Science.gov

Sample records for internal auditory meatus

  1. Histophysiological observations on the external auditory meatus, middle, and inner ear of the Weddell seal (Leptonychotes weddelli).

    PubMed

    Welsch, U; Riedelsheimer, B

    1997-10-01

    The external auditory meatus, middle, and inner ear of the deep-diving Weddell seal (Leptonychotes weddelli) were studied with light microscopic, histological, and histochemical techniques in order to contribute to the open discussion on the orientation of this seal in the darkness of the deep Antarctic seas. The external auditory meatus is characterized by a well-developed venous plexus, single apocrine ceruminous, and numerous holocrine sebaceous glands and an incomplete tube of elastic cartilage. The tympanic membrane is comprised of two layers of radially and concentrically arranged collagen fibers and by elastic fibers which are concentrated in the outer part of the ear drum. The tympanic cavity is lined by a pseudostratified prismatic ciliated epithelium with goblet cells; a plexus of wide venous vessels marks the subepithelial lamina propria. The cochlea is about 10 mm high and forms about two and a half turns. The richly pigmented stria vascularis is well vascularized, while the cell-rich prominentia spiralis contains only single small blood vessels. The organ of Corti contains one row of inner and three rows of outer hair cells. Cells of Hensen, Claudius, and Boettcher are present. The basilar membrane is of comparatively uniform simple structure and is composed of abundant glycoproteins, proteoglycans, collagenous fibers, and the loose tissue of the tympanal layer. The spiral ligament is built up by abundant proteoglycans and a complex system of radial and concentric collagen fibers; close to the osseous wall of the bony cochlea it contains fine elastic fibers. The inner zone of the osseous wall of the cochlea strikingly contains hyaline cartilage. The thin lamina spiralis ossea is covered by a limbus spiralis with interdental cells secreting the lamina tectoria, which has a fibrous texture and contains glycoproteins and negatively charged components. PMID:9329201

  2. Comparative Analysis of Transpetrosal Approaches to the Internal Acoustic Meatus Using Three-Dimensional Radio-Anatomical Models

    PubMed Central

    Zador, Zsolt; de Carpentier, John

    2015-01-01

    Background The transcrusal approach that involves partial removal of the labyrinth was recently described to approach lesions of the cerebellopontine angle. It carries the benefit of hearing preservation and was suggested to have equivalent exposure of the petroclival surface compared with the transcochlear/transotic approaches. The current study was designed to assess if the transcrusal approach could achieve as good access to the internal auditory meatus (IAM) as the more destructive translabyrinthine exposure. Methods Fifty disease-free high-resolution computed tomography scans of the temporal bone were reviewed. Surgical freedom, angle of attack, and angle of trajectory to the internal acoustic canal were measured in three-dimensional models. Results Surgical freedom and angles of attack showed steady increments with the progression of petrous bone resection from the retrolabyrinthine-transcrusal-translabyrinthine approaches. The angle of access to the IAM axis was dramatically reduced in the translabyrinthine approach compared with the transcrusal and retrolabyrinthine approaches (37.51 ± 5.7, 24.56 ± 4.6, and 3.17 ± 2.85 degrees, respectively; n = 50; average plus or minus standard deviation, p < 0.001). Conclusion Using this novel radio-anatomical system, we demonstrate the advantage of the translabyrinthine approach to the axis of the internal auditory canal. The transcrusal approach lags behind the translabyrinthine corridor and should be considered alongside the subtemporal and retrosigmoid approaches designed to spare hearing. PMID:26225322

  3. Tenosynovial Giant Cell Tumor in the Dermis of the External Auditory Meatus.

    PubMed

    Maghari, Amin; Zaleski, Theresa A; Jow, Tiffany; Lambert, W Clark

    2016-01-01

    A 26-year-old African American woman with a history of a recurring "oozing papule" in the right ear presented to the emergency department in July 2010 with a 2-month history of an enlarging, painful growth in the right ear canal. Physical examination revealed a 1-cm round cystic lesion along the right, anterior external auditory canal wall, just medial to the tragus. Initial diagnosis was an infected cyst of the external ear canal. The patient was instructed to follow-up with an ear, nose, and throat (ENT) office. Two months following the emergency department visit, inspection by ENT revealed a 3- to 4-mm round, firm subcutaneous nodule that did not extend into the ear canal or cartilage. According to the patient, this lesion had recurred with several infections. The lesion was biopsied in the outpatient setting and demonstrated ulceration with marked acute and chronic inflammation in addition to granulation tissue. Two months later, the lesion was surgically excised. The final diagnosis of giant cell tumor, tenosynovial type with lesion-free margins, and no involvement of the cartilage was made (Figures 1-3). No further treatment was recommended. Gross examination of the excised lesion revealed tan to white soft tissue measuring 1.0×0.7×0.3 cm. Results from factor XIII A immunostain was negative, confirming that the lesion did not represent an unusual variant of fibrous histiocytoma (Figure 4). To date, recurrence of this lesion has not been appreciated. PMID:27072732

  4. [The threshold levels of the stapedius reflex depending on the relationship between the gas pressure in the external auditory meatus and the middle ear].

    PubMed

    Petrov, S M; Azizov, G R; Gritsiuk, M I; Timenko, A N

    2014-01-01

    The objective of the present work was to detect and elucidate effects of a single factor (gas pressure) responsible for the threshold levels of stapedius reflex. It was shown that the threshold reflexes were recorded at 105 dB SPL when the gas pressure in the external auditory meatus decreased by 150-200 pPa against the atmospheric pressure and when it increased by 100-150 pPa. These effects can be accounted for by the reduced compliance of the tympanic membrane and different changes in the state of the auditory ossicles undergoing compression and tension. When entering the most comfortable stapedial reflex levels into the patient's tuning chart, an account should be taken of the maximum value of tympanic membrane compliance. PMID:25377672

  5. Non-schwannomatosis lesions of the internal acoustic meatus-a diagnostic challenge and management: a series report of nine cases.

    PubMed

    Moura da Silva, Luis Fernando; Buffon, Viviane Aline; Coelho Neto, Maurício; Ramina, Ricardo

    2015-10-01

    Vestibular schwannomas (VS) are the most common lesions of cerebellopontine angle (CPA) corresponding to 76-91 % of the cases. Usually, these lesions present typical CT and MRI findings. Non-schwannomatous tumors restricted to the internal auditory meatus (IAM) are rare and their preoperative radiological diagnosis may be difficult. This article describes nine surgically treated intrameatal non-schwannomatous lesions (NSL) and reviews the literature. In the last 16 years, a total of 471 patients with diagnosis of VS were operated on in our department. Preoperatively, 42 patients had diagnosis of intrameatal schwannomas, but surgery revealed in nine cases NSL (3 meningiomas, 3 arachnoiditis/neuritis, 1 cavernoma, 1 vascular loop, and 1 arachnoid cyst). Most frequent symptoms presented by patients with NSL were hearing loss 89 % (8/9) of patients, tinnitus 78 % (7/9), and vertigo 33 % (3/9). Almost all lesions (8/9) presented MRI findings of isointense signal in T1W with contrast enhancement. The only exception was the arachnoid cyst with intracystic bleeding, which was hyperintense in T1W that is not enhanced with contrast. This series shows an occurrence of 21.4 % of non-schwannomatous tumors in 42 cases of lesions restricted to the IAM. Whenever a solely intrameatal enhanced tumor is detected, it is necessary to think about other diagnostic possibilities rather than VS. Therapeutic management may be changed, specially if radiosurgical treatment is considered. PMID:25957055

  6. Association of Heterotopic Neuroglial Tissue with an Arachnoid Cyst in the Internal Auditory Canal

    PubMed Central

    Francis, Howard W.; Nager, George T.; Holliday, Michael J.; Long, Donlin M.

    1995-01-01

    An arachnoid cyst arising within the internal auditory canal, or within the cerebellopontine angle and subsequently extending into the internal meatus and enlarging it, is a rare occurrence. Nevertheless, the neurootologist and the neurosurgeon have an interest in its existence because its clinical manifestations are identical with the ones produced by a schwannoma, involving overwhelmingly the cochleovestibular nerve in that region. An equally rare observation in that location is the presence of ectopic neuroglial tissue. The two can occur independently or in combination. Examples of such lesions are presented, and their possible pathogenesis is discussed. ImagesFigure 1Figure 2Figure 3Figure 3Figure 3Figure 5Figure 6 PMID:17171156

  7. Magnetic resonance imaging of the internal auditory canal

    SciTech Connect

    Daniels, D.L.; Herfkins, R.; Koehler, P.R.; Millen, S.J.; Shaffer, K.A.; Williams, A.L.; Haughton, V.M.

    1984-04-01

    Three patients with exclusively or predominantly intracanalicular neuromas and 5 with presumably normal internal auditory canals were examined with prototype 1.4- or 1.5-tesla magnetic resonance (MR) scanners. MR images showed the 7th and 8th cranial nerves in the internal auditory canal. The intracanalicular neuromas had larger diameter and slightly greater signal strength than the nerves. Early results suggest that minimal enlargement of the nerves can be detected even in the internal auditory canal.

  8. Rare tumors of the internal auditory canal.

    PubMed

    Dazert, Stefan; Aletsee, Christoph; Brors, Dominik; Mlynski, Robert; Sudhoff, Holger; Hildmann, Henning; Helms, Jan

    2005-07-01

    The study was performed to identify the incidence and histology of rare tumors with growth restricted to the internal auditory canal (IAC) that are different from vestibular schwannoma (VS). Furthermore, the question was addressed whether a preoperative diagnosis would be possible in these cases. A series of 351 patients that were operated on for IAC tumors through a transtemporal or translabyrinthine approach was investigated retrospectively. Cases with a tumor entity other than VS were analyzed for symptoms, radiological diagnosis, intraoperative findings and postoperative histolopatology to determine if a differential diagnosis to the common VS can be established prior to surgery. In 15 out of 351 cases (4.3%), uncommon processes of the IAC were determined by histology (6 lipomas, 3 hemangiomas, 2 neurofibromas, 2 menigiomas, 1 facial neuroma and 1 case of bilateral malignant lymphoma). The symptoms and the clinical manifestations were typical for patients with VS so that a preoperative differential diagnosis was not possible in the majority of cases. An analysis of the operation reports revealed that in 10 out of the 15 cases the surgeon suspected an unusual tumor of the IAC during surgery. The results of the present investigation suggest that rare lesions of the IAC can be expected in less than 5% of the cases and that preoperative diagnosis of rare IAC tumors is difficult. Intraoperative findings such as adhesion to cranial nerves and consistency of the tumor often indicate unusual processes, but histological analysis of the removed tissue is essential for the definite diagnosis. PMID:15947938

  9. Posterior internal auditory canal closure following the retrosigmoid approach to the cerebellopontine angle.

    PubMed

    Leonetti, J P; Anderson, D E; Newell, D J; Smith, P G

    1993-01-01

    The retrosigmoid approach is utilized in a variety of cerebellopontine angle and internal auditory canal procedures. Drill curettage of the posterior internal auditory canal enhances lateral exposure, however, this step may also increase the patient's risk for postoperative cerebrospinal fluid (CSF) otorrhea. Obliteration of perilabyrinthine air cells is technically difficult and muscle graft displacement frequently occurs. A technique for posterior petrous dural flap stabilization of a temporalis muscle plug has proved successful in decreasing the risk of postoperative CSF fistula following retrosigmoid surgery. Temporal bone air-cell anatomy, as it relates to retrosigmoid, posterior internal auditory canal surgery is reviewed. Our technique for internal auditory canal closure, with bone wax, bone paté, muscle grafts, and petrous ridge dural flaps is outlined. PMID:8424473

  10. Bilateral internal auditory canal gangliogliomas mimicking neurofibromatosis Type II

    PubMed Central

    Hooten, Kristopher G.; Oliveria, Seth F.; Sadrameli, Saeed S.; Gandhi, Shashank; Yachnis, Anthony T.; Lewis, Stephen B.

    2016-01-01

    Background: Gangliogliomas are rare low grade, typically well-differentiated, tumors that are composed of mature ganglion cells and neoplastic glial cells. These tumors can appear at virtually any location along the neuroaxis but classically occur in the temporal lobe of young patients. In a small number of cases, gangliogliomas have presented as masses in the brainstem or involving cranial nerves. With the exception of vestibular schwannomas, bilateral tumors in the region of the internal auditory canal (IAC) or cerebellopontine angle (CPA) are exceedingly rare. Case Description: We report a case of a 58-year-old male who presented with hearing loss, tinnitus, and vertigo. Initial magnetic resonance imaging revealed bilateral nonenhancing IAC/CPA tumors. Based on this finding, a presumptive diagnosis of neurofibromatosis Type II was made, which was initially managed conservatively with close observation. He returned for follow-up with worsening vertigo and tinnitus, thus prompting the decision to proceed with surgical resection of the symptomatic mass. Intriguingly, pathological study demonstrated a WHO Grade I ganglioglioma. Description: We report a case of a 58-year-old male who presented with hearing loss, tinnitus, and vertigo. Initial magnetic resonance imaging revealed bilateral nonenhancing IAC/CPA tumors. Based on this finding, a presumptive diagnosis of neurofibromatosis Type II was made, which was initially managed conservatively with close observation. He returned for follow-up with worsening vertigo and tinnitus, thus prompting the decision to proceed with surgical resection of the symptomatic mass. Intriguingly, pathological study demonstrated a WHO Grade I ganglioglioma. Conclusion: This is the first reported case of bilateral IAC/CPA gangliogliomas. When evaluating bilateral IAC/CPA lesions with unusual imaging characteristics, ganglioglioma should be included in the differential diagnosis. PMID:27127704

  11. Internal Consistency of the Test for Auditory Comprehension of Language in Headstart Children.

    ERIC Educational Resources Information Center

    Richardson, Debra Jeanne

    The internal consistency of the test for Auditory Comprehension of Language (TACL), as it is used in the diagnostic assessment of the language comprehension of black, low socioeconomic preschool children, was investigated in this study. 30 three year old and 30 four year old black Headstart children from Pulaski County, Arkansas were given the…

  12. The influence of signal type on the internal auditory representation of a room

    NASA Astrophysics Data System (ADS)

    Teret, Elizabeth

    Currently, architectural acousticians make no real distinction between a room impulse response and the auditory system's internal representation of a room. With this lack of a good model for the auditory representation of a room, it is indirectly assumed that our internal representation of a room is independent of the sound source needed to make the room characteristics audible. The extent to which this assumption holds true is examined with perceptual tests. Listeners are presented with various pairs of signals (music, speech, and noise) convolved with synthesized impulse responses of different reverberation times. They are asked to adjust the reverberation of one of the signals to match the other. Analysis of the data show that the source signal significantly influences perceived reverberance. Listeners are less accurate when matching reverberation times of varied signals than they are with identical signals. Additional testing shows that perception of reverberation can be linked to the existence of transients in the signal.

  13. Internal auditory canal meningocele-perilabyrinthine/translabyrinthine fistula: Case report and imaging.

    PubMed

    Truesdale, Carl M; Peterson, Ryan B; Hudgins, Patricia A; Vivas, Esther X

    2016-08-01

    The case of a 17-year-old patient with progressive unilateral sensorineural hearing loss and temporal bone malformations concerning for internal auditory canal meningocele with translabyrinthine/perilabyrinthine cerebrospinal fluid fistula is presented with associated computed tomography and magnetic resonance imaging. As the second reported case of an unruptured internal auditory canal meningocele with translabyrinthine/perilabyrinthine fistula, the case presents several clinically relevant points for otologists, neurotologists, and neuroradiologists. Although rare, it is an additional entity to consider as a cause of unilateral sensorineural hearing loss and may pose a risk for developing meningitis and possible "gushing" of cerebrospinal fluid should surgical intervention be attempted. Laryngoscope, 126:1931-1934, 2016. PMID:26651061

  14. Aphasia and Auditory Processing after Stroke through an International Classification of Functioning, Disability and Health Lens.

    PubMed

    Purdy, Suzanne C; Wanigasekara, Iruni; Cañete, Oscar M; Moore, Celia; McCann, Clare M

    2016-08-01

    Aphasia is an acquired language impairment affecting speaking, listening, reading, and writing. Aphasia occurs in about a third of patients who have ischemic stroke and significantly affects functional recovery and return to work. Stroke is more common in older individuals but also occurs in young adults and children. Because people experiencing a stroke are typically aged between 65 and 84 years, hearing loss is common and can potentially interfere with rehabilitation. There is some evidence for increased risk and greater severity of sensorineural hearing loss in the stroke population and hence it has been recommended that all people surviving a stroke should have a hearing test. Auditory processing difficulties have also been reported poststroke. The International Classification of Functioning, Disability and Health (ICF) can be used as a basis for describing the effect of aphasia, hearing loss, and auditory processing difficulties on activities and participation. Effects include reduced participation in activities outside the home such as work and recreation and difficulty engaging in social interaction and communicating needs. A case example of a young man (M) in his 30s who experienced a left-hemisphere ischemic stroke is presented. M has normal hearing sensitivity but has aphasia and auditory processing difficulties based on behavioral and cortical evoked potential measures. His principal goal is to return to work. Although auditory processing difficulties (and hearing loss) are acknowledged in the literature, clinical protocols typically do not specify routine assessment. The literature and the case example presented here suggest a need for further research in this area and a possible change in practice toward more routine assessment of auditory function post-stroke. PMID:27489401

  15. Internal versus External Auditory Hallucinations in Schizophrenia: Symptom and Course Correlates

    PubMed Central

    Docherty, Nancy M.; Dinzeo, Thomas J.; McCleery, Amanda; Bell, Emily K.; Shakeel, Mohammed K.; Moe, Aubrey

    2015-01-01

    Introduction The auditory hallucinations associated with schizophrenia are phenomenologically diverse. “External” hallucinations classically have been considered to reflect more severe psychopathology than “internal” hallucinations, but empirical support has been equivocal. Methods We examined associations of “internal” v. “external” hallucinations with (a) other characteristics of the hallucinations, (b) severity of other symptoms, and (c) course of illness variables, in a sample of 97 stable outpatients with schizophrenia or schizoaffective disorder who experienced auditory hallucinations. Results Patients with internal hallucinations did not differ from those with external hallucinations on severity of other symptoms. However, they reported their hallucinations to be more emotionally negative, distressing, and long-lasting, less controllable, and less likely to remit over time. They also were more likely to experience voices commenting, conversing, or commanding. However, they also were more likely to have insight into the self-generated nature of their voices. Patients with internal hallucinations were not older, but had a later age of illness onset. Conclusions Differences in characteristics of auditory hallucinations are associated with differences in other characteristics of the disorder, and hence may be relevant to identifying subgroups of patients that are more homogeneous with respect to their underlying disease processes. PMID:25530157

  16. Relevance of Whitnall's tubercle and auditory meatus in diagnosing exclusions during skull-photo superimposition.

    PubMed

    Jayaprakash, Paul T; Hashim, Natassha; Yusop, Ridzuan Abd Aziz Mohd

    2015-08-01

    Video vision mixer based skull-photo superimposition is a popular method for identifying skulls retrieved from unidentified human remains. A report on the reliability of the superimposition method suggested increased failure rates of 17.3 to 32% to exclude and 15 to 20% to include skulls while using related and unrelated face photographs. Such raise in failures prompted an analysis of the methods employed for the research. The protocols adopted for assessing the reliability are seen to vary from those suggested by the practitioners in the field. The former include overlaying the skull- and face-images on the basis of morphology by relying on anthropometric landmarks on the front plane of the face-images and evaluating the goodness of match depending on mix-mode images; the latter consist of orienting the skull considering landmarks on both the eye and ear planes of the face- and skull-images and evaluating the match utilizing images seen in wipe-mode in addition to those in mix-mode. Superimposition of a skull with face-images of five living individuals in two sets of experiments, one following the procedure described for the research on reliability and the other applying the methods suggested by the practitioners has shown that overlaying the images on the basis of morphology depending on the landmarks on the front plane alone and assessing the match in mix-mode fails to exclude the skull. However, orienting the skull relying on the relationship between the anatomical landmarks on the skull- and face-images such as Whitnall's tubercle and exocanthus in the front (eye) plane and the porion and tragus in the rear (ear) plane as well as assessing the match using wipe-mode images enables excluding that skull while superimposing with the same set of face-images. PMID:26103927

  17. Ganglioneuroma of the Internal Auditory Canal Presenting as a Vestibular Schwannoma

    PubMed Central

    Bekelis, Kimon; Meiklejohn, Duncan A.; Missios, Symeon; Harris, Brent; Saunders, James E.; Erkmen, Kadir

    2011-01-01

    In most series, 90% of cerebellopontine angle tumors are vestibular schwannomas. Meningiomas and epidermoid tumors follow with decreased frequency. Ganglioneuroma is a benign tumor usually found in the retroperitoneum and posterior mediastinum. We report a case of a 21-year-old man with gradual sensorineural hearing loss and a minimally enhancing lesion of the internal auditory canal, which was excised through a middle fossa approach and found histologically to be a ganglioneuroma. Like vestibular schwannomas, these lesions are benign in nature and may be managed in a similar fashion, although the possibility of malignant transformation may support surgical resection over conservative management or radiosurgery. Ganglioneuromas should be considered in patients with atypical radiographic findings for vestibular schwannomas. PMID:23984208

  18. Cerebellopontine angle and internal auditory canal: neurovascular anatomy on gas CT cisternograms

    SciTech Connect

    Bird, C.R.; Hasso, A.N.; Drayer, B.P.; Hinshaw, D.B. Jr.; Thompson, J.R.

    1985-03-01

    The authors reviewed 103 normal gas CT cisternograms to delineate the appearance of normal neurovascular structures in the cerebellopontine angle (CPA) and internal auditory canal (IAC). Cranial nerves VII and VIII were identified in the CPA in 97% of cases, either separately (53%) or as a bundle (44%). Intracanalicular branches of the VIIIth cranial nerve were identified in 20% of cases, and cranial nerve V was visualized in the CPA in 14%. The characteristic vascular loop, usually the anterior inferior cerebellar artery, was visible in 35% of cases, and, in 22% of visualized cases, was in an intracanalicular location. In 10% of cases, greater than 66% of the IAC was occupied by the neurovascular bundle. Familiarity with the normal anatomy and variations seen on gas CT cisternograms is necessary to prevent false-positive interpretations.

  19. Endoscopic Transcanal Retrocochlear Approach to the Internal Auditory Canal with Cochlear Preservation: Pilot Cadaveric Study.

    PubMed

    Kempfle, Judith; Kozin, Elliott D; Remenschneider, Aaron K; Eckhard, Andreas; Edge, Albert; Lee, Daniel J

    2016-05-01

    Contemporary operative approaches to the internal auditory canal (IAC) require the creation of large surgical portals for visualization with associated morbidity, including hearing loss, vestibular dysfunction, facial nerve injury, and skull base defects that increase the risk of cerebrospinal fluid leak. Transcanal approaches to the IAC have been possible only via a transcochlear technique. To preserve cochlear function, we describe a novel endoscopic transcanal infracochlear approach to the IAC in cadaveric temporal bones. Navigation fiducials were secured on fresh cadaveric heads, and real-time computed tomography imaging was used for surgical guidance. With a combination of curved instruments and rigid angled endoscopy, a transcanal hypotympanotomy and subcochlear tunnel were created with superior extension to access the IAC. Postprocedure imaging and temporal bone dissection confirmed access to the IAC without injury to the cochlea or neighboring neurovascular structures. PMID:26932951

  20. Endoscopic Transcanal Retrocochlear Approach to the Internal Auditory Canal with Cochlear Preservation: Pilot Cadaveric Study

    PubMed Central

    Eckhard, Andreas; Edge, Albert; Lee, Daniel J.

