Science.gov

Sample records for internal luminosity distribution

  1. Internal Luminosity Distribution of Bright Gamma-Ray Bursts and its Relation to Duration and Spectral Hardness

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Hakkila, Jon

    1997-01-01

    We present first results from a comprehensive investigation into the distribution of luminosity within the 50 brightest cosmic gamma-ray bursts detected by the Burst and Transient Source Experiment (BATSE). The internal luminosity function psi(L) is defined such that the quantity psi(L)dL represents the fraction of total emission time during which the burst possesses a luminosity between L and L + dL. For these brightest bursts, the psi(L) functions are quasi-power-law-like and decrease in amplitude with increasing luminosity. Through investigation of both individual psi(L) distributions and data from the ensemble of bursts, we demonstrate a high probability for correlation between the shape of the internal luminosity function as measured by the average logarithmic slope and the burst duration as measured by the T(sub 90) parameter and, with lower significance, between the shape of psi(L) and the burst photon-fluence spectral index. We furthermore demonstrate a correlation between burst hardness ratio and duration in these brightest bursts which is opposite to that of the entire gamma-ray burst ensemble.

  2. The GRB luminosity function: prediction of the internal shock model and comparison to observations

    SciTech Connect

    Zitouni, H.; Daigne, F.; Mochkovitch, R.

    2008-05-22

    We compute the expected GRB luminosity function in the internal shock model. We find that if the population of GRB central engines produces all kind of relativistic outflows, from very smooth to highly variable, the luminosity function has to branchs: at low luminosity, the distribution is dominated by low efficiency GRBs and is close to a power law of slope -0.5, whereas at high luminosity, the luminosity function follows the distribution of injected kinetic power. Using Monte Carlo simulations and several observational constrains (BATSE logN-logP diagram, peak energy distribution of bright BATSE bursts, fraction of XRFs in the HETE2 sample), we show that it is currently impossible to distinguish between a single power law or a broken power law luminosity function. However, when the second case is considered, the low-luminosity slope is found to be -0.6{+-}0.2, which is compatible with the prediction of the internal shock model.

  3. Luminosity distributions of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Ashall, C.; Mazzali, P.; Sasdelli, M.; Prentice, S. J.

    2016-08-01

    We have assembled a dataset of 165 low redshift, $z<$0.06, publicly available type Ia supernovae (SNe Ia). We produce maximum light magnitude ($M_{B}$ and $M_{V}$) distributions of SNe Ia to explore the diversity of parameter space that they can fill. Before correction for host galaxy extinction we find that the mean $M_{B}$ and $M_{V}$ of SNe Ia are $-18.58\\pm0.07$mag and $-18.72\\pm0.05$mag respectively. Host galaxy extinction is corrected using a new method based on the SN spectrum. After correction, the mean values of $M_{B}$ and $M_{V}$ of SNe Ia are $-19.10\\pm0.06$ and $-19.10\\pm0.05$mag respectively. After correction for host galaxy extinction, `normal' SNeIa ($\\Delta m_{15}(B)<1.6$mag) fill a larger parameter space in the Width-Luminosity Relation (WLR) than previously suggested, and there is evidence for luminous SNe Ia with large $\\Delta m_{15}(B)$. We find a bimodal distribution in $\\Delta m_{15}(B)$, with a pronounced lack of transitional events at $\\Delta m_{15}(B)$=1.6 mag. We confirm that faster, low-luminosity SNe tend to come from passive galaxies. Dividing the sample by host galaxy type, SNe Ia from star-forming (S-F) galaxies have a mean $M_{B}=-19.20 \\pm 0.05$ mag, while SNe Ia from passive galaxies have a mean $M_{B}=-18.57 \\pm 0.24$ mag. Even excluding fast declining SNe, `normal' ($M_{B}<-18$ mag) SNe Ia from S-F and passive galaxies are distinct. In the $V$-band, there is a difference of 0.4$ \\pm $0.13 mag between the median ($M_{V}$) values of the `normal' SN Ia population from passive and S-F galaxies. This is consistent with ($\\sim 15 \\pm $10)% of `normal' SNe Ia from S-F galaxies coming from an old stellar population.

  4. Luminosity distributions of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Ashall, C.; Mazzali, P.; Sasdelli, M.; Prentice, S. J.

    2016-08-01

    We have assembled a data set of 165 low redshift, z < 0.06, publicly available Type Ia supernovae (SNe Ia). We produce maximum light magnitude (MB and MV) distributions of SNe Ia to explore the diversity of parameter space that they can fill. Before correction for host galaxy extinction we find that the mean MB and MV of SNe Ia are -18.58 ± 0.07 and -18.72 ± 0.05 mag, respectively. Host galaxy extinction is corrected using a new method based on the SN spectrum. After correction, the mean values of MB and MV of SNe Ia are -19.10 ± 0.06 and -19.10 ± 0.05 mag, respectively. After correction for host galaxy extinction, `normal' SNe Ia (Δm15(B) < 1.6 mag) fill a larger parameter space in the width-luminosity relation than previously suggested, and there is evidence for luminous SNe Ia with large Δm15(B). We find a bimodal distribution in Δm15(B), with a pronounced lack of transitional events at Δm15(B) = 1.6 mag. We confirm that faster, low-luminosity SNe tend to come from passive galaxies. Dividing the sample by host galaxy type, SNe Ia from star-forming (S-F) galaxies have a mean MB = -19.20 ± 0.05 mag, while SNe Ia from passive galaxies have a mean MB = -18.57 ± 0.24 mag. Even excluding fast declining SNe, `normal' (MB < -18 mag) SNe Ia from S-F and passive galaxies are distinct. In the V band, there is a difference of 0.4 ± 0.13 mag between the median (MV) values of the `normal' SN Ia population from passive and S-F galaxies. This is consistent with (˜15 ± 10) per cent of `normal' SNe Ia from S-F galaxies coming from an old stellar population.

  5. Luminosity Distributions of Cosmological Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Hakkila, Jon; Meegan, Charles A.; Horack, John M.; Pendleton, Geoffrey N.; Briggs, Michael S.; Mallozzi, Robert S.; Koshut, Thomas M.; Preece, Robert D.; Paciesas, William S.

    1996-05-01

    The intrinsic luminosities of gamma-ray bursts are found to be constrained by the BATSE/PVO combined intensity distribution, assuming that (1) bursts originate in {LAMBDA} = 0, {OMEGA} = 1 Friedmann cosmology with a nonevolving density distribution, (2) the nonevolving intrinsic luminosity function can be modeled as a truncated power law, and (3) burst spectra are modeled as power laws with identical spectral indices. These simplifying assumptions allow constraints to be placed on luminosity functions in cosmological gamma-ray burst scenarios and indicate that standard-candle sources are not favored. In general, either the minimum burst luminosity L_min_ or the maximum burst luminosity L_max_ are known, with the opposite end of the luminosity function unconstrained. Both L_max_ and L_min_ must be specified for luminosity power-law indices near 2. When these results are combined with other studies measuring other cosmological burst signatures, it is possible that the intrinsic luminosity function contains more low-luminosity bursts than high-luminosity ones.

  6. The luminosity distribution and total space density of pulsars

    NASA Technical Reports Server (NTRS)

    Roberts, D. H.

    1976-01-01

    The detailed distribution of dispersion measures and spectral fluxes for a sample of 50 pulsars in part of the galactic plane near longitude 50 deg is analyzed, and the intrinsic luminosity distribution of the pulsars is obtained along with some constraints on their spatial distribution. Expressions for the observed distributions of spectral fluxes, distances, and directions are given in terms of the spatial and luminosity distributions of the sources as well as the sensitivity of the detector. A previous analysis of the same sample is reviewed, and the intrinsic luminosity distribution is determined from the distribution of observed distances as well as from the observed distribution of spectral fluxes. The results indicate that the scale height of pulsars cannot be significantly less than 400 pc, the total space density of active pulsars is about 30 per cu kpc, and the birthrate required to maintain this population is about one in the Galaxy every 980 (450-2600) years.

  7. Estimating the Internal Luminosities of Protostars with SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Huard, Tracy L.; Terebey, Susan

    2016-01-01

    During the last decade, the Spitzer Space Telescope and Herschel Space Telescope enabled large infrared surveys of nearby molecular clouds forming low mass stars. The 70 micron observations obtained by those facilities provide estimates of the internal luminosities of protostars that are reliable to within a factor of 2, in general. Spitzer observations at shorter wavelengths yield estimates that are much less constrained, reliable only to within an order of magnitude, at best. With the Stratospheric Observatory for Infrared Astronomy (SOFIA) routinely operating science flights, this facility may be used to further study protostellar populations. We demonstrate that mid-infrared images obtained with the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) achieve internal luminosities with reliability comparable to that achieved by 70 micron observations. With its dynamic range and greater angular resolution, FORCAST may be used to characterize protostars that were either saturated or merged with other sources in previous surveys.

  8. LUMINOUS SATELLITES. II. SPATIAL DISTRIBUTION, LUMINOSITY FUNCTION, AND COSMIC EVOLUTION

    SciTech Connect

    Nierenberg, A. M.; Treu, T.; Auger, M. W.; Marshall, P. J.; Fassnacht, C. D.; Busha, Michael T.

    2012-06-20

    We infer the normalization and the radial and angular distributions of the number density of satellites of massive galaxies (log{sub 10}[M*{sub h}/M{sub Sun }] > 10.5) between redshifts 0.1 and 0.8 as a function of host stellar mass, redshift, morphology, and satellite luminosity. Exploiting the depth and resolution of the COSMOS Hubble Space Telescope images, we detect satellites up to 8 mag fainter than the host galaxies and as close as 0.3 (1.4) arcsec (kpc). Describing the number density profile of satellite galaxies to be a projected power law such that P(R){proportional_to}R{sup {gamma}{sub p}}, we find {gamma}{sub p} = -1.1 {+-} 0.3. We find no dependency of {gamma}{sub p} on host stellar mass, redshift, morphology, or satellite luminosity. Satellites of early-type hosts have angular distributions that are more flattened than the host light profile and are aligned with its major axis. No significant average alignment is detected for satellites of late-type hosts. The number of satellites within a fixed magnitude contrast from a host galaxy is dependent on its stellar mass, with more massive galaxies hosting significantly more satellites. Furthermore, high-mass late-type hosts have significantly fewer satellites than early-type galaxies of the same stellar mass, possibly indicating that they reside in more massive halos. No significant evolution in the number of satellites per host is detected. The cumulative luminosity function of satellites is qualitatively in good agreement with that predicted using SubHalo Abundance Matching techniques. However, there are significant residual discrepancies in the absolute normalization, suggesting that properties other than the host galaxy luminosity or stellar mass determine the number of satellites.

  9. The radio luminosity distribution of pulsars in 47 Tucanae

    NASA Astrophysics Data System (ADS)

    McConnell, D.; Deshpande, A. A.; Connors, T.; Ables, J. G.

    2004-03-01

    We have used the Australia Telescope Compact Array to seek the integrated radio flux from all the pulsars in the core of the globular cluster 47 Tucanae. We have detected an extended region of radio emission and have calibrated its flux against the flux distribution of the known pulsars in the cluster. We find the total 20-cm radio flux from the pulsars in the cluster to be S= 2.0 +/- 0.3 mJy. This implies the lower limit to the radio luminosity distribution to be minL1400= 0.4 mJy kpc2 and the size of the observable pulsar population to be N<~ 30.

  10. Internal Absorption and the Luminosity of Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Boqi; Heckman, Timothy M.

    1996-02-01

    We investigate the correlation of the optical depth of dust in galactic disks with galaxy luminosity. We examine normal late-type (spiral and irregular) galaxies with measured far-ultraviolet (UV, λ ˜ 2000 Å) fluxes and compile the corresponding fluxes in the far-infrared (FIR, λ ˜ 40-120 μm) as measured by IRA S. The UV-to-FIR flux ratio is found to decrease rapidly with increasing FIR and FIR + UV luminosities. Since both the UV and FIR radiation originate mostly from the young stellar population in late-type galaxies, the UV-to-FIR flux ratio is a measure of the fraction of the light produced by young stars escaping from galaxy disks. Thus, the strong correlations above imply that the dust opacity increases with the luminosity of the young stellar population. We also find that the ratio of the UV-to-FIR flux decreases with increasing galaxy blue luminosity (a tracer of the intermediate-age stellar population) and with galaxy rotation speed (an indicator of galaxy mass). We supplement the UV sample of galaxies with an optically selected sample and find that the blue-to-FIR flux ratio declines with both FIR luminosity and galaxy rotation speed. We also examine a sample of galaxies for which the Hβ/Hα flux ratios can be obtained and find that the Hβ/Hα ratio, which also measures the extinction, decreases with the increasing FIR luminosity. We model the absorption and emission of radiation by dust to normal galactic disks with a simple model of a uniform plane-parallel slab in which the dust that radiates in the IRAS band is heated exclusively by UV light from relatively nearby hot stars. We then find that the relation between the UV-to-FIR flux ratio and the observed luminosities can be explained by the face-on extinction optical depth τ varying with the intrinsic luminosity as a power law in the intrinsic UV luminosity: τ = τ1(L/L1)β. The same scaling law may also account for the various correlations found between the blue-to-FIR flux ratio and

  11. HST Imaging of the Globular Clusters in the Formax Cluster: Color and Luminosity Distributions

    NASA Technical Reports Server (NTRS)

    Grillmair, C. J.; Forbes, D. A.; Brodie, J.; Elson, R.

    1998-01-01

    We examine the luminosity and B - I color distribution of globular clusters for three early-type galaxies in the Fornax cluster using imaging data from the Wide Field/Planetary Camera 2 on the Hubble Space Telescope.

  12. IS THE OBSERVED HIGH-FREQUENCY RADIO LUMINOSITY DISTRIBUTION OF QSOs BIMODAL?

    SciTech Connect

    Mahony, Elizabeth K.; Sadler, Elaine M.; Croom, Scott M.; Murphy, Tara; Ekers, Ronald D.; Feain, Ilana J.

    2012-07-20

    The distribution of QSO radio luminosities has long been debated in the literature. Some argue that it is a bimodal distribution, implying that there are two separate QSO populations (normally referred to as 'radio-loud' and 'radio-quiet'), while others claim it forms a more continuous distribution characteristic of a single population. We use deep observations at 20 GHz to investigate whether the distribution is bimodal at high radio frequencies. Carrying out this study at high radio frequencies has an advantage over previous studies as the radio emission comes predominantly from the core of the active galactic nucleus, and hence probes the most recent activity. Studies carried out at lower frequencies are dominated by the large-scale lobes where the emission is built up over longer timescales (10{sup 7}-10{sup 8} yr), thereby confusing the sample. Our sample comprises 874 X-ray-selected QSOs that were observed as part of the 6dF Galaxy Survey. Of these, 40% were detected down to a 3{sigma} detection limit of 0.2-0.5 mJy. No evidence of bimodality is seen in either the 20 GHz luminosity distribution or in the distribution of the R{sub 20} parameter: the ratio of the radio to optical luminosities traditionally used to classify objects as being either radio-loud or radio-quiet. Previous results have claimed that at low radio luminosities, star formation processes can dominate the radio emission observed in QSOs. We attempt to investigate these claims by stacking the undetected sources at 20 GHz and discuss the limitations in carrying out this analysis. However, if the radio emission was solely due to star formation processes, we calculate that this corresponds to star formation rates ranging from {approx}10 M{sub Sun} yr{sup -1} to {approx}2300 M{sub Sun} yr{sup -1}.

  13. The Bivariate Luminosity--HI Mass Distribution Function of Galaxies based on the NIBLES Survey

    NASA Astrophysics Data System (ADS)

    Butcher, Zhon; Schneider, Stephen E.; van Driel, Wim; Lehnert, Matt

    2016-01-01

    We use 21cm HI line observations for 2610 galaxies from the Nançay Interstellar Baryons Legacy Extragalactic Survey (NIBLES) to derive a bivariate luminosity--HI mass distribution function. Our HI survey was selected to randomly probe the local (900 < cz < 12,000 km/s) galaxy population in each 0.5 mag wide bin for the absolute z-band magnitude range of -13.5 < Mz < -24 without regard to morphology or color. This targeted survey allowed more on-source integration time for weak and non-detected sources, enabling us to probe lower HI mass fractions and apply lower upper limits for non-detections than would be possible with the larger blind HI surveys. Additionally, we obtained a factor of four higher sensitivity follow-up observations at Arecibo of 90 galaxies from our non-detected and marginally detected categories to quantify the underlying HI distribution of sources not detected at Nançay. Using the optical luminosity function and our higher sensitivity follow up observations as priors, we use a 2D stepwise maximum likelihood technique to derive the two dimensional volume density distribution of luminosity and HI mass in each SDSS band.

  14. Differential Density Statistics of the Galaxy Distribution and the Luminosity Function

    NASA Astrophysics Data System (ADS)

    Albani, V. V. L.; Iribarrem, A. S.; Ribeiro, M. B.; Stoeger, W. R.

    2007-03-01

    This paper uses data obtained from the galaxy luminosity function (LF) to calculate two types of radial number density statistics of the galaxy distribution as discussed in Ribeiro, namely, the differential density γ and the integral differential density γ*. By applying the theory advanced by Ribeiro & Stoeger, which connects the relativistic cosmology number counts with the astronomically derived LF, the differential number counts dN/dz are extracted from the LF and used to calculate both γ and γ* with various cosmological distance definitions, namely, area distance, luminosity distance, galaxy area distance, and redshift distance. LF data are taken from the CNOC2 galaxy redshift survey, and γ and γ* are calculated for two cosmological models: Einstein-de Sitter and an Ωm0=0.3, ΩΛ0=0.7 standard cosmology. The results confirm the strong dependency of both statistics on the distance definition, as predicted in Ribeiro, as well as showing that plots of γ and γ* against the luminosity and redshift distances indicate that the CNOC2 galaxy distribution follows a power-law pattern for redshifts higher than 0.1. These findings support Ribeiro's theoretical proposition that using different cosmological distance measures in statistical analyses of galaxy surveys can lead to significant ambiguity in drawing conclusions about the behavior of the observed large-scale distribution of galaxies.

  15. The Luminosity Distribution at the Bright End of Red-Sequence Galaxies

    NASA Astrophysics Data System (ADS)

    Loh, Y. S.; Strauss, M. A.

    We study the bright end of the distribution of galaxies in fields with Luminous Red Galaxies (LRG) from the Sloan Digital Sky Survey (SDSS). Using 2099 square degree of SDSS imaging data, we search for bright (> L_*) early-type galaxies within 1 Mpc of 12,608 spectroscopic LRG in the volume-limited redshift range 0.12 < z < 0.38. The brightest galaxies within 1 Mpc of LRG are too bright to be consistent with an exponentially decaying luminosity function of other members in the same field. The luminosity gap, M12 between the first and the second-rank galaxy is large(˜ 0.8 mag). When the LRG fields were split into group-like and cluster-like environments, the former gives (1) a more luminous brightest member, and (2) a larger gap M12. The large luminosity gap shows little evolution with redshifts, putting stringent constraints on the scenerio of the growth of Brightest Cluster (or Group) Galaxies by recent cannibalism of cluster/group members.

  16. Multiwavelength Energy Distributions and Bolometric Luminosities of the 12 Micron Galaxy Sample

    NASA Astrophysics Data System (ADS)

    Spinoglio, Luigi; Malkan, Matthew A.; Rush, Brian; Carrasco, Luis; Recillas-Cruz, Elsa

    1995-11-01

    Aperture photometry from our own observations and the literature is presented for the 12 microns galaxies in the near-infrared J, H, and K bands and, in some cases, in the L band. These data are corrected to "total" near-infrared magnitudes (with a typical uncertainty of 0.3 mag) for a direct comparison with our IRAS fluxes which apply to the entire galaxy. The corrected data are used to derive integrated total near-infrared and far-infrared luminosities. We then combine these with blue photometry and an estimate of the flux contribution from cold dust at wavelengths longward of 100 microns to derive the first bolometric luminosities for a large sample of galaxies. The presence of nonstellar radiation at 2-3 microns correlates very well with nonstellar IRAS colors. This enables us to identify a universal Seyfert nuclear continuum from near- to far-infrared wavelengths. Thus, there is a sequence of infrared colors which runs from a pure "normal galaxy" to a pure Seyfert/quasar nucleus. Seyfert 2 galaxies fall close to this same sequence, although only a few extreme narrow-line Seyfert galaxies have quasar-like colors, and these show strong evidence of harboring an obscured broad-line region. A corollary is that the host galaxies of Seyfert nuclei have normal near- to far-infrared spectra on average. Starburst galaxies lie significantly off the sequence, having a relative excess of 60 microns emission probably as a result of stochastically heated dust grains. We use these correlations to identify several combinations of infrared colors which discriminate between Seyfert 1 and 2 galaxies, LINERs, and ultraluminous starbursts. In the infrared, Seyfert 2 galaxies are much more like Seyfert 1s than they are like starbursts, presumably because both kinds of Seyferts are heated by a single central source, rather than a distributed region of star formation. Moreover, combining the [25-2.2 mum] color with the [60-12 mum] color, it appears that Seyfert 1 galaxies are

  17. Monitoring of Interaction-Point Parameters Using the 3-Dimensional Luminosity Distribution Measured at PEP-II

    SciTech Connect

    Viaud, B.F.; Kozanecki, W.; O'Grady, C.; Thompson, J.; Weaver, M.; /SLAC

    2006-07-28

    The 3-D luminosity distribution at the IP of the SLAC B-Factory is monitored using e{sup +}e{sup -} {yields} e{sup +}e{sup -}, {mu}{sup +}{mu}{sup -} events reconstructed online in the BABAR detector. The transverse centroid and spatial orientation of the luminosity ellipsoid reliably monitor IP orbit drifts. The longitudinal centroid is sensitive to small variations in the average relative RF phase of the beams and provides a detailed measurement of the phase transient along the bunch train. The longitudinal luminosity distribution depends on the e{sup +,-} overlap bunch length and the vertical IP {beta}-functions. Relative variations in horizontal luminous size are detectable at the micron level. In addition to continuous on-line monitoring of all the parameters above, we performed detailed studies of their variation along the bunch train to investigate a temporary luminosity degradation. We also compare {beta}*{sub y} measurements, collected over a year of high-luminosity operation, with HER and LER lattice functions measured by resonant transverse excitation. Our bunch-length measurements are consistent with those obtained by other methods and provide direct evidence for bunch-length modulation.

  18. Luminosity distance in ``Swiss cheese'' cosmology with randomized voids. II. Magnification probability distributions

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Kumar, Naresh; Wasserman, Ira; Vanderveld, R. Ali

    2012-01-01

    We study the fluctuations in luminosity distances due to gravitational lensing by large scale (≳35Mpc) structures, specifically voids and sheets. We use a simplified “Swiss cheese” model consisting of a ΛCDM Friedman-Robertson-Walker background in which a number of randomly distributed nonoverlapping spherical regions are replaced by mass-compensating comoving voids, each with a uniform density interior and a thin shell of matter on the surface. We compute the distribution of magnitude shifts using a variant of the method of Holz and Wald , which includes the effect of lensing shear. The standard deviation of this distribution is ˜0.027 magnitudes and the mean is ˜0.003 magnitudes for voids of radius 35 Mpc, sources at redshift zs=1.0, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06 magnitudes as we vary the void size, source redshift, and fraction of mass on the shells today. If the shell walls are given a finite thickness of ˜1Mpc, the standard deviation is reduced to ˜0.013 magnitudes. This standard deviation due to voids is a factor ˜3 smaller than that due to galaxy scale structures. We summarize our results in terms of a fitting formula that is accurate to ˜20%, and also build a simplified analytic model that reproduces our results to within ˜30%. Our model also allows us to explore the domain of validity of weak-lensing theory for voids. We find that for 35 Mpc voids, corrections to the dispersion due to lens-lens coupling are of order ˜4%, and corrections due to shear are ˜3%. Finally, we estimate the bias due to source-lens clustering in our model to be negligible.

  19. Constructing a bivariate distribution function with given marginals and correlation: application to the galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    Takeuchi, Tsutomu T.

    2010-08-01

    We provide an analytic method to construct a bivariate distribution function (DF) with given marginal distributions and correlation coefficient. We introduce a convenient mathematical tool, called a copula, to connect two DFs with any prescribed dependence structure. If the correlation of two variables is weak (Pearson's correlation coefficient |ρ| < 1/3), the Farlie-Gumbel-Morgenstern (FGM) copula provides an intuitive and natural way to construct such a bivariate DF. When the linear correlation is stronger, the FGM copula cannot work anymore. In this case, we propose using a Gaussian copula, which connects two given marginals and is directly related to the linear correlation coefficient between two variables. Using the copulas, we construct the bivariate luminosity function (BLF) and discuss its statistical properties. We focus especially on the far-infrared-far-ulatraviolet (FUV-FIR) BLF, since these two wavelength regions are related to star-formation (SF) activity. Though both the FUV and FIR are related to SF activity, the univariate LFs have a very different functional form: the former is well described by the Schechter function whilst the latter has a much more extended power-law-like luminous end. We construct the FUV-FIR BLFs using the FGM and Gaussian copulas with different strengths of correlation, and examine their statistical properties. We then discuss some further possible applications of the BLF: the problem of a multiband flux-limited sample selection, the construction of the star-formation rate (SFR) function, and the construction of the stellar mass of galaxies (M*)-specific SFR (SFR/M*) relation. The copulas turn out to be a very useful tool to investigate all these issues, especially for including complicated selection effects.

  20. Spectral Energy Distribution Models for Low-Luminosity Active Galactic Nuclei in LINERs

    NASA Technical Reports Server (NTRS)

    Nemmen, Rodrigo S.; Storchi-Bergmann, Thaisa; Eracleous, Michael

    2012-01-01

    Low-luminosity active galactic nuclei (LLAGNs) represent the bulk of the AGN population in the present-day universe and they trace the low-level accreting supermassive black holes. In order to probe the accretion and jet physical properties in LLAGNs as a class, we model the broadband radio to X-rays spectral energy distributions (SEDs) of 21 LLAGNs in low-ionization nuclear emission-line regions (LINERs) with a coupled accretion-jet model. The accretion flow is modeled as an inner ADAF outside of which there is a truncated standard thin disk. We find that the radio emission is severely underpredicted by ADAF models and is explained by the relativistic jet. The origin of the X-ray radiation in most sources can be explained by three distinct scenarios: the X-rays can be dominated by emission from the ADAF, or the jet, or the X-rays can arise from a jet-ADAF combination in which both components contribute to the emission with similar importance. For 3 objects both the jet and ADAF fit equally well the X-ray spectrum and can be the dominant source of X-rays whereas for 11 LLAGNs a jet-dominated model accounts better than the ADAF-dominated model for the data. The individual and average SED models that we computed can be useful for different studies of the nuclear emission of LLAGNs. From the model fits, we estimate important parameters of the central engine powering LLAGNs in LINERs, such as the mass accretion rate and the mass-loss rate in the jet and the jet power - relevant for studies of the kinetic feedback from jets.

  1. Analysis of luminosity distributions and the shape parameters of strong gravitational lensing elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Biernaux, J.; Magain, P.; Sluse, D.; Chantry, V.

    2016-01-01

    Context. The luminosity profiles of galaxies acting as strong gravitational lenses can be tricky to study. Indeed, strong gravitational lensing images display several lensed components, both point-like and diffuse, around the lensing galaxy. Those objects limit the study of the galaxy luminosity to its inner parts. Therefore, the usual fitting methods perform rather badly on such images. Previous studies of strong lenses luminosity profiles using software such as GALFIT or IMFITFITS and various PSF-determining methods have resulted in somewhat discrepant results. Aims: The present work aims at investigating the causes of those discrepancies, as well as at designing more robust techniques for studying the morphology of early-type lensing galaxies with the ability to subtract a lensed signal from their luminosity profiles. Methods: We design a new method to independently measure each shape parameter, namely, the position angle, ellipticity, and half-light radius of the galaxy. Our half-light radius measurement method is based on an innovative scheme for computing isophotes that is well suited to measuring the morphological properties of gravititational lensing galaxies. Its robustness regarding various specific aspects of gravitational lensing image processing is analysed and tested against GALFIT. It is then applied to a sample of systems from the CASTLES database. Results: Simulations show that, when restricted to small, inner parts of the lensing galaxy, the technique presented here is more trustworthy than GALFIT. It gives more robust results than GALFIT, which shows instabilities regarding the fitting region, the value of the Sérsic index, and the signal-to-noise ratio. It is therefore better suited than GALFIT for gravitational lensing galaxies. It is also able to study lensing galaxies that are not much larger than the PSF. New values for the half-light radius of the objects in our sample are presented and compared to previous works. Table 6 is only available

  2. Universities and the International Distribution of Knowledge.

    ERIC Educational Resources Information Center

    Spitzberg, Irving, J., Jr., Ed.

    The role of the universities in the international distribution of knowledge is examined. An introduction by Irving J. Spitzberg, Jr. provides an overview of the volume. Part I: Analytical Context includes: "Universities and the New International Order: A Conceptual Analysis" (Spitzberg); "Knowledge as a Commodity: The Inequities of Knowledge…

  3. Luminosity and spatial distribution of the forbidden O I 6300-A emission in comets

    NASA Astrophysics Data System (ADS)

    Fink, U.; Johnson, J. R.

    1984-10-01

    The authors have obtained CCD observations of the forbidden oxygen lines at 6300 and 6364 Å for the comets Tuttle, Stephan-Oterma, and Brooks 2. Their high-quality observations have allowed the authors to perform good cancellation of the night sky [O I] lines and to determine the spatial profiles and the absolute luminosities of the cometary [O I] lines. Analysis of both the spatial emission profiles and the total [O I] flux demonstrates that the source of the observed [O I] photons is direct photodissociation of water vapor. Production of O1D by dissociation of OH is of minor importance in the inner coma, but becomes dominant at larger distances from the nucleus. Spatial profiles for comets Tuttle and Stephan-Oterma agree well with the model calculations of Festou and Feldman (1981), as well as with a more simple Haser model having a scale length at 1 AU of 8.2×104km for the parent molecule water vapor.

  4. LUMINOSITY DISTRIBUTION OF GAMMA-RAY BURST HOST GALAXIES AT REDSHIFT z = 1 IN COSMOLOGICAL SMOOTHED PARTICLE HYDRODYNAMIC SIMULATIONS: IMPLICATIONS FOR THE METALLICITY DEPENDENCE OF GRBs

    SciTech Connect

    Niino, Yuu; Totani, Tomonori; Choi, Jun-Hwan; Nagamine, Kentaro; Zhang Bing; Kobayashi, Masakazu A. R.

    2011-01-10

    We study the relationship between the metallicity of gamma-ray burst (GRB) progenitors and the probability distribution function (PDF) of GRB host galaxies as a function of luminosity using cosmological hydrodynamic simulations of galaxy formation. We impose a maximum limit to the gas metallicity in which GRBs can occur and examine how the predicted luminosity PDF of GRB host galaxies changes in the simulation. We perform the Kolmogorov-Smirnov test and show that the result from our simulation agrees with the observed luminosity PDF of core-collapse supernovae (SNe) host galaxies when we assume that the core-collapse SNe trace star formation. When we assume that GRBs occur only in a low-metallicity environment with Z {approx}< 0.1 Z{sub sun}, GRBs occur in lower luminosity galaxies, and the simulated luminosity PDF becomes quantitatively consistent with the observed one. The observational bias against the host galaxies of optically dark GRBs owing to dust extinction may be another reason for the lower luminosities of GRB host galaxies, but the observed luminosity PDF of GRB host galaxies cannot be reproduced solely by the dust bias in our simulation.

  5. Distance and luminosity probability distributions derived from parallax and flux with their measurement errors. With application to the millisecond pulsar PSR J0218+4232

    NASA Astrophysics Data System (ADS)

    Igoshev, Andrei; Verbunt, Frank; Cator, Eric

    2016-06-01

    We use a Bayesian approach to derive the distance probability distribution for one object from its parallax with measurement uncertainty for two spatial distribution priors, a homogeneous spherical distribution and a galactocentric distribution - applicable for radio pulsars - observed from Earth. We investigate the dependence on measurement uncertainty, and show that a parallax measurement can underestimate or overestimate the actual distance, depending on the spatial distribution prior. We derive the probability distributions for distance and luminosity combined - and for each separately when a flux with measurement error for the object is also available - and demonstrate the necessity of and dependence on the luminosity function prior. We apply this to estimate the distance and the radio and gamma-ray luminosities of PSR J0218+4232. The use of realistic priors improves the quality of the estimates for distance and luminosity compared to those based on measurement only. Use of the wrong prior, for example a homogeneous spatial distribution without upper bound, may lead to very incorrect results.

  6. Luminosity Lifetime

    SciTech Connect

    Zisman, M.S.

    1997-04-01

    In a symmetric or 'energy transparent' relativistic collider, the luminosity is given by L = N{sup 2}f{sub c}/4{pi}{sigma}*{sub x}{sigma}*{sub y} where N is the number of electrons or positrons per bunch, {sigma}*{sub x} ({sigma}*{sub y}) is the horizontal (vertical) rms beam size at the interaction point (IP), and f{sub c} is the collision frequency. If the beam sizes remain constant as the luminosity decreases, then the time dependence of luminosity is contained entirely in the time dependence of the beam currents, i.e., N O N(t), and we can rewrite the equation as L(t) = N{sup 2}(t)f{sub c}/4{pi}{sigma}*{sub x}{sigma}*{sub y}. There are two distinct categories for luminosity loss. In the first category are loss processes due to collisions between the two beams, that is, processes associated directly with the luminosity. In the second category (see below) are single-beam loss processes. The processes in the first category relevant to a high-energy collider are Bhabha scattering (e{sup +}e{sup -} O e{sup +}e{sup -}) and 'radiative' Bhabha scattering (e{sup +}e{sup -} O e{sup +}e{sup -}{gamma}). In the first process, a beam particle is lost if its angular deflection is beyond the ring's transverse acceptance; in the second process, loss occurs if the beam particle's momentum change is outside the longitudinal acceptance of the ring (typically determined by the RF bucket height).

  7. SPECTRAL ENERGY DISTRIBUTIONS OF LOW-LUMINOSITY RADIO GALAXIES AT z {approx}1-3: A HIGH-z VIEW OF THE HOST/AGN CONNECTION

    SciTech Connect

    Baldi, Ranieri D.; Chiaberge, Marco; Rodriguez-Zaurin, Javier; Deustua, Susana; Sparks, William B.; Capetti, Alessandro

    2013-01-01

    We study the spectral energy distributions, SEDs (from FUV to MIR bands), of the first sizeable sample of 34 low-luminosity radio galaxies at high redshifts, selected in the COSMOS field. To model the SEDs, we use two different template-fitting techniques: (1) the Hyperz code that only considers single stellar templates and (2) our own developed technique 2SPD that also includes the contribution from a young stellar population and dust emission. The resulting photometric redshifts range from z {approx} 0.7 to 3 and are in substantial agreement with measurements from earlier work, but significantly more accurate. The SED of most objects is consistent with a dominant contribution from an old stellar population with an age {approx}1-3 Multiplication-Sign 10{sup 9} years. The inferred total stellar mass range is {approx}10{sup 10}-10{sup 12} M {sub Sun }. Dust emission is needed to account for the 24 {mu}m emission in 15 objects. Estimates of the dust luminosity yield values in the range L {sub dust} {approx} 10{sup 43.5}-10{sup 45.5} erg s{sup -1}. The global dust temperature, crudely estimated for the sources with an MIR excess, is {approx}300-850 K. A UV excess is often observed with a luminosity in the range {approx}10{sup 42}-10{sup 44} erg s{sup -1} at 2000 A rest frame. Our results show that the hosts of these high-z low-luminosity radio sources are old massive galaxies, similar to the local FR Is. However, the UV and MIR excesses indicate the possible significant contribution from star formation and/or nuclear activity in such bands, not seen in low-z FR Is. Our sources display a wide variety of properties: from possible quasars at the highest luminosities to low-luminosity old galaxies.

  8. Spectral Energy Distributions of Low-luminosity Radio Galaxies at z ~1-3: A High-z View of the Host/AGN Connection

    NASA Astrophysics Data System (ADS)

    Baldi, Ranieri D.; Chiaberge, Marco; Capetti, Alessandro; Rodriguez-Zaurin, Javier; Deustua, Susana; Sparks, William B.

    2013-01-01

    We study the spectral energy distributions, SEDs (from FUV to MIR bands), of the first sizeable sample of 34 low-luminosity radio galaxies at high redshifts, selected in the COSMOS field. To model the SEDs, we use two different template-fitting techniques: (1) the Hyperz code that only considers single stellar templates and (2) our own developed technique 2SPD that also includes the contribution from a young stellar population and dust emission. The resulting photometric redshifts range from z ~ 0.7 to 3 and are in substantial agreement with measurements from earlier work, but significantly more accurate. The SED of most objects is consistent with a dominant contribution from an old stellar population with an age ~1-3 × 109 years. The inferred total stellar mass range is ~1010-1012 M ⊙. Dust emission is needed to account for the 24 μm emission in 15 objects. Estimates of the dust luminosity yield values in the range L dust ~ 1043.5-1045.5 erg s-1. The global dust temperature, crudely estimated for the sources with an MIR excess, is ~300-850 K. A UV excess is often observed with a luminosity in the range ~1042-1044 erg s-1 at 2000 Å rest frame. Our results show that the hosts of these high-z low-luminosity radio sources are old massive galaxies, similar to the local FR Is. However, the UV and MIR excesses indicate the possible significant contribution from star formation and/or nuclear activity in such bands, not seen in low-z FR Is. Our sources display a wide variety of properties: from possible quasars at the highest luminosities to low-luminosity old galaxies.

