATP, p-nitrothiophenol (PNTP), and p-nitrodiphenyl disulfide (NPDS) as probe molecules, Raman spectroscopy and imaging techniques have been used to study the effect of intermolecular distance on surface-plasmon-assisted catalysis. Theoretically, PATP-Ag formed from APDS will be bound at proximal Ag atoms on the Ag surface due to S-S bond cleavage. The results show that APDS is more prone to surface-plasmon-assisted catalytic coupling due to the smaller distance between surface PATP-Ag moieties than those derived from PATP. Therefore, APDS has a higher reaction efficiency, better Raman activity, and better Raman imaging than does PATP. Analogous experiments with PNTP and NPDS gave similar results. Thus, this technique has great application prospects in the fields of surface chemistry and materials chemistry.

  20. An Investigation into the Process of Transference, through the Integration of Art with Science and Math Curricula, in a California Community College: A Case Study

    ERIC Educational Resources Information Center

    Rachford, Maryann Kvietkauskas

    2011-01-01

    The transference of learning from one discipline to another creates new knowledge between subjects. Students can connect and apply what they learn in one subject to previously existing knowledge. Art expression is an integral part of human nature and has been a means of communication throughout history. Through the integration of art with science…

  1. Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams

    NASA Astrophysics Data System (ADS)

    Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping

    2018-06-01

    A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).

  2. Measuring Intermolecular Binding Energies by Laser Spectroscopy.

    PubMed

    Knochenmuss, Richard; Maity, Surajit; Féraud, Géraldine; Leutwyler, Samuel

    2017-02-22

    The ground-state dissociation energy, D0(S0), of isolated intermolecular complexes in the gas phase is a fundamental measure of the interaction strength between the molecules. We have developed a three-laser, triply resonant pump-dump-probe technique to measure dissociation energies of jet-cooled M•S complexes, where M is an aromatic chromophore and S is a closed-shell 'solvent' molecule. Stimulated emission pumping (SEP) via the S0→S1 electronic transition is used to precisely 'warm' the complex by populating high vibrational levels v" of the S0 state. If the deposited energy E(v") is less than D0(S0), the complex remains intact, and is then mass- and isomer-selectively detected by resonant two-photon ionization (R2PI) with a third (probe) laser. If the pumped level is above D0(S0), the hot complex dissociates and the probe signal disappears. Combining the fluorescence or SEP spectrum of the cold complex with the SEP breakoff of the hot complex brackets D0(S0). The UV chromophores 1-naphthol and carbazole were employed; these bind either dispersively via the aromatic rings, or form a hydrogen bond via the -OH or -NH group. Dissociation energies have been measured for dispersively bound complexes with noble gases (Ne, Kr, Ar, Xe), diatomics (N2, CO), alkanes (methane to n-butane), cycloalkanes (cyclopropane to cycloheptane), and unsaturated compounds (ethene, benzene). Hydrogen-bond dissociation energies have been measured for H2O, D2O, methanol, ethanol, ethers (oxirane, oxetane), NH3 and ND3.

  3. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    NASA Astrophysics Data System (ADS)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  4. Long range intermolecular interactions between the alkali diatomics Na2, K2, and NaK

    NASA Astrophysics Data System (ADS)

    Zemke, Warren T.; Byrd, Jason N.; Michels, H. Harvey; Montgomery, John A.; Stwalley, William C.

    2010-06-01

    Long range interactions between the ground state alkali diatomics Na2-Na2, K2-K2, Na2-K2, and NaK-NaK are examined. Interaction energies are first determined from ab initio calculations at the coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] level of theory, including counterpoise corrections. Long range energies calculated from diatomic molecular properties (polarizabilities and dipole and quadrupole moments) are then compared with the ab initio energies. A simple asymptotic model potential ELR=Eelec+Edisp+Eind is shown to accurately represent the intermolecular interactions for these systems at long range.

  5. N-phosphino-p-tolylsulfinamide ligands: synthesis, stability, and application to the intermolecular Pauson-Khand reaction.

    PubMed

    Revés, Marc; Achard, Thierry; Solà, Jordi; Riera, Antoni; Verdaguer, Xavier

    2008-09-19

    Here we synthesized a family of racemic and optically pure N-phosphino-p-tolylsulfinamide (PNSO) ligands. Their stability and coordination behavior toward dicobalt-alkyne complexes was evaluated. Selectivities of up to 3:1 were achieved in the ligand exchange process with (mu-TMSC2H)Co2(CO)6. The resulting optically pure major complexes were tested in the asymmetric intermolecular Pauson-Khand reaction and yielded up to 94% ee. X-ray studies of the major complex 18a indicated that the presence of an aryl group on the sulfinamide reduces the hemilabile character of the PNSO ligands.

  6. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions.

    PubMed

    Brandenberg, Oliver F; Fasan, Rudi; Arnold, Frances H

    2017-10-01

    The surge in reports of heme-dependent proteins as catalysts for abiotic, synthetically valuable carbene and nitrene transfer reactions dramatically illustrates the evolvability of the protein world and our nascent ability to exploit that for new enzyme chemistry. We highlight the latest additions to the hemoprotein-catalyzed reaction repertoire (including carbene Si-H and C-H insertions, Doyle-Kirmse reactions, aldehyde olefinations, azide-to-aldehyde conversions, and intermolecular nitrene C-H insertion) and show how different hemoprotein scaffolds offer varied reactivity and selectivity. Preparative-scale syntheses of pharmaceutically relevant compounds accomplished with these new catalysts are beginning to demonstrate their biotechnological relevance. Insights into the determinants of enzyme lifetime and product yield are providing generalizable cues for engineering heme-dependent proteins to further broaden the scope and utility of these non-natural activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modulating Charge Transfer Through Cyclic D,L α-Peptide Self-Assembly

    PubMed Central

    Horne, W. Seth; Ashkenasy, Nurit; Ghadiri, M. Reza

    2007-01-01

    We describe a concise solid support-based synthetic method for the preparation of cyclic D,L α-peptides bearing 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) side chains. Studies of the structural and photoluminescence properties of these molecules in solution show that the hydrogen bond directed self-assembly of the cyclic D,L α-peptide backbone promotes intermolecular NDI excimer formation. The efficiency of NDI charge transfer in the resulting supramolecular assemblies is shown to depend on the length of the linker between the NDI and the peptide backbone, the distal NDI substituent, and the number of NDIs incorporated in a given structure. The design rationale and synthetic strategies described here should provide a basic blueprint for a series of self-assembling cyclic D,L α-peptide nanotubes with interesting optical and electronic properties. PMID:15624124

  8. Intermolecular interactions of trifluorohalomethanes with Lewis bases in the gas phase: an ab initio study.

    PubMed

    Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D

    2014-10-07

    We perform an ab initio computational study of molecular complexes with the general formula CF3X-B that involve one trifluorohalomethane CF3X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH3 and PH3), two n-pairs (H2O and H2S), two n-pairs with an unsaturated bond (H2CO and H2CS), and a single π-pair (C2H4) and two π-pairs (C2H2). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C-X bond lengths shorten, while the C-X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.

  9. Thermocapillary flow contribution to dropwise condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Phadnis, Akshay; Rykaczewski, Konrad

    2017-11-01

    With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.

  10. Molecular origin of differences in hole and electron mobility in amorphous Alq3--a multiscale simulation study.

    PubMed

    Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian

    2012-03-28

    In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.

  11. Lattice dynamics of solid N2 with an ab initio intermolecular potential

    NASA Astrophysics Data System (ADS)

    Luty, T.; van der Avoird, A.; Berns, R. M.

    1980-11-01

    We have performed harmonic and self-consistent phonon lattice dynamics calculations for α and γ N2 crystals using an intermolecular potential from ab initio calculations. This potential contains electrostatic (multipole) interactions, up to all R-9 terms inclusive, anisotropic dispersion interactions up to all R-10 terms inclusive, and anisotropic overlap interactions caused by charge penetration and exchange between the molecules. The lattice constants, cohesion energy, the frequencies of the translational phonon modes and the Grüneisen parameters for the librational modes are in good agreement with experimental values, confirming the quality of the potential. The frequencies of the librational modes and those of the mixed modes are less well reproduced, especially at temperatures near the α-β phase transition. Probably, the self-consistent phonon method used does not fully account for the anharmonicity in the librations.

  12. Surface wettability of an atomically heterogeneous system and the resulting intermolecular forces

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sanghamitro; Bhattacharjee, Sudeep; Maurya, Sanjeev K.; Srinivasan, Vyas; Khare, Krishnacharya; Khandekar, Sameer

    2017-06-01

    We present the effect of 0.5 keV Ar+ beam irradiation on the wetting properties of metallic thin films. Observations reveal a transition from hydrophilic to hydrophobic nature at higher beam fluences which can be attributed to a reduction in net surface free energy. In this low-energy regime, ion beams do not induce significant surface roughness and chemical heterogeneity. However, they cause implantation of atomic impurities in the near surface region of the target and thus form a heterogeneous system at atomic length scales. Interestingly, the presence of implanted Ar atoms in the near surface region modifies the dispersive intermolecular interaction near the surface but induces no chemical modification due to their inert nature. On this basis, we have developed a theoretical model consistent with the experimental observations that reproduces the effective Hamaker constant with a reasonable accuracy.

  13. 45 CFR 1610.7 - Transfers of LSC funds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... receiving a transfer of LSC funds are required to maintain records of time spent on each case or matter... 45 Public Welfare 4 2011-10-01 2011-10-01 false Transfers of LSC funds. 1610.7 Section 1610.7...-LSC FUNDS, TRANSFERS OF LSC FUNDS, PROGRAM INTEGRITY § 1610.7 Transfers of LSC funds. (a) If a...

  14. 45 CFR 1610.7 - Transfers of LSC funds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... receiving a transfer of LSC funds are required to maintain records of time spent on each case or matter... 45 Public Welfare 4 2013-10-01 2013-10-01 false Transfers of LSC funds. 1610.7 Section 1610.7...-LSC FUNDS, TRANSFERS OF LSC FUNDS, PROGRAM INTEGRITY § 1610.7 Transfers of LSC funds. (a) If a...

  15. 45 CFR 1610.7 - Transfers of LSC funds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... receiving a transfer of LSC funds are required to maintain records of time spent on each case or matter... 45 Public Welfare 4 2010-10-01 2010-10-01 false Transfers of LSC funds. 1610.7 Section 1610.7...-LSC FUNDS, TRANSFERS OF LSC FUNDS, PROGRAM INTEGRITY § 1610.7 Transfers of LSC funds. (a) If a...

  16. 45 CFR 1610.7 - Transfers of LSC funds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... receiving a transfer of LSC funds are required to maintain records of time spent on each case or matter... 45 Public Welfare 4 2012-10-01 2012-10-01 false Transfers of LSC funds. 1610.7 Section 1610.7...-LSC FUNDS, TRANSFERS OF LSC FUNDS, PROGRAM INTEGRITY § 1610.7 Transfers of LSC funds. (a) If a...

  17. 45 CFR 1610.7 - Transfers of LSC funds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... receiving a transfer of LSC funds are required to maintain records of time spent on each case or matter... 45 Public Welfare 4 2014-10-01 2014-10-01 false Transfers of LSC funds. 1610.7 Section 1610.7...-LSC FUNDS, TRANSFERS OF LSC FUNDS, PROGRAM INTEGRITY § 1610.7 Transfers of LSC funds. (a) If a...

  18. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers.

    PubMed

    Gather, Malte C; Yun, Seok Hyun

    2014-12-08

    Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (-7 dB) and support strong optical amplification (gnet=22 cm(-1); 96 dB cm(-1)). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.

  19. Transfer and Dynamic Inversion of Coassembled Supramolecular Chirality through 2D-Sheet to Rolled-Up Tubular Structure.

    PubMed

    Choi, Heekyoung; Cho, Kang Jin; Seo, Hyowon; Ahn, Junho; Liu, Jinying; Lee, Shim Sung; Kim, Hyungjun; Feng, Chuanliang; Jung, Jong Hwa

    2017-12-13

    Transfer and inversion of supramolecular chirality from chiral calix[4]arene analogs (3D and 3L) with an alanine moiety to an achiral bipyridine derivative (1) with glycine moieties in a coassembled hydrogel are demonstrated. Molecular chirality of 3D and 3L could transfer supramolecular chirality to an achiral bipyridine derivative 1. Moreover, addition of 0.6 equiv of 3D or 3L to 1 induced supramolecular chirality inversion of 1. More interestingly, the 2D-sheet structure of the coassembled hydrogels formed with 0.2 equiv of 3D or 3L changed to a rolled-up tubular structure in the presence of 0.6 equiv of 3D or 3L. The chirality inversion and morphology change are mainly mediated by intermolecular hydrogen-bonding interactions between the achiral and chiral molecules, which might be induced by reorientations of the assembled molecules, confirmed by density functional theory calculations.

  20. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers

    PubMed Central

    Gather, Malte C.; Yun, Seok Hyun

    2015-01-01

    Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (−7 dB) and support strong optical amplification (gnet = 22 cm−1; 96 dB cm−1). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles. PMID:25483850

  1. IR, 1H NMR, mass, XRD and TGA/DTA investigations on the ciprofloxacin/iodine charge-transfer complex.

    PubMed

    Refat, Moamen S; El-Hawary, W F; Moussa, Mohamed A A

    2011-05-01

    The charge-transfer complex (CTC) of ciprofloxacin drug (CIP) as a donor with iodine (I(2)) as a sigma acceptor has been studied spectrophotometrically in CHCl(3). At maximum absorption bands, the stoichiometry of CIP:iodine system was found to be 1:1 ratio according to molar ratio method. The essential spectroscopic data like formation constant (K(CT)), molar extinction coefficient (ɛ(CT)), standard free energy (ΔG°), oscillator strength (f), transition dipole moment (μ), resonance energy (R(N)) and ionization potential (I(D)) were estimated. The spectroscopic techniques such as IR, (1)H NMR, mass and UV-vis spectra and elemental analyses (CHN) as well as TG-DTG and DTA investigations were used to characterize the chelating behavior of CIP/iodine charge-transfer complex. The iodine CT interaction was associated with a presence of intermolecular hydrogen bond. The X-ray investigation was carried out to investigate the iodine doping in the synthetic CT complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Machine Learning Intermolecular Potentials for 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) Using Symmetry-Adapted Perturbation Theory

    DTIC Science & Technology

    2018-04-25

    unlimited. NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so...this report, intermolecular potentials for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) are developed using machine learning techniques. Three...potentials based on support vector regression, kernel ridge regression, and a neural network are fit using symmetry-adapted perturbation theory. The

  3. Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique; Aplan, Melissa; Lee, Youngmin

    Weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. The lack of control of interfacial structure has also prevented studies of how driving forces promote charge photogeneration, leading to conflicting hypotheses in the organic photovoltaic literature. Our approach has focused on utilizing block copolymer architectures -where critical interfaces are controlled and stabilized by covalent bonds- to provide the hierarchical structure needed for high-performance organic electronics from self-assembled soft materials. For example, we have demonstrated control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers to achieve 3% power conversion efficiencies in non-fullerene photovoltaics. Furthermore, incorporating the donor-acceptor interface within the molecular structure facilitates studies of charge transfer processes. Conjugated block copolymers enable studies of the driving force needed for exciton dissociation to charge transfer states, which must be large to maximize charge photogeneration but must be minimized to prevent losses in photovoltage in solar cell devices. Our work has systematically varied the chemical structure, energetics, and dielectric constant to perturb charge transfer. As a consequence, we predict a minimum dielectric constant needed to minimize the driving force and therefore simultaneously maximize photocurrent and photovoltage in organic photovoltaic devices.

  4. Age-related Differences in Dystrophin: Impact on Force Transfer Proteins, Membrane Integrity, and Neuromuscular Junction Stability.

    PubMed

    Hughes, David C; Marcotte, George R; Marshall, Andrea G; West, Daniel W D; Baehr, Leslie M; Wallace, Marita A; Saleh, Perrie M; Bodine, Sue C; Baar, Keith

    2017-05-01

    The loss of muscle strength with age has been studied from the perspective of a decline in muscle mass and neuromuscular junction (NMJ) stability. A third potential factor is force transmission. The purpose of this study was to determine the changes in the force transfer apparatus within aging muscle and the impact on membrane integrity and NMJ stability. We measured an age-related loss of dystrophin protein that was greatest in the flexor muscles. The loss of dystrophin protein occurred despite a twofold increase in dystrophin mRNA. Importantly, this disparity could be explained by the four- to fivefold upregulation of the dystromir miR-31. To compensate for the loss of dystrophin protein, aged muscle contained increased α-sarcoglycan, syntrophin, sarcospan, laminin, β1-integrin, desmuslin, and the Z-line proteins α-actinin and desmin. In spite of the adaptive increase in other force transfer proteins, over the 48 hours following lengthening contractions, the old muscles showed more signs of impaired membrane integrity (fourfold increase in immunoglobulin G-positive fibers and 70% greater dysferlin mRNA) and NMJ instability (14- to 96-fold increases in Runx1, AchRδ, and myogenin mRNA). Overall, these data suggest that age-dependent alterations in dystrophin leave the muscle membrane and NMJ more susceptible to contraction-induced damage even before changes in muscle mass are obvious. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Iron(II)-catalyzed intermolecular amino-oxygenation of olefins through the N-O bond cleavage of functionalized hydroxylamines.

