Science.gov

Sample records for internal dose coefficients

  1. Averaging Internal Consistency Reliability Coefficients

    ERIC Educational Resources Information Center

    Feldt, Leonard S.; Charter, Richard A.

    2006-01-01

    Seven approaches to averaging reliability coefficients are presented. Each approach starts with a unique definition of the concept of "average," and no approach is more correct than the others. Six of the approaches are applicable to internal consistency coefficients. The seventh approach is specific to alternate-forms coefficients. Although the…

  2. Analysis of internal conversion coefficients

    PubMed

    Coursol; Gorozhankin; Yakushev; Briancon; Vylov

    2000-03-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z = 30 to Z = 103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10 < or = Z < or = 104, Special Report of Leningrad Nuclear Physics Institute; Rosel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations. PMID:10724406

  3. ICRP dose coefficients: computational development and current status.

    PubMed

    Bolch, W E; Petoussi-Henss, N; Paquet, F; Harrison, J

    2016-06-01

    Major current efforts within Committee 2 of the International Commission on Radiological Protection (ICRP) involve the development of dose coefficients for inhalation and ingestion of radionuclides, and those for exposure to environmental radiation fields. These efforts build upon changes in radiation and tissue weighting factors (Publication 103), radionuclide decay schemes (Publication 107), computational phantoms of the adult reference male and female (Publication 110), external dose coefficients for adult reference workers for idealised radiation fields (Publication 116), models of radionuclide intake (Publications 66, 100 and 130), and models of radionuclide systemic biokinetics (Publication 130). This paper will review the overall computational framework for both internal and external dose coefficients. For internal exposures, the work entails assessment of organ self-dose and cross-dose from monoenergetic particle emissions (specific absorbed fraction), absorbed dose per nuclear transformation (S value), time-integrated activity of the radionuclide in source tissues (inhalation, ingestion, and systemic biokinetic models), and their numerical combination to yield the organ equivalent dose or effective dose per activity inhaled or ingested. Various challenges are reviewed that were not included in the development of Publication 30 dose coefficients, which were based upon much more simplified biokinetic models and computational phantoms. For external exposures, the computations entail the characterisation of environmental radionuclide distributions, the transport of radiation particles through that environment, and the tracking of energy deposition to the organs of the exposed individual. Progress towards the development of dose coefficients to members of the general public (adolescents, children, infants and fetuses) are also reviewed. PMID:27048756

  4. Ratios of internal conversion coefficients

    SciTech Connect

    Raman, S.; Ertugrul, M.; Nestor, C.W. . E-mail: CNestorjr@aol.com; Trzhaskovskaya, M.B.

    2006-03-15

    We present here a database of available experimental ratios of internal conversion coefficients for different atomic subshells measured with an accuracy of 10% or better for a number of elements in the range 26 {<=} Z {<=} 100. The experimental set involves 414 ratios for pure and 1096 ratios for mixed-multipolarity nuclear transitions in the transition energy range from 2 to 2300 keV. We give relevant theoretical ratios calculated in the framework of the Dirac-Fock method with and without regard for the hole in the atomic subshell after conversion. For comparison, the ratios obtained within the relativistic Hartree-Fock-Slater approximation are also presented. In cases where several ratios were measured for the same transition in a given isotope in which two multipolarities were involved, we present the mixing ratio {delta} {sup 2} obtained by a least squares fit.

  5. Personal Dose Equivalent Conversion Coefficients For Photons To 1 GEV

    SciTech Connect

    Veinot, K. G.; Hertel, N. E.

    2010-09-27

    The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H{sub p,slab}(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared to the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on

  6. DCFPAK: Dose coefficient data file package for Sandia National Laboratory

    SciTech Connect

    Eckerman, K.F.; Leggett, R.W.

    1996-07-31

    The FORTRAN-based computer package DCFPAK (Dose Coefficient File Package) has been developed to provide electronic access to the dose coefficient data files summarized in Federal Guidance Reports 11 and 12. DCFPAK also provides access to standard information regarding decay chains and assembles dose coefficients for all dosimetrically significant radioactive progeny of a specified radionuclide. DCFPAK was designed for application on a PC but, with minor modifications, may be implemented on a UNIX workstation.

  7. New calculations of neutron kerma coefficients and dose equivalent.

    PubMed

    Liu, Zhenzhou; Chen, Jinxiang

    2008-06-01

    For neutron energies ranging from 1 keV to 20 MeV, the kerma coefficients for elements H, C, N, O, light water, and ICRU tissue were deduced respectively from microscopic cross sections and Monte Carlo simulation (MCNP code). The results are consistent within admitted uncertainties with values evaluated by an international group (Chadwick et al 1999 Med. Phys. 26 974-91). The ambient dose equivalent generated in the ISO-recommended neutron field for an Am-Be neutron source (ISO 8529-1: 2001(E)) was obtained from the kerma coefficients and Monte Carlo calculation. In addition, it was calculated directly by multiplying the neutron fluence by the fluence-to-ambient dose conversion coefficients recommended by ICRP (ICRP 1996 ICRP Publication 74 (Oxford: Pergamon)). The two results agree well with each other. The main feature of this work is our Monte Carlo simulation design and the treatments differing from the work of others in the calculation of neutron energy transfer in non-elastic processes. PMID:18495982

  8. Personal dose-equivalent conversion coefficients for 1252 radionuclides.

    PubMed

    Otto, Thomas

    2016-01-01

    Dose conversion coefficients for radionuclides are useful for routine calculations in radiation protection in industry, medicine and research. They give a simple and often sufficient estimate of dose rates during production, handling and storage of radionuclide sources, based solely on the source's activity. The latest compilation of such conversion coefficients dates from 20 y ago, based on nuclear decay data published 30 y ago. The present publication provides radionuclide-specific conversion coefficients to personal dose based on the most recent evaluations of nuclear decay data for 1252 radionuclides and fluence-to-dose-equivalent conversion coefficients for monoenergetic radiations. It contains previously unknown conversion coefficients for >400 nuclides and corrects those conversion coefficients that were based on erroneous decay schemes. For the first time, estimates for the protection quantity Hp(3) are included. PMID:25349458

  9. Comparison of fluence-to-dose conversion coefficients for deuterons, tritons and helions.

    PubMed

    Copeland, Kyle; Friedberg, Wallace; Sato, Tatsuhiko; Niita, Koji

    2012-02-01

    Secondary radiation in aircraft and spacecraft includes deuterons, tritons and helions. Two sets of fluence-to-effective dose conversion coefficients for isotropic exposure to these particles were compared: one used the particle and heavy ion transport code system (PHITS) radiation transport code coupled with the International Commission on Radiological Protection (ICRP) reference phantoms (PHITS-ICRP) and the other the Monte Carlo N-Particle eXtended (MCNPX) radiation transport code coupled with modified BodyBuilder™ phantoms (MCNPX-BB). Also, two sets of fluence-to-effective dose equivalent conversion coefficients calculated using the PHITS-ICRP combination were compared: one used quality factors based on linear energy transfer; the other used quality factors based on lineal energy (y). Finally, PHITS-ICRP effective dose coefficients were compared with PHITS-ICRP effective dose equivalent coefficients. The PHITS-ICRP and MCNPX-BB effective dose coefficients were similar, except at high energies, where MCNPX-BB coefficients were higher. For helions, at most energies effective dose coefficients were much greater than effective dose equivalent coefficients. For deuterons and tritons, coefficients were similar when their radiation weighting factor was set to 2. PMID:21474471

  10. Basis and implications of the CAP88 age-specific dose coefficients.

    PubMed

    Leggett, Richard; Scofield, Patricia; Eckerman, Keith

    2013-08-01

    Recent versions of CAP88 incorporate age-specific dose coefficients based on biokinetic and dosimetric models applied in Federal Guidance Report 13, "Cancer Risk Coefficients for Environmental Exposure to Radionuclides." With a few exceptions the models are those recommended in a series of reports by the International Commission on Radiological Protection (ICRP) on estimation of doses to the public from environmental radionuclides. This paper describes the basis for the ICRP's age-specific biokinetic and dosimetric models and examines differences with age in dose coefficients derived from those models. PMID:23803668

  11. Evaluation of Dimensionality in the Assessment of Internal Consistency Reliability: Coefficient Alpha and Omega Coefficients

    ERIC Educational Resources Information Center

    Green, Samuel B.; Yang, Yanyun

    2015-01-01

    In the lead article, Davenport, Davison, Liou, & Love demonstrate the relationship among homogeneity, internal consistency, and coefficient alpha, and also distinguish among them. These distinctions are important because too often coefficient alpha--a reliability coefficient--is interpreted as an index of homogeneity or internal consistency.…

  12. Dirac-Fock Internal Conversion Coefficients

    NASA Astrophysics Data System (ADS)

    Band, I. M.; Trzhaskovskaya, M. B.; Nestor, C. W.; Tikkanen, P. O.; Raman, S.

    2002-05-01

    Internal conversion coefficients (ICCs) obtained from relativistic self-consistent-field Dirac-Fock (DF) calculations are presented. The exchange terms of DF equations are included exactly, both for the interaction between bound electrons and for the interaction between bound and free electrons. Static and dynamic effects resulting from finite nuclear size are taken into account, the latter using the surface current model. Experimental electron-binding energies are used wherever possible. The hole in the atomic shell from which an electron was emitted is not taken into consideration because there is no compelling experimental evidence to warrant it. ICCs are given here for each Z between Z=10 and Z=126; for K, L1, L2, and L3 atomic shells; for nuclear-transition multipolarities E1… E5, M1… M5; and for nuclear-transition energies from ˜1 keV above the L1 threshold to 2000 keV. Also given are the total ICCs. Accurate (≤5%) experimental ICCs ( K and total) are known for 77 transitions with multipolarities E2, M3, E3, M4, or E5. For these transitions, the theoretical DF values are, on average, about 3% lower than the theoretical relativistic Hartree-Fock-Slater (RHFS) values. The DF values are in better agreement with experimental results than the RHFS values.

  13. Organ dose conversion coefficients for pediatric reference computational phantoms in external photon radiation fields

    NASA Astrophysics Data System (ADS)

    Chang, Lienard A.

    In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.

  14. Neutron fluence-to-dose conversion coefficients for embryo and fetus.

    PubMed

    Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus. PMID:15353732

  15. Delimiting Coefficient a from Internal Consistency and Unidimensionality

    ERIC Educational Resources Information Center

    Sijtsma, Klaas

    2015-01-01

    I discuss the contribution by Davenport, Davison, Liou, & Love (2015) in which they relate reliability represented by coefficient a to formal definitions of internal consistency and unidimensionality, both proposed by Cronbach (1951). I argue that coefficient a is a lower bound to reliability and that concepts of internal consistency and…

  16. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  17. Personal dose equivalent conversion coefficients for electrons to 1 Ge V.

    PubMed

    Veinot, K G; Hertel, N E

    2012-04-01

    In a previous paper, conversion coefficients for the personal dose equivalent, H(p)(d), for photons were reported. This note reports values for electrons calculated using similar techniques. The personal dose equivalent is the quantity used to approximate the protection quantity effective dose when performing personal dosemeter calibrations and in practice the personal dose equivalent is determined using a 30×30×15 cm slab-type phantom. Conversion coefficients to 1 GeV have been calculated for H(p)(10), H(p)(3) and H(p)(0.07) in the recommended slab phantom. Although the conversion coefficients were determined for discrete incident energies, analytical fits of the conversion coefficients over the energy range are provided using a similar formulation as in the photon results previously reported. The conversion coefficients for the personal dose equivalent are compared with the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection guidance. Effects of eyewear on H(p)(3) are also discussed. PMID:21715410

  18. A Method for Maximizing the Internal Consistency Coefficient Alpha.

    ERIC Educational Resources Information Center

    Pepin, Michel

    This paper presents three different ways of computing the internal consistency coefficient alpha for a same set of data. The main objective of the paper is the illustration of a method for maximizing coefficient alpha. The maximization of alpha can be achieved with the aid of a principal component analysis. The relation between alpha max. and the…

  19. Applicability of dose conversion coefficients of ICRP 74 to Asian adult males: Monte Carlo simulation study.

    PubMed

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2007-05-01

    International Commission on Radiological Protection (ICRP) reported comprehensive dose conversion coefficients for adult population, which is exposed to external photon sources in the Publication 74. However, those quantities were calculated from so-called stylized (or mathematical) phantoms composed of simplified mathematical surface equations so that the discrepancy between the phantoms and real human anatomy has been investigated by several authors using Caucasian-based voxel phantoms. To address anatomical and racial limitations of the stylized phantoms, several Asian-based voxel phantoms have been developed by Korean and Japanese investigators, independently. In the current study, photon dose conversion coefficients of ICRP 74 were compared with those from a total of five Asian-based male voxel phantoms, whose body dimensions were almost identical. Those of representative radio-sensitive organs (testes, red bone marrow, colon, lungs, and stomach), and effective dose conversion coefficients were obtained for comparison. Even though organ doses for testes, colon and lungs, and effective doses from ICRP 74 agreed well with those from Asian voxel phantoms within 10%, absorbed doses for red bone marrow and stomach showed significant discrepancies up to 30% which was mainly attributed to difference of phantom description between stylized and voxel phantoms. This study showed that the ICRP 74 dosimetry data, which have been reported to be unrealistic compared to those from Caucasian-based voxel phantoms, are also not appropriate for Asian population. PMID:17337194

  20. Dose conversion coefficients for electron exposure of the human eye lens.

    PubMed

    Behrens, R; Dietze, G; Zankl, M

    2009-07-01

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity H(p)(0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity H(p)(3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0 degrees and 45 degrees are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy. PMID:19502705

  1. Practical applications of internal dose calculations

    SciTech Connect

    Carbaugh, E.H.

    1994-06-01

    Accurate estimates of intake magnitude and internal dose are the goal for any assessment of an actual intake of radioactivity. When only one datum is available on which to base estimates, the choices for internal dose assessment become straight-forward: apply the appropriate retention or excretion function, calculate the intake, and calculate the dose. The difficulty comes when multiple data and different types of data become available. Then practical decisions must be made on how to interpret conflicting data, or how to adjust the assumptions and techniques underlying internal dose assessments to give results consistent with the data. This article describes nine types of adjustments which can be incorporated into calculations of intake and internal dose, and then offers several practical insights to dealing with some real-world internal dose puzzles.

  2. Personal dose equivalent conversion coefficients for photons to 1 GeV.

    PubMed

    Veinot, K G; Hertel, N E

    2011-04-01

    The personal dose equivalent, H(p)(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity effective dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk, where personal dosemeters are usually worn, and in this instance a suitable approximation is a 30 × 30 × 15 cm(3) slab-type phantom. For this condition, the personal dose equivalent is denoted as H(p,slab)(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several megaelectronvolts, however, data to higher energies are limited. In this work, conversion coefficients up to 1 GeV have been calculated for H(p,slab)(10) and H(p,slab)(3) both by using the kerma approximation and tracking secondary charged particles. For H(p)(0.07), the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H(p,slab)(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom, conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared with the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological

  3. Radiation impact on spaceborne optics: the dose coefficients approach

    NASA Astrophysics Data System (ADS)

    Fruit, Michel; Gusarov, Andrei I.; Doyle, Dominic B.; Ulbrich, Gerd J.

    1999-12-01

    During the past 30 years of development of Space optical instrumentation for such missions as METEOSAT, SPOT, HIPPARCOS and SILEX with ESA and CNES, Matra Marcon Space (MMS) has conducted extensive studies on the behavior of optical materials under irradiation such as quantifying transmission losses in optical glasses and measuring the dimensional stability of Zerodur as a substrate for mirror applications. Thanks to this background experience, MMS, in cooperation with SCK-CEN, is conducting a study (under ESA sponsorship) to define the approach for the gathering of a comprehensive data base to quantify these effects through the use of linear sensitivity coefficients (so-called `Dose Coefficients'). This follows recent investigations which have shown that the space radiation environment can affect not only transmission but also other characteristics of refractive optical materials in both classical and Cerium doped glasses. A number of selected examples from specific MMS studies will first be shown. Then, the actual approach being taken to this problem, on the basis of already obtained results from preliminary experiments performed by ESTEC, will be presented.

  4. INTERNAL CONVERSION COEFFICIENTS - HOW GOOD ARE THEY NOW?

    SciTech Connect

    KIBEDI,T.; BURROWS, T.W.; TRZHASKOVSKAYA, M.B.; NESTOR, JR., C.W.; DAVIDSON, P.M.

    2007-04-22

    Internal conversion coefficients involving atomic electrons (ICC) and electron-positron pairs (IPC) are often required to determine transition multipolarities and total transition rates. A new internal conversion coefficient data base, BrIcc has been developed which integrates a number of tabulations on ICC and IPC, as well as {Omega}(E0) electronic factors. To decide which theoretical internal conversion coefficient table to use, the accurately determined experimental {alpha}{sub K}, {alpha}{sub L}, {alpha}{sub Total} and {alpha}{sub K}/{alpha}{sub L} values were compared with the new Dirac-Fock calculations using extreme assumptions on the effect of the atomic vacancy. While the overall difference between experiment and theory is less than 1%, our analysis shows preference towards the so called ''Frozen Orbital'' approximation, which takes into account the effect of the atomic vacancy.

  5. Overview of the ICRP/ICRU adult reference computational phantoms and dose conversion coefficients for external idealised exposures.

    PubMed

    Endo, Akira; Petoussi-Henss, Nina; Zankl, Maria; Bolch, Wesley E; Eckerman, Keith F; Hertel, Nolan E; Hunt, John G; Pelliccioni, Maurizio; Schlattl, Helmut; Menzel, Hans-Georg

    2014-10-01

    This paper reviews the ICRP Publications 110 and 116 describing the reference computational phantoms and dose conversion coefficients for external exposures. The International Commission on Radiological Protection (ICRP) in its 2007 Recommendations made several revisions to the methods of calculation of the protection quantities. In order to implement these recommendations, the DOCAL task group of the ICRP developed computational phantoms representing the reference adult male and female and then calculated a set of dose conversion coefficients for various types of idealised external exposures. This paper focuses on the dose conversion coefficients for neutrons and investigates their relationship with the conversion coefficients of the protection and operational quantities of ICRP Publication 74. Contributing factors to the differences between these sets of conversion coefficients are discussed in terms of the changes in phantoms employed and the radiation and tissue weighting factors. PMID:24285286

  6. Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons.

    PubMed

    Veinot, K G; Eckerman, K F; Hertel, N E

    2016-02-01

    With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above ∼30 MeV the cranial and caudal values are greater. PMID:25935016

  7. Dose conversion coefficients for photon exposure of the human eye lens.

    PubMed

    Behrens, R; Dietze, G

    2011-01-21

    In recent years, several papers dealing with the eye lens dose have been published, because epidemiological studies implied that the induction of cataracts occurs even at eye lens doses of less than 500 mGy. Different questions were addressed: Which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens? Is a new definition of the dose quantity H(p)(3) based on a cylinder phantom to represent the human head necessary? Are current conversion coefficients from fluence to equivalent dose to the lens sufficiently accurate? To investigate the latter question, a realistic model of the eye including the inner structure of the lens was developed. Using this eye model, conversion coefficients for electrons have already been presented. In this paper, the same eye model-with the addition of the whole body-was used to calculate conversion coefficients from fluence (and air kerma) to equivalent dose to the lens for photon radiation from 5 keV to 10 MeV. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are similar between 40 keV and 1 MeV and lower by up to a factor of 5 and 7 for photon energies at about 10 keV and 10 MeV, respectively. Above 1 MeV, the new values (calculated without kerma approximation) should be applied in pure photon radiation fields, while the values adopted by the ICRP in 1996 (calculated with kerma approximation) should be applied in case a significant contribution from secondary electrons originating outside the body is present. PMID:21178237

  8. Dose conversion coefficients based on the Chinese mathematical phantom and MCNP code for external photon irradiation.

    PubMed

    Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li

    2009-02-01

    A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface. PMID:19376886

  9. Development of Monte Carlo simulations to provide scanner-specific organ dose coefficients for contemporary CT.

    PubMed

    Jansen, Jan T M; Shrimpton, Paul C

    2016-07-21

    The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990's. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of  ±6% and  ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10's of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners. PMID:27362736

  10. Development of Monte Carlo simulations to provide scanner-specific organ dose coefficients for contemporary CT

    NASA Astrophysics Data System (ADS)

    Jansen, Jan T. M.; Shrimpton, Paul C.

    2016-07-01

    The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990’s. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of  ±6% and  ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10’s of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.

  11. Dose conversion coefficients for ICRP110 voxel phantom in the Geant4 Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Martins, M. C.; Cordeiro, T. P. V.; Silva, A. X.; Souza-Santos, D.; Queiroz-Filho, P. P.; Hunt, J. G.

    2014-02-01

    The reference adult male voxel phantom recommended by International Commission on Radiological Protection no. 110 was implemented in the Geant4 Monte Carlo code. Geant4 was used to calculate Dose Conversion Coefficients (DCCs) expressed as dose deposited in organs per air kerma for photons, electrons and neutrons in the Annals of the ICRP. In this work the AP and PA irradiation geometries of the ICRP male phantom were simulated for the purpose of benchmarking the Geant4 code. Monoenergetic photons were simulated between 15 keV and 10 MeV and the results were compared with ICRP 110, the VMC Monte Carlo code and the literature data available, presenting a good agreement.

  12. Foetal dose conversion coefficients for ICRP-compliant pregnant models from idealised proton exposures.

    PubMed

    Taranenko, Valery; Xu, X George

    2009-01-01

    Protection of pregnant women and their foetus against external proton irradiations poses a unique challenge. Assessment of foetal dose due to external protons in galactic cosmic rays and as secondaries generated in aircraft walls is especially important during high-altitude flights. This paper reports a set of fluence to absorbed dose conversion coefficients for the foetus and its brain for external monoenergetic proton beams of six standard configurations (the antero-posterior, the postero-anterior, the right lateral, the left lateral, the rotational and the isotropic). The pregnant female anatomical definitions at each of the three gestational periods (3, 6 and 9 months) are based on newly developed RPI-P series of models whose organ masses were matched within 1% with the International Commission on Radiological Protection reference values. Proton interactions and the transport of secondary particles were carefully simulated using the Monte Carlo N-Particle eXtended code (MCNPX) and the phantoms consisting of several million voxels at 3 mm resolution. When choosing the physics models in the MCNPX, it was found that the advanced Cascade-Exciton intranuclear cascade model showed a maximum of 9% foetal dose increase compared with the default model combination at intermediate energies below 5 GeV. Foetal dose results from this study are tabulated and compared with previously published data that were based on simplified anatomy. The comparison showed a strong dependence upon the source geometry, energy and gestation period: the dose differences are typically less than 20% for all sources except ISO where systematically 40-80% of higher doses were observed. Below 200 MeV, a larger discrepancy in dose was found due to the Bragg peak shift caused by different anatomy. The tabulated foetal doses represent the latest and most detailed study to date offering a useful set of data to improve radiation protection dosimetry against external protons. PMID:19246483

  13. Respirators, internal dose, and Oyster Creek

    SciTech Connect

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}

  14. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures

    NASA Astrophysics Data System (ADS)

    Schlattl, H.; Zankl, M.; Petoussi-Henss, N.

    2007-04-01

    A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360° rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%.

  15. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures.

    PubMed

    Schlattl, H; Zankl, M; Petoussi-Henss, N

    2007-04-21

    A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360 degrees rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%. PMID:17404459

  16. LINKING EXPOSURES TO INTERNAL DOSES USING BIOMARKERS

    EPA Science Inventory

    Biomonitoring is a useful tool to help assess human exposures/internal doses to chemicals in the environment. This research contributes to EPA's mission to protect human health by understanding what chemicals people are exposed to in their daily environments. In this task, we wil...

  17. Internal Conversion Coefficients for Low-Energy Nuclear Transitions

    NASA Astrophysics Data System (ADS)

    Band, I. M.; Trzhaskovskaya, M. B.

    1993-09-01

    Presented here are calculated internal conversion coefficients (ICCs) of gamma rays for 35 observed low-energy nuclear transitions having Eγ ≲ 3 keV. Additionally, the ICCs for 24 high-multipole-order transitions which have been measured extensively are also given. The ICC calculations have been performed using Dirac-Fock electron wave functions, the exchange terms of the Dirac-Fock equations being included wthout any approximations both for the interaction between bound electrons and the interaction between bound and free electrons. Our previous studies have shown that the Dirac-Fock method allows ICC values to be obtained in best agreement with experimental data.

  18. Evaluation of dose conversion coefficients for external exposure using Taiwanese reference man and woman.

    PubMed

    Chang, S J; Hung, S Y; Liu, Y L; Jiang, S H; Wu, J

    2015-11-01

    Reference man has been widely used for external and internal dose evaluation of radiation protection. The parameters of the mathematical model of organs suggested by the International Commission of Radiological Protection (ICRP) are adopted from the average data of Caucasians. However, the organ masses of Asians are significantly different from the data of Caucasians, leading to potentially dosimetric errors. In this study, a total of 40 volunteers whose heights and weights corresponded to the statistical average of Taiwanese adults were recruited. Magnetic resonance imaging was performed, and T2-weighted images were acquired. The Taiwanese reference man and woman were constructed according to the measured organ masses. The dose conversion coefficients (DCFs) for anterior-posterior (AP), posterior-anterior (PA), right lateral (RLAT) and left lateral (LLAT) irradiation geometries were simulated. For the Taiwanese reference man, the average differences of the DCFs compared with the results of ICRP-74 were 7.6, 5.1 and 11.1 % for 0.1, 1 and 10 MeV photons irradiated in the AP direction. The maximum difference reached 51.7 % for the testes irradiated by 10 MeV photons. The size of the trunk, the volume and the geometric position of organs can cause a significant impact on the DCFs for external exposure of radiation. The constructed Taiwanese reference man and woman can be used in radiation protection to increase the accuracy of dose evaluation for the Taiwanese population. PMID:25944957

  19. Photon extremity absorbed dose and kerma conversion coefficients for calibration geometries.

    PubMed

    Veinot, K G; Hertel, N E

    2007-02-01

    Absorbed dose and dose equivalent conversion coefficients are routinely used in personnel dosimetry programs. These conversion coefficients can be applied to particle fluences or to measured air kerma values to determine appropriate operational monitoring quantities such as the ambient dose equivalent or personal dose equivalent for a specific geometry. For personnel directly handling materials, the absorbed dose to the extremities is of concern. This work presents photon conversion coefficients for two extremity calibration geometries using finger and wrist/arm phantoms described in HPS N13.32. These conversion coefficients have been calculated as a function of photon energy in terms of the kerma and the absorbed dose using Monte Carlo techniques and the calibration geometries specified in HPS N13.32. Additionally, kerma and absorbed dose conversion coefficients for commonly used x-ray spectra and calibration source fields are presented. The kerma values calculated in this work for the x-ray spectra and calibration sources compare well to those listed in HPS N13.32. The absorbed dose values, however, differ significantly for higher energy photons because charged particle equilibrium conditions have not been satisfied for the shallow depth. Thus, the air-kerma-to-dose and exposure-to-dose conversion coefficients for Cs and Co listed in HPS N13.32 overestimate the absorbed dose to the extremities. Applying the conversion coefficients listed in HPS N13.32 for Cs, for example, would result in an overestimate of absorbed dose of 62% for the finger phantom and 55% for the wrist phantom. PMID:17220720

  20. ICRP Publication 119: Compendium of dose coefficients based on ICRP Publication 60.

    PubMed

    Eckerman, K; Harrison, J; Menzel, H-G; Clement, C H

    2012-01-01

    This report is a compilation of dose coefficients for intakes of radionuclides by workers and members of the public, and conversion coefficients for use in occupational radiological protection against external radiation from Publications 68, 72, and 74 (ICRP, 1994b, 1996a,b). It serves as a comprehensive reference for dose coefficients based on the primary radiation protection guidance given in the Publication 60 recommendations (ICRP, 1991). The coefficients tabulated in this publication will be superseded in due course by values based on the Publication 103 recommendations (ICRP, 2007). PMID:23025851

  1. Calculation of dose coefficients for radionuclides produced in a spallation neutron source utilizing NUBASE and the evaluated nuclear structure data file databases.