  9. THE REDSHIFT DISTRIBUTION OF INTERVENING WEAK Mg II QUASAR ABSORBERS AND A CURIOUS DEPENDENCE ON QUASAR LUMINOSITY

    SciTech Connect

    Evans, Jessica L.; Churchill, Christopher W.; Nielsen, Nikole M.; Klimek, Elizabeth S.; Murphy, Michael T.

    2013-05-01

    We have identified 469 Mg II {lambda}{lambda}2796, 2803 doublet systems having W{sub r} {>=} 0.02 A in 252 Keck/High Resolution Echelle Spectrometer and UVES/Very Large Telescope quasar spectra over the redshift range 0.1 < z < 2.6. Using the largest sample yet of 188 weak Mg II systems (0.02 A {<=}W{sub r} < 0.3 A), we calculate their absorber redshift path density, dN/dz. We find clear evidence of evolution, with dN/dz peaking at z {approx} 1.2, and that the product of the absorber number density and cross section decreases linearly with increasing redshift; weak Mg II absorbers seem to vanish above z {approx_equal} 2.7. If the absorbers are ionized by the UV background, we estimate number densities of 10{sup 6}-10{sup 9} Mpc{sup -3} for spherical geometries and 10{sup 2}-10{sup 5} Mpc{sup -3} for more sheetlike geometries. We also find that dN/dz toward intrinsically faint versus bright quasars differs significantly for weak and strong (W{sub r} {>=} 1.0 A) absorbers. For weak absorption, dN/dz toward bright quasars is {approx}25% higher than toward faint quasars (10{sigma} at low redshift, 0.4 {<=} z {<=} 1.4, and 4{sigma} at high redshift, 1.4 < z {<=} 2.34). For strong absorption the trend reverses, with dN/dz toward faint quasars being {approx}20% higher than toward bright quasars (also 10{sigma} at low redshift and 4{sigma} at high redshift). We explore scenarios in which beam size is proportional to quasar luminosity and varies with absorber and quasar redshifts. These do not explain dN/dz's dependence on quasar luminosity.

  10. Hipparcos luminosities and asteroseismology

    NASA Astrophysics Data System (ADS)

    Bedding, Timothy R.

    Asteroseismology involves using the resonant frequencies of a star to infer details about its internal structure and evolutionary state. Large efforts have been made and continue to be made to measure oscillation frequencies with both ground- and space-based telescopes, with typical precisions of one part in 103-104. However, oscillation frequencies are most useful when accompanied by accurate measurements of the more traditional stellar parameters such as luminosity and effective temperature. The Hipparcos catalogue provides luminosities with precisions of a few percent or better for many oscillating stars. I briefly discuss the importance of Hipparcos measurements for interpreting asteroseismic data on three types of oscillating stars: δ Scuti variables, rapidly oscillating Ap stars and solar-like stars.

  11. The Swift GRB Host Galaxy Legacy Survey. II. Rest-frame Near-IR Luminosity Distribution and Evidence for a Near-solar Metallicity Threshold

    NASA Astrophysics Data System (ADS)

    Perley, D. A.; Tanvir, N. R.; Hjorth, J.; Laskar, T.; Berger, E.; Chary, R.; de Ugarte Postigo, A.; Fynbo, J. P. U.; Krühler, T.; Levan, A. J.; Michałowski, M. J.; Schulze, S.

    2016-01-01

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ˜ 0.5 and z ˜ 1.5, but little variation between z ˜ 1.5 and z ˜ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass-metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2 metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  12. THE SPECTRAL ENERGY DISTRIBUTIONS AND INFRARED LUMINOSITIES OF z Almost-Equal-To 2 DUST-OBSCURED GALAXIES FROM Herschel AND Spitzer

    SciTech Connect

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Armus, Lee; Pope, Alexandra; Alberts, Stacey; Dey, Arjun; Jannuzi, B. T.; Bussmann, R. S. E-mail: bts@submm.caltech.edu E-mail: lee@ipac.caltech.edu E-mail: pope@astro.umass.edu E-mail: jannuzi@noao.edu

    2012-05-15

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z Almost-Equal-To 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L{sub IR} > 10{sup 12} L{sub Sun} ). We present new far-infrared photometry, at 250, 350, and 500 {mu}m (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10{sup 11.6} L{sub Sun} 10{sup 13} L{sub Sun }. The rest-frame near-IR (1-3 {mu}m) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 {mu}m flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 {mu}m flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within {approx}25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 {mu}m luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 {mu}m luminosity (the IR8 = L{sub IR}(8-1000 {mu}m)/{nu}L{sub {nu}}(8 {mu}m) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of

  13. XMM-Newton observations of the Galactic Centre Region - I. The distribution of low-luminosity X-ray sources

    NASA Astrophysics Data System (ADS)

    Heard, V.; Warwick, R. S.

    2013-02-01

    We exploit XMM-Newton archival data in a study of the extended X-ray emission emanating from Galactic Centre (GC) region. XMM-Newton EPIC-pn and EPIC-MOS observations, with a total exposure time approaching 0.5 and 1 Ms, respectively, were used to create mosaicked images of a 100 pc × 100 pc region centred on Sgr A* in four bands covering the 2-10 keV energy range. We have also constructed a set of narrow-band images corresponding to the neutral iron fluorescence line (Fe i Kα) at 6.4 keV and the K-shell lines at 6.7 and 6.9 keV from helium-like (Fe xxv Kα) and hydrogenic (Fe xxvi Lyα) iron ions. We use a combination of spatial and spectral information to decompose the GC X-ray emission into three distinct components. These comprise: first the emission from hard X-ray emitting unresolved point sources; secondly the reflected continuum and fluorescent line emission from dense molecular material and, thirdly, the soft diffuse emission from thermal plasma in the temperature range kT ≈ 0.8-1.5 keV. We show that the unresolved-source component accounts for the bulk of the 6.7- and 6.9-keV line emission and also makes a major contribution to both the 6.4-keV line emission and the 7.2-10 keV continuum flux. We fit the observed X-ray surface-brightness distribution with an empirical 2D model, which we then compare with a prediction based on an NIR-derived 3D mass model for the old stellar population in the GC. The X-ray surface brightness falls-off more rapidly with angular offset from Sgr A* than the mass-model prediction. One interpretation is that the 2-10 keV X-ray emissivity increases from ≈ 5 × 1027 erg s- 1 M- 1⊙ at 20 arcmin up to almost twice this value at 2 arcmin. Alternatively, some refinement of the mass model may be required, although it is unclear whether this applies to the Nuclear Stellar Cluster, the Nuclear Stellar Disc or a combination of both components. The unresolved hard X-ray emitting source population, on the basis of spectral

  14. Luminosity monitor at PEP

    SciTech Connect

    Fox, J.D.; Franklin, M.E.B.

    1981-02-01

    The luminosity monitor system utilized by the MKII Detector and by the PEP operators is described. This system processes information from 56 photomultipliers and calculates independent luminosities for each of the 3 colliding bunches in PEP. Design considerations, measurement techniques, and sources of error in the luminosity measurement are discussed.

  15. Identifying the Low-Luminosity Population of Embedded Protostars in the c2d Observations of Clouds and Cores

    NASA Astrophysics Data System (ADS)

    Dunham, Michael M.; Crapsi, Antonio; Evans, Neal J., II; Bourke, Tyler L.; Huard, Tracy L.; Myers, Philip C.; Kauffmann, Jens

    2008-11-01

    We present the results of a search for all embedded protostars with internal luminosities <=1.0 L⊙ in the full sample of nearby, low-mass star-forming regions surveyed by the Spitzer Space Telescope Legacy Project "From Molecular Cores to Planet Forming Disks" (c2d). The internal luminosity of a source, Lint, is the luminosity of the central source and excludes luminosity arising from external heating. On average, the Spitzer c2d data are sensitive to embedded protostars with Lint >= 4 × 10-3(d/140 pc)2 L⊙, a factor of 25 better than the sensitivity of the Infrared Astronomical Satellite (IRAS) to such objects. We present a set of selection criteria used to identify candidates from the Spitzer data and examine complementary data to decide whether each candidate is truly an embedded protostar. We find a tight correlation between the 70 μm flux and internal luminosity of a protostar, an empirical result based on both observations and detailed two-dimensional radiative transfer models of protostars. We identify 50 embedded protostars with Lint <= 1.0 L⊙ 15 have Lint <= 0.1 L⊙. The intrinsic distribution of source luminosities increases to lower luminosities. While we find sources down to the above sensitivity limit, indicating that the distribution may extend to luminosities lower than probed by these observations, we are able to rule out a continued rise in the distribution below Lint = 0.1 L⊙. Between 75% and 85% of cores classified as starless prior to being observed by Spitzer remain starless to our luminosity sensitivity; the remaining 15%-25% harbor low-luminosity, embedded protostars. We compile complete spectral energy distributions for all 50 objects and calculate standard evolutionary signatures (Lbol, Tbol, and Lbol/Lsmm) and argue that these objects are inconsistent with the simplest picture of star formation, wherein mass accretes from the core onto the protostar at a constant rate.

  16. The Luminosity, Mass, and Age Distributions of Compact Star Clusters in M83 Based on Hubble Space Telescope/Wide Field Camera 3 Observations

    NASA Astrophysics Data System (ADS)

    Chandar, Rupali; Whitmore, Bradley C.; Kim, Hwihyun; Kaleida, Catherine; Mutchler, Max; Calzetti, Daniela; Saha, Abhijit; O'Connell, Robert; Balick, Bruce; Bond, Howard; Carollo, Marcella; Disney, Michael; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick; Paresce, Francesco; Silk, Joe; Trauger, John; Walker, Alistair R.; Windhorst, Rogier A.; Young, Erick

    2010-08-01

    The newly installed Wide Field Camera 3 (WFC3) on the Hubble Space Telescope has been used to obtain multi-band images of the nearby spiral galaxy M83. These new observations are the deepest and highest resolution images ever taken of a grand-design spiral, particularly in the near-ultraviolet, and allow us to better differentiate compact star clusters from individual stars and to measure the luminosities of even faint clusters in the U band. We find that the luminosity function (LF) for clusters outside of the very crowded starburst nucleus can be approximated by a power law, dN/dL vprop L α, with α = -2.04 ± 0.08, down to MV ≈ -5.5. We test the sensitivity of the LF to different selection techniques, filters, binning, and aperture correction determinations, and find that none of these contribute significantly to uncertainties in α. We estimate ages and masses for the clusters by comparing their measured UBVI, Hα colors with predictions from single stellar population models. The age distribution of the clusters can be approximated by a power law, dN/dτ vprop τγ, with γ = -0.9 ± 0.2, for M >~ few × 103 M sun and τ <~ 4 × 108 yr. This indicates that clusters are disrupted quickly, with ≈80%-90% disrupted each decade in age over this time. The mass function of clusters over the same M-τ range is a power law, dN/dM vprop M β, with β = -1.94 ± 0.16, and does not have bends or show curvature at either high or low masses. Therefore, we do not find evidence for a physical upper mass limit, MC , or for the earlier disruption of lower mass clusters when compared with higher mass clusters, i.e., mass-dependent disruption. We briefly discuss these implications for the formation and disruption of the clusters.

  17. THE LUMINOSITY, MASS, AND AGE DISTRIBUTIONS OF COMPACT STAR CLUSTERS IN M83 BASED ON HUBBLE SPACE TELESCOPE/WIDE FIELD CAMERA 3 OBSERVATIONS

    SciTech Connect

    Chandar, Rupali; Whitmore, Bradley C.; Mutchler, Max; Bond, Howard; Kim, Hwihyun; Kaleida, Catherine; Calzetti, Daniela; Saha, Abhijit; O'Connell, Robert; Balick, Bruce; Carollo, Marcella; Disney, Michael; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick; Paresce, Francesco; Silk, Joe

    2010-08-10

    The newly installed Wide Field Camera 3 (WFC3) on the Hubble Space Telescope has been used to obtain multi-band images of the nearby spiral galaxy M83. These new observations are the deepest and highest resolution images ever taken of a grand-design spiral, particularly in the near-ultraviolet, and allow us to better differentiate compact star clusters from individual stars and to measure the luminosities of even faint clusters in the U band. We find that the luminosity function (LF) for clusters outside of the very crowded starburst nucleus can be approximated by a power law, dN/dL {proportional_to} L {sup {alpha}}, with {alpha} = -2.04 {+-} 0.08, down to M{sub V} {approx} -5.5. We test the sensitivity of the LF to different selection techniques, filters, binning, and aperture correction determinations, and find that none of these contribute significantly to uncertainties in {alpha}. We estimate ages and masses for the clusters by comparing their measured UBVI, H{alpha} colors with predictions from single stellar population models. The age distribution of the clusters can be approximated by a power law, dN/d{tau} {proportional_to} {tau}{sup {gamma}}, with {gamma} = -0.9 {+-} 0.2, for M {approx}> few x 10{sup 3} M {sub sun} and {tau} {approx}< 4 x 10{sup 8} yr. This indicates that clusters are disrupted quickly, with {approx}80%-90% disrupted each decade in age over this time. The mass function of clusters over the same M-{tau} range is a power law, dN/dM {proportional_to} M {sup {beta}}, with {beta} = -1.94 {+-} 0.16, and does not have bends or show curvature at either high or low masses. Therefore, we do not find evidence for a physical upper mass limit, M{sub C} , or for the earlier disruption of lower mass clusters when compared with higher mass clusters, i.e., mass-dependent disruption. We briefly discuss these implications for the formation and disruption of the clusters.

  18. Luminosity monitoring in ATLAS with MPX detectors

    NASA Astrophysics Data System (ADS)

    Sopczak, A.

    2014-01-01

    The ATLAS-MPX detectors are based on the Medipix2 silicon devices designed by CERN for the detection of multiple types of radiation. Sixteen such detectors were successfully operated in the ATLAS detector at the LHC and collected data independently of the ATLAS data-recording chain from 2008 to 2013. Each ATLAS-MPX detector provides separate measurements of the bunch-integrated LHC luminosity. An internal consistency for luminosity monitoring of about 2% was demonstrated. In addition, the MPX devices close to the beam are sensitive enough to provide relative-luminosity measurements during van der Meer calibration scans, in a low-luminosity regime that lies below the sensitivity of the ATLAS calorimeter-based bunch-integrating luminometers. Preliminary results from these luminosity studies are presented for 2012 data taken at √s = 8 TeV proton-proton collisions.

  19. Luminosity Monitoring in ATLAS with MPX Detectors

    NASA Astrophysics Data System (ADS)

    Asbah, Nedaa

    2014-06-01

    The ATLAS-MPX detectors are based on the Medipix2 silicon devices designed by CERN for the detection of multiple types of radiation. Sixteen such detectors were successfully operated in the ATLAS detector at the LHC and collected data independently of the ATLAS data-recording chain from 2008 to 2013. Each ATLAS-MPX detector provides separate measurements of the bunch-integrated LHC luminosity. An internal consistency for luminosity monitoring of about 2% was demonstrated. In addition, the MPX devices close to the beam are sensitive enough to provide relative-luminosity measurements during van der Meer calibration scans, in a low-luminosity regime that lies below the sensitivity of the ATLAS calorimeter-based bunch-integrating luminometers. Preliminary results from these luminosity studies are presented for 2012 data taken at √ s = 8 TeV proton-proton collisions.

  20. Electron-beam-charged dielectrics: Internal charge distribution

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Pine, V. W.

    1981-01-01

    Theoretical calculations of an electron transport model of the charging of dielectrics due to electron bombardment are compared to measurements of internal charge distributions. The emphasis is on the distribution of Teflon. The position of the charge centroid as a function of time is not monotonic. It first moves deeper into the material and then moves back near to the surface. In most time regimes of interest, the charge distribution is not unimodal, but instead has two peaks. The location of the centroid near saturation is a function of the incident current density. While the qualitative comparison of theory and experiment are reasonable, quantitative comparison shows discrepancies of as much as a factor of two.

  1. Run II luminosity progress

    SciTech Connect

    Gollwitzer, K.; /Fermilab

    2007-06-01

    The Fermilab Tevatron Collider Run II program continues at the energy and luminosity frontier of high energy particle physics. To the collider experiments CDF and D0, over 3 fb{sup -1} of integrated luminosity has been delivered to each. Upgrades and improvements in the Antiproton Source of the production and collection of antiprotons have led to increased number of particles stored in the Recycler. Electron cooling and associated improvements have help make a brighter antiproton beam at collisions. Tevatron improvements to handle the increased number of particles and the beam lifetimes have resulted in an increase in luminosity.

  2. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  3. 76 FR 21033 - International Business Machines (IBM), Sales and Distribution Business Unit, Global Sales...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... on November 17, 2010 (75 FR 70296). The workers supply computer software development and maintenance... Employment and Training Administration International Business Machines (IBM), Sales and Distribution Business... workers of International Business Machines (IBM), Sales and Distribution Business Unit, Global...

  4. The luminosity function of quasars

    NASA Technical Reports Server (NTRS)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  5. Luminosity enhancements at SLAC

    SciTech Connect

    Coward, D.H.

    1984-04-01

    Several ideas are discussed that have been proposed to improve the luminosity at the SPEAR and PEP electron-positron storage rings and to insure good luminosity at the SLAC Linear Collider. There have been two proposals studied recently for SPEAR: a Microbeta insertion using Samarium Cobalt permanent magnets, and a Minibeta insertion using conventional quadrupole magnets. The notations Microbeta and minibeta used here are somewhat arbitrary since the front faces of the first quadrupole magnets for both insertions are at nearly the same distance from the interaction point.

  6. Luminosity measurements at hadron colliders

    SciTech Connect

    Papadimitriou, Vaia; /Fermilab

    2008-04-01

    In this paper we discuss luminosity measurements at Tevatron and HERA as well as plans for luminosity measurements at LHC. We discuss luminosity measurements using the luminosity detectors of the experiments as well as measurements by the machine. We address uncertainties of the measurements, challenges and lessons learned.

  7. Burst Statistics Using the Lag-Luminosity Relationship

    NASA Technical Reports Server (NTRS)

    Band, D. L.; Norris, J. P.; Bonnell, J. T.

    2003-01-01

    Using the lag-luminosity relation and various BATSE catalogs we create a large catalog of burst redshifts, peak luminosities and emitted energies. These catalogs permit us to evaluate the lag-luminosity relation, and to study the burst energy distribution. We find that this distribution can be described as a power law with an index of alpha = 1.76 +/- 0.05 (95% confidence), close to the alpha = 2 predicted by the original quasi-universal jet model.

  8. 21 CFR 1313.34 - Distribution of the international transaction declaration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Distribution of the international transaction declaration. 1313.34 Section 1313.34 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE... International Transactions Involving Listed Chemicals § 1313.34 Distribution of the international...

  9. 21 CFR 1313.34 - Distribution of the international transaction declaration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Distribution of the international transaction declaration. 1313.34 Section 1313.34 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE... International Transactions Involving Listed Chemicals § 1313.34 Distribution of the international...

  10. 21 CFR 1313.34 - Distribution of the international transaction declaration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Distribution of the international transaction declaration. 1313.34 Section 1313.34 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE... International Transactions Involving Listed Chemicals § 1313.34 Distribution of the international...

  11. 21 CFR 1313.34 - Distribution of the international transaction declaration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Distribution of the international transaction declaration. 1313.34 Section 1313.34 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE... International Transactions Involving Listed Chemicals § 1313.34 Distribution of the international...

  12. 21 CFR 1313.34 - Distribution of the international transaction declaration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Distribution of the international transaction declaration. 1313.34 Section 1313.34 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE... International Transactions Involving Listed Chemicals § 1313.34 Distribution of the international...

  13. Rod internal pressure quantification and distribution analysis using Frapcon

    SciTech Connect

    Bratton, Ryan N; Jessee, Matthew Anderson; Wieselquist, William A

    2015-09-01

    This report documents work performed supporting the Department of Energy (DOE) Office of Nuclear Energy (NE) Fuel Cycle Technologies Used Fuel Disposition Campaign (UFDC) under work breakdown structure element 1.02.08.10, ST Analysis. In particular, this report fulfills the M4 milestone M4FT- 15OR0810036, Quantify effects of power uncertainty on fuel assembly characteristics, within work package FT-15OR081003 ST Analysis-ORNL. This research was also supported by the Consortium for Advanced Simulation of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725. The discharge rod internal pressure (RIP) and cladding hoop stress (CHS) distributions are quantified for Watts Bar Nuclear Unit 1 (WBN1) fuel rods by modeling core cycle design data, operation data (including modeling significant trips and downpowers), and as-built fuel enrichments and densities of each fuel rod in FRAPCON-3.5. A methodology is developed which tracks inter-cycle assembly movements and assembly batch fabrication information to build individual FRAPCON inputs for each evaluated WBN1 fuel rod. An alternate model for the amount of helium released from the zirconium diboride (ZrB2) integral fuel burnable absorber (IFBA) layer is derived and applied to FRAPCON output data to quantify the RIP and CHS for these types of fuel rods. SCALE/Polaris is used to quantify fuel rodspecific spectral quantities and the amount of gaseous fission products produced in the fuel for use in FRAPCON inputs. Fuel rods with ZrB2 IFBA layers (i.e., IFBA rods) are determined to have RIP predictions that are elevated when compared to fuel rod without IFBA layers (i.e., standard rods) despite the fact that IFBA rods often have reduced fill pressures and annular fuel pellets. The primary contributor to elevated RIP predictions at burnups less than and greater than 30 GWd

  14. Luminosity enhancement in relativistic jets and altered luminosity functions for beamed objects

    NASA Technical Reports Server (NTRS)

    Urry, C. M.; Shafer, R. A.

    1983-01-01

    Due to relativistic effects, the observed emission from relativistic jets is quite different from the rest frame emission. Systematic differences between the observed and intrinsic intensities of sources in which jet phenomena are occurring are discussed. Assuming that jets have a power law luminosity function of a slope B, the observed luminosity distribution as a function of the velocity of the jet, the spectral index of the rest frame emission, and the range of angles of the jets relative to our line of sight are calculated. The results is well-approximated by two power laws, the higher luminosity end having the original power law index X and the lower luminosity end having a flattened exponent independent of B and only slightly greater than 1. A model consisting of beamed emission from a jet and unbeamed emission from a stationary central component is investigated. The luminosity functions for these two-component sources are calculated for two ranges of angles. For sources in which beaming is important, the luminosity function is much flatter. Because of this, the relative numbers of ""beamed'' and ""unbeamed'' sources detected on the sky depend strongly on the luminosity at which the comparison is made.

  15. Classical trajectory study of internal energy distributions in unimolecular processes

    NASA Technical Reports Server (NTRS)

    Mcdonald, J. D.; Marcus, R. A.

    1976-01-01

    Energy flow in a molecular system such as CD3Cl or CD3H representing a chemical activation experiment is studied by the method of classical trajectories. A correlation function method is used to obtain energy distributions before and after the breakup of the activated molecule. The energy distribution in the final product is found to be randomly distributed for a surface with no exit channel barrier or strong intermode couplings. Nonrandom energy distributions result when these special forces are present. Product channel barriers result in an excess of translational energy and exit channel intermode couplings result in nonrandom vibrational distributions.

  16. HIGHER LUMINOSITY B-FACTORIES

    SciTech Connect

    Seeman, John T

    2002-08-20

    The present B-factories PEP-II and KEKB have reached luminosities of 3-4 x 10{sup 33}/cm{sup 2}/s and delivered integrated luminosity at rates in excess of 4fb{sup -1} per month [1,2]. The recent turn on of these two B-Factories has shown that modern accelerator physics, design, and engineering can produce colliders that rapidly reach their design luminosities and deliver integrated luminosities capable of frontier particle physics discoveries. PEP-II and KEK-B with ongoing upgrade programs should reach luminosities of over 10{sup 34}/cm{sup 2}/s in a few years and with more aggressive improvements may reach luminosities of order 10{sup 35}/cm{sup 2}/s by the end of the decade. However, due to particle physics requirements, the next generation B-Factory may require significantly more luminosity. Initial parameters of a very high luminosity e{sup +}e{sup -} B-Factory or Super B-Factory (SBF) are being developed incorporating several new ideas from the successful operation of the present generation e{sup +}e{sup -} accelerators [3,4]. A luminosity approaching 10{sup 36}/cm{sup 2}/s{sup -1} appears possible. Furthermore, the ratio of average to peak luminosity may be increased by 30% due to continuous injection. The operation of this accelerator will be qualitatively different from present e{sup +}e{sup -} colliders due to this continuous injection.

  17. The Cooling of CO White Dwarfs: Influence of the Internal Chemical Distribution

    NASA Astrophysics Data System (ADS)

    Salaris, Maurizio; Domínguez, Inmaculada; García-Berro, Enrique; Hernanz, Margarida; Isern, Jordi; Mochkovitch, Robert

    1997-09-01

    White dwarfs are the remnants of stars of low and intermediate masses on the main sequence. Since they have exhausted all of their nuclear fuel, their evolution is just a gravothermal process. The release of energy only depends on the detailed internal structure and chemical composition and on the properties of the envelope equation of state and opacity; its consequences on the cooling curve (i.e., the luminosity vs. time relationship) depend on the luminosity at which this energy is released. The internal chemical profile depends on the rate of the 12C(α, γ)16O reaction as well as on the treatment of convection. High reaction rates produce white dwarfs with oxygen-rich cores surrounded by carbon-rich mantles. This reduces the available gravothermal energy and decreases the lifetime of white dwarfs. In this paper we compute detailed evolutionary models providing chemical profiles for white dwarfs having progenitors in the mass range from 1.0 to 7 M⊙, and we examine the influence of such profiles in the cooling process. The influence of the process of separation of carbon and oxygen during crystallization is decreased as a consequence of the initial stratification, but it is still important and cannot be neglected. As an example, the best fit to the luminosity functions of Liebert et al. and Oswalt et al. gives an age of the disk of 9.3 and 11.0 Gyr, respectively, when this effect is taken into account, and only 8.3 and 10.0 Gyr when it is neglected.

  18. Evolution of the luminosity function of extragalactic objects

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1985-01-01

    A nonparametric procedure for determination of the evolution of the luminosity function of extragalactic objects and use of this for prediction of expected redshift and luminosity distribution of objects is described. The relation between this statistical evolution of the population and their physical evolution, such as the variation with cosmological epoch of their luminosity and formation rate is presented. This procedure when applied to a sample of optically selected quasars with redshifts less than two shows that the luminosity function evolves more strongly for higher luminosities, indicating a larger quasar activity at earlier epochs and a more rapid evolution of the objects during their higher luminosity phases. It is also shown that absence of many quasars at redshifts greater than three implies slowing down of this evolution in the conventional cosmological models, perhaps indicating that this is near the epoch of the birth of the quasar (and galaxies).

  19. Proceedings of the fifth IEEE international symposium on high performance distributed computing

    SciTech Connect

    1996-12-31

    This report contains papers from the Fifth IEEE International Symposium on High Performance Distributed Computing. Some of the areas covered are: collaboration tools (multimedia track); applications; distributed and parallel programming; metacomputing track; multimedia applications; tools and practice; networks for distributed applications; multimedia networks; languages and algorithms; networks of workstations; metacomputing track - invited papers; quality of service; distributed shared memory; networks and protocols; I/O systems and storage; wide-area distributed systems; communications - design and architecture; and parallel systems.

  20. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  1. Cosmological parameters and evolution of the galaxy luminosity function

    NASA Technical Reports Server (NTRS)

    Caditz, David; Petrosian, Vahe

    1989-01-01

    The relationship between the observed distribution of discrete sources of a flux limited sample, the luminosity function of these sources, and the cosmological model is discussed. It is stressed that some assumptions about the form and evolution of the luminosity function must be made in order to determine the cosmological parameters from the observed distribution of sources. Presented is a method to test the validity of these assumptions using the observations. It is shown how, using higher moments of the observed distribution, one can determine, independently of the cosmological model, all parameters of the luminosity function except those describing evolution of the density and the luminosity of the luminosity function. These methods are applied to the sample of approximately 1000 galaxies recently used by Loh and Spillar to determine a value of the cosmological density parameter Omega approx = 1. It is shown that the assumptions made by Loh and Spillar about the luminosity function are inconsistent with the data, and that a self-consistent treatment of the data indicates a lower value of Omega approx = 0.2 and a flatter luminosity function. It should be noted, however, that incompleteness in the sample could cause a flattening of the luminosity function and lower the calculated value of Omega and that uncertainty in the values of these parameters due to random fluctuations is large.

  2. Cosmological parameters and evolution of the galaxy luminosity function

    NASA Technical Reports Server (NTRS)

    Caditz, David; Petrosian, Vahe

    1988-01-01

    The relationship between the observed distribution of discrete sources of a flux limited sample, the luminosity function of these sources, and the cosmological model is discussed. It is stressed that some assumptions about the form and evolution of the luminosity function must be made in order to determine the cosmological parameters from the observed distribution of sources. Presented is a method to test the validity of these assumptions using the observations. It is shown how, using higher moments of the observed distribution, one can determine, independently of the cosmological model, all parameters of the luminosity function except those describing evolution of the density and the luminosity of the luminosity function. These methods are applied to the sample of approximately 1000 galaxies recently used by Loh and Spillar to determine a value of the cosmological density parameter Omega approx = 1. It is shown that the assumptions made by Loh and Spillar about the luminosity function are inconsistent with the data, and that a self-consistent treatment of the data indicates a lower value of Omega approx = 0.2 and a flatter luminosity function. It should be noted, however, that incompleteness in the sample could cause a flattening of the luminosity function and lower the calculated value of Omega and that uncertainty in the values of these parameters due to random fluctuations is large.

  3. STS atmospheric luminosities

    NASA Technical Reports Server (NTRS)

    Mende, S. B.

    1984-01-01

    During the STS-8 space shuttle mission special photographic and TV operations were carried out to record the properties of the spacecraft induced luminosities. One of these luminous phenomena is the quiescent vehicle glow which was photographed during the STS-8 mission with an image intensified photographic camera, with and without an objective grating. During the latter part of the mission the altitude of the shuttle was relatively low (120 n.m. = 222 km) and unprecedentedly high intensity of the glow was observed. The crew reported that the glow was easily visible to the naked eye. The proper orientation of the shuttle with respect to the velocity vector and the objective grating permitted the exposure of good objective spectrum of the glow in the visible region. From the results it is clear that the spectrum appears to be a continuum as observed by the image intensifier objective grating camera. Qualitative examination of the data shows that there is very tail little glow ion the wavelength range of 4300 to about 5000 angstroms. Above 5000 angstroms the glow becomes stronger towards the red and then it falls off towards higher wavelength and of the spectrum presumably because of the responsivity of the device.

  4. The luminosity structure and objective classification of galaxies

    NASA Technical Reports Server (NTRS)

    Han, Mingshen

    1995-01-01

    The luminosity structure of spiral galaxies is studied using the technique of principal component analysis. It is found that approximately 94% of the variation in the luminosity distribution of galaxies can be accounted for by just two principal components. The principal luminosity components may contain valuable information about star formation history or whatever luminosity-regulating process occurs in galaxies. Practically, these principal components provide a new approach for the investigation of the luminosity structures of galaxies and their dependence on other properties. They also serve as an excellent objective classification system for galaxies. We introduce in this paper such a classification scheme and explore its various properties. The new system shows a number of very impressive characteristics. Most important, it can well segregate virtually all the important galactic properties we tested and does so much better than the conventional morphological classification systems. Of particular interest is that some distance-dependent parameters can also be determined to a surprisingly good accuracy; for example, absolute magnitude may be determined to an accuracy of approximately 0.6 mag (yet further improvement is believed to be highly possible). Second, the system is objective, and the classification procedure can be automated to a large degree; also the new system can apply to much smaller and fainter images than do eye-based clasification systems. These properties make the new system suitable for practical application, especially on very large (and deeper) digital image catalogs. Third, the classification is expressed in dimensionless numbers, yet the simple notation bears significant and easily understandable meaning, making it easy and convenient to use. Finally, the new system has another extremely useful feature: it provides a very powerful and convenient platform not only for classification, but also for easily recording, examining, and studying the

  5. Measurement of probability distributions for internal stresses in dislocated crystals

    SciTech Connect

    Wilkinson, Angus J.; Tarleton, Edmund; Vilalta-Clemente, Arantxa; Collins, David M.; Jiang, Jun; Britton, T. Benjamin

    2014-11-03

    Here, we analyse residual stress distributions obtained from various crystal systems using high resolution electron backscatter diffraction (EBSD) measurements. Histograms showing stress probability distributions exhibit tails extending to very high stress levels. We demonstrate that these extreme stress values are consistent with the functional form that should be expected for dislocated crystals. Analysis initially developed by Groma and co-workers for X-ray line profile analysis and based on the so-called “restricted second moment of the probability distribution” can be used to estimate the total dislocation density. The generality of the results are illustrated by application to three quite different systems, namely, face centred cubic Cu deformed in uniaxial tension, a body centred cubic steel deformed to larger strain by cold rolling, and hexagonal InAlN layers grown on misfitting sapphire and silicon carbide substrates.

  6. High luminosity muon collider design

    SciTech Connect

    Palmer, R.; Gallardo, J.

    1996-10-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders.

  7. Direct correlation of internal gradients and pore size distributions with low field NMR.

    PubMed

    Zhang, Yan; Xiao, Lizhi; Liao, Guangzhi; Blümich, Bernhard

    2016-06-01

    Internal magnetic field gradients Gint, which arise from the magnetic susceptibility difference Δχ between solid matrix and fluid in porous media relate to the pore geometry. However, this relationship is complex and not well understood. Here we correlate internal-gradient distributions to pore-size distributions directly to examine internal gradients in detail at low field NMR. The pore-size distributions were obtained by the method of Decay due to Diffusion in the Internal Field (DDIF), and the internal-gradient distributions were measured with the Carr-Purcell-Meiboom-Gill (CPMG) method. The internal-gradient-pore-size distributions correlation maps were obtained for water in packs of glass beads with different diameter and in a sandstone sample. The relationship between internal gradients and pore structure is analyzed in detail by considering the restricted diffusion of fluids in porous samples. For each case diffusion regimes are assigned by plotting normalized CPMG data and comparing the diffusion lengths, the dephasing lengths and pore diameters. In the free-diffusion limit, the correlation maps reveal the true relationship between pore structure and internal gradients so that Δχ can be approximated from the correlation maps. This limit is met most easily at low field. It provides information about porous media, which is expected to benefit the oil industry, in particular NMR well logging. PMID:27111138

  8. Direct correlation of internal gradients and pore size distributions with low field NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Xiao, Lizhi; Liao, Guangzhi; Blümich, Bernhard

    2016-06-01

    Internal magnetic field gradients Gint, which arise from the magnetic susceptibility difference Δχ between solid matrix and fluid in porous media relate to the pore geometry. However, this relationship is complex and not well understood. Here we correlate internal-gradient distributions to pore-size distributions directly to examine internal gradients in detail at low field NMR. The pore-size distributions were obtained by the method of Decay due to Diffusion in the Internal Field (DDIF), and the internal-gradient distributions were measured with the Carr-Purcell-Meiboom-Gill (CPMG) method. The internal-gradient-pore-size distributions correlation maps were obtained for water in packs of glass beads with different diameter and in a sandstone sample. The relationship between internal gradients and pore structure is analyzed in detail by considering the restricted diffusion of fluids in porous samples. For each case diffusion regimes are assigned by plotting normalized CPMG data and comparing the diffusion lengths, the dephasing lengths and pore diameters. In the free-diffusion limit, the correlation maps reveal the true relationship between pore structure and internal gradients so that Δχ can be approximated from the correlation maps. This limit is met most easily at low field. It provides information about porous media, which is expected to benefit the oil industry, in particular NMR well logging.

  9. Luminosity determination at proton colliders

    NASA Astrophysics Data System (ADS)

    Grafström, P.; Kozanecki, W.

    2015-03-01

    Luminosity is a key parameter in any particle collider, and its precise determination has proven particularly challenging at hadron colliders. After introducing the concept of luminosity in its multiple incarnations and offering a brief survey of the pp and p p bar colliders built to date, this article outlines the various methods that have been developed for relative-luminosity monitoring, as well as the complementary approaches considered for establishing an absolute luminosity scale. This is followed by a survey, from both a historical and a technical perspective, of luminosity determination at the ISR, the S p p ¯ S, the Tevatron, RHIC and the LHC. For each of these, we first delineate the interplay between the experimental context, the specificities of the accelerator, and the precision targets suggested by the physics program. We then detail how the different methods were applied to specific experimental environments and how successfully they meet the precision goals.

  10. Assessing the contribution of centaur impacts to ice giant luminosities

    NASA Astrophysics Data System (ADS)

    Dodson-Robinson, Sarah E.

    2016-01-01

    Voyager 2 observations revealed that Neptune's internal luminosity is an order of magnitude higher than that of Uranus. If the two planets have similar interior structures and cooling histories, Neptune's luminosity can only be explained by invoking some energy source beyond gravitational contraction. This paper investigates whether centaur impacts could provide the energy necessary to produce Neptune's luminosity. The major findings are (1) that impacts on both Uranus and Neptune are too infrequent to provide luminosities of order Neptune's observed value, even for optimistic impact-rate estimates and (2) that Uranus and Neptune rarely have significantly different impact-generated luminosities at any given time. Uranus and Neptune most likely have structural differences that force them to cool and contract at different rates.

  11. On the luminosity of black hole cluster model of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stoeger, W. R.; Pacholczyk, A. G.; Stepinski, T. F.