    PubMed

    Lu, Deng-Fu; Zhu, Cheng-Liang; Jia, Zhen-Xin; Xu, Hao

    2014-09-24

    An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N-O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods.

  6. Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.

    1992-01-01

    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.

  7. Silyl Ketene Acetals/B(C₆F₅)₃ Lewis Pair-Catalyzed Living Group Transfer Polymerization of Renewable Cyclic Acrylic Monomers.

    PubMed

    Hu, Lu; Zhao, Wuchao; He, Jianghua; Zhang, Yuetao

    2018-03-15

    This work reveals the silyl ketene acetal (SKA)/B(C₆F₅)₃ Lewis pair-catalyzed room-temperature group transfer polymerization (GTP) of polar acrylic monomers, including methyl linear methacrylate (MMA), and the biorenewable cyclic monomers γ-methyl-α-methylene-γ-butyrolactone (MMBL) and α-methylene-γ-butyrolactone (MBL) as well. The in situ NMR monitored reaction of SKA with B(C₆F₅)₃ indicated the formation of Frustrated Lewis Pairs (FLPs), although it is sluggish for MMA polymerization, such a FLP system exhibits highly activity and living GTP of MMBL and MBL. Detailed investigations, including the characterization of key reaction intermediates, polymerization kinetics and polymer structures have led to a polymerization mechanism, in which the polymerization is initiated with an intermolecular Michael addition of the ester enolate group of SKA to the vinyl group of B(C₆F₅)₃-activated monomer, while the silyl group is transferred to the carbonyl group of the B(C₆F₅)₃-activated monomer to generate the single-monomer-addition species or the active propagating species; the coordinated B(C₆F₅)₃ is released to the incoming monomer, followed by repeated intermolecular Michael additions in the subsequent propagation cycle. Such neutral SKA analogues are the real active species for the polymerization and are retained in the whole process as confirmed by experimental data and the chain-end analysis by matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS). Moreover, using this method, we have successfully synthesized well-defined PMMBL- b -PMBL, PMMBL- b -PMBL- b -PMMBL and random copolymers with the predicated molecular weights ( M n ) and narrow molecular weight distribution (MWD).

  8. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.

    PubMed

    Yagasaki, Takuma; Saito, Shinji

    2009-09-15

    Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is

  9. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation.

    PubMed

    Ghedira, Rim; De Buck, Sylvie; Van Ex, Frédéric; Angenon, Geert; Depicker, Ann

    2013-12-01

    T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43-69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19-46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5-1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8-34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93-100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.

  10. 1. Exterior view of Signal Transfer Building (T28A), looking southwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Exterior view of Signal Transfer Building (T-28A), looking southwest. This structure houses controls for propellant transfer, instrumentation for testing, test data transmission receivers, data verification equipment, and centralized utilities for the Systems Integration Laboratory complex. The gantries of the Systems Integration Laboratory Building (T-28) are visible to the rear of this structure. - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  11. Synthetic/Biosynthetic Phase Transfer Polymers for Pollution Minimization, Remediation, and Waste Management

    DTIC Science & Technology

    1994-01-01

    in the viscosity profile is observed. DAMAB induces strong intermolecular associations via hydrophobic interactions . When copolymers of comparable...techniques such as viscosity studies. The AM/DAMAB copolymer series also interacts with surfactants in an interesting manner.’ The surface tension of...in polymer dimensions as hydrophobe is added. The shape of the viscosity curves does not suggest intermolecular interactions , as in typical

  12. Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping

    2006-03-09

    Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less

  13. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations.

    PubMed

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-14

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ(17-42) protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ(17-42) protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ(17-42) are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ(17-42) protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  14. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-01

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ17-42 protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ17-42 protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ17-42 are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ17-42 protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  15. Mechanistic Investigation of Catalyst-Transfer Suzuki-Miyaura Condensation Polymerization of Thiophene-Pyridine Biaryl Monomers with the Aid of Model Reactions.

    PubMed

    Tokita, Yu; Katoh, Masaru; Ohta, Yoshihiro; Yokozawa, Tsutomu

    2016-11-21

    We have investigated the requirements for efficient Pd-catalyzed Suzuki-Miyaura catalyst-transfer condensation polymerization (Pd-CTCP) reactions of 2-alkoxypropyl-6-(5-bromothiophen-2-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (12) as a donor-acceptor (D-A) biaryl monomer. As model reactions, we first carried out the Suzuki-Miyaura coupling reaction of X-Py-Th-X' (Th=thiophene, Py=pyridine, X, X'=Br or I) 1 with phenylboronic acid ester 2 by using tBu 3 PPd 0 as the catalyst. Monosubstitution with a phenyl group at Th-I mainly took place in the reaction of Br-Py-Th-I (1 b) with 2, whereas disubstitution selectively occurred in the reaction of I-Py-Th-Br (1 c) with 2, indicating that the Pd catalyst is intramolecularly transferred from acceptor Py to donor Th. Therefore, we synthesized monomer 12 by introduction of a boronate moiety and bromine into Py and Th, respectively. However, examination of the relationship between monomer conversion and the M n of the obtained polymer, as well as the matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra, indicated that Suzuki-Miyaura coupling polymerization of 12 with (o-tolyl)tBu 3 PPdBr initiator 13 proceeded in a step-growth polymerization manner through intermolecular transfer of the Pd catalyst. To understand the discrepancy between the model reactions and polymerization reaction, Suzuki-Miyaura coupling reactions of 1 c with thiopheneboronic acid ester instead of 2 were carried out. This resulted in a decrease of the disubstitution product. Therefore, step-growth polymerization appears to be due to intermolecular transfer of the Pd catalyst from Th after reductive elimination of the Th-Pd-Py complex formed by transmetalation of polymer Th-Br with (Pin)B-Py-Th-Br monomer 12 (Pin=pinacol). Catalysts with similar stabilization energies of metal-arene η 2 -coordination for D and A monomers may be needed for CTCP reactions of biaryl D-A monomers. © 2016 Wiley

  16. Temperature dependent fluorescence spectra arise from change in excited-state intramolecular proton transfer potential of 4‧-N,N-dimethylamino-3-hydroxyflavone-doped acetonitrile crystals

    NASA Astrophysics Data System (ADS)

    Furukawa, Kazuki; Yamamoto, Norifumi; Hino, Kazuyuki; Sekiya, Hiroshi

    2016-01-01

    The effect of intermolecular interaction on excited-state intramolecular proton transfer (ESIPT) in 4‧-N,N-dimethylamino-3-hydroxyflavone (DMHF) doped in acetonitrile crystals was investigated by measuring the temperature dependence of fluorescence excitation and fluorescence spectra. A solid/solid phase transition of DMHF-doped acetonitrile crystals occurred in the temperature between 210 and 218 K. Significant differences in the spectral profiles and shifts in the fluorescence spectra were observed in the low- and high-temperature regions of the phase transition. The temperature dependence of the ESIPT potential of DMHF is discussed.

  17. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line.

    PubMed Central

    Malik, P; McQuiston, S A; Yu, X J; Pepper, K A; Krall, W J; Podsakoff, G M; Kurtzman, G J; Kohn, D B

    1997-01-01

    We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate

  18. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line.

    PubMed

    Malik, P; McQuiston, S A; Yu, X J; Pepper, K A; Krall, W J; Podsakoff, G M; Kurtzman, G J; Kohn, D B

    1997-03-01

    We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate

  19. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  20. Rh-Catalyzed Intermolecular Reactions of α-Alkyl-α-Diazo Carbonyl Compounds with Selectivity over β-Hydride Migration

    PubMed Central

    DeAngelis, Andrew; Panish, Robert; Fox, Joseph M.

    2016-01-01

    CONSPECTUS Rh-carbenes derived from α-diazocarbonyl compounds have found broad utility across a remarkable range of reactivity, including cyclopropanation, cyclopropenation, C–H insertions, heteroatom–H insertions, and ylide forming reactions. However, in contrast to α-aryl or α-vinyl-α-diazocarbonyl compounds, the utility of α-alkyl-α-diazocarbonyl compounds had been moderated by the propensity of such compounds to undergo intramolecular β-hydride migration to give alkene products. Especially challenging had been intermolecular reactions involving α-alkyl-α-diazocarbonyl compounds. PMID:26689221

  1. Excitation energy transfer from the bacteriochlorophyll Soret band to carotenoids in the LH2 light-harvesting complex from Ectothiorhodospira haloalkaliphila is negligible.

    PubMed

    Razjivin, A P; Lukashev, E P; Kompanets, V O; Kozlovsky, V S; Ashikhmin, A A; Chekalin, S V; Moskalenko, A A; Paschenko, V Z

    2017-09-01

    Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S 2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S 2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.

  2. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlapmore » matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.« less

  3. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings.

    PubMed

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas; Neugebauer, Johannes

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Ångstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.

  4. Localized-overlap approach to calculations of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Rob, Fazle

    Symmetry-adapted perturbation theory (SAPT) based on the density functional theory (DFT) description of the monomers [SAPT(DFT)] is one of the most robust tools for computing intermolecular interaction energies. Currently, one can use the SAPT(DFT) method to calculate interaction energies of dimers consisting of about a hundred atoms. To remove the methodological and technical limits and extend the size of the systems that can be calculated with the method, a novel approach has been proposed that redefines the electron densities and polarizabilities in a localized way. In the new method, accurate but computationally expensive quantum-chemical calculations are only applied for the regions where it is necessary and for other regions, where overlap effects of the wave functions are negligible, inexpensive asymptotic techniques are used. Unlike other hybrid methods, this new approach is mathematically rigorous. The main benefit of this method is that with the increasing size of the system the calculation scales linearly and, therefore, this approach will be denoted as local-overlap SAPT(DFT) or LSAPT(DFT). As a byproduct of developing LSAPT(DFT), some important problems concerning distributed molecular response, in particular, the unphysical charge-flow terms were eliminated. Additionally, to illustrate the capabilities of SAPT(DFT), a potential energy function has been developed for an energetic molecular crystal of 1,1-diamino-2,2-dinitroethylene (FOX-7), where an excellent agreement with the experimental data has been found.

  5. Long range intermolecular interactions between the alkali diatomics Na(2), K(2), and NaK.

    PubMed

    Zemke, Warren T; Byrd, Jason N; Michels, H Harvey; Montgomery, John A; Stwalley, William C

    2010-06-28

    Long range interactions between the ground state alkali diatomics Na(2)-Na(2), K(2)-K(2), Na(2)-K(2), and NaK-NaK are examined. Interaction energies are first determined from ab initio calculations at the coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] level of theory, including counterpoise corrections. Long range energies calculated from diatomic molecular properties (polarizabilities and dipole and quadrupole moments) are then compared with the ab initio energies. A simple asymptotic model potential E(LR)=E(elec)+E(disp)+E(ind) is shown to accurately represent the intermolecular interactions for these systems at long range.

  6. A Closer Look at Trends in Boiling Points of Hydrides: Using an Inquiry-Based Approach to Teach Intermolecular Forces of Attraction

    ERIC Educational Resources Information Center

    Glazier, Samantha; Marano, Nadia; Eisen, Laura

    2010-01-01

    We describe how we use boiling-point trends of group IV-VII hydrides to introduce intermolecular forces in our first-year general chemistry classes. Starting with the idea that molecules in the liquid state are held together by some kind of force that must be overcome for boiling to take place, students use data analysis and critical reasoning to…

  7. Integrated control and health management. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Holzmann, Wilfried A.; Hayden, Warren R.

    1988-01-01

    To insure controllability of the baseline design for a 7500 pound thrust, 10:1 throttleable, dual expanded cycle, Hydrogen-Oxygen, orbit transfer rocket engine, an Integrated Controls and Health Monitoring concept was developed. This included: (1) Dynamic engine simulations using a TUTSIM derived computer code; (2) analysis of various control methods; (3) Failure Modes Analysis to identify critical sensors; (4) Survey of applicable sensors technology; and, (5) Study of Health Monitoring philosophies. The engine design was found to be controllable over the full throttling range by using 13 valves, including an oxygen turbine bypass valve to control mixture ratio, and a hydrogen turbine bypass valve, used in conjunction with the oxygen bypass to control thrust. Classic feedback control methods are proposed along with specific requirements for valves, sensors, and the controller. Expanding on the control system, a Health Monitoring system is proposed including suggested computing methods and the following recommended sensors: (1) Fiber optic and silicon bearing deflectometers; (2) Capacitive shaft displacement sensors; and (3) Hot spot thermocouple arrays. Further work is needed to refine and verify the dynamic simulations and control algorithms, to advance sensor capabilities, and to develop the Health Monitoring computational methods.

  8. Energy Transfer Between Coherently Delocalized States in Thin Films of the Explosive Pentaerythritol Tetranitrate (PETN) Revealed by Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ostrander, Joshua; Knepper, Robert; Tappan, Alexander; Kay, Jeffery; Zanni, Martin; Farrow, Darcie

    2017-06-01

    Pentaerythritol tetranitrate (PETN) is a common secondary explosive and has been used extensively to study shock initiation and energy propagation in energetic materials. We report 2D IR measurements of PETN thin films that resolve vibrational energy transfer and relaxation mechanisms. Ultrafast anisotropy measurements reveal a sub-500 fs reorientation of transition dipoles in thin films of vapor-deposited PETN that is absent in solution measurements, consistent with intermolecular energy transfer. The anisotropy is frequency dependent, suggesting spectrally heterogeneous vibrational relaxation. Cross peaks are observed in 2D IR spectra that resolve a specific energy transfer pathway with a 2 ps time scale. Measurements of the transition dipole strength indicate that these vibrational modes are coherently delocalized over at least 15-30 molecules. We discuss the implications of vibrational relaxation between coherently delocalized eigenstates for mechanisms relevant to explosives. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G., E-mail: maginot1@llnl.gov; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim E., E-mail: morel@tamu.edu

    This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  10. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  11. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE PAGES

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    2016-09-29

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  12. Toe transfer in congenital hand malformations.

    PubMed

    Foucher, G; Medina, J; Navarro, R; Nagel, D

    2001-01-01

    Fifty-eight patients with congenital hand abnormalities underwent 65 toe-to-hand transfers. Symbrachydactyly (51 cases) was the most frequent indication. Forty-seven second toe-to-hand transfers were performed in 44 patients. The mean follow-up time was 5.2 years. Two failures occurred in cases in which only one artery was anastomosed; no failures were noted when more than one artery fed the transfer. Two patients with a single second-toe transfer presented with lateral instability of the transferred metatarsophalangeal joint. The mean active range of motion was 38 degrees, with a mean extension lag of 25 degrees. The mean two-point discrimination was 5 mm. Forty-one patients used the transferred toe well, when performing activities of daily living and playing games. Toe-to-hand transfer, prior to the establishment of the grip pattern, facilitates integration of the transfer.

  13. On chirality transfer in electron donor-acceptor complexes. A prediction for the sulfinimine···BF3 system.

    PubMed

    Rode, Joanna E; Dobrowolski, Jan Cz

    2012-01-01

    Stabilization energies of the electron donor-acceptor sulfinimine···BF(3) complexes calculated at either the B3LYP/aug-cc-pVTZ or the MP2/aug-cc-pVTZ level do not allow to judge, whether the N- or O-atom in sulfinimine is stronger electron-donor to BF(3) . The problem seems to be solvable because chirality transfer phenomenon between chiral sulfinimine and achiral BF(3) is expected to be vibrational circular dichroism (VCD) active. Moreover, the bands associated with the achiral BF(3) molecule are predicted to be the most intense in the entire spectrum. However, the VCD band robustness analyses show that most of the chirality transfer modes of BF(3) are unreliable. Conversely, variation of VCD intensity with change of intermolecular distance, angle, and selected dihedrals between the complex partners shows that to establish the robustness of chirality transfer mode. It is also necessary to determine the influence of the potential energy surface (PES) shape on the VCD intensity. At the moment, there is still no universal criterion for the chirality transfer mode robustness and the conclusions formulated based on one system cannot be directly transferred even to a quite similar one. However, it is certain that more attention should be focused on relation of PES shape and the VCD mode robustness problem. Copyright © 2011 Wiley Periodicals, Inc.