    2016-01-01

    Contemporary operative approaches to the internal auditory canal (IAC) require the creation of large surgical portals for visualization with associated morbidity, including hearing loss, vestibular dysfunction, facial nerve injury, and skull base defects that increase the risk of cerebrospinal fluid leak. Transcanal approaches to the IAC have been possible only via a transcochlear technique. To preserve cochlear function, we describe a novel endoscopic transcanal infracochlear approach to the IAC in cadaveric temporal bones. Navigation fiducials were secured on fresh cadaveric heads, and real-time computed tomography imaging was used for surgical guidance. With a combination of curved instruments and rigid angled endoscopy, a transcanal hypotympanotomy and subcochlear tunnel were created with superior extension to access the IAC. Postprocedure imaging and temporal bone dissection confirmed access to the IAC without injury to the cochlea or neighboring neurovascular structures. PMID:26932951

  1. Symmetry of external auditive meatus. A pilot study on human skulls.

    PubMed

    Mizgiryte, Simona; Vaitelis, Julius; Barkus, Arunas; Zaleckas, Linas; Pletkus, Rolandas; Auskalnis, Adomas

    2014-01-01

    OBJECTIVES. To evaluate the perpendicularity of the line connecting external auditive meatus to the midsagital plane and the palatal suture as a midsagittal symmetry reference line. Setting and Sample Population - 62 randomly chosen human skulls from osteological collection (Vilnius University). MATERIAL AND METHODS. The skulls were photographed (Nikon 40 D, Nikkor lens 50 mm) from basal, frontobasal and frontal views. Photos were analysed with Adobe Photoshop CS5 (Adobe). The first line connected frontal points of external auditive meatus and the angle to the midsagittal plane was measured. The second line (the palatal suture) was compared to the median sagittal plane. Data was analysed with SPSS 17 (IBM). RESULTS. The mean value for the angles of the line between the external auditive meatus and the midsagittal plane in basal views was 90.12° (SD=1.48°) and in frontobasal 90.36° (SD=2.25°). No statistically significant differences were found between groups of age and sex. The inter-rater agreement for evaluation of the adequacy of palatal suture with the midsagital plane was high (Cohen's Kappa 0.702 (p<0.05)) as well as the coincidence of both lines in basal and frontobasal views (90.3% and 85.5% respectively). CONCLUSION. Considering the limits of this study the angle between external auditive meatus and midsagital skull plane has a characteristic fluctuating asymmetry. The congruence of palatal suture and midsagital plane is debatable. PMID:25471994

  2. Management of boys with abnormal appearance of meatus at circumcision for balanitis xerotica obliterans

    PubMed Central

    Holbrook, C; Tsang, T

    2011-01-01

    INTRODUCTION The aim of this study was to develop a standardised management plan for boys with abnormal appearance of meatus at circumcision for balanitis xerotica obliterans (BXO). METHODS Between 1995 and 2008, 107 boys underwent circumcision for BXO (confirmed on histology). Of these, 23 had abnormal appearance of the meatus at operation; their case notes were reviewed for age, presenting symptoms, management, outcome and follow up. RESULTS The age range at operation was 3–15 years (mean: 9 years). Patients commonly presented with phimosis and balanitis. Seven patients had an additional procedure at circumcision: six had meatotomy, one had meatal dilatation. Thirteen were treated with topical steroid cream post-operatively. Eight of these (62%) subsequently required meatotomy. Three patients were observed and did not require further intervention. Meatotomy was required in 9 patients, 6–29 months after circumcision (mean: 11 months). Two patients required dilatation, including one with a previous intraoperative meatotomy, who required multiple dilatations. CONCLUSIONS We propose the following standardised management plan: 1. With clinical evidence of BXO at circumcision, prepuce should be sent for histology. 2. If BXO is confirmed but the meatus appears normal, patients should be seen once post-operatively to give information about meatal stenosis. 3. When the meatus appears scarred with a narrowed lumen at operation, a meatotomy should be performed, with follow up for at least two years. 4. If the lumen is scarred but adequate, patients should be followed up in clinic for the same period for possible development of stenosis. 5. Topical steroid cream can be considered for voiding discomfort without decreased urine stream. PMID:21929920

  3. [Inflammatory pseudo-tumor of the bladder expelled through the urethral meatus in a girl].

    PubMed

    Sarr, A; Thiam, I; Gueye, D; Sow, Y; Fall, B; Thiam, A; Sine, B; Ba, M; Diagne, B A

    2015-12-01

    Inflammatory pseudo-tumors of the bladder are rare benign tumors that mostly arise in the differential diagnosis of sarcomas in children. The authors report an unusual case of pedunculated inflammatory pseudo-tumor of the bladder that externalized by the urethral meatus in a 13-year-old girl. The treatment consisted of a ligation-resection of the pedicle, followed by resection of the tumor. After regular follow-up for 18 months there was no tumor recurrence. PMID:26552617

  4. Diagnosis and treatment of cavernous hemangioma of the internal auditory canal.

    PubMed

    Zhu, Wei Dong; Huang, Qi; Li, Xi Ye; Chen, Hong Sai; Wang, Zhao Yan; Wu, Hao

    2016-03-01

    OBJECT Cavernous hemangioma of the internal auditory canal (IAC) is an extremely rare type of tumor, and only 50 cases have been reported in the literature prior to this study. The aim in this study was to describe the symptomatology, radiological features, and surgical outcomes for patients with cavernous hemangioma of the IAC and to discuss the diagnostic criteria and treatment strategy for the disease. METHODS The study included 6 patients with cavernous hemangioma of the IAC. All patients presented with sensorineural hearing loss and tinnitus, and 2 also suffered from vertigo. Five patients reported a history of facial symptoms with hemispasm or palsy: 3 had progressive facial weakness, 1 had a hemispasm, and 1 had a history of recovery from sudden facial paresis. All patients underwent CT and MRI to rule out intracanalicular vestibular schwannomas and facial nerve neuromas. Five patients had their tumors surgically removed, while 1 patient, who did not have facial problems, was followed up with a wait-and-scan approach. RESULTS All patients had a presurgical diagnosis of cavernous hemangioma of the IAC, which was confirmed pathologically in the 5 patients who underwent surgical removal of the tumor. The translabyrinthine approach was used to remove the tumor in 4 patients, while the middle cranial fossa approach was used in the 1 patient who still had functional hearing. Tumors adhered to cranial nerves VII and/or VIII and were difficult to dissect from nerve sheaths during surgeries. Complete hearing loss occurred in all 5 patients. In 3 patients, the facial nerve could not be separated from the tumor, and primary end-to-end anastomosis was performed. Intact facial nerve preservation was achieved in 2 patients. Patients were followed up for at least 1 year after treatment, and MRI showed no evidence of tumor regrowth. All patients experienced some level of recovery in facial nerve function. CONCLUSIONS Cavernous hemangioma of the IAC can be diagnosed

  5. The Application of the International Classification of Functioning, Disability and Health to Functional Auditory Consequences of Mild Traumatic Brain Injury.

    PubMed

    Werff, Kathy R Vander

    2016-08-01

    This article reviews the auditory consequences of mild traumatic brain injury (mTBI) within the context of the International Classification of Functioning, Disability and Health (ICF). Because of growing awareness of mTBI as a public health concern and the diverse and heterogeneous nature of the individual consequences, it is important to provide audiologists and other health care providers with a better understanding of potential implications in the assessment of levels of function and disability for individual interdisciplinary remediation planning. In consideration of body structures and function, the mechanisms of injury that may result in peripheral or central auditory dysfunction in mTBI are reviewed, along with a broader scope of effects of injury to the brain. The activity limitations and participation restrictions that may affect assessment and management in the context of an individual's personal factors and their environment are considered. Finally, a review of management strategies for mTBI from an audiological perspective as part of a multidisciplinary team is included. PMID:27489400

  6. BDNF Increases Survival and Neuronal Differentiation of Human Neural Precursor Cells Cotransplanted with a Nanofiber Gel to the Auditory Nerve in a Rat Model of Neuronal Damage

    PubMed Central

    Jiao, Yu; Palmgren, Björn; Novozhilova, Ekaterina; Englund Johansson, Ulrica; Spieles-Engemann, Anne L.; Kale, Ajay; Stupp, Samuel I.; Olivius, Petri

    2014-01-01

    Objectives. To study possible nerve regeneration of a damaged auditory nerve by the use of stem cell transplantation. Methods. We transplanted HNPCs to the rat AN trunk by the internal auditory meatus (IAM). Furthermore, we studied if addition of BDNF affects survival and phenotypic differentiation of the grafted HNPCs. A bioactive nanofiber gel (PA gel), in selected groups mixed with BDNF, was applied close to the implanted cells. Before transplantation, all rats had been deafened by a round window niche application of β-bungarotoxin. This neurotoxin causes a selective toxic destruction of the AN while keeping the hair cells intact. Results. Overall, HNPCs survived well for up to six weeks in all groups. However, transplants receiving the BDNF-containing PA gel demonstrated significantly higher numbers of HNPCs and neuronal differentiation. At six weeks, a majority of the HNPCs had migrated into the brain stem and differentiated. Differentiated human cells as well as neurites were observed in the vicinity of the cochlear nucleus. Conclusion. Our results indicate that human neural precursor cells (HNPC) integration with host tissue benefits from additional brain derived neurotrophic factor (BDNF) treatment and that these cells appear to be good candidates for further regenerative studies on the auditory nerve (AN). PMID:25243135

  7. An unusual side effect of isotretinoin: retinoid dermatitis affecting external urethral meatus.

    PubMed

    Alli, Nuran; Yorulmaz, Ahu

    2015-01-01

    Isotretinoin (Iso) is the most effective drug against severe nodulocystic acne. As a synthetic oral retinoid, Iso exerts its actions by modulating cell growth and differentiation. Targeting all the pathophysiologic processes in acne development, Iso has been considered to be an unique drug, however it has several side effects. While chelitis, xerosis, ocular sicca, arthralgia, myalgia, headache, hyperlipidemia are the most common side effects, teratogenicity and depressive symptoms are the most concerning ones. In addition, Iso has unusual side effects which have been described for the first time in the literature. Here, we report a remarkable side effect of Iso in a 23-years-old male patient with retinoid dermatitis affecting the external uretral meatus. To our knowledge, only few cases of retinoid dermatitis in the urethral mucosa due to Iso have been reported in the literature so far. PMID:24964168

  8. Does antibacterial ointment applied to urethral meatus in women prevent recurrent cystitis?

    PubMed

    Meyhoff, H H; Nordling, J; Gammelgaard, P A; Vejlsgaard, R

    1981-01-01

    In a double-blind placebo controlled clinical trial the preventive value of the antibacterial ointment povidone-iodine 10% (Isodine, Betadine) applied to urethral meatus was evaluated in 17 females suffering from recurrent urinary tract infections (UTI). The patients applied povidone-iodine respectively placebo ointment twice daily and before sexual intercourse in two 6-month periods in a cross-over design. No difference was observed in number of UTI during povidone-iodine and placebo prophylaxis. A decrease in the incidence of UTI was seen during application of any ointment. The antibacterial properties of povidone-iodine ointment is unimportant in the prophylaxis of reinfections as also indicated from urethral and periurethral cultures during the study revealing no change in pathogenic bacterial flora. An improved perineal hygiene in the context of application of ointment may be responsible for the reduction in UTI incidence in females with recurrent cystitis. PMID:7036332

  9. Cavernous hemangioma of the internal auditory canal encasing the VII and VIII cranial nerve complex: case report and review of the literature.

    PubMed

    Mastronardi, Luciano; Carpineta, Ettore; Cacciotti, Guglielmo; Di Scipio, Ettore; Roperto, Raffaelino

    2016-04-01

    Cavernous angiomas originating in the internal auditory canal are very rare. In the available literature, only 65 cases of cavernomas in this location have been previously reported. We describe the case of a 22-year-old woman surgically treated for a cavernous hemangioma in the left internal auditory canal, mimicking on preoperative magnetic resonance imaging MRI an acoustic neuroma. Neurological symptoms were hypoacusia and dizziness. The cavernous angioma encased the seventh and, partially, the eighth cranial nerve complex. A "nearly total" removal was performed, leaving a thin residual of malformation adherent to the facial nerve. Postoperative period was uneventful; hearing was unchanged, but the patient had a moderate inferior left facial palsy (House-Brackmann grade II) slightly improved during the following weeks. On the basis of the observation of this uncommon case, we propose a revision of the literature and discuss clinical features, differential diagnosis, and treatment. PMID:26876892

  10. Development of an auditory emotion recognition function using psychoacoustic parameters based on the International Affective Digitized Sounds.

    PubMed

    Choi, Youngimm; Lee, Sungjun; Jung, SungSoo; Choi, In-Mook; Park, Yon-Kyu; Kim, Chobok

    2015-12-01

    The purpose of this study was to develop an auditory emotion recognition function that could determine the emotion caused by sounds coming from the environment in our daily life. For this purpose, sound stimuli from the International Affective Digitized Sounds (IADS-2), a standardized database of sounds intended to evoke emotion, were selected, and four psychoacoustic parameters (i.e., loudness, sharpness, roughness, and fluctuation strength) were extracted from the sounds. Also, by using an emotion adjective scale, 140 college students were tested to measure three basic emotions (happiness, sadness, and negativity). From this discriminant analysis to predict basic emotions from the psychoacoustic parameters of sound, a discriminant function with overall discriminant accuracy of 88.9% was produced from training data. In order to validate the discriminant function, the same four psychoacoustic parameters were extracted from 46 sound stimuli collected from another database and substituted into the discriminant function. The results showed that an overall discriminant accuracy of 63.04% was confirmed. Our findings provide the possibility that daily-life sounds, beyond voice and music, can be used in a human-machine interface. PMID:25319038

  11. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. PMID:25726291

  12. Is a Solitary Fibrous Tumor in the External Auditory Canal Benign?

    PubMed Central

    Lee, Hyun Ju

    2016-01-01

    A solitary fibrous tumor (SFT) is an extremely rare, distinct otological soft-tissue tumor. Only two such tumors in the external auditory canal have been reported. A SFT related to hemangiopericytomas (HPC), which commonly arise in the central nervous system. HPCs act malignant in many cases, while SFTs at other sites are mainly benign. A 25-year-old female presented with highly vascular tumor at the right external auditory meatus and bleeding from the mass when a crust was removed from its surface. After excisional biopsy followed by pre-operative embolization, this tumor confirmed with SFT. The recurrence rate of SFT is very low after complete resection, with a slightly increased risk of recurrence with extrathoracic tumors. We describe the third case of SFT in the external auditory canal and review the literature. PMID:27626087

  13. Is a Solitary Fibrous Tumor in the External Auditory Canal Benign?

    PubMed

    Lee, Chi-Kyou; Lee, Hyun Ju

    2016-09-01

    A solitary fibrous tumor (SFT) is an extremely rare, distinct otological soft-tissue tumor. Only two such tumors in the external auditory canal have been reported. A SFT related to hemangiopericytomas (HPC), which commonly arise in the central nervous system. HPCs act malignant in many cases, while SFTs at other sites are mainly benign. A 25-year-old female presented with highly vascular tumor at the right external auditory meatus and bleeding from the mass when a crust was removed from its surface. After excisional biopsy followed by pre-operative embolization, this tumor confirmed with SFT. The recurrence rate of SFT is very low after complete resection, with a slightly increased risk of recurrence with extrathoracic tumors. We describe the third case of SFT in the external auditory canal and review the literature. PMID:27626087

  14. Auditory synesthesias.

    PubMed

    Afra, Pegah

    2015-01-01

    Synesthesia is experienced when sensory stimulation of one sensory modality (the inducer) elicits an involuntary or automatic sensation in another sensory modality or different aspect of the same sensory modality (the concurrent). Auditory synesthesias (AS) occur when auditory stimuli trigger a variety of concurrents, or when non-auditory sensory stimulations trigger auditory synesthetic perception. The AS are divided into three types: developmental, acquired, and induced. Developmental AS are not a neurologic disorder but a different way of experiencing one's environment. They are involuntary and highly consistent experiences throughout one's life. Acquired AS have been reported in association with neurologic diseases that cause deafferentation of anterior optic pathways, with pathologic lesions affecting the central nervous system (CNS) outside of the optic pathways, as well as non-lesional cases associated with migraine, and epilepsy. It also has been reported with mood disorders as well as a single idiopathic case. Induced AS has been reported in experimental and postsurgical blindfolding, as well as intake of hallucinogenics or psychedelics. In this chapter the three different types of synesthesia, their characteristics, and phenomologic differences, as well as their possible neural mechanisms are discussed. PMID:25726281

  15. Auditory system

    NASA Technical Reports Server (NTRS)

    Ades, H. W.

    1973-01-01

    The physical correlations of hearing, i.e. the acoustic stimuli, are reported. The auditory system, consisting of external ear, middle ear, inner ear, organ of Corti, basilar membrane, hair cells, inner hair cells, outer hair cells, innervation of hair cells, and transducer mechanisms, is discussed. Both conductive and sensorineural hearing losses are also examined.

  16. [The application of the lyophilized xenodermoimplants for the plastic correction of the external auditory canal and nasal septum perforation].

    PubMed

    Antoniv, V F; Popadyuk, V I; Aksenov, V M; Antoniv, T V; Korshunova, I A

    2016-01-01

    The objective of the present work was to improve the effectiveness of the treatment of atresia of the external auditory canal (EAC). Atresia of external acoustic meatus is a result of a mechanical or thermal injury but can also develop after a surgical intervention for the removal of foreign bodies, benign and malignant tumours. This condition is frequently associated with the narrowing and obliteration of EAC leading to the marked impairment of hearing despite preservation of the middle ear structures. Plastic correction of the external auditory canal for the purpose of its broadening does not always produce the desired result. To improve the efficiency of such intervention, we made use of the lyophilized xenodermoimplants based on porcine skin. Such preparation were applied in 19 patients; patency of the external auditory canal was restored in 16 cases. PMID:27367342

  17. Auditory sensitivity to local stimulation of the head surface in a beluga whale (Delphinapterus leucas).

    PubMed

    Popov, Vladimir V; Sysueva, Evgeniya V; Nechaev, Dmitry I; Lemazina, Alena A; Supin, Alexander Ya

    2016-08-01

    Using the auditory evoked response technique, sensitivity to local acoustic stimulation of the ventro-lateral head surface was investigated in a beluga whale (Delphinapterus leucas). The stimuli were tone pip trains of carrier frequencies ranging from 16 to 128 kHz with a pip rate of 1 kHz. For higher frequencies (90-128 kHz), the low-threshold point was located next to the medial side of the middle portion of the lower jaw. For middle (32-64 kHz) and lower (16-22.5 kHz) frequencies, the low-threshold point was located at the lateral side of the middle portion of the lower jaw. For lower frequencies, there was an additional low-threshold point next to the bulla-meatus complex. Based on these data, several frequency-specific paths of sound conduction to the auditory bulla are suggested: (i) through an area on the lateral surface of the lower jaw and further through the intra-jaw fat-body channel (for a wide frequency range); (ii) through an area on the ventro-lateral head surface and further through the medial opening of the lower jaw and intra-jaw fat-body channel (for a high-frequency range); and (iii) through an area on the lateral (near meatus) head surface and further through the lateral fat-body channel (for a low-frequency range). PMID:27586750

  18. Fat graft-assisted internal auditory canal closure after retrosigmoid transmeatal resection of acoustic neuroma: Technique for prevention of cerebrospinal fluid leakage.

    PubMed

    Azad, Tareq; Mendelson, Zachary S; Wong, Anni; Jyung, Robert W; Liu, James K

    2016-02-01

    The retrosigmoid transmeatal approach remains an important strategy in the surgical management of acoustic neuromas. Gross total resection of acoustic neuromas requires removal of tumor within the cerebellopontine angle as well as tumor involving the internal auditory canal (IAC). Drilling into the petrous bone of the IAC can expose petrous air cells, which can potentially result in a fistulous tract to the nasopharynx manifesting as cerebrospinal fluid (CSF) rhinorrhea. We describe our method of IAC closure using autologous fat graft and assessed the rates of postoperative CSF leakage. We performed a retrospective study of 24 consecutive patients who underwent retrosigmoid transmeatal resection of acoustic neuroma who underwent our method of fat graft-assisted IAC closure. We assessed rates of postoperative CSF leak (incisional leak, rhinorrhea, or otorrhea), pseudomeningocele formation, and occurrence of meningitis. Twenty-four patients (10 males, 14 females) with a mean age of 47 years (range 18-84) underwent fat graft-assisted IAC closure. No lumbar drains were used postoperatively. There were no instances of postoperative CSF leak (incisional leak, rhinorrhea, or otorrhea), pseudomeningocele formation, or occurrence of meningitis. There were no graft site complications. Our results demonstrate that autologous fat grafts provide a safe and effective method of IAC defect closure to prevent postoperative CSF leakage after acoustic tumor removal via a retrosigmoid transmeatal approach. The surgical technique and operative nuances are described. PMID:26482457

  19. Sexual dimorphism of the lateral angle of the internal auditory canal and its potential for sex estimation of burned human skeletal remains.

    PubMed

    Gonçalves, David; Thompson, Tim J U; Cunha, Eugénia

    2015-09-01

    The potential of the petrous bone for sex estimation has been recurrently investigated in the past because it is very resilient and therefore tends to preserve rather well. The sexual dimorphism of the lateral angle of the internal auditory canal was investigated in two samples of cremated Portuguese individuals in order to assess its usefulness for sex estimation in burned remains. These comprised the cremated petrous bones from fleshed cadavers (N = 54) and from dry and disarticulated bones (N = 36). Although differences between males and females were more patent in the sample of skeletons, none presented a very significant sexual dimorphism, thus precluding any attempt of sex estimation. This may have been the result of a difficult application of the method and of a differential impact of heat-induced warping which is known to be less frequent in cremains from dry skeletons. Results suggest that the lateral angle method cannot be applied to burned human skeletal remains. PMID:25649669

  20. Auditory Imagery: Empirical Findings

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.