    1992-01-01

    The luminosity of a nuclear cluster of accreting black holes and other objects is discussed in terms of two accretion regimes: external supply of gas from outside the cluster and internal supply resulting from tidal disruption and capture of stars within the cluster. The external supply regime results in radiation being emitted from the innermost parts of the cluster while internal supply can efficiently feed the holes in the outer parts of the cluster as long as it is not too compact cluster and is embedded in a distribution of stars with a density larger than 10 exp 7 solar masses/cu pc.

  12. A Distributed Perspective on Instructional Leadership in International Baccalaureate (IB) Schools

    ERIC Educational Resources Information Center

    Lee, Moosung; Hallinger, Philip; Walker, Allan

    2012-01-01

    Purpose: The purpose of this study is to provide a better understanding of how instructional leadership responsibilities are distributed in International Baccalaureate (IB) schools in East Asia. Research Design: Case studies were conducted in five international schools located in Thailand, Vietnam, Hong Kong, and China. These schools were selected…

  13. International distribution of dental materials publications and patents.

    PubMed

    Garrison, H H; Herman, S S; Lipton, J A

    1992-01-01

    International patterns of research and development in the field of restorative dental materials were examined with data on publications (1981-85) and patents (1979-88). It was found that United States-based authors produced approximately one-half of all dental materials journal articles published worldwide, while US inventors had nearly the same share of the US dental materials patents. During the periods studied, the share of US patents in dental materials awarded to US inventors declined, while the share of US patents awarded to Japanese inventors rose. The role of the United States in research (as measured by journal articles) remained stable. Nations differed in the degree to which their researchers specialized in particular research areas. US-based authors and inventors were relatively over-represented in prosthetic materials and under-represented in dental cements, an area in which the British and the Japanese concentrated more of their activity. There was some, but not complete, agreement in the patterns of national specialization as indexed by patent and publication data. When dental materials data were compared with data for broader fields of science and technology, important differences were found. For publications, US-based authors displayed greater dominance in dental materials than in the fields of dentistry, chemistry, and materials science. US-based inventors' share of US dental materials patents was smaller than their share of all US patents. These analyses demonstrated that it was possible to use indicators derived from publication and patent data files to conduct insightful studies of a discrete specialty of science and technology. PMID:1521683

  14. RHIC PLANS TOWARDS HIGHER LUMINOSITY

    SciTech Connect

    FEDOTOV,A.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide luminosity over a wide range of beam energies and species, including heavy ions, polarized protons, and tric beam collisions. In the first seven years of operation there has been a rapid increase in the achieved peak and average luminosity, substantially exceeding design values. Work is presently underway to achieve the Enhanced Design parameters. Planned major upgrades include the Electron Beam Ion Source (EBIS), RHIC-11, and construction of an electron-ion collider (eRHIC). We review the expected RHIC upgrade performance. Electron cooling and its impact on the luminosity both for heavy ions and protons are discussed in detail.

  15. Luminosity Optimization With Offset, Crossing Angle, and Distortion

    SciTech Connect

    Wu, Juhao; Raubenheimer, T.O.; /SLAC

    2005-06-15

    In a linear collider, sources of beam jitter due to kicker noise, quadrupole vibration and long-range transverse wakefields will lead to beam offsets and tilts at the Intersection Point (IP). In addition, sources of emittance dilution such as short-range transverse wakefields or dispersive errors will lead to internal beam distortions. When the IP disruption parameter is large, these beam imperfections will be amplified by a single bunch kink instability which will lead to luminosity loss. In this paper, we study the luminosity loss and then the optimization required to partially cancel the luminosity loss both analytically and with direct simulation.

  16. Discovery of multiple low-luminosity X-ray sources in NGC 6397

    NASA Technical Reports Server (NTRS)

    Cool, Adrienne M.; Grindlay, Jonathan E.; Krockenberger, Martin; Bailyn, Charles D.

    1993-01-01

    New low-luminosity X-ray sources have been discovered in NGC 6397 with the ROSAT High Resolution Imager. These sources have a total number, spatial distribution, and X-ray luminosities consistent with their being CVs. The findings supports the hypothesis that the low-luminosity X-ray sources in clusters are generally dominated by CVs.

  17. Study on temperature distribution effect on internal charging by computer simulation

    NASA Astrophysics Data System (ADS)

    Yi, Zhong

    2016-07-01

    Internal charging (or deep dielectric charging) is a great threaten to spacecraft. Dielectric conductivity is an important parameter for internal charging and it is sensitive to temperature. Considering the exposed dielectric outside a spacecraft may experience a relatively large temperature range, temperature effect can't be ignored in internal charging assessment. We can see some reporters on techniques of computer simulation of internal charging, but the temperature effect has not been taken into accounts. In this paper, we realize the internal charging simulation with consideration of temperature distribution inside the dielectric. Geant4 is used for charge transportation, and a numerical method is proposed for solving the current reservation equation. The conductivity dependences on temperature, radiation dose rate and intense electric field are considered. Compared to the case of uniform temperature, the internal charging with temperature distribution is more complicated. Results show that temperature distribution can cause electric field distortion within the dielectric. This distortion refers to locally considerable enlargement of electric field. It usually corresponds to the peak electric field which is critical for dielectric breakdown judgment. The peak electric field can emerge inside the dielectric, or appear on the boundary. This improvement of internal charging simulation is beneficial for the assessment of internal charging under multiple factors.

  18. CLOC: Cluster Luminosity Order-Statistic Code

    NASA Astrophysics Data System (ADS)

    Da Silva, Robert L.; Krumholz, Mark R.; Fumagalli, Michele; Fall, S. Michael

    2016-02-01

    CLOC computes cluster order statistics, i.e. the luminosity distribution of the Nth most luminous cluster in a population. It is flexible and requires few assumptions, allowing for parametrized variations in the initial cluster mass function and its upper and lower cutoffs, variations in the cluster age distribution, stellar evolution and dust extinction, as well as observational uncertainties in both the properties of star clusters and their underlying host galaxies. It uses Markov chain Monte Carlo methods to search parameter space to find best-fitting values for the parameters describing cluster formation and disruption, and to obtain rigorous confidence intervals on the inferred values.

  19. Precision luminosity measurements at LHCb

    NASA Astrophysics Data System (ADS)

    The LHCb Collaboration

    2014-12-01

    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy √s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for √s = 2.76, 7 and 8 TeV (proton-proton collisions) and for √sNN = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at √s = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider.

  20. Masses, luminosities and dynamics of galactic molecular clouds

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Rivolo, A. R.; Mooney, T. J.; Barrett, J. W.; Sage, L. J.

    1987-01-01

    Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies.

  1. Notes on Van der Meer scan for absolute luminosity measurement

    NASA Astrophysics Data System (ADS)

    Balagura, Vladislav

    2011-10-01

    The absolute luminosity can be measured in an accelerator by sweeping beams transversely across each other in the so-called van der Meer scan. We prove that the method can be applied in the general case of arbitrary beam directions and a separation scan plane. A simple method to develop an image of the beam in its transverse plane from spatial distributions of interaction vertexes is also proposed. From the beam images one can determine their overlap and the absolute luminosity. This provides an alternative way of the luminosity measurement during van der Meer scan.

  2. Populations of High-Luminosity Density-Bounded HII Regions in Spiral Galaxies? Evidence and Implications

    NASA Technical Reports Server (NTRS)

    Beckman, J. E.; Rozas, M.; Zurita, A.; Watson, R. A.; Knapen, J. H.

    2000-01-01

    In this paper we present evidence that the H II regions of high luminosity in disk galaxies may be density bounded, so that a significant fraction of the ionizing photons emitted by their exciting OB stars escape from the regions. The key piece of evidence is the presence, in the Ha luminosity functions (LFs) of the populations of H iI regions, of glitches, local sharp peaks at an apparently invariant luminosity, defined as the Stromgren luminosity Lstr), LH(sub alpha) = Lstr = 10(sup 38.6) (+/- 10(sup 0.1)) erg/ s (no other peaks are found in any of the LFs) accompanying a steepening of slope for LH(sub alpha) greater than Lstr This behavior is readily explicable via a physical model whose basic premises are: (a) the transition at LH(sub alpha) = Lstr marks a change from essentially ionization bounding at low luminosities to density bounding at higher values, (b) for this to occur the law relating stellar mass in massive star-forming clouds to the mass of the placental cloud must be such that the ionizing photon flux produced within the cloud is a function which rises more steeply than the mass of the cloud. Supporting evidence for the hypothesis of this transition is also presented: measurements of the central surface brightnesses of H II regions for LH(sub alpha) less than Lstr are proportional to L(sup 1/3, sub H(sub alpha)), expected for ionization bounding, but show a sharp trend to a steeper dependence for LH(sub alpha) greater than Lstr, and the observed relation between the internal turbulence velocity parameter, sigma, and the luminosity, L, at high luminosities, can be well explained if these regions are density bounded. If confirmed, the density-bounding hypothesis would have a number of interesting implications. It would imply that the density-bounded regions were the main sources of the photons which ionize the diffuse gas in disk galaxies. Our estimates, based on the hypothesis, indicate that these regions emit sufficient Lyman continuum not only to

  3. 76 FR 2711 - Cinram Distribution, LLC, a Subsidiary of Cinram International, Simi Valley Distribution Center...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Southwest, Inc., and Select Remedy Staffing Services, Simi Valley, California. The notice was published in the Federal Register on September 15, 2010 (75 FR 51643). At the request of a petitioner, the... Valley Distribution Center, Including On-Site Leased Workers From Labor Ready Southwest, Inc. and...

  4. On the Radio and Optical Luminosity Evolution of Quasars

    SciTech Connect

    Singal, J.; Petrosian, V.; Lawrence, A.; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.

    2011-05-20

    We calculate simultaneously the radio and optical luminosity evolutions of quasars, and the distribution in radio loudness R defined as the ratio of radio and optical luminosities, using a flux limited data set containing 636 quasars with radio and optical fluxes from White et al. We first note that when dealing with multivariate data it is imperative to first determine the true correlations among the variables, not those introduced by the observational selection effects, before obtaining the individual distributions of the variables. We use the methods developed by Efron and Petrosian which are designed to obtain unbiased correlations, distributions, and evolution with redshift from a data set truncated due to observational biases. It is found that as expected the population of quasars exhibits strong positive correlation between the radio and optical luminosities and that this correlation deviates from a simple linear relation in a way indicating that more luminous quasars are more radio loud. We also find that there is a strong luminosity evolution with redshift in both wavebands, with significantly higher radio than optical evolution. We conclude that the luminosity evolution obtained by arbitrarily separating the sources into radio loud (R > 10) and radio quiet (R < 10) populations introduces significant biases that skew the result considerably. We also construct the local radio and optical luminosity functions and the density evolution. Finally, we consider the distribution of the radio loudness parameter R obtained from careful treatment of the selection effects and luminosity evolutions with that obtained from the raw data without such considerations. We find a significant difference between the two distributions and no clear sign of bi-modality in the true distribution. Our results indicate therefore, somewhat surprisingly, that there is no critical switch in the efficiency of the production of disk outflows/jets between very radio quiet and very radio

  5. ON THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS

    SciTech Connect

    Singal, J.; Petrosian, V.; Lawrence, A.; Stawarz, L.

    2011-12-20

    We calculate simultaneously the radio and optical luminosity evolutions of quasars, and the distribution in radio loudness R defined as the ratio of radio and optical luminosities, using a flux-limited data set containing 636 quasars with radio and optical fluxes from White et al. We first note that when dealing with multi-variate data it is imperative to first determine the true correlations among the variables, not those introduced by the observational selection effects, before obtaining the individual distributions of the variables. We use the methods developed by Efron and Petrosian which are designed to obtain unbiased correlations, distributions, and evolution with redshift from a data set truncated due to observational biases. It is found that the population of quasars exhibits strong positive correlation between the radio and optical luminosities. With this correlation, whether intrinsic or observationally induced accounted for, we find that there is a strong luminosity evolution with redshift in both wavebands, with significantly higher radio than optical evolution. We conclude that the luminosity evolution obtained by arbitrarily separating the sources into radio-loud (R > 10) and radio-quiet (R < 10) populations introduces significant biases that skew the result considerably. We also construct the local radio and optical luminosity functions and the density evolution. Finally, we consider the distribution of the radio-loudness parameter R obtained from careful treatment of the selection effects and luminosity evolutions with that obtained from the raw data without such considerations. We find a significant difference between the two distributions and no clear sign of bi-modality in the true distribution for the range of R values considered. Our results indicate therefore, somewhat surprisingly, that there is no critical switch in the efficiency of the production of disk outflows/jets between very radio-quiet and very radio-loud quasars, but rather a

  6. The CMS pixel luminosity telescope

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-07-01

    The Pixel Luminosity Telescope (PLT) is a new complement to the CMS detector for the LHC Run II data taking period. It consists of eight 3-layer telescopes based on silicon pixel detectors that are placed around the beam pipe on each end of CMS viewing the interaction point at small angle. A fast 3-fold coincidence of the pixel planes in each telescope will provide a bunch-by-bunch measurement of the luminosity. Particle tracking allows collision products to be distinguished from beam background, provides a self-alignment of the detectors, and a continuous in-time monitoring of the efficiency of each telescope plane. The PLT is an independent luminometer, essential to enhance the robustness on the measurement of the delivered luminosity and to reduce its systematic uncertainties. This will allow to determine production cross-sections, and hence couplings, with high precision and to set more stringent limits on new particle production.

  7. Evolutionary variations of solar luminosity

    NASA Technical Reports Server (NTRS)

    Endal, A. S.

    1982-01-01

    The Theoretical arguments for a 30% increase in the solar luminosity over the past 4.7 billion years are reviewed. A scaling argument shows that this increase can be predicted without detailed numerical calculations. The magnitude of the increase is independent of nuclear reaction rates, as long as conversion of hydrogen to helium provides the basic energy source of the Sun. The effect of the solar luminosity increase on the terrestrial climate is briefly considered. It appears unlikely that an enhanced greenhouse effect, due to reduced gases (NH3, CH4), can account for the long-term paleoclimatic trends.

  8. AMMONIA AND CO OBSERVATIONS TOWARD LOW-LUMINOSITY 6.7 GHz METHANOL MASERS

    SciTech Connect

    Wu, Y. W.; Xu, Y.; Yang, J.; Zhang, S. B.; Pandian, J. D.; Henkel, C.; Menten, K. M.

    2010-09-01

    To investigate whether distinctions exist between low- and high-luminosity Class II 6.7 GHz methanol masers, we have undertaken multi-line mapping observations of various molecular lines, including the NH{sub 3} (1,1), (2,2), (3,3), (4,4), and {sup 12}CO (1-0) transitions, toward a sample of nine low-luminosity 6.7 GHz masers and {sup 12}CO (1-0) observations toward a sample of eight high-luminosity 6.7 GHz masers, for which we already had NH{sub 3} spectral line data. Emission in the NH{sub 3} (1,1), (2,2), and (3,3) transitions was detected in eight out of nine low-luminosity maser sources, in which 14 cores were identified. We derive densities, column densities, temperatures, core sizes, and masses of both low- and high-luminosity maser regions. A comparative analysis of the physical quantities reveals marked distinctions between the low-luminosity and high-luminosity groups: in general, cores associated with high-luminosity 6.7 GHz masers are larger and more massive than those traced by low-luminosity 6.7 GHz masers; regions traced by the high-luminosity masers have larger column densities but lower densities than those of the low-luminosity maser regions. Further, strong correlations between 6.7 GHz maser luminosity and NH{sub 3} (1,1) and (2,2) line widths are found, indicating that internal motions in high-luminosity maser regions are more energetic than those in low-luminosity maser regions. A {sup 12}CO (1-0) outflow analysis also shows distinctions in that outflows associated with high-luminosity masers have wider line wings and larger sizes than those associated with low-luminosity masers.

  9. MAGNITUDE GAP STATISTICS AND THE CONDITIONAL LUMINOSITY FUNCTION

    SciTech Connect

    More, Surhud

    2012-12-20

    In a recent preprint, Hearin et al. (H12) suggest that the halo mass-richness calibration of clusters can be improved by using the difference in the magnitude of the brightest and the second brightest galaxy (magnitude gap) as an additional observable. They claim that their results are at odds with the results from Paranjape and Sheth (PS12) who show that the magnitude distribution of the brightest and second brightest galaxies can be explained based on order statistics of luminosities randomly sampled from the total galaxy luminosity function. We find that a conditional luminosity function (CLF) for galaxies which varies with halo mass, in a manner which is consistent with existing observations, naturally leads to a magnitude gap distribution which changes as a function of halo mass at fixed richness, in qualitative agreement with H12. We show that, in general, the luminosity distribution of the brightest and the second brightest galaxy depends upon whether the luminosities of galaxies are drawn from the CLF or the global luminosity function. However, we also show that the difference between the two cases is small enough to evade detection in the small sample investigated by PS12. This shows that the luminosity distribution is not the appropriate statistic to distinguish between the two cases, given the small sample size. We argue in favor of the CLF (and therefore H12) based upon its consistency with other independent observations, such as the kinematics of satellite galaxies, the abundance and clustering of galaxies, and the galaxy-galaxy lensing signal from the Sloan Digital Sky Survey.

  10. Effect of Internal Clearance on Load Distribution and Life of Radially Loaded Ball and Roller Bearings

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2012-01-01

    The effect of internal clearance on radially loaded deepgroove ball and cylindrical roller bearing load distribution and fatigue life was determined for four clearance groups defined in the bearing standards. The analysis was extended to negative clearance (interference) conditions to produce a curve of life factor versus internal clearance. Rolling-element loads can be optimized and bearing life maximized for a small negative operating clearance. Life declines gradually with positive clearance and rapidly with increasing negative clearance. Relationships were found between bearing life and internal clearance as a function of ball or roller diameter, adjusted for load. Results are presented as life factors for radially loaded bearings independent of bearing size or applied load. In addition, a modified Stribeck Equation is presented that relates the maximum rolling-element load to internal bearing clearance.

  11. The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein.

    PubMed

    Suttkus, A; Holzer, M; Morawski, M; Arendt, T

    2016-01-28

    Alzheimer's disease (AD) is a chronic degenerative disorder characterized by fibrillary aggregates of Aß and Tau-protein. Formation and progression of these pathological hallmarks throughout the brain follow a specific spatio-temporal pattern which provides the basis for neuropathological staging. Previously, we could demonstrate that cortical and subcortical neurons are less frequently affected by neurofibrillary degeneration if they are enwrapped by a specialized form of the hyaluronan-based extracellular matrix (ECM), the so called 'perineuronal net' (PN). PNs are composed of large aggregating chondroitin sulfate proteoglycans connected to a hyaluronan backbone, stabilized by link proteins and cross-linked via tenascin-R. Recently, PN-associated neurons were shown to be better protected against iron-induced neurodegeneration compared to neurons without PN, indicating a neuroprotective function. Here, we investigated the role of PNs in distribution and internalization of exogenous Tau-protein by using organotypic slice cultures of wildtype mice as well as mice lacking the ECM-components aggrecan, HAPLN1 or tenascin-R. We could demonstrate that PNs restrict both distribution and internalization of Tau. Accordingly, PN-ensheathed neurons were less frequently affected by Tau-internalization, than neurons without PN. Finally, the PNs as well as their three investigated components were shown to modulate the processes of distribution as well as internalization of Tau. PMID:26621125

  12. The galaxy luminosity function and the Local Hole

    NASA Astrophysics Data System (ADS)

    Whitbourn, J. R.; Shanks, T.

    2016-06-01

    In a previous study Whitbourn & Shanks have reported evidence for a local void underdense by ≈15 per cent extending to 150-300 h-1 Mpc around our position in the Southern Galactic Cap (SGC). Assuming a local luminosity function they modelled K- and r-limited number counts and redshift distributions in the 6dFGS/2MASS and SDSS redshift surveys and derived normalized n(z) ratios relative to the standard homogeneous cosmological model. Here we test further these results using maximum likelihood techniques that solve for the galaxy density distributions and the galaxy luminosity function simultaneously. We confirm the results from the previous analysis in terms of the number density distributions, indicating that our detection of the `Local Hole' in the SGC is robust to the assumption of either our previous, or newly estimated, luminosity functions. However, there are discrepancies with previously published K- and r-band luminosity functions. In particular the r-band luminosity function has a steeper faint end slope than the r0.1 results of Blanton et al. but is consistent with the r0.1 results of Montero-Dorta & Prada and Loveday et al.

  13. Internal stress distribution for generating closure domains in laser-irradiated Fe–3%Si(110) steels

    SciTech Connect

    Iwata, Keiji; Imafuku, Muneyuki; Orihara, Hideto; Sakai, Yusuke; Ohya, Shin-Ichi; Suzuki, Tamaki; Shobu, Takahisa; Akita, Koichi; Ishiyama, Kazushi

    2015-05-07

    Internal stress distribution for generating closure domains occurring in laser-irradiated Fe–3%Si(110) steels was investigated using high-energy X-ray analysis and domain theory based on the variational principle. The measured triaxial stresses inside the specimen were compressive and the stress in the rolling direction became more dominant than stresses in the other directions. The calculations based on the variational principle of magnetic energy for closure domains showed that the measured triaxial stresses made the closure domains more stable than the basic domain without closure domains. The experimental and calculation results reveal that the laser-introduced internal stresses result in the occurrence of the closure domains.

  14. Spatiotemporal modeling of internal states distribution for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Mingliang; Li, Han-Xiong

    2016-01-01

    Electrochemical properties of the battery are described in partial differential equations that are impossible to compute online. These internal states are spatially distributed and thus difficult to measure in the battery operation. A space-time separation method is applied to model the electrochemical properties of the battery with the help of the extended Kalman filter. The model is efficiently optimized by using LASSO adaptation method and can be updated through data-based learning. The analytical model derived is able to offer a fast estimation of internal states of the battery, and thus has potential to become a prediction model for battery management system.

  15. The cosmological evolution and luminosity function of X-ray selected active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.; Avni, Y.; Giommi, P.; Griffiths, R. E.; Liebert, J.; Stocke, J.; Danziger, J.

    1983-01-01

    The cosmological evolution and the X-ray luminosity function of X-ray selected active galactic nuclei (AGNs) are derived and discussed. The sample used consists of 31 AGNs extracted from a fully identified sample of X-ray sources from the Einstein Observatory Medium Sensitivity Survey and is therefore exclusively defined by its X-ray properties. The distribution in space is found to be strongly nonuniform. The amount of cosmological evolution required by the X-ray data is derived in the framework of pure luminosity evolution and is found to be smaller than the amount determined from optically selected samples. The X-ray luminosity function is derived. It can be satisfactorily represented by a single power law only over a limited range of absolute luminosities. Evidence that the luminosity function flattens at low luminosity or steepens at high luminosity, or both, is presented and discussed.

  16. Hydraulic model analysis of water distribution system, Rockwell International, Rocky Flats, Colorado

    SciTech Connect

    Perstein, J.; Castellano, J.A.

    1989-01-20

    Rockwell International requested an analysis of the existing plant site water supply distribution system at Rocky Flats, Colorado, to determine its adequacy. On September 26--29, 1988, Hughes Associates, Inc., Fire Protection Engineers, accompanied by Rocky Flats Fire Department engineers and suppression personnel, conducted water flow tests at the Rocky Flats plant site. Thirty-seven flows from various points throughout the plant site were taken on the existing domestic supply/fire main installation to assure comprehensive and thorough representation of the Rocky Flats water distribution system capability. The analysis was completed in four phases which are described, together with a summary of general conclusions and recommendations.

  17. Analysis of internal network requirements for the distributed Nordic Tier-1

    NASA Astrophysics Data System (ADS)

    Behrmann, G.; Fischer, L.; Gamst, M.; Grønager, M.; Kleist, J.

    2010-04-01

    The Tier-1 facility operated by the Nordic DataGrid Facility (NDGF) differs significantly from other Tier-1s in several aspects: It is not located at one or a few locations but instead distributed throughout the Nordic, it is not under the governance of a single organisation but but is instead build from resources under the control of a number of different national organisations. Being physically distributed makes the design and implementation of the networking infrastructure a challenge. NDGF has its own internal OPN connecting the sites participating in the distributed Tier-1. To assess the suitability of the network design and the capacity of the links, we present a model of the internal bandwidth needs for the NDGF Tier-1 and its associated Tier-2 sites. The model takes the different type of workloads into account and can handle different kinds of data management strategies. It has already been used to dimension the internal network structure of NDGF. We also compare the model with real life data measurements.

  18. Using internal discharge data in a distributed conceptual model to reduce uncertainty in streamflow simulations

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; Halldin, S.; Xu, C.; Lundin, L.

    2011-12-01

    Distributed hydrological models are important tools in water management as they account for the spatial variability of the hydrological data, as well as being able to produce spatially distributed outputs. They can directly incorporate and assess potential changes in the characteristics of our basins. A recognized problem for models in general is equifinality, which is only exacerbated for distributed models who tend to have a large number of parameters. We need to deal with the fundamentally ill-posed nature of the problem that such models force us to face, i.e. a large number of parameters and very few variables that can be used to constrain them, often only the catchment discharge. There is a growing but yet limited literature showing how the internal states of a distributed model can be used to calibrate/validate its predictions. In this paper, a distributed version of WASMOD, a conceptual rainfall runoff model with only three parameters, combined with a routing algorithm based on the high-resolution HydroSHEDS data was used to simulate the discharge in the Paso La Ceiba basin in Honduras. The parameter space was explored using Monte-Carlo simulations and the region of space containing the parameter-sets that were considered behavioral according to two different criteria was delimited using the geometric concept of alpha-shapes. The discharge data from five internal sub-basins was used to aid in the calibration of the model and to answer the following questions: Can this information improve the simulations at the outlet of the catchment, or decrease their uncertainty? Also, after reducing the number of model parameters needing calibration through sensitivity analysis: Is it possible to relate them to basin characteristics? The analysis revealed that in most cases the internal discharge data can be used to reduce the uncertainty in the discharge at the outlet, albeit with little improvement in the overall simulation results.

  19. A reexamination of luminosity sources in T Tauri stars. I - Taurus-Auriga

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Emerson, J. P.; Beichman, C. A.

    1989-01-01

    An analysis is presented of 72 T Tau stars identified by IRAS in the Tau-Aur complex. The composite energy distributions of the stars are constructed to define bolometric luminosities and the luminosity components in different spectral regimes are separated. The near- to far-IR spectral indices of these stars are analyzed. It is shown that 2/3 of typical T Tau stars have a bolometric to stellar luminosity ratio of about 1.0, which implies no appreciable disks. The distribution is bimodal, however, with a second peak at about 2.0, suggesting that 1/3 of the stars have disks. The bolometric luminosities of the north and south components of T Tau are found to be in the range of 9-21 solar luminosities and 1.5-14 solar luminosities for T Tau N and T Tau S, respectively.

  20. THE LUMINOSITY PROFILES OF BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Donzelli, C. J.; Muriel, H.; Madrid, J. P.

    2011-08-01

    We have derived detailed R-band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag arcsec{sup -2}. Light profiles were initially fitted with a Sersic's R {sup 1/n} model, but we found that 205 ({approx}48%) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n {approx} 1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCG luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter ({approx}0.2 mag) than single profile BCGs. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M{sub R} = -23.8 {+-} 0.6 mag for single profile BCGs and M{sub R} = -24.0 {+-} 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best-fit slope of the Kormendy relation for the whole sample is a = 3.13 {+-} 0.04. However, when fitted separately, single and double profile BCGs show different slopes: a{sub single} = 3.29 {+-} 0.06 and a{sub double} = 2.79 {+-} 0.08. Also, the logarithmic slope of the metric luminosity {alpha} is higher in double profile BCGs ({alpha}{sub double} = 0.65 {+-} 0.12) than in single profile BCGs ({alpha}{sub single} = 0.59 {+-} 0.14). The mean isophote outer ellipticity (calculated at {mu} {approx} 24 mag arcsec{sup -2}) is higher in double profile BCGs (e{sub double} = 0.30 {+-} 0.10) than in single profile BCGs (e{sub single} = 0.26 {+-} 0.11). Similarly

  1. Stress distribution around osseointegrated implants with different internal-cone connections: photoelastic and finite element analysis.

    PubMed

    Anami, Lilian Costa; da Costa Lima, Júlia Magalhães; Takahashi, Fernando Eidi; Neisser, Maximiliano Piero; Noritomi, Pedro Yoshito; Bottino, Marco Antonio

    2015-04-01

    The goal of this study was to evaluate the distribution of stresses generated around implants with different internal-cone abutments by photoelastic (PA) and finite element analysis (FEA). For FEA, implant and abutments with different internal-cone connections (H- hexagonal and S- solid) were scanned, 3D meshes were modeled and objects were loaded with computer software. Trabecular and cortical bones and photoelastic resin blocks were simulated. The PA was performed with photoelastic resin blocks where implants were included and different abutments were bolted. Specimens were observed in the circular polariscope with the application device attached, where loads were applied on same conditions as FEA. FEA images showed very similar stress distribution between two models with different abutments. Differences were observed between stress distribution in bone and resin blocks; PA images resembled those obtained on resin block FEA. PA images were also quantitatively analyzed by comparing the values assigned to fringes. It was observed that S abutment distributes loads more evenly to bone adjacent to an implant when compared to H abutment, for both analysis methods used. It was observed that the PA has generated very similar results to those obtained in FEA with the resin block. PMID:23750560

  2. Pressure and flow distribution in internal gas manifolds of a fuel-cell stack

    NASA Astrophysics Data System (ADS)

    Koh, Joon-Ho; Seo, Hai-Kyung; Lee, Choong Gon; Yoo, Young-Sung; Lim, Hee Chun

    Gas-flow dynamics in internal gas manifolds of a fuel-cell stack are analyzed to investigate overall pressure variation and flow distribution. Different gas-flow patterns are considered in this analysis. Gas-flow through gas channels of each cell is modeled by means of Darcy's law where permeability should be determined on an experimental basis. Gas-flow in manifolds is modeled from the macroscopic mechanical energy balance with pressure-loss by wall friction and geometrical effects. A systematic algorithm to solve the proposed flow model is suggested to calculate pressure and flow distribution in fuel-cell stacks. Calculation is done for a 100-cell molten carbonate fuel-cell stack with internal manifolds. The results show that the pressure-loss by wall friction is negligible compared with the pressure recovery in inlet manifolds or loss in outlet manifolds due to mass dividing or combining flow at manifold-cell junctions. A more significant effect on manifold pressure possibly arises from the geometrical manifold structure which depends on the manifold size and shape. The geometrical effect is approximated from pressure-loss coefficients of several types of fittings and valves. The overall pressure and flow distribution is significantly affected by the value of the geometrical pressure-loss coefficient. It is also found that the flow in manifolds is mostly turbulent in the 100-cell stack and this way result in an uneven flow distribution when the stack manifold is incorrectly, designed.

  3. The luminosities of the brightest cluster galaxies and brightest satellites in SDSS groups

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Sheth, Ravi K.

    2012-06-01

    We show that the distribution of luminosities of brightest cluster galaxies (BCGs) in a Sloan Digital Sky Survey (SDSS)-based group catalogue suggests that BCG luminosities are just the statistical extremes of the group galaxy luminosity function. The latter happens to be very well approximated by the all-galaxy luminosity function (restricted to Mr < -19.9), provided one uses a parametrization of this function that is accurate at the bright end. A similar analysis of the luminosity distribution of the brightest satellite galaxies (BSGs) suggests that they are best thought of as being the second brightest pick from the same luminosity distribution of which BCGs are the brightest. That is, BSGs are not the brightest of some universal satellite luminosity functions, in contrast to what halo model analyses of the luminosity dependence of clustering suggest. However, we then use mark correlations to provide a novel test of these order statistics, showing that the hypothesis of a universal luminosity function (i.e. no halo mass dependence) from which the BCGs and BSGs are drawn is incompatible with the data, despite the fact that there was no hint of this in the BCG and BSG luminosity distributions themselves. We also discuss why, since extreme value statistics are explicitly a function of the number of draws, the consistency of BCG luminosities with extreme value statistics is most clearly seen if one is careful to perform the test at fixed group richness N. Tests at e.g. fixed total group luminosity Ltot will generally be biased and may lead to erroneous conclusions.

  4. Luminosity Functions for Globular Clusters

    NASA Astrophysics Data System (ADS)

    Silvestri, Fabio; Ventura, Paolo; D'Antona, Francesca; Mazzitelli, Italo

    1998-12-01

    We present theoretical mass-luminosity relations and luminosity functions (LFs) for globular cluster stars, from luminosities above the horizontal branch down to the minimum luminosity of hydrogen-burning stars. The LFs are available for metal mass fraction Z from Z = 10-4 to Z = 4 × 10-3, in the Johnson V band and in the Bessell-Cousins I band, and are based on tracks especially computed for this program, with the input physics of the models developed recently by D'Antona et al., Mazzitelli et al., and D'Antona & Mazzitelli. Two typical comparisons with observations are presented and discussed: (1) comparisons and statistical analysis with the LFs of the lower giant branch, turnoff region, and upper main sequence of several globular clusters from low to high metallicity, (2) derivation of the initial mass function (IMF) for the stars below the turnoff for several globular clusters for which Hubble Space Telescope data are available. In the first analysis we find that, for relatively large metallicities (Z >= 10-3) a good fit between theoretical and observed LFs can be found, although a simple χ2 statistical analysis shows that it is not possible to derive a strongly preferred age (or, equivalently, distance modulus) from the LF comparison. The fit with lower metallicity [Z ~ (1-2) × 10-4] LFs is less good but statistically acceptable. The main result is that the difference between observed and theoretical LFs of low-metallicity clusters reported by VandenBerg, Bolte, & Stetson appears to be much reduced in present models, and we give the possible reason why this happens and its consequences for the important parameter of the helium core mass at the flash. In the second application, we explore the effect of varying age and distance modulus on the mass function derived for a globular cluster. Distance moduli corresponding to the ``long'' distance scale (and relatively low ages) seem to be preferred based on these comparisons. The resulting index of the IMF is

  5. Sprite Luminosity and Radio Noise

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Evans, A.; Mezentsev, A.; van der Velde, O.; Soula, S.

    2013-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into streamer tips (McHarg et al., 2010) with diameters 50-100 m at 60-80 km height (Kanmae et al., 2012). The sprite luminosity coincides in time and space with extremely low frequency electromagnetic radiation <3 kHz in excellent agreement with theory (Cummer and Fullekrug, 2001). This theory is based on current flowing in the body of sprites at 70-80 km height associated with large streamer densities (Pasko et al., 1998). A more detailed study shows specifically that the exponential growth and splitting of streamers at 70-80 km height results in an electron multiplication associated with the acceleration of electrons to a few eV. The accelerated electrons radiate a small amount of electromagnetic energy and the incoherent superposition of many streamers causes the observed electromagnetic radiation (Qin et al., 2012). It has been predicted that this newly recognized physical mechanism might also result in low frequency ( 30-300 kHz) electromagnetic radiation emanating from sprite streamers near 40 km height in the stratosphere, albeit with very small magnetic fields 10^{-17}-10^{-12} T from a single streamer (Qin et al., 2012). The presence of this predicted radiation was promptly confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). Specifically, it was found that the sprite luminosity coincides with sudden enhancements of the radio noise. These initial observations are extended here with a more detailed analysis to study the spatial coherence of the radio noise recorded with a novel network of sensitive radio receivers deployed during field work in the summer 2013. This network of radio receivers is used to study the relationship between the radio noise and the sprite luminosity observed with video cameras. The sprite luminosity is inferred from video recordings by use of sophisticated image

  6. Unidentified IRAS sources: Ultrahigh luminosity galaxies

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Schneider, D. P.; Danielson, G. E.; Beichman, C. A.; Lonsdale, C. J.; Neugebauer, G.; Soifer, B. T.

    1985-01-01

    Optical imaging and spectroscopy measurements were obtained for six of the high galactic latitude infrared sources reported by Houck, et al. (1984) from the IRAS survey to have no obvious optical counterparts on the POSS prints. All are identified with visually faint galaxies that have total luminosities in the range 5 x 10 to the 11th power stellar luminosity to 5 x 10 to the 12th power stellar luminosity. This luminosity emerges virtually entirely in the infrared. The origin of the luminosity, which is one to two orders of magnitude greater than that of normal galaxies, is not known at this time.

  7. The Consequences of Internal Waves for Phytoplankton Focusing on the Distribution and Production of Planktothrix rubescens

    PubMed Central

    Hingsamer, Peter; Peeters, Frank; Hofmann, Hilmar

    2014-01-01

    Consequences of internal wave motion for phytoplankton and in particular for the distribution and production of the harmful and buoyant cyanobacterium Planktothrix rubescens were investigated based on data from two field campaigns conducted in Lake Ammer during summer 2009 and 2011. In both years, P. rubescens dominated the phytoplankton community and formed a deep chlorophyll maximum (DCM) in the metalimnion. Internal wave motions caused vertical displacement of P. rubescens of up to 6 m and 10 m, respectively. Vertical displacements of isotherms and of iso-concentration lines of P. rubescens from the same depth range coincided, suggesting that P. rubescens did not or could not regulate its buoyancy to prevent wave-induced vertical displacements. Diatoms dominated the phytoplankton community in the epilimnion and were vertically separated from P. rubescens. The thickness of the diatom layer, but not the diatom concentrations within the layer, changed in phase with the changes in the thickness of the epilimnion caused by internal wave motions. Seiche induced vertical displacements of P. rubescens caused fluctuations in the light intensity available at the depth of the P. rubescens layer. The interplay between seiche induced vertical displacements of the P. rubescens layer and the daily cycle of incident light lead to differences in the daily mean available light intensity between lake ends by up to a factor of ∼3. As a consequence, the daily mean specific oxygen production rate of P. rubescens differed by up to a factor of ∼7 between lake ends. The horizontal differences in the specific oxygen production rate of P. rubescens were persistent over several days suggesting that the associated production of P. rubescens biomass may lead to phytoplankton patchiness. The effect of internal seiches on the spatial heterogeneity and the persistence of horizontal differences in production, however, depend on the timing and the synchronization between internal wave motion

  8. The consequences of internal waves for phytoplankton focusing on the distribution and production of Planktothrix rubescens.