    PubMed

    Shanahan, J; Eckerman, K; Arndt, A; Gold, C; Patton, P; Rudin, M; Brey, R; Gesell, T; Rusetski, V; Pagava, S

    2006-01-01

    Based on a mercury spallation neutron source target, the UNLV Transmutation Research Program has identified 72 radionuclides with a half-life greater than or equal to a minute as lacking an appropriate reference for a published dose coefficient according to existing radiation safety dose coefficient databases. A method was developed to compare the nuclear data presented in the ENSDF and NUBASE databases for these 72 radionuclides. Due to conflicting or lacking nuclear data in one or more of the databases, internal and external dose coefficient values have been calculated for only 14 radionuclides, which are not currently presented in Federal Guidance Reports Nos. 11, 12, and 13 or Publications 68 and 72 of the International Commission on Radiological Protection. Internal dose coefficient values are reported for inhalation and ingestion of 1 microm and 5 microm AMAD particulates along with the f1 values and absorption types for the adult worker. Internal dose coefficient values are also reported for inhalation and ingestion of 1 microm AMAD particulates as well as the f1 values and absorption types for members of the public. Additionally, external dose coefficient values for air submersion, exposure to contaminated ground surface, and exposure to soil contaminated to an infinite depth are also presented. PMID:16340608

  2. Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey.

    PubMed

    Damla, N; Cevik, U; Kobya, A I; Celik, A; Celik, N; Van Grieken, R

    2010-04-15

    Different cement samples commonly used in building construction in Turkey have been analyzed for natural radioactivity using gamma-ray spectrometry. The mean activity concentrations observed in the cement samples were 52, 40 and 324 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and world average limits. The radiological hazard parameters such as radium equivalent activities (Ra(eq)), gamma index (I(gamma)) and alpha index (I(alpha)) indices as well as terrestrial absorbed dose and annual effective dose rate were calculated and compared with the international data. The Ra(eq) values of cement are lower than the limit of 370 Bq kg(-1), equivalent to a gamma dose of 1.5 mSv y(-1). Moreover, the mass attenuation coefficients were determined experimentally and calculated theoretically using XCOM in some cement samples. Also, chemical compositions analyses of the cement samples were investigated. PMID:20018450

  3. Organ dose conversion coefficients for tube current modulated CT protocols for an adult population

    NASA Astrophysics Data System (ADS)

    Fu, Wanyi; Tian, Xiaoyu; Sahbaee, Pooyan; Zhang, Yakun; Segars, William Paul; Samei, Ehsan

    2016-03-01

    In computed tomography (CT), patient-specific organ dose can be estimated using pre-calculated organ dose conversion coefficients (organ dose normalized by CTDIvol, h factor) database, taking into account patient size and scan coverage. The conversion coefficients have been previously estimated for routine body protocol classes, grouped by scan coverage, across an adult population for fixed tube current modulated CT. The coefficients, however, do not include the widely utilized tube current (mA) modulation scheme, which significantly impacts organ dose. This study aims to extend the h factors and the corresponding dose length product (DLP) to create effective dose conversion coefficients (k factor) database incorporating various tube current modulation strengths. Fifty-eight extended cardiac-torso (XCAT) phantoms were included in this study representing population anatomy variation in clinical practice. Four mA profiles, representing weak to strong mA dependency on body attenuation, were generated for each phantom and protocol class. A validated Monte Carlo program was used to simulate the organ dose. The organ dose and effective dose was further normalized by CTDIvol and DLP to derive the h factors and k factors, respectively. The h factors and k factors were summarized in an exponential regression model as a function of body size. Such a population-based mathematical model can provide a comprehensive organ dose estimation given body size and CTDIvol. The model was integrated into an iPhone app XCATdose version 2, enhancing the 1st version based upon fixed tube current modulation. With the organ dose calculator, physicists, physicians, and patients can conveniently estimate organ dose.

  4. Internal conversion coefficients of high multipole transitions: Experiment and theories

    NASA Astrophysics Data System (ADS)

    Gerl, J.; Vijay Sai, K.; Sainath, M.; Gowrishankar, R.; Venkataramaniah, K.

    2008-09-01

    A compilation of the available experimental internal conversion coefficients (ICCs), αT, αK, αL, and ratios K/L and K/LM of high multipole ( L > 2) transitions for a number of elements in the range 21 ⩽ Z ⩽ 94 is presented. Our listing of experimental data includes 194 data sets on 110 E3 transitions, 10 data sets on 6 E4 transitions, 11 data sets on 7 E5 transitions, 38 data sets on 21 M3 transitions, and 132 data sets on 68 M4 transitions. Data with less than 10% experimental uncertainty have been selected for comparison with the theoretical values of Hager and Seltzer [R.S. Hager, E.C. Seltzer, Nucl. Data Tables A 4 (1968) 1], Rosel et al. [F. Rösel, H.M. Fries, K. Alder, H.C. Pauli, At. Data Nucl. Data Tables 21 (1978) 91], and BRICC. The relative percentage deviations (%Δ) have been calculated for each of the above theories and the averages (%Δ¯) are estimated. The Band et al. [I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor Jr., P.O. Tikkanen, S. Raman, At. Data Nucl. Data Tables 81 (2002) 1] tables, using the BRICC interpolation code, are seen to give theoretical ICCs closest to experimental values.

  5. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-03-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852

  6. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model

    PubMed Central

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-01-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852

  7. Critical Dose of Internal Organs Internal Exposure - 13471

    SciTech Connect

    Grigoryan, G.; Amirjanyan, A.; Grigoryan, N.

    2013-07-01

    The health threat posed by radionuclides has stimulated increased efforts to developed characterization on the biological behavior of radionuclides in humans in all ages. In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is assembling a set of age specific biokinetic models for environmentally important radioelements. Radioactive substances in the air, mainly through the respiratory system and digestive tract, is inside the body. Radioactive substances are unevenly distributed in various organs and tissues. Therefore, the degree of damage will depend not only on the dose of radiation have but also on the critical organ, which is the most accumulation of radioactive substances, which leads to the defeat of the entire human body. The main objective of radiation protection, to avoid exceeding the maximum permissible doses of external and internal exposure of a person to prevent the physical and genetic damage people. The maximum tolerated dose (MTD) of radiation is called a dose of radiation a person in uniform getting her for 50 years does not cause changes in the health of the exposed individual and his progeny. The following classification of critical organs, depending on the category of exposure on their degree of sensitivity to radiation: First group: the whole body, gonads and red bone marrow; Second group: muscle, fat, liver, kidney, spleen, gastrointestinal tract, lungs and lens of the eye; The third group: bone, thyroid and skin; Fourth group: the hands, forearms, feet. MTD exposure whole body, gonads and bone marrow represent the maximum exposures (5 rem per year) experienced by people in their normal activities. The purpose of this article is intended dose received from various internal organs of the radionuclides that may enter the body by inhalation, and gastrointestinal tract. The biokinetic model describes the time dependent distribution and excretion of different

  8. Daily radionuclide ingestion and internal radiation doses in Aomori prefecture, Japan.

    PubMed

    Ohtsuka, Yoshihito; Kakiuchi, Hideki; Akata, Naofumi; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2013-10-01

    To assess internal annual dose in the general public in Aomori Prefecture, Japan, 80 duplicate cooked diet samples, equivalent to the food consumed over a 400-d period by one person, were collected from 100 volunteers in Aomori City and the village of Rokkasho during 2006–2010 and were analyzed for 11 radionuclides. To obtain average rates of ingestion of radionuclides, the volunteers were selected from among office, fisheries, agricultural, and livestock farm workers. Committed effective doses from ingestion of the diet over a 1-y period were calculated from the analytical results and from International Commission on Radiological Protection dose coefficients; for 40K, an internal effective dose rate from the literature was used. Fisheries workers had significantly higher combined internal annual dose than the other workers, possibly because of high rates of ingestion of marine products known to have high 210Po concentrations. The average internal dose rate, weighted by the numbers of households in each worker group in Aomori Prefecture, was estimated at 0.47 mSv y-1. Polonium-210 contributed 49% of this value. The sum of committed effective dose rates for 210Po, 210Pb, 228Ra, and 14C and the effective dose rate of 40K accounted for approximately 99% of the average internal dose rate. PMID:23982610

  9. Solid cancer risk coefficient for fast neutrons in terms of effective dose.

    PubMed

    Kellerer, Albrecht M; Walsh, Linda

    2002-07-01

    Cancer mortality risk coefficients for neutrons have recently been assessed by a procedure that postulates for the neutrons a linear dose dependence, invokes the excess risk of the A-bomb survivors at a gamma-ray dose D(1) of 1 Gy, and assumes a neutron RBE as a function of D(1) between 20 and 50. The excess relative risk (ERR) of 0.008/mGy has been obtained for R(1) = 20 and 0.016/mGy for R(1) = 50. To compare these results to the current ICRP nominal risk coefficient for solid cancer mortality (0.045/Sv for a population of all ages; 0.036/Sv for a working population), the ERR is translated into lifetime attributable risk and is then related to effective dose. The conversion is not trivial, because the neutron effective dose has been defined by ICRP not as a weighted genuine neutron dose (neutron kerma), but as a weighted dose that includes the dose from gamma rays that are induced by neutrons in the body. If this is accounted for, the solid cancer mortality risk for a working population is found to agree with the ICRP nominal risk coefficient for neutrons in their most effective energy range, 0.2 MeV to 0.5 MeV. In radiation protection practice, there is an added level of safety, because the effective dose, E, is-for monitoring purposes-assessed in terms of the operational quantity H*, which overestimates E substantially for neutrons between 0.01 MeV and 2 MeV. PMID:12071804

  10. Ingestion of Nevada Test Site fallout: internal dose estimates.

    PubMed

    Whicker, F W; Kirchner, T B; Anspaugh, L R; Ng, Y C

    1996-10-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a very few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. 131I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (< 3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided. PMID:8830749

  11. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    SciTech Connect

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-10-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. {sup 131}I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided.

  12. Impact of the new nuclear decay data of ICRP publication 107 on inhalation dose coefficients for workers

    SciTech Connect

    Manabe, K.; Endo, Akira; Eckerman, Keith F

    2010-03-01

    The impact a revision of nuclear decay data had on dose coefficients was studied using data newly published in ICRP Publication 107 (ICRP 107) and existing data from ICRP Publication 38 (ICRP 38). Committed effective dose coefficients for occupational inhalation of radionuclides were calculated using two sets of decay data with the dose and risk calculation software DCAL for 90 elements, 774 nuclides and 1572 cases. The dose coefficients based on ICRP 107 increased by over 10 % compared with those based on ICRP 38 in 98 cases, and decreased by over 10 % in 54 cases. It was found that the differences in dose coefficients mainly originated from changes in the radiation energy emitted per nuclear transformation. In addition, revisions of the half-lives, radiation types and decay modes also resulted in changes in the dose coefficients.

  13. Dosimetric models of the eye and lens of the eye and their use in assessing dose coefficients for ocular exposures.

    PubMed

    Bolch, W E; Dietze, G; Petoussi-Henss, N; Zankl, M

    2015-06-01

    Based upon recent epidemiological studies of ocular exposure, the Main Commission of the International Commission on Radiological Protection (ICRP) in ICRP Publication 118 states that the threshold dose for radiation-induced cataracts is now considered to be approximately 0.5 Gy for both acute and fractionated exposures. Consequently, a reduction was also recommended for the occupational annual equivalent dose to the lens of the eye from 150 mSv to 20 mSv, averaged over defined periods of 5 years. To support ocular dose assessment and optimisation, Committee 2 included Annex F within ICRP Publication 116 . Annex F provides dose coefficients - absorbed dose per particle fluence - for photon, electron, and neutron irradiation of the eye and lens of the eye using two dosimetric models. The first approach uses the reference adult male and female voxel phantoms of ICRP Publication 110. The second approach uses the stylised eye model of Behrens et al., which itself is based on ocular dimensional data given in Charles and Brown. This article will review the data and models of Annex F with particular emphasis on how these models treat tissue regions thought to be associated with stem cells at risk. PMID:25816263

  14. Mortality risk coefficients for radiation-induced cancer at high doses and dose-rates, and extrapolation to the low dose domain.

    PubMed

    Liniecki, J

    1989-01-01

    Risk coefficients for life-long excessive mortality due to radiation-induced cancers are presented, as derived in 1988 by the U.N. Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), principally on the basis of follow-up from A-bomb survivors in Japan, over the period from 1950 through 1985. The data are based on the new, revised dosimetry (DS 86) in the two cities, and reflect the effects of high and intermediate doses of basically low LET radiation delivered instantaneously. The author presents arguments relevant to the extrapolation of the risk to the low dose (dose rate) domain, as outlined by UNSCEAR in its 1986, and the NCRP (USA) in its 1980, (no 64), reports. The arguments are based on models and dose-response relationships for radiation action, derived from data on cellular radiobiology, animal experiments on radiation-induced cancers and life shortening, as well as the available limited human epidemiological evidence. The available information points to the lower effectiveness of sparsely ionizing radiation at low doses and low dose-rates, as compared with that observed for high, acutely delivered doses. The possible range of the reduction values (DREF) is presented. For high LET radiations, the evidence is less extensive and sometimes contradictory; however, it does not point to a reduction of the effectiveness at low doses/dose-rates, relative to the high dose domain. Practical consequences of these facts are considered. PMID:2489419

  15. Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Paulson, Erik K.; Samei, Ehsan

    2013-12-01

    Recent studies have shown the feasibility of estimating patient dose from a CT exam using CTDIvol-normalized-organ dose (denoted as h), DLP-normalized-effective dose (denoted as k), and DLP-normalized-risk index (denoted as q). However, previous studies were limited to a small number of phantom models. The purpose of this work was to provide dose coefficients (h, k, and q) across a large number of computational models covering a broad range of patient anatomy, age, size percentile, and gender. The study consisted of 100 patient computer models (age range, 0 to 78 y.o.; weight range, 2-180 kg) including 42 pediatric models (age range, 0 to 16 y.o.; weight range, 2-80 kg) and 58 adult models (age range, 18 to 78 y.o.; weight range, 57-180 kg). Multi-detector array CT scanners from two commercial manufacturers (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare) were included. A previously-validated Monte Carlo program was used to simulate organ dose for each patient model and each scanner, from which h, k, and q were derived. The relationships between h, k, and q and patient characteristics (size, age, and gender) were ascertained. The differences in conversion coefficients across the scanners were further characterized. CTDIvol-normalized-organ dose (h) showed an exponential decrease with increasing patient size. For organs within the image coverage, the average differences of h across scanners were less than 15%. That value increased to 29% for organs on the periphery or outside the image coverage, and to 8% for distributed organs, respectively. The DLP-normalized-effective dose (k) decreased exponentially with increasing patient size. For a given gender, the DLP-normalized-risk index (q) showed an exponential decrease with both increasing patient size and patient age. The average differences in k and q across scanners were 8% and 10%, respectively. This study demonstrated that the knowledge of patient information and CTDIvol/DLP values may

  16. Photon fluence-to-effective dose conversion coefficients calculated from a Saudi population-based phantom

    NASA Astrophysics Data System (ADS)

    Ma, A. K.; Altaher, K.; Hussein, M. A.; Amer, M.; Farid, K. Y.; Alghamdi, A. A.

    2014-02-01

    In this work we will present a new set of photon fluence-to-effective dose conversion coefficients using the Saudi population-based voxel phantom developed recently by our group. The phantom corresponds to an average Saudi male of 173 cm tall weighing 77 kg. There are over 125 million voxels in the phantom each of which is 1.37×1.37×1.00 mm3. Of the 27 organs and tissues of radiological interest specified in the recommendations of ICRP Publication 103, all but the oral mucosa, extrathoracic tissue and the lymph nodes were identified in the current version of the phantom. The bone surface (endosteum) is too thin to be identifiable; it is about 10 μm thick. The dose to the endosteum was therefore approximated by the dose to the bones. Irradiation geometries included anterior-posterior (AP), left (LLAT) and rotational (ROT). The simulations were carried out with the MCNPX code version 2.5.0. The fluence in free air and the energy depositions in each organ were calculated for monoenergetic photon beams from 10 keV to 10 MeV to obtain the conversion coefficients. The radiation and tissue weighting factors were taken from ICRP Publication 60 and 103. The results from this study will also be compared with the conversion coefficients in ICRP Publication 116.

  17. Organ dose conversion coefficients for external photon irradiation using the Chinese voxel phantom (CVP).

    PubMed

    Li, Junli; Qiu, Rui; Zhang, Zhan; Liu, Liye; Zeng, Zhi; Bi, Lei; Li, Wenqian

    2009-07-01

    A set of conversion coefficients from kerma free-in-air to the organ absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on a whole-body, Chinese adult male voxel phantom. This computational phantom, called the Chinese voxel phantom (CVP), including totally 23 organs, was developed from magnetic resonance imaging of a young healthy Chinese man at a resolution of 2 x 2 mm. Compared with the ICRP Reference Man, more than half of the organs or tissues in the CVP show mass differences of more than 20. Monte Carlo simulations with MCNP code were carried out to calculate the organ dose conversion coefficients. Irradiation conditions include anterior-posterior, posterior-anterior (PA), right-lateral, left-lateral, rotational and isotropic geometries. Organ dose conversion coefficients from this study are compared with the data from the Asian voxel phantoms Visible Chinese Human and KORMAN. These data sets agree with each other within 10% for photon energy >5 MeV. However, discrepancies of 34-63% were observed for organs of the alimentary tract, such as the oesophagus and stomach, those of the urinary system, such as the bladder wall and thyroid, especially at low photon energy range and PA geometry. These results suggest that the anatomical variation within the Chinese population, as represented by these adult male voxel phantoms, can lead to uncertainties when a standard phantom is used for the entire population. PMID:19457976

  18. The neutron dose conversion coefficients calculation in human tooth enamel in an anthropomorphic phantom.

    PubMed

    Khailov, A M; Ivannikov, A I; Skvortsov, V G; Stepanenko, V F; Tsyb, A F; Trompier, F; Hoshi, M

    2010-02-01

    In the present study, MCNP4B simulation code is used to simulate neutron and photon transport. It gives the conversion coefficients that relate neutron fluence to the dose in tooth enamel (molars and pre-molars only) for 20 energy groups of monoenergetic neutrons with energies from 10-9 to 20 MeV for five different irradiation geometries. The data presented are intended to provide the basis for connection between EPR dose values and standard protection quantities defined in ICRP Publication 74. The results of the calculations for critical organs were found to be consistent with ICRP data, with discrepancies generally less than 10% for the fast neutrons. The absorbed dose in enamel was found to depend strongly on the incident neutron energy for neutrons over 10 keV. The dependence of the data on the irradiation geometry is also shown. Lower bound estimates of enamel radiation sensitivity to neutrons were made using obtained coefficients for the secondary photons. Depending on neutron energy, tooth enamel was shown to register 10-120% of the total neutron dose in the human body in the case of pure neutron exposure and AP irradiation geometry. PMID:20065707

  19. On the use of age-specific effective dose coefficients in radiation protection of the public

    SciTech Connect

    Kocher, D.C.; Eckerman, K.F.

    1998-11-01

    Current radiation protection standards for the public include a limit on effective dose in any year for individuals in critical groups. This paper considers the question of how the annual dose limit should be applied in controlling routine exposures of populations consisting of individuals of all ages. The authors assume that the fundamental objective of radiation protection is limitation of lifetime risk and, therefore, that standards for controlling routine exposures of the public should provide a reasonable correspondence with lifetime risk, taking into account the age dependence of intakes and doses and the variety of radionuclides and exposure pathways of concern. Using new calculations of the per capita (population-averaged) risk of cancer mortality per unit activity inhaled or ingested in the US Environmental Protection Agency`s Federal Guidance Report No. 13, the authors show that applying a limit on annual effective dose only to adults, which was the usual practice in radiation protection of the public before the development of age-specific effective dose coefficients, provides a considerably better correspondence with lifetime risk than applying the annual dose limit to the critical group of any age.

  20. Dose coefficients and derived guidance and clinical decision levels for contaminated wounds

    SciTech Connect

    Bertelli, Luiz; Toohey, Richard E

    2009-01-01

    The NCRP Wound Model describing the retention of selected radionuclides at the site of a contaminated wound and their uptake into the transfer compartment has been combined with the ICRP element-specific systemic models for those radionuclides to derive dose coefficients for intakes via contaminated wounds. Those coefficients have been used to generate derived guidance levels (i.e., the activity in a wound that would result in an effective dose of 20 or 50 mSv, or in some cases, a committed organ equivalent dose of 500 mSv), and clinical decision levels (i.e., activity levels that would indicate the need for consideration of medical intervention to remove activity from the wound site or administration of decorporation therapy or both), typically set at 5 times the derived guidance levels. Data are provided for the radionuclides commonly encountered at nuclear power plants and nuclear weapons, fuel fabrication or recycling, waste disposal, medical and research facilities. These include: {sup 60}Co, {sup 90}Sr, {sup 99m}Tc, {sup 131}I, {sup 137}Cs, {sup 192}Ir, {sup 210}Po, {sup 226,228}Ra, {sup 228,232}Th, {sup 235,238}U, {sup 237}Np, {sup 238,239}Pu, {sup 241}Am, {sup 242,244}Cm, and {sup 252}Cf.

  1. Optimised geometry to calculate dose rate conversion coefficient for external exposure to photons.

    PubMed

    Askri, B; Manai, K; Trabelsi, A; Baccari, B

    2008-01-01

    A single-parameter geometry to describe soil is achieved for Monte Carlo calculation of absorbed dose rate in air for photon emitters from natural radionuclides. This optimised geometry based on physical assumptions consists of the soil part whose emitted radiation has a given minimum probability to reach the detector. This geometry was implemented in Geant4 toolkit and a significant reduction in computation time was achieved. Simulation tests have shown that for soil represented by a cylinder of 40 m radius and 1 m deep, >98% of the calculated dose rate conversion coefficients in air at 1 m above the ground is generated by only 6% of the soil volume in the case of uniform distribution of radioactivity, and >99.2% of the calculated dose rate for an exponential distribution. When the soil is represented by the entire optimised geometry, 99% of the conversion coefficients values are reached for a soil depth of 1 m and 100% for that of approximately 2 m. PMID:17959610

  2. Uncertainty of inhalation dose coefficients for representative physical and chemical forms of iodine-131

    NASA Astrophysics Data System (ADS)

    Harvey, Richard Paul, III

    Releases of radioactive material have occurred at various Department of Energy (DOE) weapons facilities and facilities associated with the nuclear fuel cycle in the generation of electricity. Many different radionuclides have been released to the environment with resulting exposure of the population to these various sources of radioactivity. Radioiodine has been released from a number of these facilities and is a potential public health concern due to its physical and biological characteristics. Iodine exists as various isotopes, but our focus is on 131I due to its relatively long half-life, its prevalence in atmospheric releases and its contribution to offsite dose. The assumption of physical and chemical form is speculated to have a profound impact on the deposition of radioactive material within the respiratory tract. In the case of iodine, it has been shown that more than one type of physical and chemical form may be released to, or exist in, the environment; iodine can exist as a particle or as a gas. The gaseous species can be further segregated based on chemical form: elemental, inorganic, and organic iodides. Chemical compounds in each class are assumed to behave similarly with respect to biochemistry. Studies at Oak Ridge National Laboratories have demonstrated that 131I is released as a particulate, as well as in elemental, inorganic and organic chemical form. The internal dose estimate from 131I may be very different depending on the effect that chemical form has on fractional deposition, gas uptake, and clearance in the respiratory tract. There are many sources of uncertainty in the estimation of environmental dose including source term, airborne transport of radionuclides, and internal dosimetry. Knowledge of uncertainty in internal dosimetry is essential for estimating dose to members of the public and for determining total uncertainty in dose estimation. Important calculational steps in any lung model is regional estimation of deposition fractions

  3. Ultraviolet radiation dose calculation for algal suspensions using UVA and UVB extinction coefficients.

    PubMed

    Navarro, Enrique; Muñiz, Selene; Korkaric, Muris; Wagner, Bettina; de Cáceres, Miquel; Behra, Renata

    2014-03-01

    Although the biological importance of ultraviolet light (UVR) attenuation has been recognised in marine and freshwater environments, it is not generally considered in in vitro ecotoxicological studies using algal cell suspensions. In this study, UVA and UVB extinction were determined for cultures of algae with varying cell densities, and the data were used to calculate the corresponding extinction coefficients for both UVA and UVB wavelength ranges. Integrating the Beer-Lambert equation to account for changes in the radiation intensity reaching each depth, from the surface until the bottom of the experimental vessel, we obtained the average UVA and UVB intensity to which the cultured algal cells were exposed. We found that UVR intensity measured at the surface of Chlamydomonas reinhardtii cultures lead to a overestimation of the UVR dose received by the algae by 2-40 times. The approach used in this study allowed for a more accurate estimation of UVA and UVB doses. PMID:24607609

  4. Fluence to local skin absorbed dose and dose equivalent conversion coefficients for monoenergetic positrons using Monte-Carlo code MCNP6.

    PubMed

    Bourgois, L; Antoni, R

    2016-01-01

    Conversion coefficients fluence to local skin equivalent dose, as introduced in ICRP Publication 116, 2010, are calculated for positrons of energies ranging from 10 keV to 10 MeV using the code MCNP6. Fluence to dose equivalent conversion coefficients H'(0.07,0°)/Φ are calculated for positrons of energy ranging between 20 keV and 10 MeV. A comparison between operational dose quantity H'(0.07,0°) and the Local-Skin equivalent Dose shows an overall good agreement between these two quantities, except between 60 keV and 100 keV. PMID:26623930

  5. Assessment of neutron fluence to organ dose conversion coefficients in the ORNL analytical adult phantom.

    PubMed

    Miri Hakimabad, H; Rafat Motavalli, L; Karimi Shahri, K

    2009-03-01

    Neutron fluence to absorbed dose conversion coefficients have been evaluated for the analytical ORNL modified adult phantom in 21 body organs using MCNP4C Monte Carlo code. The calculation used 20 monodirectional monoenergetic neutron beams in the energy range 10(-9)-20 MeV, under four irradiation conditions: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT) and right-lateral (RLAT). Then the conversion coefficients are compared with the data reported in ICRP publication 74 for mathematical MIRD type phantoms and by Bozkurt et al for the VIPMAN voxel model. Although the ORNL results show fewer differences with the ICRP results than the Bozkurt et al data, one can deduce neither complete agreement nor disparity between this study and other data sets. This comparison shows that in some cases any differences in applied Monte Carlo codes or simulated body models could significantly change the organ dose conversion factors. This sensitivity should be considered for radiological protection programmes. For certain organs, the results of two models with major differences can be in a satisfactory agreement because of the similarity in those organ models. PMID:19225185

  6. Conversion coefficients for the estimation of effective dose in cone-beam CT

    PubMed Central

    Kim, Dong-Soo; Rashsuren, Oyuntugs

    2014-01-01

    Purpose To determine the conversion coefficients (CCs) from the dose-area product (DAP) value to effective dose in cone-beam CT. Materials and Methods A CBCT scanner with four fields of view (FOV) was used. Using two exposure settings of the adult standard and low dose exposure, DAP values were measured with a DAP meter in C mode (200mm×179 mm), P mode (154 mm×154 mm), I mode (102 mm×102 mm), and D mode (51 mm×51 mm). The effective doses were also investigated at each mode using an adult male head and neck phantom and thermoluminescent chips. Linear regressive analysis of the DAP and effective dose values was used to calculate the CCs for each CBCT examination. Results For the C mode, the P mode at the maxilla, and the P mode at the mandible, the CCs were 0.049 µSv/mGycm2, 0.067 µSv/mGycm2, and 0.064 µSv/mGycm2, respectively. For the I mode, the CCs at the maxilla and mandible were 0.076 µSv/mGycm2 and 0.095 µSv/mGycm2, respectively. For the D mode at the maxillary incisors, molars, and mandibular molars, the CCs were 0.038 µSv/mGycm2, 0.041 µSv/mGycm2, and 0.146 µSv/mGycm2, respectively. Conclusion The CCs in one CBCT device with fixed 80 kV ranged from 0.038 µSv/mGycm2 to 0.146 µSv/mGycm2 according to the imaging modes and irradiated region and were highest for the D mode at the mandibular molar. PMID:24701455

  7. Dose conversion coefficients for neutron exposure to the lens of the human eye

    SciTech Connect

    Manger, Ryan P; Bellamy, Michael B; Eckerman, Keith F

    2011-01-01

    Dose conversion coefficients for the lens of the human eye have been calculated for neutron exposure at energies from 1 x 10{sup -9} to 20 MeV and several standard orientations: anterior-to-posterior, rotational and right lateral. MCNPX version 2.6.0, a Monte Carlo-based particle transport package, was used to determine the energy deposited in the lens of the eye. The human eyeball model was updated by partitioning the lens into sensitive and insensitive volumes as the anterior portion (sensitive volume) of the lens being more radiosensitive and prone to cataract formation. The updated eye model was used with the adult UF-ORNL mathematical phantom in the MCNPX transport calculations.