  14. Measurement and investigation of proton irradiation-induced charge transfer inefficiency in PPD CIS at different integration times

    NASA Astrophysics Data System (ADS)

    Xue, Yuanyuan; Wang, Zujun; Zhang, Fengqi; Bian, Jingying; Yao, Zhibin; He, Baoping; Liu, Minbo; Sheng, Jiangkun; Ma, Wuying; Dong, Guantao; Jin, Junshan

    2018-04-01

    Charge transfer inefficiency (CTI) is an important parameter for photodiode (PPD) CMOS image sensors (CISs). A test system was built and used to measure the CTI of PPD CIS devices at different integration times. The radiation effects of 3 MeV and 10 MeV protons on the CTI were investigated. The experiments were carried out at the EN Tandem Van de Graaff accelerator at proton fluences in the range 1010 to 1011 p/cm2. The CTI was measured within the 2 h following proton radiations. The dependence of CTI on integration time, proton energy and fluence were investigated. The CTI was observed to increase after proton irradiation: with the effect of irradiation with 3 MeV proton being more severe than that with 10 MeV protons. The CTI was also observed to decrease with increasing integration time, which is thought to be related to the charge density in the space charge region (SCR) of the CIS devices. This work has provided a simple method to measure the CTI and helped us to understand proton radiation effects on the CTI of PPD CISs.

  15. Near field wireless power transfer using curved relay resonators for extended transfer distance

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Clare, L.; Stark, B. H.; Beeby, S. P.

    2015-12-01

    This paper investigates the performance of a near field wireless power transfer system that uses curved relay resonator to extend transfer distance. Near field wireless power transfer operates based on the near-field electromagnetic coupling of coils. Such a system can transfer energy over a relatively short distance which is of the same order of dimensions of the coupled coils. The energy transfer distance can be increased using flat relay resonators. Recent developments in printing electronics and e-textiles have seen increasing demand of embedding electronics into fabrics. Near field wireless power transfer is one of the most promising methods to power electronics on fabrics. The concept can be applied to body-worn textiles by, for example, integrating a transmitter coil into upholstery, and a flexible receiver coil into garments. Flexible textile coils take on the shape of the supporting materials such as garments, and therefore curved resonator and receiver coils are investigated in this work. Experimental results showed that using curved relay resonator can effectively extend the wireless power transfer distance. However, as the curvature of the coil increases, the performance of the wireless power transfer, especially the maximum received power, deteriorates.

  16. Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer.

    PubMed

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-02-12

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.

  17. Tape Transfer Atomization Patterning of Liquid Alloys for Microfluidic Stretchable Wireless Power Transfer

    PubMed Central

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times. PMID:25673261

  18. Thermochemical analysis of intermolecular interactions between N-acetylglycine and polyols in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.

    2017-05-01

    The integral enthalpies of dissolution Δsol H m for N-acetylglycine in aqueous solutions of glycerol, ethylene glycol and 1,2-propylene glycol are measured via solution calorimetry. The standard enthalpies of dissolution (Δsol H 0) and transfer (Δtr H 0) for N-acetylglycine from water to aqueous solutions of polyhydric alcohols are calculated from experimental data. Positive values of enthalpy coefficients of pair interactions h xy for amino acids and polyol molecules are calculated using the McMillan-Mayer theory. The results are discussed using an approach for evaluating different types of interactions in ternary systems and the effect the structural features of interacting biomolecules have on the thermochemical characteristics of N-acetylglycine dissolution.

  19. Get Ahead of the Transfer Curve

    ERIC Educational Resources Information Center

    Fortin, Shelley J.

    2016-01-01

    With more and more students making community college the starting point of their postsecondary education, there is potential in the pipeline; tapping into it promises great rewards. Transfer has long been integral to the community college mission, but navigating the path to the four-year degree continues to be a challenge. Transfer students have…

  20. High performance organic integrated device with ultraviolet photodetective and electroluminescent properties consisting of a charge-transfer-featured naphthalimide derivative

    NASA Astrophysics Data System (ADS)

    Wang, Hanyu; Zhou, Jie; Wang, Xu; Lu, Zhiyun; Yu, Junsheng

    2014-08-01

    A high performance organic integrated device (OID) with ultraviolet photodetective and electroluminescent (EL) properties was fabricated by using a charge-transfer-featured naphthalimide derivative of 6-{3,5-bis-[9-(4-t-butylphenyl)-9H-carbazol-3-yl]-phenoxy}-2-(4-t-butylphenyl)-benzo[de]isoquinoline-1,3-dione (CzPhONI) as the active layer. The results showed that the OID had a high detectivity of 1.5 × 1011 Jones at -3 V under the UV-350 nm illumination with an intensity of 0.6 mW/cm2, and yielded an exciplex EL light emission with a maximum brightness of 1437 cd/m2. Based on the energy band diagram, both the charge transfer feature of CzPhONI and matched energy level alignment were responsible for the dual ultraviolet photodetective and EL functions of OID.

  1. The woman, partner and midwife: An integration of three perspectives of labour when intrapartum transfer from a birth centre to a tertiary obstetric unit occurs.

    PubMed

    Kuliukas, Lesley J; Hauck, Yvonne C; Lewis, Lucy; Duggan, Ravani

    2017-04-01

    When transfer in labour takes place from a birth centre to a tertiary maternity hospital the woman, her partner and the midwife (the triad) are involved, representing three different perspectives. The purpose of this paper is to explore the integration of these intrapartum transfer experiences for the birth triad. Giorgi's descriptive phenomenological method of analysis was used to explore the 'lived' experiences of Western Australian women, their partners and midwives across the birth journey. Forty-five interviews were conducted. Findings revealed that experiences of intrapartum transfer were unique to each member of the triad (woman, partner and midwife) and yet there were also shared experiences. All three had three themes in common: 'The same journey through three different lenses'; 'In my own world' and 'Talking about the birth'. The woman and partner shared two themes: 'Lost birth dream' and 'Grateful to return to a familiar environment'. The woman and midwife both had: 'Gratitude for continuity of care model' and the partner and midwife both found they were: 'Struggling to adapt to a changing care model' and their 'Inside knowledge was not appreciated'. Insight into the unique integrated experiences during a birth centre intrapartum transfer can inform midwives, empowering them to better support parents through antenatal education before and by offering discussion about the birth and transfer after. Translation of findings to practice also reinforces how midwives can support their colleagues by recognising the accompanying midwife's role and knowledge of the woman. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. TROSY-based z-exchange spectroscopy: application to the determination of the activation energy for intermolecular protein translocation between specific sites on different DNA molecules.

    PubMed

    Sahu, Debashish; Clore, G Marius; Iwahara, Junji

    2007-10-31

    A two-dimensional TROSY-based z-exchange 1H-15N correlation experiment for the quantitative analysis of kinetic processes in the slow exchange regime is presented. The pulse scheme converts the product operator terms Nz into 2NzHz and 2NzHz into -Nz in the middle of the z-mixing period, thereby suppressing the buildup of spurious semi-TROSY peaks arising from the different relaxation rates for the Nz and 2NzHz terms and simplifying the behavior of longitudinal magnetization for an exchanging system during the mixing period. Theoretical considerations and experimental data demonstrate that the TROSY-based z-exchange experiment permits quantitative determination of rate constants using the same procedure as that for the conventional non-TROSY 15Nz-exchange experiment. Line narrowing as a consequence of the use of the TROSY principle makes the method particularly suitable for kinetic studies at low temperature, thereby permitting activation energies to be extracted from data acquired over a wider temperature range. We applied this method to the investigation of the process whereby the HoxD9 homeodomain translocates between specific target sites on different DNA molecules via a direct transfer mechanism without going through the intermediary of free protein. The activation enthalpy for intermolecular translocation was determined to be 17 kcal/mol.

  3. Transport properties in mixtures involving carbon dioxide at low and moderate density: test of several intermolecular potential energies and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Moghadasi, Jalil; Yousefi, Fakhri; Papari, Mohammad Mehdi; Faghihi, Mohammad Ali; Mohsenipour, Ali Asghar

    2009-09-01

    It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO2-He, CO2-Ne, CO2-Ar, CO2-Kr, and CO2-Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 K < T < 3273.15 K is reproduced from the present unlike intermolecular potentials energy. Our estimated accuracies for the viscosity are to within ±2%. In addition, the calculated potential energies are used to present smooth correlations for other transport properties. The accuracies of the binary diffusion coefficients are of the order of ±3%. Finally, the unlike interaction energy and the calculated low density viscosity have been employed to calculate high density viscosities using Vesovic-Wakeham method.

  4. Controlling the growth of multiple ordered heteromolecular phases by utilizing intermolecular repulsion

    NASA Astrophysics Data System (ADS)

    Henneke, Caroline; Felter, Janina; Schwarz, Daniel; Stefan Tautz, F.; Kumpf, Christian

    2017-06-01

    Metal/organic interfaces and their structural, electronic, spintronic and thermodynamic properties have been investigated intensively, aiming to improve and develop future electronic devices. In this context, heteromolecular phases add new design opportunities simply by combining different molecules. However, controlling the desired phases in such complex systems is a challenging task. Here, we report an effective way of steering the growth of a bimolecular system composed of adsorbate species with opposite intermolecular interactions--repulsive and attractive, respectively. The repulsive species forms a two-dimensional lattice gas, the density of which controls which crystalline phases are stable. Critical gas phase densities determine the constant-area phase diagram that describes our experimental observations, including eutectic regions with three coexisting phases. We anticipate the general validity of this type of phase diagram for binary systems containing two-dimensional gas phases, and also show that the density of the gas phase allows engineering of the interface structure.

  5. Asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes with a new trifluoromethoxylation reagent

    NASA Astrophysics Data System (ADS)

    Guo, Shuo; Cong, Fei; Guo, Rui; Wang, Liang; Tang, Pingping

    2017-06-01

    Fluorinated organic compounds are becoming increasingly important in pharmaceuticals, agrochemicals and materials science. The introduction of trifluoromethoxy groups into new drugs and agrochemicals has attracted much attention due to their strongly electron-withdrawing nature and high lipophilicity. However, synthesis of trifluoromethoxylated organic molecules is difficult owing to the decomposition of trifluoromethoxide anion and β-fluoride elimination from transition-metal-trifluoromethoxide complexes, and no catalytic enantioselective trifluoromethoxylation reaction has been reported until now. Here, we present an example of an asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes with trifluoromethyl arylsulfonate (TFMS) as a new trifluoromethoxylation reagent. Compared to other trifluoromethoxylation reagents, TFMS is easily prepared and thermally stable with good reactivity. In addition, this reaction is operationally simple, scalable and proceeds under mild reaction conditions. Furthermore, broad scope and good functional group compatibility has been demonstrated by application of the method to the bromotrifluoromethoxylation of double bonds in natural products and natural product derivatives.

  6. Ab initio quantum chemical calculation of electron transfer matrix elements for large molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Linda Yu; Friesner, Richard A.; Murphy, Robert B.

    1997-07-01

    Using a diabatic state formalism and pseudospectral numerical methods, we have developed an efficient ab initio quantum chemical approach to the calculation of electron transfer matrix elements for large molecules. The theory is developed at the Hartree-Fock level and validated by comparison with results in the literature for small systems. As an example of the power of the method, we calculate the electronic coupling between two bacteriochlorophyll molecules in various intermolecular geometries. Only a single self-consistent field (SCF) calculation on each of the monomers is needed to generate coupling matrix elements for all of the molecular pairs. The largest calculations performed, utilizing 1778 basis functions, required ˜14 h on an IBM 390 workstation. This is considerably less cpu time than would be necessitated with a supermolecule adiabatic state calculation and a conventional electronic structure code.

  7. NASA Technology Transfer System

    NASA Technical Reports Server (NTRS)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  8. Radiative transfer in a sphere illuminated by a parallel beam - An integral equation approach. [in planetary atmosphere

    NASA Technical Reports Server (NTRS)

    Shia, R.-L.; Yung, Y. L.

    1986-01-01

    The problem of multiple scattering of nonpolarized light in a planetary body of arbitrary shape illuminated by a parallel beam is formulated using the integral equation approach. There exists a simple functional whose stationarity condition is equivalent to solving the equation of radiative transfer and whose value at the stationary point is proportional to the differential cross section. The analysis reveals a direct relation between the microscopic symmetry of the phase function for each scattering event and the macroscopic symmetry of the differential cross section for the entire planetary body, and the interconnection of these symmetry relations and the variational principle. The case of a homogeneous sphere containing isotropic scatterers is investigated in detail. It is shown that the solution can be expanded in a multipole series such that the general spherical problem is reduced to solving a set of decoupled integral equations in one dimension. Computations have been performed for a range of parameters of interest, and illustrative examples of applications to planetary problems as provided.

  9. Integral method for transient He II heat transfer in a semi-infinite domain

    NASA Astrophysics Data System (ADS)

    Baudouy, B.

    2002-05-01

    Integral methods are suited to solve a non-linear system of differential equations where the non-linearity can be found either in the differential equations or in the boundary conditions. Though they are approximate methods, they have proven to give simple solutions with acceptable accuracy for transient heat transfer in He II. Taking in account the temperature dependence of thermal properties, direct solutions are found without the need of adjusting a parameter. Previously, we have presented a solution for the clamped heat flux and in the present study this method is used to accommodate the clamped-temperature problem. In the case of constant thermal properties, this method yields results that are within a few percent of the exact solution for the heat flux at the axis origin. We applied this solution to analyze recovery from burnout and find an agreement within 10% at low heat flux, whereas at high heat flux the model deviates from the experimental data suggesting the need for a more refined thermal model.

  10. Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp

    DOEpatents

    Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Urbana, IL; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Champaign, IL; Meitl, Matthew [Champaign, IL; Zhu, Zhengtao [Urbana, IL

    2011-05-17

    The present invention provides methods, systems and system components for transferring, assembling and integrating features and arrays of features having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods of the present invention utilize principles of `soft adhesion` to guide the transfer, assembly and/or integration of features, such as printable semiconductor elements or other components of electronic devices. Methods of the present invention are useful for transferring features from a donor substrate to the transfer surface of an elastomeric transfer device and, optionally, from the transfer surface of an elastomeric transfer device to the receiving surface of a receiving substrate. The present methods and systems provide highly efficient, registered transfer of features and arrays of features, such as printable semiconductor element, in a concerted manner that maintains the relative spatial orientations of transferred features.

  11. Rational design of viscosity reducing mutants of a monoclonal antibody: Hydrophobic versus electrostatic inter-molecular interactions

    PubMed Central

    Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J

    2015-01-01

    High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption. PMID:25559441

  12. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.

    PubMed

    Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J

    2015-01-01

    High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.

  13. Crossover from layering to island formation in Langmuir-Blodgett growth: Role of long-range intermolecular forces

    NASA Astrophysics Data System (ADS)

    Mukherjee, Smita; Datta, Alokmay

    2011-04-01

    Combined studies by atomic force microscopy, x-ray reflectivity, and Fourier transform infrared spectroscopy on transition-metal stearate (M-St, M = Mn, Co, Zn, and Cd) Langmuir-Blodgett films clearly indicate association of bidentate coordination of the metal-carboxylate head group to layer-by-layer growth as observed in MnSt and CoSt and partially in ZnSt. Crossover to islandlike growth, as observed in CdSt and ZnSt, is associated with the presence of unidentate coordination in the head group. Morphological evolutions as obtained from one, three, and nine monolayers (MLs) of M-St films are consistent with Frank van der Merwe, Stranski-Krastanov, and Volmer Weber growth modes for M=Mn/Co, Zn, and Cd, respectively, as previously assigned, and are found to vary with number (n) of metal atoms per head group, viz. n=1 (Mn/Co), n=0.75 (Zn), and n=0.5 (Cd). The parameter n is found to decide head-group coordination such that n=1.0 corresponds to bidentate and n=0.5 corresponds to unidentate coordination; the intermediate value in Zn corresponds to a mixture of both. The dependence of the growth mode on head-group structure is explained by the fact that in bidentate head groups, with the in-plane dipole moment being zero, intermolecular forces between adjacent molecules are absent and hence growth proceeds via layering. On the other hand, in unidentate head groups, the existence of a nonzero in-plane dipole moment results in the development of weak in-plane intermolecular forces between adjacent molecules causing in-plane clustering leading to islandlike growth.

  14. Tunable Crystallinity and Charge Transfer in Two-Dimensional G-Quadruplex Organic Frameworks.

    PubMed

    Wu, Yi-Lin; Bobbitt, N Scott; Logsdon, Jenna L; Powers-Riggs, Natalia E; Nelson, Jordan N; Liu, Xiaolong; Wang, Timothy C; Snurr, Randall Q; Hupp, Joseph T; Farha, Omar K; Hersam, Mark C; Wasielewski, Michael R

    2018-04-03

    DNA G-quadruplex structures were recently discovered to provide reliable scaffolding for two-dimensional organic frameworks due to the strong hydrogen-bonding ability of guanine. Herein, 2,7-diaryl pyrene building blocks with high HOMO energies and large optical gaps are incorporated into G-quadruplex organic frameworks. The adjustable substitution on the aryl groups provides an opportunity to elucidate the framework formation mechanism; molecular non-planarity is found to be beneficial for restricting interlayer slippage, and the framework crystallinity is highest when intermolecular interaction and non-planarity strike a fine balance. When guanine-functionalized pyrenes are co-crystallized with naphthalene diimide, charge-transfer (CT) complexes are obtained. The photophysical properties of the pyrene-only and CT frameworks are characterized by UV/Vis and steady-state and time-resolved photoluminescence spectroscopies, and by EPR spectroscopy for the CT complex frameworks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Intra- and intermolecular effects on the Compton profile of the ionic liquid 1,3-dimethylimidazolium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskelo, J., E-mail: jaakko.koskelo@helsinki.fi; Juurinen, I.; Ruotsalainen, K. O.