    PubMed

    Hingsamer, Peter; Peeters, Frank; Hofmann, Hilmar

    2014-01-01

    Consequences of internal wave motion for phytoplankton and in particular for the distribution and production of the harmful and buoyant cyanobacterium Planktothrix rubescens were investigated based on data from two field campaigns conducted in Lake Ammer during summer 2009 and 2011. In both years, P. rubescens dominated the phytoplankton community and formed a deep chlorophyll maximum (DCM) in the metalimnion. Internal wave motions caused vertical displacement of P. rubescens of up to 6 m and 10 m, respectively. Vertical displacements of isotherms and of iso-concentration lines of P. rubescens from the same depth range coincided, suggesting that P. rubescens did not or could not regulate its buoyancy to prevent wave-induced vertical displacements. Diatoms dominated the phytoplankton community in the epilimnion and were vertically separated from P. rubescens. The thickness of the diatom layer, but not the diatom concentrations within the layer, changed in phase with the changes in the thickness of the epilimnion caused by internal wave motions. Seiche induced vertical displacements of P. rubescens caused fluctuations in the light intensity available at the depth of the P. rubescens layer. The interplay between seiche induced vertical displacements of the P. rubescens layer and the daily cycle of incident light lead to differences in the daily mean available light intensity between lake ends by up to a factor of ∼3. As a consequence, the daily mean specific oxygen production rate of P. rubescens differed by up to a factor of ∼7 between lake ends. The horizontal differences in the specific oxygen production rate of P. rubescens were persistent over several days suggesting that the associated production of P. rubescens biomass may lead to phytoplankton patchiness. The effect of internal seiches on the spatial heterogeneity and the persistence of horizontal differences in production, however, depend on the timing and the synchronization between internal wave motion

  9. The distribution of mental illness found by DIS (Diagnostic Interview Schedule) among internal and orthopedic patients.

    PubMed

    Nishioka, Y; Nishizono, M; Yamamoto, J

    1990-03-01

    In order to understand how psychiatric problems are distributed in general medical departments, we used DIS (Diagnostic Interview Schedule). The subjects are 307 inpatients and outpatients in the Departments in Internal Medicine and Orthopedics of Fukuoka University Hospital, M Hospital and N Hospital. As a result, 53.4% of all the subjects showed some psychiatric problems. These are, in a descending order, tobacco dependence (30.0%), psychosexual dysfunction (14.3%), alcohol abuse/dependence (14.0%), major depressive episode (6.5%), organic brain syndrome (4.9%), obsessive-compulsive disorder (3.9%), dysthymic disorder (2.3%), panic disorder (2.0%) and others. Also, we discussed comparison between internal patients and neurotic patients who visited psychiatrists complaining of physical symptoms, and the incidence of DIS diagnoses in individual physical diseases. PMID:2362392

  10. The internal density distribution of comet 67P/C-G based on 3D models

    NASA Astrophysics Data System (ADS)

    Jorda, Laurent; Hviid, Stubbe; Capanna, Claire; Gaskell, Robert; Gutierrez, Pedro; Preusker, Frank; Rodionov, Sergey; Scholten, Frank

    2016-04-01

    The OSIRIS camera aboard the Rosetta spacecraft observed the nucleus of comet 67P/C-G from the mapping phase in summer 2014 until now. The images have allowed the reconstruction in three-dimension of nucleus surface with stereophotogrammetry (Preusker et al., Astron. Astrophys.) and stereophotoclinometry (Jorda et al., submitted to Icarus) techniques. We use the reconstructed models to constrain the internal density distribution based on: (i) the measurement of the offset between the center of mass and center of figure of the object, and (ii) the assumption that flat areas observed at the surface of the comet correspond to iso-gravity surfaces. The results of our analysis will be presented, and the consequences for the internal structure and formation of the nucleus of comet 67P/C-G will be discussed.

  11. Numerical Simulations for Distribution Characteristics of Internal Forces on Segments of Tunnel Linings

    NASA Astrophysics Data System (ADS)

    Li, Shouju; Shangguan, Zichang; Cao, Lijuan

    A procedure based on FEM is proposed to simulate interaction between concrete segments of tunnel linings and soils. The beam element named as Beam 3 in ANSYS software was used to simulate segments. The ground loss induced from shield tunneling and segment installing processes is simulated in finite element analysis. The distributions of bending moment, axial force and shear force on segments were computed by FEM. The commutated internal forces on segments will be used to design reinforced bars on shield linings. Numerically simulated ground settlements agree with observed values.

  12. The galaxy luminosity function and the redshift-distance controversy (A Review)

    PubMed Central

    Salpeter, E. E.; Hoffman, G. L.

    1986-01-01

    The mean relation between distance and redshift for galaxies is reviewed as an observational question. The luminosity function for galaxies is an important ingredient and is given explicitly. We discuss various observational selection effects that are important for comparison of the linear and quadratic distance-redshift laws. Several lines of evidence are reviewed, including the distribution of galaxy luminosities in various redshift ranges, the luminosities of brightest galaxies in groups and clusters at various redshifts, and the Tully-Fisher correlation between neutral hydrogen velocity widths and luminosity. All of these strongly favor the linear law over the quadratic. PMID:16593693

  13. Distribution of gas flow in internally manifolded solid oxide fuel-cell stacks

    NASA Astrophysics Data System (ADS)

    Boersma, R. J.; Sammes, N. M.

    In internally manifolded fuel-cell stacks, there is a non-uniform gas flow distribution along the height of the system. To gain an insight into this distribution an analytical model has been developed. In the model, the stack is viewed as a network of hydraulic resistances. Some of these resistances are constant, while some depend upon the gas velocity and can be determined from the literature. The model consists of equations for the network with counter-current flow in the manifold channels. Only the most important resistances are included, i.e., the resistances due to splitting and combining the flows in the manifold channels, and the resistance in the gas channels of the active cell area. The ratio between the average flow and the flow in the upper cell can be solved from the model. In this manner, a very useful tool for separatorplate design is obtained.

  14. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection.

    PubMed

    Zhang, Jiwei; Di, Jianglei; Li, Ying; Xi, Teli; Zhao, Jianlin

    2015-10-19

    We present a method for dynamically measuring the refractive index distribution in a large range based on the combination of digital holographic interferometry and total internal reflection. A series of holograms, carrying the index information of mixed liquids adhered on a total reflection prism surface, are recorded with CCD during the diffusion process. Phase shift differences of the reflected light are reconstructed exploiting the principle of double-exposure holographic interferometry. According to the relationship between the reflection phase shift difference and the liquid index, two dimensional index distributions can be directly figured out, assuming that the index of air near the prism surface is constant. The proposed method can also be applied to measure the index of solid media and monitor the index variation during some chemical reaction processes. PMID:26480394

  15. Dose distribution in the Russian Segment of the International Space Station.

    PubMed

    Hajek, M; Berger, T; Fugger, M; Fürstner, M; Vana, N; Akatov, Y; Shurshakov, V; Arkhangelsky, V

    2006-01-01

    Absorbed dose and average linear energy transfer (LET) were assessed by means of (7)LiF:Mg,Ti (TLD-700) thermoluminescent (TL) detectors for different panels on-board the Russian Segment of the International Space Station in the timeframe between March and November 2002 (233 d). A technique is presented to correct the measured absorbed dose values for TL efficiency in the radiation climate on-board the spacecraft. Average LET is determined from the high-temperature TL emission in the TLD-700 glow curve and used as a parameter in the TL efficiency correction. Depending on the shielding distribution, the efficiency-corrected absorbed dose varies between 154 +/- 5 microGy d(-1) in panel no. 327 (core block ceiling) and 191 +/- 3 microGy d(-1) in panel no. 110 (core block central axis, floor). The experimental data are compared with the model calculations by using detailed shielding distributions and orbit parameters as inputs. PMID:16606660

  16. Extreme luminosity imaging conical spectrograph

    SciTech Connect

    Pikuz, S. A.; Shelkovenko, T. A.; Mitchell, M. D.; Chandler, K. M.; Douglass, J. D.; McBride, R. D.; Jackson, D. P.; Hammer, D. A.

    2006-10-15

    A new configuration for a two-dimensional (2D) imaging x-ray spectrograph based on a conically bent crystal is introduced: extreme luminosity imaging conical spectrograph (ELICS). The ELICS configuration has important advantages over spectrographs that are based on cylindrically and spherically bent crystals. The main advantages are that a wide variety of large-aperture crystals can be used, and any desired magnification in the spatial direction (the direction orthogonal to spectral dispersion) can be achieved by the use of different experimental arrangements. The ELICS can be set up so that the detector plane is almost perpendicular to the incident rays, a good configuration for time-resolved spectroscopy. ELICSs with mica crystals of 45x90 mm{sup 2} aperture have been successfully used for imaging on the XP and COBRA pulsed power generators, yielding spectra with spatial resolution in 2D of Z pinches and X pinches.

  17. The spectral energy distribution of compact jets powered by internal shocks

    NASA Astrophysics Data System (ADS)

    Malzac, Julien

    2014-09-01

    Internal shocks caused by fluctuations of the outflow velocity are likely to power the radio-to-IR emission of the compact jets of X-ray binaries. The dynamics of internal shocks and the resulting spectral energy distribution (SED) of the jet are very sensitive to the time-scales and amplitudes of the velocity fluctuations injected at the base of the jet. I present a new code designed to simulate the synchrotron emission of a compact jet powered by internal shocks. I also develop a semi-analytical formalism allowing one to estimate the observed SED of the jet as a function of the Power Spectral Density (PSD) of the assumed fluctuations of the Lorentz factor. I discuss the cases of a sine modulation of the Lorentz factor and Lorentz factor fluctuations with a power-law PSD shape. Independently of the details of the model, the observed nearly flat SEDs are obtained for PSDs of Lorentz factor fluctuations that are close to a flicker noise spectrum (i.e. P(f ) ∝ 1/f ). The model also presents a strong wavelength-dependent variability that is similar to that observed in these sources.

  18. The faint end of the galaxy luminosity function

    NASA Technical Reports Server (NTRS)

    Treyer, Marie A.; Silk, Joseph

    1994-01-01

    The evolution of the B- and K-band luminosity functions of galaxies is inferred in a relatively model-independent way from deep spectroscopic and photometric surveys. We confirm earlier evidence by Eales for an increase in the amplitude of the B-band galaxy luminosity function at modest redshift (z less than or approx. 0.2). We find in addition that the slope of the faint end of the luminosity function must systematically steepen and progress toward more luminous galaxies with increasing lookback time, assuming that the galaxy redshift distribution may be smoothly extrapolated 2 mag fainter than observed, as suggested by recent gravitational lensing studies. This evolution is shown to be color-dependent, and we predict the near-infrared color distribution of faint galaxies. The luminosity function of blue (B - K less than or approx. 4) galaxies in the range 0.2 less than or approx. z less than or approx. 1 can be represented by a Schechter function with characteristic light density phi(sup *) L(sup *) comparable to that of present-day late-type galaxies, but with a steeper faint end slope alpha approx. 1.4.

  19. The Radio Luminosity Function and Galaxy Evolution of Abell 2256

    NASA Astrophysics Data System (ADS)

    Forootaninia, Zahra

    2015-05-01

    This thesis presents a study of the radio luminosity function and the evolution of galaxies in the Abell 2256 cluster (z=0.058, richness class 2). Using the NED database and VLA deep data with an rms sensitivity of 18 mu Jy.beam--1, we identified 257 optical galaxies as members of A2256, of which 83 are radio galaxies. Since A2256 is undergoing a cluster-cluster merger, it is a good candidate to study the radio activity of galaxies in the cluster. We calculated the Univariate and Bivariate radio luminosity functions for A2256, and compared the results to studies on other clusters. We also used the SDSS parameter fracDev to roughly classify galaxies as spirals and ellipticals, and investigated the distribution and structure of galaxies in the cluster. We found that most of the radio galaxies in A2256 are faint, and are distributed towards the outskirts of the cluster. On the other hand, almost all very bright radio galaxies are ellipticals which are located at the center of the cluster. We also found there is an excess in the number of radio spiral galaxies in A2256 compared to the number of radio ellipticals, counting down to a radio luminosity of log(luminosity)=20.135 W/Hz..

  20. Optimizing integrated luminosity of future hadron colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank

    2015-10-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).

  1. The Luminosity Function of OB Associations in the Galaxy

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.; Williams, Jonathan P.

    1997-02-01

    OB associations ionize the interstellar medium, producing both localized H II regions and diffuse ionized gas. The supernovae resulting from these associations pressurize and stir the interstellar medium. Using Smith, Biermann, & Mezger's compilation of radio H II regions in the Galaxy, and Kennicutt, Edgar, & Hodge's optical study of H II regions in nearby galaxies, we show that the luminosity distribution of giant OB associations in the Galaxy can be fit by a truncated power law of the form \\Nscra(>S)=\\Nscrau[(Su/S)-1], where S is the ionizing photon luminosity, \\Nscra(>S) is the number of associations with a luminosity of at least S, and Su is the upper limit to the distribution. The coefficient \\Nscrau is the number of the most luminous associations, with a luminosity between 0.5Su and Su. For the Galaxy, \\Nscrau=6.1 the fact that the number of the most luminous associations is significantly larger than unity indicates that there is a physical limit to the maximum size of H II regions in the Galaxy. To extend the luminosity distribution to small H II regions, we assume that the birthrate of associations, \\Nscr\\dota(>\\Nscr*), is also a truncated power law, \\Nscr\\dota(>\\Nscr*)~[(\\Nscr*u/\\Nscr*)-1], where \\Nscr* is the number of stars in the association. For large associations, the ionizing luminosity is proportional to the number of stars, S~\\Nscr* for smaller associations, we use both an analytic and a Monte Carlo approach to find the resulting luminosity distribution \\Nscra(>S). H II regions are generally centrally concentrated, with only the dense central regions being bright enough to appear in radio catalogs. Anantharamaiah postulated that radio H II regions have extended envelopes in order to account for diffuse radio recombination line emission in the Galaxy. Some of these envelopes are visible as the ionized ``worms'' discussed by Heiles and coworkers. We estimate that on the average the envelopes of radio H II regions absorb about twice

  2. Baroclinic internal wave energy distribution in the Baltic Sea derived from 45 years of circulation simulations

    NASA Astrophysics Data System (ADS)

    Rybin, Artem; Soomere, Tarmo; Kurkina, Oxana; Kurkin, Andrey; Rouvinskaya, Ekaterina; Markus Meier, H. E.

    2016-04-01

    Internal waves and internal tides are an essential component of the functioning of stratified shelf seas. They carry substantial amounts of energy through the water masses, drive key hydrophysical processes such as mixing and overturning and support the functioning of marine ecosystem in many ways. Their particular impact becomes evident near and at the bottom where they often create substantial loads to engineering structures and exert a wide range of impacts on the bottom sediments and evolution of the seabed. We analyse several properties of spatio-temporal distributions of energy of relatively long-period large-scale internal wave motions in the Baltic Sea. The analysis is based on numerically simulated pycnocline variations that are extracted from the hydrographic data calculated by the Rossby Centre Ocean circulation model (RCO) for the entire Baltic Sea for 1961-2005. This model has a horizontal resolution of 2 nautical miles and uses 41 vertical layers with a thickness between 3 m close to the surface and 12 m in 250 m depth. The model is forced with atmospheric data derived from the ERA-40 re-analysis using a regional atmosphere model with a horizontal resolution of 25 km. It also accounts for river inflow and water exchange through the Danish Straits. See (Meier, H.E.M., Höglund, A., 2013. Studying the Baltic Sea circulation with Eulerian tracers, in Soomere, T., Quak, E., eds., Preventive Methods for Coastal Protection, Springer, Cham, Heidelberg, 101-130) for a detailed description of the model and its forcing. The resolution of the model output used in this study (once in 6 hours) is sufficient for estimates of spectral amplitudes of the displacements of isopycnal surfaces with a typical period of 2-12 days. We provide the analysis of kinetic and potential energy of motions with these periods. The resulting maps of the maxima of energy and spatial distributions of near-bottom velocities have been evaluated for the entire simulation interval of 45

  3. Measurement and Data Distribution for Microgravity Accelerations on the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kenneth

    1999-01-01

    Two accelerometer systems will be available on the International Space Station to support microgravity payloads with information about the quasi-steady and vibratory acceleration environment of the research facilities. The Microgravity Acceleration Measurement System will record contributions to the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. The Space Acceleration Measurement System-II will measure vibratory disturbances on-board due to vehicle, crew, and equipment disturbances. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, NASA's Principal Investigator Microgravity Services project has initiated a plan through which the data from these instruments will be distributed to researchers in a timely and meaningful fashion. Beyond the obvious benefit of correlation between accelerations and the scientific phenomena being studied, such information is also useful for hardware developers who can gain qualitative and quantitative feedback about their facility acceleration output to station.

  4. Selected papers from Middleware'98: The IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing

    NASA Astrophysics Data System (ADS)

    Davies, Nigel; Raymond, Kerry; Blair, Gordon

    1999-03-01

    In recent years the distributed systems community has witnessed a growth in the number of conferences, leading to difficulties in tracking the literature and a consequent loss of awareness of work done by others in this important research domain. In an attempt to synthesize many of the smaller workshops and conferences in the field, and to bring together research communities which were becoming fragmented, IFIP staged Middleware'98: The IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing. The conference was widely publicized and attracted over 150 technical submissions including 135 full paper submissions. The final programme consisted of 28 papers, giving an acceptance ratio of a little over one in five. More crucially, the programme accurately reflected the state of the art in middleware research, addressing issues such as ORB architectures, engineering of large-scale systems and multimedia. The traditional role of middleware as a point of integration and service provision was clearly intact, but the programme stressed the importance of emerging `must-have' features such as support for extensibility, mobility and quality of service. The Middleware'98 conference was held in the Lake District, UK in September 1998. Over 160 delegates made the journey to one of the UK's most beautiful regions and contributed to a lively series of presentations and debates. A permanent record of the conference, including transcripts of the panel discussions which took place, is available at: http://www.comp.lancs.ac.uk/computing/middleware98/ Based on their original reviews and the reactions of delegates to the ensuing presentations we have selected six papers from the conference for publication in this special issue of Distributed Systems Engineering. The first paper, entitled `Jonathan: an open distributed processing environment in Java', by Dumant et al describes a minimal, modular ORB framework which can be used for supporting real

  5. Using Distributed Operations to Enable Science Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Bathew, Ann S.; Dudley, Stephanie R. B.; Lochmaier, Geoff D.; Rodriquez, Rick C.; Simpson, Donna

    2011-01-01

    In the early days of the International Space Station (ISS) program, and as the organization structure was being internationally agreed upon and documented, one of the principal tenets of the science program was to allow customer-friendly operations. One important aspect of this was to allow payload developers and principle investigators the flexibility to operate their experiments from either their home sites or distributed telescience centers. This telescience concept was developed such that investigators had several options for ISS utilization support. They could operate from their home site, the closest telescience center, or use the payload operations facilities at the Marshall Space Flight Center in Huntsville, Alabama. The Payload Operations Integration Center (POIC) processes and structures were put into place to allow these different options to its customers, while at the same time maintain its centralized authority over NASA payload operations and integration. For a long duration space program with many scientists, researchers, and universities expected to participate, it was imperative that the program structure be in place to successfully facilitate this concept of telescience support. From a payload control center perspective, payload science operations require two major elements in order to make telescience successful within the scope of the ISS program. The first element is decentralized control which allows the remote participants the freedom and flexibility to operate their payloads within their scope of authority. The second element is a strong ground infrastructure, which includes voice communications, video, telemetry, and commanding between the POIC and the payload remote site. Both of these elements are important to telescience success, and both must be balanced by the ISS program s documented requirements for POIC to maintain its authority as an integration and control center. This paper describes both elements of distributed payload

  6. Providing International Research Experiences in Water Resources Through a Distributed REU Program

    NASA Astrophysics Data System (ADS)

    Judge, J.; Sahrawat, K.; Mylavarapu, R.

    2012-12-01

    Research experiences for undergraduates offer training in problem solving and critical thinking via hands-on projects. The goal of the distributed Research Experience for Undergraduates (REU) Program in the Agricultural and Biological Engineering Department (ABE) at the University of Florida (UF) is to provide undergraduate students a unique opportunity to conduct research in water resources using interdisciplinary approaches, integrating research and extension, while the cohort is not co-located. The eight-week REU Program utilizes the extensive infrastructure of UF - Institute of Food and Agricultural Sciences (IFAS) through the Research and Education Centers (RECs). To provide international research and extension experience, two students were located at the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), in India. Prior to the beginning of the Program, the students worked closely with their research mentors at University of Florida and ICRISAT to develop a project plan for understanding the water quality issues in two watersheds. The students were co-located during the Orientation week at the University of Florida. During the Program, they achieved an enriching cohort experience through social networking, daily blogs, and weekly video conferences to share their research and other REU experiences. The group meetings and guest lectures are conducted via synchronously through video conferencing. The students who were distributed across Florida benefited from the research experiences of the students who were located in India, as their project progressed. They described their challenges and achievements during the group meetings and in the blogs. This model of providing integrated research and extension opportunities in hydrology where not all the REU participants are physically co-located, is unique and can be extended to other disciplines.

  7. Higher luminosities via alternative incident channels

    SciTech Connect

    Spencer, J.E.

    1985-04-01

    We show that PEP provides some unique opportunities for one and two photon physics with real photons as well as for QCD studies with internal targets. Photon beams would avoid the major limitation on the luminosity of present machines and could provide PEP an ideal b-physics factory producing the full range of J/sub c//sup PC/ and J/sub b//sup PC/ states that may not be observable otherwise as well as allow a whole new class of ''missing-mass'' experiments. These latter particles are the pseudo-Goldstone bosons and their supersymmetric counterparts. These and related possibilities like a single-pass, ''free electron laser'' facility or even synchrotron radiation beam lines all favor a mini-maxi configuration for the low-beta insertions in PEP. This allows more diverse experiments without excluding any ongoing experimental programs. Such possibilities have interesting implications for a number of proposed facilities including the SSC. Some systematic machine physics studies over a range of energies are suggested. 24 refs., 6 figs.

  8. Perspectives on Higher Luminosity B-Factories

    SciTech Connect

    Seeman, J

    2004-04-22

    The present B-factories PEP-II and KEKB have reached luminosities of 4-6 x 10{sup 33}/cm{sup 2}/s and delivered integrated luminosity at rates in excess of 6 fb{sup -1} per month [1,2]. The recent turn on of these two B-Factories has shown that modern accelerator physics, design, and engineering can produce colliders that rapidly reach their design luminosities and deliver integrated luminosities capable of frontier particle physics discoveries. PEP-II and KEK-B with ongoing upgrade programs should reach luminosities of over 10{sup 34}/cm{sup 2}/s in a few years and with more aggressive improvements may reach luminosities of order 4 x 10{sup 34}/cm{sup 2}/s by the end of the decade. However, due to particle physics requirements, the next generation B-Factory may require significantly more luminosity. Initial parameters of a very high luminosity e{sup +}e{sup -} B-Factory or Super B-Factory (SBF) are being developed incorporating several new ideas from the successful operation of the present generation e{sup +}e{sup -} accelerators [3,4]. A luminosity approaching 10{sup 36} cm{sup -2}s{sup -1} may be possible. Furthermore, the ratio of average to peak luminosity may be increased by 30% due to continuous injection. The operation of this new accelerator will be qualitatively different from present e{sup +}e{sup -} colliders due to this continuous injection.

  9. International intercalibration and intercomparison measurements of radon progeny particle size distribution

    SciTech Connect

    Tu, Keng-Wu

    1997-07-01

    Because there is no standard method for {sup 222}Rn progeny size measurements, verifying the performance of various measurement techniques is important. This report describes results of an international intercomparison and calibration of {sup 222}Rn progeny size measurements involving low pressure impactors (MOUDI and Berner) and diffusion battery systems, as well as both alpha- and gamma- counting methods. The intercomparison was at EML on June 12-15, 1995. 5 different particle sizes (80, 90, 165, 395, 1200 nm) of near monodisperse condensation Carbauba wax aerosol and 2 bimodal size spectra (160 and 365 nm, and 70 and 400 nm) were used. 20 tests were completed, covering both low and high concentrations of {sup 222}Rn and test aerosols. For the single-mode test aerosol, the measurements agreed within the size range. Best agreement was found between the two low pressure impactors. Some differences between the impactor and diffusion battery methods were observed in the specific peak locations and the resultant geometric mean diameters. For the two bimodal size distribution aerosols, the MOUDI measurements showed two modes, while the other 3 devices showed a single mode size distribution.

  10. Cross-cultural differences in color preferences: implication for international film distribution

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Jae

    2002-06-01

    This paper proposes the necessity of manipulating colors of movie contents to fit diverse audiences around the world. Since films are highly color-dependent messages, it is critical to understand how people in different cultures respond differently to color. In recent years, the international market for filmed entertainment has grown more than the U.S. market. However, a lack of research on audience preferences shows no constant guide for the motion picture industry. The film production stage is often disregarded to deliver the appropriate visual color contents for local audience when U.S. films are distributed to foreign markets. Therefore, it is assumed that it would cause distractions for local audiences and it could result in poor ticket sales. When the U.S. produced films are distributed in Asia, colors of original films are always shown without manipulation. It is common that when a U.S. manufactured car is imported to Japan, a driver seat is installed on the right side and also other parts are modified for local customers. Film development is also significantly dependent on audience behavior, so film content also needs to be localized for the different culture. This paper will only address a hypothesis of the implementation of color marketing methodology present in motion pictures.

  11. A study of internal and distributed damping for vibrating turbomachiner blades

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1985-01-01

    Internal and distributed damping as possible methods for reducing the vibration response of turbomachine blades and theoretical methods for analyzing damped vibration were studied. It is demonstrated how the Ritz-Galerkin methods may be used to straightforwardly to analyze forced vibrations with damping. This is done directly without requiring the free vibration eigenfunctions. The Galerkin method is an effective technique for these types of problems. The Ritz method has the further advantage of not needing to satisfy the force type boundary conditions, which is particularly important for plates and shells. But proper functionals representing the forcing and damping terms must be developed, and this is done. Two types of damping--viscous and material (hysteretic) are considered. Both distributed and concentrated exciting forces are treated. Numerical results are obtained for cantilevered beams and rectangular plates. Studies showing the rates of convergence of the solutions are made. In the case of the cantilever beam, approximate solutions from the present methods are compared with the exact solutions.

  12. Mass-to-luminosity ratio in binary galaxies

    NASA Astrophysics Data System (ADS)

    de Freitas Pacheco, J. A.; Junqueira, Selma

    1988-11-01

    The authors have compared the observed distribution of the quantity log (Vz2rP) for a sample of 233 pairs of galaxies with Monte-Carlo simulations. They have derived an average mass-to-luminosity ratio M/LB = 18±11. The result is consistent with a linear increase of the mass with radius at least until distances of about 30 kpc.

  13. Impact of Internal Metallic Ports in Temporary Tissue Expanders on Postmastectomy Radiation Dose Distribution

    SciTech Connect

    Chen, Susie A.; Ogunleye, Tomiwa; Dhabbaan, Anees; Huang, Eugene H.; Losken, Albert; Gabram, Sheryl; Davis, Lawrence; Torres, Mylin A.

    2013-03-01

    Purpose: Temporary tissue expanders (TTE) with an internal magnetic metal port (IMP) have been increasingly used for breast reconstruction in post-mastectomy patients who receive radiation therapy (XRT). We evaluated XRT plans of patients with IMP to determine its effect on XRT dose distribution. Methods and Materials: Original treatment plans with CT simulation scans of 24 consecutive patients who received XRT (ORI), planned without heterogeneity corrections, to a reconstructed breast containing an IMP were used. Two additional treatment plans were then generated: one treatment plan with the IMP assigned the electron density of the rare earth magnet, nickel plated neodymium-iron-boron (HET), and a second treatment plan with the IMP assigned a CT value of 1 to simulate a homogeneous breast without an IMP (BRS). All plans were prescribed 50 Gy to the reconstructed breast (CTV). Results: CTV coverage by 50 Gy was significantly lower in the HET (mean 87.7% CTV) than in either the ORI (mean 99.7% CTV, P<.001) or BRS plans (mean 95.0% CTV, P<.001). The effect of the port was more pronounced on CT slices containing the IMP with prescription dose coverage of the CTV being less in the HET than in either ORI (mean difference 33.6%, P<.01) or BRS plans (mean difference 30.1%, P<.001). HET had a less homogeneous and conformal dose distribution than BRS or ORI. Conclusion: IMPs increase dose heterogeneity and reduce dose to the breast CTV through attenuation of the beam. For optimal XRT treatment, heterogeneity corrections should be used in XRT planning for patients with TTE with IMP, as the IMP impacts dose distribution.

  14. Evidence Of Episodic Mass Accretion In Low-luminosity, Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Kim, Hyo Jeong; Evans, N. J., II; Dunham, M. M.; Lee, J.

    2012-01-01

    We present Spitzer IRS spectroscopy of CO2 ice toward 19 young stellar objects (YSOs) with luminosity lower than 1 Lsun. Pure CO2 ice forms only at elevated temperature, T > 20 K, and thus at higher luminosity. Pure CO2 ice formation processes are irreversible. It will not disappear unless it evaporates. Current internal luminosities of YSOs with L < 1 Lsun do not provide such conditions out to radii of typical envelopes. Significant amounts of pure CO2 ice would signify a higher past luminosity. We analyze 15.2 micron CO2 ice bending mode absorption lines in comparison to the laboratory data. We decompose pure CO2 ice from 15 out of 19 young low luminosity sources. Eight sources show a significant double peak in the optical depth, which provides unambiguous evidence for pure CO2 ice. The presence of the pure CO2 ice component indicate high dust temperature and hence high luminosity in past. The total CO2 ice amount can be explained by long period of low luminosity stage between episodic accretion bursts as predicted in an episodic accretion scenario. Chemical modeling shows that the episodic accretion scenario explains the observed total CO2 ice amount best. A detailed analysis has been performed for one low luminosity Class 0 object CB130-1-IRS1. A full SED fitting with a radiative transfer model shows that the internal luminosity of CB130-1-IRS1 is as low as 0.14 - 0.16 Lsun. The best fitting chemical evolution model requires episodic accretion and the formation of CO2 ice from CO ice during the low luminosity periods. This process removes C from the gas phase, providing a much improved fit to the observed gas-phase molecular lines and the CO2 ice absorption feature. Also we detected the pure CO2 ice component around CB130-1-IRS1, which is an evidence of past heating.

  15. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    SciTech Connect

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  16. Applying the luminosity function statistics in the fireshell model

    NASA Astrophysics Data System (ADS)

    Rangel Lemos, L. J.; Bianco, C. L.; Ruffini, R.

    2015-12-01

    The luminosity function (LF) statistics applied to the data of BATSE, GBM/Fermi and BAT/Swift is the theme approached in this work. The LF is a strong statistical tool to extract useful information from astrophysical samples, and the key point of this statistical analysis is in the detector sensitivity, where we have performed careful analysis. We applied the tool of the LF statistics to three GRB classes predicted by the Fireshell model. We produced, by LF statistics, predicted distributions of: peak ux N(Fph pk), redshift N(z) and peak luminosity N(Lpk) for the three GRB classes predicted by Fireshell model; we also used three GRB rates. We looked for differences among the distributions, and in fact we found. We performed a comparison between the distributions predicted and observed (with and without redshifts), where we had to build a list with 217 GRBs with known redshifts. Our goal is transform the GRBs in a standard candle, where a alternative is find a correlation between the isotropic luminosity and the Band peak spectral energy (Liso - Epk).

  17. Anchoring the AGN X-ray Luminosity Function

    NASA Astrophysics Data System (ADS)

    Salzer, John

    2003-09-01

    Knowledge of the AGN LF over a range of luminosities and redshifts is crucial to understanding the accretion history of supermassive blackholes. Much of the CXRB has been resolved and spectroscopic follow-up has revealed a mixed bag of object types at moderate to high redshifts. For the deep Chandra survey results to be useful in studying the evolution of the XLF, a representative sample of local AGNs of various types with known X-ray luminosities is needed. The new KPNO International Spectroscopic Survey (KISS) provides the best available sample of H-alpha selected Type 1 and 2 AGNs to serve as the baseline for XLF evolution studies. We propose to observe a volume-limited sample of 28 KISS AGNs to assess their X-ray emission characteristics and establish the local AGN XLF.

  18. Luminosity excesses in low-mass young stellar objects - A statistical study

    NASA Technical Reports Server (NTRS)

    Strom, Karen M.; Strom, Stephen E.; Kenyon, Scott J.; Hartmann, Lee

    1988-01-01

    This paper presents a statistical study in which the observed total luminosity is compared quantitatively with an estimate of the stellar luminosity for a sample of 59 low-mass young stellar objects (YSOs) in the Taurus-Auriga complex. In 13 of the analyzed YSOs, luminosity excesses greater than 0.20 are observed together with greater than 0.6 IR excesses, which typically contribute the bulk of the observed excess luminosity and are characterized by spectral energy distributions which are flat or rise toward long wavelengths. The analysis suggests that YSOs showing the largest luminosity excesses typically power optical jets and/or molecular outflows or have strong winds, as evidenced by the presence of O I emission, indicating a possible correlation between accretion and mass-outflow properties.

  19. The luminosity function of galactic X-ray sources - A cutoff and a 'standard candle'

    NASA Technical Reports Server (NTRS)

    Margon, B.; Ostriker, J. P.

    1973-01-01

    Analysis of the 2- to 10-kev luminosity distribution of 36 X-ray sources in the Local Group having known or estimated distances, showing that there exists a luminosity cutoff of approximately 10 to the 37.7th ergs/sec in agreement with the theoretical (Eddington) limit for the luminosity of an approximately 1 solar mass star. Furthermore, among the complete sample of high-luminosity sources, there appears to be a statistically significant group of X-ray 'standard candles' at (within less than 0.8 mag) the critical luminosity. This finding (which is in agreement with the self-consistent mass flow accretion models) presents the possibility that X-ray sources may be used as extragalactic distance indicators in the next generation of X-ray astronomy experiments.

  20. Lessons Learned In Developing Multiple Distributed Planning Systems for the International Space Station

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.; McNair, Ann R. (Technical Monitor)

    2002-01-01

    The planning processes for the International Space Station (ISS) Program are quite complex. Detailed mission planning for ISS on-orbit operations is a distributed function. Pieces of the on-orbit plan are developed by multiple planning organizations, located around the world, based on their respective expertise and responsibilities. The "pieces" are then integrated to yield the final detailed plan that will be executed onboard the ISS. Previous space programs have not distributed the planning and scheduling functions to this extent. Major ISS planning organizations are currently located in the United States (at both the NASA Johnson Space Center (JSC) and NASA Marshall Space Flight Center (MSFC)), in Russia, in Europe, and in Japan. Software systems have been developed by each of these planning organizations to support their assigned planning and scheduling functions. Although there is some cooperative development and sharing of key software components, each planning system has been tailored to meet the unique requirements and operational environment of the facility in which it operates. However, all the systems must operate in a coordinated fashion in order to effectively and efficiently produce a single integrated plan of ISS operations, in accordance with the established planning processes. This paper addresses lessons learned during the development of these multiple distributed planning systems, from the perspective of the developer of one of the software systems. The lessons focus on the coordination required to allow the multiple systems to operate together, rather than on the problems associated with the development of any particular system. Included in the paper is a discussion of typical problems faced during the development and coordination process, such as incompatible development schedules, difficulties in defining system interfaces, technical coordination and funding for shared tools, continually evolving planning concepts/requirements, programmatic

  1. Lessons Learned in Developing Multiple Distributed Planning Systems for the International Space Station

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.

    2002-01-01

    The planning processes for the International Space Station (ISS) Program are quite complex. Detailed mission planning for ISS on-orbit operations is a distributed function. Pieces of the on-orbit plan are developed by multiple planning organizations, located around the world, based on their respective expertise and responsibilities. The pieces are then integrated to yield the final detailed plan that will be executed onboard the ISS. Previous space programs have not distributed the planning and scheduling functions to this extent. Major ISS planning organizations are currently located in the United States (at both the NASA Johnson Space Center (JSC) and NASA Marshall Space Flight Center (MSFC)), in Russia, in Europe, and in Japan. Software systems have been developed by each of these planning organizations to support their assigned planning and scheduling functions. Although there is some cooperative development and sharing of key software components, each planning system has been tailored to meet the unique requirements and operational environment of the facility in which it operates. However, all the systems must operate in a coordinated fashion in order to effectively and efficiently produce a single integrated plan of ISS operations, in accordance with the established planning processes. This paper addresses lessons learned during the development of these multiple distributed planning systems, from the perspective of the developer of one of the software systems. The lessons focus on the coordination required to allow the multiple systems to operate together, rather than on the problems associated with the development of any particular system. Included in the paper is a discussion of typical problems faced during the development and coordination process, such as incompatible development schedules, difficulties in defining system interfaces, technical coordination and funding for shared tools, continually evolving planning concepts/requirements, programmatic and

  2. Calibration of a Physically-Based Semi-Distributed Hydrologic Model: The Importance of Internal Justification

    NASA Astrophysics Data System (ADS)

    Tasdighi, A.; Arabi, M.