  8. Construction of hybrid Chinese reference adult phantoms and estimation of dose conversion coefficients for muons.

    PubMed

    Dong, Liang; Li, Taosheng; Liu, Chunyu

    2015-04-01

    A set of fluence-to-effective dose conversion coefficients of external exposure to muons were investigated for Chinese hybrid phantom references, which include both male and female. Both polygon meshes and Non-Uniform Rational B-Spline (NURBS) surfaces were used to descried the boundary of the organs and tissues in these phantoms. The 3D-DOCTOR and Rhinoceros software were used to polygonise the colour slice images and generate the NURBS surfaces, respectively. The voxelisation is completed using the BINVOX software and the assembly finished by using MATLAB codes. The voxel resolutions were selected to be 0.22 × 0.22 × 0.22 cm(3) and 0.2 × 0.2 × 0.2 cm(3) for male and female phantoms, respectively. All parts of the final phantoms were matched to their reference organ masses within a tolerance of ±5%. The conversion coefficients for negative and positive muons were calculated with the FLUKA transport code. There were 21 external monoenergetic beams ranging from 0.01 GeV to 100 TeV in 5 different geometrical conditions of irradiation. PMID:25313173

  9. Letter to the Editor: Appropriate selection of dose coefficients in radiological assessments: C-14 and Cl-36

    DOE PAGESBeta

    Harrison, Dr John; Leggett, Richard Wayne

    2016-01-01

    This letter to the editor of Journal of Radiological Protection is in response to a letter to the editor from G. M. Smith and M. C. Thorne of Great Britain concerning the appropriate selection of dose coefficients for ingested carbon-14 and chlorine-36, two of the most important long-lived components of radioactive wastes. Smith and Thorne argue that current biokinetic models of the International Commission on Radiological Protection (ICRP) for carbon and chlorine are overly cautious models from the standpoint of radiation dose estimates for C-14 and Cl-36, and that more realistic models are needed for evaluation of the hazards ofmore » these radionuclides in nuclear wastes. We (Harrison and Leggett) point out that new biokinetic models for these and other elements (developed at ORNL) will soon appear in ICRP Publications. These new models generally are considerably more realistic than current ICRP models. Examples are given for C-14 inhaled as carbon dioxide or ingested in water as bicarbonate, carbonate, or carbon dioxide.« less

  10. Assessing the reliability of dose coefficients for ingestion and inhalation of 226Ra and 90Sr by members of the public.

    PubMed

    Puncher, M

    2014-01-01

    Assessments of risk to a population group resulting from internal exposure to a particular radionuclide can be used to assess the reliability of the appropriate International Commission on Radiological Protection (ICRP) dose coefficient, E(50), used as a radiation protection device for the specified exposure pathway. An estimate of the uncertainty on the risk is important for informing judgements on reliability. This paper describes the application of parameter uncertainty analysis to quantify uncertainties resulting from internal exposures to radioisotopes of the alkaline earth metals, (90)Sr and (226)Ra, by members of the UK public. The study derives uncertainties in biokinetic model parameter values to calculate the distributions of the effective dose per unit intake using the ICRP Publication 60 formalism. The distributions are used to infer the uncertainty on the mean effective dose per unit intake to inform the derivation of uncertainty factors (UF) for the appropriate ICRP Publication 72 dose coefficients. Here, a UF indicates a 95 % probability that the best estimate of risk per unit intake is within a factor, UF, of the nominal risk associated with the appropriate ICRP dose coefficient, E(50), with respect to uncertainties in the biokinetic model parameter values. Ingestion: it is assumed that exposure occurs through the ingestion of radionuclides present in food and water. The results for both radionuclides suggest a UF of within 3 for all age groups, with median values close to the ICRP values. Inhalation: it is assumed that environmental exposure to radium occurs primarily due to insoluble forms present in fly ash discharged from coal-fired power stations; for strontium, exposure is assumed to occur due to residual aerosols produced as a result of atmospheric nuclear testing and nuclear reactor accidents. The results suggest a UF of around 3 and 6 for inhalation of (90)Sr and (226)Ra, respectively, by members of the public. PMID:23896416

  11. Empirical correlation of volumetric mass transfer coefficient for a rectangular internal-loop airlift bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An empirical correlation of volumetric mass transfer coefficient was developed for a pilot scale internal-loop rectangular airlift bioreactor that was designed for biotechnology. The empirical correlation combines classic turbulence theory, Kolmogorov’s isotropic turbulence theory with Higbie’s pen...

  12. Gamma dose from activation of internal shields in IRIS reactor.

    PubMed

    Agosteo, Stefano; Cammi, Antonio; Garlati, Luisella; Lombardi, Carlo; Padovani, Enrico

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressuriser and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield. PMID:16381688

  13. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    NASA Astrophysics Data System (ADS)

    Jimenez V., Reina A.

    2007-10-01

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called "isodoses" as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named "cloud") that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae.

  14. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    SciTech Connect

    Jimenez V, Reina A.

    2007-10-26

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called 'isodoses' as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named 'cloud') that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae.

  15. Influence of DTPA Treatment on Internal Dose Estimates.

    PubMed

    Davesne, Estelle; Blanchardon, Eric; Peleau, Bernadette; Correze, Philippe; Bohand, Sandra; Franck, Didier

    2016-06-01

    In case of internal contamination with plutonium materials, a treatment with diethylene triamine pentaacetic acid (DTPA) can be administered in order to reduce plutonium body burden and consequently avoid some radiation dose. DTPA intravenous injections or inhalation can start almost immediately after intake, in parallel with urinary and fecal bioassay sampling for dosimetric follow-up. However, urine and feces excretion will be significantly enhanced by the DTPA treatment. As internal dose is calculated from bioassay results, the DTPA effect on excretion has to be taken into account. A common method to correct bioassay data is to divide it by a factor representing the excretion enhancement under DTPA treatment by intravenous injection. Its value may be based on a nominal reference or observed after a break in the treatment. The aim of this study was to estimate the influence of this factor on internal dose by comparing the dose estimated using default or upper and lower values of the enhancement factor for 11 contamination cases. The observed upper and lower values of the enhancement factor were 18.7 and 63.0 for plutonium and 24.9 and 28.8 for americium. For americium, a default factor of 25 is proposed. This work demonstrates that the use of a default DTPA enhancement factor allows the determination of the magnitude of the contamination because dose estimated could vary by a factor of 2 depending on the value of the individual DTPA enhancement factor. In case of significant intake, an individual enhancement factor should be determined to obtain a more reliable dose assessment. PMID:27115221

  16. Effect of absorption parameters on calculation of the dose coefficient: example of classification of industrial uranium compounds.

    PubMed

    Chazel, V; Houpert, P; Paquet, F; Ansoborlo, E

    2001-01-01

    In the Human Respiratory Tract Model (HRTM) described in ICRP Publication 66, time-dependent dissolution is described by three parameters: the fraction dissolved rapidly, fr, and the rapid and slow dissolution rates sr and ss. The effect of these parameters on the dose coefficient has been studied. A theoretical analysis was carried out to determine the sensitivity of the dose coefficient to variations in the values of these absorption parameters. Experimental values of the absorption parameters and the doses per unit intake (DPUI) were obtained from in vitro dissolution tests, or from in vivo experiments with rats, for five industrial uranium compounds UO2, U3O8, UO4, UF4 and a mixture of uranium oxides. These compounds were classified in terms of absorption types (F, M or S) according to ICRP. The overall result was that the factor which has the greatest influence on the dose coefficient was the slow dissolution rate ss. This was verified experimentally, with a variation of 20% to 55% for the DPUI according to the absorption type of the compound. In contrast, the rapid dissolution rate sr had little effect on the dose coefficient, excepted for Type F compounds. PMID:11487809

  17. Confidence intervals for intraclass correlation coefficients in a nonlinear dose-response meta-analysis.

    PubMed

    Demetrashvili, Nino; Van den Heuvel, Edwin R

    2015-06-01

    This work is motivated by a meta-analysis case study on antipsychotic medications. The Michaelis-Menten curve is employed to model the nonlinear relationship between the dose and D2 receptor occupancy across multiple studies. An intraclass correlation coefficient (ICC) is used to quantify the heterogeneity across studies. To interpret the size of heterogeneity, an accurate estimate of ICC and its confidence interval is required. The goal is to apply a recently proposed generic beta-approach for construction the confidence intervals on ICCs for linear mixed effects models to nonlinear mixed effects models using four estimation methods. These estimation methods are the maximum likelihood, second-order generalized estimating equations and two two-step procedures. The beta-approach is compared with a large sample normal approximation (delta method) and bootstrapping. The confidence intervals based on the delta method and the nonparametric percentile bootstrap with various resampling strategies failed in our settings. The beta-approach demonstrates good coverages with both two-step estimation methods and consequently, it is recommended for the computation of confidence interval for ICCs in nonlinear mixed effects models for small studies. PMID:25703393

  18. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    NASA Astrophysics Data System (ADS)

    Nogueira, P.; Zankl, M.; Schlattl, H.; Vaz, P.

    2011-11-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation—the germinative cells—absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  19. Internal dose conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities.

  20. Derived Intervention Levels for Tritium Based on Food and Drug Administration Methodology Using ICRP 56 Dose Coefficients

    SciTech Connect

    Blanchard, A

    1999-06-09

    In 1998, the FDA released its recommendations for age-dependent derived intervention levels for several radionuclides involved in nuclear accidents. One radionuclide that is not included in that document is tritium. Therefore an analysis is presented here using dose coefficients from ICRP 56 to develop Derived Intervention Levels (DILs) for tritium in two forms: water (HTO) and organically bound tritium (OBT).

  1. Internal dose to active marrow and endosteum from radioactive iodine.

    PubMed

    Hoseinian-Azghadi, E; Rafat-Motavalli, L; Miri-Hakimabad, H

    2015-04-01

    This study analyses the active marrow and endosteum dose differences between the new International Commission on Radiological Protection (ICRP) male and female reference computational phantoms and the stylised phantom for two thyroid agents. The active marrow and endosteum doses from (131)I and (123)I were calculated for 0-55 % maximum thyroid uptakes using the MCNP-4C Monte Carlo code. The biokinetic models were taken from ICRP Publication 53. To evaluate the absorbed doses to red marrow and endosteum, the deposited energy was determined for the 19 spongiosa regions and 6 medullary cavities and was mass weighted using the mass fractions available in ICRP Publication 116. The results were then compared with the published values given in ICRP Publication 53. The poor anatomic realism of the stylised phantom used in ICRP Publication 53 leads to important dose differences between the ICRP voxel phantoms and the stylised phantom. The influence of the use of different bone material was also investigated. Underestimations of ∼60% were observed for active marrow doses of the stylised phantom compared with reference voxel phantoms. The results highlight the importance of the accuracy of the shape and inter-organ distances of the anthropomorphic model used. PMID:25157198

  2. Construction of Taiwanese Adult Reference Phantoms for Internal Dose Evaluation.

    PubMed

    Chang, Shu-Jun; Hung, Shih-Yen; Liu, Yan-Lin; Jiang, Shiang-Huei

    2016-01-01

    In the internal dose evaluation, the specific absorbed fraction (SAF) and S-value are calculated from the reference phantom based on Caucasian data. The differences in height and weight between Caucasian and Asian may lead to inaccurate dose estimation. In this study, we developed the Taiwanese reference phantoms. 40 volunteers were recruited. Magnetic resonance images (MRI) were obtained, and the contours of 15 organs were drawn. The Taiwanese reference man (TRM) and Taiwanese reference woman (TRW) were constructed. For the SAF calculation, the differences in the self-absorption SAF (self-SAF) between the TRM, TRW, and Oak Ridge National Laboratory (ORNL) adult phantom were less than 10% when the difference in organ mass was less than 20%. The average SAF from liver to pancreas of TRM was 38% larger than that of the ORNL adult phantom, and the result of TRW was 2.02 times higher than that of the ORNL adult phantom. For the S-value calculation, the ratios of TRW and ORNL adult phantom ranged from 0.91 to 1.57, and the ratios of TRM and ORNL adult phantom ranged from 1.04 to 2.29. The SAF and S-value results were dominantly affected by the height, weight, organ mass, and geometric relationship between organs. By using the TRM and TRW, the accuracy of internal dose evaluation can be increased for radiation protection and nuclear medicine. PMID:27618708

  3. Assessment and interpretation of internal doses: uncertainty and variability.

    PubMed

    Paquet, F; Bailey, M R; Leggett, R W; Harrison, J D

    2016-06-01

    Internal doses are calculated on the basis of knowledge of intakes and/or measurements of activity in bioassay samples, typically using reference biokinetic and dosimetric models recommended by the International Commission on Radiological Protection (ICRP). These models describe the behaviour of the radionuclides after ingestion, inhalation, and absorption to the blood, and the absorption of the energy resulting from their nuclear transformations. They are intended to be used mainly for the purpose of radiological protection: that is, optimisation and demonstration of compliance with dose limits. These models and parameter values are fixed by convention and are not subject to uncertainty. Over the past few years, ICRP has devoted a considerable amount of effort to the revision and improvement of models to make them more physiologically realistic. ICRP models are now sufficiently sophisticated for calculating organ and tissue absorbed doses for scientific purposes, and in many other areas, including toxicology, pharmacology and medicine. In these specific cases, uncertainties in parameters and variability between individuals need to be taken into account. PMID:27044362

  4. Up to fourth virial coefficients from simple and efficient internal-coordinate sampling: application to neon.

    PubMed

    Wiebke, Jonas; Pahl, Elke; Schwerdtfeger, Peter

    2012-07-01

    A simple and efficient internal-coordinate importance sampling protocol for the Monte Carlo computation of (up to fourth-order) virial coefficients ̅B(n) of atomic systems is proposed. The key feature is a multivariate sampling distribution that mimics the product structure of the dominating pairwise-additive parts of the ̅B(n). This scheme is shown to be competitive over routine numerical methods and, as a proof of principle, applied to neon: The second, third, and fourth virial coefficients of neon as well as equation-of-state data are computed from ab initio two- and three-body potentials; four-body contributions are found to be insignificant. Kirkwood-Wigner quantum corrections to first order are found to be crucial to the observed agreement with recent ab initio and experimental reference data sets but are likely inadequate at very low temperatures. PMID:22779666

  5. The maximum coefficient of performance of internally irreversible refrigerators and heat pumps

    NASA Astrophysics Data System (ADS)

    Ait-Ali, Mohand A.

    1996-04-01

    A class of irreversible refrigeration cycles is investigated to determine the maximum coefficient of performance in the heat pump mode and the refrigerator mode. For the purpose of generality and simplicity of the results, finite-time heat transfer in the condenser and evaporator is expressed in terms of arithmetic mean temperature differences. The generic source of internal irreversibility is measured by a single irreversibility factor which transforms the Clausius inequality into an equality to simplify the cycle model. These optimum cycle performances are obtained as closed form analytical expressions in which the irreversibility factor has been shown to be simply related to the ratio of the actual and endoreversible cycle coefficients of performance.

  6. Shuttle radiation dose measurements in the International Space Station orbits.

    PubMed

    Badhwar, Gautam D

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions. PMID:11754644

  7. Shuttle radiation dose measurements in the International Space Station orbits

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  8. New features of the IC(4) code and comparison of internal conversion coefficient calculations.

    PubMed

    Gorozhankin, V M; Coursol, N; Yakushev, E A; Vylov, Ts; Briançon, C

    2002-01-01

    The IC(4) software developed to compare calculated internal conversion coefficients (ICC) has been enhanced by adding new features through the use of Borland Delphi and TeeChart. Particularly, the 3D-graph option enhances the possibilities of analyzing calculated ICC values. For example, the comparison between the results given by three sets of theoretical ICC tables for any arbitrary pair of calculated ICC can be presented in a much clearer manner. Their differences can be displayed as energy vs. atomic number surfaces. Results from the analyses of K-shell and total ICCs for E2, E3, M2, M3, and M4 multipolarity are discussed. PMID:11839014

  9. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.

    PubMed

    Nogueira, P; Zankl, M; Schlattl, H; Vaz, P

    2011-11-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV. PMID:21983644

  10. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20-250 MeV.

    PubMed

    Olsher, R H; McLean, T D; Justus, A L; Devine, R T; Gadd, M S

    2010-03-01

    Monte Carlo simulations were performed to extend existing neutron personal dose equivalent fluence-to-dose conversion coefficients to an energy of 250 MeV. Presently, conversion coefficients, H(p,slab)(10,alpha)/Phi, are given by ICRP-74 and ICRU-57 for a range of angles of radiation incidence (alpha = 0, 15, 30, 45, 60 and 75 degrees ) in the energy range from thermal to 20 MeV. Standard practice has been to base operational dose quantity calculations <20 MeV on the kerma approximation, which assumes that charged particle secondaries are locally deposited, or at least that charged particle equilibrium exists within the tally cell volume. However, with increasing neutron energy the kerma approximation may no longer be valid for some energetic secondaries such as protons. The Los Alamos Monte Carlo radiation transport code MCNPX was used for all absorbed dose calculations. Transport models and collision-based energy deposition tallies were used for neutron energies >20 MeV. Both light and heavy ions (HIs) (carbon, nitrogen and oxygen recoil nuclei) were transported down to a lower energy limit (1 keV for light ions and 5 MeV for HIs). Track energy below the limit was assumed to be locally deposited. For neutron tracks <20 MeV, kerma factors were used to obtain absorbed dose. Results are presented for a discrete set of angles of incidence on an ICRU tissue slab phantom. PMID:19887515

  11. The influence of patient size on dose conversion coefficients: a hybrid phantom study for adult cardiac catheterization

    NASA Astrophysics Data System (ADS)

    Johnson, Perry; Lee, Choonsik; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.

    2009-06-01

    In this study, the influence of patient size on organ and effective dose conversion coefficients (DCCs) was investigated for a representative interventional fluoroscopic procedure—cardiac catheterization. The study was performed using hybrid phantoms representing an underweight, average and overweight American adult male. Reference body sizes were determined using the NHANES III database and parameterized based on standing height and total body mass. Organ and effective dose conversion coefficients were calculated for anterior-posterior, posterior-anterior, left anterior oblique and right anterior oblique projections using the Monte Carlo code MCNPX 2.5.0 with the metric dose area product being used as the normalization factor. Results show body size to have a clear influence on DCCs which increased noticeably when body size decreased. It was also shown that if patient size is neglected when choosing a DCC, the organ and effective dose will be underestimated to an underweight patient and will be overestimated to an underweight patient, with errors as large as 113% for certain projections. Results were further compared with those published for a KTMAN-2 Korean patient-specific tomographic phantom. The published DCCs aligned best with the hybrid phantom which most closely matched in overall body size. These results highlighted the need for and the advantages of phantom-patient matching, and it is recommended that hybrid phantoms be used to create a more diverse library of patient-dependent anthropomorphic phantoms for medical dose reconstruction.

  12. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20 to 250 MeV

    SciTech Connect

    Mclean, Thomas D; Justus, Alan L; Gadd, S Milan; Olsher, Richard H; Devine, Robert T

    2009-01-01

    Monte Carlo simulations were performed to extend existing neutron personal dose equivalent fluence-to-dose conversion coefficients to an energy of 250 MeV. Presently, conversion coefficients, H(p,slab)(10,alpha)/Phi, are given by ICRP-74 and ICRU-57 for a range of angles of radiation incidence (alpha = 0, 15, 30, 45, 60 and 75 degrees ) in the energy range from thermal to 20 MeV. Standard practice has been to base operational dose quantity calculations <20 MeV on the kerma approximation, which assumes that charged particle secondaries are locally deposited, or at least that charged particle equilibrium exists within the tally cell volume. However, with increasing neutron energy the kerma approximation may no longer be valid for some energetic secondaries such as protons. The Los Alamos Monte Carlo radiation transport code MCNPX was used for all absorbed dose calculations. Transport models and collision-based energy deposition tallies were used for neutron energies >20 MeV. Both light and heavy ions (HIs) (carbon, nitrogen and oxygen recoil nuclei) were transported down to a lower energy limit (1 keV for light ions and 5 MeV for HIs). Track energy below the limit was assumed to be locally deposited. For neutron tracks <20 MeV, kerma factors were used to obtain absorbed dose. Results are presented for a discrete set of angles of incidence on an ICRU tissue slab phantom.

  13. Ion chamber absorbed dose calibration coefficients, N{sub D,w}, measured at ADCLs: Distribution analysis and stability

    SciTech Connect

    Muir, B. R.

    2015-04-15

    Purpose: To analyze absorbed dose calibration coefficients, N{sub D,w}, measured at accredited dosimetry calibration laboratories (ADCLs) for client ionization chambers to study (i) variability among N{sub D,w} coefficients for chambers of the same type calibrated at each ADCL to investigate ion chamber volume fluctuations and chamber manufacturing tolerances; (ii) equivalency of ion chamber calibration coefficients measured at different ADCLs by intercomparing N{sub D,w} coefficients for chambers of the same type; and (iii) the long-term stability of N{sub D,w} coefficients for different chamber types by investigating repeated chamber calibrations. Methods: Large samples of N{sub D,w} coefficients for several chamber types measured over the time period between 1998 and 2014 were obtained from the three ADCLs operating in the United States. These are analyzed using various graphical and numerical statistical tests for the four chamber types with the largest samples of calibration coefficients to investigate (i) and (ii) above. Ratios of calibration coefficients for the same chamber, typically obtained two years apart, are calculated to investigate (iii) above and chambers with standard deviations of old/new ratios less than 0.3% meet stability requirements for accurate reference dosimetry recommended in dosimetry protocols. Results: It is found that N{sub D,w} coefficients for a given chamber type compared among different ADCLs may arise from differing probability distributions potentially due to slight differences in calibration procedures and/or the transfer of the primary standard. However, average N{sub D,w} coefficients from different ADCLs for given chamber types are very close with percent differences generally less than 0.2% for Farmer-type chambers and are well within reported uncertainties. Conclusions: The close agreement among calibrations performed at different ADCLs reaffirms the Calibration Laboratory Accreditation Subcommittee process of ensuring

  14. Considerations of beta and electron transport in internal dose calculations

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr. . Dept. of Nuclear Engineering)

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab.

  15. Considerations of beta and electron transport in internal dose calculations

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document.

  16. 241Am INGROWTH AND ITS EFFECT ON INTERNAL DOSE.

    PubMed

    Konzen, Kevin

    2016-07-01

    Generally, plutonium has been manufactured to support commercial and military applications involving heat sources, weapons, and reactor fuel. This work focuses on three typical plutonium mixtures while observing the potential of Am ingrowth and its effect on internal dose. The term "ingrowth" is used to describe Am production due solely to the decay of Pu as part of a plutonium mixture, where it is initially absent or present in a smaller quantity. Dose calculation models do not account for Am ingrowth unless the Pu quantity is specified. This work suggested that Am ingrowth be considered in bioassay analysis when there is a potential of a 10% increase to the individual's committed effective dose. It was determined that plutonium fuel mixtures, initially absent of Am, would likely exceed 10% for typical reactor grade fuel aged less than 30 y; however, heat source grade and aged weapons grade fuel would normally fall below this threshold. Although this work addresses typical plutonium mixtures following separation, it may be extended to irradiated commercial uranium fuel and is expected to be a concern in the recycling of spent fuel. PMID:27218291

  17. A PHANTOM FOR DETERMINATION OF CALIBRATION COEFFICIENTS AND MINIMUM DETECTABLE ACTIVITIES USING A DUAL-HEAD GAMMA CAMERA FOR INTERNAL CONTAMINATION MONITORING FOLLOWING RADIATION EMERGENCY SITUATIONS.

    PubMed

    Ören, Ünal; Andersson, Martin; Rääf, Christopher L; Mattsson, Sören

    2016-06-01

    The purpose of this study was to derive calibration coefficients (in terms of cps kBq(-1)) and minimum detectable activities, MDA, (in terms of kBq and corresponding dose rate) for the dual head gamma camera part of an SPECT/CT-instrument when used for in vivo internal contamination measurements in radiation emergency situations. A cylindrical-conical PMMA phantom with diameters in the range of 7-30 cm was developed in order to simulate different body parts and individuals of different sizes. A series of planar gamma camera investigations were conducted using an SPECT/CT modality with the collimators removed for (131)I and (137)Cs, radionuclides potentially associated with radiation emergencies. Energy windows of 337-391 and 490-690 keV were selected for (131)I and (137)Cs, respectively. The measurements show that the calibration coefficients for (137)Cs range from 10 to 19 cps kBq(-1) with MDA values in the range of 0.29-0.55 kBq for phantom diameters of 10-30 cm. The corresponding values for (131)I are 12-37 cps kBq(-1) with MDA values of 0.08-0.26 kBq. An internal dosimetry computer program was used for the estimation of minimum detectable dose rates. A thyroid uptake of 0.1 kBq (131)I (representing MDA) corresponds to an effective dose rate of 0.6 µSv d(-1) A (137)Cs source position representing the colon with an MDA of 0.55 kBq corresponds to an effective dose rate was 1 µSv y(-1) This method using a simple phantom for the determination of calibration coefficients, and MDA levels can be implemented within the emergency preparedness plans in hospitals with nuclear medicine departments. The derived data will help to quickly estimate the internal contamination of humans following radiation emergencies. PMID:26769903

  18. Comparison of experimental and Dirac-Fock calculated high-multipole-order internal conversion coefficients

    NASA Astrophysics Data System (ADS)

    Németh, Zsolt

    1992-02-01

    A large set of accurately measured E3, M3, E4 and M4 internal conversion coefficients (ICCs) has been compared with various theoretical values. ICCs calculated by considering Dirac-Fock wave functions are found in best agreement with the experimental values, although dependence of their discrepancies on transition energy, multipolarity and parity, as well as on nuclear charge and shell, has been revealed. The ICCs of Rösel et al., after the adjustment of Németh and Veres, proved to be the most successful in reproducing the experimental values. The adjusted ICCs of Rösel et al. are recommended and revision of the ICCs and γ-emission probabilities of isomeric transitions in evaluated data compilations such as Nuclear Data Sheets is suggested. Selection from the contradicting K and total ICCs of the 661.66 keV transition of 137Ba is proposed.

  19. Using the Monte Carlo technique to calculate dose conversion coefficients for medical professionals in interventional radiology

    NASA Astrophysics Data System (ADS)

    Santos, W. S.; Carvalho, A. B., Jr.; Hunt, J. G.; Maia, A. F.

    2014-02-01

    The objective of this study was to estimate doses in the physician and the nurse assistant at different positions during interventional radiology procedures. In this study, effective doses obtained for the physician and at points occupied by other workers were normalised by air kerma-area product (KAP). The simulations were performed for two X-ray spectra (70 kVp and 87 kVp) using the radiation transport code MCNPX (version 2.7.0), and a pair of anthropomorphic voxel phantoms (MASH/FASH) used to represent both the patient and the medical professional at positions from 7 cm to 47 cm from the patient. The X-ray tube was represented by a point source positioned in the anterior posterior (AP) and posterior anterior (PA) projections. The CC can be useful to calculate effective doses, which in turn are related to stochastic effects. With the knowledge of the values of CCs and KAP measured in an X-ray equipment, at a similar exposure, medical professionals will be able to know their own effective dose.

  20. Organ dose conversion coefficients on an ICRP-based Chinese adult male voxel model from idealized external photons exposures

    NASA Astrophysics Data System (ADS)

    Liu, Liye; Zeng, Zhi; Li, Junli; Qiu, Rui; Zhang, Binquan; Ma, Jizeng; Li, Ren; Li, Wenqian; Bi, Lei

    2009-11-01

    A high-resolution whole-body voxel model called CAM representing the Chinese adult male was constructed in this paper based on a previous individual voxel model. There are more than 80 tissues and organs in CAM, including almost all organs required in the ICRP new recommendation. The mass of individual organs has been adjusted to the Chinese reference data. Special considerations were given to representing the gross spatial distribution of various bone constituents as realistically as possible during the construction of the site-specific skeleton. Organ dose conversion coefficients were calculated for six idealized external photon exposures from 10 keV to 10 MeV by using Monte Carlo simulation. The resulting dose coefficients were then compared with those from other models, e.g. CMP, ICRP 74, Rex, HDRK-man and VIP-man. Old and new effective male doses of CAM were calculated by using the tissue weighting factors from ICRP 60 and 103 Publications, respectively. Dosimetric differences between mathematical and voxel models, and the differences between Asian and Caucasian models are also discussed in this paper.

  1. Organ dose conversion coefficients on an ICRP-based Chinese adult male voxel model from idealized external photons exposures.

    PubMed

    Liu, Liye; Zeng, Zhi; Li, Junli; Qiu, Rui; Zhang, Binquan; Ma, Jizeng; Li, Ren; Li, Wenqian; Bi, Lei

    2009-11-01

    A high-resolution whole-body voxel model called CAM representing the Chinese adult male was constructed in this paper based on a previous individual voxel model. There are more than 80 tissues and organs in CAM, including almost all organs required in the ICRP new recommendation. The mass of individual organs has been adjusted to the Chinese reference data. Special considerations were given to representing the gross spatial distribution of various bone constituents as realistically as possible during the construction of the site-specific skeleton. Organ dose conversion coefficients were calculated for six idealized external photon exposures from 10 keV to 10 MeV by using Monte Carlo simulation. The resulting dose coefficients were then compared with those from other models, e.g. CMP, ICRP 74, Rex, HDRK-man and VIP-man. Old and new effective male doses of CAM were calculated by using the tissue weighting factors from ICRP 60 and 103 Publications, respectively. Dosimetric differences between mathematical and voxel models, and the differences between Asian and Caucasian models are also discussed in this paper. PMID:19841518

  2. Comparison of experimental and theoretical high multipole-order internal conversion coefficients

    NASA Astrophysics Data System (ADS)

    Németh, Zs.; Veres, Á.