    2010-01-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d)…

  1. Auditory Training for Central Auditory Processing Disorder.

    PubMed

    Weihing, Jeffrey; Chermak, Gail D; Musiek, Frank E

    2015-11-01

    Auditory training (AT) is an important component of rehabilitation for patients with central auditory processing disorder (CAPD). The present article identifies and describes aspects of AT as they relate to applications in this population. A description of the types of auditory processes along with information on relevant AT protocols that can be used to address these specific deficits is included. Characteristics and principles of effective AT procedures also are detailed in light of research that reflects on their value. Finally, research investigating AT in populations who show CAPD or present with auditory complaints is reported. Although efficacy data in this area are still emerging, current findings support the use of AT for treatment of auditory difficulties. PMID:27587909

  2. Predictive coding of visual-auditory and motor-auditory events: An electrophysiological study.

    PubMed

    Stekelenburg, Jeroen J; Vroomen, Jean

    2015-11-11

    The amplitude of auditory components of the event-related potential (ERP) is attenuated when sounds are self-generated compared to externally generated sounds. This effect has been ascribed to internal forward modals predicting the sensory consequences of one's own motor actions. Auditory potentials are also attenuated when a sound is accompanied by a video of anticipatory visual motion that reliably predicts the sound. Here, we investigated whether the neural underpinnings of prediction of upcoming auditory stimuli are similar for motor-auditory (MA) and visual-auditory (VA) events using a stimulus omission paradigm. In the MA condition, a finger tap triggered the sound of a handclap whereas in the VA condition the same sound was accompanied by a video showing the handclap. In both conditions, the auditory stimulus was omitted in either 50% or 12% of the trials. These auditory omissions induced early and mid-latency ERP components (oN1 and oN2, presumably reflecting prediction and prediction error), and subsequent higher-order error evaluation processes. The oN1 and oN2 of MA and VA were alike in amplitude, topography, and neural sources despite that the origin of the prediction stems from different brain areas (motor versus visual cortex). This suggests that MA and VA predictions activate a sensory template of the sound in auditory cortex. This article is part of a Special Issue entitled SI: Prediction and Attention. PMID:25641042

  3. Auditory imagery: empirical findings.

    PubMed

    Hubbard, Timothy L

    2010-03-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d) auditory imagery's relationship to perception and memory (detection, encoding, recall, mnemonic properties, phonological loop), and (e) individual differences in auditory imagery (in vividness, musical ability and experience, synesthesia, musical hallucinosis, schizophrenia, amusia) are considered. It is concluded that auditory imagery (a) preserves many structural and temporal properties of auditory stimuli, (b) can facilitate auditory discrimination but interfere with auditory detection, (c) involves many of the same brain areas as auditory perception, (d) is often but not necessarily influenced by subvocalization, (e) involves semantically interpreted information and expectancies, (f) involves depictive components and descriptive components, (g) can function as a mnemonic but is distinct from rehearsal, and (h) is related to musical ability and experience (although the mechanisms of that relationship are not clear). PMID:20192565

  4. Attending to auditory memory.

    PubMed

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26638836

  5. What causes auditory distraction?

    PubMed

    Macken, William J; Phelps, Fiona G; Jones, Dylan M

    2009-02-01

    The role of separating task-relevant from task-irrelevant aspects of the environment is typically assigned to the executive functioning of working memory. However, pervasive aspects of auditory distraction have been shown to be unrelated to working memory capacity in a range of studies of individual differences. We measured individual differences in global pattern matching and deliberate recoding of auditory sequences, and showed that, although deliberate processing was related to short-term memory performance, it did not predict the extent to which that performance was disrupted by task-irrelevant sound. Individual differences in global sequence processing were, however, positively related to the degree to which auditory distraction occurred. We argue that much auditory distraction, rather than being a negative function of working memory capacity, is in fact a positive function of the acuity of obligatory auditory processing. PMID:19145024

  6. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features. PMID:22271265

  7. Ruptured Total Intrameatal Anterior Inferior Cerebellar Artery Aneurysm

    PubMed Central

    Kim, Hyung Cheol; Chang, In Bok; Lee, Ho Kook

    2015-01-01

    Among the distal anterior inferior cerebellar artery (AICA) aneurysms, a unique aneurysm at the meatal loop inside the internal auditory meatus is extremely rare. The authors report a case of surgically treated total intrameatal AICA aneurysm. A 62-year-old female patient presenting with sudden bursting headache and neck pain was transferred to our department. Computed tomography and digital subtraction angiography showed subarachnoid hemorrhage at the basal, prepontine cistern and an aneurysm of the distal anterior inferior cerebellar artery inside the internal auditory meatus. Surgery was performed by retrosigmoid craniotomy with unroofing of the internal auditory meatus. The aneurysm was identified between the seventh and eighth cranial nerve in the meatus and was removed from the canal and clipped with a small straight Sugita clip. After operation the patient experienced transient facial paresis and tinnitus but improved during follow up. PMID:26361531

  8. Temperature sensitive auditory neuropathy.

    PubMed

    Zhang, Qiujing; Lan, Lan; Shi, Wei; Yu, Lan; Xie, Lin-Yi; Xiong, Fen; Zhao, Cui; Li, Na; Yin, Zifang; Zong, Liang; Guan, Jing; Wang, Dayong; Sun, Wei; Wang, Qiuju

    2016-05-01

    Temperature sensitive auditory neuropathy is a very rare and puzzling disorder. In the present study, we reported three unrelated 2 to 6 year-old children who were diagnosed as auditory neuropathy patients who complained of severe hearing loss when they had fever. Their hearing thresholds varied from the morning to the afternoon. Two of these patients' hearing improved with age, and one patient received positive results from cochlear implant. Genetic analysis revealed that these three patients had otoferlin (OTOF) homozygous or compound heterozygous mutations with the genotypes c.2975_2978delAG/c.4819C>T, c.4819C>T/c.4819C>T, or c.2382_2383delC/c.1621G>A, respectively. Our study suggests that these gene mutations may be the cause of temperature sensitive auditory neuropathy. The long term follow up results suggest that the hearing loss in this type of auditory neuropathy may recover with age. PMID:26778470

  9. Subcortical modulation in auditory processing and auditory hallucinations.

    PubMed

    Ikuta, Toshikazu; DeRosse, Pamela; Argyelan, Miklos; Karlsgodt, Katherine H; Kingsley, Peter B; Szeszko, Philip R; Malhotra, Anil K

    2015-12-15

    Hearing perception in individuals with auditory hallucinations has not been well studied. Auditory hallucinations have previously been shown to involve primary auditory cortex activation. This activation suggests that auditory hallucinations activate the terminal of the auditory pathway as if auditory signals are submitted from the cochlea, and that a hallucinatory event is therefore perceived as hearing. The primary auditory cortex is stimulated by some unknown source that is outside of the auditory pathway. The current study aimed to assess the outcomes of stimulating the primary auditory cortex through the auditory pathway in individuals who have experienced auditory hallucinations. Sixteen patients with schizophrenia underwent functional magnetic resonance imaging (fMRI) sessions, as well as hallucination assessments. During the fMRI session, auditory stimuli were presented in one-second intervals at times when scanner noise was absent. Participants listened to auditory stimuli of sine waves (SW) (4-5.5kHz), English words (EW), and acoustically reversed English words (arEW) in a block design fashion. The arEW were employed to deliver the sound of a human voice with minimal linguistic components. Patients' auditory hallucination severity was assessed by the auditory hallucination item of the Brief Psychiatric Rating Scale (BPRS). During perception of arEW when compared with perception of SW, bilateral activation of the globus pallidus correlated with severity of auditory hallucinations. EW when compared with arEW did not correlate with auditory hallucination severity. Our findings suggest that the sensitivity of the globus pallidus to the human voice is associated with the severity of auditory hallucination. PMID:26275927

  10. Auditory Spatial Layout

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  11. [Central auditory prosthesis].

    PubMed

    Lenarz, T; Lim, H; Joseph, G; Reuter, G; Lenarz, M

    2009-06-01

    Deaf patients with severe sensory hearing loss can benefit from a cochlear implant (CI), which stimulates the auditory nerve fibers. However, patients who do not have an intact auditory nerve cannot benefit from a CI. The majority of these patients are neurofibromatosis type 2 (NF2) patients who developed neural deafness due to growth or surgical removal of a bilateral acoustic neuroma. The only current solution is the auditory brainstem implant (ABI), which stimulates the surface of the cochlear nucleus in the brainstem. Although the ABI provides improvement in environmental awareness and lip-reading capabilities, only a few NF2 patients have achieved some limited open set speech perception. In the search for alternative procedures our research group in collaboration with Cochlear Ltd. (Australia) developed a human prototype auditory midbrain implant (AMI), which is designed to electrically stimulate the inferior colliculus (IC). The IC has the potential as a new target for an auditory prosthesis as it provides access to neural projections necessary for speech perception as well as a systematic map of spectral information. In this paper the present status of research and development in the field of central auditory prostheses is presented with respect to technology, surgical technique and hearing results as well as the background concepts of ABI and AMI. PMID:19517084

  12. Cell transplantation to the auditory nerve and cochlear duct.

    PubMed

    Sekiya, Tetsuji; Kojima, Ken; Matsumoto, Masahiro; Kim, Tae-Soo; Tamura, Tetsuya; Ito, Juichi

    2006-03-01

    We have developed a technique to deliver cells to the inner ear without injuring the membranes that seal the endolymphatic and perilymphatic chambers. The integrity of these membranes is essential for normal hearing, and the technique should significantly reduce surgical trauma during cell transplantation. Embryonic stem cells transplanted at the internal auditory meatal portion of an atrophic auditory nerve migrated extensively along it. Four-five weeks after transplantation, the cells were found not only throughout the auditory nerve, but also in Rosenthal's canal and the scala media, the most distal portion of the auditory nervous system where the hair cells reside. Migration of the transplanted cells was more extensive following damage to the auditory nerve. In the undamaged nerve, migration was more limited, but the cells showed more signs of neuronal differentiation. This highlights an important balance between tissue damage and the potential for repair. PMID:16376874

  13. Auditory hallucinations induced by trazodone

    PubMed Central

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-01-01

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients. PMID:24700048

  14. Auditory models for speech analysis

    NASA Astrophysics Data System (ADS)

    Maybury, Mark T.

    This paper reviews the psychophysical basis for auditory models and discusses their application to automatic speech recognition. First an overview of the human auditory system is presented, followed by a review of current knowledge gleaned from neurological and psychoacoustic experimentation. Next, a general framework describes established peripheral auditory models which are based on well-understood properties of the peripheral auditory system. This is followed by a discussion of current enhancements to that models to include nonlinearities and synchrony information as well as other higher auditory functions. Finally, the initial performance of auditory models in the task of speech recognition is examined and additional applications are mentioned.

  15. Action-related auditory ERP attenuation: Paradigms and hypotheses.

    PubMed

    Horváth, János

    2015-11-11

    A number studies have shown that the auditory N1 event-related potential (ERP) is attenuated when elicited by self-induced or self-generated sounds. Because N1 is a correlate of auditory feature- and event-detection, it was generally assumed that N1-attenuation reflected the cancellation of auditory re-afference, enabled by the internal forward modeling of the predictable sensory consequences of the given action. Focusing on paradigms utilizing non-speech actions, the present review summarizes recent progress on action-related auditory attenuation. Following a critical analysis of the most widely used, contingent paradigm, two further hypotheses on the possible causes of action-related auditory ERP attenuation are presented. The attention hypotheses suggest that auditory ERP attenuation is brought about by a temporary division of attention between the action and the auditory stimulation. The pre-activation hypothesis suggests that the attenuation is caused by the activation of a sensory template during the initiation of the action, which interferes with the incoming stimulation. Although each hypothesis can account for a number of findings, none of them can accommodate the whole spectrum of results. It is suggested that a better understanding of auditory ERP attenuation phenomena could be achieved by systematic investigations of the types of actions, the degree of action-effect contingency, and the temporal characteristics of action-effect contingency representation-buildup and -deactivation. This article is part of a Special Issue entitled SI: Prediction and Attention. PMID:25843932

  16. [Diagnosis and therapy of auditory synaptopathy/neuropathy].

    PubMed

    Moser, T; Strenzke, N; Meyer, A; Lesinski-Schiedat, A; Lenarz, T; Beutner, D; Foerst, A; Lang-Roth, R; von Wedel, H; Walger, M; Gross, M; Keilmann, A; Limberger, A; Steffens, T; Strutz, J

    2006-11-01

    Pathological auditory brainstem responses (lack of responses, elevated thresholds and perturbed waveforms) in combination with present otoacoustic emissions are typical audiometric findings in patients with a hearing impairment that particularly affects speech comprehension or complete deafness. This heterogenous group of disorders first described as "auditory neuropathy" includes dysfunction of peripheral synaptic coding of sound by inner hair cells (synaptopathy) and/or of the generation and propagation of action potentials in the auditory nerve (neuropathy). This joint statement provides prevailing background information as well as recommendations on diagnosis and treatment. The statement focuses on the handling in the german language area but also refers to current international statements. PMID:17041780

  17. The Drosophila Auditory System

    PubMed Central

    Boekhoff-Falk, Grace; Eberl, Daniel F.

    2013-01-01

    Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston’s organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center (AMMC) in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system. PMID:24719289

  18. Overriding auditory attentional capture.

    PubMed

    Dalton, Polly; Lavie, Nilli

    2007-02-01

    Attentional capture by color singletons during shape search can be eliminated when the target is not a feature singleton (Bacon & Egeth, 1994). This suggests that a "singleton detection" search strategy must be adopted for attentional capture to occur. Here we find similar effects on auditory attentional capture. Irrelevant high-intensity singletons interfered with an auditory search task when the target itself was also a feature singleton. However, singleton interference was eliminated when the target was not a singleton (i.e., when nontargets were made heterogeneous, or when more than one target sound was presented). These results suggest that auditory attentional capture depends on the observer's attentional set, as does visual attentional capture. The suggestion that hearing might act as an early warning system that would always be tuned to unexpected unique stimuli must therefore be modified to accommodate these strategy-dependent capture effects. PMID:17557587

  19. Cremated human remains: is measurement of the lateral angle of the meatus acusticus internus a reliable method of sex determination?

    PubMed

    Masotti, Sabrina; Succi-Leonelli, Elisa; Gualdi-Russo, Emanuela

    2013-09-01

    The purpose of this study was to evaluate the lateral angle (LA) method-based on the measurement of the angle at which the internal acoustic canal opens up to the surface of the petrous bone-for sex determination in cremated skeletal remains of Italians. The sample consisted of 160 adult individuals of known age and sex who had recently died and were cremated in the crematorium of Ferrara (northern Italy). Several studies have demonstrated that the petrous portion of the temporal bone may be a valuable tool for sex diagnosis in unburned skeletal remains. Since petrous bones are usually preserved after cremation, this method could be of particular interest in the case of burned skeletal remains. The repeatability of intra- and inter-observer measurements was good. The results indicated that male and female lateral angles were significantly different but that the values did not differ among age-groups. There was no bilateral difference in LA. However, neither the 45° angle, proposed in earlier studies as the sectioning point for this variable from male and female data distributions, nor another angular value allowed satisfactory discrimination between the sexes in our sample. The influence of the "age" factor (about 82 % of females were of ≥ 75 years of age) on the results is critically discussed. The results of this study suggest that the LA method is not sufficiently reliable to assess the sex of elderly Italian individuals from their burned remains and thus should only be used in conjunction with other sexing techniques. PMID:23344564

  20. Auditory Memory for Timbre

    ERIC Educational Resources Information Center

    McKeown, Denis; Wellsted, David

    2009-01-01

    Psychophysical studies are reported examining how the context of recent auditory stimulation may modulate the processing of new sounds. The question posed is how recent tone stimulation may affect ongoing performance in a discrimination task. In the task, two complex sounds occurred in successive intervals. A single target component of one complex…

  1. Incidental Auditory Category Learning

    PubMed Central

    Gabay, Yafit; Dick, Frederic K.; Zevin, Jason D.; Holt, Lori L.

    2015-01-01

    Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in one of four possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. PMID:26010588

  2. Auditory Channel Problems.

    ERIC Educational Resources Information Center

    Mann, Philip H.; Suiter, Patricia A.

    This teacher's guide contains a list of general auditory problem areas where students have the following problems: (a) inability to find or identify source of sound; (b) difficulty in discriminating sounds of words and letters; (c) difficulty with reproducing pitch, rhythm, and melody; (d) difficulty in selecting important from unimportant sounds;…

  3. Auditory confrontation naming in Alzheimer's disease.

    PubMed

    Brandt, Jason; Bakker, Arnold; Maroof, David Aaron

    2010-11-01

    Naming is a fundamental aspect of language and is virtually always assessed with visual confrontation tests. Tests of the ability to name objects by their characteristic sounds would be particularly useful in the assessment of visually impaired patients, and may be particularly sensitive in Alzheimer's disease (AD). We developed an auditory naming task, requiring the identification of the source of environmental sounds (i.e., animal calls, musical instruments, vehicles) and multiple-choice recognition of those not identified. In two separate studies mild-to-moderate AD patients performed more poorly than cognitively normal elderly on the auditory naming task. This task was also more difficult than two versions of a comparable visual naming task, and correlated more highly with Mini-Mental State Exam score. Internal consistency reliability was acceptable, although ROC analysis revealed auditory naming to be slightly less successful than visual confrontation naming in discriminating AD patients from normal participants. Nonetheless, our auditory naming task may prove useful in research and clinical practice, especially with visually impaired patients. PMID:20981630

  4. The Human Brain Maintains Contradictory and Redundant Auditory Sensory Predictions

    PubMed Central

    Pieszek, Marika; Widmann, Andreas; Gruber, Thomas; Schröger, Erich

    2013-01-01

    Computational and experimental research has revealed that auditory sensory predictions are derived from regularities of the current environment by using internal generative models. However, so far, what has not been addressed is how the auditory system handles situations giving rise to redundant or even contradictory predictions derived from different sources of information. To this end, we measured error signals in the event-related brain potentials (ERPs) in response to violations of auditory predictions. Sounds could be predicted on the basis of overall probability, i.e., one sound was presented frequently and another sound rarely. Furthermore, each sound was predicted by an informative visual cue. Participants’ task was to use the cue and to discriminate the two sounds as fast as possible. Violations of the probability based prediction (i.e., a rare sound) as well as violations of the visual-auditory prediction (i.e., an incongruent sound) elicited error signals in the ERPs (Mismatch Negativity [MMN] and Incongruency Response [IR]). Particular error signals were observed even in case the overall probability and the visual symbol predicted different sounds. That is, the auditory system concurrently maintains and tests contradictory predictions. Moreover, if the same sound was predicted, we observed an additive error signal (scalp potential and primary current density) equaling the sum of the specific error signals. Thus, the auditory system maintains and tolerates functionally independently represented redundant and contradictory predictions. We argue that the auditory system exploits all currently active regularities in order to optimally prepare for future events. PMID:23308266

  5. Development of the auditory system

    PubMed Central

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  6. Auditory object cognition in dementia.

    PubMed

    Goll, Johanna C; Kim, Lois G; Hailstone, Julia C; Lehmann, Manja; Buckley, Aisling; Crutch, Sebastian J; Warren, Jason D

    2011-07-01

    The cognition of nonverbal sounds in dementia has been relatively little explored. Here we undertook a systematic study of nonverbal sound processing in patient groups with canonical dementia syndromes comprising clinically diagnosed typical amnestic Alzheimer's disease (AD; n=21), progressive nonfluent aphasia (PNFA; n=5), logopenic progressive aphasia (LPA; n=7) and aphasia in association with a progranulin gene mutation (GAA; n=1), and in healthy age-matched controls (n=20). Based on a cognitive framework treating complex sounds as 'auditory objects', we designed a novel neuropsychological battery to probe auditory object cognition at early perceptual (sub-object), object representational (apperceptive) and semantic levels. All patients had assessments of peripheral hearing and general neuropsychological functions in addition to the experimental auditory battery. While a number of aspects of auditory object analysis were impaired across patient groups and were influenced by general executive (working memory) capacity, certain auditory deficits had some specificity for particular dementia syndromes. Patients with AD had a disproportionate deficit of auditory apperception but preserved timbre processing. Patients with PNFA had salient deficits of timbre and auditory semantic processing, but intact auditory size and apperceptive processing. Patients with LPA had a generalised auditory deficit that was influenced by working memory function. In contrast, the patient with GAA showed substantial preservation of auditory function, but a mild deficit of pitch direction processing and a more severe deficit of auditory apperception. The findings provide evidence for separable stages of auditory object analysis and separable profiles of impaired auditory object cognition in different dementia syndromes. PMID:21689671

  7. The auditory characteristics of children with inner auditory canal stenosis.

    PubMed

    Ai, Yu; Xu, Lei; Li, Li; Li, Jianfeng; Luo, Jianfen; Wang, Mingming; Fan, Zhaomin; Wang, Haibo

    2016-07-01

    Conclusions This study shows that the prevalence of auditory neuropathy spectrum disorder (ANSD) in the children with inner auditory canal (IAC) stenosis is much higher than those without IAC stenosis, regardless of whether they have other inner ear anomalies. In addition, the auditory characteristics of ANSD with IAC stenosis are significantly different from those of ANSD without any middle and inner ear malformations. Objectives To describe the auditory characteristics in children with IAC stenosis as well as to examine whether the narrow inner auditory canal is associated with ANSD. Method A total of 21 children, with inner auditory canal stenosis, participated in this study. A series of auditory tests were measured. Meanwhile, a comparative study was conducted on the auditory characteristics of ANSD, based on whether the children were associated with isolated IAC stenosis. Results Wave V in the ABR was not observed in all the patients, while cochlear microphonic (CM) response was detected in 81.1% ears with stenotic IAC. Sixteen of 19 (84.2%) ears with isolated IAC stenosis had CM response present on auditory brainstem responses (ABR) waveforms. There was no significant difference in ANSD characteristics between the children with and without isolated IAC stenosis. PMID:26981851

  8. Central auditory disorders: toward a neuropsychology of auditory objects

    PubMed Central

    Goll, Johanna C.; Crutch, Sebastian J.; Warren, Jason D.

    2012-01-01

    Purpose of review Analysis of the auditory environment, source identification and vocal communication all require efficient brain mechanisms for disambiguating, representing and understanding complex natural sounds as ‘auditory objects’. Failure of these mechanisms leads to a diverse spectrum of clinical deficits. Here we review current evidence concerning the phenomenology, mechanisms and brain substrates of auditory agnosias and related disorders of auditory object processing. Recent findings Analysis of lesions causing auditory object deficits has revealed certain broad anatomical correlations: deficient parsing of the auditory scene is associated with lesions involving the parieto-temporal junction, while selective disorders of sound recognition occur with more anterior temporal lobe or extra-temporal damage. Distributed neural networks have been increasingly implicated in the pathogenesis of such disorders as developmental dyslexia, congenital amusia and tinnitus. Auditory category deficits may arise from defective interaction of spectrotemporal encoding and executive and mnestic processes. Dedicated brain mechanisms are likely to process specialised sound objects such as voices and melodies. Summary Emerging empirical evidence suggests a clinically relevant, hierarchical and fractionated neuropsychological model of auditory object processing that provides a framework for understanding auditory agnosias and makes specific predictions to direct future work. PMID:20975559

  9. Early hominin auditory capacities.

    PubMed

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G; Thackeray, J Francis; Arsuaga, Juan Luis

    2015-09-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats. PMID:26601261

  10. Early hominin auditory capacities

    PubMed Central

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J.; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G.; Thackeray, J. Francis; Arsuaga, Juan Luis

    2015-01-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats. PMID:26601261

  11. Auditory interfaces: The human perceiver

    NASA Technical Reports Server (NTRS)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  12. Auditory feedback does not influence random number generation: Evidence from profoundly deaf adults with cochlear implant.

    PubMed

    Strenge, Hans; Müller-Deile, Joachim

    2007-08-01

    Oral random number generation is a widely used neuropsychological task engaging a number of overlapping neural systems of attention, number representation, response generation, and working memory. Although phonological processing is known to be essential for random number generation no information exists on the significance of the auditory feedback of hearing one's own voice on task performance. We therefore examined the influence of auditory feedback in 15 profoundly deaf adults with cochlear implants in a device-on/off experiment. No significant effects of occluding auditory feedback on random number generation were noted, thus supporting an internal response-monitoring model independent of auditory condition. PMID:17691037

  13. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  14. Auditory Reserve and the Legacy of Auditory Experience

    PubMed Central

    Skoe, Erika; Kraus, Nina

    2014-01-01

    Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function. PMID:25405381

  15. Hypermnesia using auditory input.

    PubMed

    Allen, J

    1992-07-01

    The author investigated whether hypermnesia would occur with auditory input. In addition, the author examined the effects of subjects' knowledge that they would later be asked to recall the stimuli. Two groups of 26 subjects each were given three successive recall trials after they listened to an audiotape of 59 high-imagery nouns. The subjects in the uninformed group were not told that they would later be asked to remember the words; those in the informed group were. Hypermnesia was evident, but only in the uninformed group. PMID:1447564

  16. Auditory neglect and related disorders.

    PubMed

    Gutschalk, Alexander; Dykstra, Andrew

    2015-01-01

    Neglect is a neurologic disorder, typically associated with lesions of the right hemisphere, in which patients are biased towards their ipsilesional - usually right - side of space while awareness for their contralesional - usually left - side is reduced or absent. Neglect is a multimodal disorder that often includes deficits in the auditory domain. Classically, auditory extinction, in which left-sided sounds that are correctly perceived in isolation are not detected in the presence of synchronous right-sided stimulation, has been considered the primary sign of auditory neglect. However, auditory extinction can also be observed after unilateral auditory cortex lesions and is thus not specific for neglect. Recent research has shown that patients with neglect are also impaired in maintaining sustained attention, on both sides, a fact that is reflected by an impairment of auditory target detection in continuous stimulation conditions. Perhaps the most impressive auditory symptom in full-blown neglect is alloacusis, in which patients mislocalize left-sided sound sources to their right, although even patients with less severe neglect still often show disturbance of auditory spatial perception, most commonly a lateralization bias towards the right. We discuss how these various disorders may be explained by a single model of neglect and review emerging interventions for patient rehabilitation. PMID:25726290

  17. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  18. Mechanisms of Auditory Verbal Hallucination in Schizophrenia

    PubMed Central

    Cho, Raymond; Wu, Wayne

    2013-01-01

    Recent work on the mechanisms underlying auditory verbal hallucination (AVH) has been heavily informed by self-monitoring accounts that postulate defects in an internal monitoring mechanism as the basis of AVH. A more neglected alternative is an account focusing on defects in auditory processing, namely a spontaneous activation account of auditory activity underlying AVH. Science is often aided by putting theories in competition. Accordingly, a discussion that systematically contrasts the two models of AVH can generate sharper questions that will lead to new avenues of investigation. In this paper, we provide such a theoretical discussion of the two models, drawing strong contrasts between them. We identify a set of challenges for the self-monitoring account and argue that the spontaneous activation account has much in favor of it and should be the default account. Our theoretical overview leads to new questions and issues regarding the explanation of AVH as a subjective phenomenon and its neural basis. Accordingly, we suggest a set of experimental strategies to dissect the underlying mechanisms of AVH in light of the two competing models. PMID:24348430

  19. The Perception of Auditory Motion.

    PubMed

    Carlile, Simon; Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  20. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  1. Idealized Computational Models for Auditory Receptive Fields

    PubMed Central

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973

  2. Idealized computational models for auditory receptive fields.

    PubMed

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973

  3. Auditory color constancy

    NASA Astrophysics Data System (ADS)

    Kluender, Keith R.; Kiefte, Michael

    2003-10-01

    It is both true and efficient that sensorineural systems respond to change and little else. Perceptual systems do not record absolute level be it loudness, pitch, brightness, or color. This fact has been demonstrated in every sensory domain. For example, the visual system is remarkable at maintaining color constancy over widely varying illumination such as sunlight and varieties of artificial light (incandescent, fluorescent, etc.) for which spectra reflected from objects differ dramatically. Results will be reported for a series of experiments demonstrating how auditory systems similarly compensate for reliable characteristics of spectral shape in acoustic signals. Specifically, listeners' perception of vowel sounds, characterized by both local (e.g., formants) and broad (e.g., tilt) spectral composition, changes radically depending upon reliable spectral composition of precursor signals. These experiments have been conducted using a variety of precursor signals consisting of meaningful and time-reversed vocoded sentences, as well as novel nonspeech precursors consisting of multiple filter poles modulating sinusoidally across a source spectrum with specific local and broad spectral characteristics. Constancy across widely varying spectral compositions shares much in common with visual color constancy. However, auditory spectral constancy appears to be more effective than visual constancy in compensating for local spectral fluctuations. [Work supported by NIDCD DC-04072.