    2014-12-01

    Calibration of physically-based distributed hydrologic models has always been a challenging task and subject of controversy in the literature. This study is aimed to investigate how different physiographic characteristics of watersheds call for adaption of the methods used in order to have more robust and internally justifiable simulations. Haw Watershed (1300 sq. mi.) is located in the piedmont region of North Carolina draining into B. Everett Jordan Lake located in west of Raleigh. Major land covers in this watershed are forest (50%), urban/suburban (21%) and agriculture (25%) of which a large portion is pasture. Different hydrologic behaviors are observed in this watershed based on the land use composition and size of the sub-watersheds. Highly urbanized sub-watersheds show flashier hydrographs and near instantaneous hydrologic responses. This is also the case with smaller sub-watersheds with relatively lower percentage of urban areas. The Soil and Water Assessment Tool (SWAT) has been widely used in the literature for hydrologic simulation on daily basis using Soil Conservation Service Curve Number method (SCS CN). However, it has not been used as frequently using the sub-daily routines. In this regard there are a number of studies in the literature which have used coarse time scale (daily) precipitation with methods like SCS CN to calibrate SWAT for watersheds containing different types of land uses and soils reporting satisfying results at the outlet of the watershed. This is while for physically-based distributed models, the more important concern should be to check and analyze the internal processes leading to those results. In this study, the watershed is divided into several sub-watersheds to compare the performance of SCS CN and Green & Ampt (GA) methods on different land uses at different spatial scales. The results suggest better performance of GA compared to SCS CN for smaller and highly urbanized sub-watersheds although GA predominance is not very

  3. Size dependence of the radio-luminosity-mechanical-power correlation in radio galaxies

    SciTech Connect

    Shabala, S. S.; Godfrey, L. E. H.

    2013-06-01

    We examine the relationship between source radio luminosity and kinetic power in active galactic nucleus jets. We show that neglecting various loss processes can introduce a systematic bias in the jet powers inferred from radio luminosities for a sample of radio galaxies. This bias can be corrected for by considering source size as well as radio luminosity; effectively the source size acts as a proxy for source age. Based on a sample of Fanaroff-Riley Type II radio sources with jet powers derived from the measured hotspot parameters, we empirically determine a new expression for jet power that accounts for the source size, (Q{sub jet}/10{sup 36} W)=1.5{sub −0.8}{sup +1.8}(L{sub 151}/10{sup 27} W Hz{sup −1}){sup 0.8}(1+z){sup 1.0}(D/kpc){sup 0.58±0.17}, where D is source size and L {sub 151} the 151 MHz radio luminosity. By comparing a flux-limited and volume-limited sample, we show that any derived radio-luminosity-jet-power relation depends sensitively on sample properties, in particular the source size distribution and the size-luminosity correlation inherent in the sample. Such bias will affect the accuracy of the kinetic luminosity function derived from lobe radio luminosities and should be treated with caution.

  4. Results From the DAFNE High Luminosity Test

    SciTech Connect

    Milardi, C.; Alesini, D.; Biagini, M.E.; Boni, R.; Boscolo, M.; Bossi, F.; Buonomo, B.; Clozza, A.; Delle Monache, G.; Demma, T.; Di Pasquale, E.; Di Pirro, G.; Drago, A.; Gallo, A.; Ghigo, A.; Guiducci, S.; Ligi, C.; Marcellini, F.; Mazzitelli, G.; Murtas, F.; Pellegrino, L.; /Frascati /Novosibirsk, IYF /CERN /INFN, Cosenza /INFN, Rome /KEK, Tsukuba /Orsay, LAL /Rome U. /Pisa U. /INFN, Pisa /INFN, Rome3 /SLAC

    2012-04-11

    The DAPHNE collider, based on a new collision scheme including Large Piwinsky angle and Crab-Waist, has been successfully commissioned and is presently delivering luminosity to the SIDDHARTA detector. Large crossing angle and Crab-Waist scheme proved to be effective in: (1) Increasing luminosity, now a factor 2.7 higher than in the past; and (2) controlling transverse beam blow-up due to the beam-beam. Work is in progress to reach the ultimate design luminosity goal 5.0 {center_dot} 10{sup 32} cm{sup -2}s{sup -1}. The new collision scheme is the main design concept for a new project aimed at building a Super-B factory that is expected to achieve a luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1} and it has been also taken into account to upgrade one of the LHC interaction regions.

  5. Fitting the luminosity decay in the Tevatron

    SciTech Connect

    McCrory, E.; Shiltsev, V.; Slaughter, A.J.; Xiao, A.; /Fermilab

    2005-05-01

    This paper explores how to fit the decay of the luminosity in the Tevatron. The standard assumptions of a fixed-lifetime exponential decay are only appropriate for very short time intervals. A ''1/time'' functional form fits well, and is supported by analytical derivations. A more complex form, assuming a time-varying lifetime-like term, also produces good results. Changes in the luminosity can be factored into two phenomena: The luminosity burn-off rate, and the burn-off rate from non-luminosity effects. This is particularly relevant for the antiprotons in the Tevatron. The luminous and the non-luminous burn rate of the antiprotons are shown for Tevatron stores.

  6. The relationship of internalized racism to body fat distribution and insulin resistance among African adolescent youth.

    PubMed Central

    Chambers, Earle C.; Tull, Eugene S.; Fraser, Henry S.; Mutunhu, Nyasha R.; Sobers, Natasha; Niles, Elisa

    2004-01-01

    This study examined the relationship of internalized racism (INR) and hostility to body fat distribution and insulin resistance in black adolescent children age 14-16 years on the Caribbean island of Barbados. Questionnaire data on psychosocial variables and anthropometric measurements, together with a fasting blood sample, were obtained from 53 low-birthweight and 119 normal-birthweight adolescents. Insulin resistance was calculated using the homeostasis model assessment (HOMA). Spearman correlation analyses showed that both INR (r = 0.244) and hostility (r = 0.204) were significantly (p < 0.05) correlated with waist circumference in girls but not boys. Among girls, age- and birthweight-adjusted mean levels of BMI and waist circumference were greater for those with high levels of INR and hostility compared to those with low levels of both variables. In multiple logistic regression analyses, a high INR remained independently associated [odds ratio = 3.30 (95% CI = 1.30-8.36); p = 0.012] with having an elevated HOMA value in models that included age, income, birthweight, hostility, physical activity and family history of diabetes. The results of the current study show that the positive relationship between INR and metabolic health risk seen in African-Caribbean adults also exists in African Caribbean adolescent youth independent of birthweight. PMID:15622689

  7. Evolution of the solar luminosity during solar cycle 23

    NASA Astrophysics Data System (ADS)

    Vieira, L. A.; Schrijver, C.; DeRosa, M. L.; Norton, A.; Dudok de Wit, T.; Da Silva, L.; Vuets, A.

    2012-12-01

    The effect of the solar activity on the solar luminosity, which is the total electromagnetic solar output, is one of the fundamental questions in solar physics. Changes of the solar luminosity can arise from changes of the energy flux in the convection zone that can also affects other solar parameters such as the surface temperature, the apparent radius and shape, and the symmetry of the radiative field itself. Additionally, understanding the latitudinal distribution of the flux density is needed to compare the solar variability and its stellar analogues. Nevertheless, our observations of the solar flux density are limited to a region near the ecliptic plane, which have provided just a raw estimate of the variability of the solar luminosity. Here we present a reconstruction of the solar flux density and solar luminosity for the solar cycle 23 and ascending phase of cycle 24. The reconstruction is based on a combination of a state-of-art solar surface magnetic flux transport model and a semi-empirical total and spectral irradiance model. The flux transport model is based on assimilation of MDI/SOHO and HMI/SDO magnetograms. The irradiance model's free parameters are estimated by minimizing the difference between the model's output and the PMOD Composite of TSI measurements. We have obtained a good agreement between the model's output and the measurements. The distribution of active regions leads to a clear low latitude brightening during the solar maximum. This brightening results from the balance of the contributions from bright (faculae and network) and dark features (sunspots) located in the solar surface, which peaks near the solar equator. As the effects of dark features are limited to a narrower region, the variability of the flux density at the poles is dominated by the evolution of faculae and network. The preliminary results indicate that the heat flux blocked by sunspots is lower than the flux leaked by bright features. Consequently, an increase of the

  8. Evidence of an infrared luminosity indicator for galaxies

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Isobe, Takashi; Weedman, Daniel W.

    1987-01-01

    To elucidate the nature of infrared-luminous galaxies discovered with the IRAS satellite, the optical and infrared luminosities of 1161 Markarian galaxies and 2146 'normal' galaxies from the CfA redshift survey are compared. Survival analysis statistical methods that take upper limits fully into account are used. It is found that L(IR)/L(B) is statistically correlated with L(60) in both samples, though they differ in the distribution at low luminosities. The derived correlation shows that L(IR)/L(B) provides an indicator for L(60). Since galaxies selected in unbiased IRAS surveys will have higher L(IR)/L(B) than optically selected galaxies, they are therefore also selected for high L(60).

  9. MASSIVE BLACK HOLES IN STELLAR SYSTEMS: 'QUIESCENT' ACCRETION AND LUMINOSITY

    SciTech Connect

    Volonteri, M.; Campbell, D.; Mateo, M.; Dotti, M.

    2011-04-01

    Only a small fraction of local galaxies harbor an accreting black hole, classified as an active galactic nucleus. However, many stellar systems are plausibly expected to host black holes, from globular clusters to nuclear star clusters, to massive galaxies. The mere presence of stars in the vicinity of a black hole provides a source of fuel via mass loss of evolved stars. In this paper, we assess the expected luminosities of black holes embedded in stellar systems of different sizes and properties, spanning a large range of masses. We model the distribution of stars and derive the amount of gas available to a central black hole through a geometrical model. We estimate the luminosity of the black holes under simple, but physically grounded, assumptions on the accretion flow. Finally, we discuss the detectability of 'quiescent' black holes in the local universe.

  10. The luminosity of Population III star clusters

    NASA Astrophysics Data System (ADS)

    DeSouza, Alexander L.; Basu, Shantanu

    2015-06-01

    We analyse the time evolution of the luminosity of a cluster of Population III protostars formed in the early Universe. We argue from the Jeans criterion that primordial gas can collapse to form a cluster of first stars that evolve relatively independently of one another (i.e. with negligible gravitational interaction). We model the collapse of individual protostellar clumps using non-axisymmetric numerical hydrodynamics simulations. Each collapse produces a protostar surrounded by a massive disc (i.e. Mdisc /M* ≳ 0.1), whose evolution we follow for a further 30-40 kyr. Gravitational instabilities result in the fragmentation and the formation of gravitationally bound clumps within the disc. The accretion of these fragments by the host protostar produces accretion and luminosity bursts on the order of 106 L⊙. Within the cluster, we show that a simultaneity of such events across several protostellar cluster members can elevate the cluster luminosity to 5-10 times greater than expected, and that the cluster spends ˜15 per cent of its star-forming history at these levels. This enhanced luminosity effect is particularly enabled in clusters of modest size with ≃10-20 members. In one such instance, we identify a confluence of burst events that raise the luminosity to nearly 1000 times greater than the cluster mean luminosity, resulting in L > 108 L⊙. This phenomenon arises solely through the gravitational-instability-driven episodic fragmentation and accretion that characterizes this early stage of protostellar evolution.

  11. The X-ray luminosity function of very rich clusters and the luminosity-richness relation

    NASA Technical Reports Server (NTRS)

    Soltan, A.; Henry, J. P.

    1983-01-01

    For a sample of galactic clusters that includes richness class three, four, and five clusters, the significance of the luminosity-richness relation is estimated using nonparametric methods which are valid for any luminosity function. The Kolmogorov-Smirnov test is used to determine the significance at which the X-ray luminosities of clusters in one richness class are statistically equal to those in another. The a priori expectation that the high richness clusters are more luminous on average than lower richness objects is confirmed, but it is found that the luminosity function for clusters of richness class three or higher turns over for luminosities less than about 3 x 10 to the 44th ergs/s, while that for lower richness classes extends to at least an order of magnitude lower luminosity.

  12. Performance of a bicone inlet designed for Mach 2.5 with internal distributed compression and 40 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Wasserbauer, J. F.; Choby, D. A.

    1972-01-01

    The inlet was designed to have the minimum internal contraction consistent with high total-pressure recovery and low cowl drag. Without a bypass system, the peak pressure recoveries increased from 0.890 to 0.936 when the supercritical bleed mass flow ratio was varied from 0.035 to 0.060. With an operating bypass system and installed centerbody vortex generators, a slight increase in peak pressure recovery was obtained. The values of steady-state distortion and dynamic distortion were below 0.10 and 0.02, respectively, near critical operation. Simulation of a turbofan engine with concentric pipes showed no effect on compressor face flow profiles with varying bypass flow ratio.

  13. Operational results from the LHC luminosity monitors

    SciTech Connect

    Miyamoto, R.; Ratti, A.; Matis, H.S.; Stezelberger, T.; Turner, W.C.; Yaver, H.; Bravin, E.

    2011-03-28

    The luminosity monitors for the high luminosity regions in the LHC have been operating to monitor and optimize the luminosity since 2009. The device is a gas ionization chamber inside the neutral particle absorber 140 m from the interaction point and monitors showers produced by high energy neutral particles from the collisions. It has the ability to resolve the bunch-by-bunch luminosity as well as to survive the extreme level of radiation in the nominal LHC operation. We present operational results of the device during proton and lead ion operations in 2010 and make comparisons with measurements of experiments. The Large Hadron Collider (LHC) at CERN can accelerate proton and lead ion beams to 7 TeV and 547 TeV and produce collisions of these particles. Luminosity measures performance of the LHC and is particularly important for experiments in high luminosity interaction points (IPs), ATLAS (IP1) and CMS (IP5). To monitor and optimize the luminosities of these IPs, BRAN (Beam RAte Neutral) detectors [1, 2] have been installed and operating since the beginning of the 2009 operation [3]. A neutral particle absorber (TAN) protects the D2 separation dipole from high energy forward neutral particles produced in the collisions [4]. These neutral particles produce electromagnetic and hadronic showers inside the TAN and their energy flux is proportional to the collision rate and hence to the luminosity. The BRAN detector is an Argon gas ionization chamber installed inside the TANs on both sides of the IP1 and IP5 and monitors the relative changes in the luminosity by detecting the ionization due to these showers. When the number of collisions per bunch crossing (multiplicity) is small, the shower rate inside the TAN is also proportional to the luminosity. Hence, the detector is designed to operate by measuring either the shower rate (counting mode for low and intermediate luminosities) or the average shower flux (pulse height mode for high luminosities). The detector is

  14. The Environmental Dependence of the Galaxy Luminosity Function in the ECO Survey

    NASA Astrophysics Data System (ADS)

    Andrews, Hayley; Andreas A. Berlind, Victor Calderon, Kathleen D. Eckert, Sheila J. Kannappan, Amanda J. Moffett, David V. Stark

    2016-01-01

    We study the environmental dependence of the galaxy luminosity function in the ECO survey and compare it with models that associate galaxies with dark matter halos. Specifically, we quantify the environment of each galaxy in the ECO survey using an Nth nearest neighbor distance metric, and we measure how the galaxy luminosity distribution varies from low density to high density environments. As expected, we find that luminous galaxies preferentially populate high density regions, while low luminosity galaxies preferentially populate lower density environments. We investigate whether this trend can be explained simply by the correlation of galaxy luminosity and dark matter halo mass combined with the environmental dependence of the halo mass function. In other words, we test the hypothesis that the luminosity of a galaxy depends solely on the mass of its dark matter halo and does not exhibit a residual dependence on the halo's larger environment. To test this hypothesis, we first construct mock ECO catalogs by populating dark matter halos in an N-body simulation with galaxies using a model that preserves the overall clustering strength of the galaxy population. We then assign luminosities to the mock galaxies using physically motivated models that connect luminosity to halo mass and are constrained to match the global ECO luminosity function. Finally, we impose the radial and angular selection functions of the ECO survey and repeat our environmental analysis on the mock catalogs. Though our mock catalog luminosity functions display similar qualitative trends as those from the ECO data, the trends are not in agreement quantitatively. Our results thus suggest that the simple models used to build the mocks are incomplete and that galaxy luminosity is possibly correlated with the larger scale density field.

  15. RADIATIVE TRANSFER MODELING OF Ly{alpha} EMITTERS. I. STATISTICS OF SPECTRA AND LUMINOSITY

    SciTech Connect

    Zheng Zheng; Cen Renyue; Trac, Hy; Miralda-Escude, Jordi

    2010-06-10

    We combine a cosmological reionization simulation with box size of 100 h {sup -1} Mpc on a side and a Monte Carlo Ly{alpha} radiative transfer code to model Ly{alpha} Emitters (LAEs) at z {approx} 5.7. The model introduces Ly{alpha} radiative transfer as the single factor for transforming the intrinsic Ly{alpha} emission properties into the observed ones. Spatial diffusion of Ly{alpha} photons from radiative transfer results in extended Ly{alpha} emission and only the central part with high surface brightness can be observed. Because of radiative transfer, the appearance of LAEs depends on density and velocity structures in circumgalactic and intergalactic media as well as the viewing angle, which leads to a broad distribution of apparent (observed) Ly{alpha} luminosity for a given intrinsic Ly{alpha} luminosity. Radiative transfer also causes frequency diffusion of Ly{alpha} photons. The resultant Ly{alpha} line is asymmetric with a red tail. The peak of the Ly{alpha} line shifts toward longer wavelength and the shift is anti-correlated with the apparent-to-intrinsic Ly{alpha} luminosity ratio. The simple radiative transfer model provides a new framework for studying LAEs. It is able to explain an array of observed properties of z {approx} 5.7 LAEs in Ouchi et al., producing Ly{alpha} spectra, morphology, and apparent Ly{alpha} luminosity function (LF) similar to those seen in observation. The broad distribution of apparent Ly{alpha} luminosity at fixed UV luminosity provides a natural explanation for the observed UV LF, especially the turnover toward the low luminosity end. The model also reproduces the observed distribution of Ly{alpha} equivalent width (EW) and explains the deficit of UV bright, high EW sources. Because of the broad distribution of the apparent-to-intrinsic Ly{alpha} luminosity ratio, the model predicts effective duty cycles and Ly{alpha} escape fractions for LAEs.

  16. A luminosity model of RHIC gold runs

    SciTech Connect

    Zhang, S.Y.

    2011-11-01

    In this note, we present a luminosity model for RHIC gold runs. The model is applied to the physics fills in 2007 run without cooling, and with the longitudinal cooling applied to one beam only. Having good comparison, the model is used to project a fill with the longitudinal cooling applied to both beams. Further development and possible applications of the model are discussed. To maximize the integrated luminosity, usually the higher beam intensity, smaller longitudinal and transverse emittance, and smaller {beta} are the directions to work on. In past 10 years, the RHIC gold runs have demonstrated a path toward this goal. Most recently, a successful commissioning of the bunched beam stochastic cooling, both longitudinal and transverse, has offered a chance of further RHIC luminosity improvement. With so many factors involved, a luminosity model would be useful to identify and project gains in the machine development. In this article, a preliminary model is proposed. In Section 2, several secondary factors, which are not yet included in the model, are identified based on the RHIC operation condition and experience in current runs. In Section 3, the RHIC beam store parameters used in the model are listed, and validated. In Section 4, the factors included in the model are discussed, and the luminosity model is presented. In Section 5, typical RHIC gold fills without cooling, and with partial cooling are used for comparison with the model. Then a projection of fills with more coolings is shown. In Section 6, further development of the model is discussed.

  17. Disc outflows and high-luminosity true type 2 AGN

    NASA Astrophysics Data System (ADS)

    Elitzur, Moshe; Netzer, Hagai

    2016-06-01

    The absence of intrinsic broad-line emission has been reported in a number of active galactic nuclei (AGN), including some with high Eddington ratios. Such `true type 2 AGN' are inherent to the disc-wind scenario for the broad-line region: broad-line emission requires a minimal column density, implying a minimal outflow rate and thus a minimal accretion rate. Here we perform a detailed analysis of the consequences of mass conservation in the process of accretion through a central disc. The resulting constraints on luminosity are consistent with all the cases where claimed detections of true type 2 AGN pass stringent criteria, and predict that intrinsic broad-line emission can disappear at luminosities as high as ˜4 × 1046 erg s-1 and any Eddington ratio, though more detections can be expected at Eddington ratios below ˜1 per cent. Our results are applicable to every disc outflow model, whatever its details and whether clumpy or smooth, irrespective of the wind structure and its underlying dynamics. While other factors, such as changes in spectral energy distribution or covering factor, can affect the intensities of broad emission lines, within this scenario they can only produce true type 2 AGN of higher luminosity then those prescribed by mass conservation.

  18. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    SciTech Connect

    Schwarz, Kamber R.; Shirley, Yancy L.; Dunham, Michael M.

    2012-10-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L{sub int} {<=} 0.1 L{sub Sun }). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D < 400 pc) star-forming regions. Each object was observed in {sup 12}CO and {sup 13}CO J = 2 {yields} 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  19. Liners and Low Luminosity AGN in the ROSAT Database

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; West, Donald K. (Technical Monitor)

    2003-01-01

    This program has led to a series of papers being written and published in the Astrophysical Journal. Together these papers try to explain major parts of the LINER and low luminosity AGN puzzle. One paper ('Accretion Disk Instabilities, Cold Dark Matter Models, and Their Role in Quasar Evolution', Hatziminaoglou E., Siemiginowska A., & Elvis M., 2001, ApJ, 547, 90) describes an analytical model for the evolution of the quasar luminosity function. By combining the Press-Schechter formalism for the masses of initial structures with the luminosity distribution for a population of single mass black holes given by an unstable accretion disk an almost complete end-to-end physics-based model of quasar evolution is produced. In this model black holes spend 75% of their time in a low accretion state (at L(Edd)). This low state population of black holes is likely to be observed as the LINER and low luminosity AGNs in the local universe. Another paper ('Broad Emission Line Regions in AGN: the Link with the Accretion Power', Nicastro F., 2000, ApJ Letters, 530, L65) gives a physical basis for why low state black holes appear as LINERS. By linking the Lightman-Eardley instability in an accretion disk to the ori.gin of a wind that contains the broad emission line cloud material this model explains the large widths seen in these lines as being the Keplerian velocity of the disk at the instability radius. For LINERS the key is that below an accretion rate of 10(exp -3)M(sub Edd)the Lightman-Eardley instability falls within the innermost stable orbit of the disk, and so leaves the entire disk stable. No wind occurs, and so no broad emission lines are seen. Most LINERS are likely to be black holes in this low state. Tests of this model are being considered.

  20. Radio luminosity function of brightest cluster galaxies

    NASA Astrophysics Data System (ADS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2016-08-01

    By cross-matching the currently largest optical catalogue of galaxy clusters and the NVSS radio survey data base, we obtain a large complete sample of brightest cluster galaxies (BCGs) in the redshift range of 0.05 < z ≤ 0.45, which have radio emission and redshift information. We confirm that more powerful radio BCGs tend to be these optically very bright galaxies located in more relaxed clusters. We derived the radio luminosity functions of the largest sample of radio BCGs, and find that the functions depend on the optical luminosity of BCGs and the dynamic state of galaxy clusters. However, the radio luminosity function does not show significant evolution with redshift.

  1. Stellar luminosity variations and global warming.

    PubMed

    Foukal, P

    1994-04-01

    Recent studies indicate that variation in the sun's luminosity is less than that observed in many other stars of similar magnetic activity. Current findings also indicate that in more active stars, the attenuation by faculae of sunspot luminosity modulation is less effective than in the sun at present. The sun could thus become photometrically more variable (and dimmer) if its magnetic activity exceeded present levels. But the levels of solar activity required for this to occur are not observed in carbon-14 and beryllium-10 records over the past several millennia, which indicates that such an increase in amplitude of surface magnetism-driven variations in solar luminosity is unlikely in the present epoch. PMID:17749020

  2. Distribution functions for internal interface energy as a characteristic of submicrocrystalline copper structure evolution under low-temperature annealing

    NASA Astrophysics Data System (ADS)

    Kuznetsov, P.; Rakhmatulina, T.; Koznikov, A.; Belyaeva, I.

    2015-10-01

    Submicrocrystalline structure of 99.99% pure copper produced by equal channel angular pressing was under investigation. After deformation the samples were subjected to low-temperature annealing. Grain and subgrain structure was studied by scanning tunnel microscopy. Internal interface energy was estimated using the method based on measurement of dihedral angles (ψ) of the boundary grooves formed by electrochemical etching. Analysis of the differential and cumulative distribution functions for relative grain boundary energy enabled to qualitatively evaluate energy redistribution between the boundaries of different types and internal bulk crystallites and to study evolution of submicrocrystalline structure under low-temperature annealing.

  3. The luminosity of galactic components and morphological segregation

    SciTech Connect

    Solanes, J. M.; Salvador-Sole, E.; Sanroma, M.; I.E.C., Barcelona )

    1989-09-01

    The luminosities of the bulge and disk components of disk galaxies are analyzed, and the possible correlation of these luminosities with morphological type and local density is explored. Galaxies of different types are found to be located in distinct bands in the bulge-to-disk luminosity ratio vs total luminosity diagram, allowing the determination of the typical bulge luminosity function of disk galaxies of different types from their respective total luminosity functions, along with a better characterization of morphological segregation among disk galaxies. No evidence for any bulge luminosity segregation is found, and disks appear to be less luminous with increasing local density. 33 refs.

  4. Internal electric-field-lines distribution in CdZnTe detectors measured using X-ray mapping

    SciTech Connect

    Bolotnikov,A.E.; , .; Camarda, G.S.; Cui, Y.; Hossain, A.; Yang, G.; Yao, H.W.; James, R.B.

    2009-10-19

    The ideal operation of CdZnTe devices entails having a uniformly distributed internal electric field. Such uniformity especially is critical for thick long-drift-length detectors, such as large-volume CPG and 3-D multi-pixel devices. Using a high-spatial resolution X-ray mapping technique, we investigated the distribution of the electric field in real devices. Our measurements demonstrate that in thin detectors, <5 mm, the electric field-lines tend to bend away from the side surfaces (i.e., a focusing effect). In thick detectors, >1 cm, with a large aspect ratio (thickness-to-width ratio), we observed two effects: the electric field lines bending away from or towards the side surfaces, which we called, respectively, the focusing field-line distribution and the defocusing field-line distribution. In addition to these large-scale variations, the field-line distributions were locally perturbed by the presence of extended defects and residual strains existing inside the crystals. We present our data clearly demonstrating the non-uniformity of the internal electric field.

  5. Internal electric-field-lines distribution in CdZnTe detectors measured using X-ray mapping

    SciTech Connect

    Bolotnikov,A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Yang, G.; Yao, H.W.; James, R.B.

    2008-06-01

    The ideal operation of CdZnTe devices entails having a uniformly distributed internal electric field. Such uniformity especially is critical for thick long-drift-length detectors, such as large-volume CPG and 3-D multi-pixel devices. Using a high-spatial resolution X-ray mapping technique, we investigated the distribution of the electric field in real devices. Our measurements demonstrate that in thin detectors, <5 mm, the electric field-lines tend to bend away from the side surfaces (i.e., a focusing effect). In thick detectors, 21 cm, with a large aspect ratio (thickness-to-width ratio), we observed two effects: the electric field lines bending away from or towards the side surfaces, which we called, respectively, the focusing field-line distribution and the defocusing field-line distribution. In addition to these large-scale variations, the field-line distributions were locally perturbed by the presence of extended defects and residual strains existing inside the crystals. We present our data clearly demonstrating the non-uniformity of the internal electric field.

  6. 3D simulation on the internal distributed properties of lithium-ion battery with planar tabbed configuration

    NASA Astrophysics Data System (ADS)

    Li, Jie; Cheng, Yun; Ai, Lihua; Jia, Ming; Du, Shuanglong; Yin, Baohua; Woo, Stanley; Zhang, Hongliang

    2015-10-01

    The internal distributed physicochemical characteristics of a battery significantly affect its performance. However, these properties are difficult to measure experimentally. This study presents a validated three-dimensional (3D) battery model covering the conservation of charge, mass, and energy and the electrochemical reaction of a laminated 10 Ah lithium iron phosphate battery. Using this 3D battery model, the space and time distributions of the internal physicochemical properties of the battery are investigated. The results indicate that the maximum gradients of the properties are at the transition region between the tabs and electrode plates. Thus, the tabs in a battery should be reasonably designed. For this LiFePO4/Graphite battery, anode plays a more important role than cathode in the overall overpotential and is likely to be crucial in the sharp decrease of output voltage at the later discharge process. And a higher battery capacity can be obtained by increasing the amount of anode material.

  7. Field Survey of Internal Overvoltages caused by Breaker Switching in Residential Low-Voltage Distribution Circuits

    NASA Astrophysics Data System (ADS)

    Mashimo, Satoshi; Ogawa, Takumi; Nozawa, Haruki; Ushigome, Fumio; Hayashi, Akira; Oka, Keisuke

    Periodical inspections are normally made on indoor low-voltage distribution circuits once every four years in Japan in compliance with the Electricity Utilities Industry Law. Switching of circuit breakers in distribution panels is necessary to verify electrical safety of indoor low-voltage distribution circuits. Items tested include insulation resistance. Failure of household electrical appliances during the switching operation of circuit breakers is very rare. The main cause is considered to be switching surges. However, the reason and mechanism of failures have not been clarified. We conducted an investigation into actual conditions of switching surges in indoor low-voltage distribution systems. This paper presents the investigation results.

  8. Distribution of heavy metals in muscles and internal organs of Korean cephalopods and crustaceans: risk assessment for human health.

    PubMed

    Mok, Jong Soo; Kwon, Ji Young; Son, Kwang Tae; Choi, Woo Seok; Shim, Kil Bo; Lee, Tae Seek; Kim, Ji Hoe

    2014-12-01

    Samples of seven species of cephalopods and crustaceans were collected from major fish markets on the Korean coast and analyzed for mercury (Hg) using a direct Hg analyzer and for the metals cadmium (Cd), lead (Pb), chromium, silver, nickel, copper, and zinc using inductively coupled plasma mass spectrometry. The distributions of heavy metals in muscles, internal organs, and whole tissues were determined, and a risk assessment was conducted to provide information concerning consumer safety. The heavy metals accumulated to higher levels (P < 0.05) in internal organs than in muscles for all species. The mean concentrations of Cd, which had the highest concentrations of the three hazardous metals (Cd, Pb, and Hg), in all internal organs (except those of blue crab) exceeded the regulatory limits set by Korea and the European Union. The Cd concentrations in all whole tissues of squid and octopus (relatively large cephalopods), red snow crab, and snow crab exceeded the European Union limits. The estimated dietary intake of Cd, Pb, and Hg for each part of all species accounted for 1.73 to 130.57%, 0.03 to 0.39%, and 0.93 to 1.67%, respectively, of the provisional tolerable daily intake adopted by the Joint Food and Agriculture Organization and World Health Organization Expert Committee on Food Additives; the highest values were found in internal organs. The hazard index (HI) is recognized as a reasonable parameter for assessing the risk of heavy metal consumption associated with contaminated food. Because of the high HI (>1.0) of the internal organs of cephalopods and the maximum HI for whole tissue of 0.424, consumers eating internal organs or whole tissues of cephalopods could be at risk of high heavy metal exposure. Therefore, the internal organs of relatively large cephalopods and crabs (except blue crab) are unfit for consumption. However, consumption of flesh after removing internal organs is a suitable approach for decreasing exposure to harmful metals. PMID

  9. Summary of symposium: Low luminosity sources

    NASA Technical Reports Server (NTRS)

    Shu, Frank H.

    1987-01-01

    The author summarized certain aspects of the conference. He shares this task with another colleague thereby breaking the task into more manageable proportions. The author covers the low luminosity sources. He begins his review with a summary of some major themes of the conference and ends with a few speculations on possible theoretical mechanisms.

  10. RHIC Proton Luminosity and Polarization Improvement

    SciTech Connect

    Zhang, S. Y.

    2014-01-17

    The RHIC proton beam polarization can be improved by raising the Booster scraping, which also helps to reduce the RHIC transverse emittance, and therefore to improve the luminosity. By doing this, the beam-beam effect would be enhanced. Currently, the RHIC working point is constrained between 2/3 and 7/10, the 2/3 resonance would affect intensity and luminosity lifetime, and the working point close to 7/10 would enhance polarization decay in store. Run 2013 shows that average polarization decay is merely 1.8% in 8 hours, and most fills have the luminosity lifetime better than 14 hours, which is not a problem. Therefore, even without beam-beam correction, there is room to improve for RHIC polarization and luminosity. The key to push the Booster scraping is to raise the Booster input intensity; for that, two approaches can be used. The first is to extend the LINAC tank 9 pulse width, which has been successfully applied in run 2006. The second is to raise the source temperature, which has been successfully applied in run 2006 and run 2012.

  11. Tevatron Experimental Issues at High Luminosities

    SciTech Connect

    Kreps, Michal; CDF, for the; collaborations, D0

    2009-12-01

    In this paper we describe the detector components, triggers and analysis techniques for flavor physics at the Tevatron experiments CDF and D0. As Tevatron performs very well and runs at higher luminosities regularly we also touch issues related to it and efforts to improve detectors and triggers for such running.

  12. Fermilab Recycler Stochastic Cooling for Luminosity Production

    SciTech Connect

    Broemmelsiek, D.; Gattuso, C.

    2006-03-20

    The Fermilab Recycler began regularly delivering antiprotons for Tevatron luminosity operations in 2005. Methods for tuning the Recycler stochastic cooling system are presented. The unique conditions and resulting procedures for minimizing the longitudinal phase space density of the Recycler antiproton beam are outlined.

  13. High frequency (hourly) variation in vertical distribution and abundance of meroplanktonic larvae in nearshore waters during strong internal tidal forcing

    NASA Astrophysics Data System (ADS)

    Liévana MacTavish, A.; Ladah, L. B.; Lavín, M. F.; Filonov, A.; Tapia, Fabian J.; Leichter, J.

    2016-04-01

    We related the vertical distribution and abundance of nearshore meroplankton at hourly time scales with internal tidal wave events. We proposed that significant changes in plankter abundance would occur across internal tidal fronts, and that surface and bottom strata would respond in opposite fashions. First-mode internal tidal bores propagating in the alongshore direction were detected in water-column currents and baroclinic temperature changes. Surface and bottom currents always flowed in opposite directions, and abrupt flow reversals coincided with large temperature changes during arrival of bores. Crab zoeae and barnacle cyprids were more abundant in the bottom strata, whereas barnacle nauplii showed the opposite pattern. Significant changes in vertical distribution and abundance of target meroplankters occurred across internal tidal fronts, especially for crabs at depth, with surface and bottom organisms responding in opposite fashions. Changes in plankter abundance were significantly correlated with current flows in the strata where they were most abundant. The manner in which plankters were affected (increasing or decreasing abundance) appeared to be modulated by their vertical position within the water column. The significant differences found at the high frequencies of this study, maintained across sampling days, suggest that nearshore meroplankton populations may have greater and more consistent temporal and vertical variability than previously considered.

  14. The Luminosity Function of QSO Host Galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.

  15. Luminosity of initial breakdown in lightning

    NASA Astrophysics Data System (ADS)

    Stolzenburg, M.; Marshall, T. C.; Karunarathne, S.; Karunarathna, N.; Vickers, L. E.; Warner, T. A.; Orville, R. E.; Betz, H.-D.

    2013-04-01

    Time correlated high-speed video and electromagnetic data for 15 cloud-to-ground and intracloud lightning flashes reveal bursts of light, bright enough to be seen through intervening cloud, during the initial breakdown (IB) stage and within the first 3 ms after flash initiation. Each sudden increase in luminosity is coincident with a CG type (12 cases) or an IC type (3 cases) IB pulse in fast electric field change records. The E-change data for 217 flashes indicate that all CG and IC flashes have IB pulses. The luminosity bursts of 14 negative CG flashes occur 11-340 ms before the first return stroke, at altitudes of 4-8 km, and at 4-41 km range from the camera. In seven cases, linear segments visibly advance away from the first light burst for 55-200 µs, then the entire length dims, then the luminosity sequence repeats along the same path. These visible initial leaders or streamers lengthen intermittently to about 300-1500 m. Their estimated 2-D speeds are 4-18 × 105 m s-1 over the first few hundred microseconds and decrease by about 50% over the first 2 ms. In other cases, only a bright spot or a broad area of diffuse light, presumably scattered by intervening cloud, is visible. The bright area grows larger over 20-60 µs before the luminosity fades in about 100 µs, then this sequence may repeat several times. In several flashes, a 1-2 ms period of little or no luminosity and small E-change is observed following the IB stage prior to stepped leader development.

  16. A Solar-luminosity Model and Climate

    NASA Technical Reports Server (NTRS)

    Perry, Charles A.