    1990-01-01

    Sixty-four accurately measured (1 σ ⩽ 5%) internal conversion coefficients (ICCs) of high multipole-order (E3, M3, E4, M4) gamma-transitions have been compared with the theoretical values of Rösel et al. and Hager and Seltzer. Individual measurements were carefully examined and modified, if necessary. The discrepancies among the experimental values and the Rösel calculations tend to fall within a narrow band and do not reveal any dependence on atomic number, shell or transition energy. However, discrepancies between the experimental data and the calculations of Hager and Seltzer depend on transition energy, viz., increases up to 10% occur when the transition energy approaches the K binding energy. The calculations of Rösel et al. are preferred, and it is proposed that their third and fourth order ICCs are multiplied by factors of 0.975±0.010 and 0.975±0.005 respectively, to give better agreement with the experimental data. The accuracy of the corrected theoretical values is higher than most of the experimental data. This comparison also implies that the recommended source of ICCs and total transition probabilities needs to be reconsidered by the International Nuclear Structure and Decay Data Network.

  3. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of external and internal doses. (a) If the...

  4. Conversion coefficients from fluence to effective dose for heavy ions with energies up to 3 GeV/A.

    PubMed

    Sato, T; Tsuda, S; Sakamoto, Y; Yamaguchi, Y; Niita, K

    2003-01-01

    Radiological protection against high-energy heavy ions has been an essential issue in the planning of long-term space missions. The fluence to effective dose conversion coefficients have been calculated for heavy ions using the particle and heavy ion transport code system PHITS coupled with an anthropomorphic phantom of the MIRD5 type. The calculations were performed for incidences of protons and typical space heavy ions--deuterons, tritons, 3He, alpha particles, 12C, 20Ne, 40Ar, 40Ca and 56Fe--with energies up to 3 GeV/A in the isotropic and anterior-posterior irradiation geometries. A simple fitting formula that can predict the effective dose from almost all kinds of space heavy ions below 3 GeV/A within an accuracy of 30% is deduced from the results. PMID:14653334

  5. 10 CFR 835.203 - Combining internal and external equivalent doses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.203 Combining internal and external equivalent doses. (a) The total effective...

  6. 10 CFR 835.203 - Combining internal and external equivalent doses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.203 Combining internal and external equivalent doses. (a) The total effective...

  7. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    SciTech Connect

    Grimes, Joshua; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  8. Mean glandular dose coefficients (D(g)N) for x-ray spectra used in contemporary breast imaging systems.

    PubMed

    Nosratieh, Anita; Hernandez, Andrew; Shen, Sam Z; Yaffe, Martin J; Seibert, J Anthony; Boone, John M

    2015-09-21

    To develop tables of normalized glandular dose coefficients D(g)N for a range of anode-filter combinations and tube voltages used in contemporary breast imaging systems. Previously published mono-energetic D(g)N values were used with various spectra to mathematically compute D(g)N coefficients. The tungsten anode spectra from TASMICS were used; molybdenum and rhodium anode-spectra were generated using MCNPX Monte Carlo code. The spectra were filtered with various thicknesses of Al, Rh, Mo or Cu. An initial half value layer (HVL) calculation was made using the anode and filter material. A range of the HVL values was produced with the addition of small thicknesses of polymethyl methacrylate (PMMA) as a surrogate for the breast compression paddle, to produce a range of HVL values at each tube voltage. Using a spectral weighting method, D(g)N coefficients for the generated spectra were calculated for breast glandular densities of 0%, 12.5%, 25%, 37.5%, 50% and 100% for a range of compressed breast thicknesses from 3 to 8 cm. Eleven tables of normalized glandular dose (D(g)N) coefficients were produced for the following anode/filter combinations: W + 50 μm Ag, W + 500 μm Al, W + 700 μm Al, W + 200 μm Cu, W + 300 μm Cu, W + 50 μm Rh, Mo + 400 μm Cu, Mo + 30 μm Mo, Mo + 25 μm Rh, Rh + 400 μm Cu and Rh + 25 μm Rh. Where possible, these results were compared to previously published D(g)N values and were found to be on average less than 2% different than previously reported values.Over 200 pages of D(g)N coefficients were computed for modeled x-ray system spectra that are used in a number of new breast imaging applications. The reported values were found to be in excellent agreement when compared to published values. PMID:26348995

  9. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation.

    PubMed

    Jacques, S L; McAuliffe, D J

    1991-06-01

    The explosive vaporization of melanosomes in situ in skin during pulsed laser irradiation (pulse duration less than 1 microsecond) is observed as a visible whitening of the superficial epidermal layer due to stratum corneum disruption. In this study, the ruby laser (694 nm) was used to determine the threshold radiant exposure, H0 (J/cm2), required to elicit whitening for in vitro black (Negroid) human skin samples which were pre-equilibrated at an initial temperature, Ti, of 0, 20, or 50 degrees C. A plot of H0 vs Ti yields a straight line whose x-intercept indicates the threshold temperature of explosive vaporization to be 112 +/- 7 degrees C (SD, N = 3). The slope, delta H0/delta Ti, specifies the internal absorption coefficient, mua, within the melanosome: mua = -rho C/(slope(1 + 7.1 Rd)), where rho C is the product of density and specific heat, and Rd is the total diffuse reflectance from the skin. A summary of the absorption spectrum (mua) for the melanosome interior (351-1064 nm) is presented based on H0 data from this study and the literature. The in vivo absorption spectrum (380-820 nm) for human epidermal melanin was measured by an optical fiber spectrophotometer and is compared with the melanosome spectrum. PMID:1886936

  10. Resonance behavior of internal conversion coefficients at low γ-ray energy

    NASA Astrophysics Data System (ADS)

    Trzhaskovskaya, M. B.; Kibédi, T.; Nikulin, V. K.

    2010-02-01

    A resonance-like structure of internal conversion coefficients (ICCs) at low γ-ray energy (≲100 keV) is studied. Our calculations revealed new, previously unknown resonance minima in the energy dependence of ICCs for the ns shells at E2-E5 transitions. The resonances are the most defined for ICCs in light and medium elements with Z≲ 50. It is shown that ICCs may have up to four resonances for outer shells while it has been assumed so far that only one resonance exists. Well-pronounced resonances in ICCs at E1 transition were discovered for the ns shells with n⩾2 as well as for the np shells with n⩾3 and the nd shells with n⩾4 of all elements up to superheavy ones. Simple expressions for approximate values of the E1 resonance energy were obtained which are of importance for determination of the resonance energy range where the interpolation of ICCs taken from tables or databases may give significant errors. The occurrence of resonances in ICCs is explained by vanishing conversion matrix elements under changes of sign. The peculiarities of the behavior of the matrix elements and electron wave functions at the resonance energy are considered. Available experimental ICCs for electric transitions with energies near the expected position of resonances satisfactory agree with our calculations.

  11. Pure E2 transitions: A test for BRICC Internal Conversion Coefficients

    NASA Astrophysics Data System (ADS)

    Gerl, J.; Sai, K. Vijay; Sainath, M.; Gowrishankar, R.; Venkataramaniah, K.

    2009-01-01

    The most widely used theoretical internal conversion coefficient (ICC) tables are of Hager and Seltzer (HS), Rosel et al. and BRICC (Band et al. tables using BRICC interpolation code). A rigorous comparison of experimental ICCs with various theoretical tabulations is possible only when a large data on experimental ICCs is available at one place. For this reason, a compilation of all the available experimental ICCs, αT, αK, αL of E2 transitions for a number of elements in the range of 24⩽Z⩽94 is presented. Listing of experimental data includes 595 datasets corresponding to 505 E2 transitions in 165 nuclei across the nuclear chart. Data with less than 10% experimental uncertainty have been selected for comparison with the theoretical values of Hager and Seltzer, Rosel et al. and BRICC. The relative percentage deviation (%Δ) have been calculated for each of the above theories and the average (%Δ¯) are estimated. The Band et al. tables, using the BRICC interpolation code are seen to give theoretical ICCs closest to experimental values.

  12. Calculating the Dose of Subcutaneous Immunoglobulin for Primary Immunodeficiency Disease in Patients Switched From Intravenous to Subcutaneous Immunoglobulin Without the Use of a Dose-Adjustment Coefficient

    PubMed Central

    Fadeyi, Michael; Tran, Tin

    2013-01-01

    Primary immunodeficiency disease (PIDD) is an inherited disorder characterized by an inadequate immune system. The most common type of PIDD is antibody deficiency. Patients with this disorder lack the ability to make functional immunoglobulin G (IgG) and require lifelong IgG replacement therapy to prevent serious bacterial infections. The current standard therapy for PIDD is intravenous immunoglobulin (IVIG) infusions, but IVIG might not be appropriate for all patients. For this reason, subcutaneous immunoglobulin (SCIG) has emerged as an alternative to IVIG. A concern for physicians is the precise SCIG dose that should be prescribed, because there are pharmacokinetic differences between IVIG and SCIG. Manufacturers of SCIG 10% and 20% liquid (immune globulin subcutaneous [human]) recommend a dose-adjustment coefficient (DAC). Both strengths are currently approved by the FDA. This DAC is to be used when patients are switched from IVIG to SCIG. In this article, we propose another dosing method that uses a higher ratio of IVIG to SCIG and an incremental adjustment based on clinical status, body weight, and the presence of concurrent diseases. PMID:24391400

  13. Benchmarking of the mono-energetic transport coefficients-results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS)

    SciTech Connect

    Beidler, C. D.; Allmaier, K.; Isaev, Maxim Yu; Kasilov, K.; Kernbichler, W.; Leitold, G.; Maassberg, H.; Mikkelsen, D. R.; Murakami, Masanori; Schmidt, M.; Spong, Donald A; Tribaidos, V.; Wakasa, A.

    2011-01-01

    Numerical results for the three mono-energetic transport coefficients required for a complete neoclassical description of stellarator plasmas have been benchmarked within an international collaboration. These transport coefficients are flux-surface-averaged moments of solutions to the linearized drift kinetic equation which have been determined using field-line-integration techniques, Monte Carlo simulations, a variational method employing Fourier-Legendre test functions and a finite-difference scheme. The benchmarking has been successfully carried out for past, present and future devices which represent different optimization strategies within the extensive configuration space available to stellarators. A qualitative comparison of the results with theoretical expectations for simple model fields is provided. The behaviour of the results for the mono-energetic radial and parallel transport coefficients can be largely understood from such theoretical considerations but the mono-energetic bootstrap current coefficient exhibits characteristics which have not been predicted.

  14. Selected organ dose conversion coefficients for external photons calculated using ICRP adult voxel phantoms and Monte Carlo code FLUKA.

    PubMed

    Patni, H K; Nadar, M Y; Akar, D K; Bhati, S; Sarkar, P K

    2011-11-01

    The adult reference male and female computational voxel phantoms recommended by ICRP are adapted into the Monte Carlo transport code FLUKA. The FLUKA code is then utilised for computation of dose conversion coefficients (DCCs) expressed in absorbed dose per air kerma free-in-air for colon, lungs, stomach wall, breast, gonads, urinary bladder, oesophagus, liver and thyroid due to a broad parallel beam of mono-energetic photons impinging in anterior-posterior and posterior-anterior directions in the energy range of 15 keV-10 MeV. The computed DCCs of colon, lungs, stomach wall and breast are found to be in good agreement with the results published in ICRP publication 110. The present work thus validates the use of FLUKA code in computation of organ DCCs for photons using ICRP adult voxel phantoms. Further, the DCCs for gonads, urinary bladder, oesophagus, liver and thyroid are evaluated and compared with results published in ICRP 74 in the above-mentioned energy range and geometries. Significant differences in DCCs are observed for breast, testis and thyroid above 1 MeV, and for most of the organs at energies below 60 keV in comparison with the results published in ICRP 74. The DCCs of female voxel phantom were found to be higher in comparison with male phantom for almost all organs in both the geometries. PMID:21147784

  15. A new interpretation of internal heat transfer coefficients of porous media

    NASA Technical Reports Server (NTRS)

    Dybbs, A.; Kar, K.; Groeneweg, M.; Ling, J. X.; Naraghi, M.

    1984-01-01

    The results of laser anemometer and flow visualization based fluid mechanics studies of porous media are used to obtain heat transfer coefficients for porous materials. Average pore flow Re ranging from 0.16-700 were examined. Darcy, inertial steady laminar, unsteady laminar and turbulent flow regimes were detected. A passage length model was devised to derive the heat transfer coefficient. Sample data from flows through porous metals composed of powders and fibers validated the passage length for Darcy and inertial flow regimes. Unsteady laminar and turbulent flow coefficients require the identification of new parameters.

  16. ORERP (Off-Site Radiation Exposure Review Project) internal dose estimates for individuals.

    PubMed

    Ng, Y C; Anspaugh, L R; Cederwall, R T

    1990-11-01

    A method was developed to reconstruct the internal radiation dose to off-site individuals who were exposed to fallout from nuclear weapons tests at the Nevada Test Site (NTS). By this method, committed absorbed doses can be estimated for 22 target organs of persons in four age groups and for selected organs of the fetus. Ingestion doses are calculated by combining age-group dose factors and intakes specific for age group, test event, and location as calculated by the PATHWAY food-chain model. Inhalation doses are calculated by combining age-group dose factors and breathing rates, and time-integrated air concentrations that are derived from the ORERP Air-Quality Data Base. Dose estimates are calculated for the radionuclides that contribute significantly to the total dose; these number 20 via the ingestion pathway and 46 via the inhalation pathway. Internal doses to nonspecified individuals and nonspecified fetuses are being reconstructed for each location in the ORERP Town Data Base for which exposure rates and cloud-arrival times are listed. Examples of reconstructing internal dose are presented. This method will also be adapted to reconstruct internal doses from NTS fallout to specific individuals in accordance with the person's age, past residence, life-style, and living pattern. PMID:2211124

  17. ORERP (Off-Site Radiation Exposure Review Project) internal dose estimates for individuals

    SciTech Connect

    Ng, Y.C.; Anspaugh, L.R.; Cederwall, R.T. )

    1990-11-01

    A method was developed to reconstruct the internal radiation dose to off-site individuals who were exposed to fallout from nuclear weapons tests at the Nevada Test Site (NTS). By this method, committed absorbed doses can be estimated for 22 target organs of persons in four age groups and for selected organs of the fetus. Ingestion doses are calculated by combining age-group dose factors and intakes specific for age group, test event, and location as calculated by the PATHWAY food-chain model. Inhalation doses are calculated by combining age-group dose factors and breathing rates, and time-integrated air concentrations that are derived from the ORERP Air-Quality Data Base. Dose estimates are calculated for the radionuclides that contribute significantly to the total dose; these number 20 via the ingestion pathway and 46 via the inhalation pathway. Internal doses to nonspecified individuals and nonspecified fetuses are being reconstructed for each location in the ORERP Town Data Base for which exposure rates and cloud-arrival times are listed. Examples of reconstructing internal dose are presented. This method will also be adapted to reconstruct internal doses from NTS fallout to specific individuals in accordance with the person's age, past residence, life-style, and living pattern.

  18. Estimation of Internal Radiation Dose from both Immediate Releases and Continued Exposures to Contaminated Materials

    SciTech Connect

    Napier, Bruce A.

    2012-03-26

    A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, is discussed based upon a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from the damaged reactors and also to the management of wastes that may be generated in both regional cleanup and NPP decommissioning.

  19. Estimation of internal radiation dose from both immediate releases and continued exposures to contaminated materials.

    PubMed

    Napier, Bruce

    2012-03-01

    A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, are discussed on the basis of a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from damaged reactors and also to the management of wastes that may be generated in both regional cleanup and decommissioning of the Fukushima nuclear power plant. PMID:22395282

  20. Internal conversion coefficients in {sup 134}Cs, {sup 137}Ba, and {sup 139}La: A precise test of theory

    SciTech Connect

    Nica, N.; Hardy, J. C.; Iacob, V. E.; Balonek, C.; Trzhaskovskaya, M. B.

    2008-03-15

    Recently we measured the ratio of K-shell internal conversion coefficients, {alpha}{sub K}, for the 127.5-keV E3 transition in {sup 134}Cs and the 661.7-keV M4 transition in {sup 137}Ba. We here report a measurement of the 165.9-keV M1 transition in {sup 139}La, based on which we convert our earlier ratio measurement into individual {alpha}{sub K} values for the transitions in {sup 134}Cs and {sup 137}Ba. These results continue to confirm the Dirac-Fock calculations of internal conversion coefficients that incorporate the atomic K-shell vacancy.

  1. Psychometric Inferences from a Meta-Analysis of Reliability and Internal Consistency Coefficients

    ERIC Educational Resources Information Center

    Botella, Juan; Suero, Manuel; Gambara, Hilda

    2010-01-01

    A meta-analysis of the reliability of the scores from a specific test, also called reliability generalization, allows the quantitative synthesis of its properties from a set of studies. It is usually assumed that part of the variation in the reliability coefficients is due to some unknown and implicit mechanism that restricts and biases the…

  2. Code System for Calculating Internal and External Doses Resulting from an Atmospheric Release of Radioactive Material.

    Energy Science and Technology Software Center (ESTSC)

    1982-06-15

    WRAITH calculates the atmospheric transport of radioactive material to each of a number of downwind receptor points and the external and internal doses to a reference man at each of the receptor points.

  3. Is internal target volume accurate for dose evaluation in lung cancer stereotactic body radiotherapy?

    PubMed Central

    Peng, Jiayuan; Zhang, Zhen; Wang, Jiazhou; Xie, Jiang; Hu, Weigang

    2016-01-01

    Purpose 4DCT delineated internal target volume (ITV) was applied to determine the tumor motion and used as planning target in treatment planning in lung cancer stereotactic body radiotherapy (SBRT). This work is to study the accuracy of using ITV to predict the real target dose in lung cancer SBRT. Materials and methods Both for phantom and patient cases, the ITV and gross tumor volumes (GTVs) were contoured on the maximum intensity projection (MIP) CT and ten CT phases, respectively. A SBRT plan was designed using ITV as the planning target on average projection (AVG) CT. This plan was copied to each CT phase and the dose distribution was recalculated. The GTV_4D dose was acquired through accumulating the GTV doses over all ten phases and regarded as the real target dose. To analyze the ITV dose error, the ITV dose was compared to the real target dose by endpoints of D99, D95, D1 (doses received by the 99%, 95% and 1% of the target volume), and dose coverage endpoint of V100(relative volume receiving at least the prescription dose). Results The phantom study shows that the ITV underestimates the real target dose by 9.47%∼19.8% in D99, 4.43%∼15.99% in D95, and underestimates the dose coverage by 5% in V100. The patient cases show that the ITV underestimates the real target dose and dose coverage by 3.8%∼10.7% in D99, 4.7%∼7.2% in D95, and 3.96%∼6.59% in V100 in motion target cases. Conclusions Cautions should be taken that ITV is not accurate enough to predict the real target dose in lung cancer SBRT with large tumor motions. Restricting the target motion or reducing the target dose heterogeneity could reduce the ITV dose underestimation effect in lung SBRT. PMID:26968812

  4. Field and Bioassay Indicators for Internal Dose Intervention Therapy

    SciTech Connect

    Carbaugh, Eugene H.

    2007-05-01

    Guidance is presented that is used at the U.S. Department of Energy Hanford Site to identify the potential need for medical intervention in response to intakes of radioactivity. The guidance, based on ICRP Publication 30 models and committed effective dose equivalents of 20 mSv and 200 mSv, is expressed as numerical workplace measurements and derived first-day bioassay results for large intakes. It is used by facility radiation protection staff and on-call dosimetry support staff during the first few days following an intake.

  5. Field and bioassay indicators for internal dose intervention therapy.

    PubMed

    Carbaugh, Eugene H

    2007-05-01

    Guidance is presented that is used at the U.S. Department of Energy Hanford Site to identify the potential need for medical intervention in response to intakes of radioactivity. The guidance, based on ICRP Publication 30 models and committed effective dose equivalents of 20 mSv and 200 mSv, is expressed as numerical workplace measurements and derived first-day bioassay results for large intakes. It is used by facility radiation protection staff and on-call dosimetry support staff during the first few days following an intake. PMID:17440323

  6. SECOND LATIN AMERICAN INTERCOMPARISON ON INTERNAL DOSE ASSESSMENT.

    PubMed

    Rojo, A; Puerta, N; Gossio, S; Gómez Parada, I; Cruz Suarez, R; López, E; Medina, C; Lastra Boylan, J; Pinheiro Ramos, M; Mora Ramírez, E; Alves Dos Reis, A; Yánez, H; Rubio, J; Vironneau Janicek, L; Somarriba Vanegas, F; Puerta Ortiz, J; Salas Ramírez, M; López Bejerano, G; da Silva, T; Miri Oliveira, C; Terán, M; Alfaro, M; García, T; Angeles, A; Duré Romero, E; Farias de Lima, F

    2016-09-01

    Internal dosimetry intercomparisons are essential for the verification of applied models and the consistency of results'. To that aim, the First Regional Intercomparison was organised in 2005, and that results led to the Second Regional Intercomparison Exercise in 2013, which was organised in the frame of the RLA 9/066 and coordinated by Autoridad Regulatoria Nuclear of Argentina. Four simulated cases covering intakes of (131)I, (137)Cs and Tritium were proposed. Ninteen centres from thirteen different countries participated in this exercise. This paper analyses the participants' results in this second exercise in order to test their skills and acquired knowledge, particularly in the application of the IDEAS Guidelines. It is important to highlight the increased number of countries that participated in this exercise compared with the first one and, furthermore, the improvement in the overall performance. The impact of the International Atomic Energy Agency (IAEA) Projects since 2003 has led to a significant enhancement of internal dosimetry capabilities that strengthen the radiation protection of workers. PMID:26503854

  7. Estimating the Radiation Dose to the Fetus in Prophylactic Internal Iliac Artery Balloon Occlusion: Three Cases

    PubMed Central

    Kai, Kentaro; Hamada, Tomohiro; Yuge, Akitoshi; Kiyosue, Hiro; Nishida, Yoshihiro; Nasu, Kaei; Narahara, Hisashi

    2015-01-01

    Background. Although radiation exposure is of great concern to expecting patients, little information is available on the fetal radiation dose associated with prophylactic internal iliac artery balloon occlusion (IIABO). Here we estimated the fetal radiation dose associated with prophylactic IIABO in Caesarean section (CS). Cases. We report our experience with the IIABO procedure in three consecutive patients with suspected placenta previa/accreta. Fetal radiation dose measurements were conducted prior to each CS by using an anthropomorphic phantom. Based on the simulated value, we calculated the fetal radiation dose as the absorbed dose. We found that the fetal radiation doses ranged from 12.88 to 31.6 mGy. The fetal radiation dose during the prophylactic IIABOs did not exceed 50 mGy. Conclusion. The IIABO procedure could result in a very small increase in the risk of harmful effects to the fetus. PMID:26180648

  8. Internal Energy Dependence of Molecular Condensation Coefficients Determined from Molecular Beam Surface Scattering Experiments

    DOE R&D Accomplishments Database

    Sibener, S. J.; Lee, Y. T.

    1978-05-01

    An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.

  9. AN APPROACH TO REDUCTION OF UNCERTAINTIES IN INTERNAL DOSES RECONSTRUCTED FOR THE TECHA RIVER POPULATION

    SciTech Connect

    Degteva, M. O.; Shagina, N. B.; Tolstykh, E. I.; Bougrov, N. G.; Zalyapin, V. I.; Anspaugh, L. R.; Napier, Bruce A.

    2007-12-01

    A methodology is being developing for reduction of uncertainties in estimates of internal dose for residents of the Techa Riverside communities, who were exposed as a result of releases of radionuclides from the Mayak plutonium-production facility in 1949–1956. The “Techa River Dosimetry System” (TRDS) was specifically elaborated for reconstruction of doses. A preliminary analysis of uncertainty for doses estimated using the current version of the TRDS showed large ranges in the uncertainty of internal absorbed dose and led to suggestions of methods to reduce uncertainties. The new methodological approaches described in this paper will allow for significant reduction of uncertainties of 90Sr-dose. The major sources of reduction are in making use of individual measured values of 90Sr and through development of a Household Registry to associate unmeasured persons with measured persons living in the same household(s).

  10. An approach to reduction of uncertainties in internal doses reconstructed for the Techa River population.

    PubMed

    Degteva, M O; Shagina, N B; Tolstykh, E I; Bougrov, N G; Zalyapin, V I; Anspaugh, L R; Napier, B A

    2007-01-01

    A methodology was developed for reduction of uncertainties in estimates of internal dose for residents of the Techa Riverside communities, who were exposed as a result of releases of radionuclides from the Mayak plutonium production facility in 1949-56. The 'Techa River Dosimetry System' (TRDS) was specifically elaborated for reconstruction of doses. A preliminary analysis of uncertainty for doses estimated using the current version of the TRDS showed large ranges in the uncertainty of internal absorbed dose and led to suggestions of methods to reduce uncertainties. The new methodological approaches described in this paper will allow for significant reduction of uncertainties of 90Sr-dose. The major sources of reduction are: making use of individual measured values of 90Sr and through development of a Household Registry to associate unmeasured persons with measured persons living in the same household(s). PMID:17848387

  11. Internal dosimetry performing dose assessments via bioassay measurements

    SciTech Connect

    Bailey, K.M.

    1993-05-11

    The Internal Dosimetry Department at the Y-12 Plant maintains a state-of-the-art bioassay program managed under the guidance and regulations of the Department of Energy. The two major bioassay techniques currently used at Y-12 are the in vitro (urinalysis) and in vivo (lung counting) programs. Fecal analysis (as part of the in vitro program) is another alternative; however, since both urine and fecal analysis provide essentially the same capabilities for detecting exposures to uranium, the urinalysis is the main choice primarily for aesthetic reasons. The bioassay frequency is based on meeting NCRP 87 objectives which are to monitor the accumulation of radioactive material in exposed individuals, and to ensure that significant depositions are detected.

  12. Evaluation of effective dose conversion coefficients for Korean adults during medical x-ray examinations up to 150 keV through comparison with ICRP Publication 74 and ICRP Publication 116.

    PubMed

    Keum, Mihyun; Park, Jae Hong; Park, Sung Ho; Ahn, Seung Do

    2014-03-01

    A Monte Carlo program for calculating organ doses for patients undergoing medical x-ray examination (PCXMC) was used to calculate effective dose conversion coefficients for Korean adults. Two sets of effective dose results were calculated based on tissue weighting factors recommended in International Commission on Radiological Protection (ICRP) Publications 60 and 103 for monochromatic energy photons of 10, 15, 20, 30, 40, 50, 60, 70, 80, 100 and 150 keV. The results were obtained for monoenergetic photons, since effective dose conversion coefficients recommended in ICRP Publications 74 and 116 were given for monochromatic energies, thereby enabling the comparison of our result to those suggested by the ICRP publications. The areas of comparison include: to observe effects due to changes in tissue weighting factors, modification within Medical Internal Radiation Dose (MIRD) phantoms and differences in phantom types. The phantom employed in the PCXMC program is a modified version of the phantom used in ICRP Publication 74, with additional organs that were added in order to take into account the updated tissue weighting factors given in ICRP Publication 103. Both use MIRD phantoms but our study modified the phantom size to the average physical condition of Korean adults, while ICRP Publication 74 uses the phantom size of the reference man defined in ICRP Publication 23. On the other hand, the effective dose suggested in ICRP 116 was calculated using an entirely different type of phantom: a voxel phantom with the size of reference man. Although significant differences were observed for certain organ doses in the lateral beam directions, differences in the effective doses were within 5% for the anterior-posterior (AP) and posterior-anterior (PA) directions, and within 16% in lateral directions when tissue weighting factors were applied and the variations were adjusted for all three comparisons. The results show that calculation of effective doses for Korean adults

  13. Organ and effective dose conversion coefficients for a sitting female hybrid computational phantom exposed to monoenergetic protons in idealized irradiation geometries

    NASA Astrophysics Data System (ADS)

    Alves, M. C.; Santos, W. S.; Lee, Choonsik; Bolch, Wesley E.; Hunt, John G.; Carvalho Júnior, A. B.