  4. Cortical auditory disorders: clinical and psychoacoustic features.

    PubMed Central

    Mendez, M F; Geehan, G R

    1988-01-01

    The symptoms of two patients with bilateral cortical auditory lesions evolved from cortical deafness to other auditory syndromes: generalised auditory agnosia, amusia and/or pure word deafness, and a residual impairment of temporal sequencing. On investigation, both had dysacusis, absent middle latency evoked responses, acoustic errors in sound recognition and matching, inconsistent auditory behaviours, and similarly disturbed psychoacoustic discrimination tasks. These findings indicate that the different clinical syndromes caused by cortical auditory lesions form a spectrum of related auditory processing disorders. Differences between syndromes may depend on the degree of involvement of a primary cortical processing system, the more diffuse accessory system, and possibly the efferent auditory system. Images PMID:2450968

  5. Auditory perspective taking.

    PubMed

    Martinson, Eric; Brock, Derek

    2013-06-01

    Effective communication with a mobile robot using speech is a difficult problem even when you can control the auditory scene. Robot self-noise or ego noise, echoes and reverberation, and human interference are all common sources of decreased intelligibility. Moreover, in real-world settings, these problems are routinely aggravated by a variety of sources of background noise. Military scenarios can be punctuated by high decibel noise from materiel and weaponry that would easily overwhelm a robot's normal speaking volume. Moreover, in nonmilitary settings, fans, computers, alarms, and transportation noise can cause enough interference to make a traditional speech interface unusable. This work presents and evaluates a prototype robotic interface that uses perspective taking to estimate the effectiveness of its own speech presentation and takes steps to improve intelligibility for human listeners. PMID:23096077

  6. Auditory short-term memory in the primate auditory cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26541581

  7. Maps of the Auditory Cortex.

    PubMed

    Brewer, Alyssa A; Barton, Brian

    2016-07-01

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration. PMID:27145914

  8. Auditory Processing Disorder in Children

    MedlinePlus

    ... free publications Find organizations Related Topics Auditory Neuropathy Autism Spectrum Disorder: Communication Problems in Children Dysphagia Quick ... NIH… Turning Discovery Into Health ® National Institute on Deafness and Other Communication Disorders 31 Center Drive, MSC ...

  9. Leiomyoma of External Auditory Canal.

    PubMed

    George, M V; Puthiyapurayil, Jamsheeda

    2016-09-01

    This article reports a case of piloleiomyoma of external auditory canal, which is the 7th case of leiomyoma of the external auditory canal being reported and the 2nd case of leiomyoma arising from arrectores pilorum muscles, all the other five cases were angioleiomyomas, arising from blood vessels. A 52 years old male presented with a mass in the right external auditory canal and decreased hearing of 6 months duration. Tumor excision done by end aural approach. Histopathological examination report was leiomyoma. It is extremely rare for leiomyoma to occur in the external auditory canal because of the non-availability of smooth muscles in the external canal. So it should be considered as a very rare differential diagnosis for any tumor or polyp in the ear canal. PMID:27508144

  10. Classroom Demonstrations of Auditory Perception.

    ERIC Educational Resources Information Center

    Haws, LaDawn; Oppy, Brian J.

    2002-01-01

    Presents activities to help students gain understanding about auditory perception. Describes demonstrations that cover topics, such as sound localization, wave cancellation, frequency/pitch variation, and the influence of media on sound propagation. (CMK)

  11. Altered intrinsic connectivity of the auditory cortex in congenital amusia.

    PubMed

    Leveque, Yohana; Fauvel, Baptiste; Groussard, Mathilde; Caclin, Anne; Albouy, Philippe; Platel, Hervé; Tillmann, Barbara

    2016-07-01

    Congenital amusia, a neurodevelopmental disorder of music perception and production, has been associated with abnormal anatomical and functional connectivity in a right frontotemporal pathway. To investigate whether spontaneous connectivity in brain networks involving the auditory cortex is altered in the amusic brain, we ran a seed-based connectivity analysis, contrasting at-rest functional MRI data of amusic and matched control participants. Our results reveal reduced frontotemporal connectivity in amusia during resting state, as well as an overconnectivity between the auditory cortex and the default mode network (DMN). The findings suggest that the auditory cortex is intrinsically more engaged toward internal processes and less available to external stimuli in amusics compared with controls. Beyond amusia, our findings provide new evidence for the link between cognitive deficits in pathology and abnormalities in the connectivity between sensory areas and the DMN at rest. PMID:27009161

  12. Intertrial auditory neural stability supports beat synchronization in preschoolers

    PubMed Central

    Carr, Kali Woodruff; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2016-01-01

    The ability to synchronize motor movements along with an auditory beat places stringent demands on the temporal processing and sensorimotor integration capabilities of the nervous system. Links between millisecond-level precision of auditory processing and the consistency of sensorimotor beat synchronization implicate fine auditory neural timing as a mechanism for forming stable internal representations of, and behavioral reactions to, sound. Here, for the first time, we demonstrate a systematic relationship between consistency of beat synchronization and trial-by-trial stability of subcortical speech processing in preschoolers (ages 3 and 4 years old). We conclude that beat synchronization might provide a useful window into millisecond-level neural precision for encoding sound in early childhood, when speech processing is especially important for language acquisition and development. PMID:26760457

  13. Role of the auditory system in speech production.

    PubMed

    Guenther, Frank H; Hickok, Gregory

    2015-01-01

    This chapter reviews evidence regarding the role of auditory perception in shaping speech output. Evidence indicates that speech movements are planned to follow auditory trajectories. This in turn is followed by a description of the Directions Into Velocities of Articulators (DIVA) model, which provides a detailed account of the role of auditory feedback in speech motor development and control. A brief description of the higher-order brain areas involved in speech sequencing (including the pre-supplementary motor area and inferior frontal sulcus) is then provided, followed by a description of the Hierarchical State Feedback Control (HSFC) model, which posits internal error detection and correction processes that can detect and correct speech production errors prior to articulation. The chapter closes with a treatment of promising future directions of research into auditory-motor interactions in speech, including the use of intracranial recording techniques such as electrocorticography in humans, the investigation of the potential roles of various large-scale brain rhythms in speech perception and production, and the development of brain-computer interfaces that use auditory feedback to allow profoundly paralyzed users to learn to produce speech using a speech synthesizer. PMID:25726268

  14. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms

    PubMed Central

    Schaefer, Rebecca S.

    2014-01-01

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. PMID:25385780

  15. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms.

    PubMed

    Schaefer, Rebecca S

    2014-12-19

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. PMID:25385780

  16. Touch activates human auditory cortex.

    PubMed

    Schürmann, Martin; Caetano, Gina; Hlushchuk, Yevhen; Jousmäki, Veikko; Hari, Riitta

    2006-05-01

    Vibrotactile stimuli can facilitate hearing, both in hearing-impaired and in normally hearing people. Accordingly, the sounds of hands exploring a surface contribute to the explorer's haptic percepts. As a possible brain basis of such phenomena, functional brain imaging has identified activations specific to audiotactile interaction in secondary somatosensory cortex, auditory belt area, and posterior parietal cortex, depending on the quality and relative salience of the stimuli. We studied 13 subjects with non-invasive functional magnetic resonance imaging (fMRI) to search for auditory brain areas that would be activated by touch. Vibration bursts of 200 Hz were delivered to the subjects' fingers and palm and tactile pressure pulses to their fingertips. Noise bursts served to identify auditory cortex. Vibrotactile-auditory co-activation, addressed with minimal smoothing to obtain a conservative estimate, was found in an 85-mm3 region in the posterior auditory belt area. This co-activation could be related to facilitated hearing at the behavioral level, reflecting the analysis of sound-like temporal patterns in vibration. However, even tactile pulses (without any vibration) activated parts of the posterior auditory belt area, which therefore might subserve processing of audiotactile events that arise during dynamic contact between hands and environment. PMID:16488157

  17. Electrophysiological study of auditory development.

    PubMed

    Lippé, S; Martinez-Montes, E; Arcand, C; Lassonde, M

    2009-12-15

    Cortical auditory evoked potential (CAEP) testing, a non-invasive technique, is widely employed to study auditory brain development. The aim of this study was to investigate the development of the auditory electrophysiological signal without addressing specific abilities such as speech or music discrimination. We were interested in the temporal and spectral domains of conventional auditory evoked potentials. We analyzed cerebral responses to auditory stimulation (broadband noises) in 40 infants and children (1 month to 5 years 6 months) and 10 adults using high-density electrophysiological recording. We hypothesized that the adult auditory response has precursors that can be identified in infant and child responses. Results confirm that complex adult CAEP responses and spectral activity patterns appear after 5 years, showing decreased involvement of lower frequencies and increased involvement of higher frequencies. In addition, time-locked response to stimulus and event-related spectral pertubation across frequencies revealed alpha and beta band contributions to the CAEP of infants and toddlers before mutation to the beta and gamma band activity of the adult response. A detailed analysis of electrophysiological responses to a perceptual stimulation revealed general development patterns and developmental precursors of the adult response. PMID:19665050

  18. An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition.

    PubMed

    Wittenbach, Jason D; Bouchard, Kristofer E; Brainard, Michael S; Jin, Dezhe Z

    2015-10-01

    Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054

  19. An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition

    PubMed Central

    Brainard, Michael S.; Jin, Dezhe Z.

    2015-01-01

    Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054

  20. Auditory nerve disease and auditory neuropathy spectrum disorders.

    PubMed

    Kaga, Kimitaka

    2016-02-01

    In 1996, a new type of bilateral hearing disorder was discerned and published almost simultaneously by Kaga et al. [1] and Starr et al. [2]. Although the pathophysiology of this disorder as reported by each author was essentially identical, Kaga used the term "auditory nerve disease" and Starr used the term "auditory neuropathy". Auditory neuropathy (AN) in adults is an acquired disorder characterized by mild-to-moderate pure-tone hearing loss, poor speech discrimination, and absence of the auditory brainstem response (ABR) all in the presence of normal cochlear outer hair cell function as indicated by normal distortion product otoacoustic emissions (DPOAEs) and evoked summating potentials (SPs) by electrocochleography (ECoG). A variety of processes and etiologies are thought to be involved in its pathophysiology including mutations of the OTOF and/or OPA1 genes. Most of the subsequent reports in the literature discuss the various auditory profiles of patients with AN [3,4] and in this report we present the profiles of an additional 17 cases of adult AN. Cochlear implants are useful for the reacquisition of hearing in adult AN although hearing aids are ineffective. In 2008, the new term of Auditory Neuropathy Spectrum Disorders (ANSD) was proposed by the Colorado Children's Hospital group following a comprehensive study of newborn hearing test results. When ABRs were absent and DPOAEs were present in particular cases during newborn screening they were classified as ANSD. In 2013, our group in the Tokyo Medical Center classified ANSD into three types by following changes in ABRs and DPOAEs over time with development. In Type I, there is normalization of hearing over time, Type II shows a change into profound hearing loss and Type III is true auditory neuropathy (AN). We emphasize that, in adults, ANSD is not the same as AN. PMID:26209259

  1. Psychology of auditory perception.

    PubMed

    Lotto, Andrew; Holt, Lori

    2011-09-01

    Audition is often treated as a 'secondary' sensory system behind vision in the study of cognitive science. In this review, we focus on three seemingly simple perceptual tasks to demonstrate the complexity of perceptual-cognitive processing involved in everyday audition. After providing a short overview of the characteristics of sound and their neural encoding, we present a description of the perceptual task of segregating multiple sound events that are mixed together in the signal reaching the ears. Then, we discuss the ability to localize the sound source in the environment. Finally, we provide some data and theory on how listeners categorize complex sounds, such as speech. In particular, we present research on how listeners weigh multiple acoustic cues in making a categorization decision. One conclusion of this review is that it is time for auditory cognitive science to be developed to match what has been done in vision in order for us to better understand how humans communicate with speech and music. WIREs Cogni Sci 2011 2 479-489 DOI: 10.1002/wcs.123 For further resources related to this article, please visit the WIREs website. PMID:26302301

  2. Auditory and non-auditory effects of noise on health.

    PubMed

    Basner, Mathias; Babisch, Wolfgang; Davis, Adrian; Brink, Mark; Clark, Charlotte; Janssen, Sabine; Stansfeld, Stephen

    2014-04-12

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health effects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced hair-cell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory effects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, affects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health. PMID:24183105

  3. Auditory and non-auditory effects of noise on health

    PubMed Central

    Basner, Mathias; Babisch, Wolfgang; Davis, Adrian; Brink, Mark; Clark, Charlotte; Janssen, Sabine; Stansfeld, Stephen

    2014-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health effects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced hair-cell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory effects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, affects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health. PMID:24183105

  4. Individual differences in auditory abilities.

    PubMed

    Kidd, Gary R; Watson, Charles S; Gygi, Brian

    2007-07-01

    Performance on 19 auditory discrimination and identification tasks was measured for 340 listeners with normal hearing. Test stimuli included single tones, sequences of tones, amplitude-modulated and rippled noise, temporal gaps, speech, and environmental sounds. Principal components analysis and structural equation modeling of the data support the existence of a general auditory ability and four specific auditory abilities. The specific abilities are (1) loudness and duration (overall energy) discrimination; (2) sensitivity to temporal envelope variation; (3) identification of highly familiar sounds (speech and nonspeech); and (4) discrimination of unfamiliar simple and complex spectral and temporal patterns. Examination of Scholastic Aptitude Test (SAT) scores for a large subset of the population revealed little or no association between general or specific auditory abilities and general intellectual ability. The findings provide a basis for research to further specify the nature of the auditory abilities. Of particular interest are results suggestive of a familiar sound recognition (FSR) ability, apparently specialized for sound recognition on the basis of limited or distorted information. This FSR ability is independent of normal variation in both spectral-temporal acuity and of general intellectual ability. PMID:17614500

  5. Current understanding of auditory neuropathy.

    PubMed

    Boo, Nem-Yun

    2008-12-01

    Auditory neuropathy is defined by the presence of normal evoked otoacoustic emissions (OAE) and absent or abnormal auditory brainstem responses (ABR). The sites of lesion could be at the cochlear inner hair cells, spiral ganglion cells of the cochlea, synapse between the inner hair cells and auditory nerve, or the auditory nerve itself. Genetic, infectious or neonatal/perinatal insults are the 3 most commonly identified underlying causes. Children usually present with delay in speech and language development while adult patients present with hearing loss and disproportionately poor speech discrimination for the degree of hearing loss. Although cochlear implant is the treatment of choice, current evidence show that it benefits only those patients with endocochlear lesions, but not those with cochlear nerve deficiency or central nervous system disorders. As auditory neuropathy is a disorder with potential long-term impact on a child's development, early hearing screen using both OAE and ABR should be carried out on all newborns and infants to allow early detection and intervention. PMID:19904452

  6. Context effects on auditory distraction

    PubMed Central

    Chen, Sufen; Sussman, Elyse S.

    2014-01-01

    The purpose of the study was to test the hypothesis that sound context modulates the magnitude of auditory distraction, indexed by behavioral and electrophysiological measures. Participants were asked to identify tone duration, while irrelevant changes occurred in tone frequency, tone intensity, and harmonic structure. Frequency deviants were randomly intermixed with standards (Uni-Condition), with intensity deviants (Bi-Condition), and with both intensity and complex deviants (Tri-Condition). Only in the Tri-Condition did the auditory distraction effect reflect the magnitude difference among the frequency and intensity deviants. The mixture of the different types of deviants in the Tri-Condition modulated the perceived level of distraction, demonstrating that the sound context can modulate the effect of deviance level on processing irrelevant acoustic changes in the environment. These findings thus indicate that perceptual contrast plays a role in change detection processes that leads to auditory distraction. PMID:23886958

  7. Feature Assignment in Perception of Auditory Figure

    ERIC Educational Resources Information Center

    Gregg, Melissa K.; Samuel, Arthur G.

    2012-01-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory…

  8. Effects of Auditory Input in Individuation Tasks

    ERIC Educational Resources Information Center

    Robinson, Christopher W.; Sloutsky, Vladimir M.

    2008-01-01

    Under many conditions auditory input interferes with visual processing, especially early in development. These interference effects are often more pronounced when the auditory input is unfamiliar than when the auditory input is familiar (e.g. human speech, pre-familiarized sounds, etc.). The current study extends this research by examining how…

  9. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex.

    PubMed

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2009-01-01

    Previous studies have shown that the functional development of auditory system is substantially influenced by the structure of environmental acoustic inputs in early life. In our present study, we investigated the effects of early auditory enrichment with music on rat auditory discrimination learning. We found that early auditory enrichment with music from postnatal day (PND) 14 enhanced learning ability in auditory signal-detection task and in sound duration-discrimination task. In parallel, a significant increase was noted in NMDA receptor subunit NR2B protein expression in the auditory cortex. Furthermore, we found that auditory enrichment with music starting from PND 28 or 56 did not influence NR2B expression in the auditory cortex. No difference was found in the NR2B expression in the inferior colliculus (IC) between music-exposed and normal rats, regardless of when the auditory enrichment with music was initiated. Our findings suggest that early auditory enrichment with music influences NMDA-mediated neural plasticity, which results in enhanced auditory discrimination learning. PMID:18706452

  10. Regular patterns stabilize auditory streams.

    PubMed

    Bendixen, Alexandra; Denham, Susan L; Gyimesi, Kinga; Winkler, István

    2010-12-01

    The auditory system continuously parses the acoustic environment into auditory objects, usually representing separate sound sources. Sound sources typically show characteristic emission patterns. These regular temporal sound patterns are possible cues for distinguishing sound sources. The present study was designed to test whether regular patterns are used as cues for source distinction and to specify the role that detecting these regularities may play in the process of auditory stream segregation. Participants were presented with tone sequences, and they were asked to continuously indicate whether they perceived the tones in terms of a single coherent sequence of sounds (integrated) or as two concurrent sound streams (segregated). Unknown to the participant, in some stimulus conditions, regular patterns were present in one or both putative streams. In all stimulus conditions, participants' perception switched back and forth between the two sound organizations. Importantly, regular patterns occurring in either one or both streams prolonged the mean duration of two-stream percepts, whereas the duration of one-stream percepts was unaffected. These results suggest that temporal regularities are utilized in auditory scene analysis. It appears that the role of this cue lies in stabilizing streams once they have been formed on the basis of simpler acoustic cues. PMID:21218898

  11. Auditory Risk of Air Rifles

    PubMed Central

    Lankford, James E.; Meinke, Deanna K.; Flamme, Gregory A.; Finan, Donald S.; Stewart, Michael; Tasko, Stephen; Murphy, William J.

    2016-01-01

    Objective To characterize the impulse noise exposure and auditory risk for air rifle users for both youth and adults. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit and LAeq75 exposure limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 9 pellet air rifles and 1 BB air rifle. Results None of the air rifles generated peak levels that exceeded the 140 dB peak limit for adults and 8 (80%) exceeded the 120 dB peak SPL limit for youth. In general, for both adults and youth there is minimal auditory risk when shooting less than 100 unprotected shots with pellet air rifles. Air rifles with suppressors were less hazardous than those without suppressors and the pellet air rifles with higher velocities were generally more hazardous than those with lower velocities. Conclusion To minimize auditory risk, youth should utilize air rifles with an integrated suppressor and lower velocity ratings. Air rifle shooters are advised to wear hearing protection whenever engaging in shooting activities in order to gain self-efficacy and model appropriate hearing health behaviors necessary for recreational firearm use. PMID:26840923

  12. Delayed Auditory Feedback and Movement

    ERIC Educational Resources Information Center

    Pfordresher, Peter Q.; Dalla Bella, Simone

    2011-01-01

    It is well known that timing of rhythm production is disrupted by delayed auditory feedback (DAF), and that disruption varies with delay length. We tested the hypothesis that disruption depends on the state of the movement trajectory at the onset of DAF. Participants tapped isochronous rhythms at a rate specified by a metronome while hearing DAF…

  13. Dynamics of auditory working memory

    PubMed Central

    Kaiser, Jochen

    2015-01-01

    Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions. PMID:26029146

  14. Making and monitoring errors based on altered auditory feedback

    PubMed Central

    Pfordresher, Peter Q.; Beasley, Robertson T. E.

    2014-01-01

    Previous research has demonstrated that altered auditory feedback (AAF) disrupts music performance and causes disruptions in both action planning and the perception of feedback events. It has been proposed that this disruption occurs because of interference within a shared representation for perception and action (Pfordresher, 2006). Studies reported here address this claim from the standpoint of error monitoring. In Experiment 1 participants performed short melodies on a keyboard while hearing no auditory feedback, normal auditory feedback, or alterations to feedback pitch on some subset of events. Participants overestimated error frequency when AAF was present but not for normal feedback. Experiment 2 introduced a concurrent load task to determine whether error monitoring requires executive resources. Although the concurrent task enhanced the effect of AAF, it did not alter participants’ tendency to overestimate errors when AAF was present. A third correlational study addressed whether effects of AAF are reduced for a subset of the population who may lack the kind of perception/action associations that lead to AAF disruption: poor-pitch singers. Effects of manipulations similar to those presented in Experiments 1 and 2 were reduced for these individuals. We propose that these results are consistent with the notion that AAF interference is based on associations between perception and action within a forward internal model of auditory-motor relationships. PMID:25191294

  15. [Experimental study on an auditory method for analyzing DNA segments].

    PubMed

    Xiao, Shouzhong; Fang, Xianglin

    2002-01-01

    To explore a new method for analyzing biological molecules that have already been sequenced, an experimental study on an auditory method was carried out. The auditory method for analyzing biological molecules includes audible representation of sequence data. Audible representation of sequence data was implemented by using a multimedia computer. Each mononucleotide in a DNA sequence was matched with a corresponding sound, i.e., a DNA sequence was "dubbed" in a sound sequence. When the sound sequence is played, a special cadence can be heard. In the audible representation experiment, special cadences of different exons can be clearly heard. The results show that audible representation of DNA sequence data can be implemented by using a multimedia technique. After a 5-time auditory training, subjects both in internal testing and external testing can obtain 93%-100% of judgment accuracy rate for the difference between two sound sequences of two different exons, thus providing an experimental basis for the practicability of this method. Auditory method for analyzing DNA segments might be beneficial for the research in comparative genomics and functional genomics. This new technology must be robust and be carefully evaluated and improved in a high-throughput environment before its implementation in an application setting. PMID:11951511

  16. A Visual or Tactile Signal Makes Auditory Speech Detection More Efficient by Reducing Uncertainty

    PubMed Central

    Tjan, Bosco S.; Chao, Ewen; Bernstein, Lynne E.

    2014-01-01

    Acoustic speech is easier to detect in noise when the talker can be seen. This finding could be explained by integration of multisensory inputs or refinement of auditory processing from visual guidance. In two experiments, we studied two-interval forced choice detection of an auditory “ba” in acoustic noise, paired with various visual and tactile stimuli that were identically presented in both observation intervals. Detection thresholds were reduced under the multisensory conditions versus the auditory-only condition, even though the visual and/or tactile stimuli alone could not inform the correct response. Results were analyzed relative to an ideal observer for which intrinsic (internal) noise and efficiency were independent contributors to detection sensitivity. Across experiments, intrinsic noise was unaffected by the multisensory stimuli, arguing against the merging (integrating) of multisensory inputs into a unitary speech signal; but sampling efficiency was increased to varying degrees, supporting refinement of knowledge about the auditory stimulus. The steepness of the psychometric functions decreased with increasing sampling efficiency, suggesting that the “task-irrelevant” visual and tactile stimuli reduced uncertainty about the acoustic signal. Visible speech was not superior for enhancing auditory speech detection. Our results reject multisensory neuronal integration and speech-specific neural processing as explanations for enhanced auditory speech detection under noisy conditions. Instead, our results support a more rudimentary form of multisensory interaction – the otherwise task-irrelevant sensory systems inform the auditory system about when to listen. PMID:24400652

  17. The Encoding of Auditory Objects in Auditory Cortex: Insights from Magnetoencephalography

    PubMed Central

    Simon, Jonathan Z.