    1990-01-01

    Although the mechanisms of climatic change are not completely understood, the potential causes include changes in the Sun's luminosity. Solar activity in the form of sunspots, flares, proton events, and radiation fluctuations has displayed periodic tendencies. Two types of proxy climatic data that can be related to periodic solar activity are varved geologic formations and freshwater diatom deposits. A model for solar luminosity was developed by using the geometric progression of harmonic cycles that is evident in solar and geophysical data. The model assumes that variation in global energy input is a result of many periods of individual solar-luminosity variations. The 0.1-percent variation of the solar constant measured during the last sunspot cycle provided the basis for determining the amplitude of each luminosity cycle. Model output is a summation of the amplitudes of each cycle of a geometric progression of harmonic sine waves that are referenced to the 11-year average solar cycle. When the last eight cycles in Emiliani's oxygen-18 variations from deep-sea cores were standardized to the average length of glaciations during the Pleistocene (88,000 years), correlation coefficients with the model output ranged from 0.48 to 0.76. In order to calibrate the model to real time, model output was graphically compared to indirect records of glacial advances and retreats during the last 24,000 years and with sea-level rises during the Holocene. Carbon-14 production during the last millenium and elevations of the Great Salt Lake for the last 140 years demonstrate significant correlations with modeled luminosity. Major solar flares during the last 90 years match well with the time-calibrated model.

  17. 76 FR 32231 - International Business Machines (IBM), Sales and Distribution Business Unit, Global Sales...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ..., 2011 (76 FR 21033). The request for reconsideration alleges that IBM outsourced to India and China... supply computer software development and maintenance services to the Sales and Distribution Business...

  18. Mapping luminosity-redshift relationship to Lemaitre-Tolman-Bondi cosmology

    SciTech Connect

    Chung, Daniel J. H.; Romano, Antonio Enea

    2006-11-15

    We derive a direct general map from the luminosity distance D{sub L}(z) to the inhomogeneous matter distribution M(r) in the Lemaitre-Tolman-Bondi (LTB) cosmology and compute several examples. One of our examples explicitly demonstrates that it is possible to tune the LTB cosmological solution to approximately reproduce the luminosity distance curve of a flat Friedmann-Robertson-Walker universe with a cosmological constant. We also discuss how smooth matter distributions can evolve into naked singularities due to shell crossing when the inhomogeneous 'curvature' E(r) is a function which changes sign.

  19. The quasar mass-luminosity plane

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles Louis

    2010-11-01

    This thesis investigates the quasar mass-luminosity plane, as a new tool to explore the relationship between black hole mass and quasar luminosity over time. Previous techniques used quasar luminosity function and mass functions, which are one-dimensional projections of the mass-luminosity plane. The M --- L plane contains information that cannot be seen in these projections. We use 62,185 quasars from the Sloan Digital Sky Survey DR5 sample to develop several new constraints on quasar accretion. Black hole masses, based on the widths of their Hbeta, Mg II, and C IV lines and adjacent continuum luminosities, were used assuming using standard virial mass estimate scaling laws. In each redshift interval over the range 0.2 < z < 4.0, low-mass quasars reach at their Eddington luminosity, but high-mass quasars fall short, even by a factor of ten or more at 0.2 < z < 0.6. We examine several potential sources of measurement uncertainty or bias and show that none of them can account for this effect. We also show the statistical uncertainty in virial mass estimation to have an upper bound of ˜ 0.2 dex, smaller than the 0.4 dex previously reported. The maximum mass of quasars at each redshift is sharp and evolving. High-mass black holes turn off their luminous accretion at higher redshift than lower-mass black holes. Further, turnoff for quasars at any given mass is synchronized to within 0.7--3 Gyr, tighter than would be expected given the dynamics of their host galaxies. We find potential signatures of the quasar turnoff mechanism, including a dearth of high-mass quasars at low Eddington ratio, low CIV/MgII emission line ratio, and a red spectral tilt. Finally, we use these new constraints to analyze models for the evolution of individual quasars over time. We find a restricted family of tracks that lie within the M --- L plane at all redshifts, suggesting that a single, constant feedback mechanism between all supermassive black holes and their host galaxies might apply

  20. The Distribution of Talent and the Pattern and Consequences of International Trade

    ERIC Educational Resources Information Center

    Grossman, Gene M.

    2004-01-01

    The author studies the interaction between imperfect labor contracts and international trade in a setting in which workers have private information about their own abilities. When an individual's contribution to firm output can be measured accurately in some activities but not in others, the most able workers select occupations in which their pay…

  1. School Leadership for the Future: Heroic or Distributed? Translating International Discourses in Norwegian Policy Documents

    ERIC Educational Resources Information Center

    Abrahamsen, Hedvig; Aas, Marit

    2016-01-01

    School leadership as a key for school reforms has become a dominant theme in education, as demonstrated by a growing body of research during the last 15 years. Still, little attention has been paid to how changing international discourses on school leadership are translated into national public policy documents during the last decade. As such,…

  2. Extra-galactic high-energy transients: event rate density and luminosity function

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Zhang, Bing; Li, Zhuo

    2015-08-01

    Several types of extra-galactic high-energy transients have been discovered, which include high-luminosity and low-luminosity long-duration gamma-ray bursts (GRBs), short-duration GRBs, supernova shock breakouts (SBOs), and tidal disruption events (TDEs) without or with a relativistic jet. In this paper, we apply a unified method to systematically study the reshift-dependent event rate densities and luminosity functions of these extra-galactic high-energy transients. We consider star formation history as the tracer of the redshift distribution for long GRBs and SBOs. For short GRBs, we consider the compact star merger model to introduce several possible merger delay time distribution models. For TDEs, we consider the mass distribution of supermassive black holes as a function of redshift. We derive some empirical formulae for the redshift-dependent event rate density for different types of transients. Based on the observed events, we derive the local specific event rate density, ρ0,L ∝ dρ0/dL for each type of transient, which represents its luminosity function. All the transients are consistent with having a single power law luminosity function, except the high luminosity long GRBs (HL-lGRBs), whose luminosity function can be well described by a broken power law. The total event rate density for a particular transient depends on the luminosity threshold, and we obtain the following values in units of Gpc-3 yr-1: 2.82^{+0.41}_{-0.36} for HL-lGRBs above 4×1049 erg s-1 218^{+130}_{-86} for low luminosity long GRBs above 6×1046 erg s-1 3.18^{+0.88}_{-0.70}, 2.87^{+0.80}_{-0.64}, and 6.25^{+1.73}_{-1.38} above 5×1049 erg s-1 for short GRBs with three different merger delay models (Gaussian, log-normal, and power law); 2.0^{+2.6}_{-1.3}×104 above 9×1043 erg s-1 for SBOs, 3.0^{+1.0}_{-0.8}×105 for normal TDEs above 1042 erg s-1 and 6.2^{+8.2}_{-4.0} above 3×1047 erg s-1for TDE jets as discovered by Swift. Intriguingly, the global specific event rate densities

  3. Internal velocity and mass distributions in simulated clusters of galaxies for a variety of cosmogonic models

    NASA Technical Reports Server (NTRS)

    Cen, Renyue

    1994-01-01

    The mass and velocity distributions in the outskirts (0.5-3.0/h Mpc) of simulated clusters of galaxies are examined for a suite of cosmogonic models (two Omega(sub 0) = 1 and two Omega(sub 0) = 0.2 models) utilizing large-scale particle-mesh (PM) simulations. Through a series of model computations, designed to isolate the different effects, we find that both Omega(sub 0) and P(sub k) (lambda less than or = 16/h Mpc) are important to the mass distributions in clusters of galaxies. There is a correlation between power, P(sub k), and density profiles of massive clusters; more power tends to point to the direction of a stronger correlation between alpha and M(r less than 1.5/h Mpc); i.e., massive clusters being relatively extended and small mass clusters being relatively concentrated. A lower Omega(sub 0) universe tends to produce relatively concentrated massive clusters and relatively extended small mass clusters compared to their counterparts in a higher Omega(sub 0) model with the same power. Models with little (initial) small-scale power, such as the hot dark matter (HDM) model, produce more extended mass distributions than the isothermal distribution for most of the mass clusters. But the cold dark matter (CDM) models show mass distributions of most of the clusters more concentrated than the isothermal distribution. X-ray and gravitational lensing observations are beginning providing useful information on the mass distribution in and around clusters; some interesting constraints on Omega(sub 0) and/or the (initial) power of the density fluctuations on scales lambda less than or = 16/h Mpc (where linear extrapolation is invalid) can be obtained when larger observational data sets, such as the Sloan Digital Sky Survey, become available.

  4. Internal energy distribution of the NCO fragment from near-threshold photolysis of isocyanic acid, HNCO

    SciTech Connect

    Brown, S.S.; Berghout, H.L.; Crim, F.F.

    1996-05-09

    We report the first measurement of the vibrational- and rotational-state distributions in the NCO fragment resulting from photolysis of HNCO. Recent studies have drawn conclusions about the photochemistry of HNCO and the vibrational distribution in the NCO fragment from observations of kinetic energy distribution of the H atom produced in this photolysis; however, there has been no direct observation of the NCO fragment itself. We use laser-induced fluorescence to detect the nascent NCO photoproducts and spectral simulations to extract vibrational-state populations. The rotational distributions, where we can measure them, show little excitation, and the vibrational energy preferentially appears in the bending mode. The vibrational-state distribution results directly from the excited-state geometry of the HNCO parent, in which the NCO group is bent. The dissociation proceeds from this bent NCO group to a linear NCO fragment, strongly exciting the bending mode. We find about 65% of the total energy in relative translation of the fragments, while 30% goes into vibration and 5% into rotation of NCO. 49 refs., 7 figs., 2 tabs.

  5. Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments.

    PubMed

    Kwon, Sae Yun; Blum, Joel D; Chirby, Michelle A; Chesney, Edward J

    2013-10-01

    Feeding experiments were performed to investigate mercury (Hg) isotope fractionation during trophic transfer and internal distribution of total Hg (THg) in marine fish on exposure to natural seafood. Young-of-the-year amberjack (Seriola dumerili) were fed with either blackfin tuna (Thunnus atlanticus; 2647 ng/g THg) or brown shrimp (Farfantepenaeus aztecus; 25.1 ng/g THg) for 80 d or 50 d, respectively, and dissected for muscle, liver, kidney, brain, and blood. After 30 d of tuna consumption, Hg isotopes (δ(202) Hg and Δ(199)Hg) of the amberjack organs shifted to the tuna value (δ(202)Hg = 0.55‰, Δ(199)Hg = 1.54‰,), demonstrating the absence of Hg isotope fractionation. When amberjack were fed a shrimp diet, there was an initial mixing of the amberjack organs toward the shrimp value (δ(202)Hg = -0.48‰, Δ(199)Hg = 0.32‰), followed by a cessation of further shifts in Δ(199)Hg and a small shift in δ(202)Hg. The failure of Δ(199)Hg to reach the shrimp value can be attributed to a reduction in Hg bioaccumulation from shrimp resulting from feeding inhibition and the δ(202)Hg shift can be attributed to a small internal fractionation during excretion. Given that the feeding rate and Hg concentration of the diet can influence internal Hg isotope distribution, these parameters must be considered in biosentinel fish studies. PMID:23787815

  6. High luminosity muon scattering at FNAL

    SciTech Connect

    Bazizi, K. ); Conrad, J.; Fang, G. ); Erdmann, M. ); Geesaman, D.; Jackson, H. ); Guyot, C.; Virchaux, M. ); Holmgren, H. ); Malensek, A.; Melanson, H.; Morfin

    1990-02-01

    The charge of this group was to evaluate the physics that can be done with a high luminosity {mu} scattering experiment at FNAL using the upgraded Tevatron muon beam, and consider the apparatus required. In this report, the physics that can be accomplished with a high luminosity {mu} scattering experiment is evaluated. The CERN and FNAL {mu} beams are compared in the context of such an experiment. The expected muon flux with the upgraded machine is estimated. Two possible detectors are compared: the air-core toroid experiment proposed by Guyot et al., and an upgraded version of the E665 double-diode apparatus now in place at FNAL. The relative costs of the detectors are considered. A list of detailed questions that need to be answered regarding the double-diode experiment has be compiled. 2 refs., 10 figs., 2 tabs.

  7. RF TECHNIQUES FOR IMPROVED LUMINOSITY IN RHIC.

    SciTech Connect

    BRENNAN,J.M.BLASKIEWICZ,J.BUTLER,J.DELONG,J.FISCHER,W.HAYES,T.

    2004-07-05

    The luminosity of the Relativistic Heavy Ion Collider has improved significantly [1] over the first three physics runs. A number of special rf techniques have been developed to facilitate higher luminosity. The techniques described herein include: an ultra low-noise rf source for the 197 MHz storage rf system, a frequency shift switch-on technique for transferring bunches from the acceleration to the storage system, synchronizing the rings during the energy ramp (including crossing the transition energy) to avoid incidental collisions, installation of dedicated 200 MHZ cavities to provide longitudinal Landau damping on the ramp, and the development of a bunch merging scheme in the Booster to increase the available bunch intensity from the injectors.

  8. Optimization of integrated luminosity in the Tevatron

    SciTech Connect

    Gattuso, C.; Convery, M.; Syphers, M.; /Fermilab

    2009-04-01

    We present the strategy which has been used recently to optimize the performance of the Fermilab Tevatron proton-antiproton collider. We use a relatively simple heuristic model based on the antiproton production rate, which optimizes the number of antiprotons in a store in order to maximize the integrated luminosity. A store is terminated as soon as the target number of antiprotons is reached and the Tevatron quickly resets to load another store. Since this procedure was implemented, the integrated luminosity has improved by {approx} 35%. Other recent operational improvements include decreasing the shot setup time, and reducing beam-beam effects by making the proton and antiproton brightness more compatible, for example by scraping protons to smaller emittances.

  9. Luminosity function and cosmological evolution of X-ray selected quasars

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.

    1983-01-01

    The preliminary analysis of a complete sample of 55 X-ray sources is presented as part of the Medium Sensitivity Survey of the Einstein Observatory. A pure luminosity evolutionary law is derived in order to determine the uniform distribution of the sources and the rates of evolution for Active Galactic Nuclei (AGNs) observed by X-ray and optical techniques are compared. A nonparametric representation of the luminosity function is fitted to the observational data. On the basis of the reduced data, it is determined that: (1) AGNs evolve cosmologically; (2) less evolution is required to explain the X-ray data than the optical data; (3) the high-luminosity portion of the X-ray luminosity can be described by a power-law with a slope of gamma = 3.6; and (4) the X-ray luminosity function flattens at low luminosities. Some of the implications of the results for conventional theoretical models of the evolution of quasars and Seyfert galaxies are discussed.

  10. The faint end of the 250 μm luminosity function at z < 0.5

    NASA Astrophysics Data System (ADS)

    Wang, L.; Norberg, P.; Bethermin, M.; Bourne, N.; Cooray, A.; Cowley, W.; Dunne, L.; Dye, S.; Eales, S.; Farrah, D.; Lacey, C.; Loveday, J.; Maddox, S.; Oliver, S.; Viero, M.

    2016-08-01

    Aims: We aim to study the 250 μm luminosity function (LF) down to much fainter luminosities than achieved by previous efforts. Methods: We developed a modified stacking method to reconstruct the 250 μm LF using optically selected galaxies from the SDSS survey and Herschel maps of the GAMA equatorial fields and Stripe 82. Our stacking method not only recovers the mean 250 μm luminosities of galaxies that are too faint to be individually detected, but also their underlying distribution functions. Results: We find very good agreement with previous measurements in the overlapping luminosity range. More importantly, we are able to derive the LF down to much fainter luminosities (~ 25 times fainter) than achieved by previous studies. We find strong positive luminosity evolution L*250(z)∝(1+z)4.89±1.07 and moderate negative density evolution Φ*250(z)∝(1+z)-1.02±0.54 over the redshift range 0.02

  11. Scintillating Fibre Tracking at High Luminosity Colliders

    NASA Astrophysics Data System (ADS)

    Joram, C.; Haefeli, G.; Leverington, B.

    2015-08-01

    The combination of small diameter scintillating plastic fibres with arrays of SiPM photodetectors has led to a new class of SciFi trackers usable at high luminosity collider experiments. After a short review of the main principles and history of the scintillating fibre technology, we describe the challenges and developments of the large area Scintillating Fibre Tracker currently under development for the upgraded LHCb experiment.

  12. A deep luminosity function for 47 Tucanae.

    NASA Astrophysics Data System (ADS)

    Harris, W. E.; Hesser, J. E.

    CCD photometry in B and V reaching B(lim) ≅ 25 has been employed to obtain the luminosity function and color-magnitude diagram for the main sequence of 47 Tuc. For 5 < Mv < 10 the authors find that its LF is essentially flat (Δlog n/Δm ≡ 0). The CMD is successfully matched by isochrones with [Fe/H] = -0.5 and t ≅ 15×109y.

  13. Readout control for high luminosity accelerators

    NASA Astrophysics Data System (ADS)

    Belusevic, R.; Nixon, G.

    1991-09-01

    In this article we discuss some aspects of data acquisition at high luminosities and offer a set of design principles concerning readout control electronics and related software. As an example we include a brief description of a data transfer and processing system for future hadron colliders, featuring a transputer-based crate controller and a set of readout cards. This is a simplified and more efficient version of our design recently published in Nuclear Instruments and Methods. [A295 (1991) 391].

  14. International Comparison of Labor Productivity Distribution for Manufacturing and Non-Manufacturing Firms

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Souma, W.

    Labor productivity was studied at the microscopic level in terms of distributions based on individual firm financial data from Japan and the US. A power-law distribution in terms of firms and sector productivity was found in both countries' data. The labor productivities were not equal for nation and sectors, in contrast to the prevailing view in the field of economics. It was found that the low productivity of the Japanese non-manufacturing sector reported in macro-economic studies was due to the low productivity of small firms.

  15. Luminosities of carbon-rich asymptotic giant branch stars in the Milky Way

    NASA Astrophysics Data System (ADS)

    Guandalini, R.; Cristallo, S.

    2013-07-01

    Context. Stars evolving along the asymptotic giant branch can become carbon-rich in the final part of their evolution. They replenish the inter-stellar medium with nuclear processed material via strong radiative stellar winds. The determination of the luminosity function of these stars, even if far from being conclusive, is extremely important for testing the reliability of theoretical models. In particular, strong constraints on the mixing treatment and the mass-loss rate can be derived. Aims: We present an updated luminosity function of Galactic carbon stars (LFGCS) obtained from a re-analysis of available data already published in previous papers. Methods: Starting from available near- and mid-infrared photometric data, we re-determined the selection criteria. Moreover, we took advantage of updated distance estimates and period-luminosity relations and we adopted a new formulation for the computation of bolometric corrections (BCs). This led us to collect an improved sample of carbon-rich sources from which we constructed an updated luminosity function. Results: The LFGCS peaks at magnitudes around -4.9, confirming the results obtained in a previous work. Nevertheless, the luminosity function presents two symmetrical tails instead of the larger high-luminosity tail characterizing the former luminosity function. Conclusions: The derived LFCGS matches the indications from recent theoretical evolutionary asymptotic giant branch models, thus confirming the validity of the choices of mixing treatment and mass-loss history. Moreover, we compare our new luminosity function with its counterpart in the Large Magellanic Cloud finding that the two distributions are very similar for dust-enshrouded sources, as expected from stellar evolutionary models. Finally, we derive a new fitting formula aimed to better determine BCs for C-stars. Table 1 is available in electronic form at http://www.aanda.org

  16. New Evidence for a Substellar Luminosity Problem

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Liu, M. C.; Ireland, M.

    2014-01-01

    HD 130948BC was the first field brown dwarf system to have both a dynamically measured mass and precise age constraint, from its solar-type host star, and it was unexpectedly ≈2× more luminous than predicted by substellar evolutionary models. However, because of the difficulty in determining accurate stellar ages, even in this nearly ideal case of a young star where numerous age indicators agree, it has been unclear if the apparent over-luminosity could be due to an erroneous age for this unique system. If such large systematic errors actually exist in substellar evolutionary models it could have wide-ranging implications, from determinations of the initial mass function to the masses estimated for directly imaged planets. We present here a new dynamical mass for a pair of brown dwarfs that also have a well-determined age from their young, solar-type star. This first check on the substellar "luminosity problem" reveals a nearly identical systematic error as was previously observed. We compare predictions from commonly used evolutionary models and present possible explanations for this problem. There are little appreciated, large differences (≈0.2 dex) in the predicted luminosity evolution of substellar objects which, along with the discrepancies of models compared to observations, currently limit our ability to characterize the fundamental properties of both brown dwarfs and directly imaged exoplanets.

  17. EVOLUTION OF THE Halpha LUMINOSITY FUNCTION

    SciTech Connect

    Westra, Eduard; Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G.; Dell'Antonio, Ian

    2010-01-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a window on the star formation history over the last 4 Gyr. SHELS is a spectroscopically complete survey for R{sub tot} < 20.3 over 4 square{sup 0}. We use the 10k spectra to select a sample of pure star-forming galaxies based on their Halpha emission line. We use the spectroscopy to determine extinction corrections for individual galaxies and to remove active galaxies in order to reduce systematic uncertainties. We use the large volume of SHELS with the depth of a narrowband survey for Halpha galaxies at z approx 0.24 to make a combined determination of the Halpha luminosity function at z approx 0.24. The large area covered by SHELS yields a survey volume big enough to determine the bright end of the Halpha luminosity function from redshift 0.100 to 0.377 for an assumed fixed faint-end slope alpha = -1.20. The bright end evolves: the characteristic luminosity L* increases by 0.84 dex over this redshift range. Similarly, the star formation density increases by 0.11 dex. The fraction of galaxies with a close neighbor increases by a factor of 2-5 for L{sub Ha}lpha approx> L* in each of the redshift bins. We conclude that triggered star formation is an important influence for star-forming galaxies with Halpha emission.

  18. Radio variability survey of very low luminosity protostars

    SciTech Connect

    Choi, Minho; Kang, Miju; Lee, Jeong-Eun

    2014-07-01

    Ten very low luminosity objects were observed multiple times in the 8.5 GHz continuum in search of protostellar magnetic activities. A radio outburst of IRAM 04191+1522 IRS was detected, and the variability timescale was about 20 days or shorter. The results of this survey and archival observations suggest that IRAM 04191+1522 IRS is in active states about half the time. Archival data show that L1014 IRS and L1148 IRS were detectable previously and suggest that at least 20%-30% of very low luminosity protostars are radio variables. Considering the variability timescale and flux level of IRAM 04191+1522 IRS and the previous detection of the circular polarization of L1014 IRS, the radio outbursts of these protostars are probably caused by magnetic flares. However, IRAM 04191+1522 IRS is too young and small to develop an internal convective dynamo. If the detected radio emission is indeed coming from magnetic flares, the discovery implies that the flares may be caused by the fossil magnetic fields of interstellar origin.

  19. A Distributed Model for Managing Academic Staff in an International Online Academic Programme

    ERIC Educational Resources Information Center

    Kalman, Yoram M.; Leng, Paul H.

    2007-01-01

    Online delivery of programmes of Higher Education typically involves a distributed community of students interacting with a single university site, at which the teachers, learning resources and administration of the programme are located. The alternative model, of a fully "Virtual University", which assumes no physical campus, poses problems of…

  20. Internal energy distribution of carboxylate negative-ions of the herbicide diclofop acid in the gas-phase

    NASA Astrophysics Data System (ADS)

    Headley, J. V.; Peru, K. M.

    1997-11-01

    Unimolecular dissociations of diclofop acid and three of its esters were studied using electron capture negative-ion mass spectrometry, to determine to what extent the gas-phase chemistry correlated with transformation products reported for the herbicide in soils and microbial biofilms. Electron capture of the trimethylsilyl (TMS) and pentafluorobenzyl (PFB) esters along with H+ abstraction of diclofop acid were used to form the carboxylate ion at m / z 325. The degree of dissociation of this ion was strongly dependent on the relative distribution of internal energies, chemical nature and size of the ester group. For carboxylate ions formed with relatively low distribution of internal energies (PFB ester), elimination of HCl only was the preferred pathway. In contrast, m / z 325 from the TMS ester and diclofop acid, underwent loss of Cl, followed by loss of HCl to give m / z 254 with some direct loss of HCl for the TMS ester. For carboxylate ions formed with little or no internal energy under electrospray ionization, no unimolecular dissociations were observed. However, a wide range of product-ions were observed for the latter using collision-induced dissociations. For the methyl ester there was a preponderance for initial formation of a chlorodibenzofuran oxide ion (m / z 217) instead of electron attachment on the carbonyl function. The ion (m / z 217) was also prevalent for fragmentation of m / z 253 produced directly by electron capture of diclofop acid and the TMS ester. In general, the gas-phase ion chemistry correlated well with the distribution of some transformation products reported in the literature for the herbicide in soils and microbial biofilms.

  1. The influence of diameter ratio on the stress distribution around 90{degree} branch pipe connection due to internal pressure

    SciTech Connect

    Harsokoesoemo, D.; Santoso, G.

    1994-12-31

    Numerical stress calculation results of stress distribution around 90{degree} branch pipe connection due to internal pressure for several main and branch pipe diameter ratios using finite element program MECHANICA (RASNA) are presented in this paper. The calculation results are presented in two types of diagrams, one is in the form of stress versus its location on the main and branch pipe curves for 4 different diameter ratios and the other as stress concentration factor versus diameter ratios curves for the case d/t = D/T and t = T and for three pipe schedule number 40, 80 and 160.

  2. Human resources for health in southeast Asia: shortages, distributional challenges, and international trade in health services.

    PubMed

    Kanchanachitra, Churnrurtai; Lindelow, Magnus; Johnston, Timothy; Hanvoravongchai, Piya; Lorenzo, Fely Marilyn; Huong, Nguyen Lan; Wilopo, Siswanto Agus; dela Rosa, Jennifer Frances

    2011-02-26

    In this paper, we address the issues of shortage and maldistribution of health personnel in southeast Asia in the context of the international trade in health services. Although there is no shortage of health workers in the region overall, when analysed separately, five low-income countries have some deficit. All countries in southeast Asia face problems of maldistribution of health workers, and rural areas are often understaffed. Despite a high capacity for medical and nursing training in both public and private facilities, there is weak coordination between production of health workers and capacity for employment. Regional experiences and policy responses to address these challenges can be used to inform future policy in the region and elsewhere. A distinctive feature of southeast Asia is its engagement in international trade in health services. Singapore and Malaysia import health workers to meet domestic demand and to provide services to international patients. Thailand attracts many foreign patients for health services. This situation has resulted in the so-called brain drain of highly specialised staff from public medical schools to the private hospitals. The Philippines and Indonesia are the main exporters of doctors and nurses in the region. Agreements about mutual recognition of professional qualifications for three groups of health workers under the Association of Southeast Asian Nations Framework Agreement on Services could result in increased movement within the region in the future. To ensure that vital human resources for health are available to meet the needs of the populations that they serve, migration management and retention strategies need to be integrated into ongoing efforts to strengthen health systems in southeast Asia. There is also a need for improved dialogue between the health and trade sectors on how to balance economic opportunities associated with trade in health services with domestic health needs and equity issues. PMID:21269674

  3. Luminosity segregation in three clusters of galaxies (A119, A2443, A2218)

    NASA Astrophysics Data System (ADS)

    Pracy, Michael B.; Driver, Simon P.; De Propris, Roberto; Couch, Warrick J.; Nulsen, Paul E. J.

    2005-12-01

    We use deep wide-field V-band imaging obtained with the Wide Field Camera at the prime focus of the Issac Newton Telescope to study the spatial and luminosity distribution of galaxies in three low redshift (0.04 < z < 0.2) clusters: Abell 119, Abell 2443 and Abell 2218. The absolute magnitude limits probed in these clusters are MV- 5 logh0.7=-13.3, -15.4 and -16.7mag, respectively. The galaxy population, at all luminosities, along the line-of-sight to the clusters can be described by the linear combination of a King profile and a constant surface density of field galaxies. We find that, for these three clusters, the core radius is invariant with intrinsic luminosity of the cluster population to the above limits and thus there is no evidence for luminosity segregation in these clusters. The exception is the brightest galaxies in A2218 which exhibit a more compact spatial distribution. We find that the total projected luminosity distribution (within 1h-10.7Mpc of the cluster centre) can be well represented by a single Schechter function with moderately flat faint-end slopes: α=-1.22+0.07-0.06 (A119), α=-1.11+0.10-0.09 (A2443) and α=-1.14+0.08-0.07 (A2218). We perform a geometric deprojection of the cluster galaxy population and confirm that no `statistically significant' evidence of a change in the shape of the luminosity distribution with cluster-centric radius exists. Again, the exception being A2218 which exhibits a core region with a flatter faint-end slope.

  4. Novel technique for internal structure and elemental distribution analyses of granular sludge from reactors for wastewater treatment.

    PubMed

    Cao, Xiaolei; Cao, Hongbin; Sheng, Yuxing; You, Haixia; Zhang, Yi

    2013-03-01

    A novel technique for internal structure and elemental distribution analyses of granular sludge is presented. Sludge samples were freeze-dried and embedded in epoxy resin to form a module, which were then ground and polished to obtain sequential cross-sections. The cross-sections were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). SEM observations showed that one granule was formed having several cores with different inorganic minerals, rather than a single core. EDX results indicate that the main elements of the granules are O, Ca, Mg, and P. In addition, the distribution areas of calcium and magnesium in the granule do not coincide. PMID:23160739

  5. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    DOEpatents

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  6. Distribution of heavy metals in internal organs and tissues of Korean molluscan shellfish and potential risk to human health.

    PubMed

    Mok, Jong Soo; Kwon, Ji Young; Son, Kwang Tae; Choi, Woo Seok; Kim, Poong Ho; Lee, Tae Seek; Kim, Ji Hoe

    2015-09-01

    Molluscan shellfish (gastropods and bivalves) were collected from major fish markets on the Korean coast and analyzed for mercury by direct Hg analyzer and for other metals, such as cadmium, lead, chromium, silver, nickel, copper and zinc, using inductively coupled plasma mass spectrometry. Distribution of heavy metals in muscles, internal organs and whole tissues were determined and a potential risk assessment was conducted to evaluate their hazard for human consumption. Heavy metals were accumulated significantly higher (P < 0.05) in internal organs than in muscles for all species. The mean Cd level, which had the highest level of three hazardous metals (Cd, Pb, and Hg) in all internal-organ samples were above the regulatory limit of Korea and the mean level in whole tissue samples of the selected gastropod species, bay scallop and comb pen shell, exceeded the limit (except in a few cases). The sum of the estimated dietary intake of Cd, Pb and Hg for each part of all tested species accounted for 1.59-16.94, 0.02-0.36, and 0.07-0.16% respectively, of the provisional tolerable daily intake adopted by the Joint FAO/WHO Expert Committee on Food Additives. The hazard index for each part of gastropods and bivalves was below 1.0, however, the maximum HI for internal organs of all analysed species was quite high (0.71). These results suggest that consumption of flesh after removing the internal organs of some molluscan shellfish (all gastropod species, bay scallop and comb pen shell) is a suitable way for reducing Cd exposure. PMID:26521561

  7. The luminosity function of the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Marzke, R. O.; Huchra, J. P.; Geller, M. J.

    1994-01-01

    We use the CfA Reshift Survey of galaxies with m(sub z) less than or equal to 15.5 to calculate the galaxy luminosity function over the range -13 less than or equal to M(sub z) less than or equal to -22. The sample includes 9063 galaxies distributed over 2.1 sr. For galaxies with velocities cz greater or equal to 2500 km per sec, where the effects of peculiar velocities are small, the luminosity function is well represented by a Schechter function with parameters phi(sub star) = 0.04 +/- 0.01 per cu Mpc, M(sub star) = -18.8 +/- 0.3, and alpha = -1.0 +/- 0.2. When we include all galaxies with cz greater or equal to 500 km per sec, the number of galaxies in the range -16 less than or equal to M(sub z) less than or equal to -13 exceeds the extrapolation of the Schechter function by a factor of 3.1 +/- 0.5. This faint-end excess is not caused by the local peculiar velocity field but may be partially explained by small scale errors in the Zwicky magnitudes. Even with a scale error as large as 0.2 mag per mag, which is unlikely, the excess is still a factor of 1.8 +/- 0.3. If real, this excess affects the interpretation of deep counts of field galaxies.

  8. The Next Generation Virgo Cluster Survey. VII. The Intrinsic Shapes of Low-luminosity Galaxies in the Core of the Virgo Cluster, and a Comparison with the Local Group

    NASA Astrophysics Data System (ADS)

    Sánchez-Janssen, Rubén; Ferrarese, Laura; MacArthur, Lauren A.; Côté, Patrick; Blakeslee, John P.; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Gwyn, Stephen; McConnacchie, Alan W.; Boselli, Alessandro; Courteau, Stéphane; Emsellem, Eric; Mei, Simona; Peng, Eric; Puzia, Thomas H.; Roediger, Joel; Simard, Luc; Boyer, Fred; Santos, Matthew

    2016-03-01

    samples of more massive quiescent systems, and with field, star-forming galaxies of similar luminosities. We find that the intrinsic flattening in this low-luminosity regime is almost independent of the environment in which the galaxy resides, but there is a hint that objects may be slightly rounder in denser environments. The comparable flattening distributions of low-luminosity galaxies that have experienced very different degrees of environmental effects suggest that internal processes are the main drivers of galaxy structure at low masses, with external mechanisms playing a secondary role.

  9. Implications of Lag-Luminosity Relationship for Unified GRB Paradigms

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Spectral lags (tau(sub lag)) are deduced for 1437 long (T(sub 90) greater than 2 s) BATSE gamma-ray bursts (GRBs) with peak flux F(sub p) greater than 0.25 photons cm(sup -2)/s, near to the BATSE trigger threshold. The lags are modeled to approximate the observed distribution in the F(sub p)-T(sub lag) plane, realizing a noise-free representation. Assuming a two-branch lag-luminosity relationship, the lags are self-consistently corrected for cosmological effects to yield distributions in luminosity, distance, and redshift. The results have several consequences for GRB populations and for unified gamma-ray/afterglow scenarios which would account for afterglow break times and gamma-ray spectral evolution in terms of jet opening angle, viewing angle, or a profiled jet with variable Lorentz factor: A component of the burst sample is identified - those with few, wide pulses, lags of a few tenths to several seconds, and soft spectra - whose Log[N]-Log[F(sub p)] distribution approximates a -3/2 power-law, suggesting homogeneity and thus relatively nearby sources. The proportion of these long-lag bursts increases from negligible among bright BATSE bursts to approx. 50% at trigger threshold. Bursts with very long lags, approx. 1-2 less than tau(sub lag) (S) less than 10, show a tendency to concentrate near the Supergalactic Plane with a quadrupole moment of approx. -0.10 +/- 0.04. GRB 980425 (SN 1998bw) is a member of this subsample of approx. 90 bursts with estimated distances less than 100 Mpc. The frequency of the observed ultra-low luminosity bursts is approx. 1/4 that of SNe Ib/c within the same volume. If truly nearby, the core-collapse events associated with these GRBs might produce gravitational radiation detectable by LIGO-II. Such nearby bursts might also help explain flattening of the cosmic ray spectrum at ultra-high energies, as observed by AGASA.

  10. An Investigation of X-ray Luminosity versus Crystalline Powder Granularity

    SciTech Connect

    Borade, Ramesh; Bourret-Courchesne, Edith; ,

    2012-03-07

    At the High-throughput Discovery of Scintillator Materials Facility at Lawrence Berkeley National Laboratory, scintillators are synthesized by solid-state reaction or melt mixing, forming crystalline powders. These powders are formed in various granularity and the crystal grain size affects the apparent luminosity of the scintillator. To accurately predict a "full-size" scintillator's crystal luminosity, the crystal luminosity as a function of crystal granularity size has to be known. In this study, we examine Bi{sub 4}Ge{sub 3}O{sub 12} (BGO), Lu{sub 2}SiO{sub 5}:Ce (LSO), YAlO{sub 3}:Ce (YAP:Ce), and CsBa{sub 2}I{sub 5}:Eu{sup 2+} (CBI) luminosities as a function of crystalline grain size. The highest luminosities were measured for 600- to 1000-{micro}m crystal grain sizes for BGO and LSO, for 310- to 600-{micro}m crystal grain sizes for CBI, and for crystal grains larger than 165{micro}m for YAP:Ce. Crystal grains that were larger than 1 mm had a lower packing fraction, and smaller grains were affected by internal scattering. We measured a 34% decrease in luminosity for BGO when decreasing from the 600- to 1000- {micro}m crystal grain size range down to the 20- to 36-{micro}m range. The corresponding luminosity decrease for LSO was 44% for the same grain size decrease. YAP:Ce exhibited a luminosity decrease of 47% when the grain size decreased from the 165- to 310-{micro}m crystal grains to the 20- to 36-{micro}m range, and CBI exhibited a luminosity decrease of 98% when the grain size decreased from the 310- to 600-{micro}m crystal grain range to the 36- to 50-{micro}m range. We were able to very accurately estimate full-size crystal luminosities from crystalline grains that are larger than 90 {micro}m.

  11. Balanced Expertise Distribution in Remote Ultrasound Imaging Aboard The International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Sargsyan, Ashot; Dulchavsky, Scott; Hamilton, Douglas; Melton, Shannon; Martin, David

    2004-01-01

    Astronaut training for ISS operations usually ensures independent performance. With small crew size same crews also conduct all science work onboard. With diverse backgrounds, a good "match" between the existing and required skills can only be anecdotal. Furthermore, full proficiency in most of the complex tasks can be attained only through long training and practice, which may not be justified and may be impossible given the scarcity of training time. To enable a number of operational and science advancements, authors have developed a new approach to expertise distribution in time and among the space and ground personnel. Methods: As part of NASA Operational Ultrasound Project (1998-2003) and the NASA-solicited experiment "Advanced Diagnostic Ultrasound in Microgravity-ADUM" (P.I. -S.D., ongoing), the authors have created a "Balanced Expertise Distribution" approach to perform complex ultrasound imaging tasks on ISS for both operational and science use. The four components of expertise are a) any pre-existing pertinent expertise; b) limited preflight training c) adaptive onboard proficiency enhancement tools; d) real-time ' guidance from the ground. Throughout the pre-flight training and flight time preceding the experiments, the four components are shaped in a dynamic fashion to meet in an optimum combination during the experiment sessions. Results: Procedure validation sessions and feasibility studies have given encouraging results. While several successful real-time remote guidance sessions have been conducted on ISS, Expedition 8 is the first to use an "on-orbit proficiency enhancement" tool. Conclusions: In spite of severely limited training time, daring peer-reviewed research and operational enhancements are feasible through a balanced distribution of expertise in time, as well as among the crewmembers and ground personnel. This approach shows great promise for biomedical research, but may be applicable for other areas of micro gravity-based science

  12. Coherent anti-Stokes Raman scattering (CARS) detection or hot atom reaction product internal energy distributions

    SciTech Connect

    Quick, C.R. Jr.; Moore, D.S.