    2014-12-28

    We present a comprehensive simulation study on the solid-liquid phase transition of the ionic liquid 1,3-dimethylimidazolium chloride in terms of the changes in the atomic structure and their effect on the Compton profile. The structures were obtained by using ab initio molecular dynamics simulations. Chosen radial distribution functions of the liquid structure are presented and found generally to be in good agreement with previous ab initio molecular dynamics and neutron scattering studies. The main contributions to the predicted difference Compton profile are found to arise from intermolecular changes in the phase transition. This prediction can be used for interpreting futuremore » experiments.« less

  16. Different Conformations of 2'-Deoxycytidine in the Gas and Solid Phases: Competition between Intra- and Intermolecular Hydrogen Bonds.

    PubMed

    Ling, Sanliang; Gutowski, Maciej

    2016-10-06

    decomposed the crystal cohesive energy into repulsive one-body terms associated with the syn-anti conformational changes, and the attractive intermolecular interaction term. We exposed that the syn-anti conformational changes are very favorable for intermolecular interactions; in particular they make the imino-amino side of the cytosine residue accessible to intermolecular interactions.

  17. Vinyl sulfoxides as stereochemical controllers in intermolecular Pauson-Khand reactions: applications to the enantioselective synthesis of natural cyclopentanoids.

    PubMed

    Rodríguez Rivero, Marta; Alonso, Inés; Carretero, Juan C

    2004-10-25

    The use of sulfoxides as chiral auxiliaries in asymmetric intermolecular Pauson-Khand reactions is described. After screening a wide variety of substituents on the sulfur atom in alpha,beta-unsaturated sulfoxides, the readily available o-(N,N-dimethylamino)phenyl vinyl sulfoxide (1 i) has proved to be highly reactive with substituted terminal alkynes under N-oxide-promoted conditions (CH3CN, 0 degrees C). In addition, these Pauson-Khand reactions occurred with complete regioselectivity and very high diastereoselectivity (de=86->96 %, (S,R(S)) diastereomer). Experimental studies suggest that the high reactivity exhibited by the vinyl sulfoxide 1 i relies on the ability of the amine group to act as a soft ligand on the alkyne dicobalt complex prior to the generation of the cobaltacycle intermediate. On the other hand, both theoretical and experimental studies show that the high stereoselectivity of the process is due to the easy thermodynamic epimerization at the C5 center in the resulting 5-sulfinyl-2-cyclopentenone adducts. When it is taken into account that the known asymmetric intermolecular Pauson-Khand reactions are limited to the use of highly reactive bicyclic alkenes, mainly norbornene and norbornadiene, this novel procedure constitutes the first asymmetric version with unstrained acyclic alkenes. As a demonstration of the synthetic interest of this sulfoxide-based methodology in the enantioselective preparation of stereochemically complex cyclopentanoids, we have developed very short and efficient syntheses of the antibiotic (-)-pentenomycin I and the (-)-aminocyclopentitol moiety of a hopane triterpenoid.

  18. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions.

    PubMed

    Ahmed, Mohammed; Namboodiri, V; Singh, Ajay K; Mondal, Jahur A

    2014-10-28

    The hydration energy of an ion largely resides within the first few layers of water molecules in its hydration shell. Hence, it is important to understand the transformation of water properties, such as hydrogen-bonding, intermolecular vibrational coupling, and librational freedom in the hydration shell of ions. We investigated these properties in the hydration shell of mono- (Cl(-) and I(-)) and bivalent (SO4(2-) and CO3(2-)) anions by using Raman multivariate curve resolution (Raman-MCR) spectroscopy in the OH stretch, HOH bend, and [bend+librational] combination bands of water. Raman-MCR of aqueous Na-salt (NaCl, NaI, Na2SO4, and Na2CO3) solutions provides ion-correlated spectra (IC-spectrum) which predominantly bear the vibrational characteristics of water in the hydration shell of respective anions. Comparison of these IC-spectra with the Raman spectrum of bulk water in different spectral regions reveals that the water is vibrationally decoupled with its neighbors in the hydration shell. Hydrogen-bond strength and librational freedom also vary with the nature of anion: hydrogen-bond strength, for example, decreases as CO3(2-) > SO4(2-) > bulk water ≈ Cl(-) > I(-); and the librational freedom increases as CO3(2-) ≈ SO4(2-) < bulk water < Cl(-) < I(-). It is believed that these structural perturbations influence the dynamics of coherent energy transfer and librational reorientation of water in the hydration shell of anions.

  19. Heat conduction in chain polymer liquids: molecular dynamics study on the contributions of inter- and intramolecular energy transfer.

    PubMed

    Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro

    2011-07-21

    In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.

  20. The development of novel simulation methodologies and intermolecular potential models for real fluids

    NASA Astrophysics Data System (ADS)

    Errington, Jeffrey Richard

    This work focuses on the development of intermolecular potential models for real fluids. United-atom models have been developed for both non-polar and polar fluids. The models have been optimized to the vapor-liquid coexistence properties. Histogram reweighting techniques were used to calculate phase behavior. The Hamiltonian scaling grand canonical Monte Carlo method was developed to enable the determination of thermodynamic properties of several related Hamiltonians from a single simulation. With this method, the phase behavior of variations of the Buckingham exponential-6 potential was determined. Reservoir grand canonical Monte Carlo simulations were developed to simulate molecules with complex architectures and/or stiff intramolecular constraints. The scheme is based on the creation of a reservoir of ideal chains from which structures are selected for insertion during a simulation. New intermolecular potential models have been developed for water, the n-alkane homologous series, benzene, cyclohexane, carbon dioxide, ammonia and methanol. The models utilize the Buckingham exponential-6 potential to model non-polar interactions and point charges to describe polar interactions. With the exception of water, the new models reproduce experimental saturated densities, vapor pressures and critical parameters to within a few percent. In the case of water, we found a set of parameters that describes the phase behavior better than other available point charge models while giving a reasonable description of the liquid structure. The mixture behavior of water-hydrocarbon mixtures has also been examined. The Henry's law constants of methane, ethane, benzene and cyclohexane in water were determined using Widom insertion and expanded ensemble techniques. In addition the high-pressure phase behavior of water-methane and water-ethane systems was studied using the Gibbs ensemble method. The results from this study indicate that it is possible to obtain a good description of the

  1. Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction

    NASA Astrophysics Data System (ADS)

    Ahmadi, Sareh; Shariati, M. Nina; Yu, Shun; Göthelid, Mats

    2012-08-01

    We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.

  2. Project INTEGRATE - a common methodological approach to understand integrated health care in Europe.

    PubMed

    Cash-Gibson, Lucinda; Rosenmoller, Magdalene

    2014-10-01

    The use of case studies in health services research has proven to be an excellent methodology for gaining in-depth understanding of the organisation and delivery of health care. This is particularly relevant when looking at the complexity of integrated healthcare programmes, where multifaceted interactions occur at the different levels of care and often without a clear link between the interventions (new and/or existing) and their impact on outcomes (in terms of patients health, both patient and professional satisfaction and cost-effectiveness). Still, integrated care is seen as a core strategy in the sustainability of health and care provision in most societies in Europe and beyond. More specifically, at present, there is neither clear evidence on transferable factors of integrated care success nor a method for determining how to establish these specific success factors. The drawback of case methodology in this case, however, is that the in-depth results or lessons generated are usually highly context-specific and thus brings the challenge of transferability of findings to other settings, as different health care systems and different indications are often not comparable. Project INTEGRATE, a European Commission-funded project, has been designed to overcome these problems; it looks into four chronic conditions in different European settings, under a common methodology framework (taking a mixed-methods approach) to try to overcome the issue of context specificity and limited transferability. The common methodological framework described in this paper seeks to bring together the different case study findings in a way that key lessons may be derived and transferred between countries, contexts and patient-groups, where integrated care is delivered in order to provide insight into generalisability and build on existing evidence in this field. To compare the different integrated care experiences, a mixed-methods approach has been adopted with the creation of a common

  3. Enol tautomers of Watson-Crick base pair models are metastable because of nuclear quantum effects.

    PubMed

    Pérez, Alejandro; Tuckerman, Mark E; Hjalmarson, Harold P; von Lilienfeld, O Anatole

    2010-08-25

    Intermolecular enol tautomers of Watson-Crick base pairs could emerge spontaneously via interbase double proton transfer. It has been hypothesized that their formation could be facilitated by thermal fluctuations and proton tunneling, and possibly be relevant to DNA damage. Theoretical and computational studies, assuming classical nuclei, have confirmed the dynamic stability of these rare tautomers. However, by accounting for nuclear quantum effects explicitly through Car-Parrinello path integral molecular dynamics calculations, we find the tautomeric enol form to be dynamically metastable, with lifetimes too insignificant to be implicated in DNA damage.

  4. Intermolecular interactions of trifluorohalomethanes with Lewis bases in the gas phase: An ab initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D., E-mail: sdchao@spring.iam.ntu.edu.tw

    2014-10-07

    We perform an ab initio computational study of molecular complexes with the general formula CF{sub 3}X—B that involve one trifluorohalomethane CF{sub 3}X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH{sub 3} and PH{sub 3}), two n-pairs (H{sub 2}O and H{sub 2}S), two n-pairs with an unsaturated bond (H{sub 2}CO and H{sub 2}CS), and a single π-pairmore » (C{sub 2}H{sub 4}) and two π-pairs (C{sub 2}H{sub 2}). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C–X bond lengths shorten, while the C–X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.« less

  5. A molecular shift register based on electron transfer

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.

    1988-01-01

    An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.

  6. Bottom-up coarse-grained models with predictive accuracy and transferability for both structural and thermodynamic properties of heptane-toluene mixtures.

    PubMed

    Dunn, Nicholas J H; Noid, W G

    2016-05-28

    This work investigates the promise of a "bottom-up" extended ensemble framework for developing coarse-grained (CG) models that provide predictive accuracy and transferability for describing both structural and thermodynamic properties. We employ a force-matching variational principle to determine system-independent, i.e., transferable, interaction potentials that optimally model the interactions in five distinct heptane-toluene mixtures. Similarly, we employ a self-consistent pressure-matching approach to determine a system-specific pressure correction for each mixture. The resulting CG potentials accurately reproduce the site-site rdfs, the volume fluctuations, and the pressure equations of state that are determined by all-atom (AA) models for the five mixtures. Furthermore, we demonstrate that these CG potentials provide similar accuracy for additional heptane-toluene mixtures that were not included their parameterization. Surprisingly, the extended ensemble approach improves not only the transferability but also the accuracy of the calculated potentials. Additionally, we observe that the required pressure corrections strongly correlate with the intermolecular cohesion of the system-specific CG potentials. Moreover, this cohesion correlates with the relative "structure" within the corresponding mapped AA ensemble. Finally, the appendix demonstrates that the self-consistent pressure-matching approach corresponds to minimizing an appropriate relative entropy.

  7. Solid state synthesis, structural, physicochemical and optical properties of an inter-molecular compound: 2-hydroxy-1, 2-diphenylethanone-4-nitro-o-phenylenediamine system

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Singh, Manjeet; Rai, R. N.

    2017-09-01

    The phase diagram of 2-hydroxy-1, 2-diphenylethanone (HDPE)-4-nitro-o-phenylenediamine (NOPDA) system, determined by the thaw-melt method, gives two eutectics E1 (m p = 66.0 °C) and E2 (m p = 155.0 °C) with 0.30 and 0.55 mol fractions of NOPDA, respectively, and an 1:1 inter-molecular compound (IMC) (m p 162.0 °C). This IMC was synthesized by adopting the green synthetic method of solid state reaction. While its formation and structure were confirmed by the X-ray diffraction and spectroscopic methods, the ORTEP view gives mode of crystal packing, C‒H…O, C‒H…N, π-π stacking and the inter-molecular hydrogen bonding in the compound. The single crystal of the IMC shows 53% transmission and emits significantly higher dual fluorescence, and the band gap was computed to be 3.04 eV. The values of solubility of the IMC, measured in the temperature range 304-322 K, satisfy the mole fraction (X) and temperature equation: Xeq= 5.1324 × 10-7 e 0.01356T.

  8. Optimal trajectories for aeroassisted orbital transfer

    NASA Technical Reports Server (NTRS)

    Miele, A.; Venkataraman, P.

    1983-01-01

    Consideration is given to classical and minimax problems involved in aeroassisted transfer from high earth orbit (HEO) to low earth orbit (LEO). The transfer is restricted to coplanar operation, with trajectory control effected by means of lift modulation. The performance of the maneuver is indexed to the energy expenditure or, alternatively, the time integral of the heating rate. Firist-order optimality conditions are defined for the classical approach, as are a sequential gradient-restoration algorithm and a combined gradient-restoration algorithm. Minimization techniques are presented for the aeroassisted transfer energy consumption and time-delay integral of the heating rate, as well as minimization of the pressure. It is shown that the eigenvalues of the Jacobian matrix of the differential system is both stiff and unstable, implying that the sequential gradient restoration algorithm in its present version is unsuitable. A new method, involving a multipoint approach to the two-poing boundary value problem, is recommended.

  9. Diiodobodipy-styrylbodipy Dyads: Preparation and Study of the Intersystem Crossing and Fluorescence Resonance Energy Transfer.

    PubMed

    Wang, Zhijia; Xie, Yun; Xu, Kejing; Zhao, Jianzhang; Glusac, Ksenija D

    2015-07-02

    2,6-Diiodobodipy-styrylbodipy dyads were prepared to study the competing intersystem crossing (ISC) and the fluorescence-resonance-energy-transfer (FRET), and its effect on the photophysical property of the dyads. In the dyads, 2,6-diiodobodipy moiety was used as singlet energy donor and the spin converter for triplet state formation, whereas the styrylbodipy was used as singlet and triplet energy acceptors, thus the competition between the ISC and FRET processes is established. The photophysical properties were studied with steady-state UV-vis absorption and fluorescence spectroscopy, electrochemical characterization, and femto/nanosecond time-resolved transient absorption spectroscopies. FRET was confirmed with steady state fluorescence quenching and fluorescence excitation spectra and ultrafast transient absorption spectroscopy (kFRET = 5.0 × 10(10) s(-1)). The singlet oxygen quantum yield (ΦΔ = 0.19) of the dyad was reduced as compared with that of the reference spin converter (2,6-diiodobodipy, ΦΔ = 0.85), thus the ISC was substantially inhibited by FRET. Photoinduced intramolecular electron transfer (ET) was studied by electrochemical data and fluorescence quenching. Intermolecular triplet energy transfer was studied with nanosecond transient absorption spectroscopy as an efficient (ΦTTET = 92%) and fast process (kTTET = 5.2 × 10(4) s(-1)). These results are useful for designing organic triplet photosensitizers and for the study of the photophysical properties.

  10. Electric-field-driven electron-transfer in mixed-valence molecules.

    PubMed

    Blair, Enrique P; Corcelli, Steven A; Lent, Craig S

    2016-07-07

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate the electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.

  11. Electric-field-driven electron-transfer in mixed-valence molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, Enrique P., E-mail: enrique-blair@baylor.edu; Corcelli, Steven A., E-mail: scorcell@nd.edu; Lent, Craig S., E-mail: lent@nd.edu

    2016-07-07

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate themore » electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.« less

  12. Interplay between intramolecular and intermolecular structures of 1,1,2,2-tetrachloro-1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Rovira-Esteva, M.; Murugan, N. A.; Pardo, L. C.; Busch, S.; Tamarit, J. Ll.; Pothoczki, Sz.; Cuello, G. J.; Bermejo, F. J.

    2011-08-01

    We report on the interplay between the short-range order of molecules in the liquid phase of 1,1,2,2-tetrachloro-1,2-difluoroethane and the possible molecular conformations, trans and gauche. Two complementary approaches have been used to get a comprehensive picture: analysis of neutron-diffraction data by a Bayesian fit algorithm and a molecular dynamics simulation. The results of both show that the population of trans and gauche conformers in the liquid state can only correspond to the gauche conformer being more stable than the trans conformer. Distinct conformer geometries induce distinct molecular short-range orders around them, suggesting that a deep intra- and intermolecular interaction coupling is energetically favoring one of the conformers by reducing the total molecular free energy.

  13. Accurate radiative transfer calculations for layered media.

    PubMed

    Selden, Adrian C

    2016-07-01

    Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics.