    2014-12-01

    The conversion coefficients (CCs) relate protection quantities, mean absorbed dose (DT) and effective dose (E), with physical radiation field quantities, such as fluence (Φ). The calculation of CCs through Monte Carlo simulations is useful for estimating the dose in individuals exposed to radiation. The aim of this work was the calculation of conversion coefficients for absorbed and effective doses per fluence (DT/ Φ and E/Φ) using a sitting and standing female hybrid phantom (UFH/NCI) exposure to monoenergetic protons with energy ranging from 2 MeV to 10 GeV. The radiation transport code MCNPX was used to develop exposure scenarios implementing the female UFH/NCI phantom in sitting and standing postures. Whole-body irradiations were performed using the recommended irradiation geometries by ICRP publication 116 (AP, PA, RLAT, LLAT, ROT and ISO). In most organs, the conversion coefficients DT/Φ were similar for both postures. However, relative differences were significant for organs located in the abdominal region, such as ovaries, uterus and urinary bladder, especially in the AP, RLAT and LLAT geometries. Anatomical differences caused by changing the posture of the female UFH/NCI phantom led an attenuation of incident protons with energies below 150 MeV by the thigh of the phantom in the sitting posture, for the front-to-back irradiation, and by the arms and hands of the phantom in the standing posture, for the lateral irradiation.

  14. Transport Properties of Bulk Thermoelectrics An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    SciTech Connect

    Wang, Hsin; Porter, Wallace D; Bottner, Harold; Konig, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolett, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Partricia; Sharp, Jeff; Lo, Jason; Keinke, Holger; Kiss, Laszlo I.

    2013-01-01

    Recent research and development of high temperature thermoelectric materials has demonstrated great potential of converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as an important area for improving energy efficiency. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is Part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main focuses in Part I are on two electronic transport properties: Seebeck coefficient and electrical resistivity.

  15. Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Porter, Wallace D.; Böttner, Harald; König, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolet, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Patricia; Sharp, Jeff W.; Lo, Jason; Kleinke, Holger; Kiss, Laszlo

    2013-04-01

    Recent research and development of high-temperature thermoelectric materials has demonstrated great potential for converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air-conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The dimensionless figure of merit, ZT, still needs to be improved from the current value of 1.0 to 1.5 to above 2.0 to be competitive with other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods, and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as a key component for improving energy efficiency. The International Energy Agency (IEA) group under the Implementing Agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main foci in part I are the measurement of two electronic transport properties: Seebeck coefficient and electrical resistivity.

  16. Internal transmission coefficient in charges carrier generation layer of graphene/Si based solar cell device

    NASA Astrophysics Data System (ADS)

    Rosikhin, Ahmad; Winata, Toto

    2016-04-01

    Internal transmission profile in charges carrier generation layer of graphene/Si based solar cell has been explored theoretically. Photovoltaic device was constructed from graphene/Si heterojunction forming a multilayer stuck with Si as generation layer. The graphene/Si sheet was layered on ITO/glass wafer then coated by Al forming Ohmic contact with Si. Photon incident propagate from glass substrate to metal electrode and assumed that there is no transmission in Al layer. The wavelength range spectra used in this calculation was 200 - 1000 nm. It found that transmission intensity in the generation layer show non-linear behavior and partitioned by few areas which related with excitation process. According to this information, it may to optimize the photons absorption to create more excitation process by inserting appropriate material to enhance optical properties in certain wavelength spectra because of the exciton generation is strongly influenced by photon absorption.

  17. Rapid internal dose magnitude estimation in emergency situations using annual limits on intake (ALI) comparisons.

    PubMed

    Sugarman, Stephen L; Toohey, Richard; Goans, Ronald; Christensen, Doran; Wiley, Albert

    2010-06-01

    It is crucial to integrate health physics into the medical management of radiation illness or injury. The key to early medical management is not necessarily radiation dose calculation and assignment, but radiation dose magnitude estimation. The magnitude of the dose can be used to predict potential biological consequences and the corresponding need for medical intervention. It is, therefore, imperative that physicians and health physicists have the necessary tools to help guide this decision making process. All internal radiation doses should be assigned using proper dosimetry techniques, but the formal internal dosimetry process often takes time that may delay treatment, thus reducing the efficacy of some medical countermeasures. Magnitudes of inhalation or ingestion intakes or intakes associated with contaminated wounds can be estimated by applying simple rules of thumb to sample results or direct measurements and comparing the outcome to known limits for a projection of dose magnitude. Although a United States regulatory unit, the annual limit on intake (ALI) is based on committed dose, and can therefore be used as a comparison point. For example, internal dose magnitudes associated with contaminated wounds can be estimated by comparing a direct wound measurement taken soon after the injury to the product of the ingestion ALI and the associated f1 value (the fractional uptake from the small intestine to the blood). International Commission on Radiation Protection Publication 96, as well as other resources, recommends treatment based on ALI determination. Often, treatment decisions have to be made with limited information. However, one can still perform dose magnitude estimations in order to help effectively guide the need for medical treatment by properly assessing the situation and appropriately applying basic rules of thumb. PMID:20445387

  18. Dose limits to the lens of the eye: International Basic Safety Standards and related guidance.

    PubMed

    Boal, T J; Pinak, M

    2015-06-01

    The International Atomic Energy Agency (IAEA) safety requirements: 'General Safety Requirements Part 3--Radiation protection and safety of radiation sources: International Basic Safety Standards' (BSS) was approved by the IAEA Board of Governors at its meeting in September 2011, and was issued as General Safety Requirements Part 3 in July 2014. The equivalent dose limit for the lens of the eye for occupational exposure in planned exposure situations was reduced from 150 mSv year(-1) to 20 mSv year(-1), averaged over defined periods of 5 years, with no annual dose in a single year exceeding 50 mSv. This reduction in the dose limit for the lens of the eye followed the recommendation of the International Commission on Radiological Protection in its statement on tissue reactions of 21 April 2011. IAEA has developed guidance on the implications of the new dose limit for the lens of the eye. This paper summarises the process that led to the inclusion of the new dose limit for the lens of the eye in the BSS, and the implications of the new dose limit. PMID:25816264

  19. Fluence-to-dose conversion coefficients from monoenergetic neutrons below 20 MeV based on the VIP-Man anatomical model

    NASA Astrophysics Data System (ADS)

    Bozkurt, A.; Chao, T. C.; Xu, X. G.; Bozkurt, A.; Chao, T. C.

    2000-10-01

    A new set of fluence-to-absorbed dose and fluence-to-effective dose conversion coefficients have been calculated for neutrons below 20 MeV using a whole-body anatomical model, VIP-Man, developed from the high-resolution transverse colour photographic images of the National Library of Medicine's Visible Human Project®. Organ dose calculations were performed using the Monte Carlo code MCNP for 20 monoenergetic neutron beams between 1×10-9 MeV and 20 MeV under six different irradiation geometries: anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic. The absorbed dose for 24 major organs and effective dose results based on the realistic VIP-Man are presented and compared with those based on the simplified MIRD-based phantoms reported in the literature. Effective doses from VIP-Man are not significantly different from earlier results for neutrons in the energy range studied. There are, however, remarkable deviations in organ doses due to the anatomical differences between the image-based and the earlier mathematical models.

  20. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive... a minimum— (a) Each licensee shall monitor occupational exposure to radiation from licensed...

  1. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive... a minimum— (a) Each licensee shall monitor occupational exposure to radiation from licensed...

  2. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive... a minimum— (a) Each licensee shall monitor occupational exposure to radiation from licensed...

  3. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive... a minimum— (a) Each licensee shall monitor occupational exposure to radiation from licensed...

  4. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION... absorption. Note: The intake through intact skin has been included in the calculation of DAC for...

  5. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION... absorption. Note: The intake through intact skin has been included in the calculation of DAC for...

  6. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION... absorption. Note: The intake through intact skin has been included in the calculation of DAC for...

  7. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION... absorption. Note: The intake through intact skin has been included in the calculation of DAC for...

  8. Estimates of internal-dose equivalent from inhalation and ingestion of selected radionuclides

    SciTech Connect

    Dunning, D.E.

    1982-01-01

    This report presents internal radiation dose conversion factors for radionuclides of interest in environmental assessments of nuclear fuel cycles. This volume provides an updated summary of estimates of committed dose equivalent for radionuclides considered in three previous Oak Ridge National Laboratory (ORNL) reports. Intakes by inhalation and ingestion are considered. The International Commission on Radiological Protection (ICRP) Task Group Lung Model has been used to simulate the deposition and retention of particulate matter in the respiratory tract. Results corresponding to activity median aerodynamic diameters (AMAD) of 0.3, 1.0, and 5.0 ..mu..m are given. The gastorintestinal (GI) tract has been represented by a four-segment catenary model with exponential transfer of radioactivity from one segment to the next. Retention of radionuclides in systemic organs is characterized by linear combinations of decaying exponential functions, recommended in ICRP Publication 30. The first-year annual dose rate, maximum annual dose rate, and fifty-year dose commitment per microcurie intake of each radionuclide is given for selected target organs and the effective dose equivalent. These estimates include contributions from specified source organs plus the systemic activity residing in the rest of the body; cross irradiation due to penetrating radiations has been incorporated into these estimates. 15 references.

  9. Dose Estimation for a Study of Nuclear Workers in France, the United Kingdom and the United States of America: Methods for the International Nuclear Workers Study (INWORKS).

    PubMed

    Thierry-Chef, I; Richardson, D B; Daniels, R D; Gillies, M; Hamra, G B; Haylock, R; Kesminiene, A; Laurier, D; Leuraud, K; Moissonnier, M; O'Hagan, J; Schubauer-Berigan, M K; Cardis, E

    2015-06-01

    In the framework of the International Nuclear Workers Study conducted in France, the UK and the U.S. (INWORKS), updated and expanded methods were developed to convert recorded doses of ionizing radiation to estimates of organ doses or individual personal dose equivalent [H(p)(10)] for a total number of 308,297 workers, including 40,035 women. This approach accounts for differences in dosimeter response to predominant workplace energy and geometry of exposure and for the recently published ICRP report on dose coefficients for men and women separately. The overall mean annual individual personal dose equivalent, including zero doses, is 1.73 mSv [median = 0.42; interquartile range (IQR): 0.07, 1.59]. Associated individual organ doses were estimated. INWORKS includes workers who had potential for exposure to neutrons. Therefore, we analyzed neutron dosimetry data to identify workers potentially exposed to neutrons. We created a time-varying indicator for each worker, classifying them according to whether they had a positive recorded neutron dose and if so, whether their neutron dose ever exceeded 10% of their total external penetrating radiation dose. The number of workers flagged as being exposed to neutrons was 13% for the full cohort, with 15% of the cohort in France, 12% of the cohort in the UK and 14% in the U.S. We also used available information on in vivo and bioassay monitoring to identify workers with known depositions or suspected internal contaminations. As a result of this work, information is now available that will allow various types of sensitivity analyses. PMID:26010707

  10. Dose Estimation for a Study of Nuclear Workers in France, the United Kingdom and the United States of America: Methods for the International Nuclear Workers Study (INWORKS)

    PubMed Central

    Thierry-Chef, I.; Richardson, D. B.; Daniels, R. D.; Gillies, M.; Hamra, G. B.; Haylock, R.; Kesminiene, A.; Laurier, D.; Leuraud, K.; Moissonnier, M.; O'Hagan, J.; Schubauer-Berigan, M. K.; Cardis, E.

    2016-01-01

    In the framework of the International Nuclear Workers Study conducted in France, the UK and the U.S. (INWORKS), updated and expanded methods were developed to convert recorded doses of ionizing radiation to estimates of organ doses or individual personal dose equivalent [Hp(10)] for a total number of 308,297 workers, including 40,035 women. This approach accounts for differences in dosimeter response to predominant workplace energy and geometry of exposure and for the recently published ICRP report on dose coefficients for men and women separately. The overall mean annual individual personal dose equivalent, including zero doses, is 1.73 mSv [median = 0.42; interquartile range (IQR): 0.07, 1.59]. Associated individual organ doses were estimated. INWORKS includes workers who had potential for exposure to neutrons. Therefore, we analyzed neutron dosimetry data to identify workers potentially exposed to neutrons. We created a time-varying indicator for each worker, classifying them according to whether they had a positive recorded neutron dose and if so, whether their neutron dose ever exceeded 10% of their total external penetrating radiation dose. The number of workers flagged as being exposed to neutrons was 13% for the full cohort, with 15% of the cohort in France, 12% of the cohort in the UK and 14% in the U.S. We also used available information on in vivo and bioassay monitoring to identify workers with known depositions or suspected internal contaminations. As a result of this work, information is now available that will allow various types of sensitivity analyses. PMID:26010707

  11. The immune tolerance induction (ITI) dose debate: does the International ITI Study provide a clearer picture?

    PubMed

    Ettingshausen, C Escuriola; Kreuz, W

    2013-01-01

    Among the proposed predictors for immune tolerance induction (ITI) outcome, the therapeutic regimen - specifically the dose and frequency of administered factor VIII (FVIII) as well as FVIII product type - is intensely debated. Are there any advantages for low-dose regimens (50 IU FVIII kg(-1) three times a week) over high-dose regimens (200 IU FVIII kg day(-1)) or vice versa? Are von Willebrand factor (VWF)-containing plasma-derived concentrates superior to recombinant FVIII concentrates for tolerance induction? A review of the available literature indicates that patients with good prognostic factors can achieve success with either low-dose or high-dose ITI regimens. Retrospective data suggest that patient characteristics such as maximum historical inhibitor titres and pre-ITI inhibitor titres are better predictors of treatment success than dose. Results of the prospective International ITI Study have recently become available. In inhibitor patients with good prognosis, success rates were similar between low-dose (50 IU FVIII kg(-1) three times a week) and high-dose (200 IU FVIII kg(-1) daily) regimens. However, patients receiving low-dose ITI took longer to achieve various ITI milestones and had a significantly higher bleed rate per month compared with the high-dose group (0.62 vs. 0.28; P = 0.00024), findings with important clinical implications. Inhibitor patients with poor prognostic features should be treated with a high-dose protocol. This conclusion is supported by a meta-analysis of the International Immune Tolerance Registry and North American Immune Tolerance Registry and by data from Germany showing good success rates with the high-dose, high-frequency Bonn protocol in poor prognosis patients. Type of concentrate also appears to have an influence on ITI success rates in this patient subgroup, with evidence suggesting an advantage for VWF-containing plasma-derived FVIII concentrates over recombinant or VWF-free concentrates. The ongoing prospective

  12. Astronaut's organ doses inferred from measurements in a human phantom outside the international space station.

    PubMed

    Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Facius, Rainer; Hajek, Michael; Petrov, Vladislav; Puchalska, Monika; Zhou, Dazhuang; Bossler, Johannes; Akatov, Yury; Shurshakov, Vyacheslav; Olko, Pawel; Ptaszkiewicz, Marta; Bergmann, Robert; Fugger, Manfred; Vana, Norbert; Beaujean, Rudolf; Burmeister, Soenke; Bartlett, David; Hager, Luke; Pálfalvi, József; Szabó, Julianna; O'Sullivan, Denis; Kitamura, Hisashi; Uchihori, Yukio; Yasuda, Nakahiro; Nagamatsu, Aiko; Tawara, Hiroko; Benton, Eric; Gaza, Ramona; McKeever, Stephen; Sawakuchi, Gabriel; Yukihara, Eduardo; Cucinotta, Francis; Semones, Edward; Zapp, Neal; Miller, Jack; Dettmann, Jan

    2009-02-01

    Space radiation hazards are recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a potentially limiting factor since current protection limits for low-Earth orbit missions may be approached or even exceeded. In such a situation, an accurate risk assessment requires knowledge of equivalent doses in critical radiosensitive organs rather than only skin doses or ambient doses from area monitoring. To achieve this, the MATROSHKA experiment uses a human phantom torso equipped with dedicated detector systems. We measured for the first time the doses from the diverse components of ionizing space radiation at the surface and at different locations inside the phantom positioned outside the International Space Station, thereby simulating an extravehicular activity of an astronaut. The relationships between the skin and organ absorbed doses obtained in such an exposure show a steep gradient between the doses in the uppermost layer of the skin and the deep organs with a ratio close to 20. This decrease due to the body self-shielding and a concomitant increase of the radiation quality factor by 1.7 highlight the complexities of an adequate dosimetry of space radiation. The depth-dose distributions established by MATROSHKA serve as benchmarks for space radiation models and radiation transport calculations that are needed for mission planning. PMID:19267549

  13. Internal dose assessment data management system for a large population of Pu workers.

    PubMed

    Bertelli, L; Miller, G; Little, T; Guilmette, R A; Glasser, S M

    2007-01-01

    This paper describes the design and implementation of the Los Alamos National Laboratory (LANL) dose assessment (DA) data system. Dose calculations for the most important radionuclides at LANL, namely plutonium, americium, uranium and tritium, are performed through the Microsoft Access DA database. DA includes specially developed forms and macros that perform a variety of tasks, such as retrieving bioassay data, launching the FORTRAN internal dosimetry applications and displaying dose results in the form of text summaries and plots. The DA software involves the following major processes: (1) downloading of bioassay data from a remote data source, (2) editing local and remote databases, (3) setting up and carrying out internal dose calculations using the UF code or the ID code, (3) importing results of the dose calculations into local results databases, (4) producing a secondary database of 'official results' and (5) automatically creating and e-mailing reports. The software also provides summary status and reports of the pending DAs, which are useful for managing the cases in process. PMID:17925307

  14. BRADOS - Dose determination in the Russian segment of the International Space Station

    NASA Astrophysics Data System (ADS)

    Hajek, M.; Berger, T.; Fürstner, M.; Fugger, M.; Vana, N.; Akatov, Y.; Shurshakov, V.; Arkhangelsky, V.

    Absorbed dose and dose-average linear energy transfer (LET) were assessed by means of LiF: Mg, Ti thermoluminescence (TL) detectors at different locations onboard the Russian segment (RS) of the International Space Station (ISS) in the timeframe between February and November 2001, i.e. for 248 days. Based on calibrations of the employed detectors in a variety of heavy-ion beams, mainly at the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan, the measured absorbed dose values could be corrected for the TL dose registration efficiency in the radiation climate onboard the ISS. Various strategies for efficiency correction are discussed. For the specific case the efficiency correction accounted for a reduction by nearly 20 % in dose, implying that without proper consideration of the TL efficiency behaviour the absorbed dose inside the ISS would be overestimated. The dose-average LET was derived from TLD-700 measurements evaluated according to the well-established high-temperature ratio (HTR) method which analyzes the TL emission in the temperature range between 248 and 310 C. According to the shielding distribution, the efficiency-corrected absorbed dose was found to vary between 155 μ Gy/d for panel N 457 (RS-ISS toilet) and 230 μ Gy/d for panel N 443 (RS-ISS starboard cabin). The determined LET indicated a modification of the spectral composition of the onboard radiation field for the different exposure locations. Arrangement of TLD-600 and TLD-700 in pair allowed also some information about the neutron component to be drawn. Experimentally determined absorbed dose values are compared with model calculations by means of a self-developed code, using as input data detailed shielding distributions and proton fluxes from AP-8 and JPL algorithms.

  15. A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers.

    PubMed

    Boice, John D; Leggett, Richard W; Ellis, Elizabeth Dupree; Wallace, Phillip W; Mumma, Michael; Cohen, Sarah S; Brill, A Bertrand; Chadda, Bandana; Boecker, Bruce B; Yoder, R Craig; Eckerman, Keith F

    2006-05-01

    Incomplete radiation exposure histories, inadequate treatment of internally deposited radionuclides, and failure to account for neutron exposures can be important uncertainties in epidemiologic studies of radiation workers. Organ-specific doses from lifetime occupational exposures and radionuclide intakes were estimated for an epidemiologic study of 5,801 Rocketdyne/Atomics International (AI) radiation workers engaged in nuclear technologies between 1948 and 1999. The entire workforce of 46,970 Rocketdyne/AI employees was identified from 35,042 Kardex work histories cards, 26,136 electronic personnel listings, and 14,189 radiation folders containing individual exposure histories. To obtain prior and subsequent occupational exposure information, the roster of all workers was matched against nationwide dosimetry files from the Department of Energy, the Nuclear Regulatory Commission, the Landauer dosimetry company, the U.S. Army, and the U.S. Air Force. Dosimetry files of other worker studies were also accessed. Computation of organ doses from radionuclide intakes was complicated by the diversity of bioassay data collected over a 40-y period (urine and fecal samples, lung counts, whole-body counts, nasal smears, and wound and incident reports) and the variety of radionuclides with documented intake including isotopes of uranium, plutonium, americium, calcium, cesium, cerium, zirconium, thorium, polonium, promethium, iodine, zinc, strontium, and hydrogen (tritium). Over 30,000 individual bioassay measurements, recorded on 11 different bioassay forms, were abstracted. The bioassay data were evaluated using ICRP biokinetic models recommended in current or upcoming ICRP documents (modified for one inhaled material to reflect site-specific information) to estimate annual doses for 16 organs or tissues taking into account time of exposure, type of radionuclide, and excretion patterns. Detailed internal exposure scenarios were developed and annual internal doses were derived

  16. Internal dose assessment -- Operation Crossroads. Technical report, 11 January 1984-15 April 1985

    SciTech Connect

    Phillips, J.; Klemm, J.; Goetz, J.

    1985-10-30

    The radiation dose commitment to ten body organs/parts, due to inhalation of resuspended nuclear contaminants from target ships exposed to the underwater burst (Test Baker) is determined for personnel who worked on the ships during and after Operation CROSSROADS. Four representative ships, INDEPENDENCE, NEW YORK, PENSACOLA and SALT LAKE CITY, are examined for the personnel activities associated with post-BAKER reboarding. Additionally, the dose due to internal emitters is assessed for personnel who unloaded ammunition from twenty target ships at Kwajalein, and for shipyard workers exposed to eight of the higher intensity ships at Pearl Harbor, Puget Sound, and San Francisco Naval Shipyards. For almost all activities, fifty-year bone dose commitments are less than 0.15 rem from any annual period of exposure.

  17. Dose distribution in the Russian Segment of the International Space Station.

    PubMed

    Hajek, M; Berger, T; Fugger, M; Fürstner, M; Vana, N; Akatov, Y; Shurshakov, V; Arkhangelsky, V

    2006-01-01

    Absorbed dose and average linear energy transfer (LET) were assessed by means of (7)LiF:Mg,Ti (TLD-700) thermoluminescent (TL) detectors for different panels on-board the Russian Segment of the International Space Station in the timeframe between March and November 2002 (233 d). A technique is presented to correct the measured absorbed dose values for TL efficiency in the radiation climate on-board the spacecraft. Average LET is determined from the high-temperature TL emission in the TLD-700 glow curve and used as a parameter in the TL efficiency correction. Depending on the shielding distribution, the efficiency-corrected absorbed dose varies between 154 +/- 5 microGy d(-1) in panel no. 327 (core block ceiling) and 191 +/- 3 microGy d(-1) in panel no. 110 (core block central axis, floor). The experimental data are compared with the model calculations by using detailed shielding distributions and orbit parameters as inputs. PMID:16606660

  18. Issues in weighting bioassay data for use in regressions for internal dose assessments

    SciTech Connect

    Strom, D.J.

    1992-11-01

    For use of bioassay data in internal dose assessment, research should be done to clarify the goal desired, the choice of method to achieve the goal, the selection of adjustable parameters, and on the ensemble of information that is available. Understanding of these issues should determine choices of weighting factors for bioassay data used in regression models. This paper provides an assessment of the relative importance of the various factors.

  19. Development of a technique for improving coefficient of variation of CaSO4:Dy teflon-based TLD personnel monitoring system in low-dose region.

    PubMed

    Pradhan, S M; Sneha, C; Sahai, M K; Chougaonkar, M P; Babu, D A R

    2015-12-01

    In view of the importance of zero-dose background (null signal) in influencing the coefficient of variation in low-dose region, a technique for the estimation of the same from composite (gross) signal is developed for CaSO4:Dy-based personnel monitoring system being used in India. The technique is based on simple analysis of glow curves (GCs) of unexposed and exposed dosemeters, evolution of trend/model for the zero-dose curves, generation of simulation protocol for individual zero-dose curves, establishment of characteristics of GCs of exposed dosemeters and finally preparation of an algorithm to segregate the components from composite signal. The technique offers the separation of real-time background and gives superior results over other method of approximation of the background. The results also prove efficiency of the empirical trending and simulation protocol of background GCs. The proposed technique can be implemented in routine monitoring without any extra man hours and reader time. PMID:25527179

  20. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    SciTech Connect

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  1. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    SciTech Connect

    Sullivan, T.

    2014-09-24

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  2. Results of an internal dose assessment intercomparison exercise after a EURADOS/IAEA training course.

    PubMed

    Castellani, C-M; Lopez, M A; Luciani, A; Marsh, J W; Vrba, T; Cruz-Suarez, R

    2011-03-01

    A training course named 'European Radiation Dosimetry Group/International Atomic Energy Agency Advanced Training Course on Internal Dose Assessment' was held in Czech Technical University in Prague from 2 to 6 February 2009. The course, jointly organised by the two organisations, had the aim of providing guidance on the application of IDEAS guidelines and of disseminating the results of EC CONRAD Project in relation to internal dosimetry (Work Package 5). At the end of the course a dose assessment exercise was proposed to participants. Four artificial cases, named exercises left to participants, were used to check the capabilities of application of the IDEAS guidelines, gained by participants during the event. The participants had to use both hand calculations and dedicated software, in limited time (7 h). Forty per cent of participants had solved all four cases in the allotted time. The results of the dose assessment were analysed to gain experience in types of errors assessors may make during the evaluations. The result of this intercomparison exercise was promising: half of the results in each case were equal to the 'reference evaluation estimate', which was obtained by applying the guidelines correctly. PMID:21051435

  3. Comparison of internal doses calculated using the specific absorbed fractions of the average adult Japanese male phantom with those of the reference computational phantom-adult male of ICRP publication 110

    NASA Astrophysics Data System (ADS)

    Manabe, Kentaro; Sato, Kaoru; Endo, Akira

    2014-03-01

    In order to study the effects of body sizes and masses of organs and tissues on internal dose assessment, the values corresponding to effective dose coefficients for intakes of radionuclides were calculated using the specific absorbed fractions (SAFs) of two phantoms: the average adult Japanese male phantom (JM-103) and the reference computational phantom-adult male (RCP-AM) of the International Commission on Radiological Protection. SAFs were evaluated using the phantoms and Monte Carlo radiation transport code MCNPX or were taken from published data. As a result of a comparison for 2894 cases of 923 radionuclides, the maximum discrepancy in the effective dose coefficients between the JM-103 and RCP-AM was about 40%. However, the discrepancies were smaller than 10% in 97% of all cases.

  4. Internal thyroid doses to Fukushima residents-estimation and issues remaining.

    PubMed

    Kim, Eunjoo; Kurihara, Osamu; Kunishima, Naoaki; Momose, Takumaro; Ishikawa, Tetsuo; Akashi, Makoto

    2016-08-01

    Enormous quantities of radionuclides were released into the environment following the disastrous accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. It is of great importance to determine the exposure doses received by the populations living in the radiologically affected areas; however, there has been significant difficulty in estimating the internal thyroid dose received through the intake of short-lived radionuclides (mainly, (131)I), because of the lack of early measurements on people. An estimation by the National Institute of Radiological Sciences for 1 April 2012 to 31 March 2013 was thus performed using a combination of the following three sources: thyroid measurement data ((131)I) for 1080 children examined in the screening campaign, whole-body counter measurement data ((134)Cs, (137)Cs) for 3000 adults, and atmospheric transport dispersion model simulations. In this study, the residents of Futaba town, Iitate village and Iwaki city were shown to have the highest thyroid equivalent dose, and their doses were estimated to be mostly below 30 mSv. However, this result involved a lot of uncertainties and provided only representative values for the residents. The present paper outlines a more recent dose estimation and preliminary analyses of personal behavior data used in the new method. PMID:27538842

  5. Internal thyroid doses to Fukushima residents—estimation and issues remaining

    PubMed Central

    Kim, Eunjoo; Kurihara, Osamu; Kunishima, Naoaki; Momose, Takumaro; Ishikawa, Tetsuo; Akashi, Makoto

    2016-01-01

    Enormous quantities of radionuclides were released into the environment following the disastrous accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. It is of great importance to determine the exposure doses received by the populations living in the radiologically affected areas; however, there has been significant difficulty in estimating the internal thyroid dose received through the intake of short-lived radionuclides (mainly, 131I), because of the lack of early measurements on people. An estimation by the National Institute of Radiological Sciences for 1 April 2012 to 31 March 2013 was thus performed using a combination of the following three sources: thyroid measurement data (131I) for 1080 children examined in the screening campaign, whole-body counter measurement data (134Cs, 137Cs) for 3000 adults, and atmospheric transport dispersion model simulations. In this study, the residents of Futaba town, Iitate village and Iwaki city were shown to have the highest thyroid equivalent dose, and their doses were estimated to be mostly below 30 mSv. However, this result involved a lot of uncertainties and provided only representative values for the residents. The present paper outlines a more recent dose estimation and preliminary analyses of personal behavior data used in the new method. PMID:27538842

  6. Occupational radiation dose to eyes from interventional radiology procedures in light of the new eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Walsh, C; Gallagher, A; Dowling, A; Guiney, M; Ryan, J M; McEniff, N; O'Reilly, G

    2015-01-01

    Objective: In 2011, the International Commission on Radiological Protection (ICRP) recommended a substantial reduction in the equivalent dose limit for the lens of the eye, in line with a reduced threshold of absorbed dose for radiation-induced cataracts. This is of particular relevance in interventional radiology (IR) where it is well established that staff doses can be significant, however, there is a lack of data on IR eye doses in terms of Hp(3). Hp(3) is the personal dose equivalent at a depth of 3 mm in soft tissue and is used for measuring lens dose. We aimed to obtain a reliable estimate of eye dose to IR operators. Methods: Lens doses were measured for four interventional radiologists over a 3-month period using dosemeters specifically designed to measure Hp(3). Results: Based on their typical workloads, two of the four interventional radiologists would exceed the new ICRP dose limit with annual estimated doses of 31 and 45 mSv to their left eye. These results are for an “unprotected” eye, and for IR staff who routinely wear lead glasses, the dose beneath the glasses is likely to be significantly lower. Staff eye dose normalized to patient kerma–area product and eye dose per procedure have been included in the analysis. Conclusion: Eye doses to IR operators have been established using a dedicated Hp(3) dosemeter. Estimated annual doses have the potential to exceed the new ICRP limit. Advances in knowledge: We have estimated lens dose to interventional radiologists in terms of Hp(3) for the first time in an Irish hospital setting. PMID:25761211

  7. An international dosimetry exchange for boron neutron capture therapy, Part I: Absorbed dose measurements

    SciTech Connect

    Binns, P.J.; Riley, K.J.; Harling, O.K.