    2014-01-01

    Auditory objects, like their visual counterparts, are perceptually defined constructs, but nevertheless must arise from underlying neural circuitry. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects listening to complex auditory scenes, we review studies that demonstrate that auditory objects are indeed neurally represented in auditory cortex. The studies use neural responses obtained from different experiments in which subjects selectively listen to one of two competing auditory streams embedded in a variety of auditory scenes. The auditory streams overlap spatially and often spectrally. In particular, the studies demonstrate that selective attentional gain does not act globally on the entire auditory scene, but rather acts differentially on the separate auditory streams. This stream-based attentional gain is then used as a tool to individually analyze the different neural representations of the competing auditory streams. The neural representation of the attended stream, located in posterior auditory cortex, dominates the neural responses. Critically, when the intensities of the attended and background streams are separately varied over a wide intensity range, the neural representation of the attended speech adapts only to the intensity of that speaker, irrespective of the intensity of the background speaker. This demonstrates object-level intensity gain control in addition to the above object-level selective attentional gain. Overall, these results indicate that concurrently streaming auditory objects, even if spectrally overlapping and not resolvable at the auditory periphery, are individually neurally encoded in auditory cortex, as separate objects. PMID:24841996

  18. Visual face-movement sensitive cortex is relevant for auditory-only speech recognition.

    PubMed

    Riedel, Philipp; Ragert, Patrick; Schelinski, Stefanie; Kiebel, Stefan J; von Kriegstein, Katharina

    2015-07-01

    with the 'auditory-visual view' of auditory speech perception, which assumes that auditory speech recognition is optimized by using predictions from previously encoded speaker-specific audio-visual internal models. PMID:25650106

  19. Eye-movements intervening between two successive sounds disrupt comparisons of auditory location

    PubMed Central

    Pavani, Francesco; Husain, Masud; Driver, Jon

    2008-01-01

    Summary Many studies have investigated how saccades may affect the internal representation of visual locations across eye-movements. Here we studied instead whether eye-movements can affect auditory spatial cognition. In two experiments, participants judged the relative azimuth (same/different) of two successive sounds presented from a horizontal array of loudspeakers, separated by a 2.5 secs delay. Eye-position was either held constant throughout the trial (being directed in a fixed manner to the far left or right of the loudspeaker array), or had to be shifted to the opposite side of the array during the retention delay between the two sounds, after the first sound but before the second. Loudspeakers were either visible (Experiment1) or occluded from sight (Experiment 2). In both cases, shifting eye-position during the silent delay-period affected auditory performance in the successive auditory comparison task, even though the auditory inputs to be judged were equivalent. Sensitivity (d′) for the auditory discrimination was disrupted, specifically when the second sound shifted in the opposite direction to the intervening eye-movement with respect to the first sound. These results indicate that eye-movements affect internal representation of auditory location. PMID:18566808

  20. Conceptual priming for realistic auditory scenes and for auditory words.

    PubMed

    Frey, Aline; Aramaki, Mitsuko; Besson, Mireille

    2014-02-01

    Two experiments were conducted using both behavioral and Event-Related brain Potentials methods to examine conceptual priming effects for realistic auditory scenes and for auditory words. Prime and target sounds were presented in four stimulus combinations: Sound-Sound, Word-Sound, Sound-Word and Word-Word. Within each combination, targets were conceptually related to the prime, unrelated or ambiguous. In Experiment 1, participants were asked to judge whether the primes and targets fit together (explicit task) and in Experiment 2 they had to decide whether the target was typical or ambiguous (implicit task). In both experiments and in the four stimulus combinations, reaction times and/or error rates were longer/higher and the N400 component was larger to ambiguous targets than to conceptually related targets, thereby pointing to a common conceptual system for processing auditory scenes and linguistic stimuli in both explicit and implicit tasks. However, fine-grained analyses also revealed some differences between experiments and conditions in scalp topography and duration of the priming effects possibly reflecting differences in the integration of perceptual and cognitive attributes of linguistic and nonlinguistic sounds. These results have clear implications for the building-up of virtual environments that need to convey meaning without words. PMID:24378910

  1. Auditory spatial processing in Alzheimer's disease.

    PubMed

    Golden, Hannah L; Nicholas, Jennifer M; Yong, Keir X X; Downey, Laura E; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer's disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer's disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer's disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer's disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer's disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer's disease

  2. Vestibular reactions to long-term caloric stimulation of the rabbit labyrinth

    NASA Technical Reports Server (NTRS)

    Gorgiladze, G. I.

    1978-01-01

    Long-term, periodically repeated caloric stimulation of the labyrinth receptors of the internal ear was studied on eight rabbits with immobilzed heads. Warm (20 C) water was used as a stimulus in a dose of 40 ml per min injected into the auditory meatus.

  3. Sensitivity to Auditory Velocity Contrast

    PubMed Central

    Locke, Shannon M.; Leung, Johahn; Carlile, Simon

    2016-01-01

    A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static “snapshot” model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation. PMID:27291488

  4. Sensitivity to Auditory Velocity Contrast.

    PubMed

    Locke, Shannon M; Leung, Johahn; Carlile, Simon

    2016-01-01

    A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static "snapshot" model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation. PMID:27291488

  5. Auditory system of fruit flies.

    PubMed

    Ishikawa, Yuki; Kamikouchi, Azusa

    2016-08-01

    The fruit fly, Drosophila melanogaster, is an invaluable model for auditory research. Advantages of using the fruit fly include its stereotyped behavior in response to a particular sound, and the availability of molecular-genetic tools to manipulate gene expression and cellular activity. Although the receiver type in fruit flies differs from that in mammals, the auditory systems of mammals and fruit flies are strikingly similar with regard to the level of development, transduction mechanism, mechanical amplification, and central projections. These similarities strongly support the use of the fruit fly to study the general principles of acoustic information processing. In this review, we introduce acoustic communication and discuss recent advances in our understanding on hearing in fruit flies. This article is part of a Special Issue entitled . PMID:26560238

  6. Psychophysiological responses to auditory change.

    PubMed

    Chuen, Lorraine; Sears, David; McAdams, Stephen

    2016-06-01

    A comprehensive characterization of autonomic and somatic responding within the auditory domain is currently lacking. We studied whether simple types of auditory change that occur frequently during music listening could elicit measurable changes in heart rate, skin conductance, respiration rate, and facial motor activity. Participants heard a rhythmically isochronous sequence consisting of a repeated standard tone, followed by a repeated target tone that changed in pitch, timbre, duration, intensity, or tempo, or that deviated momentarily from rhythmic isochrony. Changes in all parameters produced increases in heart rate. Skin conductance response magnitude was affected by changes in timbre, intensity, and tempo. Respiratory rate was sensitive to deviations from isochrony. Our findings suggest that music researchers interpreting physiological responses as emotional indices should consider acoustic factors that may influence physiology in the absence of induced emotions. PMID:26927928

  7. Adaptation to delayed auditory feedback

    NASA Technical Reports Server (NTRS)

    Katz, D. I.; Lackner, J. R.

    1977-01-01

    Delayed auditory feedback disrupts the production of speech, causing an increase in speech duration as well as many articulatory errors. To determine whether prolonged exposure to delayed auditory feedback (DAF) leads to adaptive compensations in speech production, 10 subjects were exposed in separate experimental sessions to both incremental and constant-delay exposure conditions. Significant adaptation occurred for syntactically structured stimuli in the form of increased speaking rates. After DAF was removed, aftereffects were apparent for all stimulus types in terms of increased speech rates. A carry-over effect from the first to the second experimental session was evident as long as 29 days after the first session. The use of strategies to overcome DAF and the differences between adaptation to DAF and adaptation to visual rearrangement are discussed.

  8. The human auditory evoked response

    NASA Technical Reports Server (NTRS)

    Galambos, R.

    1974-01-01

    Figures are presented of computer-averaged auditory evoked responses (AERs) that point to the existence of a completely endogenous brain event. A series of regular clicks or tones was administered to the ear, and 'odd-balls' of different intensity or frequency respectively were included. Subjects were asked either to ignore the sounds (to read or do something else) or to attend to the stimuli. When they listened and counted the odd-balls, a P3 wave occurred at 300msec after stimulus. When the odd-balls consisted of omitted clicks or tone bursts, a similar response was observed. This could not have come from auditory nerve, but only from cortex. It is evidence of recognition, a conscious process.

  9. Reality of auditory verbal hallucinations

    PubMed Central

    Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-01-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency. PMID:19620178

  10. Demodulation processes in auditory perception

    NASA Astrophysics Data System (ADS)

    Feth, Lawrence L.

    1994-08-01

    The long range goal of this project is the understanding of human auditory processing of information conveyed by complex, time-varying signals such as speech, music or important environmental sounds. Our work is guided by the assumption that human auditory communication is a 'modulation - demodulation' process. That is, we assume that sound sources produce a complex stream of sound pressure waves with information encoded as variations ( modulations) of the signal amplitude and frequency. The listeners task then is one of demodulation. Much of past. psychoacoustics work has been based in what we characterize as 'spectrum picture processing.' Complex sounds are Fourier analyzed to produce an amplitude-by-frequency 'picture' and the perception process is modeled as if the listener were analyzing the spectral picture. This approach leads to studies such as 'profile analysis' and the power-spectrum model of masking. Our approach leads us to investigate time-varying, complex sounds. We refer to them as dynamic signals and we have developed auditory signal processing models to help guide our experimental work.

  11. Auditory learning: a developmental method.

    PubMed

    Zhang, Yilu; Weng, Juyang; Hwang, Wey-Shiuan

    2005-05-01

    Motivated by the human autonomous development process from infancy to adulthood, we have built a robot that develops its cognitive and behavioral skills through real-time interactions with the environment. We call such a robot a developmental robot. In this paper, we present the theory and the architecture to implement a developmental robot and discuss the related techniques that address an array of challenging technical issues. As an application, experimental results on a real robot, self-organizing, autonomous, incremental learner (SAIL), are presented with emphasis on its audition perception and audition-related action generation. In particular, the SAIL robot conducts the auditory learning from unsegmented and unlabeled speech streams without any prior knowledge about the auditory signals, such as the designated language or the phoneme models. Neither available before learning starts are the actions that the robot is expected to perform. SAIL learns the auditory commands and the desired actions from physical contacts with the environment including the trainers. PMID:15940990

  12. Phonological Processing in Human Auditory Cortical Fields

    PubMed Central

    Woods, David L.; Herron, Timothy J.; Cate, Anthony D.; Kang, Xiaojian; Yund, E. W.

    2011-01-01

    We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features. PMID:21541252

  13. Behavioral Dependence of Auditory Cortical Responses

    PubMed Central

    Osmanski, Michael S.; Wang, Xiaoqin

    2015-01-01

    Neural responses in the auditory cortex have historically been measured from either anesthetized or awake but non-behaving animals. A growing body of work has begun to focus instead on recording from auditory cortex of animals actively engaged in behavior tasks. These studies have shown that auditory cortical responses are dependent upon the behavioral state of the animal. The longer ascending subcortical pathway of the auditory system and unique characteristics of auditory processing suggest that such dependencies may have a more profound influence on cortical processing in auditory system compared to other sensory systems. It is important to understand the nature of these dependencies and their functional implications. In this article, we review the literature on this topic pertaining to cortical processing of sounds. PMID:25690831

  14. [Auditory evoked potentials: basics and clinical applications].

    PubMed

    Radeloff, A; Cebulla, M; Shehata-Dieler, W

    2014-09-01

    Auditory evoked potentials (AEPs) are elicited at various levels of the auditory system following acoustic stimulation. Electrocochleography is a technique for recording AEPs of the inner ear. The recording is performed by means of a needle electrode placed on the promontory or non-invasive with tympanic membrane or ear canal electrodes. Clinically, electrocochleography is used for the diagnosis of auditory neuropathy spectrum disorder (ANSD) and endolymphatic hydrops. According to their latencies, AEPs of the central auditory pathway are subdivided into early, middle and late (cortical) AEPs. These AEPs are recorded via surface scalp electrodes. Normally, the larger EEG masks AEPs. For unmasking the AEP, several techniques are applied. Early AEPs or auditory brainstem responses (ABR) are the most widely used AEPs for functional evaluation of the auditory pathway. In contrast to otoacoustic emissions, early AEPs can detect ANSD. Thus, they are more suitable for hearing screening in newborns. For this purpose automated procedures are implemented. PMID:25152975

  15. Auditory sequence analysis and phonological skill.

    PubMed

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E; Turton, Stuart; Griffiths, Timothy D

    2012-11-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between general auditory and phonological skill was demonstrated, plus a significant, specific correlation between measures of phonological skill and the auditory analysis of short sequences in pitch and time. The data support a limited but significant link between auditory and phonological ability with a specific role for sound-sequence analysis, and provide a possible new focus for auditory training strategies to aid language development in early adolescence. PMID:22951739

  16. Predictive motor control of sensory dynamics in auditory active sensing.

    PubMed

    Morillon, Benjamin; Hackett, Troy A; Kajikawa, Yoshinao; Schroeder, Charles E

    2015-04-01

    Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the circuits that could mediate this audio-motor interaction, notably the potential role of the somatosensory system. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception. PMID:25594376

  17. Review of auditory subliminal psychodynamic activation experiments.

    PubMed

    Fudin, R; Benjamin, C

    1991-12-01

    Subliminal psychodynamic activation experiments using auditory stimuli have yielded only a modicum of support for the contention that such activation produces predictable behavioral changes. Problems in many auditory subliminal psychodynamic activation experiments indicate that those predictions have not been tested adequately. The auditory mode of presentation, however, has several methodological advantages over the visual one, the method used in the vast majority of subliminal psychodynamic activation experiments. Consequently, it should be considered in subsequent research in this area. PMID:1805167

  18. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  19. Auditory, Visual, and Auditory-Visual Perception of Vowels by Hearing-Impaired Children.

    ERIC Educational Resources Information Center

    Hack, Zarita Caplan; Erber, Norman P.

    1982-01-01

    Vowels were presented through auditory, visual, and auditory-visual modalities to 18 hearing impaired children (12 to 15 years old) having good, intermediate, and poor auditory word recognition skills. All the groups had difficulty with acoustic information and visual information alone. The first two groups had only moderate difficulty identifying…

  20. The Effects of Auditory Stimulation on Auditory Processing Disorder: A Summary of the Findings

    ERIC Educational Resources Information Center

    Ross-Swain, Deborah

    2007-01-01

    The study's purpose is to determine the efficacy of the Tomatis Method of auditory stimulation as a therapeutic intervention for Auditory Processing Disorders (APD). Forty-one subjects (18 females, 23 males; 4.3-19.8 years old) were evaluated for APD. Performance on standardized tests indicated weaknesses with auditory processing skills. Each…

  1. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    PubMed

    Mossbridge, Julia A; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  2. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    ERIC Educational Resources Information Center

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  3. Bat's auditory system: Corticofugal feedback and plasticity

    NASA Astrophysics Data System (ADS)

    Suga, Nobuo

    2001-05-01

    The auditory system of the mustached bat consists of physiologically distinct subdivisions for processing different types of biosonar information. It was found that the corticofugal (descending) auditory system plays an important role in improving and adjusting auditory signal processing. Repetitive acoustic stimulation, cortical electrical stimulation or auditory fear conditioning evokes plastic changes of the central auditory system. The changes are based upon egocentric selection evoked by focused positive feedback associated with lateral inhibition. Focal electric stimulation of the auditory cortex evokes short-term changes in the auditory cortex and subcortical auditory nuclei. An increase in a cortical acetylcholine level during the electric stimulation changes the cortical changes from short-term to long-term. There are two types of plastic changes (reorganizations): centripetal best frequency shifts for expanded reorganization of a neural frequency map and centrifugal best frequency shifts for compressed reorganization of the map. Which changes occur depends on the balance between inhibition and facilitation. Expanded reorganization has been found in different sensory systems and different species of mammals, whereas compressed reorganization has been thus far found only in the auditory subsystems highly specialized for echolocation. The two types of reorganizations occur in both the frequency and time domains. [Work supported by NIDCO DC00175.

  4. Corticofugal modulation of peripheral auditory responses

    PubMed Central

    Terreros, Gonzalo; Delano, Paul H.

    2015-01-01

    The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed. PMID:26483647

  5. Feel the Noise: Relating Individual Differences in Auditory Imagery to the Structure and Function of Sensorimotor Systems

    PubMed Central

    Lima, César F.; Lavan, Nadine; Evans, Samuel; Agnew, Zarinah; Halpern, Andrea R.; Shanmugalingam, Pradheep; Meekings, Sophie; Boebinger, Dana; Ostarek, Markus; McGettigan, Carolyn; Warren, Jane E.; Scott, Sophie K.

    2015-01-01

    Humans can generate mental auditory images of voices or songs, sometimes perceiving them almost as vividly as perceptual experiences. The functional networks supporting auditory imagery have been described, but less is known about the systems associated with interindividual differences in auditory imagery. Combining voxel-based morphometry and fMRI, we examined the structural basis of interindividual differences in how auditory images are subjectively perceived, and explored associations between auditory imagery, sensory-based processing, and visual imagery. Vividness of auditory imagery correlated with gray matter volume in the supplementary motor area (SMA), parietal cortex, medial superior frontal gyrus, and middle frontal gyrus. An analysis of functional responses to different types of human vocalizations revealed that the SMA and parietal sites that predict imagery are also modulated by sound type. Using representational similarity analysis, we found that higher representational specificity of heard sounds in SMA predicts vividness of imagery, indicating a mechanistic link between sensory- and imagery-based processing in sensorimotor cortex. Vividness of imagery in the visual domain also correlated with SMA structure, and with auditory imagery scores. Altogether, these findings provide evidence for a signature of imagery in brain structure, and highlight a common role of perceptual–motor interactions for processing heard and internally generated auditory information. PMID:26092220

  6. Functional connectivity between face-movement and speech-intelligibility areas during auditory-only speech perception.

    PubMed

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers' voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker's face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas. PMID:24466026

  7. Auditory hallucinations suppressed by etizolam in a patient with schizophrenia.

    PubMed

    Benazzi, F; Mazzoli, M; Rossi, E

    1993-10-01

    A patient presented with a 15 year history of schizophrenia with auditory hallucinations. Though unresponsive to prolonged trials of neuroleptics, the auditory hallucinations disappeared with etizolam. PMID:7902201

  8. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    NASA Astrophysics Data System (ADS)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  9. The Auditory Analysis Test: An Initial Report.

    ERIC Educational Resources Information Center

    Rosner, Jerome; Simon, Dorothea P.

    A new test for auditory perception (Auditory Analysis Test) was given to 284 kindergarten through grade 6 children. The instrument, consisting of 40 items, asks the testee to repeat a spoken word, then to repeat it again without certain specified phonemic elements--such as a beginning, ending or medially-positioned sound. Seven categories of item…

  10. Auditory-Oral Matching Behavior in Newborns

    ERIC Educational Resources Information Center

    Chen, Xin; Striano, Tricia; Rakoczy, Hannes

    2004-01-01

    Twenty-five newborn infants were tested for auditory-oral matching behavior when presented with the consonant sound /m/ and the vowel sound /a/--a precursor behavior to vocal imitation. Auditory-oral matching behavior by the infant was operationally defined as showing the mouth movement appropriate for producing the model sound just heard (mouth…

  11. Auditory Integration Training: One Clinician's View.

    ERIC Educational Resources Information Center

    Madell, Jane R.

    1999-01-01

    This article discusses issues related to auditory integration training (AIT), a developing treatment for children with auditory disorders. It presents preliminary data indicating that word recognition scores in the presence of competing noise improves for children with a variety of disorders who have been treated with AIT. (Author/DB)

  12. Further Evidence of Auditory Extinction in Aphasia

    ERIC Educational Resources Information Center

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-01-01

    Purpose: Preliminary research ( Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Method: Seventeen IWA (M[subscript age] = 53.19 years)…

  13. Auditory Learning Materials for Special Education: Catalog.

    ERIC Educational Resources Information Center

    Smith, Marsha C.; O'Connor, Phyllis

    The catalog (developed by the Great Lakes Region Special Education Instructional Materials Center) provides information on more than 100 auditory learning materials for use in special education. Described in the first section of the catalog are procedures used to evaluate and classify auditory instructional materials, including a list of…

  14. Neural circuits in auditory and audiovisual memory.

    PubMed

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26656069

  15. Auditory Processing Disorders: An Overview. ERIC Digest.

    ERIC Educational Resources Information Center

    Ciocci, Sandra R.

    This digest presents an overview of children with auditory processing disorders (APDs), children who can typically hear information but have difficulty attending to, storing, locating, retrieving, and/or clarifying that information to make it useful for academic and social purposes. The digest begins by describing central auditory processing and…

  16. Auditory Processing Disorder and Foreign Language Acquisition

    ERIC Educational Resources Information Center

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  17. Auditory and visual evoked potentials during hyperoxia

    NASA Technical Reports Server (NTRS)

    Smith, D. B. D.; Strawbridge, P. J.

    1974-01-01

    Experimental study of the auditory and visual averaged evoked potentials (AEPs) recorded during hyperoxia, and investigation of the effect of hyperoxia on the so-called contingent negative variation (CNV). No effect of hyperoxia was found on the auditory AEP, the visual AEP, or the CNV. Comparisons with previous studies are discussed.

  18. Changing Auditory Time with Prismatic Goggles

    ERIC Educational Resources Information Center

    Magnani, Barbara; Pavani, Francesco; Frassinetti, Francesca

    2012-01-01

    The aim of the present study was to explore the spatial organization of auditory time and the effects of the manipulation of spatial attention on such a representation. In two experiments, we asked 28 adults to classify the duration of auditory stimuli as "short" or "long". Stimuli were tones of high or low pitch, delivered left or right of the…

  19. Diderot Reconsidered: Visual Impairment and Auditory Compensation.

    ERIC Educational Resources Information Center

    Miller, L.

    1992-01-01

    This paper reviews two models for auditory compensation attending visual loss--structural and strategic. The paper concludes that it is not clear to what extent differences in auditory processing represent variations in underlying capacity, the development of strategies, attentional activation, or multiple factors. Previous dismissals of…

  20. Feedback delays eliminate auditory-motor learning in speech production.

    PubMed

    Max, Ludo; Maffett, Derek G

    2015-03-30

    Neurologically healthy individuals use sensory feedback to alter future movements by updating internal models of the effector system and environment. For example, when visual feedback about limb movements or auditory feedback about speech movements is experimentally perturbed, the planning of subsequent movements is adjusted - i.e., sensorimotor adaptation occurs. A separate line of studies has demonstrated that experimentally delaying the sensory consequences of limb movements causes the sensory input to be attributed to external sources rather than to one's own actions. Yet similar feedback delays have remarkably little effect on visuo-motor adaptation (although the rate of learning varies, the amount of adaptation is only moderately affected with delays of 100-200ms, and adaptation still occurs even with a delay as long as 5000ms). Thus, limb motor learning remains largely intact even in conditions where error assignment favors external factors. Here, we show a fundamentally different result for sensorimotor control of speech articulation: auditory-motor adaptation to formant-shifted feedback is completely eliminated with delays of 100ms or more. Thus, for speech motor learning, real-time auditory feedback is critical. This novel finding informs theoretical models of human motor control in general and speech motor control in particular, and it has direct implications for the application of motor learning principles in the habilitation and rehabilitation of individuals with various sensorimotor speech disorders. PMID:25676810

  1. Auditory-pupillary responses in deaf subjects.

    PubMed

    Kitajima, Naoharu; Otsuka, Koji; Ogawa, Yasuo; Shimizu, Shigetaka; Hayashi, Mami; Ichimura, Akihide; Suzuki, Mamoru

    2010-01-01

    Pupillary dilation in response to sound stimuli is well established and is generally considered to represent a startle reflex to sound. We believe that the auditory-pupillary response represents not only a simple startle reflex to sound stimuli but also represents a reaction to stimulation of other sense organs, such as otolith organs. Eight young healthy volunteers without a history of hearing and equilibrium problems and 12 subjects with bilateral deafness participated in this study. Computer pupillography was used to analyze the auditory-pupillary responses of both eyes in all subjects. We found that auditory-pupillary responses occurred even in subjects with bilateral deafness and that this response was comparable to those of normal subjects. We propose that the auditory-pupillary response also relates to vestibular function. Thus, assessing the auditory-pupillary response may be useful for evaluating the vestibulo-autonomic response in patients with peripheral disequilibrium. PMID:20826936

  2. Tactile feedback improves auditory spatial localization.

    PubMed

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality. PMID:25368587

  3. A Brain System for Auditory Working Memory

    PubMed Central

    Joseph, Sabine; Gander, Phillip E.; Barascud, Nicolas; Halpern, Andrea R.; Griffiths, Timothy D.