    1983-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is being utilized to investigate the rovibrational energy distributions produced by reactive and nonreactive collisions of translationally hot atoms with simple molecules. Translationally hot H atoms are produced by ArF laser photolysis of HBr. Using CARS we have monitored, in a state-specific and time-resolved manner, rotational excitation of HBr (v = 0), vibrational excitation of HBr and H/sub 2/, rovibrational excitation of H/sub 2/ produced by the reaction H + HBr ..-->.. H/sub 2/ + Br, and Br atom production by photolysis of HBr.

  13. Internal structure of Io and the global distribution of its topography

    NASA Technical Reports Server (NTRS)

    Ross, M. N.; Schubert, G.; Spohn, T.; Gaskell, R. W.

    1990-01-01

    A global topography is presently calculated for two multilayer Io models in which dissipation occurs in a viscous asthenosphere and a solid mantle: (1) a 'thermal swell' model, in which topography and heat flow are positively correlated, and (2) a 'differentiated lithosphere' model, in which topography and heat flow are negatively correlated. Both the polar topography and the hypsometric distribution of elevations in the differentiated lithosphere model are better matched with observations than the thermal swell model. The shift of the equatorial basin-swell pattern indicates a recent zonal rotation of about 25 deg for Io's lithosphere.

  14. Status of a broadly distributed endangered species: results and implications of the second International Piping Plover Census

    USGS Publications Warehouse

    Plissner, Jonathan H.; Haig, Susan M.

    2000-01-01

    Methods for monitoring progress toward recovery goals are highly variable and may be problematic for endangered species that are mobile and widely distributed. Recovery objectives for Piping Plovers (Charadrius melodus) include attainment of minimum population sizes within specified recovery units, as determined by two U.S. and two Canadian recovery teams. To assess progress toward these goals, complete surveys of the species' winter and breeding ranges in Canada, the United States, Mexico, the Bahamas, and the Greater Antilles are conducted every 5 years. In 1996, 1200 biologists and volunteers participated in the second International Piping Plover Census, tallying 2515 wintering birds and 5913 adults (2668 breeding pairs) during the breeding census. Winter numbers were 27% lower than those of the first international census conducted in 1991, with substantially fewer wintering birds along the Gulf of Mexico and an overall increase in numbers along the Atlantic Coast. Large numbers of wintering plovers remain undetected. In 1996, the total number of breeding adults was 7.7% higher than in 1991. Regionally, breeding numbers were 31% higher along the Atlantic Coast and 20% higher in the small Great Lakes population, but declined by 5% in the U.S. Great Plains and the Canadian Prairie. Target recovery numbers were met only for Saskatchewan but were approached in Alberta and New England. The results suggest that Piping Plover distribution and habitat use in the U.S. Great Plains/Canadian Prairie region may shift dramatically with water conditions.

  15. Estimating luminosities and stellar masses of galaxies photometrically without determining redshifts

    SciTech Connect

    Hsieh, B. C.; Yee, H. K. C. E-mail: hyee@astro.utoronto.ca

    2014-09-10

    Large direct imaging surveys usually use a template-fitting technique to estimate photometric redshifts for galaxies, which are then applied to derive important galaxy properties such as luminosities and stellar masses. These estimates can be noisy and suffer from systematic biases because of the possible mis-selection of templates and the propagation of the photometric redshift uncertainty. We introduce an algorithm, the Direct Empirical Photometric method (DEmP), that can be used to directly estimate these quantities using training sets, bypassing photometric redshift determination. DEmP also applies two techniques to minimize the effects arising from the non-uniform distribution of training set galaxy redshifts from a flux-limited sample. First, for each input galaxy, fitting is performed using a subset of the training set galaxies with photometry and colors closest to those of the input galaxy. Second, the training set is artificially resampled to produce a flat distribution in redshift or other properties, e.g., luminosity. To test the performance of DEmP, we use a four filter-band mock catalog to examine its ability to recover redshift, luminosity, stellar mass, and luminosity and stellar mass functions. We also compare the results to those from two publicly available template-fitting methods, finding that the DEmP algorithm outperforms both. We find that resampling the training set to have a uniform redshift distribution produces the best results not only in photometric redshift, but also in estimating luminosity and stellar mass. The DEmP method is especially powerful in estimating quantities such as near-IR luminosities and stellar mass using only data from a small number of optical bands.

  16. Oxygen-rich Mira variables: Near-infrared luminosity calibrations. Populations and period-luminosity relations

    NASA Technical Reports Server (NTRS)

    Alvarez, R.; Mennessier, M.-O.; Barthes, D.; Luri, X.; Mattei, J. A.

    1997-01-01

    Hipparcos astrometric and kinematical data of oxygen-rich Mira variables are used to calibrate absolute near-infrared magnitudes and kinematic parameters. Three distinct classes of stars with different kinematics and scale heights were identified. The two most significant groups present characteristics close to those usually assigned to extended/thick disk-halo populations and old disk populations, respectively, and thus they may differ by their metallicity abundance. Two parallel period-luminosity relations are found, one for each population. The shift between these relations is interpreted as the consequence of the effects of metallicity abundance on the luminosity.

  17. LUMINOSITY INCREASES IN GOLD-GOLD OPERATION IN RHIC.

    SciTech Connect

    FISCHER,W.AHERNS,L.BAI,M.ET AL.

    2004-07-05

    After an exploratory phase, during which a number of beam parameters were varied, the RHIC experiments now demand higher luminosity to study heavy ion collisions in detail. In gold-gold, operation, RHIC delivers now twice the design luminosity. During the last gold-gold operating period (Run-4) the machine delivered 15 times more luminosity than during the previous gold-gold operating period (Run-2), two years ago. We give an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency.

  18. CORRELATION BETWEEN GROUP LOCAL DENSITY AND GROUP LUMINOSITY

    SciTech Connect

    Deng Xinfa; Yu Guisheng

    2012-11-10

    In this study, we investigate the correlation between group local number density and total luminosity of groups. In four volume-limited group catalogs, we can conclude that groups with high luminosity exist preferentially in high-density regions, while groups with low luminosity are located preferentially in low-density regions, and that in a volume-limited group sample with absolute magnitude limit M{sub r} = -18, the correlation between group local number density and total luminosity of groups is the weakest. These results basically are consistent with the environmental dependence of galaxy luminosity.

  19. The distribution of cigarette prices under different tax structures: findings from the International Tobacco Control Policy Evaluation (ITC) Project

    PubMed Central

    Shang, Ce; Chaloupka, Frank J; Zahra, Nahleen; Fong, Geoffrey T

    2013-01-01

    Background The distribution of cigarette prices has rarely been studied and compared under different tax structures. Descriptive evidence on price distributions by countries can shed light on opportunities for tax avoidance and brand switching under different tobacco tax structures, which could impact the effectiveness of increased taxation in reducing smoking. Objective This paper aims to describe the distribution of cigarette prices by countries and to compare these distributions based on the tobacco tax structure in these countries. Methods We employed data for 16 countries taken from the International Tobacco Control Policy Evaluation Project to construct survey-derived cigarette prices for each country. Self-reported prices were weighted by cigarette consumption and described using a comprehensive set of statistics. We then compared these statistics for cigarette prices under different tax structures. In particular, countries of similar income levels and countries that impose similar total excise taxes using different tax structures were paired and compared in mean and variance using a two-sample comparison test. Findings Our investigation illustrates that, compared with specific uniform taxation, other tax structures, such as ad valorem uniform taxation, mixed (a tax system using ad valorem and specific taxes) uniform taxation, and tiered tax structures of specific, ad valorem and mixed taxation tend to have price distributions with greater variability. Countries that rely heavily on ad valorem and tiered taxes also tend to have greater price variability around the median. Among mixed taxation systems, countries that rely more heavily on the ad valorem component tend to have greater price variability than countries that rely more heavily on the specific component. In countries with tiered tax systems, cigarette prices are skewed more towards lower prices than are prices under uniform tax systems. The analyses presented here demonstrate that more opportunities

  20. Determination of the effective inelastic p anti-p cross-section for the D0 Run II luminosity measurement

    SciTech Connect

    Edwards, T.; Yacoob, S.; Andeen, T.; Begel, M.; Casey, B.C.K.; Partridge, R.; Schellman, H.; Sznajder, A.; /Rio de Janeiro State U.

    2004-11-01

    The authors determine the effective inelastic p{bar p} cross-section into the D0 Luminosity Monitor for all run periods prior to September 2004. This number is used to relate the measured inelastic collision rate to the delivered luminosity. The key ingredients are the inelastic p{bar p} cross-section, the Luminosity Monitor efficiency, and the modeling of kinematic distributions for various inelastic processes used to determine the detector acceptance. The resulting value is {sigma}{sub p{bar p},eff} = 46 {+-} 3 mb.

  1. Effect of initial salt concentrations on cell performance and distribution of internal resistance in microbial desalination cells.

    PubMed

    Yang, Euntae; Choi, Mi-Jin; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Kim, In S

    2015-01-01

    Microbial desalination cells (MDCs) are modified microbial fuel cells (MFCs) that concurrently produce electricity and desalinate seawater, but adding a desalination compartment and an ion-exchange membrane may increase the internal resistance (Ri), which can limit the cell performance. However, the effects of a desalination chamber and initial NaCl concentrations on the internal resistances and the cell performances (i.e. Coulombic efficiency (CE), current and power density) of MDCs have yet to be thoroughly explored; thus, the cell performance and Ri distributions of MDCs having different initial concentrations and an MFC having no desalination chamber were compared. In the MDCs, the current and power density generation increased from 2.82 mA and 158.2 mW/m2 to 3.17 mA and 204.5 mW/m2 when the initial NaCl concentrations were increased from 5 to 30 g/L, as a consequence of the internal resistances decreasing from 2432.0 to 2328.4 Ω. And even though the MFC has a lower Ri than the MDCs, lower cell performances (current: 2.59 mA; power density: 141.6 mW/m2 and CE: 62.1%) were observed; there was no effect of improved junction potential in the MFC. Thus, in the MDCs, the higher internal resistances due to the addition of a desalination compartment can be offset by reducing the electrolyte resistance and improving the junction potential at higher NaCl concentrations. PMID:25212471

  2. Bolometric luminosities and colors for K and M dwarfs and the subluminous stars of the halo

    NASA Astrophysics Data System (ADS)

    Greenstein, Jesse L.

    1989-09-01

    The H-R diagrams of dM, sdK, and sdM proper-motion stars are examined. A method for integrating energy distributions using discrete weights is proposed. The bolometric corrections are assessed at various wavelengths and a method for obtaining luminosities even if a star lacks IR data is presented. The color-luminosity diagrams suggest that high-velocity, low-metallicity stars of the halo are subluminous. It is found that the apparent cutoff in the halo is a bolometric magnitude of about 12 m.

  3. The Infrared Signature of Accretion Luminosity in Protostars

    NASA Astrophysics Data System (ADS)

    Terebey, Susan; Villarama, Ethan G.; Flores-Rivera, Lizxandra

    2016-06-01

    Mass accretion from the disk onto the star is an important mechanism by which a star increases in mass during the formation phase. If the mass accretion rate is time variable then the brightness of the star should also change with time. We use the HOCHUNK3D radiative transfer code to investigate how disk accretion rate (Mdot) affects the protostar spectral energy distribution (SED). The biggest changes in brightness occur at infrared wavelengths ranging from approximately 5 to 100 microns. The results show that the protostar luminosity doubles from 1 to 2 L⊙ when the disk accretion rate is increased to Mdot=3.0e-7 M⊙/year. We conclude that the models are a useful tool to study mass accretion rates and time variability in protostars.

  4. Distances, luminosities, and temperatures of the coldest known substellar objects.

    PubMed

    Dupuy, Trent J; Kraus, Adam L

    2013-09-27

    The coolest known brown dwarfs are our best analogs to extrasolar gas-giant planets. The prolific detections of such cold substellar objects in the past 2 years have spurred intensive follow-up, but the lack of accurate distances is a key gap in our understanding. We present a large sample of precise distances based on homogeneous mid-infrared astrometry that robustly establishes absolute fluxes, luminosities, and temperatures. The coolest brown dwarfs have temperatures of 400 to 450 kelvin and masses almost equal to 5 to 20 times that of Jupiter, showing they bridge the gap between hotter brown dwarfs and gas-giant planets. At these extremes, spectral energy distributions no longer follow a simple correspondence with temperature, suggesting an increasing role of other physical parameters, such as surface gravity, vertical mixing, clouds, and metallicity. PMID:24009359

  5. Solar luminosity variations in solar cycle 21

    NASA Technical Reports Server (NTRS)

    Willson, Richard C.; Hudson, H. S.

    1988-01-01

    Long-term variations in the solar total irradiance found in the ACRIM I experiment on the SMM satellite have revealed a downward trend during the declining phase of solar cycle 21 of the sunspot cycle, a flat period between mid-1095 and mid-1987, and an upturn in late 1987 which suggests a direct correlation of luminosity and solar active region population. If the upturn continues into the activity maximum of solar cycle 22, a relation between solar activity and luminosity of possible climatological significance could be ascertained. The best-fit relationship for the variation of total irradiance S with sunspot number Rz and 10-cm flux F(10) are S = 1366.82 + 7.71 x 10 to the -3rd Rz and S = 1366.27 + 8.98 x 10 to the -3rd F(10)(W/sq m). These findings could be used to approximate total irradiance variations over the periods for which these indices have been compiled.

  6. Luminosity Function Evolution of Young Star Clusters

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Kao, K. C.; Hu, J. Y.

    The luminosity function of a star cluster evolves markedly during the pre-main sequence phase. With an assumed initial mass function (Miller & Scalo, 1979) and pre-main sequence tracks (D'Antona & Mazzitelli, 1994), we calculate a set of monochromatic luminosity functions which, when compared with observations, can be used to infer the age and star formation history (coeval versus intermittent) of a star cluster. Applied to the Trapezium cluster (2.2 micron imaging data by Zinncker et al 1993), our model suggests an age close to 10^6 years, whereas in IC 348 (2 micron data from Lada & Lada, 1995) the age estimate yields 4--6 times 10^6 years and continual bursts of star formation seem to have occurred in this cluster. CCD imaging observations at optical-infrared I band are presented for NGC 663, for which an age of 1--3 times 10^7 years is inferred. The initial mass function for NGC 663 in the range 2--7.1 {Modot} has a slope of -0.77 plus or minus 0.20, much shallower than that for the solar neighborhood field stars. We interpret this being due to the mass segregation in the cluster.

  7. Probing the Luminosity Function of Young Quasars

    NASA Astrophysics Data System (ADS)

    Urrutia, Tanya; Glikman, E.; Lacy, M.

    2010-01-01

    In the last year, we have been using the Triple Spec Near-Infrared spectrograph on the Palomar Observatory to identify candidate dust-reddened quasars using the FIRST radio survey, the UKIDSS near-infrared survey and the SDSS optical survey. A previous campaign using the shallow near-infrared 2MASS survey, was very successful in finding dust obscured quasars by finding very red (R-K > 4, J-K > 1.7) radio sources (Glikman et al. 2007). Among them are many young, interacting galaxies (Urrutia, Lacy & Becker 2008) and a large fraction of Low Ionization Broad Absorption Line Quasars (Urrutia et al. 2009), implying that the red quasar population probes a young phase in the lifetime of an AGN. By using the same color criteria on the deeper UKIDSS survey, we are able to probe into higher redshifts and lower luminosity red quasars. This is a first step to build a luminosity function for dust-obscured quasars. We then will be able to answer the question if young quasars are more generally more luminous as their older counterparts, perhaps because of higher accretion efficiency.

  8. Low luminosity AGNs in the local universe

    NASA Astrophysics Data System (ADS)

    Ikiz, Tuba; Peletier, Reynier F.; Yesilyaprak, Cahit

    2016-04-01

    Galaxies are known to contain black holes (e.g. Ferrarese & Merritt 2000), whose mass correlates with the mass of their bulge. A fraction of them also has an Active Galactic Nucleus (AGN), showing excess emission thought to be due to accretion of mass by the supermassive black hole at the center of the galaxy. It is thought that AGNs play a very important role during the formation of galaxies by creating large outflows that stop star formation in the galaxy (see e.g. Kormendy & Ho 2013). The aim is to detect the fraction of Low Luminosity Active Galactic Nucleus (LLAGN) in the nearby Universe. At present, they are typically found using optical spectroscopy (e.g. Kauffmann, Heckman et al. 2003), who discuss the influence of the AGN on the host galaxy and vice versa. However, optical spectra are seriously affected by extinction in these generally very dusty objects, and therefore can only give us partial information about the AGN. I used a newly-found method, and apply it to the S4G sample, a large, complete, sample of nearby galaxies, which I am studying in detail with a large collaboration, to detect the fraction of low luminosity AGNs, and to better understand the relation between AGNs and their host galaxy which is thought to be crucial for their formation.

  9. Thermodynamics and luminosities of rainbow black holes

    NASA Astrophysics Data System (ADS)

    Mu, Benrong; Wang, Peng; Yang, Haitang

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ``Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ``Amelino-Camelia dispersion relation'' which is E2 = m2+p2[1-η(E/mp)n] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n >= 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  10. Internal Crack Propagation in a Continuously Cast Austenitic Stainless Steel Analyzed by Actual Residual Stress Tensor Distributions

    NASA Astrophysics Data System (ADS)

    Saito, Youichi; Tanaka, Shun-Ichiro

    2016-04-01

    Initiation, propagation, and termination of internal cracks in a continuously cast austenitic stainless steel has been investigated with emphasis on stress loading of the solidified shell during casting. Cracks were formed at the center of the slab, parallel to the width of the cast, and were observed near the narrow faces. Optimized two-dimensional X-ray diffraction method was employed to measure residual stress tensor distributions around the cracks in the as-cast slab with coarse and strongly preferentially oriented grains. The tensor distributions had a sharp peak, as high as 430 MPa, at the crack end neighboring the columnar grains. On the other hand, lower values were measured at the crack end neighboring the equiaxed grains, where the local temperatures were higher during solidification. The true residual stress distributions were determined by evaluating the longitudinal elastic constant for each measured position, resulting in more accurate stress values than before. Electron probe micro-analysis at the terminal crack position showed that Ni, Ti, and Si were concentrated at the boundaries of the equiaxed grains, where the tensile strength was estimated to be lower than at the primary grains. A model of the crack formation and engineering recommendations to reduce crack formation are proposed.

  11. International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin Receptor Nomenclature, Distribution, and Function

    PubMed Central

    Kirby, Helen R.; Maguire, Janet J.; Colledge, William H.

    2010-01-01

    Kisspeptins are members of the Arg-Phe amide family of peptides, which have been identified as endogenous ligands for a G-protein-coupled receptor encoded by a gene originally called GPR54 (also known as AXOR12 or hOT7T175). After this pairing, the gene has been renamed KISS1R. The International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification recommends that the official name for the receptor is the kisspeptin receptor to follow the convention of naming the receptor protein after the endogenous ligand. The endogenous ligand was initially called metastin, after its role as a metastasis suppressor, and is now referred to as kisspeptin-54 (KP-54), a C-terminally amidated 54-amino acid peptide cleaved from the 145-amino acid gene product. Shorter C-terminal cleavage fragments [KP-14, KP-13 and KP-10 (the smallest active fragment)] are also biologically active. Both receptor and peptide are widely expressed in human, rat, and mouse; the receptor sequence shares more than 80% homology in these species. Activation of the kisspeptin receptor by kisspeptin is via coupling to Gq/11 and the phospholipase C pathway, causing Ca2+ mobilization. Mutations in the KISS1R gene result in hypogonadotropic hypogonadotropism, and targeted disruption of Kiss1r in mice reproduces this phenotype, which led to the discovery of the remarkable ability of the kisspeptin receptor to act as a molecular switch for puberty. In addition to regulating the reproductive axis, the kisspeptin receptor is also implicated in cancer, placentation, diabetes, and the cardiovascular system. PMID:21079036

  12. Relativistic cosmology number densities and the luminosity function

    NASA Astrophysics Data System (ADS)

    Iribarrem, A. S.; Lopes, A. R.; Ribeiro, M. B.; Stoeger, W. R.

    2012-03-01

    Aims: This paper studies the connection between the relativistic number density of galaxies down the past light cone in a Friedmann-Lemaître-Robertson-Walker spacetime with non-vanishing cosmological constant and the galaxy luminosity function (LF) data. It extends the redshift range of previous results presented in Albani et al. (2007, ApJ, 657, 760), where the galaxy distribution was studied out to z = 1. Observational inhomogeneities were detected at this range. This research also searches for LF evolution in the context of the framework advanced by Ribeiro and Stoeger (2003, ApJ, 592, 1), further developing the theory linking relativistic cosmology theory and LF data. Methods: Selection functions are obtained using the Schechter parameters and redshift parametrization of the galaxy LF obtained from an I-band selected dataset of the FORS deep field galaxy survey in the redshift range 0.5 ≤ z ≤ 5.0 for its blue bands and 0.75 ≤ z ≤ 3.0 for its red ones. Differential number counts, densities and other related observables are obtained, and then used with the calculated selection functions to study the empirical radial distribution of the galaxies in a fully relativistic framework. Results: The redshift range of the dataset used in this work, which is up to five times larger than the one used in previous studies, shows an increased relevance of the relativistic effects of expansion when compared to the evolution of the LF at the higher redshifts. The results also agree with the preliminary ones presented in Albani et al., suggesting a power-law behavior of relativistic densities at high redshifts when they are defined in terms of the luminosity distance.

  13. Epizootiology, distribution and the impact on international trade of two penaeid shrimp viruses in the Americas.

    PubMed

    Lightner, D V

    1996-06-01

    Marine penaeid shrimp are effected by approximately twenty viruses, the majority of which were discovered as a result of their negative effects on aquaculture. In the Americas, infectious hypodermal and haematopoietic necrosis (IHHN) virus and Taura syndrome (TS) virus have had a significant negative impact on aquaculture industries and, in one instance, on a commercial fishery. Both viruses have become widely distributed as a consequence of the movement of host stocks for aquaculture. IHHN virus (IHHNV) causes catastrophic losses in cultured and wild Penaeus stylirostris. In marked contrast, P. vannamei is relatively resistant to IHHN but infection results, nonetheless, in poor culture performance. TS virus (TSV) is the 'mirror image' of IHHNV in its effect on P. stylirostris and P. vannamei. TSV causes catastrophic losses in P. vannamei, whereas P. stylirostris is highly resistant to TS. In the less than three years since the discovery of TSV in Ecuador in 1992, the virus has spread rapidly and caused massive production losses in most shrimp-growing countries in the Americas. PMID:8890382

  14. The Main Sequence Luminosity Function of Low-Mass Globular Clusters

    NASA Astrophysics Data System (ADS)

    Smith, Graeme

    2009-07-01

    Theoretical work indicates that the dynamical evolution of globular clusters of low mass and low central concentration is strongly determined by mass-loss processes, such as stellar evaporation and tidal stripping, that can eventually lead to cluster dissolution. In fact, mass loss and cluster disruption is now considered to be a viable explanation for the form of the faint end of the Milky Way globular cluster luminosity function. A clear observational demonstration of the prevalence of cluster mass-loss would have ramifications not only for the dynamical evolution of individual globular clusters and their internal stellar mass distributions, but also for the relationships between halo field and cluster stars and the properties of globular cluster systems in galaxies. Our previous WFPC2 imaging of the low-mass diffuse halo cluster Palomar 5 revealed a main sequence deficient in stars compared to other low-concentration globular clusters of much higher mass, consistent with there having been a considerable loss of stars from this system. But is Pal 5 typical of low-mass, low-concentration halo clusters? We propose to place the mass-loss scenario on a firm observational footing {or otherwise} by using WFC3 imaging to measure the main-sequence stellar mass functions of two of the lowest-mass lowest-concentration globular clusters in the Milky Way, AM-4 and Palomar 13, in order to search for analogous evidence of stellar depletion.

  15. The Radio and Optical Luminosity Evolution of Quasars II - The SDSS Sample

    SciTech Connect

    Singal, J.; Petrosian, V.; Stawarz, L.; Lawrence, A.

    2012-12-28

    We determine the radio and optical luminosity evolutions and the true distribution of the radio loudness parameter R, defined as the ratio of the radio to optical luminosity, for a set of more than 5000 quasars combining SDSS optical and FIRST radio data. We apply the method of Efron and Petrosian to access the intrinsic distribution parameters, taking into account the truncations and correlations inherent in the data. We find that the population exhibits strong positive evolution with redshift in both wavebands, with somewhat greater radio evolution than optical. With the luminosity evolutions accounted for, we determine the density evolutions and local radio and optical luminosity functions. The intrinsic distribution of the radio loudness parameter R is found to be quite different than the observed one, and is smooth with no evidence of a bi-modality in radio loudness. The results we find are in general agreement with the previous analysis of Singal et al., 2011 which used POSS-I optical and FIRST radio data.

  16. THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS. II. THE SDSS SAMPLE

    SciTech Connect

    Singal, J.; Petrosian, V.; Stawarz, L.; Lawrence, A.

    2013-02-10

    We determine the radio and optical luminosity evolutions and the true distribution of the radio-loudness parameter R, defined as the ratio of the radio to optical luminosity, for a set of more than 5000 quasars combining Sloan Digital Sky Survey optical and Faint Images of the Radio Sky at Twenty cm (FIRST) radio data. We apply the method of Efron and Petrosian to access the intrinsic distribution parameters, taking into account the truncations and correlations inherent in the data. We find that the population exhibits strong positive evolution with redshift in both wavebands, with somewhat greater radio evolution than optical. With the luminosity evolutions accounted for, we determine the density evolutions and local radio and optical luminosity functions. The intrinsic distribution of the radio-loudness parameter R is found to be quite different from the observed one and is smooth with no evidence of a bimodality in radio loudness for log R {>=} -1. The results we find are in general agreement with the previous analysis of Singal et al., which used POSS-I optical and FIRST radio data.

  17. Detailed Shape and Evolutionary Behavior of the X-Ray Luminosity Function of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Miyaji, T.; Hasinger, G.; Salvato, M.; Brusa, M.; Cappelluti, N.; Civano, F.; Puccetti, S.; Elvis, M.; Brunner, H.; Fotopoulou, S.; Ueda, Y.; Griffiths, R. E.; Koekemoer, A. M.; Akiyama, M.; Comastri, A.; Gilli, R.; Lanzuisi, G.; Merloni, A.; Vignali, C.

    2015-05-01

    We construct the rest-frame 2-10 keV intrinsic X-ray luminosity function (XLF) of active galactic nuclei (AGNs) from a combination of X-ray surveys from the all-sky Swift BAT survey to the Chandra Deep Field South. We use ˜3200 AGNs in our analysis, which covers six orders of magnitude in flux. The inclusion of XMM and Chandra COSMOS data has allowed us to investigate the detailed behavior of the XLF and evolution. In deriving our XLF, we take into account realistic AGN spectrum templates, absorption corrections, and probability density distributions in photometric redshift. We present an analytical expression for the overall behavior of the XLF in terms of the luminosity-dependent density evolution, smoothed two-power-law expressions in 11 redshift shells, three-segment power-law expression of the number density evolution in four luminosity classes, and binned XLF. We observe a sudden flattening of the low luminosity end slope of the XLF slope at z ≳0.6. Detailed structures of the AGN downsizing have also been revealed, where the number density curves have two clear breaks at all luminosity classes above log {{L}X}\\gt 43. The two-break structure is suggestive of two-phase AGN evolution, consisting of major merger triggering and secular processes.

  18. Luminosity Dependence and Redshift Evolution of Strong Emission-Line Diagnostics in Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Cowie, L. L.; Barger, A. J.; Songaila, A.

    2016-01-01

    We examine the redshift evolution of standard strong emission-line diagnostics for Hβ-selected star-forming galaxies using the local SDSS sample and a new z=0.2{--}2.3 sample obtained from Hubble Space Telescope WFC3 grism and Keck DEIMOS and MOSFIRE data. We use the SDSS galaxies to show that there is a systematic dependence of the strong emission-line properties on Balmer-line luminosity, which we interpret as showing that both the N/O abundance and the ionization parameter increase with increasing line luminosity. Allowing for the luminosity dependence tightens the diagnostic diagrams and the metallicity calibrations. The combined SDSS and high-redshift samples show that there is no redshift evolution in the line properties once the luminosity correction is applied, i.e., all galaxies with a given L({{H}}β ) have similar strong emission-line distributions at all the observed redshifts. We argue that the best metal diagnostic for the high-redshift galaxies may be a luminosity-adjusted version of the [N ii]6584/Hα metallicity relation. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  19. Copper distribution and speciation across the International GEOTRACES Section GA03

    NASA Astrophysics Data System (ADS)

    Jacquot, Jeremy E.; Moffett, James W.

    2015-06-01

    Copper (Cu) distribution and speciation were characterized along a zonal section in the North Atlantic Ocean from Lisbon, Portugal, to Woods Hole, Massachusetts as part of the U.S. GEOTRACES program. Dissolved Cu profiles displayed many of the same features identified by other researchers, including sub-surface scavenging and a linear increase with depth, but many also exhibited unique properties and geographic trends. Concentrations ranged from 0.43 nM at the surface to 3.07 nM near the seafloor. The highest concentrations were measured in deep waters to the west of Cape Verde and northwest of the Canary Islands while the lowest concentrations were measured in upper waters, mostly between Mauritania and Cape Verde. The westernmost sampling sites overlying or adjacent to the U.S. east coast continental shelf featured surface maxima that decreased in magnitude moving east toward Bermuda, reflecting declining inputs from Cu-enriched coastal waters and North American aerosols. Free Cu (Cu2+) concentrations were tightly controlled by organic complexation and scavenging across the section with values varying between 1.54 fM and 1.07 pM. These results provide the first evidence that Cu2+ concentrations are strongly complexed throughout the water column, even in boundary zones where dissolved Cu concentrations are elevated because of local sources. Strong organic ligands (L) acted as a buffer for Cu2+, restricting concentrations to a narrow range (10-100 fM) throughout most of the water column. Cu2+ and dissolved Cu were strongly scavenged by suspended particulate matter within several benthic nepheloid layers and a hydrothermal plume above the Trans-Atlantic Geotraverse (TAG) vent field on the Mid-Atlantic Ridge (MAR).

  20. Distribution of fat, non-osseous lean and bone mineral mass in international Rugby Union and Rugby Sevens players.

    PubMed

    Higham, D G; Pyne, D B; Anson, J M; Dziedzic, C E; Slater, G J

    2014-06-01

    Differences in the body composition of international Rugby Union and Rugby Sevens players, and between players of different positions are poorly understood. The purpose of this study was to examine differences in the quantity and regional distribution of fat, non-osseous lean and bone mineral mass between playing units in Rugby Union and Rugby Sevens. Male Rugby Union (n=21 forwards, 17 backs) and Rugby Sevens (n=11 forwards, 16 backs) players from the Australian national squads were measured using dual-energy X-ray absorptiometry. The digital image of each player was partitioned into anatomical regions including the arms, legs, trunk, and android and gynoid regions. Compared with backs, forwards in each squad were heavier and exhibited higher absolute regional fat (Union 43-67%; ±~17%, range of % differences; ±~95% confidence limits (CL); Sevens 20-26%; ±~29%), non-osseous lean (Union 14-22%; ±~5.8%; Sevens 6.9-8.4%; ±~6.6%) and bone mineral (Union 12-26%; ±~7.2%; Sevens 5.0-11%; ±~7.2%) mass. When tissue mass was expressed relative to regional mass, differences between Rugby Sevens forwards and backs were mostly unclear. Rugby Union forwards had higher relative fat mass (1.7-4.7%; ±~1.9%, range of differences; ±~95% CL) and lower relative non-osseous lean mass (-4.2 to -1.8%; ±~1.8%) than backs in all body regions. Competing in Rugby Union or Rugby Sevens characterized the distribution of fat and non-osseous lean mass to a greater extent than a player's positional group, whereas the distribution of bone mineral mass was associated more with a player's position. Differences in the quantity and distribution of tissues appear to be related to positional roles and specific demands of competition in Rugby Union and Rugby Sevens. PMID:24408768

  1. A Comparative Study of "The International Educational Technology Conference" (IETC) and "The International Conference on Computers in Education" (ICCE): The Program, Essay Distribution, the Themes, and Research Methods

    ERIC Educational Resources Information Center

    Chen, Gwo-Dong; Chen, Chun-Hsiang; Wang, Chin-Yeh; Li, Liang-Yi

    2012-01-01

    The article aims to compare international conferences, "The International Educational Technology Conference" (IETC, 2011) and "The International Conference on Computers in Education" (ICCE, 2010), from various dimensions. The comparison is expected to conclude a better approach for every IETC and ICCE to be held. (Contains 4 tables.)

  2. Operation of the Run IIB D0 Luminosity System and Determination of the Run IIB Luminosity Constant

    SciTech Connect

    Prewitt, Michelle Victoria; /Rice U.

    2010-04-01

    The luminosity system is an integral part of the D0 detector that must be properly maintained to provide accurate luminosity measurements for physics analysis. After the addition of a readout layer to the silicon vertex detector in 2006, it was necessary to re-calculate the effective inelastic cross section to which the luminosity monitor is sensitive. The preliminary analysis showed that the luminosity constant did not change with the addition of the extra layer of silicon. A full study of the revised luminosity constant including a complete analysis of systematic uncertainties has been completed. The luminosity constant was determined to be {sigma}{sub eff} = 48.3 {+-} 1.9 {+-} 0.6 mb, which reduces the D0 contribution to the luminosity measurement uncertainty by almost 3%.

  3. Fluorescence characteristics of the fuel tracers triethylamine and trimethylamine for the investigation of fuel distribution in internal combustion engines.

    PubMed

    Lind, Susanne; Aßmann, Simon; Zigan, Lars; Will, Stefan

    2016-03-01

    Laser-induced fluorescence based on fuel tracers like amines is a suitable measurement technique for mixing studies in internal combustion (IC) engines. Triethylamine has often been used in gasoline IC engines; however, no detailed fluorescence characterization for excitation at 263 or 266 nm is available. Trimethylamine (TMA) exhibits high potential as a gaseous fuel tracer but little information about TMA fluorescence is currently available. A picosecond laser source combined with a streak camera equipped with a spectrograph was used to determine the spectral fluorescence emission and fluorescence decay time of both tracers. The tracers were investigated at various temperatures and pressures in a calibration cell with nitrogen as bath gas. The results provide an in-depth understanding of the fluorescence characteristics of both tracers and allow assessment of their application to the investigation of fuel distribution in IC engines. PMID:26974612

  4. A review of trends in the distribution of vector-borne diseases: is international trade contributing to their spread?

    PubMed

    de La Rocque, S; Balenghien, T; Halos, L; Dietze, K; Claes, F; Ferrari, G; Guberti, V; Slingenbergh, J

    2011-04-01

    It is difficult to determine the part that international trade has played in the expansion of vector-borne diseases, because of the multitude of factors that affect the transformation of habitats and the interfaces between vectors and hosts. The introduction of pathogens through trade in live animals or products of animal origin, as well as the arrival of arthropod vectors, is probably quite frequent but the establishment of an efficient transmission system that develops into a disease outbreak remains the exception. In this paper, based on well-documented examples, the authors review the ecological and epidemiological characteristics of vector-borne diseases that may have been affected in their spread and change of distribution by international trade. In addition, they provide a detailed analysis of the risks associated with specific trade routes and recent expansions of vector populations. Finally, the authors highlight the importance, as well as the challenges, of preventive surveillance and regulation. The need for improved monitoring of vector populations and a readiness to face unpredictable epidemiological events are also emphasised, since this will require rapid reaction, not least in the regulatory context. PMID:21809758

  5. Starbursts in Low Luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Cid Fernandes, Roberto

    2005-05-01

    Low Luminosity Active Galactic Nuclei (LLAGN), which comprise low-ionization nuclear emission-line regions (LINERs) and transition-type objects (TOs), represent the most common type of nuclear activity. Here, we search for spectroscopic signatures of starbursts and post-starbursts in LLAGN, and investigate their relationship to the ionization mechanism in LLAGN. The method used is based on the stellar population synthesis of the circumnuclear optical continuum of these galaxies. We have found that intermediate-age populations (108-109 yr) are very common in weak-[O I] LLAGN, but that very young stars (≤107 yr) contribute very little to the central optical continuum of these objects. However, ˜ 1 Gyr ago these nuclei harboured starbursts of size ˜ 100 pc and masses 107-108 M⊙. Meanwhile, most of the strong-[O I] LLAGN have predominantly old stellar populations.