    2005-12-15

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 {mu}g g{sup -1} that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  8. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study. PMID:16475772

  9. Fluence-to-dose conversion coefficients based on the posture modification of Adult Male (AM) and Adult Female (AF) reference phantoms of ICRP 110

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Santos, W. S.; Alves, M. C.; Souza, D. N.; Carvalho, A. B.

    2016-04-01

    The aim of this work was to modify the standing posture of the anthropomorphic reference phantoms of ICRP publication 110, AM (Adult Male) and AF (Adult Female), to the sitting posture. The change of posture was performed using the Visual Monte Carlo software (VMC) to rotate the thigh region of the phantoms and position it between the region of the leg and trunk. Scion Image software was used to reconstruct and smooth the knee and hip contours of the phantoms in a sitting posture. For 3D visualization of phantoms, the VolView software was used. In the change of postures, the organ and tissue masses were preserved. The MCNPX was used to calculate the equivalent and effective dose conversion coefficients (CCs) per fluence for photons for six irradiation geometries suggested by ICRP publication 110 (AP, PA, RLAT, LLAT, ROT and ISO) and energy range 0.010-10 MeV. The results were compared between the standing and sitting postures, for both sexes, in order to evaluate the differences of scattering and absorption of radiation for different postures. Significant differences in the CCs for equivalent dose were observed in the gonads, colon, prostate, urinary bladder and uterus, which are present in the pelvic region, and in organs distributed throughout the body, such as the lymphatic nodes, muscle, skeleton and skin, for the phantoms of both sexes. CCs for effective dose showed significant differences of up to 16% in the AP irradiation geometry, 27% in the PA irradiation geometry and 13% in the ROT irradiation geometry. These results demonstrate the importance of using phantoms in different postures in order to obtain more precise conversion coefficients for a given exposure scenario.

  10. Turbulent bulk transfer coefficients and ozone deposition velocity in the International Consortium for Atmospheric Research into Transport and Transformation

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Bariteau, L.; Grachev, A. A.; Hill, R. J.; Wolfe, D. E.; Brewer, W. A.; Tucker, S. C.; Hare, J. E.; Angevine, W. M.

    2006-12-01

    In this paper, we examine observations of shallow, stable boundary layers in the cool waters of the Gulf of Maine between Cape Cod, Massachusetts, and Nova Scotia, obtained in the 2004 New England Air Quality Study (NEAQS-04), which was part of the International Consortium for Atmospheric Research into Transport and Transformation (ICARTT). The observations described herein were made from the NOAA Research Vessel Ronald H. Brown. The ship was instrumented for measurements of meteorological, gas-phase and aerosol atmospheric chemistry variables. Meteorological instrumentation included a Doppler lidar, a radar wind profiler, rawinsonde equipment, and a surface flux package. In this study, we focus on direct comparisons of the NEAQS-04 flux observations with the COARE bulk flux algorithm to investigate possible coastal influences on air-sea interactions. We found significant suppression of the transfer coefficients for momentum, sensible heat, and latent heat; the suppression was correlated with lighter winds, more stable surface layers, S-SE wind direction, and lower boundary layer heights. Analysis of the details shows the suppression is not a measurement, stability correction, or surface wave effect. The correlation with boundary layer height is consistent with an interpretation that our measurements at 18-m height do not realize the full surface flux in shallow boundary layers. We also find that a bulk Richardson number threshold of 0.1 gives a better estimate of boundary layer height than 0.25 or 0.5. Mean ozone deposition velocity is estimated as 0.44 mm s-1, corresponding to a boundary removal timescale of about 1 day.

  11. ACUTE AND CHRONIC INTAKES OF FALLOUT RADIONUCLIDES BY MARSHALLESE FROM NUCLEAR WEAPONS TESTING AT BIKINI AND ENEWETAK AND RELATED INTERNAL RADIATION DOSES

    PubMed Central

    Simon, Steven L.; Bouville, André; Melo, Dunstana; Beck, Harold L.; Weinstock, Robert M.

    2014-01-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and

  12. Acute and chronic intakes of fallout radionuclides by Marshallese from nuclear weapons testing at Bikini and Enewetak and related internal radiation doses.

    PubMed

    Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold L; Weinstock, Robert M

    2010-08-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and

  13. Impact of Internal Metallic Ports in Temporary Tissue Expanders on Postmastectomy Radiation Dose Distribution

    SciTech Connect

    Chen, Susie A.; Ogunleye, Tomiwa; Dhabbaan, Anees; Huang, Eugene H.; Losken, Albert; Gabram, Sheryl; Davis, Lawrence; Torres, Mylin A.

    2013-03-01

    Purpose: Temporary tissue expanders (TTE) with an internal magnetic metal port (IMP) have been increasingly used for breast reconstruction in post-mastectomy patients who receive radiation therapy (XRT). We evaluated XRT plans of patients with IMP to determine its effect on XRT dose distribution. Methods and Materials: Original treatment plans with CT simulation scans of 24 consecutive patients who received XRT (ORI), planned without heterogeneity corrections, to a reconstructed breast containing an IMP were used. Two additional treatment plans were then generated: one treatment plan with the IMP assigned the electron density of the rare earth magnet, nickel plated neodymium-iron-boron (HET), and a second treatment plan with the IMP assigned a CT value of 1 to simulate a homogeneous breast without an IMP (BRS). All plans were prescribed 50 Gy to the reconstructed breast (CTV). Results: CTV coverage by 50 Gy was significantly lower in the HET (mean 87.7% CTV) than in either the ORI (mean 99.7% CTV, P<.001) or BRS plans (mean 95.0% CTV, P<.001). The effect of the port was more pronounced on CT slices containing the IMP with prescription dose coverage of the CTV being less in the HET than in either ORI (mean difference 33.6%, P<.01) or BRS plans (mean difference 30.1%, P<.001). HET had a less homogeneous and conformal dose distribution than BRS or ORI. Conclusion: IMPs increase dose heterogeneity and reduce dose to the breast CTV through attenuation of the beam. For optimal XRT treatment, heterogeneity corrections should be used in XRT planning for patients with TTE with IMP, as the IMP impacts dose distribution.

  14. Internal Mammary Lymph Node Irradiation Contributes to Heart Dose in Breast Cancer

    SciTech Connect

    Chargari, Cyrus; Castadot, Pierre; MacDermed, Dhara; Vandekerkhove, Christophe; Bourgois, Nicolas; Van Houtte, Paul; Magne, Nicolas

    2010-10-01

    We assessed the impact of internal mammary chain radiotherapy (IMC RT) to the radiation dose received by the heart in terms of heart dose-volume histogram (DVH). Thirty-six consecutive breast cancer patients presenting with indications for IMC RT were enrolled in a prospective study. The IMC was treated by a standard conformal RT technique (50 Gy). For each patient, a cardiac DVH was generated by taking into account the sole contribution of IMC RT. Cardiac HDV were compared according to breast cancer laterality and the type of previous surgical procedure, simple mastectomy or breast conservative therapy (BCT). The contribution of IMC RT to the heart dose was significantly greater for patients with left-sided versus right-sided tumors (13.8% and 12.8% for left-sided tumors versus 3.9% and 4.2% for right-sided tumors in the BCT group and the mastectomy group, respectively; p < 0.0001). There was no statistically significant difference in IMC contribution depending on the initial surgical procedure. IMC RT contributes to cardiac dose for both left-sided and right-sided breast cancers, although the relative contribution is greater in patients with left-sided tumors.

  15. Derivation of Geometry Factors for Internal Gamma Dose Calculations for a Cylindrical Radioactive Waste Package

    SciTech Connect

    Lewis, Brent J.; Husain, Aamir

    2002-12-15

    A general methodology was developed to estimate geometry factors for internal gamma dose rate calculations within a cylindrical radioactive waste container. In particular, an average geometry factor is needed to calculate the average energy deposition rate within the container for determination of the internal gas generation rate. Such a calculation is required in order to assess the potential for radioactive waste packages to radiolytically generate combustible gases.This work therefore provides a method for estimating the point and average geometry factors for internal dose assessment for a cylindrical geometry. This analysis is compared to other results where it is shown that the classical work of Hine and Brownell do not correspond to the average geometry factors for a cylindrical body but rather to values at the center of its top or bottom end. The current treatment was further developed into a prototype computer code (PC-CAGE) that calculates the geometry factors numerically for a cylindrical body of any size and material, accounting both for gamma absorption and buildup effects.

  16. Development of mathematical pediatric phantoms for internal dose calculations: designs, limitations, and prospects

    SciTech Connect

    Cristy, M.

    1980-01-01

    Mathematical phantoms of the human body at various ages are employed with Monte Carlo radiation transport codes for calculation of photon specific absorbed fractions. The author has developed a pediatric phantom series based on the design of the adult phantom, but with explicit equations for each organ so that organ sizes and marrow distributions could be assigned properly. Since the phantoms comprise simple geometric shapes, predictive dose capability is limited when geometry is critical to the calculation. Hence, there is a demand for better phantom design in situations where geometry is critical, such as for external irradiation or for internal emitters with low energy photons. Recent advances in computerized axial tomography (CAT) present the potential for derivation of anatomical information, which is so critical to development of phantoms, and ongoing developmental work on compuer architecture to handle large arrays for Monte Carlo calculations should make complex-geometry dose calculations economically feasible within this decade.

  17. The influence of physicochemical properties on the internal dose of trihalomethanes in humans following a controlled showering exposure.

    PubMed

    Silva, Lalith K; Backer, Lorraine C; Ashley, David L; Gordon, Sydney M; Brinkman, Marielle C; Nuckols, John R; Wilkes, Charles R; Blount, Benjamin C

    2013-01-01

    Although disinfection of domestic water supply is crucial for protecting public health from waterborne diseases, this process forms potentially harmful by-products, such as trihalomethanes (THMs). We evaluated the influence of physicochemical properties of four THMs (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) on the internal dose after showering. One hundred volunteers showered for 10 min in a controlled setting with fixed water flow, air flow, and temperature. We measured THMs in shower water, shower air, bathroom air, and blood samples collected at various time intervals. The geometric mean (GM) for total THM concentration in shower water was 96.2 μg/l. The GM of total THM in air increased from 5.8 μg/m(3) pre shower to 351 μg/m(3) during showering. Similarly, the GM of total-blood THM concentration increased from 16.5 ng/l pre shower to 299 ng/l at 10 min post shower. THM levels were significantly correlated between different matrices (e.g. dibromochloromethane levels) in water and air (r=0.941); blood and water (r=0.845); and blood and air (r=0.831). The slopes of best-fit lines for THM levels in water vs air and blood vs air increased with increasing partition coefficient of water/air and blood/air. The slope of the correlation plot of THM levels in water vs air decreased in a linear (r=0.995) fashion with increasing Henry's law constant. The physicochemical properties (volatility, partition coefficients, and Henry's law constant) are useful parameters for predicting THM movement between matrices and understanding THM exposure during showering. PMID:22829048

  18. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    SciTech Connect

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-23

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236{+-}0.677 kBq/L and 1.704{+-}0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO{sub 4} addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 {mu}Sv/year and 0.532 {mu}Sv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 {mu}Sv/year.

  19. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    NASA Astrophysics Data System (ADS)

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-01

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236±0.677 kBq/L and 1.704±0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO4 addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 μSv/year and 0.532 μSv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 μSv/year.

  20. Nuclear Decay Data in the MIRD (Medical Internal Radiation Dose) Format

    DOE Data Explorer

    MIRD is a database of evaluated nuclear decay data for over 2,100 radioactive nuclei. Data are extracted from ENSDF, processed by the program RadList, and used for medical internal radiation dose calculations. When using the MIRD interface, tables of nuclear and atomic radiations from nuclear decay and decay scheme drawings will be produced in the MIRD format from the Evaluated Nuclear Structure Data File (ENSDF) for the specified nuclide. Output may be either HTML-formatted tables and JPEG drawings, PostScript tables and drawings, or PDF tables and drawings.

  1. Occupational radiation dose to eyes from endoscopic retrograde cholangiopancreatography procedures in light of the revised eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Gallagher, A; Malone, L; O’Reilly, G

    2013-01-01

    Objective: Endoscopic retrograde cholangiopancreatography (ERCP) is a common procedure that combines the use of X-ray fluoroscopy and endoscopy for examination of the bile duct. Published data on ERCP doses are limited, including staff eye dose from ERCP. Occupational eye doses are of particular interest now as the International Commission on Radiological Protection (ICRP) has recommended a reduction in the dose limit to the lens of the eye. The aim of this study was to measure occupational eye doses obtained from ERCP procedures. Methods: A new eye lens dosemeter (EYE-D™, Radcard, Krakow, Poland) was used to measure the ERCP eye dose, Hp(3), at two endoscopy departments in Ireland. A review of radiation protection practice at the two facilities was also carried out. Results: The mean equivalent dose to the lens of the eye of a gastroenterologist is 0.01 mSv per ERCP procedure with an undercouch X-ray tube and 0.09 mSv per ERCP procedure with an overcouch X-ray tube. Staff eye dose normalised to patient kerma area product is also presented. Conclusion: Staff eye doses in ERCP have the potential to exceed the revised ICRP limit of 20 mSv per annum when an overcouch X-ray tube is used. The EYE-D dosemeter was found to be a convenient method for measuring lens dose. Eye doses in areas outside of radiology departments should be kept under review, particularly in light of the new ICRP eye dose limit. Advances in knowledge: Occupational eye lens doses from ERCP procedures have been established using a new commercially available dedicated Hp(3) dosemeter. PMID:23385992

  2. Exposure versus internal dose: Respiratory tract deposition modeling of inhaled asbestos fibers in rats and humans (Presentation Poster)

    EPA Science Inventory

    Exposure to asbestos is associated with respiratory diseases, including asbestosis, lung cancer and mesothelioma. Internal fiber dose depends on fiber inhalability and orientation, fiber density, length and width, and various deposition mechanisms (DM). Species-specific param...

  3. Estimates of intakes and internal doses from ingestion of {sup 32}P at MIT and NIH

    SciTech Connect

    Stabin, M.G.; Toohey, R.E.

    1996-06-01

    A researcher at Massachusetts Institute of Technology (MIT) became internally contaminated with {sup 32}P, probably due to an intentional act. The incident occurred on or about 14 August 1995. Subsequent measurement of activity in urine and a single whole body count were used to estimate the individual`s intake, with the assumption of ingestion as the route of intake. Two separate Sets of urine data were analyzed-one supplied by MIT and one from independent analyses of urine samples conducted at Oak Ridge Institute for Science and Education (ORISE); the former data set contained 35 samples, the latter 49. In addition, the results of 35 whole body counts, provided by MIT from a chair-type counter calibrated for 32p, were used to obtain a separate estimate of intake. The kinetic model for 32P proposed in ICRP Publication 30 and implemented in NUREG/CR-4884 was used to interpret the data. The data were analyzed using both the weighted and unweighted least squares techniques. All of the intake estimates were in very good agreement with each other, ranging from 18-22 MBq. Based on the dose model in ICRP 30, this would indicate a committed effective dose equivalent of 38-46 mSv. The incident was helpful in assessing the value of the least squares techniques in determining estimates of intake and dose. The ICRP model tended to slightly overestimate the whole body retention data and underestimate the urinary excretion at later times. Further results obtained by visual best fit and development of an individual-specific kinetic and dose model will also be discussed. This incident was quite similar to another case of ingestion of 32p that occurred at the National Institute of Health (NIH) on 28 June 1995. Dose assessment for the NIH case will also be presented if the data are available for public release.

  4. Establishing bounding internal dose estimates for thorium activities at Rocky Flats.

    PubMed

    Ulsh, Brant A; Rich, Bryce L; Chew, Melton H; Morris, Robert L; Sharfi, Mutty; Rolfes, Mark R

    2008-07-01

    As part of an evaluation of a Special Exposure Cohort petition filed on behalf of workers at the Rocky Flats Plant, the National Institute for Occupational Safety and Health (NIOSH) was required to demonstrate that bounding values could be established for radiation doses due to the potential intake of all radionuclides present at the facility. The main radioactive elements of interest at Rocky Flats were plutonium and uranium, but much smaller quantities of several other elements, including thorium, were occasionally handled at the site. Bounding potential doses from thorium has proven challenging at other sites due to the early historical difficulty in detecting this element through urinalysis methods and the relatively high internal dose delivered per unit intake. This paper reports the results of NIOSH's investigation of the uses of thorium at Rocky Flats and provides bounding dose reconstructions for these operations. During this investigation, NIOSH reviewed unclassified reports, unclassified extracts of classified materials, material balance and inventory ledgers, monthly progress reports from various groups, and health physics field logbooks, and conducted interviews with former Rocky Flats workers. Thorium operations included: (1) an experimental metal forming project with 240 kg of thorium in 1960; (2) the use of pre-formed parts in weapons mockups; (3) the removal of Th from U; (4) numerous analytical procedures involving trace quantities of thorium; and (5) the possible experimental use of thorium as a mold coating compound. The thorium handling operations at Rocky Flats were limited in scope, well-monitored and documented, and potential doses can be bounded. PMID:18545032

  5. Development of wireless communication system in real-time internal radiation dose measurement system using magnetic field

    NASA Astrophysics Data System (ADS)

    Sato, Fumihiro; Shinohe, Kohta; Takura, Tetsuya; Matsuki, Hidetoshi; Yamada, Syogo; Sato, Tadakuni

    2009-04-01

    In radiation therapy, excessive radiation occurs because the actual delivered dose to the tumor is unknown. To overcome this problem, we need a system in which the delivered dose is measured inside the body, and the dose data are transmitted from the inside to the outside of the body. In this study, a wireless communication system, using magnetic fields was studied, and an internal circuit for obtaining radiation dose data from an x-ray detector was examined. As a result, a communication distance of 200 mm was obtained. An internal circuit was developed, and a signal transmission experiment was performed using the wireless communication system. As a result, the radiation dose data from an x-ray detector was transmitted over a communication distance of 200 mm, and the delivered dose was determined from the received signal.

  6. Revised series of stylized anthropometric phantoms for internal and external radiation dose assessment

    NASA Astrophysics Data System (ADS)

    Han, Eunyoung

    At present, the dosimetry systems of both the International Commission on Radiological Protection, and the Society of Nuclear Medicine's Medical Internal Radiation Dose Committee utilize a series of stylized or mathematical anthropometric models of patient anatomy developed in 1987 at the Oak Ridge National Laboratory (ORNL). In this study, substantial revisions to the ORNL phantom series are reported with tissue compositions, tissue densities, and organ masses adjusted to match their most recent values in the literature. In addition, both the ICRP and MIRD systems of internal dosimetry implicitly consider that electron and beta-particle energy emitted within the source organs of the patient are fully deposited within these organs. With the development of the revised ORNL phantom series, three additional applications were explored as part of this dissertation research. First, the phantoms were used in combination to assess external radiation exposures to family members caring or interacting with patients released from the hospital following radionuclide therapy with I-131. Values of family member effective dose are then compared to values obtained using NRC guidance and based on a simple point-source methodology which ignores the effects of photon attenuation and scatter within both the source individual (patient) and the target individual (family member). Second, the anatomical structures of the extrathoracic airways and thoracic airways (exclusive of the lungs themselves) have been included in the entire revised ORNL phantom series of pediatric individuals. Values of cross-region photon dose are explored for use in radioactive aerosol inhalation exposures to members of the general public, and comparisons are made to values given by the ICRP in which surrogate organ assignments were made in the absence of explicit models of these airways. Finally, the revised ORNL phantoms of the adult male and adult female are used to determine internal photon exposures to

  7. Letter to the Editor: Appropriate selection of dose coefficients in radiological assessments: C-14 and Cl-36: response to the letter of G Smith and M Thorne (2015 J. Radiol. Prot. 35 737-40)

    DOE PAGESBeta

    Harrison, John D.; Leggett, Richard Wayne

    2016-01-01

    This letter to the editor of Journal of Radiological Protection is in response to a letter to the editor from G. M. Smith and M. C. Thorne of Great Britain concerning the appropriate selection of dose coefficients for ingested carbon-14 and chlorine-36, two of the most important long-lived components of radioactive wastes. Smith and Thorne argue that current biokinetic models of the International Commission on Radiological Protection (ICRP) for carbon and chlorine are overly cautious models from the standpoint of radiation dose estimates for C-14 and Cl-36, and that more realistic models are needed for evaluation of the hazards ofmore » these radionuclides in nuclear wastes. We (Harrison and Leggett) point out that new biokinetic models for these and other elements (developed at ORNL) will soon appear in ICRP Publications. These new models generally are considerably more realistic than current ICRP models. Here, examples are given for C-14 inhaled as carbon dioxide or ingested in water as bicarbonate, carbonate, or carbon dioxide.« less

  8. Letter to the Editor: Appropriate selection of dose coefficients in radiological assessments: C-14 and Cl-36: response to the letter of G Smith and M Thorne (2015 J. Radiol. Prot. 35 737-40)

    SciTech Connect

    Harrison, John D.; Leggett, Richard Wayne

    2016-01-01

    This letter to the editor of Journal of Radiological Protection is in response to a letter to the editor from G. M. Smith and M. C. Thorne of Great Britain concerning the appropriate selection of dose coefficients for ingested carbon-14 and chlorine-36, two of the most important long-lived components of radioactive wastes. Smith and Thorne argue that current biokinetic models of the International Commission on Radiological Protection (ICRP) for carbon and chlorine are overly cautious models from the standpoint of radiation dose estimates for C-14 and Cl-36, and that more realistic models are needed for evaluation of the hazards of these radionuclides in nuclear wastes. We (Harrison and Leggett) point out that new biokinetic models for these and other elements (developed at ORNL) will soon appear in ICRP Publications. These new models generally are considerably more realistic than current ICRP models. Here, examples are given for C-14 inhaled as carbon dioxide or ingested in water as bicarbonate, carbonate, or carbon dioxide.

  9. Lung cancer and internal lung doses among plutonium workers at the Rocky Flats Plant: a case-control study.

    PubMed

    Brown, Shannon C; Schonbeck, Margaret F; McClure, David; Barón, Anna E; Navidi, William C; Byers, Tim; Ruttenber, A James

    2004-07-15

    The authors conducted a nested case-control study of the association between lung cancer mortality and cumulative internal lung doses among a cohort of workers employed at the Rocky Flats Plant in Colorado from 1951 to 1989. Cases (n = 180) were individually matched with controls (n = 720) on age, sex, and birth year. Annual doses to the lung from plutonium, americium, and uranium isotopes were calculated for each worker with an internal dosimetry model. Lung cancer risk was elevated among workers with cumulative internal lung doses of more than 400 mSv in several different analytical models. The dose-response relation was not consistent at high doses. Restricting analysis to those employed for 15-25 years produced a statistically significant linear trend with dose (chi-square = 67.2, p < 0.001), suggesting a strong healthy worker survivor effect. The association between age at first internal lung dose and lung cancer mortality was statistically significant (odds ratio = 1.05, 95% confidence interval: 1.01, 1.10). No associations were found between lung cancer mortality and cumulative external penetrating radiation dose or cumulative exposures to asbestos, beryllium, hexavalent chromium, or nickel. PMID:15234938

  10. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  11. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  12. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  13. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  14. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  15. Ambient and biological monitoring of cokeoven workers: determinants of the internal dose of polycyclic aromatic hydrocarbons.

    PubMed Central

    Jongeneelen, F J; van Leeuwen, F E; Oosterink, S; Anzion, R B; van der Loop, F; Bos, R P; van Veen, H G

    1990-01-01

    Polycyclic aromatic hydrocarbons (PAH) were measured in the breathing zone air of 56 battery workers at two cokeovens during three consecutive days. The concentration of total PAH ranged up to 186 micrograms/m3. Preshift and end of shift urine samples were collected to determine 1-hydroxypyrene, a metabolite of pyrene. Control urine samples were available from 44 workers in the shipping yard of a hot rolling mill. The median values of 1-hydroxypyrene in urine of smoking and non-smoking controls were 0.51 and 0.17 mumol/mol creatinine, respectively. Concentrations of 1-hydroxypyrene up to 11.2 mumol/mol were found in the urine of the cokeoven workers. At the start of the three day working period after 32 hours off work, the 1-hydroxypyrene concentrations were four times higher and at the end of the working period 10 times higher compared with control concentrations. Excretion of 1-hydroxypyrene occurred with a half life of 6-35 hours. Both the ambient air monitoring data and the biological monitoring data showed that the topside workers were the heaviest exposed workers. The relation between air monitoring data and biological monitoring data was not strong. Multiple regression analysis was performed to identify determinants of the internal dose. The combination of exposure and smoking amplify each other and the use of a protective airstream helmet decreases the internal dose. An effect of alcohol consumption and the use of medication on the toxicokinetics of pyrene was not found. PMID:2383514

  16. An overview of internal dose estimation using whole-body counters in Fukushima Prefecture.

    PubMed

    Miyazaki, Makoto; Ohtsuru, Akira; Ishikawa, Tetsuo

    2014-01-01

    A large amount of radioactive cesium was released by the Fukushima Daiichi Nuclear Power Plant accident following the Great East Japan Earthquake. Due to the increasing concerns about internal exposure, more than 50 whole-body counters (WBCs) have been installed at various locations in Fukushima Prefecture. A study on around 10,000 subjects in the early stage after the accident revealed that very few received a committed effective dose of more than 0.3 mSv for subjects (age >13 years old). Another study on WBC results for one hospital showed that the ratio of cesium-positive was 1.0% among all the subjects. Assuming a constant daily intake, the detection limit of 300 Bq/body for a typical WBC corresponds to an effective dose of 21 μSv/y even for a subject of age up to 10. It was also seen out that the subjects with a significant amount of body cesium are likely to regularly eat wild products, which they harvested or caught themselves without testing for radioactive cesium. These study findings suggested that the internal exposure for most of the residents was controlled at a very low level. Future tasks regarding WBC measurements are how to personally explain the WBC results to each subject and how to disclose the statistically processed WBC data to the general public. PMID:25030716

  17. Application of the International Life Sciences Institute Key Events Dose-Response Framework to food contaminants.

    PubMed

    Fenner-Crisp, Penelope A

    2012-12-01

    Contaminants are undesirable constituents in food. They may be formed during production of a processed food, present as a component in a source material, deliberately added to substitute for the proper substance, or the consequence of poor food-handling practices. Contaminants may be chemicals or pathogens. Chemicals generally degrade over time and become of less concern as a health threat. Pathogens have the ability to multiply, potentially resulting in an increased threat level. Formal structures have been lacking for systematically generating and evaluating hazard and exposure data for bioactive agents when problem situations arise. We need to know what the potential risk may be to determine whether intervention to reduce or eliminate contact with the contaminant is warranted. We need tools to aid us in assembling and assessing all available relevant information in an expeditious and scientifically sound manner. One such tool is the International Life Sciences Institute (ILSI) Key Events Dose-Response Framework (KEDRF). Developed as an extension of the WHO's International Program on Chemical Safety/ILSI mode of action/human relevance framework, it allows risk assessors to understand not only how a contaminant exerts its toxicity but also the dose response(s) for each key event and the ultimate outcome, including whether a threshold exists. This presentation will illustrate use of the KEDRF with case studies included in its development (chloroform and Listeriaonocytogenes) after its publication in the peer-reviewed scientific literature (chromium VI) and in a work in progress (3-monochloro-1, 2-propanediol). PMID:23077190

  18. Practical experience of the application of ICRP models in internal dose assessment.

    PubMed

    Peace, M S

    2003-01-01

    The introduction of the Ionising Radiations Regulations 1999 in the UK, which came into force on 1 January 2000, led to significant changes in internal dose assessment. Before this date, assessments were based on the methodology from ICRP Publication 26 and, in general, made use of simple models such as those detailed in ICRP Publication 30. However, the introduction of the new Regulations required the use of ICRP Publication 60 methodology, and, at the same time, the latest ICRP biokinetic models were introduced. Many of these newer models were considerably more complex than the ones they replaced. In particular, the use of 'recycling', where activity is constantly recirculated between different organs, meant that the models could not simply be implemented by use of the Skrable formula, as detailed in ICRP Publication 30. This paper outlines two aspects of the application of these latest ICRP models. First, the problems encountered during implementation of these models are detailed, and secondly, it covers the practical experience of using the resulting computer programs for internal dose assessment. PMID:14526923

  19. Investigation of the internal field in photorefractive materials and measurement of the effective electro-optic coefficient

    NASA Astrophysics Data System (ADS)

    Grunnet-Jepsen, A.; Aubrecht, I.; Solymar, L.