    2016-01-01

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. SIGNIFICANCE STATEMENT In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. PMID:27098693

  4. Perirhinal cortex supports acquired fear of auditory objects.

    PubMed

    Bang, Sun Jung; Brown, Thomas H

    2009-07-01

    Damage to rat perirhinal cortex (PR) profoundly impairs fear conditioning to 22kHz ultrasonic vocalizations (USVs), but has no effect on fear conditioning to continuous tones. The most obvious difference between these two sounds is that continuous tones have no internal temporal structure, whereas USVs consist of strings of discrete calls separated by temporal discontinuities. PR was hypothesized to support the fusion or integration of discontinuous auditory segments into unitary representations or "auditory objects". This transform was suggested to be necessary for normal fear conditioning to occur. These ideas naturally assume that the effect of PR damage on auditory fear conditioning is not peculiar to 22kHz USVs. The present study directly tested these ideas by using a different set of continuous and discontinuous auditory cues. Control and PR-damaged rats were fear conditioned to a 53kHz USV, a 53kHz continuous tone, or a 53kHz discontinuous tone. The continuous and discontinuous tones matched the 53kHz USV in terms of duration, loudness, and principle frequency. The on/off pattern of the discontinuous tone matched the pattern of the individual calls of the 53kHz USV. The on/off pattern of the 50kHz USV was very different from the patterns in the 22kHz USVs that have been comparably examined. Rats with PR damage were profoundly impaired in fear conditioning to both discontinuous cues, but they were unimpaired in conditioning to the continuous cue. The implications of this temporal discontinuity effect are explored in terms of contemporary ideas about PR function. PMID:19185613

  5. Auditory midbrain implant: a review.

    PubMed

    Lim, Hubert H; Lenarz, Minoo; Lenarz, Thomas

    2009-09-01

    The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in deaf patients who cannot sufficiently benefit from cochlear implants. The authors have begun clinical trials in which five patients have been implanted with a single shank AMI array (20 electrodes). The goal of this review is to summarize the development and research that has led to the translation of the AMI from a concept into the first patients. This study presents the rationale and design concept for the AMI as well a summary of the animal safety and feasibility studies that were required for clinical approval. The authors also present the initial surgical, psychophysical, and speech results from the first three implanted patients. Overall, the results have been encouraging in terms of the safety and functionality of the implant. All patients obtain improvements in hearing capabilities on a daily basis. However, performance varies dramatically across patients depending on the implant location within the midbrain with the best performer still not able to achieve open set speech perception without lip-reading cues. Stimulation of the auditory midbrain provides a wide range of level, spectral, and temporal cues, all of which are important for speech understanding, but they do not appear to sufficiently fuse together to enable open set speech perception with the currently used stimulation strategies. Finally, several issues and hypotheses for why current patients obtain limited speech perception along with several feasible solutions for improving AMI implementation are presented. PMID:19762428

  6. Vision contingent auditory pitch aftereffects.

    PubMed

    Teramoto, Wataru; Kobayashi, Maori; Hidaka, Souta; Sugita, Yoichi

    2013-08-01

    Visual motion aftereffects can occur contingent on arbitrary sounds. Two circles, placed side by side, were alternately presented, and the onsets were accompanied by tone bursts of high and low frequencies, respectively. After a few minutes of exposure to the visual apparent motion with the tones, a circle blinking at a fixed location was perceived as a lateral motion in the same direction as the previously exposed apparent motion (Teramoto et al. in PLoS One 5:e12255, 2010). In the present study, we attempted to reverse this contingency (pitch aftereffects contingent on visual information). Results showed that after prolonged exposure to the audio-visual stimuli, the apparent visual motion systematically affected the perceived pitch of the auditory stimuli. When the leftward apparent visual motion was paired with the high-low-frequency sequence during the adaptation phase, a test tone sequence was more frequently perceived as a high-low-pitch sequence when the leftward apparent visual motion was presented and vice versa. Furthermore, the effect was specific for the exposed visual field and did not transfer to the other side, thus ruling out an explanation in terms of simple response bias. These results suggest that new audiovisual associations can be established within a short time, and visual information processing and auditory processing can mutually influence each other. PMID:23727883

  7. Auditory target detection in reverberation

    NASA Astrophysics Data System (ADS)

    Zurek, Patrick M.; Freyman, Richard L.; Balakrishnan, Uma

    2004-04-01

    Measurements and theoretical predictions of auditory target detection in simulated reverberant conditions are reported. The target signals were pulsed 13-octave bands of noise and the masker signal was a continuous wideband noise. Target and masker signals were passed through a software simulation of a reverberant room with a rigid sphere modeling a listener's head. The location of the target was fixed while the location of the masker was varied in the simulated room. Degree of reverberation was controlled by varying the uniform acoustic absorption of the simulated room's surfaces. The resulting target and masker signals were presented to the listeners over headphones in monaural-left, monaural-right, or binaural listening modes. Changes in detection performance in the monaural listening modes were largely predictable from the changes in target-to-masker ratio in the target band, but with a few dB of extra masking in reverberation. Binaural detection performance was generally well predicted by applying Durlach's [in Foundations of Modern Auditory Theory (Academic, New York, 1972)] equalization-cancellation theory to the direct-plus-reverberant ear signals. Predictions in all cases were based on a statistical description of room acoustics and on acoustic diffraction by a sphere. The success of these detection models in the present well-controlled reverberant conditions suggests that they can be used to incorporate listening mode and source location as factors in speech-intelligibility predictions.

  8. Auditory Midbrain Implant: A Review

    PubMed Central

    Lim, Hubert H.; Lenarz, Minoo; Lenarz, Thomas

    2009-01-01

    The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in deaf patients who cannot sufficiently benefit from cochlear implants. The authors have begun clinical trials in which five patients have been implanted with a single shank AMI array (20 electrodes). The goal of this review is to summarize the development and research that has led to the translation of the AMI from a concept into the first patients. This study presents the rationale and design concept for the AMI as well a summary of the animal safety and feasibility studies that were required for clinical approval. The authors also present the initial surgical, psychophysical, and speech results from the first three implanted patients. Overall, the results have been encouraging in terms of the safety and functionality of the implant. All patients obtain improvements in hearing capabilities on a daily basis. However, performance varies dramatically across patients depending on the implant location within the midbrain with the best performer still not able to achieve open set speech perception without lip-reading cues. Stimulation of the auditory midbrain provides a wide range of level, spectral, and temporal cues, all of which are important for speech understanding, but they do not appear to sufficiently fuse together to enable open set speech perception with the currently used stimulation strategies. Finally, several issues and hypotheses for why current patients obtain limited speech perception along with several feasible solutions for improving AMI implementation are presented. PMID:19762428

  9. High resolution auditory perception system

    NASA Astrophysics Data System (ADS)

    Alam, Iftekhar; Ghatol, Ashok

    2005-04-01

    Blindness is a sensory disability which is difficult to treat but can to some extent be helped by artificial aids. The paper describes the design aspects of a high resolution auditory perception system, which is designed on the principle of air sonar with binaural perception. This system is a vision substitution aid for enabling blind persons. The blind person wears ultrasonic eyeglasses which has ultrasonic sensor array embedded on it. The system has been designed to operate in multiresolution modes. The ultrasonic sound from the transmitter array is reflected back by the objects, falling in the beam of the array and is received. The received signal is converted to a sound signal, which is presented stereophonically for auditory perception. A detailed study has been done as the background work required for the system implementation; the appropriate range analysis procedure, analysis of space-time signals, the acoustic sensors study, amplification methods and study of the removal of noise using filters. Finally the system implementation including both the hardware and the software part of it has been described. Experimental results on actual blind subjects and inferences obtained during the study have also been included.

  10. Relationship between Sympathetic Skin Responses and Auditory Hypersensitivity to Different Auditory Stimuli

    PubMed Central

    Kato, Fumi; Iwanaga, Ryoichiro; Chono, Mami; Fujihara, Saori; Tokunaga, Akiko; Murata, Jun; Tanaka, Koji; Nakane, Hideyuki; Tanaka, Goro

    2014-01-01

    [Purpose] Auditory hypersensitivity has been widely reported in patients with autism spectrum disorders. However, the neurological background of auditory hypersensitivity is currently not clear. The present study examined the relationship between sympathetic nervous system responses and auditory hypersensitivity induced by different types of auditory stimuli. [Methods] We exposed 20 healthy young adults to six different types of auditory stimuli. The amounts of palmar sweating resulting from the auditory stimuli were compared between groups with (hypersensitive) and without (non-hypersensitive) auditory hypersensitivity. [Results] Although no group × type of stimulus × first stimulus interaction was observed for the extent of reaction, significant type of stimulus × first stimulus interaction was noted for the extent of reaction. For an 80 dB-6,000 Hz stimulus, the trends for palmar sweating differed between the groups. For the first stimulus, the variance became larger in the hypersensitive group than in the non-hypersensitive group. [Conclusion] Subjects who regularly felt excessive reactions to auditory stimuli tended to have excessive sympathetic responses to repeated loud noises compared with subjects who did not feel excessive reactions. People with auditory hypersensitivity may be classified into several subtypes depending on their reaction patterns to auditory stimuli. PMID:25140103

  11. AUDITORY CORTICAL PLASTICITY: DOES IT PROVIDE EVIDENCE FOR COGNITIVE PROCESSING IN THE AUDITORY CORTEX?

    PubMed Central

    Irvine, Dexter R. F.

    2007-01-01

    The past 20 years have seen substantial changes in our view of the nature of the processing carried out in auditory cortex. Some processing of a cognitive nature, previously attributed to higher order “association” areas, is now considered to take place in auditory cortex itself. One argument adduced in support of this view is the evidence indicating a remarkable degree of plasticity in the auditory cortex of adult animals. Such plasticity has been demonstrated in a wide range of paradigms, in which auditory input or the behavioural significance of particular inputs is manipulated. Changes over the same time period in our conceptualization of the receptive fields of cortical neurons, and well-established mechanisms for use-related changes in synaptic function, can account for many forms of auditory cortical plasticity. On the basis of a review of auditory cortical plasticity and its probable mechanisms, it is argued that only plasticity associated with learning tasks provides a strong case for cognitive processing in auditory cortex. Even in this case the evidence is indirect, in that it has not yet been established that the changes in auditory cortex are necessary for behavioural learning and memory. Although other lines of evidence provide convincing support for cognitive processing in auditory cortex, that provided by auditory cortical plasticity remains equivocal. PMID:17303356

  12. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    PubMed

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  13. A Comparison of Three Auditory Discrimination-Perception Tests

    ERIC Educational Resources Information Center

    Koenke, Karl

    1978-01-01

    Comparisons were made between scores of 52 third graders on three measures of auditory discrimination: Wepman's Auditory Discrimination Test, the Goldman-Fristoe Woodcock (GFW) Test of Auditory Discrimination, and the Kimmell-Wahl Screening Test of Auditory Perception (STAP). (CL)

  14. Functional imaging of auditory scene analysis.

    PubMed

    Gutschalk, Alexander; Dykstra, Andrew R

    2014-01-01

    Our auditory system is constantly faced with the task of decomposing the complex mixture of sound arriving at the ears into perceptually independent streams constituting accurate representations of individual sound sources. This decomposition, termed auditory scene analysis, is critical for both survival and communication, and is thought to underlie both speech and music perception. The neural underpinnings of auditory scene analysis have been studied utilizing invasive experiments with animal models as well as non-invasive (MEG, EEG, and fMRI) and invasive (intracranial EEG) studies conducted with human listeners. The present article reviews human neurophysiological research investigating the neural basis of auditory scene analysis, with emphasis on two classical paradigms termed streaming and informational masking. Other paradigms - such as the continuity illusion, mistuned harmonics, and multi-speaker environments - are briefly addressed thereafter. We conclude by discussing the emerging evidence for the role of auditory cortex in remapping incoming acoustic signals into a perceptual representation of auditory streams, which are then available for selective attention and further conscious processing. This article is part of a Special Issue entitled Human Auditory Neuroimaging. PMID:23968821

  15. Auditory Memory Distortion for Spoken Prose

    PubMed Central

    Hutchison, Joanna L.; Hubbard, Timothy L.; Ferrandino, Blaise; Brigante, Ryan; Wright, Jamie M.; Rypma, Bart

    2013-01-01

    Observers often remember a scene as containing information that was not presented but that would have likely been located just beyond the observed boundaries of the scene. This effect is called boundary extension (BE; e.g., Intraub & Richardson, 1989). Previous studies have observed BE in memory for visual and haptic stimuli, and the present experiments examined whether BE occurred in memory for auditory stimuli (prose, music). Experiments 1 and 2 varied the amount of auditory content to be remembered. BE was not observed, but when auditory targets contained more content, boundary restriction (BR) occurred. Experiment 3 presented auditory stimuli with less content and BR also occurred. In Experiment 4, white noise was added to stimuli with less content to equalize the durations of auditory stimuli, and BR still occurred. Experiments 5 and 6 presented trained stories and popular music, and BR still occurred. This latter finding ruled out the hypothesis that the lack of BE in Experiments 1–4 reflected a lack of familiarity with the stimuli. Overall, memory for auditory content exhibited BR rather than BE, and this pattern was stronger if auditory stimuli contained more content. Implications for the understanding of general perceptual processing and directions for future research are discussed. PMID:22612172

  16. Auditory memory distortion for spoken prose.

    PubMed

    Hutchison, Joanna L; Hubbard, Timothy L; Ferrandino, Blaise; Brigante, Ryan; Wright, Jamie M; Rypma, Bart

    2012-11-01

    Observers often remember a scene as containing information that was not presented but that would have likely been located just beyond the observed boundaries of the scene. This effect is called boundary extension (BE; e.g., Intraub & Richardson, 1989). Previous studies have observed BE in memory for visual and haptic stimuli, and the present experiments examined whether BE occurred in memory for auditory stimuli (prose, music). Experiments 1 and 2 varied the amount of auditory content to be remembered. BE was not observed, but when auditory targets contained more content, boundary restriction (BR) occurred. Experiment 3 presented auditory stimuli with less content and BR also occurred. In Experiment 4, white noise was added to stimuli with less content to equalize the durations of auditory stimuli, and BR still occurred. Experiments 5 and 6 presented trained stories and popular music, and BR still occurred. This latter finding ruled out the hypothesis that the lack of BE in Experiments 1-4 reflected a lack of familiarity with the stimuli. Overall, memory for auditory content exhibited BR rather than BE, and this pattern was stronger if auditory stimuli contained more content. Implications for the understanding of general perceptual processing and directions for future research are discussed. PMID:22612172

  17. Auditory Efferent System Modulates Mosquito Hearing.

    PubMed

    Andrés, Marta; Seifert, Marvin; Spalthoff, Christian; Warren, Ben; Weiss, Lukas; Giraldo, Diego; Winkler, Margret; Pauls, Stephanie; Göpfert, Martin C

    2016-08-01

    The performance of vertebrate ears is controlled by auditory efferents that originate in the brain and innervate the ear, synapsing onto hair cell somata and auditory afferent fibers [1-3]. Efferent activity can provide protection from noise and facilitate the detection and discrimination of sound by modulating mechanical amplification by hair cells and transmitter release as well as auditory afferent action potential firing [1-3]. Insect auditory organs are thought to lack efferent control [4-7], but when we inspected mosquito ears, we obtained evidence for its existence. Antibodies against synaptic proteins recognized rows of bouton-like puncta running along the dendrites and axons of mosquito auditory sensory neurons. Electron microscopy identified synaptic and non-synaptic sites of vesicle release, and some of the innervating fibers co-labeled with somata in the CNS. Octopamine, GABA, and serotonin were identified as efferent neurotransmitters or neuromodulators that affect auditory frequency tuning, mechanical amplification, and sound-evoked potentials. Mosquito brains thus modulate mosquito ears, extending the use of auditory efferent systems from vertebrates to invertebrates and adding new levels of complexity to mosquito sound detection and communication. PMID:27476597

  18. Auditory memory function in expert chess players

    PubMed Central

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Background: Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. Methods: The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. Results: The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Conclusion: Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time. PMID:26793666

  19. Auditory motion processing after early blindness

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Fine, Ione

    2014-01-01

    Studies showing that occipital cortex responds to auditory and tactile stimuli after early blindness are often interpreted as demonstrating that early blind subjects “see” auditory and tactile stimuli. However, it is not clear whether these occipital responses directly mediate the perception of auditory/tactile stimuli, or simply modulate or augment responses within other sensory areas. We used fMRI pattern classification to categorize the perceived direction of motion for both coherent and ambiguous auditory motion stimuli. In sighted individuals, perceived motion direction was accurately categorized based on neural responses within the planum temporale (PT) and right lateral occipital cortex (LOC). Within early blind individuals, auditory motion decisions for both stimuli were successfully categorized from responses within the human middle temporal complex (hMT+), but not the PT or right LOC. These findings suggest that early blind responses within hMT+ are associated with the perception of auditory motion, and that these responses in hMT+ may usurp some of the functions of nondeprived PT. Thus, our results provide further evidence that blind individuals do indeed “see” auditory motion. PMID:25378368

  20. Spatial auditory processing in pinnipeds

    NASA Astrophysics Data System (ADS)

    Holt, Marla M.

    Given the biological importance of sound for a variety of activities, pinnipeds must be able to obtain spatial information about their surroundings thorough acoustic input in the absence of other sensory cues. The three chapters of this dissertation address spatial auditory processing capabilities of pinnipeds in air given that these amphibious animals use acoustic signals for reproduction and survival on land. Two chapters are comparative lab-based studies that utilized psychophysical approaches conducted in an acoustic chamber. Chapter 1 addressed the frequency-dependent sound localization abilities at azimuth of three pinniped species (the harbor seal, Phoca vitulina, the California sea lion, Zalophus californianus, and the northern elephant seal, Mirounga angustirostris). While performances of the sea lion and harbor seal were consistent with the duplex theory of sound localization, the elephant seal, a low-frequency hearing specialist, showed a decreased ability to localize the highest frequencies tested. In Chapter 2 spatial release from masking (SRM), which occurs when a signal and masker are spatially separated resulting in improvement in signal detectability relative to conditions in which they are co-located, was determined in a harbor seal and sea lion. Absolute and masked thresholds were measured at three frequencies and azimuths to determine the detection advantages afforded by this type of spatial auditory processing. Results showed that hearing sensitivity was enhanced by up to 19 and 12 dB in the harbor seal and sea lion, respectively, when the signal and masker were spatially separated. Chapter 3 was a field-based study that quantified both sender and receiver variables of the directional properties of male northern elephant seal calls produce within communication system that serves to delineate dominance status. This included measuring call directivity patterns, observing male-male vocally-mediated interactions, and an acoustic playback study

  1. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  2. Causal contribution of primate auditory cortex to auditory perceptual decision-making

    PubMed Central

    Tsunada, Joji; Liu, Andrew S.K.; Gold, Joshua I.; Cohen, Yale E.

    2015-01-01

    Auditory perceptual decisions are thought to be mediated by the ventral auditory pathway. However, the specific and causal contributions of different brain regions in this pathway, including the middle-lateral (ML) and anterolateral (AL) belt regions of the auditory cortex, to auditory decisions have not been fully identified. To identify these contributions, we recorded from and microstimulated ML and AL sites while monkeys decided whether an auditory stimulus contained more low-frequency or high-frequency tone bursts. Both ML and AL neural activity was modulated by the frequency content of the stimulus. However, only the responses of the most stimulus-sensitive AL neurons were systematically modulated by the monkeys’ choices. Consistent with this observation, microstimulation of AL—but not ML—systematically biased the monkeys’ behavior toward the choice associated with the preferred frequency of the stimulated site. Together, these findings suggest that AL directly and causally contributes sensory evidence used to form this auditory decision. PMID:26656644

  3. Molecular study of patients with auditory neuropathy.

    PubMed

    Carvalho, Guilherme Machado De; Ramos, Priscila Zonzini; Castilho, Arthur Menino; Guimarães, Alexandre Caixeta; Sartorato, Edi Lúcia

    2016-07-01

    Auditory neuropathy is a type of hearing loss that constitutes a change in the conduct of the auditory stimulus by the involvement of inner hair cells or auditory nerve synapses. It is characterized by the absence or alteration of waves in the examination of brainstem auditory evoked potentials, with otoacoustic and/or cochlear microphonic issues. At present, four loci associated with non‑syndromic auditory neuropathy have been mapped: Autosomal recessive deafness‑9 [DFNB9; the otoferlin (OTOF) gene] and autosomal recessive deafness‑59 [DFNB59; the pejvakin (PJVK) gene], associated with autosomal recessive inheritance; the autosomal dominant auditory neuropathy gene [AUNA1; the diaphanous‑3 (DIAPH3) gene]; and AUNX1, linked to chromosome X. Furthermore, mutations of connexin 26 [the gap junction β2 (GJB2) gene] have also been associated with the disease. OTOF gene mutations exert a significant role in auditory neuropathy. In excess of 80 pathogenic mutations have been identified in individuals with non‑syndromic deafness in populations of different origins, with an emphasis on the p.Q829X mutation, which was found in ~3% of cases of deafness in the Spanish population. The identification of genetic alterations responsible for auditory neuropathy is one of the challenges contributing to understand the molecular bases of the different phenotypes of hearing loss. Thus, the present study aimed to investigate molecular changes in the OTOF gene in patients with auditory neuropathy, and to develop a DNA chip for the molecular diagnosis of auditory neuropathy using mass spectrometry for genotyping. Genetic alterations were investigated in 47 patients with hearing loss and clinical diagnosis of auditory neuropathy, and the c.35delG mutation in the GJB2 gene was identified in three homozygous patients, and the heterozygous parents of one of these cases. Additionally, OTOF gene mutations were tracked by complete sequencing of 48 exons, although these results

  4. Auditory Neuropathy/Dyssynchrony in Biotinidase Deficiency

    PubMed Central

    Yaghini, Omid

    2016-01-01

    Biotinidase deficiency is a disorder inherited autosomal recessively showing evidence of hearing loss and optic atrophy in addition to seizures, hypotonia, and ataxia. In the present study, a 2-year-old boy with Biotinidase deficiency is presented in which clinical symptoms have been reported with auditory neuropathy/auditory dyssynchrony (AN/AD). In this case, transient-evoked otoacoustic emissions showed bilaterally normal responses representing normal function of outer hair cells. In contrast, acoustic reflex test showed absent reflexes bilaterally, and visual reinforcement audiometry and auditory brainstem responses indicated severe to profound hearing loss in both ears. These results suggest AN/AD in patients with Biotinidase deficiency. PMID:27144235

  5. Functional organization of the mammalian auditory midbrain.

    PubMed

    Ono, Munenori; Ito, Tetsufumi

    2015-11-01

    The inferior colliculus (IC) is a critical nexus between the auditory brainstem and the forebrain. Parallel auditory pathways that emerge from the brainstem are integrated in the IC. In this integration, de-novo auditory information processed as local and ascending inputs converge via the complex neural circuit of the IC. However, it is still unclear how information is processed within the neural circuit. The purpose of this review is to give an anatomical and physiological overview of the IC neural circuit. We address the functional organization of the IC where the excitatory and inhibitory synaptic inputs interact to shape the responses of IC neurons to sound. PMID:26362672

  6. Survival of auditory hair cells.

    PubMed

    Seymour, Michelle L; Pereira, Fred A

    2015-07-01

    The inability of mammals to regenerate auditory hair cells creates a pressing need to understand the means of enhancing hair cell survival following insult or injury. Hair cells are easily damaged by noise exposure, by ototoxic medications and as a consequence of aging processes, all of which lead to progressive and permanent hearing impairment as hair cells are lost. Significant efforts have been invested in designing strategies to prevent this damage from occurring since permanent hearing loss has a profound impact on communication and quality of life for patients. In this mini-review, we discuss recent progress in the use of antioxidants, anti-inflammatories and apoptosis inhibitors to enhance hair cell survival. We conclude by clarifying the distinction between protection and rescue strategies and by highlighting important areas of future research. PMID:25743696

  7. Auditory display for the blind

    NASA Technical Reports Server (NTRS)

    Fish, R. M. (Inventor)

    1974-01-01

    A system for providing an auditory display of two-dimensional patterns as an aid to the blind is described. It includes a scanning device for producing first and second voltages respectively indicative of the vertical and horizontal positions of the scan and a further voltage indicative of the intensity at each point of the scan and hence of the presence or absence of the pattern at that point. The voltage related to scan intensity controls transmission of the sounds to the subject so that the subject knows that a portion of the pattern is being encountered by the scan when a tone is heard, the subject determining the position of this portion of the pattern in space by the frequency and interaural difference information contained in the tone.