  14. Excitation energy transfer in molecular complexes: transport processes, optical properties and effects of nearby placed metal nano-particles

    NASA Astrophysics Data System (ADS)

    May, Volkhard; Megow, Jörg; Zelinskyi, Iaroslav

    2012-04-01

    Excitation energy transfer (EET) in molecular systems is studied theoretically. Chromophore complexes are considered which are formed by a butanediamine dendrimer with four pheophorbide-a molecules. To achieve a description with an atomic resolution and to account for the effect of an ethanol solvent a mixed quantum classical methodology is utilized. Details of the EET and spectra of transient anisotropy showing signatures of EET are presented. A particular control of intermolecular EET is achieved by surface plasmons of nearby placed metal nanoparticles (MNP). To attain a quantum description of the molecule-MNP system a microscopic theory is introduced. As a particular application surface plasmon affected absorption spectra of molecular complexes placed in the proximity of a spherical MNP are discussed.

  15. Correlational Effects of the Molecular-Tilt Configuration and the Intermolecular van der Waals Interaction on the Charge Transport in the Molecular Junction.

    PubMed

    Shin, Jaeho; Gu, Kyungyeol; Yang, Seunghoon; Lee, Chul-Ho; Lee, Takhee; Jang, Yun Hee; Wang, Gunuk

    2018-06-25

    Molecular conformation, intermolecular interaction, and electrode-molecule contacts greatly affect charge transport in molecular junctions and interfacial properties of organic devices by controlling the molecular orbital alignment. Here, we statistically investigated the charge transport in molecular junctions containing self-assembled oligophenylene molecules sandwiched between an Au probe tip and graphene according to various tip-loading forces ( F L ) that can control the molecular-tilt configuration and the van der Waals (vdW) interactions. In particular, the molecular junctions exhibited two distinct transport regimes according to the F L dependence (i.e., F L -dependent and F L -independent tunneling regimes). In addition, the charge-injection tunneling barriers at the junction interfaces are differently changed when the F L ≤ 20 nN. These features are associated to the correlation effects between the asymmetry-coupling factor (η), the molecular-tilt angle (θ), and the repulsive intermolecular vdW force ( F vdW ) on the molecular-tunneling barriers. A more-comprehensive understanding of these charge transport properties was thoroughly developed based on the density functional theory calculations in consideration of the molecular-tilt configuration and the repulsive vdW force between molecules.

  16. Intermolecular Interactions and the Viscosity of Highly Concentrated Monoclonal Antibody Solutions.

    PubMed

    Binabaji, Elaheh; Ma, Junfen; Zydney, Andrew L

    2015-09-01

    The large increase in viscosity of highly concentrated monoclonal antibody solutions can be challenging for downstream processing, drug formulation, and delivery steps. The objective of this work was to examine the viscosity of highly concentrated solutions of a high purity IgG1 monoclonal antibody over a wide range of protein concentrations, solution pH, ionic strength, and in the presence / absence of different excipients. Experiments were performed with an IgG1 monoclonal antibody provided by Amgen. The steady-state viscosity was evaluated using a Rheometrics strain-controlled rotational rheometer with a concentric cylinder geometry. The viscosity data were well-described by the Mooney equation. The data were analyzed in terms of the antibody virial coefficients obtained from osmotic pressure data evaluated under the same conditions. The viscosity coefficient in the absence of excipients was well correlated with the third osmotic virial coefficient, which has a negative value (corresponding to short range attractive interactions) at the pH and ionic strength examined in this work. These results provide important insights into the effects of intermolecular protein-protein interactions on the behavior of highly concentrated antibody solutions.

  17. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    PubMed

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  18. Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp3 carbons

    PubMed Central

    Wu, Xuesong; Yang, Ke; Zhao, Yan; Sun, Hao; Li, Guigen; Ge, Haibo

    2015-01-01

    Cobalt-catalysed sp2 C–H bond functionalization has attracted considerable attention in recent years because of the low cost of cobalt complexes and interesting modes of action in the process. In comparison, much less efforts have been devoted to the sp3 carbons. Here we report the cobalt-catalysed site-selective dehydrogenative cyclization of aliphatic amides via a C–H bond functionalization process on unactivated sp3 carbons with the assistance of a bidentate directing group. This method provides a straightforward synthesis of monocyclic and spiro β- or γ-lactams with good to excellent stereoselectivity and functional group tolerance. In addition, a new procedure has been developed to selectively remove the directing group, which enables the synthesis of free β- or γ-lactam compounds. Furthermore, the first cobalt-catalysed intermolecular dehydrogenative amination of unactivated sp3 carbons is also realized. PMID:25753366

  19. Transfer of Training: 1988-2011 with the Practitioner in Mind

    ERIC Educational Resources Information Center

    Lionetti, Patsy

    2012-01-01

    The purpose of this study was to provide a comprehensive, integrated review of transfer of training literature from 1988 to 2011 and to consolidate the findings to provide action oriented suggestions for practitioners. Research questions for this study were: (a) What characteristics in the transfer of training literature influence transfer of…

  20. Concentration and temperature dependence of the refractive index of ethanol-water mixtures: influence of intermolecular interactions.

    PubMed

    Riobóo, R J; Philipp, M; Ramos, M A; Krüger, J K

    2009-09-01

    The temperature and concentration dependence of the refractive index, nD(x, T), in ethanol-water mixtures agrees with previous data in the ethanol-rich concentration range. The refractive index versus concentration x determined at 20 degrees C shows the expected maximum at about 41 mol% water (22 mass% water). The temperature derivative of the refractive index, dnD/dT, shows anomalies at lower water concentrations at about 10 mol% water but no anomaly at 41 mol% water. Both anomalies are related to intermolecular interactions, the one in nD seems to be due to molecular segregation and cluster formation while the origin of the second one in dnD/dT is still not clear.

  1. Lewis Acid-Assisted Photoinduced Intermolecular Coupling between Acylsilanes and Aldehydes: A Formal Cross Benzoin-Type Condensation.

    PubMed

    Ishida, Kento; Tobita, Fumiya; Kusama, Hiroyuki

    2018-01-12

    Intermolecular carbon-carbon bond-forming reaction between readily available acylsilanes and aldehydes was achieved under photoirradiation conditions with assistance of a catalytic amount of Lewis acid. Nucleophilic addition of photochemically generated siloxycarbenes to aldehydes followed by 1,4-silyl migration afforded synthetically useful α-siloxyketones. Electrophilic activation of aldehydes by Lewis acid is highly important to realize this reaction efficiently, otherwise the yield of the desired coupling products were significantly decreased. Noteworthy is that a formal cross benzoin-type reaction using acylsilanes was achieved under Lewis acidic conditions. This is the first example of Lewis acid-catalyzed reaction of photochemically generated siloxycarbenes with electrophiles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Modeling the Alzheimer Abeta17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities.

    PubMed

    Zheng, Jie; Jang, Hyunbum; Ma, Buyong; Tsai, Chung-Jun; Nussinov, Ruth

    2007-11-01

    We investigate Abeta(17-42) protofibril structures in solution using molecular dynamics simulations. Recently, NMR and computations modeled the Abeta protofibril as a longitudinal stack of U-shaped molecules, creating an in-parallel beta-sheet and loop spine. Here we study the molecular architecture of the fibril formed by spine-spine association. We model in-register intermolecular beta-sheet-beta-sheet associations and study the consequences of Alzheimer's mutations (E22G, E22Q, E22K, and M35A) on the organization. We assess the structural stability and association force of Abeta oligomers with different sheet-sheet interfaces. Double-layered oligomers associating through the C-terminal-C-terminal interface are energetically more favorable than those with the N-terminal-N-terminal interface, although both interfaces exhibit high structural stability. The C-terminal-C-terminal interface is essentially stabilized by hydrophobic and van der Waals (shape complementarity via M35-M35 contacts) intermolecular interactions, whereas the N-terminal-N-terminal interface is stabilized by hydrophobic and electrostatic interactions. Hence, shape complementarity, or the "steric zipper" motif plays an important role in amyloid formation. On the other hand, the intramolecular Abeta beta-strand-loop-beta-strand U-shaped motif creates a hydrophobic cavity with a diameter of 6-7 A, allowing water molecules and ions to conduct through. The hydrated hydrophobic cavities may allow optimization of the sheet association and constitute a typical feature of fibrils, in addition to the tight sheet-sheet association. Thus, we propose that Abeta fiber architecture consists of alternating layers of tight packing and hydrated cavities running along the fibrillar axis, which might be possibly detected by high-resolution imaging.

  3. Molecular dynamics and charge transport in organic semiconductors: a classical approach to modeling electron transfer

    DOE PAGES

    Pelzer, Kenley M.; Vázquez-Mayagoitia, Álvaro; Ratcliff, Laura E.; ...

    2017-01-01

    Organic photovoltaics (OPVs) are a promising carbon-neutral energy conversion technology, with recent improvements pushing power conversion efficiencies over 10%. A major factor limiting OPV performance is inefficiency of charge transport in organic semiconducting materials (OSCs). Due to strong coupling with lattice degrees of freedom, the charges form polarons, localized quasi-particles comprised of charges dressed with phonons. These polarons can be conceptualized as pseudo-atoms with a greater effective mass than a bare charge. Here we propose that due to this increased mass, polarons can be modeled with Langevin molecular dynamics (LMD), a classical approach with a computational cost much lower thanmore » most quantum mechanical methods. Here we present LMD simulations of charge transfer between a pair of fullerene molecules, which commonly serve as electron acceptors in OSCs. We find transfer rates consistent with experimental measurements of charge mobility, suggesting that this method may provide quantitative predictions of efficiency when used to simulate materials on the device scale. Our approach also offers information that is not captured in the overall transfer rate or mobility: in the simulation data, we observe exactly when and why intermolecular transfer events occur. In addition, we demonstrate that these simulations can shed light on the properties of polarons in OSCs. In conclusion, much remains to be learned about these quasi-particles, and there are no widely accepted methods for calculating properties such as effective mass and friction. Lastly, our model offers a promising approach to exploring mass and friction as well as providing insight into the details of polaron transport in OSCs.« less

  4. Förster Resonance Energy Transfer Evidence for Lysozyme Oligomerization in Lipid Environment

    PubMed Central

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Sarkar, Pabak; Luchowski, Rafal; Akopova, Irina; Patsenker, Leonid D.; Klochko, Oleksii; Tatarets, Anatoliy L.; Kudriavtseva, Yuliia O.; Terpetschnig, Ewald A.; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2012-01-01

    Intermolecular time-resolved and single-molecule Förster resonance energy transfer (FRET) have been applied to detect quantitatively the aggregation of polycationic protein lysozyme (Lz) in the presence of lipid vesicles composed of phosphatidylcholine (PC) and its mixture with 5, 10, 20, or 40 mol % of phosphatidylglycerol (PG) (PG5, PG10, PG20, or PG40, respectively). Upon binding to PC, PG5, or PG10 model membranes, Lz was found to retain its native monomeric conformation, while increasing content of anionic lipid up to 20 or 40 mol % resulted in the formation of Lz aggregates. The structural parameters of protein self-association (the degree of oligomerization, the distance between the monomers in protein assembly, and the fraction of donors present in oligomers) have been derived. The crucial role of the factors such as lateral density of the adsorbed protein and electrostatic and hydrophobic Lz–lipid interactions in controlling the protein self-association behavior has been proposed. PMID:21126034

  5. Cooperativity of anion⋯π and π⋯π interactions regulates the self-assembly of a series of carbene proligands: Towards quantitative analysis of intermolecular interactions with Hirshfeld surface

    NASA Astrophysics Data System (ADS)

    Samanta, Tapastaru; Dey, Lingaraj; Dinda, Joydev; Chattopadhyay, Shyamal Kumar; Seth, Saikat Kumar

    2014-06-01

    The cooperative effect of weak non-covalent forces between anions and electron deficient aromatics by π⋯π stacking of a series of carbene proligands (1-3) have been thoroughly explored by crystallographic studies. Structural analysis revealed that the anion⋯π and π⋯π interactions along with intermolecular hydrogen bonding mutually cooperate to facilitate the assembling of the supramolecular framework. The π⋯π and corresponding anion⋯π interactions have been investigated in the title carbene proligands despite their association with counter ions. The presence of the anion in the vicinity of the π-system leads to the formation of anion⋯π/π⋯π/π⋯anion network for an inductive stabilization of the assemblies. To assess the dimensionality of the supramolecular framework consolidated by cooperative anion⋯π/π⋯π interactions and hydrogen bonding, different substituent effects in the carbene backbone have been considered to tune these interactions. These facts show that the supramolecular framework based on these cooperative weak forces may be robust enough for application in molecular recognition. The investigation of close intermolecular interactions between the molecules via Hirshfeld surface analyses is presented in order to reveal subtle differences and similarities in the crystal structures. The decomposition of the fingerprint plot area provides a percentage of each intermolecular interaction, allowing for a quantified analysis of close contacts within each crystal.

  6. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set

    NASA Astrophysics Data System (ADS)

    Oberhofer, Harald; Blumberger, Jochen

    2010-12-01

    We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( {< {| {H_ab } |^2 } > } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.

  7. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  8. Chromosomal Expression of the Haemophilus influenzae Hap Autotransporter Allows Fine-Tuned Regulation of Adhesive Potential via Inhibition of Intermolecular Autoproteolysis

    PubMed Central

    Fink, Doran L.; St. Geme III, Joseph W.

    2003-01-01

    The Haemophilus influenzae Hap autotransporter is a nonpilus adhesin that promotes adherence to respiratory epithelial cells and selected extracellular matrix proteins and facilitates bacterial aggregation and microcolony formation. Hap consists of a 45-kDa outer membrane translocator domain called Hapβ and a 110-kDa extracellular passenger domain called HapS. All adhesive activity resides within HapS, which also contains protease activity and directs its own secretion from the bacterial cell surface via intermolecular autoproteolysis. In the present study, we sought to determine the relationship between the magnitude of Hap expression, the efficiency of Hap autoproteolysis, and the level of Hap-mediated adherence and aggregation. We found that a minimum threshold of Hap precursor was required for autoproteolysis and that this threshold approximated expression of Hap from a chromosomal allele, as occurs in H. influenzae clinical isolates. Chromosomal expression of wild-type Hap was sufficient to promote significant adherence to epithelial cells and extracellular matrix proteins, and adherence was enhanced substantially by inhibition of autoproteolysis. In contrast, chromosomal expression of Hap was sufficient to promote bacterial aggregation only when autoproteolysis was inhibited, indicating that the threshold for Hap-mediated aggregation is above the threshold for autoproteolysis. These results highlight the critical role of autoproteolysis and an intermolecular mechanism of cleavage in controlling the diverse adhesive activities of Hap. PMID:12591878

  9. The integrated contaminant elution and tracer test toolkit, ICET3, for improved characterization of mass transfer, attenuation, and mass removal

    NASA Astrophysics Data System (ADS)

    Brusseau, Mark L.; Guo, Zhilin

    2018-01-01

    It is evident based on historical data that groundwater contaminant plumes persist at many sites, requiring costly long-term management. High-resolution site-characterization methods are needed to support accurate risk assessments and to select, design, and operate effective remediation operations. Most subsurface characterization methods are generally limited in their ability to provide unambiguous, real-time delineation of specific processes affecting mass-transfer, transformation, and mass removal, and accurate estimation of associated rates. An integrated contaminant elution and tracer test toolkit, comprising a set of local-scale groundwater extraction-and injection tests, was developed to ameliorate the primary limitations associated with standard characterization methods. The test employs extended groundwater extraction to stress the system and induce hydraulic and concentration gradients. Clean water can be injected, which removes the resident aqueous contaminant mass present in the higher-permeability zones and isolates the test zone from the surrounding plume. This ensures that the concentrations and fluxes measured within the isolated area are directly and predominantly influenced by the local mass-transfer and transformation processes controlling mass removal. A suite of standard and novel tracers can be used to delineate specific mass-transfer and attenuation processes that are active at a given site, and to quantify the associated mass-transfer and transformation rates. The conceptual basis for the test is first presented, followed by an illustrative application based on simulations produced with a 3-D mathematical model and a brief case study application.

  10. Intra- versus Intermolecular Hydrogen Bonding: Solvent-Dependent Conformational Preferences of a Common Supramolecular Binding Motif from 1 H NMR and Vibrational Circular Dichroism Spectra.

    PubMed

    Demarque, Daniel P; Merten, Christian

    2017-12-19

    When predicting binding properties of small molecules or larger supramolecular aggregates, intra- and intermolecular hydrogen bonds are often considered the most important factor. Spectroscopic techniques such as 1 H NMR spectroscopy are typically utilized to characterize such binding events, but interpretation is often qualitative and follows chemical intuition. In this study, we compare the effects of intramolecular hydrogen bonding and solvation on two chiral 2,6-pyridinediyl-dialkylamides. In comparison with 1 H NMR spectroscopy, vibrational circular dichroism (VCD) spectroscopy proved to be more sensitive to conformational changes. In fact, the change of the solvent from CDCl 3 to [D 6 ]DMSO generates mirror-image VCD spectra for the same enantiomer. Here, the common sense that the sterically less hindered group is more prone to solvation proved to be wrong according predicted VCD spectra, which clearly show that both asymmetric amide hydrogens are equally likely to be solvated, but never simultaneously. The competition between intra- and intermolecular hydrogen bonding and their importance for a correct prediction of spectral properties are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rhodium(III)-Catalyzed Activation of C(sp3)-H Bonds and Subsequent Intermolecular Amidation at Room Temperature.