    1995-05-01

    An experimental investigation of the electric field in the bulk of a Bi12SiO20 crystal is carried out, and a two-region model is developed that can account for the buildup of screening charges near the electrodes. In light of our results, a simple method is proposed for the determination of the effective electro-optic coefficients based on applying a sufficiently high-frequency square-wave voltage to prevent screening charge buildup. A demonstration of this method for Bi12SiO20 leads to a value of 4.4 pm / V for the stress-free (unclamped) coefficient, and a subsequent consideration of piezoelastic contributions allows the strain-free (clamped) coefficient to be estimated at 3.7 pm / V.

  20. Determination of the physical and chemical properties, biokinetics, and dose coefficients of uranium compounds handled during nuclear fuel fabrication in France.

    PubMed

    Ansoborlo, E; Chazel, V; Hengé-Napoli, M H; Pihet, P; Rannou, A; Bailey, M R; Stradling, N

    2002-03-01

    The introduction of new ICRP recommendations, especially the new Human Respiratory Tract Model (HRTM) in ICRP Publication 66 led us to focus on some specific parameters related to industrial uranium aerosols collected between 1990 and 1999 at French nuclear fuel fabrication facilities operated by COGEMA, FBFC, and the CEA. Among these parameters, the activity median aerodynamic diameter (AMAD), specific surface area (SSA), and parameters describing absorption to blood f(r), s(r) and s(s) defined in ICRP Publication 66 were identified as the most relevant influencing dose assessment. This study reviewed the data for 25 pure and impure uranium compounds. The average value of AMAD obtained was 5.7 microm (range 1.1-8.5 microm), which strongly supports the choice of 5 microm as the default value of AMAD for occupational exposures. The SSA varied between 0.4 and 18.3 m2 g(-1). For most materials, values of the absorption parameters f(r), s(r), and s(s) derived from the in vitro experiments were generally consistent with those derived from the in vivo experiments. Using average values for each pure compound allowed us to classify UO2 and U3O8 as Type S, mixed oxides, UF4, UO3 and ADU as Type M, and UO4 as Type F based on the ICRP Publication 71 criteria. Dose coefficients were also calculated for each pure compound, and average values for each type of pure compound were compared with those derived using default values. Finally, the lung retention kinetics and urinary excretion rates for inhaled U03 were compared using material-specific and default absorption parameters, in order to give a practical example of the application of this study. PMID:11845831

  1. Comparison between absorbed dose to water standards established by water calorimetry at the LNE-LNHB and by application of international air-kerma based protocols for kilovoltage medium energy x-rays

    NASA Astrophysics Data System (ADS)

    Perichon, N.; Rapp, B.; Denoziere, M.; Daures, J.; Ostrowsky, A.; Bordy, J.-M.

    2013-05-01

    Nowadays, the absorbed dose to water for kilovoltage x-ray beams is determined from standards in terms of air-kerma by application of international dosimetry protocols. New standards in terms of absorbed dose to water has just been established for these beams at the LNE-LNHB, using water calorimetry, at a depth of 2 cm in water in accordance with protocols. The aim of this study is to compare these new standards in terms of absorbed dose to water, to the dose values calculated from the application of four international protocols based on air-kerma standards (IAEA TRS-277, AAPM TG-61, IPEMB and NCS-10). The acceleration potentials of the six beams studied are between 80 and 300 kV with half-value layers between 3.01 mm of aluminum and 3.40 mm of copper. A difference between the two methods smaller than 2.1% was reported. The standard uncertainty of water calorimetry being below 0.8%, and the one associated with the values from protocols being around 2.5%, the results are in good agreement. The calibration coefficients of some ionization chambers in terms of absorbed dose to water, established by application of calorimetry and air-kerma based dosimetry protocols, were also compared. The best agreement with the calibration coefficients established by water calorimetry was found for those established with the AAPM TG-61 protocol.

  2. First international comparison of primary absorbed dose to water standards in the medium-energy X-ray range

    NASA Astrophysics Data System (ADS)

    Büermann, Ludwig; Guerra, Antonio Stefano; Pimpinella, Maria; Pinto, Massimo; de Pooter, Jacco; de Prez, Leon; Jansen, Bartel; Denoziere, Marc; Rapp, Benjamin

    2016-01-01

    This report presents the results of the first international comparison of primary measurement standards of absorbed dose to water for the medium-energy X-ray range. Three of the participants (VSL, PTB, LNE-LNHB) used their existing water calorimeter based standards and one participant (ENEA) recently developed a new standard based on a water-graphite calorimeter. The participants calibrated three transfer chambers of the same type in terms of absorbed dose to water (NDw) and in addition in terms of air kerma (NK) using the CCRI radiation qualities in the range 100 kV to 250 kV. The additional NK values were intended to be used for a physical analysis of the ratios NDw/NK. All participants had previously participated in the BIPM.RI(I)-K3 key comparison of air kerma standards. Ratios of pairs of NMI's NK results of the current comparison were found to be consistent with the corresponding key comparison results within the expanded uncertainties of 0.6 % - 1 %. The NDw results were analysed in terms of the degrees of equivalence with the comparison reference values which were calculated for each beam quality as the weighted means of all results. The participant's results were consistent with the reference value within the expanded uncertainties. However, these expanded uncertainties varied significantly and ranged between about 1-1.8 % for the water calorimeter based standards and were estimated at 3.7 % for the water-graphite calorimeter. It was shown previously that the ratios NDw/NK for the type of ionization chamber used as transfer chamber in this comparison were very close (within less than 1 %) to the calculated values of (bar muen/ρ)w,ad, the mean values of the water-to-air ratio of the mass-energy-absorption coefficients at the depth d in water. Some of the participant's results deviated significantly from the expected behavior. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of

  3. Method for the prediction of the effective dose equivalent to the crew of the International Space Station

    NASA Astrophysics Data System (ADS)

    El-Jaby, Samy; Tomi, Leena; Sihver, Lembit; Sato, Tatsuhiko; Richardson, Richard B.; Lewis, Brent J.

    2014-03-01

    This paper describes a methodology for assessing the pre-mission exposure of space crew aboard the International Space Station (ISS) in terms of an effective dose equivalent. In this approach, the PHITS Monte Carlo code was used to assess the particle transport of galactic cosmic radiation (GCR) and trapped radiation for solar maximum and minimum conditions through an aluminum shield thickness. From these predicted spectra, and using fluence-to-dose conversion factors, a scaling ratio of the effective dose equivalent rate to the ICRU ambient dose equivalent rate at a 10 mm depth was determined. Only contributions from secondary neutrons, protons, and alpha particles were considered in this analysis. Measurements made with a tissue equivalent proportional counter (TEPC) located at Service Module panel 327, as captured through a semi-empirical correlation in the ISSCREM code, where then scaled using this conversion factor for prediction of the effective dose equivalent. This analysis shows that at this location within the service module, the total effective dose equivalent is 10-30% less than the total TEPC dose equivalent. Approximately 75-85% of the effective dose equivalent is derived from the GCR. This methodology provides an opportunity for pre-flight predictions of the effective dose equivalent and therefore offers a means to assess the health risks of radiation exposure on ISS flight crew.

  4. [ESTIMATION OF IONIZING RADIATION EFFECTIVE DOSES IN THE INTERNATIONAL SPACE STATION CREWS BY THE METHOD OF CALCULATION MODELING].

    PubMed

    Mitrikas, V G

    2015-01-01

    Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor. PMID:26292419

  5. WRAITH - A Computer Code for Calculating Internal and External Doses Resulting From An Atmospheric Release of Radioactive Material

    SciTech Connect

    Scherpelz, R. I.; Borst, F. J.; Hoenes, G. R.

    1980-12-01

    WRAITH is a FORTRAN computer code which calculates the doses received by a standard man exposed to an accidental release of radioactive material. The movement of the released material through the atmosphere is calculated using a bivariate straight-line Gaussian distribution model, with Pasquill values for standard deviations. The quantity of material in the released cloud is modified during its transit time to account for radioactive decay and daughter production. External doses due to exposure to the cloud can be calculated using a semi-infinite cloud approximation. In situations where the semi-infinite cloud approximation is not a good one, the external dose can be calculated by a "finite plume" three-dimensional point-kernel numerical integration technique. Internal doses due to acute inhalation are cal.culated using the ICRP Task Group Lung Model and a four-segmented gastro-intestinal tract model. Translocation of the material between body compartments and retention in the body compartments are calculated using multiple exponential retention functions. Internal doses to each organ are calculated as sums of cross-organ doses, with each target organ irradiated by radioactive material in a number of source organs. All doses are calculated in rads, with separate values determined for high-LET and low-LET radiation.

  6. Gene Expression Response of Mice after a Single Dose of 137Cs as an Internal Emitter

    PubMed Central

    Paul, Sunirmal; Ghandhi, Shanaz A.; Weber, Waylon; Doyle-Eisele, Melanie; Melo, Dunstana; Guilmette, Raymond; Amundson, Sally A.

    2014-01-01

    Cesium-137 is a radionuclide of concern in fallout from reactor accidents or nuclear detonations. When ingested or inhaled, it can expose the entire body for an extended period of time, potentially contributing to serious health consequences ranging from acute radiation syndrome to increased cancer risks. To identify changes in gene expression that may be informative for detecting such exposure, and to begin examining the molecular responses involved, we have profiled global gene expression in blood of male C57BL/6 mice injected with 137CsCl. We extracted RNA from the blood of control or 137CsCl-injected mice at 2, 3, 5, 20 or 30 days after exposure. Gene expression was measured using Agilent Whole Mouse Genome Microarrays, and the data was analyzed using BRB-ArrayTools. Between 466–6,213 genes were differentially expressed, depending on the time after 137Cs administration. At early times (2–3 days), the majority of responsive genes were expressed above control levels, while at later times (20–30 days) most responding genes were expressed below control levels. Numerous genes were overexpressed by day 2 or 3, and then underexpressed by day 20 or 30, including many Tp53-regulated genes. The same pattern was seen among significantly enriched gene ontology categories, including those related to nucleotide binding, protein localization and modification, actin and the cytoskeleton, and in the integrin signaling canonical pathway. We compared the expression of several genes three days after 137CsCl injection and three days after an acute external gamma-ray exposure, and found that the internal exposure appeared to produce a more sustained response. Many common radiation-responsive genes are altered by internally administered 137Cs, but the gene expression pattern resulting from continued irradiation at a decreasing dose rate is extremely complex, and appears to involve a late reversal of much of the initial response. PMID:25162453

  7. Gene expression response of mice after a single dose of 137CS as an internal emitter.

    PubMed

    Paul, Sunirmal; Ghandhi, Shanaz A; Weber, Waylon; Doyle-Eisele, Melanie; Melo, Dunstana; Guilmette, Raymond; Amundson, Sally A

    2014-10-01

    Cesium-137 is a radionuclide of concern in fallout from reactor accidents or nuclear detonations. When ingested or inhaled, it can expose the entire body for an extended period of time, potentially contributing to serious health consequences ranging from acute radiation syndrome to increased cancer risks. To identify changes in gene expression that may be informative for detecting such exposure, and to begin examining the molecular responses involved, we have profiled global gene expression in blood of male C57BL/6 mice injected with 137CsCl. We extracted RNA from the blood of control or 137CsCl-injected mice at 2, 3, 5, 20 or 30 days after exposure. Gene expression was measured using Agilent Whole Mouse Genome Microarrays, and the data was analyzed using BRB-ArrayTools. Between 466-6,213 genes were differentially expressed, depending on the time after 137Cs administration. At early times (2-3 days), the majority of responsive genes were expressed above control levels, while at later times (20-30 days) most responding genes were expressed below control levels. Numerous genes were overexpressed by day 2 or 3, and then underexpressed by day 20 or 30, including many Tp53-regulated genes. The same pattern was seen among significantly enriched gene ontology categories, including those related to nucleotide binding, protein localization and modification, actin and the cytoskeleton, and in the integrin signaling canonical pathway. We compared the expression of several genes three days after 137CsCl injection and three days after an acute external gamma-ray exposure, and found that the internal exposure appeared to produce a more sustained response. Many common radiation-responsive genes are altered by internally administered 137Cs, but the gene expression pattern resulting from continued irradiation at a decreasing dose rate is extremely complex, and appears to involve a late reversal of much of the initial response. PMID:25162453

  8. Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models

    NASA Astrophysics Data System (ADS)

    Taranenko, Valery; Xu, X. George

    2008-03-01

    Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided.

  9. Fluence-to-Absorbed Dose Conversion Coefficients for Use in Radiological Protection of Embryo and Foetus Against External Exposure to Muons from 20MeV to 50GeV

    NASA Astrophysics Data System (ADS)

    Chen, Jing

    2008-08-01

    This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients are yet unknown, the results presented here fill a data gap.

  10. Fluence-to-Absorbed Dose Conversion Coefficients for Use in Radiological Protection of Embryo and Foetus Against External Exposure to Muons from 20MeV to 50GeV

    SciTech Connect

    Chen Jing

    2008-08-07

    This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients are yet unknown, the results presented here fill a data gap.

  11. Radiation carcinogenesis in man: influence of dose-response models and risk projection models in the estimation of risk coefficients following exposure to low-level radiation

    SciTech Connect

    Fabrikant, J.I.

    1982-02-01

    The somatic effects of concern in human populations exposed to low doses and low dose rates of ionizing radiations are those that may be induced by mutation in individual cells, singly or in small numbers. The most important of these is considered to be cancer induction. Current knowledge of the carcinogenic effect of radiation in man has been reviewed in two recent reports: the 1977 UNSCEAR Report; and the 1980 BEIR-III Report. Both reports emphasize that cancers of the breast, thyroid, hematopoietic tissues, lung, and bone can be induced by radiation. Other cancers, including the stomach, pancreas, pharynx, lymphatic, and perhaps all tissues of the body, may also be induced by radiation. Both reports calculate risk estimates in absolute and relative terms for low-dose, low-LET whole-body exposure, and for leukemia, breast cancer, thyroid cancer, lung cancer, and other cancers. These estimates derive from exposure and cancer incidence data at high doses and at high dose rates. There are no compelling scientific reasons to apply these values of risk to the very low doses and low dose rates of concern in human radiation protection. In the absence of reliable human data for calculating risk estimates, dose-response models have been constructed from extrapolations of animal data and high-dose-rate human data for projection of estimated risks at low doses and low dose rates. (ERB)

  12. Comparison of 50-year and 70-year internal-dose-conversion factors

    SciTech Connect

    Ryan, M.T.; Dunning, D.E. Jr.

    1981-03-01

    The 50-year inhalation and ingestion dose commitments associated with an acute intake (of a radionuclide) of 3.7 x 10/sup 4/ Bq (1 ..mu..Ci) in one day were compared with the corresponding dose commitments calculated for a 70-year integration period resulting from a chronic intake of the same amount at a rate of 101 Bq/d (0.00274 ..mu..Ci/d) for one year. These values, known as dose conversion factors, estimate the dose accumulated during a given period of time following a unit of intake of a radionuclide. It was demonstrated that the acute intake of 3.7 x 10/sup 4/ Bq in one day and the chronic intake of 101 Bq/d for one year (a total intake of 3.7 x 10/sup 4/ Bq) result in essentially the same dose commitment for a relatively long integration period. Therefore, the comparison of 50-year acute dose conversion factors and 70-year chronic dose conversion factors is essentially only a measure of the additional dose accumulated in the 50 to 70 year period. It was found that for radionuclides with atomic mass less than 200 the percent difference in the 70-year and 50-year dose conversion factors was essentially zero in most cases. Differences of approximately 5 to 50% were obtained for dose conversion factors for most alpha emitters with atomic masses of greater than 200. Comparisons were made on the basis of both organ dose equivalent and effective dose equivalent. The implications and significance of these results are discussed.

  13. Overview of ICRP Committee 2: doses from radiation exposure.

    PubMed

    Harrison, J D; Paquet, F

    2016-06-01

    The focus of the work of Committee 2 of the International Commission on Radiological Protection (ICRP) is the computation of dose coefficients compliant with Publication 103 A set of reference computational phantoms is being developed, based on medical imaging data, and used for radiation transport calculations. Biokinetic models used to describe the behaviour of radionuclides in body tissues are being updated, also leading to changes in organ doses and effective dose coefficients. Dose coefficients for external radiation exposure of adults calculated using the new reference phantoms were issued as Publication 116, jointly with the International Commission on Radiation Units and Measurements. Forthcoming reports will provide internal dose coefficients for radionuclide inhalation and ingestion by workers, and associated bioassay data. Work is in progress to revise internal dose coefficients for members of the public, and, for the first time, to provide reference values for external exposures of the public. Committee 2 is also working with Committee 3 on dose coefficients for radiopharmaceuticals, and leading a cross-Committee initiative to give advice on the use of effective dose. PMID:26984902

  14. Aspects of operational radiation protection during dismantling of nuclear facilities relevant for the estimation of internal doses.

    PubMed

    Labarta, T

    2007-01-01

    Operational radiation protection of workers during the dismantling of nuclear facilities is based on the same radiation protection principles as that applied in its exploitation period with the objective of ensuring proper implementation of the as-low-as-reasonably-achievable (ALARA) principle. These principles are: prior determination of the nature and magnitude of radiological risk; classification of workplaces and workers depending on the risks; implementation of control measures; monitoring of zones and working conditions, including, if necessary, individual monitoring. From the experiences and the lessons learned during the dismantling processes carried out in Spain, several important aspects in the practical implementation of these principles that directly influence and ensure an adequate prevention of exposures and the estimation of internal doses are pointed out, with special emphasis on the estimation of internal doses due to transuranic intakes. PMID:17951606

  15. A comparison of simple and realistic eye models for calculation of fluence to dose conversion coefficients in a broad parallel beam incident of protons

    NASA Astrophysics Data System (ADS)

    Sakhaee, Mahmoud; Vejdani-Noghreiyan, Alireza; Ebrahimi-Khankook, Atiyeh

    2015-01-01

    Radiation induced cataract has been demonstrated among people who are exposed to ionizing radiation. To evaluate the deterministic effects of ionizing radiation on the eye lens, several papers dealing with the eye lens dose have been published. ICRP Publication 103 states that the lens of the eye may be more radiosensitive than previously considered. Detailed investigation of the response of the lens showed that there are strong differences in sensitivity to ionizing radiation exposure with respect to cataract induction among the tissues of the lens of the eye. This motivated several groups to look deeper into issue of the dose to a sensitive cell population within the lens, especially for radiations with low energy penetrability that have steep dose gradients inside the lens. Two sophisticated mathematical models of the eye including the inner structure have been designed for the accurate dose estimation in recent years. This study focuses on the calculations of the absorbed doses of different parts of the eye using the stylized models located in UF-ORNL phantom and comparison with the data calculated with the reference computational phantom in a broad parallel beam incident of protons with energies between 20 MeV and 10 GeV. The obtained results indicate that the total lens absorbed doses of reference phantom has good compliance with those of the more sensitive regions of stylized models. However, total eye absorbed dose of these models greatly differ with each other for lower energies.

  16. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    SciTech Connect

    Akabani, G. ); Poston, J.W. . Dept. of Nuclear Engineering)

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs.

  17. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    SciTech Connect

    Akabani, G.; Poston, J.W. Sr. )

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No penetration of the radionuclide into the blood vessel was assumed nor was cross fire between the vessel assumed. The results are useful in assessing the dose to blood and blood vessel walls for different nuclear medicine procedures.

  18. Internal dose assessment for 211At α-emitter in isotonic solution as radiopharmaceutical

    NASA Astrophysics Data System (ADS)

    Yuminov, O. A.; Fotina, O. V.; Priselkova, A. B.; Tultaev, A. V.; Platonov, S. Yu.; Eremenko, D. O.; Drozdov, V. A.

    2003-12-01

    The functional fitness of the α-emitter 211At for radiotherapy of the thyroid gland cancer is evaluated. Radiation doses are calculated using the MIRD method and previously obtained pharmacokinetic data for 211At in isotonic solution and for 123I as sodium iodide. Analysis of the 211At radiation dose to the thyroid gland suggests that this radiopharmaceutical may be predominantly used for the treatment of the thyroid cancer.

  19. Doses to internal organs for various breast radiation techniques - implications on the risk of secondary cancers and cardiomyopathy

    PubMed Central

    2011-01-01

    Background Breast cancers are more frequently diagnosed at an early stage and currently have improved long term outcomes. Late normal tissue complications induced by adjuvant radiotherapy like secondary cancers or cardiomyopathy must now be avoided at all cost. Several new breast radiotherapy techniques have been developed and this work aims at comparing the scatter doses of internal organs for those techniques. Methods A CT-scan of a typical early stage left breast cancer patient was used to describe a realistic anthropomorphic phantom in the MCNP Monte Carlo code. Dose tally detectors were placed in breasts, the heart, the ipsilateral lung, and the spleen. Five irradiation techniques were simulated: whole breast radiotherapy 50 Gy in 25 fractions using physical wedge or breast IMRT, 3D-CRT partial breast radiotherapy 38.5 Gy in 10 fractions, HDR brachytherapy delivering 34 Gy in 10 treatments, or Permanent Breast 103Pd Seed Implant delivering 90 Gy. Results For external beam radiotherapy the wedge compensation technique yielded the largest doses to internal organs like the spleen or the heart, respectively 2,300 mSv and 2.7 Gy. Smaller scatter dose are induced using breast IMRT, respectively 810 mSv and 1.1 Gy, or 3D-CRT partial breast irradiation, respectively 130 mSv and 0.7 Gy. Dose to the lung is also smaller for IMRT and 3D-CRT compared to the wedge technique. For multicatheter HDR brachytherapy a large dose is delivered to the heart, 3.6 Gy, the spleen receives 1,171 mSv and the lung receives 2,471 mSv. These values are 44% higher in case of a balloon catheter. In contrast, breast seeds implant is associated with low dose to most internal organs. Conclusions The present data support the use of breast IMRT or virtual wedge technique instead of physical wedges for whole breast radiotherapy. Regarding partial breast irradiation techniques, low energy source brachytherapy and external beam 3D-CRT appear safer than 192Ir HDR techniques. PMID:21235766

  20. Comparison of conversion coefficients for equivalent dose in terms of air kerma using a sitting and standing female adult voxel simulators exposure to photons in antero-posterior irradiation geometry

    NASA Astrophysics Data System (ADS)

    Cavalcante, F. R.; Galeano, D. C.; Carvalho Júnior, A. B.; Hunt, J.

    2014-02-01

    Due to the difficulty in implementing invasive techniques for calculations of dose for some exposure scenarios, computational simulators have been created to represent as realistically as possible the structures of the human body and through radiation transport simulations to obtain conversion coefficients (CCs) to estimate dose. In most published papers simulators are implemented in the standing posture and this may not describe a real scenario of exposure. In this work we developed exposure scenarios in the Visual Monte Carlo (VMC) code using a female simulator in standing and sitting postures. The simulator was irradiated in the antero-posterior (AP) geometry by a plane source of monoenergetic photons with energy from 10 keV to 2 MeV. The conversion coefficients for equivalent dose in terms of air kerma (HT/Kair) were calculated for both scenarios and compared. The results show that the percentage difference of CCs for the organs of the head and thorax was not significant (less than 5%) since the anatomic position of the organs is the same in both postures. The percentage difference is more significant to the ovaries (71% for photon energy of 20 keV), to the bladder (39% at 60 keV) and to the uterus (37% at 100 keV) due to different processes of radiation interactions in the legs of the simulator when its posture is changed. For organs and tissues that are distributed throughout the entire body, such as bone (21% at 100 keV) and muscle (30% at 80 keV) the percentage difference of CCs reflects a reduction of interaction of photons with the legs of the simulator. Therefore, the calculation of conversion coefficients using simulators in the sitting posture is relevant for a more accurate dose estimation in real exposures to radiation.

  1. Estimating internal dose due to ingestion of radionuclides from Nevada Test Site fallout

    SciTech Connect

    Kirchner, T.B.; Whicker, F.W.; Anspaugh, L.R.

    1996-10-01

    The U.S. Department of Energy initiated the Radiation Exposure Review Project to provide a critical reexamination of radiation doses to people resulting from testing nuclear devices at the Nevada Test Site. One part of this effort focused on the dose resulting from the ingestion of contaminated food. The PATHWAY radionuclide transport model was developed to provide estimates of food concentrations for 20 radionuclides for each of 86 test events and 15 agricultural scenarios. These results were then used as input to the Human Ingestion model to provide dose estimates for individuals and populations in 9 western states. The model considered the life-style and age of the people, and accounted for the transport of milk between locations. Estimates of uncertainty were provided for all doses using Monte Carlo simulation techniques. Propagation of uncertainty between the PATHWAY model and the Human Ingestion model required the development of special strategies to ensure that the inherent correlations between concentrations of the radionuclides in foods were handled properly. In addition, the size of the input data base (60 megabytes), the number of cases to consider (over 30,000), and the number of Monte Carlo simulations (over 6 million) required the development of efficient and reliable methods of data access and storage while running simulations concurrently on up to 14 UNIX workstations. The problems encountered in this effort are likely to be typical of any dose reconstruction involving geographically heterogeneous environmental conditions. This paper documents the methods used to disaggregate the system to achieve computation efficiency, the methods used to propagate uncertainty through the model system, and the techniques used to manage data in a distributed computing environment. The radionuclide and age specific dose factors used in the analysis are also provided.

  2. Estimating internal dose due to ingestion of radionuclides from Nevada Test Site fallout.

    PubMed

    Kirchner, T B; Whicker, F W; Anspaugh, L R; Ng, Y C

    1996-10-01

    The U.S. Department of Energy initiated the Radiation Exposure Review Project to provide a critical reexamination of radiation doses to people resulting from testing nuclear devices at the Nevada Test Site. One part of this effort focused on the dose resulting from the ingestion of contaminated food. The PATHWAY radionuclide transport model was developed to provide estimates of food concentrations for 20 radionuclides for each of 86 test events and 15 agricultural scenarios. These results were then used as input to the Human Ingestion model to provide dose estimates for individuals and populations in 9 western states. The model considered the life-style and age of the people, and accounted for the transport of milk between locations. Estimates of uncertainty were provided for all doses using Monte Carlo simulation techniques. Propagation of uncertainty between the PATHWAY model and the Human Ingestion model required the development of special strategies to ensure that the inherent correlations between concentrations of the radionuclides in foods were handled properly. In addition, the size of the input data base (60 megabytes), the number of cases to consider (over 30,000), and the number of Monte Carlo simulations (over 6 million) required the development of efficient and reliable methods of data access and storage while running simulations concurrently on up to 14 UNIX workstations. The problems encountered in this effort are likely to be typical of any dose reconstruction involving geographically heterogeneous environmental conditions. This paper documents the methods used to disaggregate the system to achieve computation efficiency, the methods used to propagate uncertainty through the model system, and the techniques used to manage data in a distributed computing environment. The radionuclide- and age-specific dose factors used in the analysis are also provided. PMID:8830750

  3. Low-level internal dose screen - oceanic test, nuclear test personnel review. Technical report, 12 Dec 86-31 Oct 89

    SciTech Connect

    Goetz, J.; Klemm, J.; McRaney, W.; Barrett, M.