  8. Neuromechanistic Model of Auditory Bistability.

    PubMed

    Rankin, James; Sussman, Elyse; Rinzel, John

    2015-11-01

    Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1). Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept-a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition. PMID:26562507

  9. Central auditory testing and dyslexia.

    PubMed

    Welsh, L W; Welsh, J J; Healy, M P

    1980-06-01

    A group of dyslexic pupils with normal end organ function was studied by a central auditory battery to determine whether a hearing disability existed. The clinical features of dyslexia are presented with emphasis on the psychological developmental and functional disorders associated with this reading problem. The central battery of Willeford was selected as the test medium and the results of the 77 dyslexic students were compared to the normative data. The model proposed by Sparks, et al., is accepted as the mechanism for dichotic audition. Reference is made to the organic basis of reading disorders from lesion in the calcarine area to the angular gyrus. The competing sentence test, binaural fusion, rapidly alternating speech perception, and filtered speech are described in detail and are organic foundation for the study. The authors indentified a high rate of failure in this investigation. Over 50% of the dyslexic students failed two of the four tests, and each of the 77 failed at least one component. The most sensitive tests were binaural fusion and filtered speech with less variation from the norm in the remaining two components. The effect of maturation in central audition was measured in each of the four tests. The data suggest: 1. the scores are lower in the early ages in each test; 2. that rapidly alternating speech and competing sentences approach the normal range albeit somewhat delayed; and 3. that binaural fusion and filtered speech improve in score somewhat but rather moderately and never approach the normal range. Based upon the central auditory data and in conjunction with the anatomical pathways of vision, the authors suggest the site of lesion to be in the temporo-parietal cortex and the association fibers. PMID:7382713

  10. Neuromechanistic Model of Auditory Bistability

    PubMed Central

    Rankin, James; Sussman, Elyse; Rinzel, John

    2015-01-01

    Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1). Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept—a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition. PMID:26562507

  11. Frequency band-importance functions for auditory and auditory-visual speech recognition

    NASA Astrophysics Data System (ADS)

    Grant, Ken W.

    2005-04-01

    In many everyday listening environments, speech communication involves the integration of both acoustic and visual speech cues. This is especially true in noisy and reverberant environments where the speech signal is highly degraded, or when the listener has a hearing impairment. Understanding the mechanisms involved in auditory-visual integration is a primary interest of this work. Of particular interest is whether listeners are able to allocate their attention to various frequency regions of the speech signal differently under auditory-visual conditions and auditory-alone conditions. For auditory speech recognition, the most important frequency regions tend to be around 1500-3000 Hz, corresponding roughly to important acoustic cues for place of articulation. The purpose of this study is to determine the most important frequency region under auditory-visual speech conditions. Frequency band-importance functions for auditory and auditory-visual conditions were obtained by having subjects identify speech tokens under conditions where the speech-to-noise ratio of different parts of the speech spectrum is independently and randomly varied on every trial. Point biserial correlations were computed for each separate spectral region and the normalized correlations are interpreted as weights indicating the importance of each region. Relations among frequency-importance functions for auditory and auditory-visual conditions will be discussed.

  12. Auditory stimulation and cardiac autonomic regulation

    PubMed Central

    Valenti, Vitor E.; Guida, Heraldo L.; Frizzo, Ana C. F.; Cardoso, Ana C. V.; Vanderlei, Luiz Carlos M.; de Abreu, Luiz Carlos

    2012-01-01

    Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: “auditory stimulation”, “autonomic nervous system”, “music” and “heart rate variability”. The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders. PMID:22948465

  13. Auditory pathways: are 'what' and 'where' appropriate?

    PubMed

    Hall, Deborah A

    2003-05-13

    New evidence confirms that the auditory system encompasses temporal, parietal and frontal brain regions, some of which partly overlap with the visual system. But common assumptions about the functional homologies between sensory systems may be misleading. PMID:12747854

  14. Reconstructing speech from human auditory cortex.

    PubMed

    Pasley, Brian N; David, Stephen V; Mesgarani, Nima; Flinker, Adeen; Shamma, Shihab A; Crone, Nathan E; Knight, Robert T; Chang, Edward F

    2012-01-01

    How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of speech acoustic parameters in higher order human auditory cortex. PMID:22303281

  15. Reconstructing Speech from Human Auditory Cortex

    PubMed Central

    Pasley, Brian N.; David, Stephen V.; Mesgarani, Nima; Flinker, Adeen; Shamma, Shihab A.; Crone, Nathan E.; Knight, Robert T.; Chang, Edward F.

    2012-01-01

    How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of speech acoustic parameters in higher order human auditory cortex. PMID:22303281

  16. The Goldilocks effect in infant auditory attention.

    PubMed

    Kidd, Celeste; Piantadosi, Steven T; Aslin, Richard N

    2014-01-01

    Infants must learn about many cognitive domains (e.g., language, music) from auditory statistics, yet capacity limits on their cognitive resources restrict the quantity that they can encode. Previous research has established that infants can attend to only a subset of available acoustic input. Yet few previous studies have directly examined infant auditory attention, and none have directly tested theorized mechanisms of attentional selection based on stimulus complexity. This work utilizes model-based behavioral methods that were recently developed to examine visual attention in infants (e.g., Kidd, Piantadosi, & Aslin, 2012). The present results demonstrate that 7- to 8-month-old infants selectively attend to nonsocial auditory stimuli that are intermediately predictable/complex with respect to their current implicit beliefs and expectations. These findings provide evidence of a broad principle of infant attention across modalities and suggest that sound-to-sound transitional statistics heavily influence the allocation of auditory attention in human infants. PMID:24990627

  17. Auditory pattern perception in 'split brain' patients.

    PubMed

    Musiek, F E; Pinheiro, M L; Wilson, D H

    1980-10-01

    Three "split brain" subjects with normal peripheral hearing were tested on identifying monaurally presented auditory intensity and frequency patterns. One subject was tested before commissurotomy, ten days later, and one year after surgery. Results indicated that sectioning the corpus callosum dramatically affects the ability to verbally report both intensity and frequency patterns. However, the ability of the subjects to correctly "hum" frequency patterns was not impaired. Thus, it appears for a correct verbal report of an auditory pattern, interhemispheric transfer of acoustic information is required, while "humming" the pattern does not. Further application of this finding implicates auditory pattern tasks as as a potentially valuable test for detecting problems of higher auditory processing, particularly those affecting interhemispheric interaction. PMID:7417089

  18. In search of an auditory engram

    PubMed Central

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C.

    2005-01-01

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory. PMID:15967995

  19. Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex

    PubMed Central

    Martins, Ana Raquel O.; Froemke, Robert C.

    2015-01-01

    The cerebral cortex is plastic and represents the world according to the significance of sensory stimuli. However, cortical networks are embodied within complex circuits including neuromodulatory systems such as the noradrenergic locus coeruleus, providing information about internal state and behavioral relevance. While norepinephrine is important for cortical plasticity, it is unknown how modulatory neurons themselves respond to changes of sensory input. Here we examine how locus coeruleus neurons are modified by experience, and the consequences of locus coeruleus plasticity on cortical representations and sensory perception. We made whole-cell recordings from rat locus coeruleus and primary auditory cortex (AI), pairing sounds with locus coeruleus activation. Although initially unresponsive, locus coeruleus neurons developed and maintained auditory responses afterwards. Locus coeruleus plasticity induced changes in AI responses lasting at least hours and improved auditory perception for days to weeks. Our results demonstrate that locus coeruleus is highly plastic, leading to substantial changes in regulation of brain state by norepinephrine. PMID:26301326

  20. Instruments for assessment of auditory hallucinations.

    PubMed

    Frederick, J A; Killeen, M R

    1998-10-01

    The study of individual symptoms of schizophrenia, such as auditory hallucinations, can contribute to effective treatment strategies. We review existing instruments for the assessment of characteristics and dimensions of auditory hallucinations in schizophrenia and other psychiatric disorders and describe their psychometric properties and implications for their use in clinical research and practice. In addition, three widely used global measurement scales for symptoms of schizophrenia, each of which contain questions that pertain to hallucinations, are included. PMID:9793212

  1. Music perception, pitch, and the auditory system

    PubMed Central

    McDermott, Josh H.; Oxenham, Andrew J.

    2008-01-01

    The perception of music depends on many culture-specific factors, but is also constrained by properties of the auditory system. This has been best characterized for those aspects of music that involve pitch. Pitch sequences are heard in terms of relative, as well as absolute, pitch. Pitch combinations give rise to emergent properties not present in the component notes. In this review we discuss the basic auditory mechanisms contributing to these and other perceptual effects in music. PMID:18824100

  2. Hearing loss and the central auditory system: Implications for hearing aids

    NASA Astrophysics Data System (ADS)

    Frisina, Robert D.

    2003-04-01

    Hearing loss can result from disorders or damage to the ear (peripheral auditory system) or the brain (central auditory system). Here, the basic structure and function of the central auditory system will be highlighted as relevant to cases of permanent hearing loss where assistive devices (hearing aids) are called for. The parts of the brain used for hearing are altered in two basic ways in instances of hearing loss: (1) Damage to the ear can reduce the number and nature of input channels that the brainstem receives from the ear, causing plasticity of the central auditory system. This plasticity may partially compensate for the peripheral loss, or add new abnormalities such as distorted speech processing or tinnitus. (2) In some situations, damage to the brain can occur independently of the ear, as may occur in cases of head trauma, tumors or aging. Implications of deficits to the central auditory system for speech perception in noise, hearing aid use and future innovative circuit designs will be provided to set the stage for subsequent presentations in this special educational session. [Work supported by NIA-NIH Grant P01 AG09524 and the International Center for Hearing & Speech Research, Rochester, NY.

  3. Long Latency Auditory Evoked Potentials during Meditation.

    PubMed

    Telles, Shirley; Deepeshwar, Singh; Naveen, Kalkuni Visweswaraiah; Pailoor, Subramanya

    2015-10-01

    The auditory sensory pathway has been studied in meditators, using midlatency and short latency auditory evoked potentials. The present study evaluated long latency auditory evoked potentials (LLAEPs) during meditation. Sixty male participants, aged between 18 and 31 years (group mean±SD, 20.5±3.8 years), were assessed in 4 mental states based on descriptions in the traditional texts. They were (a) random thinking, (b) nonmeditative focusing, (c) meditative focusing, and (d) meditation. The order of the sessions was randomly assigned. The LLAEP components studied were P1 (40-60 ms), N1 (75-115 ms), P2 (120-180 ms), and N2 (180-280 ms). For each component, the peak amplitude and peak latency were measured from the prestimulus baseline. There was significant decrease in the peak latency of the P2 component during and after meditation (P<.001; analysis of variance and post hoc analysis with Bonferroni adjustment). The P1, P2, and N2 components showed a significant decrease in peak amplitudes during random thinking (P<.01; P<.001; P<.01, respectively) and nonmeditative focused thinking (P<.01; P<.01; P<.05, respectively). The results suggest that meditation facilitates the processing of information in the auditory association cortex, whereas the number of neurons recruited was smaller in random thinking and non-meditative focused thinking, at the level of the secondary auditory cortex, auditory association cortex and anterior cingulate cortex. PMID:25380593

  4. Optogenetic stimulation of the auditory pathway

    PubMed Central

    Hernandez, Victor H.; Gehrt, Anna; Reuter, Kirsten; Jing, Zhizi; Jeschke, Marcus; Mendoza Schulz, Alejandro; Hoch, Gerhard; Bartels, Matthias; Vogt, Gerhard; Garnham, Carolyn W.; Yawo, Hiromu; Fukazawa, Yugo; Augustine, George J.; Bamberg, Ernst; Kügler, Sebastian; Salditt, Tim; de Hoz, Livia; Strenzke, Nicola; Moser, Tobias

    2014-01-01

    Auditory prostheses can partially restore speech comprehension when hearing fails. Sound coding with current prostheses is based on electrical stimulation of auditory neurons and has limited frequency resolution due to broad current spread within the cochlea. In contrast, optical stimulation can be spatially confined, which may improve frequency resolution. Here, we used animal models to characterize optogenetic stimulation, which is the optical stimulation of neurons genetically engineered to express the light-gated ion channel channelrhodopsin-2 (ChR2). Optogenetic stimulation of spiral ganglion neurons (SGNs) activated the auditory pathway, as demonstrated by recordings of single neuron and neuronal population responses. Furthermore, optogenetic stimulation of SGNs restored auditory activity in deaf mice. Approximation of the spatial spread of cochlear excitation by recording local field potentials (LFPs) in the inferior colliculus in response to suprathreshold optical, acoustic, and electrical stimuli indicated that optogenetic stimulation achieves better frequency resolution than monopolar electrical stimulation. Virus-mediated expression of a ChR2 variant with greater light sensitivity in SGNs reduced the amount of light required for responses and allowed neuronal spiking following stimulation up to 60 Hz. Our study demonstrates a strategy for optogenetic stimulation of the auditory pathway in rodents and lays the groundwork for future applications of cochlear optogenetics in auditory research and prosthetics. PMID:24509078

  5. Investigating bottom-up auditory attention

    PubMed Central

    Kaya, Emine Merve; Elhilali, Mounya

    2014-01-01

    Bottom-up attention is a sensory-driven selection mechanism that directs perception toward a subset of the stimulus that is considered salient, or attention-grabbing. Most studies of bottom-up auditory attention have adapted frameworks similar to visual attention models whereby local or global “contrast” is a central concept in defining salient elements in a scene. In the current study, we take a more fundamental approach to modeling auditory attention; providing the first examination of the space of auditory saliency spanning pitch, intensity and timbre; and shedding light on complex interactions among these features. Informed by psychoacoustic results, we develop a computational model of auditory saliency implementing a novel attentional framework, guided by processes hypothesized to take place in the auditory pathway. In particular, the model tests the hypothesis that perception tracks the evolution of sound events in a multidimensional feature space, and flags any deviation from background statistics as salient. Predictions from the model corroborate the relationship between bottom-up auditory attention and statistical inference, and argues for a potential role of predictive coding as mechanism for saliency detection in acoustic scenes. PMID:24904367

  6. Conducting polymer electrodes for auditory brainstem implants

    PubMed Central

    Guex, Amélie A.; Vachicouras, Nicolas; Hight, Ariel E.; Brown, M. Christian; Lee, Daniel J.; Lacour, Stéphanie P.

    2015-01-01

    The auditory brainstem implant (ABI) restores hearing in patients with damaged auditory nerves. One of the main ideas to improve the efficacy of ABIs is to increase spatial specificity of stimulation, in order to minimize extra-auditory side-effects and to maximize the tonotopy of stimulation. This study reports on the development of a microfabricated conformable electrode array with small (100 μm diameter) electrode sites. The latter are coated with a conducting polymer, PEDOT:PSS, to offer high charge injection properties and to safely stimulate the auditory system with small stimulation sites. We report on the design and fabrication of the polymer implant, and characterize the coatings in physiological conditions in vitro and under mechanical deformation. We characterize the coating electrochemically and during bending tests. We present a proof of principle experiment where the auditory system is efficiently activated by the flexible polymeric interface in a rat model. These results demonstrate the potential of using conducting polymer coatings on small electrode sites for electrochemically safe and efficient stimulation of the central auditory system. PMID:26207184

  7. Auditory Processing in Fragile X Syndrome

    PubMed Central

    Rotschafer, Sarah E.; Razak, Khaleel A.

    2014-01-01

    Fragile X syndrome (FXS) is an inherited form of intellectual disability and autism. Among other symptoms, FXS patients demonstrate abnormalities in sensory processing and communication. Clinical, behavioral, and electrophysiological studies consistently show auditory hypersensitivity in humans with FXS. Consistent with observations in humans, the Fmr1 KO mouse model of FXS also shows evidence of altered auditory processing and communication deficiencies. A well-known and commonly used phenotype in pre-clinical studies of FXS is audiogenic seizures. In addition, increased acoustic startle response is seen in the Fmr1 KO mice. In vivo electrophysiological recordings indicate hyper-excitable responses, broader frequency tuning, and abnormal spectrotemporal processing in primary auditory cortex of Fmr1 KO mice. Thus, auditory hyper-excitability is a robust, reliable, and translatable biomarker in Fmr1 KO mice. Abnormal auditory evoked responses have been used as outcome measures to test therapeutics in FXS patients. Given that similarly abnormal responses are present in Fmr1 KO mice suggests that cellular mechanisms can be addressed. Sensory cortical deficits are relatively more tractable from a mechanistic perspective than more complex social behaviors that are typically studied in autism and FXS. The focus of this review is to bring together clinical, functional, and structural studies in humans with electrophysiological and behavioral studies in mice to make the case that auditory hypersensitivity provides a unique opportunity to integrate molecular, cellular, circuit level studies with behavioral outcomes in the search for therapeutics for FXS and other autism spectrum disorders. PMID:24550778

  8. The Development of Auditory Perception in Children Following Auditory Brainstem Implantation

    PubMed Central

    Colletti, Liliana; Shannon, Robert V.; Colletti, Vittorio

    2014-01-01

    Auditory brainstem implants (ABI) can provide useful auditory perception and language development in deaf children who are not able to use a cochlear implant (CI). We prospectively followed-up a consecutive group of 64 deaf children up to 12 years following ABI implantation. The etiology of deafness in these children was: cochlear nerve aplasia in 49, auditory neuropathy in 1, cochlear malformations in 8, bilateral cochlear post-meningitic ossification in 3, NF2 in 2, and bilateral cochlear fractures due to a head injury in 1. Thirty five children had other congenital non-auditory disabilities. Twenty two children had previous CIs with no benefit. Fifty eight children were fitted with the Cochlear 24 ABI device and six with the MedEl ABI device and all children followed the same rehabilitation program. Auditory perceptual abilities were evaluated on the Categories of Auditory Performance (CAP) scale. No child was lost to follow-up and there were no exclusions from the study. All children showed significant improvement in auditory perception with implant experience. Seven children (11%) were able to achieve the highest score on the CAP test; they were able to converse on the telephone within 3 years of implantation. Twenty children (31.3%) achieved open set speech recognition (CAP score of 5 or greater) and 30 (46.9%) achieved a CAP level of 4 or greater. Of the 29 children without non-auditory disabilities, 18 (62%) achieved a CAP score of 5 or greater with the ABI. All children showed continued improvements in auditory skills over time. The long-term results of ABI implantation reveal significant auditory benefit in most children, and open set auditory recognition in many. PMID:25377987

  9. Bridging the Gap Between Materials and Learners: Maximizing Auditory Instruction. Auditory Learning Monograph Series 5.

    ERIC Educational Resources Information Center

    Carlson, Nancy A.; And Others

    Described is a system (created by the Great Lakes Region Special Education Instructional Materials Center) for classifying auditory learners and matching them to appropriate auditory learning experiences. The learner classification system outlined utilizes an organizational table that accommodates five learner variables (mental age, chronological…

  10. Developing Auditory Skills: A Guide to Auditory Communication Activities. Revised Edition.

    ERIC Educational Resources Information Center

    Marvich, Judith W.; Lederman, Norman

    The manual provides information about the development of auditory communication training for hearing impaired students. Two models of auditory training are reviewed: the Model Secondary School for the Deaf, which posits five areas of training, including awareness, attention, identification/recognition, message analysis, and…

  11. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    PubMed Central

    Lotfi, Yones; Moosavi, Abdollah; Bakhshi, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim of this research was investigating effects of an auditory lateralization training on speech perception in presence of noise/competing signals in children suspected to (C)APD. Subjects and Methods In this analytical interventional study, 60 children suspected to (C)APD were selected based on multiple auditory processing assessment subtests. They were randomly divided into two groups: control (mean age 9.07) and training groups (mean age 9.00). Training program consisted of detection and pointing to sound sources delivered with interaural time differences under headphones for 12 formal sessions (6 weeks). Spatial word recognition score (WRS) and monaural selective auditory attention test (mSAAT) were used to follow the auditory lateralization training effects. Results This study showed that in the training group, mSAAT score and spatial WRS in noise (p value≤0.001) improved significantly after the auditory lateralization training. Conclusions We used auditory lateralization training for 6 weeks and showed that auditory lateralization can improve speech understanding in noise significantly. The generalization of this results needs further researches. PMID:27626084

  12. Auditory and motor imagery modulate learning in music performance.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  13. Auditory and motor imagery modulate learning in music performance

    PubMed Central

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  14. Visual modulation of auditory responses in the owl inferior colliculus.

    PubMed

    Bergan, Joseph F; Knudsen, Eric I

    2009-06-01

    The barn owl's central auditory system creates a map of auditory space in the external nucleus of the inferior colliculus (ICX). Although the crucial role visual experience plays in the formation and maintenance of this auditory space map is well established, the mechanism by which vision influences ICX responses remains unclear. Surprisingly, previous experiments have found that in the absence of extensive pharmacological manipulation, visual stimuli do not drive neural responses in the ICX. Here we investigated the influence of dynamic visual stimuli on auditory responses in the ICX. We show that a salient visual stimulus, when coincident with an auditory stimulus, can modulate auditory responses in the ICX even though the same visual stimulus may elicit no neural responses when presented alone. For each ICX neuron, the most effective auditory and visual stimuli were located in the same region of space. In addition, the magnitude of the visual modulation of auditory responses was dependent on the context of the stimulus presentation with novel visual stimuli eliciting consistently larger response modulations than frequently presented visual stimuli. Thus the visual modulation of ICX responses is dependent on the characteristics of the visual stimulus as well as on the spatial and temporal correspondence of the auditory and visual stimuli. These results demonstrate moment-to-moment visual enhancements of auditory responsiveness that, in the short-term, increase auditory responses to salient bimodal stimuli and in the long-term could serve to instruct the adaptive auditory plasticity necessary to maintain accurate auditory orienting behavior. PMID:19321633

  15. Hippocampus responds to auditory change in rabbits.

    PubMed

    Ruusuvirta, T; Astikainen, P; Wikgren, J; Nokia, M

    2010-09-29

    Any change or novelty in the auditory environment is potentially important for survival. The cortex has been implicated in the detection of auditory change whereas the hippocampus has been associated with the detection of auditory novelty. Local field potentials (LFPs) were recorded from the CA1 area of the hippocampus in waking rabbits. In the oddball condition, a rare tone of one frequency (deviant) randomly replaced a repeated tone of another frequency (standard). In the equal-probability condition, the standard was replaced by a set of tones of nine different frequencies in order to remove the repetitive auditory background of the deviant (now labelled as control-deviant) while preserving its temporal probability. In the oddball condition, evoked potentials at 36-80 ms post-stimulus were found to have greater amplitude towards negative polarity for the deviant relative to the standard. No significant differences in response amplitudes were observed between the control-deviant and the standard. These findings suggest that the hippocampus plays a role in auditory change detection. PMID:20600633

  16. Tonotopic mapping of human auditory cortex.

    PubMed

    Saenz, Melissa; Langers, Dave R M

    2014-01-01

    Since the early days of functional magnetic resonance imaging (fMRI), retinotopic mapping emerged as a powerful and widely-accepted tool, allowing the identification of individual visual cortical fields and furthering the study of visual processing. In contrast, tonotopic mapping in auditory cortex proved more challenging primarily because of the smaller size of auditory cortical fields. The spatial resolution capabilities of fMRI have since advanced, and recent reports from our labs and several others demonstrate the reliability of tonotopic mapping in human auditory cortex. Here we review the wide range of stimulus procedures and analysis methods that have been used to successfully map tonotopy in human auditory cortex. We point out that recent studies provide a remarkably consistent view of human tonotopic organisation, although the interpretation of the maps continues to vary. In particular, there remains controversy over the exact orientation of the primary gradients with respect to Heschl's gyrus, which leads to different predictions about the location of human A1, R, and surrounding fields. We discuss the development of this debate and argue that literature is converging towards an interpretation that core fields A1 and R fold across the rostral and caudal banks of Heschl's gyrus, with tonotopic gradients laid out in a distinctive V-shaped manner. This suggests an organisation that is largely homologous with non-human primates. This article is part of a Special Issue entitled Human Auditory Neuroimaging. PMID:23916753

  17. Aging and auditory site of lesion.

    PubMed

    Otto, W C; McCandless, G A

    1982-01-01

    The purpose of this study was to examine and quantify the functional auditory problems of presbycusis through a battery of recently developed diagnostic tests and to evaluate the usefulness of these tests with an elderly population. Diagnostic measures used were impedence measures, speech discrimination tests, synthetic sentence identification, compressed speech, two measures of tone decay, the short increment sensitivity index, a digit span test, and auditory brain stem response audiometry. Significant differences were found between scores for elderly subjects and those of young subjects who had similar audiograms. Use of the Metz test as an objective measure of recruitment yielded results suggesting a higher incidence of recruitment than evidenced by previous studies using loudness balancing procedures. The Olsen-Noffsinger procedure of quantifying tone decay revealed a greater difference between age groups than did the Suprathreshold Adaptation Test. Synthetic sentence identification revealed the most consistent age effect among the tests of central auditory function. Auditory brain stem response audiometry revealed several examples of abnormally long interpeak latencies. It is concluded that there is both behavioral and electrophysiological evidence of central and peripheral auditory disorder frequently accompanying senescence. PMID:7095318

  18. Adaptive auditory feedback control of the production of formant trajectories in the Mandarin triphthong /iau/ and its pattern of generalization.