    PubMed

    Huang, Xiaolei; Wang, Yan; Lan, Jingbo; You, Jingsong

    2015-08-03

    Disclosed herein is a Rh(III)-catalyzed chelation-assisted activation of unreactive C(sp3)-H bonds, thus enabling an intermolecular amidation to provide a practical and step-economic route to 2-(pyridin-2-yl)ethanamine derivatives. Substrates with other N-donor groups are also compatible with the amidation. This protocol proceeds at room temperature, has a relatively broad functional-group tolerance and high selectivity, and demonstrates the potential of rhodium(III) in the promotive functionalization of unreactive C(sp3)-H bonds. A rhodacycle having a SbF6(-) counterion was identified as a plausible intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. One-pot stereoselective synthesis of α,β-differentiated diamino esters via the sequence of aminochlorination, aziridination and intermolecular SN2 reaction.

    PubMed

    Xiong, Yiwen; Qian, Ping; Cao, Chenhui; Mei, Haibo; Han, Jianlin; Li, Guigen; Pan, Yi

    2014-01-01

    We report here an efficient one-pot method for the synthesis of α,β-differentiated diamino esters directly from cinnamate esters using N,N-dichloro-p-toluenesulfonamide and benzylamine as nitrogen sources. The key transformations include a Cu-catalyzed aminohalogenation and aziridination, followed by an intermolecular SN2 nucleophilic ring opening by benzylamine. The reactions feature a wide scope of substrates and proceed with excellent stereo- and regioselectivity (anti:syn >99:1) .

  13. Structural and spectroscopic characterizations on the charge-transfer interactions of the second generation poly(propylene amine) dendrimers with iodine and picric acid acceptors.

    PubMed

    El-Sayed, Mohamed Y; Refat, Moamen S

    2015-02-25

    Herein, this study was focused to get a knowledge about the intermolecular charge transfer complexes between the second generation of poly(propylene amine) dendrimer (PPD2) with picric acid (PA) and iodine (I2) as π and σ-acceptors. The charge-transfer interaction of the PPD2 electron donor and the PA acceptor has been studied in CHCl3. The resulted data refereed to the formation of the new CT-complex with the general formula [(PPD2)(PA)4]. The 1:4 stoichiometry of the reaction was discussed upon the on elemental analysis and photometric titration. On the other hand, the 1:3½ iodine-PPD2 heptaiodide (I7(-)) charge-transfer complex has been studied spectrophotometrically in chloroform at room temperature with general formula [(PPD2)](+)I7(-). The electronic absorption bands of 2I2·I3(-) (I7(-)) are observed at 358 and 294 nm. Raman laser spectrum of the brown solid heptaiodide complex has two clearly vibration bands at 155 and 110 cm(-1) due to symmetric stretching νs(II) outer and inner bonds, respectively. The (1)H NMR spectra and differential scanning calorimetry (DSC) data of PPD2 charge-transfer complexes were discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Structural and spectroscopic characterizations on the charge-transfer interactions of the second generation poly(propylene amine) dendrimers with iodine and picric acid acceptors

    NASA Astrophysics Data System (ADS)

    El-Sayed, Mohamed Y.; Refat, Moamen S.

    2015-02-01

    Herein, this study was focused to get a knowledge about the intermolecular charge transfer complexes between the second generation of poly(propylene amine) dendrimer (PPD2) with picric acid (PA) and iodine (I2) as π and σ-acceptors. The charge-transfer interaction of the PPD2 electron donor and the PA acceptor has been studied in CHCl3. The resulted data refereed to the formation of the new CT-complex with the general formula [(PPD2)(PA)4]. The 1:4 stoichiometry of the reaction was discussed upon the on elemental analysis and photometric titration. On the other hand, the 1:3½ iodine-PPD2 heptaiodide (I7-) charge-transfer complex has been studied spectrophotometrically in chloroform at room temperature with general formula [(PPD2)]+I7-. The electronic absorption bands of 2I2·I3- (I7-) are observed at 358 and 294 nm. Raman laser spectrum of the brown solid heptaiodide complex has two clearly vibration bands at 155 and 110 cm-1 due to symmetric stretching νs(Isbnd I) outer and inner bonds, respectively. The 1H NMR spectra and differential scanning calorimetry (DSC) data of PPD2 charge-transfer complexes were discussed.

  15. Functional characteristics of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. BL-31 highly specific for intermolecular transglycosylation of bioflavonoids.

    PubMed

    Go, Young-Hoon; Kim, Tae-Kwon; Lee, Kwang-Woo; Lee, Yong-Hyun

    2007-09-01

    The functional characteristics of a beta-cyclodextrin glucanotransferase (CGTase) excreted from alkalophilic Bacillus sp. BL-31 that is highly specific for the intermolecular transglycosylation of bioflavonoids were investigated. The new beta-CGTase showed high specificities for glycosyl acceptor bioflavonoids, including naringin, rutin, and hesperidin, and especially naringin. The transglycosylation of naringin into glycosyl naringin was then carried out under the conditions of 80 units of CGTase per gram of maltodextrin, 5 g/l of naringin, 25 g/l of maltodextrin, and 1 mM Mn2+ ion at 40 degrees C for 6 h, resulting in a high conversion yield of 92.1%.

  16. Intermolecular interactions in aqueous solutions of gallic acid at 296-306 K according to spectrofluorimetry and densimetry data

    NASA Astrophysics Data System (ADS)

    Grigoryan, K. R.; Sargsyan, L. S.

    2015-12-01

    Features of intermolecular interactions in aqueous solutions of gallic acid (GA) are studied by means of densimetry and fluorescence spectroscopy (intrinsic fluorescence, 2D spectra, and excitation/ emission matrix fluorescence spectra, 3D) at 296.15, 301.15, and 306.15 K in the concentration range of 5.88 × 10-4-5.88 × 10-2 mol L-1. It is shown by analyzing the concentration and temperature dependences of the apparent molar volumes and fluorescence parameters of GA that the equilibrium between nonassociated and associated species in the solution and the hydration of these species undergo changes.

  17. Structural integrity of callosal midbody influences intermanual transfer in a motor reaction-time task.

    PubMed

    Bonzano, Laura; Tacchino, Andrea; Roccatagliata, Luca; Mancardi, Giovanni Luigi; Abbruzzese, Giovanni; Bove, Marco

    2011-02-01

    Training one hand on a motor task results in performance improvements in the other hand, also when stimuli are randomly presented (nonspecific transfer). Corpus callosum (CC) is the main structure involved in interhemispheric information transfer; CC pathology occurs in patients with multiple sclerosis (PwMS) and is related to altered performance of tasks requiring interhemispheric transfer of sensorimotor information. To investigate the role of CC in nonspecific transfer during a pure motor reaction-time task, we combined motor behavior with diffusion tensor imaging analysis in PwMS. Twenty-two PwMS and 10 controls, all right-handed, were asked to respond to random stimuli with appropriate finger opposition movements with the right (learning) and then the left (transfer) hand. PwMS were able to improve motor performance reducing response times with practice with a trend similar to controls and preserved the ability to transfer the acquired motor information from the learning to the transfer hand. A higher variability in the transfer process, indicated by a significantly larger standard deviation of mean nonspecific transfer, was found in the PwMS group with respect to the control group, suggesting the presence of subtle impairments in interhemispheric communication in some patients. Then, we correlated the amount of nonspecific transfer with mean fractional anisotropy (FA) values, indicative of microstructural damage, obtained in five CC subregions identified on PwMS's FA maps. A significant correlation was found only in the subregion including posterior midbody (Pearson's r = 0.74, P = 0.003), which thus seems to be essential for the interhemispheric transfer of information related to pure sensorimotor tasks. Copyright © 2010 Wiley-Liss, Inc.

  18. Spectroscopic and physical measurements on charge-transfer complexes: Interactions between norfloxacin and ciprofloxacin drugs with picric acid and 3,5-dinitrobenzoic acid acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Elfalaky, A.; Elesh, Eman

    2011-03-01

    Charge-transfer complexes formed between norfloxacin (nor) or ciprofloxacin (cip) drugs as donors with picric acid (PA) and/or 3,5-dinitrobenzoic acid (DNB) as π-acceptors have been studied spectrophotometrically in methanol solvent at room temperature. The results indicated the formation of CT-complexes with molar ratio1:1 between donor and acceptor at maximum CT-bands. In the terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ Go), oscillator strength ( f), transition dipole moment (μ), resonance energy ( RN) and ionization potential ( ID) were estimated. IR, H NMR, UV-Vis techniques, elemental analyses (CHN) and TG-DTG investigations were used to characterize the structural of charge-transfer complexes. It indicates that the CT interaction was associated with a proton migration from each acceptor to nor or cip donors which followed by appearing intermolecular hydrogen bond. In addition, X-ray investigation was carried out to scrutinize the crystal structure of the resulted CT-complexes.

  19. Rotary high power transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jacobson, Peter E. (Inventor); Porter, Ryan S. (Inventor)

    1987-01-01

    An apparatus for reducing terminal-to-terminal circuit resistance and enhancing heat transfer in a rotary power transfer apparatus of the roll ring type comprising a connecting thimble for attaching an external power cable to a cone shaped terminal which is attached to a tab integral to an outer ring. An inner ring having a spherical recess mates with the spherical end of a tie connector. A cone shaped terminal is fitted to a second connecting thimble for attaching a second external power cable.

  20. Resonance dynamical intermolecular interaction in the crystals of pure and binary mixture n-paraffins

    NASA Astrophysics Data System (ADS)

    Puchkovska, G. O.; Danchuk, V. D.; Makarenko, S. P.; Kravchuk, A. P.; Kotelnikova, E. N.; Filatov, S. K.

    2004-12-01

    In the present paper, we report temperature dependent FTIR spectra studies of Davydov splitting value for CH 2 rocking vibrations of pure crystalline n-paraffins C nH 2 n+2 ( n is the number of carbon atoms) and some isomorphically substituted binary mixtures of n-paraffins C 22H 46:C 24H 50. Temperature dependencies of Davydov splitting value have been shown to be characterized by the amount of irregularities (sharp decreasing), which corresponds to the phase transitions into the high-temperature (hexagonal) state for pure n-paraffins or different rotator crystalline states for the mixtures. Statistic and dynamic models have been proposed, which provides an adequate description of the observed effect. In the framework of these models, two different mechanisms are responsible for the temperature behavior of the vibrational mode splitting value. Besides the thermal expansion of crystals at heating, the quenching of vibrational excitons on the orientational defects of different nature takes place, accompanied with the breakage of the crystal lattice translational symmetry. The creation of such defects is resulted from the excitation of librational and rotational molecular degrees of freedom at the crystal polymorphic transitions into different rotary crystalline states. The manifestation of the resonance dynamical intermolecular interaction in the spectra of intramolecular vibrations in these crystals has been theoretically analyzed in terms of stochastic equations, taking into consideration the above mentioned phase transition. We have obtained the explicit expression for the theoretically predicted dependence of Davydov splitting value on temperature. The absorption bands, corresponding to Davydov splitting components, have been shown to approach rapidly each other at the transition to the high-temperature (hexagonal) phase. Computer simulation of such dependence has been performed for some aliphatic compounds. Good agreement between the experimental and computer

  1. Study of Thermodynamic Vent and Screen Baffle Integration for Orbital Storage and Transfer of Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1973-01-01

    A comprehensive analytical and experimental program was performed to determine the feasibility of integrating an internal thermodynamic vent system and a full wall-screen liner for the orbital storage and transfer of liquid hydrogen (LH2). Ten screens were selected from a comprehensive screen survey. The experimental study determined the screen bubble point, flow-through pressure loss, and pressure loss along rectangular channels lined with screen on one side, for the 10 screens using LH2 saturated at 34.5 N/cm2 (50 psia). The correlated experimental data were used in an analysis to determine the optimum system characteristics in terms of minimum weight for 6 tanks ranging from 141.6 m3 (5,000 ft3) to 1.416 m3 (50 ft3) for orbital storage times of 30 and 300 days.

  2. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    PubMed

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  3. Exploring the Details of Intermolecular Interactions via a Systematic Characterization of the Structures of the Bimolecular Heterodimers Formed Between Protic Acids and Haloethylenes

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.

    2017-06-01

    In the early 2000's, the work of Cole and Legon, combined with that done earlier by Kisiel, Fowler, and Legon, demonstrated that comparisons among the complexes of HF, HCl, and HCCH each with vinyl fluoride could provide information concerning the strength of intermolecular interactions. Specifically, that the length of the hydrogen bond and its deviation from linearity as a result of a secondary interaction with the nucleophilic portion of the protic acid could be correlated with the hydrogen bond strength. Building on this foundation, we undertook a systematic characterization of the molecular structures of complexes formed between these three acids and the remaining polar fluoroethylenes, seeking to unravel the nature of their intermolecular interactions. What started out as a simple confirmation of chemical intuition regarding relative interaction strengths developed into a fuller appreciation of the competition between electrostatic and steric forces in determining the lowest energy configuration for the heterodimer. Additional surprises were in store for us as we expanded the study to chlorofluoroethylenes. Although the first few examples again served to confirm earlier conclusions, subsequent complexes provided unexpected results that signaled an increasing importance of the dispersion interaction in determining the geometry of the complex as well as the fundamental differences in the electron distributions surrounding the halogens in a C-F versus C-Cl bond. Our work with these species has not only allowed us to investigate fundamental questions regarding intermolecular interactions, but obtaining and analyzing the spectra of these complexes along with those of the various haloethylene monomers and their complexes with the argon atom have provided an introduction to molecular spectroscopy and structure determination for many undergraduate students. G.C. Cole and A.C. Legon, Chem. Phys. Lett. 369, 31-40 (2003). G.C. Cole and A.C. Legon, Chem. Phys. Lett. 400

  4. An Integrated On-Line Transfer Credit Evaluation System-Admissions through Graduation Audit.

    ERIC Educational Resources Information Center

    Schuman, Chester D.

    This document discusses a computerized transfer evaluation system designed by Pennsylvania College of Technology, a comprehensive two-year institution with an enrollment of over 4,800 students. It is noted that the Admissions Office processes approximately 500 transfer applications for a fall semester, as well as a large number of evaluations for…

  5. Inter-molecular β-sheet structure facilitates lung-targeting siRNA delivery

    NASA Astrophysics Data System (ADS)

    Zhou, Jihan; Li, Dong; Wen, Hao; Zheng, Shuquan; Su, Cuicui; Yi, Fan; Wang, Jue; Liang, Zicai; Tang, Tao; Zhou, Demin; Zhang, Li-He; Liang, Dehai; Du, Quan

    2016-03-01

    Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures. Results showed that K-β peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications.

  6. Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham.

    PubMed

    Amézquita, A; Weller, C L; Wang, L; Thippareddi, H; Burson, D E

    2005-05-25

    Numerous small meat processors in the United States have difficulties complying with the stabilization performance standards for preventing growth of Clostridium perfringens by 1 log10 cycle during cooling of ready-to-eat (RTE) products. These standards were established by the Food Safety and Inspection Service (FSIS) of the US Department of Agriculture in 1999. In recent years, several attempts have been made to develop predictive models for growth of C. perfringens within the range of cooling temperatures included in the FSIS standards. Those studies mainly focused on microbiological aspects, using hypothesized cooling rates. Conversely, studies dealing with heat transfer models to predict cooling rates in meat products do not address microbial growth. Integration of heat transfer relationships with C. perfringens growth relationships during cooling of meat products has been very limited. Therefore, a computer simulation scheme was developed to analyze heat transfer phenomena and temperature-dependent C. perfringens growth during cooling of cooked boneless cured ham. The temperature history of ham was predicted using a finite element heat diffusion model. Validation of heat transfer predictions used experimental data collected in commercial meat-processing facilities. For C. perfringens growth, a dynamic model was developed using Baranyi's nonautonomous differential equation. The bacterium's growth model was integrated into the computer program using predicted temperature histories as input values. For cooling cooked hams from 66.6 degrees C to 4.4 degrees C using forced air, the maximum deviation between predicted and experimental core temperature data was 2.54 degrees C. Predicted C. perfringens growth curves obtained from dynamic modeling showed good agreement with validated results for three different cooling scenarios. Mean absolute values of relative errors were below 6%, and deviations between predicted and experimental cell counts were within 0.37 log10

  7. Friendly Extensible Transfer Tool Beta Version

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William P.; Gutierrez, Kenneth M.; McRee, Susan R.

    2016-04-15

    Often data transfer software is designed to meet specific requirements or apply to specific environments. Frequently, this requires source code integration for added functionality. An extensible data transfer framework is needed to more easily incorporate new capabilities, in modular fashion. Using FrETT framework, functionality may be incorporated (in many cases without need of source code) to handle new platform capabilities: I/O methods (e.g., platform specific data access), network transport methods, data processing (e.g., data compression.).