    1991-10-01

    A methodology is developed in DNA-TR-85-317 whereby DoD participants in the CONUS atmospheric nuclear tests are screened to determine whether or not they received a bone dose commitment less than 150 millirem from internally deposited radionuclides. The algorithms that were developed to relate the internal dose commitment to external dose parameters are expanded to cover unique exposure conditions pertinent to oceanic operations such as long-term exposure resulting from fallout on residence islands or ships. Application of the methodology shows that most oceanic test participants received bone dose commitments less than 150 millirem.

  4. Lake fish as the main contributor of internal dose to lakeshore residents in the Chernobyl contaminated area.

    PubMed

    Travnikova, I G; Bazjukin, A N; Bruk, G Ja; Shutov, V N; Balonov, M I; Skuterud, L; Mehli, H; Strand, P

    2004-01-01

    Two field expeditions in 1996 studied 137Cs intake patterns and its content in the bodies of adult residents from the village Kozhany in the Bryansk region, Russia, located on the shore of a drainless peat lake in an area subjected to significant radioactive contamination after the 1986 Chernobyl accident. The 137Cs contents in lake water and fish were two orders of magnitude greater than in local rivers and flow-through lakes, 10 years after Chernobyl radioactive contamination, and remain stable. The 137Cs content in lake fish and a mixture of forest mushrooms was between approximately 10-20 kBq/kg, which exceeded the temporary Russian permissible levels for these products by a factor of 20-40. Consumption of lake fish gave the main contribution to internal doses (40-50%) for Kozhany village inhabitants Simple countermeasures, such as Prussian blue doses for dairy cows and pre-boiling mushrooms and fish before cooking, halved the 137Cs internal dose to inhabitants, even 10 years after the radioactive fallout. PMID:15297041

  5. Comparison of Nine Statistical Model Based Warfarin Pharmacogenetic Dosing Algorithms Using the Racially Diverse International Warfarin Pharmacogenetic Consortium Cohort Database

    PubMed Central

    Liu, Rong; Li, Xi; Zhang, Wei; Zhou, Hong-Hao

    2015-01-01

    Objective Multiple linear regression (MLR) and machine learning techniques in pharmacogenetic algorithm-based warfarin dosing have been reported. However, performances of these algorithms in racially diverse group have never been objectively evaluated and compared. In this literature-based study, we compared the performances of eight machine learning techniques with those of MLR in a large, racially-diverse cohort. Methods MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied in warfarin dose algorithms in a cohort from the International Warfarin Pharmacogenetics Consortium database. Covariates obtained by stepwise regression from 80% of randomly selected patients were used to develop algorithms. To compare the performances of these algorithms, the mean percentage of patients whose predicted dose fell within 20% of the actual dose (mean percentage within 20%) and the mean absolute error (MAE) were calculated in the remaining 20% of patients. The performances of these techniques in different races, as well as the dose ranges of therapeutic warfarin were compared. Robust results were obtained after 100 rounds of resampling. Results BART, MARS and SVR were statistically indistinguishable and significantly out performed all the other approaches in the whole cohort (MAE: 8.84–8.96 mg/week, mean percentage within 20%: 45.88%–46.35%). In the White population, MARS and BART showed higher mean percentage within 20% and lower mean MAE than those of MLR (all p values < 0.05). In the Asian population, SVR, BART, MARS and LAR performed the same as MLR. MLR and LAR optimally performed among the Black population. When patients were grouped in terms of warfarin dose range, all machine learning techniques except ANN and LAR showed significantly

  6. Non-Linear Dose-Response Relationships in Biology, Toxicology and Medicine - An International Conference

    SciTech Connect

    Calabrese, Edward J.; Kostecki, Paul T.

    2002-05-28

    Conference abstract book contains seven sections: Plenary-4 abstracts; Chemical-9 abstracts; Radiation-7 abstracts; Ultra Low Doses and Medicine-6 abstracts; Biomedical-11 abstracts; Risk Assessment-5 abstracts and Poster Sessions-25 abstracts. Each abstract was provided by the author/presenter participating in the conference.

  7. EXPOSURES AND INTERNAL DOSES OF TRIHALOMETHANES IN HUMANS: MULTI-ROUTE CONTRIBUTIONS FROM DRINKING WATER (FINAL)

    EPA Science Inventory

    The National Center for Environmental Assessment (NCEA) has released a final report that presents and applies a method to estimate distributions of internal concentrations of trihalomethanes (THMs) in humans resulting from a residential drinking water exposure. The report presen...

  8. Internal Radiation Exposure Dose in Iwaki City, Fukushima Prefecture after the Accident at Fukushima Dai-ichi Nuclear Power Plant

    PubMed Central

    Orita, Makiko; Hayashida, Naomi; Nukui, Hiroshi; Fukuda, Naoko; Kudo, Takashi; Matsuda, Naoki; Fukushima, Yoshiko; Takamura, Noboru

    2014-01-01

    As a result of the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) on 11 March 2011, a huge amount of radionuclides, including radiocesium, was released and spread over a wide area of eastern Japan. Although three years have passed since the accident, residents around the FNPP are anxious about internal radiation exposure due to radiocesium. In this study, we screened internal radiation exposure doses in Iwaki city of Fukushima prefecture, using a whole-body counter. The first screening was conducted from October 2012 to February 2013, and the second screening was conducted from May to November 2013. Study participants were employees of ALPINE and their families who underwent examination. A total of 2,839 participants (1,366 men and 1,473 women, 1–86 years old) underwent the first screening, and 2,092 (1,022 men and 1,070 women, 1–86 years old) underwent the second screening. The results showed that 99% of subjects registered below 300 Bq per body in the first screening, and all subjects registered below 300 Bq per body in the second screening. The committed effective dose ranged from 0.01–0.06 mSv in the first screening and 0.01–0.02 mSv in the second screening. Long-term follow-up studies are needed to avoid unnecessary chronic internal exposure and to reduce anxiety among the residents by communicating radiation health risks. PMID:25478794

  9. Comparison of conversion coefficients for equivalent dose in terms of air kerma for photons using a male adult voxel simulator in sitting and standing posture with geometry of irradiation antero-posterior

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Cavalcante, F. R.; Carvalho, A. B.; Hunt, J.

    2014-02-01

    The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature.

  10. Calculation of internal dose from ingested soil-derived uranium in humans: Application of a new method.

    PubMed

    Träber, S C; Li, W B; Höllriegl, V; Nebelung, K; Michalke, B; Rühm, W; Oeh, U

    2015-08-01

    The aim of the present study was to determine the internal dose in humans after the ingestion of soil highly contaminated with uranium. Therefore, an in vitro solubility assay was performed to estimate the bioaccessibility of uranium for two types of soil. Based on the results, the corresponding bioavailabilities were assessed by using a recently published method. Finally, these bioavailability data were used together with the biokinetic model of uranium to assess the internal doses for a hypothetical but realistic scenario characterized by a daily ingestion of 10 mg of soil over 1 year. The investigated soil samples were from two former uranium mining sites of Germany with (238)U concentrations of about 460 and 550 mg/kg. For these soils, the bioavailabilities of (238)U were quantified as 0.18 and 0.28 % (geometric mean) with 2.5th percentiles of 0.02 and 0.03 % and 97.5th percentiles of 1.48 and 2.34 %, respectively. The corresponding calculated annual committed effective doses for the assumed scenario were 0.4 and 0.6 µSv (GM) with 2.5th percentiles of 0.2 and 0.3 µSv and 97.5th percentiles of 1.6 and 3.0 µSv, respectively. These annual committed effective doses are similar to those from natural uranium intake by food and drinking water, which is estimated to be 0.5 µSv. Based on the present experimental data and the selected ingestion scenario, the investigated soils-although highly contaminated with uranium-are not expected to pose any major health risk to humans related to radiation. PMID:25980738

  11. High-Dose Daptomycin Therapy for Left-Sided Infective Endocarditis: a Prospective Study from the International Collaboration on Endocarditis

    PubMed Central

    Bayer, Arnold S.; Miró, Josè M.; Park, Lawrence P.; Guimarães, Armenio C.; Skoutelis, Athanasios; Fortes, Claudio Q.; Durante-Mangoni, Emanuele; Hannan, Margaret M.; Nacinovich, Francisco; Fernández-Hidalgo, Nuria; Grossi, Paolo; Tan, Ru-San; Holland, Thomas; Fowler, Vance G.; Corey, Ralph G.; Chu, Vivian H.

    2013-01-01

    The use of daptomycin in Gram-positive left-sided infective endocarditis (IE) has significantly increased. The purpose of this study was to assess the influence of high-dose daptomycin on the outcome of left-sided IE due to Gram-positive pathogens. This was a prospective cohort study based on 1,112 cases from the International Collaboration on Endocarditis (ICE)-Plus database and the ICE-Daptomycin Substudy database from 2008 to 2010. Among patients with left-sided IE due to Staphylococcus aureus, coagulase-negative staphylococci, and Enterococcus faecalis, we compared those treated with daptomycin (cohort A) to those treated with standard-of-care (SOC) antibiotics (cohort B). The primary outcome was in-hospital mortality. Time to clearance of bacteremia, 6-month mortality, and adverse events (AEs) ascribable to daptomycin were also assessed. There were 29 and 149 patients included in cohort A and cohort B, respectively. Baseline comorbidities did not differ between the two cohorts, except for a significantly higher prevalence of diabetes and previous episodes of IE among patients treated with daptomycin. The median daptomycin dose was 9.2 mg/kg of body weight/day. Two-thirds of the patients treated with daptomycin had failed a previous antibiotic regimen. In-hospital and 6-month mortalities were similar in the two cohorts. In cohort A, median time to clearance of methicillin-resistant S. aureus (MRSA) bacteremia was 1.0 day, irrespective of daptomycin dose, representing a significantly faster bacteremia clearance compared to SOC (1.0 versus 5.0 days; P < 0.01). Regimens with higher daptomycin doses were not associated with increased incidence of AEs. In conclusion, higher-dose daptomycin may be an effective and safe alternative to SOC in the treatment of left-sided IE due to common Gram-positive pathogens. PMID:24080644

  12. Use of in vivo counting measurements to estimate internal doses from (241)Am in workers from the Mayak production association.

    PubMed

    Sokolova, Alexandra B; Suslova, Klara G; Efimov, Alexander V; Miller, Scott C

    2014-08-01

    Comparisons between results of in vivo counting measurements of americium burden and results from radiochemical analyses of organ samples taken at autopsy of 11 cases of former Mayak workers were made. The in vivo counting measurements were performed 3-8 y before death. The best agreement between in vivo counting measurements for americium and autopsy data was observed for the skull. For lungs and liver, the ratios of burden measured by in vivo counting to those obtained from radiochemical analyses data ranged from 0.7-3.8, while those for the skull were from 1.0-1.1. There was a good correlation between the estimates of americium burden in the entire skeleton obtained from in vivo counting with those obtained from autopsy data. Specifically, the skeletal burden ratio, in vivo counting/autopsy, averaged 0.9 ± 0.1. The prior human americium model, D-Am2010, used in vivo counting measurements for americium in the skeleton to estimate the contents of americium and plutonium at death. The results using this model indicate that in vivo counting measurements of the skull can be used to estimate internal doses from americium in the Mayak workers. Additionally, these measurements may also be used to provide a qualitative assessment of internal doses from plutonium. PMID:24978284

  13. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    SciTech Connect

    Specht, Lena; Yahalom, Joachim; Illidge, Tim; Berthelsen, Anne Kiil; Constine, Louis S.; Eich, Hans Theodor; Girinsky, Theodore; Hoppe, Richard T.; Mauch, Peter; Mikhaeel, N. George; Ng, Andrea

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the

  14. A method for calculating Bayesian uncertainties on internal doses resulting from complex occupational exposures.

    PubMed

    Puncher, M; Birchall, A; Bull, R K

    2012-08-01

    Estimating uncertainties on doses from bioassay data is of interest in epidemiology studies that estimate cancer risk from occupational exposures to radionuclides. Bayesian methods provide a logical framework to calculate these uncertainties. However, occupational exposures often consist of many intakes, and this can make the Bayesian calculation computationally intractable. This paper describes a novel strategy for increasing the computational speed of the calculation by simplifying the intake pattern to a single composite intake, termed as complex intake regime (CIR). In order to assess whether this approximation is accurate and fast enough for practical purposes, the method is implemented by the Weighted Likelihood Monte Carlo Sampling (WeLMoS) method and evaluated by comparing its performance with a Markov Chain Monte Carlo (MCMC) method. The MCMC method gives the full solution (all intakes are independent), but is very computationally intensive to apply routinely. Posterior distributions of model parameter values, intakes and doses are calculated for a representative sample of plutonium workers from the United Kingdom Atomic Energy cohort using the WeLMoS method with the CIR and the MCMC method. The distributions are in good agreement: posterior means and Q(0.025) and Q(0.975) quantiles are typically within 20 %. Furthermore, the WeLMoS method using the CIR converges quickly: a typical case history takes around 10-20 min on a fast workstation, whereas the MCMC method took around 12-72 hr. The advantages and disadvantages of the method are discussed. PMID:22355169

  15. The Techa River dosimetry system: methods for the reconstruction of internal dose.

    PubMed

    Degteva, M O; Kozheurov, V P; Tolstykh, E I; Vorobiova, M I; Anspaugh, L R; Napier, B A; Kovtun, A N

    2000-07-01

    The Mayak Production Association (MPA) was the first facility in the former Soviet Union for the production of plutonium. Significant worker and population exposures occurred as a result of failures in the technological processes in the late 1940's and early 1950's. Residents of many villages downstream on the Techa River were exposed via a variety of pathways; the more significant included drinking of water from the river and external gamma exposure due to proximity to contaminated bottom sediment and shoreline. After the extent of the major contamination of the Techa River became known, several villages on the upper part of the Techa River were evacuated. Organ doses are being reconstructed on the basis of derivation of an historical source term and a simple river model used to simulate the transport of radionuclides downstream and their retention on sediments; measurements of 90Sr content in teeth and the whole body of half of the members of the cohort; and development of the "Techa River Dosimetry System" for computation of the doses. PMID:10855775

  16. The Techa River dosimetry system: Methods for the reconstruction of internal dose

    SciTech Connect

    Degteva, M.O.; Kozheurov, V.P.; Tolstykh, E.I.; Vorobiova, M.I.; Anspaugh, L.R.; Napier, B.A.; Kovtun, A.N.

    2000-07-01

    The Mayak Production Association (MPA) was the first facility in the former Soviet Union for the production of plutonium. Significant worker and population exposures occurred as a result of failures in the technological processes in the late 1940's and early 1950's. Residents of many villages downstream on the Techa River were exposed via a variety of pathways; the more significant included drinking of water from the river and external gamma exposure due to proximity to contaminated bottom sediment and shoreline. After the extent of the major contamination of the Techa River became known, several villages on the upper part of the Techa River were evacuated. Organ doses are being reconstructed on the basis of derivation of an historical source term and a simple river model used to simulate the transport of radionuclides downstream and their retention on sediments; measurements of {sup 90}Sr content in teeth and the whole body of half of the members of the cohort; and development of the Techa River Dosimetry System for computation of the doses.

  17. Chernobyl fallout: internal doses to the Norwegian population and the effect of dietary advice.

    PubMed

    Strand, P; Selnaes, T D; Bøe, E; Harbitz, O; Andersson-Sørlie, A

    1992-10-01

    Dietary studies and whole-body measurements were used to estimate the intake of radiocesium and the radiation dose received by different groups of people in Norway after the Chernobyl accident. Freshwater fish, milk, and reindeer meat were the major sources for radiocesium intake. Dietary advice, together with agricultural decontamination measures, resulted in a considerable reduction in the exposure level of the population. A majority (40-80%) of the specially selected groups (farmers-hunters and Sami reindeer herdsman) changed its diet significantly after the accident. Without dietary changes, specifically a reduction in the consumption of freshwater fish and reindeer meat, the Sami group would have had a 400-700% higher radiocesium intake, and the farmers-hunters' intake would have been up to 50% higher than what they actually had experienced. PMID:1526778

  18. An on-board TLD system for dose monitoring on the International Space Station.

    PubMed

    Apathy, I; Deme, S; Bodnar, L; Csoke, A; Hejja, I

    1999-01-01

    This institute has developed and manufactured a series of thermoluminescence dosemeter (TLD) systems for spacecraft, consisting of a set of bulb dosemeters and a small, compact, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A new implementation of the system will be placed on several segments of the ISS as the contribution of Hungary to this intemational enterprise. The well proven CaSO4:Dy dosemeters will be used for routine dosimetry of the astronauts and in biological experiments. The mean LET value will be measured by LiF dosemeters while doses caused by neutrons are planned to be determined by 6LiF/7LiF dosemeter pairs and moderators. A detailed description of the system is given. PMID:11542233

  19. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, August 1993--January 1994

    SciTech Connect

    Hendrickson, S.M.; Hoffman, F.O.

    1994-03-01

    This project, ``Use of International Data Sets to Evaluate and Validate Pathway Assessment Models Applicable to Exposure and Dose Reconstruction at DOE Facilities,`` grew out of several activities being conducted by the Principal Investigator Dr. F Owen Hoffman. One activity was originally part of the Chernobyl Studies Project and began as Task 7.1D, ``Internal Dose From Direct Contamination of Terrestrial Food Sources.`` The objective of Task 7.1D was to (1) establish a collaborative US USSR effort to improve and validate our methods of forecasting doses and dose commitments from the direct contamination of food sources, and (2) perform experiments and validation studies to improve our ability to predict rapidly and accurately the long-term internal dose from the contamination of agricultural soil. The latter was to include the consideration of remedial measures to block contamination of food grown on contaminated soil. The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates the activity of Task 7.1D into a multinational effort to evaluate data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (BIOspheric MOdel Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (VAlidation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains.

  20. An international model validation exercise on radionuclide transfer and doses to freshwater biota.

    SciTech Connect

    Yankovich, T. L.; Vives i Batlle, J.; Vives-Lynch, S.; Beresford, N. A.; Barnett, C. L.; Beaugelin-Seiller, K.; Brown, J. E.; Cheng, J.-J.; Copplestone, D.; Heling, R.; Hosseini, A.; Howard, B. J.; Kamboj, S.; Kryshev, A. I.; Nedveckaite, T.; Smith, J. T.; Wood, M. D.; Environmental Science Division; AREVA Resources; Environmental Science, Westlakes Scientific Consulting Ltd.; Centre for Ecology and Hydrology; IRSN; Norwegian Radiation Protection Authority; The Environment Agency; Nuclear Research and Consultancy Group; Univ. of Liverpool; School of Earth and Environmental Sciences; Inst. of Physics, Lithuania; State Enterprise Scientific Production Association

    2010-06-09

    Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) program, activity concentrations of {sup 60}Co, {sup 90}Sr, {sup 137}Cs and {sup 3}H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophic level or the influence of stable analogues. Model predictions were relatively poor for mammalian species and herpetofauna compared with measured values, partly due to a lack of relevant data. In addition, concentration ratios are sometimes under-predicted when derived from experiments performed under controlled laboratory conditions representative of conditions in other water bodies.

  1. An international model validation exercise on radionuclide transfer and doses to freshwater biota.

    PubMed

    Yankovich, T L; Vives i Batlle, J; Vives-Lynch, S; Beresford, N A; Barnett, C L; Beaugelin-Seiller, K; Brown, J E; Cheng, J-J; Copplestone, D; Heling, R; Hosseini, A; Howard, B J; Kamboj, S; Kryshev, A I; Nedveckaite, T; Smith, J T; Wood, M D

    2010-06-01

    Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) programme, activity concentrations of (60)Co, (90)Sr, (137)Cs and (3)H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophic level or the influence of stable analogues. Model predictions were relatively poor for mammalian species and herpetofauna compared with measured values, partly due to a lack of relevant data. In addition, concentration ratios are sometimes under-predicted when derived from experiments performed under controlled laboratory conditions representative of conditions in other water bodies. PMID:20530860

  2. Absorbed dose of secondary neutrons from galactic cosmic rays inside the International Space Station.

    PubMed

    Getselev, I; Rumin, S; Sobolevsky, N; Ufimtsev, M; Podzolko, M

    2004-01-01

    In this paper, we present the results of Monte-Carlo simulations of the flux and energy spectra of neutrons generated as a result of galactic cosmic ray proton interactions with the material of International Space Station (ISS) inside Zvezda Service Module, the Airlock between Russian and USA segments and one of Russian Research Modules for a full configuration of ISS. Calculations were made for ISS orbit for the energy ranges <10 and >10 MeV for both maximum and minimum of solar activity. To test the accuracy of the calculations the same simulations were made for MIR orbital station and for CORONAS-I satellite and compared with the results of measurements. Calculated and measured fluxes are in reasonable agreement. PMID:15881787

  3. International workshop on new developments in occupational dose control and ALARA implementation at nuclear power plants and similar facilities: Proceedings

    SciTech Connect

    Baum, J.W.; Dionne, B.J.; Kahn, T.A. )

    1990-02-01

    This report contains summaries of papers and discussions presented at the International Workshop on New Developments in Occupational Dose Control and ALARA Implementation at Nuclear Power Plants and Similar Facilities held at Brookhaven National Laboratory, Upton, New York, September 18--21, 1989. The purpose of this workshop was to bring together scientists, engineers, regulators, and administrators who are involved with occupational dose control at nuclear facilities to exchange information on recent developments from their countries. The eleven countries represented included: Canada, Finland, France, Germany, Italy, Japan, Luxembourg, Sweden, Switzerland, United Kingdom, and the United States of America. The workshop was organized into seven sessions with 20-minute papers and four sessions with 5-minute discussions. The topics for the paper sessions included: Session 1, ALARA status, studies, and organization; Session 3, ALARA engineering in design and modifications; Session 5, system chemistry and water purification; Session 7, ALARA in operation I; Session 9, ALARA in operation II; Session 10, ALARA in operation III; and Session 11, the NEA Information System on Occupational Exposure. This workshop was sponsored jointly by the US Nuclear Regulatory Commission and the US Department of Energy, in cooperation with the Organization for Economic Cooperation and Development, Nuclear Energy Agency. Each individual paper has been catalogued separately.

  4. Estimation of internal radiation dose to the adult Asian population from the dietary intakes of two long-lived radionuclides.

    PubMed

    Iyengar, G V; Kawamura, H; Dang, H S; Parr, R M; Wang, J W; Akhter, Perveen; Cho, S Y; Natera, E; Miah, F K; Nguyen, M S

    2004-01-01

    Daily dietary intakes of two naturally occurring long-lived radionuclides, 232Th and 238U, were estimated for the adult population living in a number of Asian countries, using highly sensitive analytical methods such as instrumental and radiochemical neutron activation analysis (INAA and RNAA), and inductively coupled plasma mass spectrometry (ICP-MS). The Asian countries that participated in the study were Bangladesh (BGD), China (CPR), India (IND), Japan (JPN), Pakistan (PAK), Philippines (PHI), Republic of Korea (ROK) and Vietnam (VIE). Altogether, these countries represent more than 50% of the world population. The median daily intakes of 232Th ranged between 0.6 and 14.4 mBq, the lowest being for Philippines and the highest for Bangladesh, and daily intakes of 238U ranged between 6.7 and 62.5 mBq, lowest and the highest being for India and China, respectively. The Asian median intakes were obtained as 4.2 mBq for 232Th and 12.7 mBq for 238U. Although the Asian intakes were lower than intakes of 12.3 mBq (3.0 ug) 232Th and 23.6 mBq (1.9 ug) 238U proposed by the International Commission on Radiological Protection (ICRP) for the ICRP Reference Man, they were comparable to the global intake values of 4.6 mBq 232Th and 15.6 mBq 238U proposed by the United Nation Scientific Commission on Effects of Radiation (UNSCEAR). The annual committed effective doses to Asian population from the dietary intake of 232Th and 238U were calculated to be 0.34 and 0.20 microSv, respectively, which are three orders of magnitude lower than the global average annual radiation dose of 2400 microSv to man from the natural radiation sources as proposed by UNSCEAR. PMID:15381318

  5. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method

    PubMed Central

    Khosravi, H.; Hashemi, B.; Mahdavi, S. R.; Hejazi, P.

    2015-01-01

    Background Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. Objective The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. Method A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. Results The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. Conclusion There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external

  6. [Radon and internal contamination].

    PubMed

    Stanga, A; Trenta, F

    2008-01-01

    Because of hits everywhere presence in air and in water needful mediums for life, radon is a omnipresent risk for every person. Therefore, in relation to those vital functions, lungs and gastro-enteric tract represent the principal target organs of this noble radioactive gas (and mainly of hits radioactive daughters). International organisms evaluated the effective dose coefficients for both target organs, so it is possible e quantitative assessment of the exposure risk related to this noble gas. PMID:19288807

  7. A novel in vitro system for the determination of bioconcentration factors and the internal dose in zebrafish (Danio rerio) eggs.

    PubMed

    Schreiber, René; Altenburger, Rolf; Paschke, Albrecht; Schüürmann, Gerrit; Küster, Eberhard

    2009-11-01

    In this study a novel in vitro approach for the determination of bioconcentration factors (BCF) and rate constants of lipophilic substances utilizing zebrafish (Danio rerio) eggs is presented. Zebrafish eggs were exposed in a static exposure regime towards a phenanthrene solution and concentration-time profiles of the exposure solutions were analyzed over time. The rate constants and the BCF were obtained from the concentration-time profile with the use of a least-square fit to a non-linear model. The determined BCF at steady-state (after 72h of exposure) for phenanthrene was estimated to be only about 1.5 times lower, than the respective BCF value reported in the literature. For uptake of solutes in zebrafish embryos, different transport processes are assumed as substances have to pass the chorion first and subsequently the membranes of the embryo. To investigate this, the period to steady-state concentration between zebrafish eggs and the ambient medium for phenanthrene under an agitated and non-agitated static exposure regime were compared. It was found, that this equilibrium was reached within a shorter time frame under agitation, resulting in higher rate constants. In addition to the determination of bioconcentration parameters, the internal phenanthrene dose in zebrafish eggs was determined by utilizing a biomimetic extraction method with water as transfer medium. Approximately 55% of the expected accumulated phenanthrene amount in zebrafish eggs could be re-extracted with a silicone rod extraction method. These results agree very well to what has been observed in abiotic systems. The scope of the proposed in vitro protocol to serve as an alternative for BCF determinations using established in vivo animal testing protocols with adult fish is discussed. PMID:19751945

  8. Radiation Dose to the Esophagus From Breast Cancer Radiation Therapy, 1943-1996: An International Population-Based Study of 414 Patients

    SciTech Connect

    Lamart, Stephanie; Stovall, Marilyn; Simon, Steven L.; Smith, Susan A.; Weathers, Rita E.; Howell, Rebecca M.; Curtis, Rochelle E.; Aleman, Berthe M.P.; Travis, Lois; Kwon, Deukwoo; Morton, Lindsay M.

    2013-07-15

    Purpose: To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. Methods and Materials: We abstracted the radiation therapy treatment parameters from each patient’s radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam types used were {sup 60}Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Results: Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Conclusions: Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed lower

  9. [Accounting the effect of spatial orientation of the International space station on dose rate during traverse of the South-Atlantic anomaly].

    PubMed

    Drobyshev, S G; Bengin, V V

    2009-01-01

    A method was devised to calculate dose rates aboard the International space station (ISS) with account for radiation field anisotropy in the region of South-Atlantic anomaly. The method enables incorporation in an explicit form the spectral-angular distribution of falling radiation in combination with ISS shielding mass distribution. It includes also a procedure of reducing these characteristics to the united coordinates with reference to ISS orientation. The dose rate ratio on the Service module opposite sides was shown to depend essentially on ISS spatial orientation. PMID:20120919

  10. Fukushima simulation experiment: assessing the effects of chronic low-dose-rate internal 137Cs radiation exposure on litter size, sex ratio, and biokinetics in mice

    PubMed Central

    Nakajima, Hiroo; Yamaguchi, Yoshiaki; Yoshimura, Takashi; Fukumoto, Manabu; Todo, Takeshi

    2015-01-01

    To investigate the transgenerational effects of chronic low-dose-rate internal radiation exposure after the Fukushima Daiichi Nuclear Power Plant accident in Japan, 18 generations of mice were maintained in a radioisotope facility, with free access to drinking water containing 137CsCl (0 and 100 Bq/ml). The 137Cs distribution in the organs of the mice was measured after long-term ad libitum intake of the 137CsCl water. The litter size and the sex ratio of the group ingesting the 137Cs water were compared with those of the control group, for all 18 generations of mice. No significant difference was noted in the litter size or the sex ratio between the mice in the control group and those in the group ingesting the 137Cs water. The fixed internal exposure doses were ∼160 Bq/g and 80 Bq/g in the muscles and other organs, respectively. PMID:26825299