    PubMed

    Cai, Shanqing; Ghosh, Satrajit S; Guenther, Frank H; Perkell, Joseph S

    2010-10-01

    In order to test whether auditory feedback is involved in the planning of complex articulatory gestures in time-varying phonemes, the current study examined native Mandarin speakers' responses to auditory perturbations of their auditory feedback of the trajectory of the first formant frequency during their production of the triphthong /iau/. On average, subjects adaptively adjusted their productions to partially compensate for the perturbations in auditory feedback. This result indicates that auditory feedback control of speech movements is not restricted to quasi-static gestures in monophthongs as found in previous studies, but also extends to time-varying gestures. To probe the internal structure of the mechanisms of auditory-motor transformations, the pattern of generalization of the adaptation learned on the triphthong /iau/ to other vowels with different temporal and spatial characteristics (produced only under masking noise) was tested. A broad but weak pattern of generalization was observed; the strength of the generalization diminished with increasing dissimilarity from /iau/. The details and implications of the pattern of generalization are examined and discussed in light of previous sensorimotor adaptation studies of both speech and limb motor control and a neurocomputational model of speech motor control. PMID:20968374

  19. Genetics Home Reference: autosomal dominant partial epilepsy with auditory features

    MedlinePlus

    ... Genetics Home Health Conditions ADPEAF autosomal dominant partial epilepsy with auditory features Enable Javascript to view the ... Open All Close All Description Autosomal dominant partial epilepsy with auditory features ( ADPEAF ) is an uncommon form ...

  20. Auditory Discrimination Development through Vestibulo-Cochlear Stimulation.

    ERIC Educational Resources Information Center

    Palmer, Lyelle L.

    1980-01-01

    Three types of vestibular activities (active, adaptive, and passively imposed) to improve auditory discrimination development are described and results of a study using the vestibular stimulation techniques with 20 Ss (average age 9) having abnormal auditory discrimination. (PHR)

  1. The what, where and how of auditory-object perception

    PubMed Central

    Bizley, Jennifer K.; Cohen, Yale E.

    2014-01-01

    The fundamental perceptual unit in hearing is the ‘auditory object’. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood. PMID:24052177

  2. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    PubMed

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. PMID:20018234

  3. Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes.

    PubMed

    Puschmann, Sebastian; Sandmann, Pascale; Ahrens, Janina; Thorne, Jeremy; Weerda, Riklef; Klump, Georg; Debener, Stefan; Thiel, Christiane M

    2013-07-15

    Change deafness describes the failure to perceive even intense changes within complex auditory input, if the listener does not attend to the changing sound. Remarkably, previous psychophysical data provide evidence that this effect occurs independently of successful stimulus encoding, indicating that undetected changes are processed to some extent in auditory cortex. Here we investigated cortical representations of detected and undetected auditory changes using electroencephalographic (EEG) recordings and a change deafness paradigm. We applied a one-shot change detection task, in which participants listened successively to three complex auditory scenes, each of them consisting of six simultaneously presented auditory streams. Listeners had to decide whether all scenes were identical or whether the pitch of one stream was changed between the last two presentations. Our data show significantly increased middle-latency Nb responses for both detected and undetected changes as compared to no-change trials. In contrast, only successfully detected changes were associated with a later mismatch response in auditory cortex, followed by increased N2, P3a and P3b responses, originating from hierarchically higher non-sensory brain regions. These results strengthen the view that undetected changes are successfully encoded at sensory level in auditory cortex, but fail to trigger later change-related cortical responses that lead to conscious perception of change. PMID:23466938

  4. What Determines Auditory Distraction? On the Roles of Local Auditory Changes and Expectation Violations

    PubMed Central

    Röer, Jan P.; Bell, Raoul; Buchner, Axel

    2014-01-01

    Both the acoustic variability of a distractor sequence and the degree to which it violates expectations are important determinants of auditory distraction. In four experiments we examined the relative contribution of local auditory changes on the one hand and expectation violations on the other hand in the disruption of serial recall by irrelevant sound. We present evidence for a greater disruption by auditory sequences ending in unexpected steady state distractor repetitions compared to auditory sequences with expected changing state endings even though the former contained fewer local changes. This effect was demonstrated with piano melodies (Experiment 1) and speech distractors (Experiment 2). Furthermore, it was replicated when the expectation violation occurred after the encoding of the target items (Experiment 3), indicating that the items' maintenance in short-term memory was disrupted by attentional capture and not their encoding. This seems to be primarily due to the violation of a model of the specific auditory distractor sequences because the effect vanishes and even reverses when the experiment provides no opportunity to build up a specific neural model about the distractor sequence (Experiment 4). Nevertheless, the violation of abstract long-term knowledge about auditory regularities seems to cause a small and transient capture effect: Disruption decreased markedly over the course of the experiments indicating that participants habituated to the unexpected distractor repetitions across trials. The overall pattern of results adds to the growing literature that the degree to which auditory distractors violate situation-specific expectations is a more important determinant of auditory distraction than the degree to which a distractor sequence contains local auditory changes. PMID:24400081

  5. The development of auditory perception in children after auditory brainstem implantation.

    PubMed

    Colletti, Liliana; Shannon, Robert V; Colletti, Vittorio

    2014-01-01

    Auditory brainstem implants (ABIs) can provide useful auditory perception and language development in deaf children who are not able to use a cochlear implant (CI). We prospectively followed up a consecutive group of 64 deaf children up to 12 years following ABI surgery. The etiology of deafness in these children was: cochlear nerve aplasia in 49, auditory neuropathy in 1, cochlear malformations in 8, bilateral cochlear postmeningitic ossification in 3, neurofibromatosis type 2 in 2, and bilateral cochlear fractures due to a head injury in 1. Thirty-five children had other congenital nonauditory disabilities. Twenty-two children had previous CIs with no benefit. Fifty-eight children were fitted with the Cochlear 24 ABI device and 6 with the MedEl ABI device, and all children followed the same rehabilitation program. Auditory perceptual abilities were evaluated on the Categories of Auditory Performance (CAP) scale. No child was lost to follow-up, and there were no exclusions from the study. All children showed significant improvement in auditory perception with implant experience. Seven children (11%) were able to achieve the highest score on the CAP test; they were able to converse on the telephone within 3 years of implantation. Twenty children (31.3%) achieved open set speech recognition (CAP score of 5 or greater) and 30 (46.9%) achieved a CAP level of 4 or greater. Of the 29 children without nonauditory disabilities, 18 (62%) achieved a CAP score of 5 or greater with the ABI. All children showed continued improvements in auditory skills over time. The long-term results of ABI surgery reveal significant auditory benefit in most children, and open set auditory recognition in many. PMID:25377987

  6. Auditory Neuropathy Spectrum Disorder Masquerading as Social Anxiety

    PubMed Central

    Rao, Mukund G.; Mishra, Shree; Varambally, Shivarama; Nagarajarao, Shivashankar; Gangadhar, Bangalore N.

    2015-01-01

    The authors report a case of a 47-year-old man who presented with treatment-resistant anxiety disorder. Behavioral observation raised clinical suspicion of auditory neuropathy spectrum disorder. The presence of auditory neuropathy spectrum disorder was confirmed on audiological investigations. The patient was experiencing extreme symptoms of anxiety, which initially masked the underlying diagnosis of auditory neuropathy spectrum disorder. Challenges in diagnosis and treatment of auditory neuropathy spectrum disorder are discussed. PMID:26351622

  7. Spatial Coherence in Auditory Cortical Activity Fluctuations

    NASA Astrophysics Data System (ADS)

    Yoshida, Takamasa; Katura, Takusige; Yamazaki, Kyoko; Tanaka, Shigeru; Iwamoto, Mitsumasa; Tanaka, Naoki

    2007-07-01

    We examined activity fluctuations as ongoing and spontaneous activities that were recorded with voltage sensitive dye imaging in the auditory cortex of guinea pigs. We investigated whether such activities demonstrated spatial coherence, which represents the cortical functional organization. We used independent component analysis to extract neural activities from observed signals and a scaled signal-plus-noise model to estimate ongoing activities from the neural activities including response components. We mapped the correlation between the time courses in each channel and in the others for the whole observed region. Ongoing and spontaneous activities in the auditory cortex were found to have strong spatial coherence corresponding to the tonotopy, which is one of auditory functional organization.

  8. Applied research in auditory data representation

    NASA Astrophysics Data System (ADS)

    Frysinger, Steve P.

    1990-08-01

    A class of data displays, characterized generally as Auditory Data Representation, is described and motivated. This type of data representation takes advantage of the tremendous pattern recognition capability of the human auditory channel. Audible displays offer an alternative means of conveying quantitative data to the analyst to facilitate information extraction, and are successfully used alone and in conjunction with visual displays. The Auditory Data Representation literature is reviewed, along with elements of the allied fields of investigation, Psychoacoustics and Musical Perception. A methodology for applied research in this field, based upon the well-developed discipline of psychophysics, is elaborated using a recent experiment as a case study. This method permits objective estimation of a data representation technique by comparing it to alternative displays for the pattern recognition task at hand. The psychophysical threshold of signal to noise level, for constant pattern recognition performance, is the measure of display effectiveness.

  9. Central auditory conduction time in the rat.

    PubMed

    Shaw, N A

    1990-01-01

    Central conduction time is the time for an afferent volley to traverse the central pathways of a sensory system. In the present study, central auditory conduction time (CACT) was calculated for the rat, the first such formal measurement in any animal. Brainstem auditory evoked potentials (BAEPs) were recorded simultaneously with the primary response of the auditory cortex (P1). The latency of wave II of the BAEP, which arises in the cochlear nucleus, was subtracted from that of P1. This yielded a mean CACT of 6.6 ms. The results confirm a previous theoretical estimate that CACT in the rat is at least twice as long as central somatosensory conduction time. PMID:2311700

  10. Electrophysiological measurement of human auditory function

    NASA Technical Reports Server (NTRS)

    Galambos, R.

    1975-01-01

    Knowledge of the human auditory evoked response is reviewed, including methods of determining this response, the way particular changes in the stimulus are coupled to specific changes in the response, and how the state of mind of the listener will influence the response. Important practical applications of this basic knowledge are discussed. Measurement of the brainstem evoked response, for instance, can state unequivocally how well the peripheral auditory apparatus functions. It might then be developed into a useful hearing test, especially for infants and preverbal or nonverbal children. Clinical applications of measuring the brain waves evoked 100 msec and later after the auditory stimulus are undetermined. These waves are clearly related to brain events associated with cognitive processing of acoustic signals, since their properties depend upon where the listener directs his attention and whether how long he expects the signal.

  11. Beyond auditory cortex: working with musical thoughts.

    PubMed

    Zatorre, Robert J

    2012-04-01

    Musical imagery is associated with neural activity in auditory cortex, but prior studies have not examined musical imagery tasks requiring mental transformations. This paper describes functional magnetic resonance imaging (fMRI) studies requiring manipulation of musical information. In one set of experiments, listeners were asked to mentally reverse a familiar tune when presented backwards. This manipulation consistently elicits neural activity in the intraparietal sulcus (IPS). Separate experiments requiring judgments about melodies that have been transposed from one musical key to another also elicit IPS activation. Conjunction analyses indicate that the same portions of the IPS are recruited in both tasks. The findings suggest that the dorsal pathway of auditory processing is involved in the manipulation and transformation of auditory information, as has also been shown for visuomotor and visuospatial tasks. As such, it provides a substrate for the creation of new mental representations that are based on manipulation of previously experienced sensory events. PMID:22524363

  12. Auditory masking of speech in reverberant multi-talker environments.

    PubMed

    Weller, Tobias; Buchholz, Jörg M; Best, Virginia

    2016-03-01

    Auditory localization research needs to be performed in more realistic testing environments to better capture the real-world abilities of listeners and their hearing devices. However, there are significant challenges involved in controlling the audibility of relevant target signals in realistic environments. To understand the important aspects influencing target detection in more complex environments, a reverberant room with a multi-talker background was simulated and presented to the listener in a loudspeaker-based virtual sound environment. Masked thresholds of a short speech stimulus were measured adaptively for multiple target source locations in this scenario. It was found that both distance and azimuth of the target source have a strong influence on the masked threshold. Subsequently, a functional model was applied to analyze the factors influencing target detectability. The model is comprised of an auditory front-end that generates an internal representation of the stimuli in both ears, followed by a decision device combining d' information across time, frequency and both ears. The model predictions of the masked thresholds were overall in very good agreement with the experimental results. An analysis of the model processes showed that head shadow effects, signal spectrum, and reverberation have a strong impact on target audibility in the given scenario. PMID:27036267

  13. EEG Responses to Auditory Stimuli for Automatic Affect Recognition

    PubMed Central

    Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  14. EEG Responses to Auditory Stimuli for Automatic Affect Recognition.

    PubMed

    Hettich, Dirk T; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  15. Auditory motion affects visual biological motion processing.

    PubMed

    Brooks, A; van der Zwan, R; Billard, A; Petreska, B; Clarke, S; Blanke, O

    2007-02-01

    The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of

  16. Auditory Brainstem Response Improvements in Hyperbillirubinemic Infants

    PubMed Central

    Abdollahi, Farzaneh Zamiri; Manchaiah, Vinaya; Lotfi, Yones

    2016-01-01

    Background and Objectives Hyperbillirubinemia in infants have been associated with neuronal damage including in the auditory system. Some researchers have suggested that the bilirubin-induced auditory neuronal damages may be temporary and reversible. This study was aimed at investigating the auditory neuropathy and reversibility of auditory abnormalities in hyperbillirubinemic infants. Subjects and Methods The study participants included 41 full term hyperbilirubinemic infants (mean age 39.24 days) with normal birth weight (3,200-3,700 grams) that admitted in hospital for hyperbillirubinemia and 39 normal infants (mean age 35.54 days) without any hyperbillirubinemia or other hearing loss risk factors for ruling out maturational changes. All infants in hyperbilirubinemic group had serum bilirubin level more than 20 milligram per deciliter and undergone one blood exchange transfusion. Hearing evaluation for each infant was conducted twice: the first one after hyperbilirubinemia treatment and before leaving hospital and the second one three months after the first hearing evaluation. Hearing evaluations included transient evoked otoacoustic emission (TEOAE) screening and auditory brainstem response (ABR) threshold tracing. Results The TEOAE and ABR results of control group and TEOAE results of the hyperbilirubinemic group did not change significantly from the first to the second evaluation. However, the ABR results of the hyperbilirubinemic group improved significantly from the first to the second assessment (p=0.025). Conclusions The results suggest that the bilirubin induced auditory neuronal damage can be reversible over time so we suggest that infants with hyperbilirubinemia who fail the first hearing tests should be reevaluated after 3 months of treatment. PMID:27144228

  17. Central recruitment in individual with auditory neuropathy.

    PubMed

    Sahu, Preeti; Mishra, Rajkishor; Mahallik, Debadatta; Ansari, Imran; Mungutwar, Varsha

    2014-12-01

    Auditory neuropathy (AN) describes patients with dysfunction of the auditory nerve in the presence of preserved cochlear outer hair-cell receptor functions in presence of normal otoacoustic emissions and/or cochlear microphonics. In individuals with auditory neuropathy speech are disproportionate to their hearing sensitivity and reported to be dependent on cortical evoked potentials. In individuals with AN, who have normal cortical potentials have better speech identification scores when compared to those with abnormal cortical potentials reflect relation between the cortical potentials and the speech identification scores. One group comparison research design was used for present study. The purpose of the study was to compare shift in latency of LLR peaks at different sensation level in subjects with auditory neuropathy and age matched normal individuals. 6 subjects (11 ears) diagnosed as having auditory neuropathy and 6 subjects (12 ears) with normal hearing Sensitivity participated for the study. Pure tone audiometry, immittance, reflexometry and otoacoustic emissions were administered. ABR was recorded for all the subjects at a repetition rate of 11.1 at an intensity of 90 dB nHL. LLR was carried out at different intensity levels for/da/speech stimulus at an intensity of 90 dB nHL. Latency of N1 and P2 of LLR was calculated at different sensation levels for both the groups. Descriptive analysis was carried out to find out the mean and standard deviation for latency of N1 and P2 for both, AN and normal hearing group. There was delay in latency of N1 and P2 for individuals with auditory neuropathy. PMID:26396961

  18. Comorbidity of Auditory Processing, Language, and Reading Disorders

    ERIC Educational Resources Information Center

    Sharma, Mridula; Purdy, Suzanne C.; Kelly, Andrea S.

    2009-01-01

    Purpose: The authors assessed comorbidity of auditory processing disorder (APD), language impairment (LI), and reading disorder (RD) in school-age children. Method: Children (N = 68) with suspected APD and nonverbal IQ standard scores of 80 or more were assessed using auditory, language, reading, attention, and memory measures. Auditory processing…

  19. Transfer of Noncorresponding Spatial Associations to the Auditory Simon Task

    ERIC Educational Resources Information Center

    Proctor, Robert W.; Yamaguchi, Motonori; Vu, Kim-Phuong L.

    2007-01-01

    Four experiments examined transfer of noncorresponding spatial stimulus-response associations to an auditory Simon task for which stimulus location was irrelevant. Experiment 1 established that, for a horizontal auditory Simon task, transfer of spatial associations occurs after 300 trials of practice with an incompatible mapping of auditory

  20. 21 CFR 882.1900 - Evoked response auditory stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Evoked response auditory stimulator. 882.1900 Section 882.1900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... auditory stimulator. (a) Identification. An evoked response auditory stimulator is a device that produces...

  1. 21 CFR 882.1900 - Evoked response auditory stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Evoked response auditory stimulator. 882.1900 Section 882.1900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... auditory stimulator. (a) Identification. An evoked response auditory stimulator is a device that produces...

  2. Auditory Hypersensitivity in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Lucker, Jay R.

    2013-01-01

    A review of records was completed to determine whether children with auditory hypersensitivities have difficulty tolerating loud sounds due to auditory-system factors or some other factors not directly involving the auditory system. Records of 150 children identified as not meeting autism spectrum disorders (ASD) criteria and another 50 meeting…

  3. Auditory Stream Biasing in Children with Reading Impairments

    ERIC Educational Resources Information Center

    Ouimet, Tialee; Balaban, Evan

    2010-01-01

    Reading impairments have previously been associated with auditory processing differences. We examined "auditory stream biasing", a global aspect of auditory temporal processing. Children with reading impairments, control children and adults heard a 10 s long stream-bias-inducing sound sequence (a repeating 1000 Hz tone) and a test sequence (eight…

  4. Auditory Temporal Processing as a Specific Deficit among Dyslexic Readers

    ERIC Educational Resources Information Center

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    The present study focuses on examining the hypothesis that auditory temporal perception deficit is a basic cause for reading disabilities among dyslexics. This hypothesis maintains that reading impairment is caused by a fundamental perceptual deficit in processing rapid auditory or visual stimuli. Since the auditory perception involves a number of…

  5. Auditory issues in handheld land mine detectors

    NASA Astrophysics Data System (ADS)

    Vause, Nancy L.; Letowski, Tomasz R.; Ferguson, Larry G.; Mermagen, Timothy J.

    1999-08-01

    Most handled landmine detection systems use tones or other simple acoustic signals to provide detector information to the operator. Such signals are not necessarily the best carriers of information about the characteristics of hidden objects. To be effective, the auditory signals must present the information in a manner that the operator can comfortably and efficiently, the auditory signals must present the information in a manner that the operator can comfortably and efficiently interpret under stress and high mental load. The signals must also preserve their audibility and specific properties in various adverse acoustic environments. This paper will present several issues on optimizing the audio display interface between the operator and machine.

  6. Auditory dysfunction in Ramsay Hunt syndrome.

    PubMed

    Iragui, V J

    1986-07-01

    A 48-year-old woman with a Ramsay Hunt syndrome due to herpes zoster had a hearing deficit. Brainstem auditory evoked potentials (BAEPs) localised the site of dysfunction to the ipsilateral eighth nerve. Clinical improvement was associated with improvement of the BAEP. Conventional audiological studies and BAEPs provided no evidence of involvement of the cochlea or the brainstem. In Ramsay Hunt syndrome, BAEPs may help to localise the site of involvement within the auditory pathway and follow the course of the disease. PMID:3746312

  7. The many facets of auditory display

    NASA Technical Reports Server (NTRS)

    Blattner, Meera M.

    1995-01-01

    In this presentation we will examine some of the ways sound can be used in a virtual world. We make the case that many different types of audio experience are available to us. A full range of audio experiences include: music, speech, real-world sounds, auditory displays, and auditory cues or messages. The technology of recreating real-world sounds through physical modeling has advanced in the past few years allowing better simulation of virtual worlds. Three-dimensional audio has further enriched our sensory experiences.

  8. Roles of Supplementary Motor Areas in Auditory Processing and Auditory Imagery.

    PubMed

    Lima, César F; Krishnan, Saloni; Scott, Sophie K

    2016-08-01

    Although the supplementary and pre-supplementary motor areas have been intensely investigated in relation to their motor functions, they are also consistently reported in studies of auditory processing and auditory imagery. This involvement is commonly overlooked, in contrast to lateral premotor and inferior prefrontal areas. We argue here for the engagement of supplementary motor areas across a variety of sound categories, including speech, vocalizations, and music, and we discuss how our understanding of auditory processes in these regions relate to findings and hypotheses from the motor literature. We suggest that supplementary and pre-supplementary motor areas play a role in facilitating spontaneous motor responses to sound, and in supporting a flexible engagement of sensorimotor processes to enable imagery and to guide auditory perception. PMID:27381836

  9. Synchronous auditory nerve activity in the carboplatin-chinchilla model of auditory neuropathy.

    PubMed

    Cowper-Smith, C D; Dingle, R N; Guo, Y; Burkard, R; Phillips, D P

    2010-07-01

    Two hallmark features of auditory neuropathy (AN) are normal outer hair cell function in the presence of an absent/abnormal auditory brainstem response (ABR). Studies of human AN patients are unable to determine whether disruption of the ABR is the result of a reduction of neural input, a loss of auditory nerve fiber (ANF) synchrony, or both. Neurophysiological data from the carboplatin model of AN reveal intact neural synchrony in the auditory nerve and inferior colliculus, despite significant reductions in neural input. These data suggest that (1), intact neural synchrony is available to support an ABR following carboplatin treatment and, (2), impaired spike timing intrinsic to neurons is required for the disruption of the ABR observed in human AN. PMID:20649190

  10. Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.

    PubMed

    Pearce, Wendy; Golding, Maryanne; Dillon, Harvey

    2007-05-01

    Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy. PMID:17715648