  8. WLCG Transfers Dashboard: a Unified Monitoring Tool for Heterogeneous Data Transfers

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Beche, A.; Belov, S.; Kadochnikov, I.; Saiz, P.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool - WLCG Transfers Dashboard - where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.

  9. Bottom-up coarse-grained models with predictive accuracy and transferability for both structural and thermodynamic properties of heptane-toluene mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Nicholas J. H.; Noid, W. G., E-mail: wnoid@chem.psu.edu

    This work investigates the promise of a “bottom-up” extended ensemble framework for developing coarse-grained (CG) models that provide predictive accuracy and transferability for describing both structural and thermodynamic properties. We employ a force-matching variational principle to determine system-independent, i.e., transferable, interaction potentials that optimally model the interactions in five distinct heptane-toluene mixtures. Similarly, we employ a self-consistent pressure-matching approach to determine a system-specific pressure correction for each mixture. The resulting CG potentials accurately reproduce the site-site rdfs, the volume fluctuations, and the pressure equations of state that are determined by all-atom (AA) models for the five mixtures. Furthermore, we demonstratemore » that these CG potentials provide similar accuracy for additional heptane-toluene mixtures that were not included their parameterization. Surprisingly, the extended ensemble approach improves not only the transferability but also the accuracy of the calculated potentials. Additionally, we observe that the required pressure corrections strongly correlate with the intermolecular cohesion of the system-specific CG potentials. Moreover, this cohesion correlates with the relative “structure” within the corresponding mapped AA ensemble. Finally, the appendix demonstrates that the self-consistent pressure-matching approach corresponds to minimizing an appropriate relative entropy.« less

  10. Nuclear spin relaxation in ligands outside of the first coordination sphere in a gadolinium (III) complex: Effects of intermolecular forces

    NASA Astrophysics Data System (ADS)

    Kruk, Danuta; Kowalewski, Jozef

    2002-07-01

    This article describes paramagnetic relaxation enhancement (PRE) in systems with high electron spin, S, where there is molecular interaction between a paramagnetic ion and a ligand outside of the first coordination sphere. The new feature of our treatment is an improved handling of the electron-spin relaxation, making use of the Redfield theory. Following a common approach, a well-defined second coordination sphere is assumed, and the PRE contribution from these more distant and shorter-lived ligands is treated in a way similar to that used for the first coordination sphere. This model is called "ordered second sphere," OSS. In addition, we develop here a formalism similar to that of Hwang and Freed [J. Chem. Phys. 63, 4017 (1975)], but accounting for the electron-spin relaxation effects. We denote this formalism "diffuse second sphere," DSS. The description of the dynamics of the intermolecular dipole-dipole interaction is based on the Smoluchowski equation, with a potential of mean force related to the radial distribution function. We have used a finite-difference method to calculate numerically a correlation function for translational motion, taking into account the intermolecular forces leading to an arbitrary radial distribution of the ligand protons. The OSS and DSS models, including the Redfield description of the electron-spin relaxation, were used to interpret the PRE in an aqueous solution of a slowly rotating gadolinium (III) complex (S=7/2) bound to a protein.

  11. Influence of intermolecular amide hydrogen bonding on the geometry, atomic charges, and spectral modes of acetanilide: An ab initio study

    NASA Astrophysics Data System (ADS)

    Binoy, J.; Prathima, N. B.; Murali Krishna, C.; Santhosh, C.; Hubert Joe, I.; Jayakumar, V. S.

    2006-08-01

    Acetanilide, a compound of pharmaceutical importance possessing pain-relieving properties due to its blocking the pulse dissipating along the nerve fiber, is subjected to vibrational spectral investigation using NIR FT Raman, FT-IR, and SERS. The geometry, Mulliken charges, and vibrational spectrum of acetanilide have been computed using the Hartree-Fock theory and density functional theory employing the 6-31G (d) basis set. To investigate the influence of intermolecular amide hydrogen bonding, the geometry, charge distribution, and vibrational spectrum of the acetanilide dimer have been computed at the HF/6-31G (d) level. The computed geometries reveal that the acetanilide molecule is planar, while twisting of the secondary amide group with respect to the phenyl ring is found upon hydrogen bonding. The trans isomerism and “amido” form of the secondary amide, hyperconjugation of the C=O group with the adjacent C-C bond, and donor-acceptor interaction have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of the phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation, and hyperconjugation. A decrease in the NH and C=O bond orders and increase in the C-N bond orders due to donor-acceptor interaction can be observed in the vibrational spectra. The SERS spectral analysis reveals that the flat orientation of the molecule on the adsorption plane is preferred.

  12. Sites of intermolecular crosslinking of fatty acyl chains in phospholipids carrying a photoactivable carbene precursor

    PubMed Central

    Gupta, Chhitar M.; Costello, Catherine E.; Khorana, H. Gobind

    1979-01-01

    Sonicated vesicles of 1-fatty acyl-2-ω-(2-diazo-3,3,3-trifluoropropionoxy) fatty acyl sn-glycero-3-phosphoryl-cholines were shown recently to form intermolecular crosslinks by insertion of the photogenerated carbene into a C—H bond of a neighboring hydrocarbon chain. We now report that photolysis of multilamellar dispersions gives a second series of products in which carbene insertion is accompanied by elimination of a molecule of hydrogen fluoride. The sites of crosslinking in the latter compounds have been studied by mass spectrometry using phospholipids with varying chain lengths of the fatty acyl groups carrying the carbene precursor. The patterns observed show that the point of maximum crosslinking is consistent with the recent conclusion that in phospholipids the sn-2 fatty acyl chain trails the sn-1 chain by 2-4 atoms. Images PMID:16592675

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Renhui; Sun, Yuanyuan; Song, Kai

    Recent experimental studies have shown that the vibrational dynamics of free OH groups at the water-air interface is significantly different from that in bulk water. In this work, by performing molecular dynamics simulations and mixed quantum/classical calculations, we investigate different vibrational energy transfer pathways of free OH groups at the water-air interface. The calculated intramolecular vibrational energy transfer rate constant and the free OH bond reorientation time scale agree well with the experiment. It is also found that, due to the small intermolecular vibrational couplings, the intermolecular vibrational energy transfer pathway that is very important in bulk water plays amore » much less significant role in the vibrational energy relaxation of the free OH groups at the water-air interface.« less

  14. Determination of heat transfer parameters by use of finite integral transform and experimental data for regular geometric shapes

    NASA Astrophysics Data System (ADS)

    Talaghat, Mohammad Reza; Jokar, Seyyed Mohammad

    2017-12-01

    This article offers a study on estimation of heat transfer parameters (coefficient and thermal diffusivity) using analytical solutions and experimental data for regular geometric shapes (such as infinite slab, infinite cylinder, and sphere). Analytical solutions have a broad use in experimentally determining these parameters. Here, the method of Finite Integral Transform (FIT) was used for solutions of governing differential equations. The temperature change at centerline location of regular shapes was recorded to determine both the thermal diffusivity and heat transfer coefficient. Aluminum and brass were used for testing. Experiments were performed for different conditions such as in a highly agitated water medium ( T = 52 °C) and in air medium ( T = 25 °C). Then, with the known slope of the temperature ratio vs. time curve and thickness of slab or radius of the cylindrical or spherical materials, thermal diffusivity value and heat transfer coefficient may be determined. According to the method presented in this study, the estimated of thermal diffusivity of aluminum and brass is 8.395 × 10-5 and 3.42 × 10-5 for a slab, 8.367 × 10-5 and 3.41 × 10-5 for a cylindrical rod and 8.385 × 10-5 and 3.40 × 10-5 m2/s for a spherical shape, respectively. The results showed there is close agreement between the values estimated here and those already published in the literature. The TAAD% is 0.42 and 0.39 for thermal diffusivity of aluminum and brass, respectively.

  15. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm{sup 3} for a wide range of temperatures (298–650 K) and pressures (0.1–700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys.more » 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.« less

  16. Modeling the intermolecular interactions: molecular structure of N-3-hydroxyphenyl-4-methoxybenzamide.

    PubMed

    Karabulut, Sedat; Namli, Hilmi; Kurtaran, Raif; Yildirim, Leyla Tatar; Leszczynski, Jerzy

    2014-03-01

    The title compound, N-3-hydroxyphenyl-4-methoxybenzamide (3) was prepared by the acylation reaction of 3-aminophenol (1) and 4-metoxybenzoylchloride (2) in THF and characterized by ¹H NMR, ¹³C NMR and elemental analysis. Molecular structure of the crystal was determined by single crystal X-ray diffraction and DFT calculations. 3 crystallizes in monoclinic P2₁/c space group. The influence of intermolecular interactions (dimerization and crystal packing) on molecular geometry has been evaluated by calculations performed for three different models; monomer (3), dimer (4) and dimer with added unit cell contacts (5). Molecular structure of 3, 4 and 5 was optimized by applying B3LYP method with 6-31G+(d,p) basis set in gas phase and compared with X-ray crystallographic data including bond lengths, bond angles and selected dihedral angles. It has been concluded that although the crystal packing and dimerization have a minor effect on bond lengths and angles, however, these interactions are important for the dihedral angles and the rotational conformation of aromatic rings. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Collision-induced evaporation of water clusters and contribution of momentum transfer

    NASA Astrophysics Data System (ADS)

    Calvo, Florent; Berthias, Francis; Feketeová, Linda; Abdoul-Carime, Hassan; Farizon, Bernadette; Farizon, Michel

    2017-05-01

    The evaporation of water molecules from high-velocity argon atoms impinging on protonated water clusters has been computationally investigated using molecular dynamics simulations with the reactive OSS2 potential to model water clusters and the ZBL pair potential to represent their interaction with the projectile. Swarms of trajectories and an event-by-event analysis reveal the conditions under which a specific number of molecular evaporation events is found one nanosecond after impact, thereby excluding direct knockout events from the analysis. These simulations provide velocity distributions that exhibit two main features, with a major statistical component arising from a global redistribution of the collision energy into intermolecular degrees of freedom, and another minor but non-ergodic feature at high velocities. The latter feature is produced by direct impacts on the peripheral water molecules and reflects a more complete momentum transfer. These two components are consistent with recent experimental measurements and confirm that electronic processes are not explicitly needed to explain the observed non-ergodic behavior. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  18. Photodissociation of Non-Covalent Peptide-Crown Ether Complexes

    PubMed Central

    Wilson, Jeffrey J.; Kirkovits, Gregory J.; Sessler, Jonathan L.; Brodbelt, Jennifer S.

    2008-01-01

    Highly chromogenic 18-crown-6-dipyrrolylquinoxaline coordinates primary amines of peptides, forming non-covalent complexes that can be transferred to the gas phase by electrospray ionization. The appended chromogenic crown ether facilitates efficient energy transfer to the peptide upon ultraviolet irradiation in the gas phase, resulting in diagnostic peptide fragmentation. Collisional activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of these non-covalent complexes results only in their disassembly with the charge retained on either the peptide or crown ether, yielding no sequence ions. Upon UV photon absorption the intermolecular energy transfer is facilitated by the fast activation time scale of UVPD (< 10 ns) and by the collectively strong hydrogen bonding between the crown ether and peptide, thus allowing effective transfer of energy to the peptide moiety prior to disruption of the intermolecular hydrogen bonds. PMID:18077179

  19. Diene Hydroacylation from the Alcohol or Aldehyde Oxidation Level via Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation: Synthesis of β,γ-Unsaturated Ketones

    PubMed Central

    Shibahara, Fumitoshi; Bower, John F.; Krische, Michael J.

    2011-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation, isoprene couples to benzylic and aliphatic alcohols 1a–1g to deliver β,γ-unsaturated ketones 3a–3g in good to excellent isolated yields. Under identical conditions, aldehydes 2a–2g couple to isoprene to provide an identical set of β,γ-unsaturated ketones 3a–3g in good to excellent isolated yields. As demonstrated by the coupling of butadiene, myrcene and 1,2-dimethylbutadiene to representative alcohols 1b, 1c and 1e, diverse acyclic dienes participate in transfer hydrogenative coupling to form β,γ-unsaturated ketones. In all cases, complete branch-regioselectivity is observed and, with the exception of adduct 3j, isomerization to the conjugated enone is not detected. Thus, formal intermolecular diene hydroacylation is achieved from the alcohol or aldehyde oxidation level. In earlier studies employing a related ruthenium catalyst, acyclic dienes were coupled to carbonyl partners from the alcohol or aldehyde oxidation level to furnish branched homoallylic alcohols. Thus, under transfer hydrogenative coupling conditions, all oxidations levels of substrate (alcohol or aldehyde) and product (homoallyl alcohol or β,γ-unsaturated ketone) are accessible. PMID:18841895

  20. Effects of G-Quadruplex Topology on Electronic Transfer Integrals

    PubMed Central

    Sun, Wenming; Varsano, Daniele; Di Felice, Rosa

    2016-01-01

    G-quadruplex is a quadruple helical form of nucleic acids that can appear in guanine-rich parts of the genome. The basic unit is the G-tetrad, a planar assembly of four guanines connected by eight hydrogen bonds. Its rich topology and its possible relevance as a drug target for a number of diseases have stimulated several structural studies. The superior stiffness and electronic π-π overlap between consecutive G-tetrads suggest exploitation for nanotechnologies. Here we inspect the intimate link between the structure and the electronic properties, with focus on charge transfer parameters. We show that the electronic couplings between stacked G-tetrads strongly depend on the three-dimensional atomic structure. Furthermore, we reveal a remarkable correlation with the topology: a topology characterized by the absence of syn-anti G-G sequences can better support electronic charge transfer. On the other hand, there is no obvious correlation of the electronic coupling with usual descriptors of the helix shape. We establish a procedure to maximize the correlation with a global helix shape descriptor. PMID:28335314

  1. Ethical Considerations in Technology Transfer.

    ERIC Educational Resources Information Center

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  2. Rapid transfer alignment of an inertial navigation system using a marginal stochastic integration filter

    NASA Astrophysics Data System (ADS)

    Zhou, Dapeng; Guo, Lei

    2018-01-01

    This study aims to address the rapid transfer alignment (RTA) issue of an inertial navigation system with large misalignment angles. The strong nonlinearity and high dimensionality of the system model pose a significant challenge to the estimation of the misalignment angles. In this paper, a 15-dimensional nonlinear model for RTA has been exploited, and it is shown that the functions for the model description exhibit a conditionally linear substructure. Then, a modified stochastic integration filter (SIF) called marginal SIF (MSIF) is developed to incorporate into the nonlinear model, where the number of sample points is significantly reduced but the estimation accuracy of SIF is retained. Comparisons between the MSIF-based RTA and the previously well-known methodologies are carried out through numerical simulations and a van test. The results demonstrate that the newly proposed method has an obvious accuracy advantage over the extended Kalman filter, the unscented Kalman filter and the marginal unscented Kalman filter. Further, the MSIF achieves a comparable performance to SIF, but with a significantly lower computation load.

  3. Obtaining the Bidirectional Transfer Distribution Function ofIsotropically Scattering Materials Using an Integrating Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonsson, Jacob C.; Branden, Henrik

    2006-10-19

    This paper demonstrates a method to determine thebidirectional transfer distribution function (BTDF) using an integratingsphere. Information about the sample's angle dependent scattering isobtained by making transmittance measurements with the sample atdifferent distances from the integrating sphere. Knowledge about theilluminated area of the sample and the geometry of the sphere port incombination with the measured data combines to an system of equationsthat includes the angle dependent transmittance. The resulting system ofequations is an ill-posed problem which rarely gives a physical solution.A solvable system is obtained by using Tikhonov regularization on theill-posed problem. The solution to this system can then be usedmore » to obtainthe BTDF. Four bulk-scattering samples were characterised using both twogoniophotometers and the described method to verify the validity of thenew method. The agreement shown is great for the more diffuse samples.The solution to the low-scattering samples contains unphysicaloscillations, butstill gives the correct shape of the solution. Theorigin of the oscillations and why they are more prominent inlow-scattering samples are discussed.« less

  4. Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c.

    PubMed

    Roberts, V A; Freeman, H C; Olson, A J; Tainer, J A; Getzoff, E D

    1991-07-15

    To understand the specificity and efficiency of protein-protein interactions promoting electron transfer, we evaluated the role of electrostatic forces in precollision orientation by the development of two new methods, computer graphics alignment of protein electrostatic fields and a systematic orientational search of intermolecular electrostatic energies for two proteins at present separation distances. We applied these methods to the plastocyanin/cytochrome c interaction, which is faster than random collision, but too slow for study by molecular dynamics techniques. Significant electrostatic potentials were concentrated on one-fourth (969 A2) of the plastocyanin surface, with the greatest negative potential centered on the Tyr-83 hydroxyl within the acidic patch, and on one-eighth (632 A2) of the cytochrome c surface, with the greatest positive potential centered near the exposed heme edge. Coherent electrostatic fields occurred only over these regions, suggesting that local, rather than global, charge complementarity controls productive recognition. The three energetically favored families of pre-collision orientations all directed the positive region surrounding the heme edge of cytochrome c toward the acidic patch of plastocyanin but differed in heme plane orientation. Analysis of electrostatic fields, electrostatic energies of precollision orientations with 12 and 6 A separation distances, and surface topographies suggested that the favored orientations should converge to productive complexes promoting a single electron-transfer pathway from the cytochrome c heme edge to Tyr-83 of plastocyanin. Direct interactions of the exposed Cu ligand in plastocyanin with the cytochrome c heme edge are not unfavorable sterically or electrostatically but should occur no faster than randomly, indicating that this is not the primary pathway for electron transfer.

  5. T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker.

    PubMed

    Hanif, Mubashir; Pardo, Alejandro Guillermo; Gorfer, Markus; Raudaskoski, Marjatta

    2002-06-01

    The T-DNA of Agrobacterium tumefaciens can be transferred to plants, yeasts, fungi and human cells. Using this system, dikaryotic mycelium of the ectomycorrhizal fungus Suillus bovinus was transformed with recombinant hygromycin B phosphotransferase (hph)and enhanced green fluorescent protein (EGFP) genes fused with a heterologous fungal promoter and CaMV35S terminator. Transformation resulted in hygromycin B-resistant clones, which were mitotically stable. Putative transformants were analysed for the presence of hph and EGFP genes by PCR and Southern analysis. The latter analysis proved both multiple- and single-copy integrations of the genes in the S. bovinus genome. A. tumeficiens transformation should make possible the development of tagged mutagenesis and targeted gene disruption technology for S. bovinus.

  6. Phase-transfer catalysis and ultrasonic waves II: saponification of vegetable oil.

    PubMed

    Entezari, M H; Keshavarzi, A

    2001-07-01

    Saponification of oils which is a commercially important heterogeneous reaction, can be speeded up by the application of ultrasound in the presence of phase-transfer catalyst (PTC). This paper focuses on the ability of ultrasound to cause efficient mixing of this liquid-liquid heterogeneous reaction. Castor oil was taken as a model oil and the kinetic of the reaction was followed by the extent of saponification. The hydrolysis of castor oil was carried out with different PTC such as cetyl trimethyl ammonium bromide (CTAB), benzyl triethyl ammonium chloride (BTAC) and tetrabutyl ammonium bromide (TBAB) in aqueous alkaline solution. As hydroxyl anion moves very slowly from aqueous to oil phase, the presence of a PTC is of prime importance. For this purpose, cationic surfactants are selected. The sonication of biphasic system were performed by 20 kHz (simple horn and cup horn) and 900 kHz. It was found that CTAB was better than the two others and this could be related to the molecular structure of the PTCs. The effect of temperature was also studied on the saponification process. By increasing the temperature, the yield was also increased and this could be explained by intermolecular forces, interfacial tension and mass transfer. Saponification of three different vegetable oils shows that the almond oil is saponified easier than the two others and this could be related to their properties such as surface tension, viscosity and density.

  7. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  8. Investigation on intermolecular interaction between berberine and β-cyclodextrin by 2D UV-Vis asynchronous spectra

    NASA Astrophysics Data System (ADS)

    He, Anqi; Kang, Xiaoyan; Xu, Yizhuang; Noda, Isao; Ozaki, Yukihiro; Wu, Jinguang

    2017-10-01

    The interaction between berberine chloride and β-cyclodextrin (β-CyD) is investigated via 2D asynchronous UV-Vis spectrum. The occurrence of cross peaks around (420 nm, 420 nm) in 2D asynchronous spectrum reveals that specific intermolecular interaction indeed exists between berberine chloride and β-CyD. In spite of the difficulty caused by overlapping of cross peaks, we manage to confirm that the 420 nm band of berberine undergoes a red-shift, and its bandwidth decreases under the interaction with β-CyD. The red-shift of the 420 nm band that can be assigned to n-π* transition indicates the environment of berberine becomes more hydrophobic. The above spectral behavior is helpful in understanding why the solubility of berberine is enhanced by β-CyD.

  9. Evidence against integration of spatial maps in humans.

    PubMed

    Sturz, Bradley R; Bodily, Kent D; Katz, Jeffrey S

    2006-07-01

    A dynamic 3-D virtual environment was constructed for humans as an open-field analogue of Blaisdell and Cook's (2005) pigeon foraging task to determine if humans, like pigeons, were capable of integrating separate spatial maps. Participants used keyboard keys and a mouse to search for a hidden goal in a 4x4 grid of raised cups. During Phase 1 training, a goal was consistently located between two landmarks (Map 1: blue T and red L). During Phase 2 training, a goal was consistently located down and left of a single landmark (Map 2: blue T). Transfer trials were then conducted in which participants were required to make choices in the presence of the red L alone. Cup choices during transfer assessed participants' strategies: association (from Map 1), generalization (from Map 2), or integration (combining Map 1 and 2). During transfer, cup choices increased to a location which suggested an integration strategy and was consistent with results obtained with pigeons. However, additional analyses of the human data suggested participants initially used a generalization strategy followed by a progressive shift in search behavior away from the red L. This shift in search behavior during transfer was responsible for the changes in cup choices across transfer trials and was confirmed by a control condition. These new analyses offer an alternative explanation to the spatial integration account proposed for pigeons.

  10. Fragment-orbital tunneling currents and electronic couplings for analysis of molecular charge-transfer systems.

    PubMed

    Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn

    2018-04-04

    In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.

  11. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2.

    PubMed

    Ogren, John I; Tong, Ashley L; Gordon, Samuel C; Chenu, Aurélia; Lu, Yue; Blankenship, Robert E; Cao, Jianshu; Schlau-Cohen, Gabriela S

    2018-03-28

    Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein-protein interactions and lipid-protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid-protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to

  12. Prediction of Fetal Darunavir Exposure by Integrating Human Ex-Vivo Placental Transfer and Physiologically Based Pharmacokinetic Modeling.

    PubMed

    Schalkwijk, Stein; Buaben, Aaron O; Freriksen, Jolien J M; Colbers, Angela P; Burger, David M; Greupink, Rick; Russel, Frans G M

    2017-07-25

    Fetal antiretroviral exposure is usually derived from the cord-to-maternal concentration ratio. This static parameter does not provide information on the pharmacokinetics in utero, limiting the assessment of a fetal exposure-effect relationship. The aim of this study was to incorporate placental transfer into a pregnancy physiologically based pharmacokinetic model to simulate and evaluate fetal darunavir exposure at term. An existing and validated pregnancy physiologically based pharmacokinetic model of maternal darunavir/ritonavir exposure was extended with a feto-placental unit. To parameterize the model, we determined maternal-to-fetal and fetal-to-maternal darunavir/ritonavir placental clearance with an ex-vivo human cotyledon perfusion model. Simulated maternal and fetal pharmacokinetic profiles were compared with observed clinical data to qualify the model for simulation. Next, population fetal pharmacokinetic profiles were simulated for different maternal darunavir/ritonavir dosing regimens. An average (±standard deviation) maternal-to-fetal cotyledon clearance of 0.91 ± 0.11 mL/min and fetal-to-maternal clearance of 1.6 ± 0.3 mL/min was determined (n = 6 perfusions). Scaled placental transfer was integrated into the pregnancy physiologically based pharmacokinetic model. For darunavir 600/100 mg twice a day, the predicted fetal maximum plasma concentration, trough concentration, time to maximum plasma concentration, and half-life were 1.1, 0.57 mg/L, 3, and 21 h, respectively. This indicates that the fetal population trough concentration is higher or around the half-maximal effective darunavir concentration for a resistant virus (0.55 mg/L). The results indicate that the population fetal exposure after oral maternal darunavir dosing is therapeutic and this may provide benefits to the prevention of mother-to-child transmission of human immunodeficiency virus. Moreover, this integrated approach provides a tool to prevent fetal toxicity or

  13. Temporal modulation transfer functions in auditory receptor fibres of the locust ( Locusta migratoria L.).

    PubMed

    Prinz, P; Ronacher, B

    2002-08-01

    The temporal resolution of auditory receptors of locusts was investigated by applying noise stimuli with sinusoidal amplitude modulations and by computing temporal modulation transfer functions. These transfer functions showed mostly bandpass characteristics, which are rarely found in other species at the level of receptors. From the upper cut-off frequencies of the modulation transfer functions the minimum integration times were calculated. Minimum integration times showed no significant correlation to the receptor spike rates but depended strongly on the body temperature. At 20 degrees C the average minimum integration time was 1.7 ms, dropping to 0.95 ms at 30 degrees C. The values found in this study correspond well to the range of minimum integration times found in birds and mammals. Gap detection is another standard paradigm to investigate temporal resolution. In locusts and other grasshoppers application of this paradigm yielded values of the minimum detectable gap widths that are approximately twice as large than the minimum integration times reported here.

  14. Double proton transfer in the complex of acetic acid with methanol: Theory versus experiment

    NASA Astrophysics Data System (ADS)

    Fernández-Ramos, Antonio; Smedarchina, Zorka; Rodríguez-Otero, Jesús

    2001-01-01

    To test the approximate instanton approach to intermolecular proton-transfer dynamics, we report multidimensional ab initio bimolecular rate constants of HH, HD, and DD exchange in the complex of acetic acid with methanol in tetrahydrofuran-d8, and compare them with the NMR (nuclear magnetic resonance) experiments of Gerritzen and Limbach. The bimolecular rate constants are evaluated as products of the exchange rates and the equilibrium rate constants of complex formation in solution. The two molecules form hydrogen-bond bridges and the exchange occurs via concerted transfer of two protons. The dynamics of this transfer is evaluated in the complete space of 36 vibrational degrees of freedom. The geometries of the two isolated molecules, the complex, and the transition states corresponding to double proton transfer are fully optimized at QCISD (quadratic configuration interaction including single and double substitutions) level of theory, and the normal-mode frequencies are calculated at MP2 (Møller-Plesset perturbation theory of second order) level with the 6-31G (d,p) basis set. The presence of the solvent is taken into account via single-point calculations over the gas phase geometries with the PCM (polarized continuum model). The proton exchange rate constants, calculated with the instanton method, show the effect of the structure and strength of the hydrogen bonds, reflected in the coupling between the tunneling motion and the other vibrations of the complex. Comparison with experiment, which shows substantial kinetic isotopic effects (KIE), indicates that tunneling prevails over classic exchange for the whole temperature range of observation. The unusual behavior of the experimental KIE upon single and double deuterium substitution is well reproduced and is related to the synchronicity of two-atom tunneling.

  15. Delaminated Transfer of CVD Graphene

    NASA Astrophysics Data System (ADS)

    Clavijo, Alexis; Mao, Jinhai; Tilak, Nikhil; Altvater, Michael; Andrei, Eva

    Single layer graphene is commonly synthesized by dissociation of a carbonaceous gas at high temperatures in the presence of a metallic catalyst in a process known as Chemical Vapor Deposition or CVD. Although it is possible to achieve high quality graphene by CVD, the standard transfer technique of etching away the metallic catalyst is wasteful and jeopardizes the quality of the graphene film by contamination from etchants. Thus, development of a clean transfer technique and preservation of the parent substrate remain prominent hurdles to overcome. In this study, we employ a copper pretreatment technique and optimized parameters for growth of high quality single layer graphene at atmospheric pressure. We address the transfer challenge by utilizing the adhesive properties between a polymer film and graphene to achieve etchant-free transfer of graphene films from a copper substrate. Based on this concept we developed a technique for dry delamination and transferring of graphene to hexagonal boron nitride substrates, which produced high quality graphene films while at the same time preserving the integrity of the copper catalyst for reuse. DOE-FG02-99ER45742, Ronald E. McNair Postbaccalaureate Achievement Program.

  16. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    NASA Astrophysics Data System (ADS)

    Moreau, P.; César de Sá, J.; Grégoire, S.; Lochegnies, D.

    2007-05-01

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication…). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  17. Transfer of analytical procedures: a panel of strategies selected for risk management, with emphasis on an integrated equivalence-based comparative testing approach.

    PubMed

    Agut, C; Caron, A; Giordano, C; Hoffman, D; Ségalini, A

    2011-09-10

    In 2001, a multidisciplinary team made of analytical scientists and statisticians at Sanofi-aventis has published a methodology which has governed, from that time, the transfers from R&D sites to Manufacturing sites of the release monographs. This article provides an overview of the recent adaptations brought to this original methodology taking advantage of our experience and the new regulatory framework, and, in particular, the risk management perspective introduced by ICH Q9. Although some alternate strategies have been introduced in our practices, the comparative testing one, based equivalence testing as statistical approach, remains the standard for assays lying on very critical quality attributes. This is conducted with the concern to control the most important consumer's risk involved at two levels in analytical decisions in the frame of transfer studies: risk, for the receiving laboratory, to take poor release decisions with the analytical method and risk, for the sending laboratory, to accredit such a receiving laboratory on account of its insufficient performances with the method. Among the enhancements to the comparative studies, the manuscript presents the process settled within our company for a better integration of the transfer study into the method life-cycle, just as proposals of generic acceptance criteria and designs for assay and related substances methods. While maintaining rigor and selectivity of the original approach, these improvements tend towards an increased efficiency in the transfer operations. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torii, Hajime, E-mail: torii.hajime@shizuoka.ac.jp

    The intensity of the band at ∼200 cm{sup −1} (∼6 THz) in the Terahertz spectrum of liquid water mainly arises from the modulations of the extent of intermolecular charge transfer through hydrogen bonds, called intermolecular charge fluxes, occurring upon molecular translations along the O…H hydrogen bonds. To obtain reasonable spectral profiles from simulations, it is necessary to effectively incorporate the effects of those intermolecular charge fluxes, but apparently it is not possible by simple classical molecular dynamics simulations with fixed atomic partial charges even if they are amended by molecular induced dipoles due to intermolecular electrostatic interactions. The present paper showsmore » how we can do reasonably correct spectral simulations, without resorting to fully ab initio molecular dynamics.« less

  19. NMR studies of double proton transfer in hydrogen bonded cyclic N,N'-diarylformamidine dimers: conformational control, kinetic HH/HD/DD isotope effects and tunneling.

    PubMed

    Lopez, Juan Miguel; Männle, Ferdinand; Wawer, Iwona; Buntkowsky, Gerd; Limbach, Hans-Heinrich

    2007-08-28

    Using dynamic NMR spectroscopy, the kinetics of the degenerate double proton transfer in cyclic dimers of polycrystalline (15)N,(15)N'-di-(4-bromophenyl)-formamidine (DBrFA) have been studied including the kinetic HH/HD/DD isotope effects in a wide temperature range. This transfer is controlled by intermolecular interactions, which in turn are controlled by the molecular conformation and hence the molecular structure. At low temperatures, rate constants were determined by line shape analysis of (15)N NMR spectra obtained using cross-polarization (CP) and magic angle spinning (MAS). At higher temperatures, in the microsecond time scale, rate constants and kinetic isotope effects were obtained by a combination of longitudinal (15)N and (2)H relaxation measurements. (15)N CPMAS line shape analysis was also employed to study the non-degenerate double proton transfer of polycrystalline (15)N,(15)N'-diphenyl-formamidine (DPFA). The kinetic results are in excellent agreement with the kinetics of DPFA and (15)N,(15)N'-di-(4-fluorophenyl)-formamidine (DFFA) studied previously for solutions in tetrahydrofuran. Two large HH/HD and HD/DD isotope effects are observed in the whole temperature range which indicates a concerted double proton transfer mechanism in the domain of the reaction energy surface. The Arrhenius curves are non-linear indicating a tunneling mechanism. Arrhenius curve simulations were performed using the Bell-Limbach tunneling model. The role of the phenyl group conformation and hydrogen bond compression on the barrier of the proton transfer is discussed.

  20. Atropisomerisation in sterically hindered α,β-disubstituted cyclopentenones derived from an intermolecular cobalt(0)-mediated Pauson-Khand reaction.

    PubMed

    Moulton, Benjamin E; Lynam, Jason M; Duhme-Klair, Anne-Kathrin; Zheng, Wenxu; Lin, Zhenyang; Fairlamb, Ian J S

    2010-12-07

    4-(2-Phenylethynyl)-2H-chromen-2-one reacts with norbornene and Co(2)(CO)(8) in an intermolecular Pauson-Khand reaction by focused microwave dielectric heating. Two regioisomeric products are formed; the electron-deficient coumarin moiety preferentially occupies the β-position of the cyclopentenone ring system, whereas the phenyl occupies the α-position. The sterically hindered α,β-(2,3)-disubstituted cyclopentenone regioisomeric products exhibit pronounced atropisomerisation, and the magnitude of the energetic barrier to interconversion between these atropisomers is dependent on the relative position of the coumarin moieties. Interconversion is slow when the coumarin is found in the α-position, whereas interconversion is relatively fast when found in the β-position.