  6. The luminosity function of quasars and its evolution: A comparison of optically selected quasars and quasars found in radio catalogs

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1973-01-01

    The luminosity function of quasars and its evolution are discussed, based on comparison of available data on optically selected quasars and quasars found in radio catalogs. It is assumed that the red shift of quasars is cosmological and the results are expressed in the framework of the Lambda = 0, Q sub Q = 1 cosmological model. The predictions of various density evolution laws are compared with observations of an optically selected sample of quasars and quasar samples from radio catalogs. The differences between the optical luminosity functions, the red shift distributions and the radio to optical luminosity ratios of optically selected quasars and radio quasars rule out luminosity functions where there is complete absence of correlation between radio and optical luminosities. These differences also imply that Schmidt's (1970) luminosity function, where there exists a statistical correlation between radio and optical luminosities, although may be correct for high red shift objects, disagrees with observation at low red shifts. These differences can be accounted for by postulating existence of two classes (1 and 2) of objects.

  7. Development of integrated damage detection system for international America's Cup class yacht structures using a fiber optic distributed sensor

    NASA Astrophysics Data System (ADS)

    Akiyoshi, Shimada; Naruse, Hiroshi; Uzawa, Kyoshi; Murayama, Hideaki; Kageyama, Kazuro

    2000-06-01

    We constructed a new health monitoring system to detect damage using a fiber optic distributed sensor, namely a Brillouin optical time domain reflectometer (BOTDR), and installed it in International America's Cup Class (IACC) yachts, the Japanese entry in America's Cup 2000. IACC yachts are designed to be as fast as possible, so it is essential that they are lightweight and encounter minimum water resistance. Advanced composite sandwich structures, made with carbon fiber reinforced plastic (CFRP) skins and a honeycomb core, are used to achieve the lightweight structure. Yacht structure designs push the strength of the materials to their limit and so it is important to detect highly stressed or damaged regions that might cause a catastrophic fracture. The BOTDR measures changes in the Brillouin frequency shift caused by distributed strain along one optical fiber. We undertook two experiments: a pulling test and a four point bending test on a composite beam. The former showed that no slippage occurred between the optical fiber glass and its coating. The latter confirmed that a debonding between the skin and the core of 300 mm length could be found with the BOTDR. Next we examined the effectiveness with which this system can assess the structural integrity of IACC yachts. The results show that our system has the potential for use as a damage detection system for smart structures.

  8. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz. PMID:26253286

  9. Investigation of the distribution and function of α-adrenoceptors in the sheep isolated internal anal sphincter

    PubMed Central

    Rayment, SJ; Eames, T; Simpson, JAD; Dashwood, MR; Henry, Y; Gruss, H; Acheson, AG; Scholefield, JH; Wilson, VG

    2010-01-01

    BACKGROUND AND PURPOSE We have investigated the distribution of α-adrenoceptors in sheep internal anal sphincter (IAS), as a model for the human tissue, and evaluated various imidazoline derivatives for potential treatment of faecal incontinence. EXPERIMENTAL APPROACH Saturation and competition binding with 3H-prazosin and 3H-RX821002 were used to confirm the presence and density of α-adrenoceptors in sheep IAS, and the affinity of imidazoline compounds at these receptors. A combination of in vitro receptor autoradiography and immunohistochemistry was used to investigate the regional distribution of binding sites. Contractile activity of imidazoline-based compounds on sheep IAS was assessed by isometric tension recording. KEY RESULTS Saturation binding confirmed the presence of both α1- and α2-adrenoceptors, and subsequent characterization with sub-type-selective agents, identified them as α1A- and α2D-adrenoceptor sub-types. Autoradiographic studies with 3H-prazosin showed a positive association of α1-adrenoceptors with immunohistochemically identified smooth muscle fibres. Anti-α1-adrenoceptor immunohistochemistry revealed similar distributions of the receptor in sheep and human IAS. The imidazoline compounds caused concentration-dependent contractions of the anal sphincter, but the maximum responses were less than those elicited by l-erythro-methoxamine, a standard non-imidazoline α1-adrenoceptor agonist. Prazosin (selective α1-adrenoceptor antagonist) significantly reduced the magnitude of contraction to l-erythro-methoxamine at the highest concentration used. Both prazosin and RX811059 (a selective α2-adrenoceptor antagonist) reduced the potency (pEC50) of clonidine. CONCLUSIONS AND IMPLICATIONS This study shows that both α1- and α2-adrenoceptors are expressed in the sheep IAS, and contribute (perhaps synergistically) to contractions elicited by various imidazoline derivatives. These agents may prove useful in the treatment of faecal incontinence

  10. Masses and Luminosities of X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Quirrenbach, Andreas; Frink, Sabine; Tomsick, John

    2004-01-01

    Using SIM, we will perform narrow-angle observations of several X-ray binaries to determine their orbits, and we will observe about 50 X-ray binary systems in wide-angle mode to measure their distances and proper motions. Sources with mass estimates for the compact component of greater than 3 solar masses are generally called black hole candidates since this mass is above the theoretical neutron star limit. Narrow-angle observations of these sources provide a direct test of the dynamical mass estimates on which the black hole evidence is based. Better measurements of the black hole masses will provide constraints on possible evolutionary paths that lead to black hole formation. When combined with X-ray data, mass measurements may provide additional constraints on the black hole spin. Precise mass determinations of neutron star systems can address the question of whether neutron stars can be significantly more massive than 1.4 solar masses, which would eliminate soft models of the neutron star equations of state. The wide-angle observations will probe the Galactic distribution of X-ray binaries through parallaxes and proper motions. They will also eliminate the uncertainties in the luminosities of individual sources, which is currently up to a full order of magnitude. This will enable more detailed comparisons of X-ray observations to physical models such as advection-dominated accretion flows (ADAFs). We intend to carry out the following measurements: 1) Determine the orbits of two black hole candidates to measure the black hole masses; 2) Obtain precise mass measurements for two neutron star systems to constrain neutron star equations of state; 3) Determine the distances and thus luminosities of selected representatives of various classes of X-ray binaries (black hole candidates, neutron stars, jet sources); 4) In the process of distance determination, proper motions will also be measured, from which the age of the population can be estimated.

  11. DETERMINING THE LUMINOSITY FUNCTION OF SWIFT LONG GAMMA-RAY BURSTS WITH PSEUDO-REDSHIFTS

    SciTech Connect

    Tan Weiwei; Yu Yunwei; Cao Xiaofeng

    2013-07-20

    The determination of the luminosity function (LF) of gamma-ray bursts (GRBs) is an important role for the cosmological applications of the GRBs, which, however, is seriously hindered by some selection effects due to redshift measurements. In order to avoid these selection effects, we suggest calculating pseudo-redshifts for Swift GRBs according to the empirical L-E{sub p} relationship. Here, such a L-E{sub p} relationship is determined by reconciling the distributions of pseudo- and real redshifts of redshift-known GRBs. The values of E{sub p} taken from Butler's GRB catalog are estimated with Bayesian statistics rather than observed. Using the GRB sample with pseudo-redshifts of a relatively large number, we fit the redshift-resolved luminosity distributions of the GRBs with a broken-power-law LF. The fitting results suggest that the LF could evolve with redshift by a redshift-dependent break luminosity, e.g., L{sub b} = 1.2 Multiplication-Sign 10{sup 51}(1 + z){sup 2} erg s{sup -1}. The low- and high-luminosity indices are constrained to 0.8 and 2.0, respectively. It is found that the proportional coefficient between the GRB event rate and the star formation rate should correspondingly decrease with increasing redshifts.

  12. Constraining the rate and luminosity function of Swift gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Howell, E. J.; Coward, D. M.; Stratta, G.; Gendre, B.; Zhou, H.

    2014-10-01

    We compute the intrinsic isotropic peak luminosity function (LF) and formation rate of long gamma-ray bursts (LGRBs) using a novel approach. We complement a standard log N-log P brightness distribution and Vmax estimations with two observation-time relations: a redshift-observation-time relation (log z-log T) and a new luminosity-observation-time relation (log L-log T). We show that this approach reduces degeneracies that exist between the rate and LF of a brightness distribution. To account for the complex triggering algorithm employed by Swift, we use recent results of Lien et al. (2014) to produce a suite of efficiency functions. Using these functions with the above methods, we show that a log L-log T method can provide good constraints on the form of the LF, particularly the high end. Using a sample of 175 peak luminosities determined from redshifts with well-defined selection criteria, our results suggest that LGRBs occur at a local rate (without beaming corrections) of [0.7 < ρ0 < 0.8] Gpc-3 yr-1. Within this range, assuming a broken power-law LF, we find best estimates for the low- and high-energy indices of -0.95 ± 0.09 and -2.59 ± 0.93, respectively, separated by a break luminosity 0.80 ± 0.43 × 1052 erg s-1.

  13. The Low-Luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bentz, Misty C.; Denney, K.; Grier, C.; Barth, A. J.; Peterson, B. M.; Vestergaard, M.

    2014-01-01

    We present an updated and revised analysis of the relationship between the Hβ broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create "AGN-free" images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hβ time lag, which is assumed to yield the average Hβ BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of α = 0.533^{+0.035}_{-0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 ± 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  14. The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bentz, Misty C.; Denney, Kelly D.; Grier, Catherine J.; Barth, Aaron J.; Peterson, Bradley M.; Vestergaard, Marianne; Bennert, Vardha N.; Canalizo, Gabriela; De Rosa, Gisella; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E.; Li, Weidong; Malkan, Matthew A.; Pogge, Richard W.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-04-01

    We present an updated and revised analysis of the relationship between the Hβ broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create "AGN-free" images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hβ time lag, which is assumed to yield the average Hβ BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R BLR-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of \\alpha = 0.533^{+0.035}_{-0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 ± 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R BLR-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  15. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Bentz, Misty C.; Denney, Kelly D.; Vestergaard, Marianne; Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W.; Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Li Weidong; Gates, Elinor L.; Malkan, Matthew A.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-04-20

    We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  16. RE-ANALYSIS OF THE RADIO LUMINOSITY FUNCTION OF GALACTIC H II REGIONS

    SciTech Connect

    Paladini, R.; Noriega-Crespo, A.; Carey, S. J.; DeZotti, G.

    2009-09-10

    We have re-analyzed continuum and recombination lines radio data available in the literature in order to derive the luminosity function (LF) of Galactic H II regions. The study is performed by considering the first and fourth Galactic quadrants independently. We estimate the completeness level of the sample in the fourth quadrant at 5 Jy, and the one in the first quadrant at 2 Jy. We show that the two samples (fourth or first quadrant) include, as well as giant and supergiant H II regions, a significant number of subgiant sources. The LF is obtained, in each Galactic quadrant, with a generalized Schmidt's estimator using an effective volume derived from the observed spatial distribution of the considered H II regions. The re-analysis also takes advantage of recently published ancillary absorption data allowing to solve the distance ambiguity for several objects. A single power-law fit to the LFs retrieves a slope equal to -2.23 {+-} 0.07 (fourth quadrant) and to -1.85 {+-} 0.11 (first quadrant). We also find marginal evidence of a luminosity break at L{sub knee} = 10{sup 23.45} erg s{sup -1} Hz{sup -1} for the LF in the fourth quadrant. We convert radio luminosities into equivalent H{alpha} and Lyman continuum luminosities to facilitate comparisons with extragalactic studies. We obtain an average total H II regions Lyman continuum luminosity of 0.89 {+-} 0.23 x 10{sup 53} s{sup -1}, corresponding to 30% of the total ionizing luminosity of the Galaxy.

  17. Period-Luminosity Relation for Type II Cepheids

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki; Feast, Michael W.; Menzies, John W.

    2009-09-01

    We have estimated JHKs magnitudes corrected to mean intensity for LMC type II Cepheids found in the OGLE-III survey. Period-luminosity relations (PLRs) are derived in JHKs as well as in a reddening-free VI parameter. The BL Her stars (P<4 d) and the W Vir stars (P = 4 to 20 d) are co-linear in these PLRs. The slopes of the infrared relations agree with those found previously for type II Cepheids in globular clusters within the uncertainties. Using the pulsation parallaxes of V553 Cen and SW Tau, the data lead to an LMC modulus of 18.46+/-0.10 mag, uncorrected for any metallicity effects. We have now established the PLR of type II Cepheids as a distance indicator by confirming that (almost) the same PLR satisfies the distributions in the PL diagram of type II Cepheids in (at least) two different systems, i.e. the LMC and Galactic globular clusters, and by calibrating the zero point of the PLR. RV Tau stars in the LMC, as a group, are not co-linear with the shorter-period type II Cepheids in the infrared PLRs in marked contrast to such stars in globular clusters. We note differences in period distribution and infrared colors for RV Tau stars in the LMC, globular clusters and Galactic field. We also compare the PLR of type II Cepheids with that of classical Cepheids.

  18. Uptake of injected 125I-ricin by rat liver in vivo. Subcellular distribution and characterization of the internalized ligand.

    PubMed Central

    Frénoy, J P; Turpin, E; Janicot, M; Gehin-Fouque, F; Desbuquois, B

    1992-01-01

    Subcellular-fractionation techniques were used to characterize the endocytic pathway followed by ricin in rat liver in vivo and tentatively identify the site(s) at which the ricin interchain disulphide bridge is split. After injection of 125I-ricin, hepatic uptake of radioactivity was maximum at 30 min (40% of injected dose). At 5 min, about 80% of the radioactivity in the homogenate was recovered in the microsomal (P) fraction, but later on the recovery of the radioactivity in the mitochondrial-lysosomal (ML) fractions progressively increased (50% at 30 min) at the expense of that in the P fraction. Subfractionation of the P and ML fractions on analytical sucrose-density gradients revealed a time-dependent translocation of the radioactivity from low- to high-density endocytic structures, with median relative densities at 5 and 60 min of about 1.15 and 1.16 (P fraction) and 1.19 and 1.22 (ML fraction) respectively. The late distribution of the radioactivity in the ML fraction was similar to that of the lysosomal marker acid phosphatase. Studies with co-injected lactose and mannan showed that ricin was internalized mainly via the mannose receptor. In the presence of mannan, the late recovery of radioactivity in the ML fraction was decreased, and the distribution of the radioactivity associated with the P fraction was shifted toward lower densities (median relative density 1.13), indicating a different pathway of endocytosis. Analysis of the radioactivity associated with the ML and S fractions by SDS/PAGE revealed a time-dependent increase in the amount of intact A- and B-chains and low-molecular-mass products. When ML fractions containing partially processed ricin were incubated at 37 degrees C at pH 5 or at pH 7.2 in the presence of ATP, only low-molecular-mass products were generated. We conclude that internalized ricin associates with endocytic structures whose size and density of equilibration increase with time, and that, although detectable in these structures

  19. Intrinsic luminosities of the Jovian planets

    SciTech Connect

    Hubbard, W.B.

    1980-02-01

    We review available data and theories on the size and nature of interior power sources in the Jovian planets. Broad band infrared measurements indicate that Jupiter and Saturn have interior heat fluxes about 150 and 50 times larger, respectively, than the terrestrial value. While Neptune has a modest heat flux (approx.5 times terrestrial), it is clearly detected by earth-based measurements. Only Uranus seems to lack a detectable interior heat flow. Various models, ranging from simple cooling to gravitational layering to radioactivity, are discussed. Current evidence seems to favor a cooling model in which the escape of heat is regulated by the atmosphere. This model seems capable of explaining phenomena such as the uniformity of effective temperature over Jupiter's surface and the different emission rates of Uranus and Neptune. In such a model the heat radiated from the atmosphere may derived from depletion of a thermal reservoir in the interior, or it may derive from separation of chemical elements during formation of a core. Calculations indicate that in the earlier stages of cooling, Jupiter and Saturn may have more homogeneous abundances of hydrogen and helium and radiate energy derived from simple cooling. At a subsequent phase (which may be later than the present time), hydrogen and helium will separate and supply grativational energy. Either model is consistent with a hot, high-luminosity origin for the Jovian Planets.

  20. Questions on Pure Luminosity Evolution for Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    He, Ping; Zhang, Yuan-Zhong

    1999-02-01

    The explanation for the existence of an excess population of faint blue galaxies (FBGs) has been a mystery for nearly two decades and remains one of the grand astronomical issues to date. Existing models cannot explain all of the observational data, such as galaxy number counts in the optical and infrared passbands and the redshift distributions of galaxies. Here, by modeling the morphological number counts derived from the Hubble Space Telescope, as well as the number counts in optical and infrared passbands and the redshift and color distributions of galaxies obtained from ground-based observations, we show that the ``FBG problem'' cannot be resolved if elliptical galaxies are assumed to have formed in an instantaneous burst of star formation at high redshift with no subsequent star formation events, which is the conventional scenario for formation and evolution of ellipticals. There exist great discrepancies between the observed B-K color distribution and the predicted distribution for ellipticals by such a pure luminosity evolution (PLE) model in the context of the conventional scenario. Neither can the mild evolution (i.e., the star formation events have lasted for a longer time than those of the instantaneous burst and passive evolution since the formation of galaxies) for ellipticals be accepted in the context of PLE assumption. The introduction of dust extinction also cannot save the PLE models. This conclusion holds for each of the three cosmological models under consideration: flat, open, and Λ-dominated. Hence, our investigation suggests that PLE assumption for elliptical galaxies is questionable, and number evolution may be essential for ellipticals.

  1. GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY

    SciTech Connect

    Zehavi, Idit; Zheng Zheng; Weinberg, David H.; Blanton, Michael R.; Bahcall, Neta A.; Gunn, James E.; Lupton, Robert H.; Strauss, Michael A.; Berlind, Andreas A.; Brinkmann, Jon; Frieman, Joshua A.; Nichol, Robert C.; Percival, Will J.; Schneider, Donald P.; Skibba, Ramin A.; Tegmark, Max; York, Donald G.

    2011-07-20

    We measure the luminosity and color dependence of galaxy clustering in the largest-ever galaxy redshift survey, the main galaxy sample of the Sloan Digital Sky Survey Seventh Data Release. We focus on the projected correlation function w{sub p} (r{sub p}) of volume-limited samples, extracted from the parent sample of {approx}700,000 galaxies over 8000 deg{sup 2}, extending up to redshift of 0.25. We interpret our measurements using halo occupation distribution (HOD) modeling assuming a {Lambda}CDM cosmology (inflationary cold dark matter with a cosmological constant). The amplitude of w{sub p} (r{sub p}) grows slowly with luminosity for L < L{sub *} and increases sharply at higher luminosities, with a large-scale bias factor b(> L) x ({sigma}{sub 8}/0.8) = 1.06 + 0.21(L/L{sub *}){sup 1.12}, where L is the sample luminosity threshold. At fixed luminosity, redder galaxies exhibit a higher amplitude and steeper correlation function, a steady trend that runs through the 'blue cloud' and 'green valley' and continues across the 'red sequence'. The cross-correlation of red and blue galaxies is close to the geometric mean of their autocorrelations, dropping slightly below at r{sub p} < 1 h{sup -1} Mpc. The luminosity trends for the red and blue galaxy populations separately are strikingly different. Blue galaxies show a slow but steady increase of clustering strength with luminosity, with nearly constant shape of w{sub p} (r{sub p}). The large-scale clustering of red galaxies shows little luminosity dependence until a sharp increase at L > 4 L{sub *}, but the lowest luminosity red galaxies (0.04-0.25 L{sub *}) show very strong clustering on small scales (r{sub p} < 2 h{sup -1} Mpc). Most of the observed trends can be naturally understood within the {Lambda}CDM+HOD framework. The growth of w{sub p} (r{sub p}) for higher luminosity galaxies reflects an overall shift in the mass scale of their host dark matter halos, in particular an increase in the minimum host halo mass M

  2. Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Xiaohu; Shen, Shiyin; Mo, H. J.; van den Bosch, Frank C.; Luo, Wentao; Wang, Yu; Lau, Erwin T.; Wang, Q. D.; Kang, Xi; Li, Ran

    2014-03-01

    We use ROSAT All Sky Survey broad-band X-ray images and the optical clusters identified from Sloan Digital Sky Survey Data Release 7 to estimate the X-ray luminosities around ˜65 000 candidate clusters with masses ≳ 1013 h- 1 M⊙ based on an optical to X-ray (OTX) code we develop. We obtain a catalogue with X-ray luminosity for each cluster. This catalogue contains 817 clusters (473 at redshift z ≤ 0.12) with signal-to-noise ratio >3 in X-ray detection. We find about 65 per cent of these X-ray clusters have their most massive member located near the X-ray flux peak; for the rest 35 per cent, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. We investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, but the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, we find that massive haloes with masses ≳ 1014 h- 1 M⊙ contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses ≲ 1014 h- 1 M⊙ where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses ≳ 1014 h- 1 M⊙ that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. A cluster catalogue containing the optical properties of member galaxies and the X-ray luminosity is available at http://gax.shao.ac.cn/data/Group.html.

  3. CO{sub 2} ICE TOWARD LOW-LUMINOSITY EMBEDDED PROTOSTARS: EVIDENCE FOR EPISODIC MASS ACCRETION VIA CHEMICAL HISTORY

    SciTech Connect

    Kim, Hyo Jeong; Evans, Neal J. II; Dunham, Michael M.; Lee, Jeong-Eun; Pontoppidan, Klaus M.

    2012-10-10

    We present Spitzer IRS spectroscopy of CO{sub 2} ice bending mode spectra at 15.2 {mu}m toward 19 young stellar objects (YSOs) with luminosity lower than 1 L{sub Sun} (3 with luminosity lower than 0.1 L{sub Sun }). Ice on dust grain surfaces can encode the history of heating because pure CO{sub 2} ice forms only at elevated temperature, T > 20 K, and thus around protostars of higher luminosity. Current internal luminosities of YSOs with L < 1L{sub Sun} do not provide the conditions needed to produce pure CO{sub 2} ice at radii where typical envelopes begin. The presence of detectable amounts of pure CO{sub 2} ice would signify a higher past luminosity. Many of the spectra require a contribution from a pure, crystalline CO{sub 2} component, traced by the presence of a characteristic band splitting in the 15.2 {mu}m bending mode. About half of the sources (9 out of 19) in the low-luminosity sample have evidence for pure CO{sub 2} ice, and 6 of these have significant double-peaked features, which are very strong evidence of pure CO{sub 2} ice. The presence of the pure CO{sub 2} ice component indicates that the dust temperature, and hence luminosity of the central star/accretion disk system, must have been higher in the past. An episodic accretion scenario, in which mixed CO-CO{sub 2} ice is converted to pure CO{sub 2} ice during each high-luminosity phase, explains the presence of pure CO{sub 2} ice, the total amount of CO{sub 2} ice, and the observed residual C{sup 18}O gas.

  4. Upgrade of the D0 luminosity monitor readout system

    SciTech Connect

    Anderson, John; Bridges, Lloyd; Casey, Brendan; Enari, Yuji; Green, Johnny; Johnson, Marvin; Kwarciany, Rick; Miao, Chyi-Chiang; Partridge, Richard; Yoo, Hwi Dong; Wang, Jigang; /Brown U. /Fermilab

    2006-12-01

    We describe upgrades to the readout system for the D0 Luminosity Monitor. The D0 Luminosity Monitor consists of plastic scintillation detectors with fine-mesh photomultiplier readout that cover the pseudorapidity range 2.7 < |{eta}| < 4.4. The detector is designed to provide a precise measurement of the rate for non-diffractive inelastic collisions that is used to calculate the TeVatron luminosity at D0. The new readout system is based on custom VME electronics that make precise time-of-flight and charge measurements for each luminosity counter. These measurements are used to identify beam crossings with non-diffractive interactions by requiring in-time hits in both the forward and backward luminosity counters. We have also significantly increased signal/noise for the photomultiplier signals by developing a new front-end preamplifier and improving the grounding scheme.

  5. The D0 experiment's integrated luminosity for Tevatron Run IIa

    SciTech Connect

    Andeen, T.; Casey, B.C.K.; DeVaughan, K.; Enari, Y.; Gallas, E.; Krop, D.; Partridge, R.; Schellman, H.; Snow, G.R.; Yacoob, S.; Yoo, H.D.; /Brown U. /Fermilab /Indiana U. /Northwestern U. /Nebraska U.

    2007-04-01

    An essential ingredient in all cross section measurements is the luminosity used to normalize the data sample. In this note, we present the final assessment of the integrated luminosity recorded by the D0 experiment during Tevatron Run IIa. The luminosity measurement is derived from hit rates from the products of inelastic proton-antiproton collisions registered in two arrays of scintillation counters called the luminosity monitor (LM) detectors. Measured LM rates are converted to absolute luminosity using a normalization procedure that is based on previously measured inelastic cross sections and the geometric acceptance and efficiency of the LM detectors for registering inelastic events. During Run IIa, the LM detector performance was improved by a sequence of upgrades to the electronic readout system and other factors summarized in this note. The effects of these changes on the reported luminosity were tracked carefully during the run. Due to the changes, we partition the run into periods for which different conversions from measured LM rates to absolute luminosity apply. The primary upgrade to the readout system late in Run IIa facilitated a reevaluation of the overall normalization of the luminosity measurement for the full data sample. In this note, we first review the luminosity measurement technique employed by D0. We then summarize the changes to the LM system during Run IIa and the corresponding normalization adjustments. The effect of the adjustments is to increase D0's assessment of its recorded integrated luminosity compared to what was initially reported during Run IIa. The overall increase is 13.4% for data collected between April 20, 2002 (the beginning of Run IIa data used for physics analysis) and February 22, 2006 (the end of Run IIa).

  6. The Luminosities of the Coldest Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Tinney, C. G.; Faherty, Jacqueline K.; Kirkpatrick, J. Davy; Cushing, Mike; Morley, Caroline V.; Wright, Edward L.

    2014-11-01

    In recent years, brown dwarfs have been extended to a new Y-dwarf class with effective temperatures colder than 500 K and masses in the range of 5-30 Jupiter masses. They fill a crucial gap in observable atmospheric properties between the much colder gas-giant planets of our own solar system (at around 130 K) and both hotter T-type brown dwarfs and the hotter planets that can be imaged orbiting young nearby stars (both with effective temperatures in the range of 1500-1000 K). Distance measurements for these objects deliver absolute magnitudes that make critical tests of our understanding of very cool atmospheres. Here we report new distances for nine Y dwarfs and seven very late T dwarfs. These reveal that Y dwarfs do indeed represent a continuation of the T-dwarf sequence to both fainter luminosities and cooler temperatures. They also show that the coolest objects display a large range in absolute magnitude for a given photometric color. The latest atmospheric models show good agreement with the majority of these Y-dwarf absolute magnitudes. This is also the case for WISE0855-0714, the coldest and closest brown dwarf to the Sun, which shows evidence for water ice clouds. However, there are also some outstanding exceptions, which suggest either binarity or the presence of condensate clouds. The former is readily testable with current adaptive optics facilities. The latter would mean that the range of cloudiness in Y dwarfs is substantial with most hosting almost no clouds—while others have dense clouds, making them prime targets for future variability observations to study cloud dynamics. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  7. The luminosities of the coldest brown dwarfs

    SciTech Connect

    Tinney, C. G.; Faherty, Jacqueline K.; Kirkpatrick, J. Davy; Cushing, Mike; Morley, Caroline V.; Wright, Edward L.

    2014-11-20

    In recent years, brown dwarfs have been extended to a new Y-dwarf class with effective temperatures colder than 500 K and masses in the range of 5-30 Jupiter masses. They fill a crucial gap in observable atmospheric properties between the much colder gas-giant planets of our own solar system (at around 130 K) and both hotter T-type brown dwarfs and the hotter planets that can be imaged orbiting young nearby stars (both with effective temperatures in the range of 1500-1000 K). Distance measurements for these objects deliver absolute magnitudes that make critical tests of our understanding of very cool atmospheres. Here we report new distances for nine Y dwarfs and seven very late T dwarfs. These reveal that Y dwarfs do indeed represent a continuation of the T-dwarf sequence to both fainter luminosities and cooler temperatures. They also show that the coolest objects display a large range in absolute magnitude for a given photometric color. The latest atmospheric models show good agreement with the majority of these Y-dwarf absolute magnitudes. This is also the case for WISE0855-0714, the coldest and closest brown dwarf to the Sun, which shows evidence for water ice clouds. However, there are also some outstanding exceptions, which suggest either binarity or the presence of condensate clouds. The former is readily testable with current adaptive optics facilities. The latter would mean that the range of cloudiness in Y dwarfs is substantial with most hosting almost no clouds—while others have dense clouds, making them prime targets for future variability observations to study cloud dynamics.

  8. Constraining properties of GRB magnetar central engines using the observed plateau luminosity and duration correlation

    NASA Astrophysics Data System (ADS)

    Rowlinson, A.; Gompertz, B. P.; Dainotti, M.; O'Brien, P. T.; Wijers, R. A. M. J.; van der Horst, A. J.

    2014-09-01

    An intrinsic correlation has been identified between the luminosity and duration of plateaus in the X-ray afterglows of gamma-ray bursts (GRBs; Dainotti et al. 2008), suggesting a central engine origin. The magnetar central engine model predicts an observable plateau phase, with plateau durations and luminosities being determined by the magnetic fields and spin periods of the newly formed magnetar. This paper analytically shows that the magnetar central engine model can explain, within the 1σ uncertainties, the correlation between plateau luminosity and duration. The observed scatter in the correlation most likely originates in the spread of initial spin periods of the newly formed magnetar and provides an estimate of the maximum spin period of ˜35 ms (assuming a constant mass, efficiency and beaming across the GRB sample). Additionally, by combining the observed data and simulations, we show that the magnetar emission is most likely narrowly beamed and has ≲20 per cent efficiency in conversion of rotational energy from the magnetar into the observed plateau luminosity. The beaming angles and efficiencies obtained by this method are fully consistent with both predicted and observed values. We find that short GRBs and short GRBs with extended emission lie on the same correlation but are statistically inconsistent with being drawn from the same distribution as long GRBs, this is consistent with them having a wider beaming angle than long GRBs.

  9. The Luminosity Function of Fermi-detected Flat-Spectrum Radio Quasars

    SciTech Connect

    Ajello, M.; Shaw, M.S.; Romani, R.W.; Dermer, C.D.; Costamante, L.; King, O.G.; Max-Moerbeck, W.; Readhead, A.; Reimer, A.; Richards, J.L.; Stevenson, M.

    2012-04-16

    Fermi has provided the largest sample of {gamma}-ray selected blazars to date. In this work we use a complete sample of FSRQs detected during the first year of operation to determine the luminosity function (LF) and its evolution with cosmic time. The number density of FSRQs grows dramatically up to redshift {approx}0.5-2.0 and declines thereafter. The redshift of the peak in the density is luminosity dependent, with more luminous sources peaking at earlier times; thus the LF of {gamma}-ray FSRQs follows a luminosity-dependent density evolution similarly to that of radio-quiet AGN. Also using data from the Swift Burst Alert Telescope we derive the average spectral energy distribution of FSRQs in the 10 keV-100GeV band and show that there is no correlation of the peak {gamma}-ray luminosity with {gamma}-ray peak frequency. The coupling of the SED and LF allows us to predict that the contribution of FSRQs to the Fermi isotropic {gamma}-ray background is 9.3{sub -1.0}{sup +1.6}% ({+-}3% systematic uncertainty) in the 0.1-100GeV band. Finally we determine the LF of unbeamed FSRQs, finding that FSRQs have an average Lorentz factor of {gamma} = 11.7{sub -2.2}{sup +3.3}, that most are seen within 5{sup o} of the jet axis, and that they represent only {approx}0.1% of the parent population.

  10. The bright end of the luminosity function of red sequence galaxies

    NASA Astrophysics Data System (ADS)

    Loh, Yeong-Shang; Strauss, Michael A.

    2006-02-01

    We study the bright end of the luminosity distribution of galaxies in fields with luminous red galaxies (LRG) from the Sloan Digital Sky Survey (SDSS). Using 2099deg2 of SDSS imaging data, we search for luminous (>~L*) early-type galaxies within 1.0h-1Mpc of a volume-limited sample of 12608 spectroscopic LRG in the redshift range 0.12 < z < 0.38. Most of these objects lie in rich environments, with the LRG being the brightest object within 1.0h-1Mpc. The luminosity gap, M12, between the first- and second-ranked galaxies within 1.0h-1Mpc is large (~0.8 mag), substantially larger than can be explained with an exponentially decaying luminosity function of galaxies. The brightest member is less luminous (by 0.1-0.2 mag) and shows a larger gap in LRG selected groups than in cluster-like environments. The large luminosity gap shows little evolution with redshift to z= 0.4, ruling out the scenario that these LRG selected brightest cluster or group galaxies grow by recent cannibalism of cluster members.

  11. A Global Study of the Practice and Impact of Distributed Instructional Leadership in International Baccalaureate (IB) Schools

    ERIC Educational Resources Information Center

    Hallinger, Philip; Lee, Moosung

    2012-01-01

    Over the last half century, international schools have come to represent an increasingly important sector in the changing global education context. International Baccalaureate (IB) schools in particular, and international schools more generally, can be viewed as specific types of educational contexts for leadership practice. In this article we…

  12. A two-mode planetary nebula luminosity function

    NASA Astrophysics Data System (ADS)

    Rodríguez-González, A.; Hernández-Martínez, L.; Esquivel, A.; Raga, A. C.; Stasińska, G.; Peña, M.; Mayya, Y. D.

    2015-03-01

    Context. We propose a new planetary nebula luminosity function (PNLF) that includes two populations in the distribution. Our PNLF is a direct extension of the canonical function proposed by Jacoby et al. (1987), in order to avoid problems related with the histogram construction, it is cast in terms of cumulative functions. Aims: We are interested in recovering the shape of the faint part of the PNLF in a consistent manner, for galaxies with and without a dip in their PNLFs. Methods: The parameters for the two-mode PNLF are obtained with a genetic algorithm, which obtains a best fit to the PNLF varying all of the parameters simultaneously in a broad parameter space. Results: We explore a sample of nine galaxies with various Hubble types and construct their PNLF. All of the irregular galaxies, except one, are found to be consistent with a two-mode population, while the situation is less clear for ellipticals and spirals.For the case of NGC 6822, we show that the two-mode PNLF is consistent with previous studies of the star formation history within that galaxy. Our results support two episodes of star formation, in which the second episode is significantly stronger.

  13. Gamma-ray luminosity and photon index evolution of FSRQ blazars and contribution to the gamma-ray background

    SciTech Connect

    Singal, J.; Ko, A.; Petrosian, V.

    2014-05-10

    We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than approximately 7σ detection threshold in the first-year catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, with redshifts as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions accounted for we determine the density evolution and luminosity function of FSRQs and calculate their total contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be 16(+10/–4)%, in agreement with previous studies.

  14. The stellar content of low luminosity AGN

    NASA Astrophysics Data System (ADS)

    Cid Fernandes, R.; Gonzalez-Delgado, R.; Schmitt, H.; Storchi-Bergmann, T.; Martins, L. P.

    2003-08-01

    We present a spectroscopic study of the stellar populations of LINERs and LINER/HII Transition Objects (TOs). Our main goal is to determine whether the stars who live in the innermost regions of these low luminosity active galaxies are in some way related to their emission line properties, which would imply in a link between the stellar population and the gas excitation mechanism. High sinal to noise long-slit spectra in the 3500-5400 Å interval were collected for over 50 galaxies. The sample was selected out of the magnitude limited survey of ~ 500 galaxies of Ho et al (1997), which provides a representative sample of the local universe. The stellar content of these galaxies was examined in entirely empirical terms, both by the measurement of colors and absorption features and by a comparison with non-active galaxies spanning a wide range of stellar populations, from young starbursts to old elliptical galaxies. Our main findings are: No features due to Wolf-Rayet stars were detected in either LINERs or TOs. On the other hand, strong High order Balmer lines (HOBLs) of HI in absorption are ubiquitous in TOs but not in LINERs. About 50% of the TOs exihibit these features, which indicate the presence of 108-109 yr populations. These TOs also have diluted metal absorption lines and somewhat bluer colors than other objects in the sample. Most LINERs and the remaining 50% TOs, on the other hand, have deep metal lines typical of old stellar populations. The presence of intermediate age populations anti-correlates strongly with [OI]/Ha, a critical diagnostic line ratio. For instance, over 90% of nuclei with conspicuous intermediate age populations are weak [OI]-emitters. These findings strongly suggest a link between the stellar populations and the ionization mechanism in TOs. Possible scenarios, including weak circumnuclear starbursts, supernova-remnannts and evolved post-starburst populations, are being examined. By analogy with previous work on starburst + Seyfert 2

  15. Seeking the epoch of maximum luminosity for dusty quasars

    SciTech Connect

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine E-mail: dweedman@isc.astro.cornell.edu

    2014-08-01

    Infrared luminosities νL{sub ν}(7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 luminosity does not show a maximum at any redshift z < 5, reaching a plateau for z ≳ 3 with maximum luminosity νL{sub ν}(7.8 μm) ≳ 10{sup 47} erg s{sup –1}; luminosity functions show one quasar Gpc{sup –3} having νL{sub ν}(7.8 μm) > 10{sup 46.6} erg s{sup –1} for all 2 luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL{sub ν}(0.25 μm), have the largest values of the ratio νL{sub ν}(0.25 μm)/νL{sub ν}(7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define 'obscured' quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ∼ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ∼ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  16. Does the obscured AGN fraction really depend on luminosity?

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Churazov, E.; Krivonos, R.

    2015-12-01

    We use a sample of 151 local non-blazar active galactic nuclei (AGN) selected from the INTEGRAL all-sky hard X-ray survey to investigate if the observed declining trend of the fraction of obscured (i.e. showing X-ray absorption) AGN with increasing luminosity is mostly an intrinsic or selection effect. Using a torus-obscuration model, we demonstrate that in addition to negative bias, due to absorption in the torus, in finding obscured AGN in hard X-ray flux-limited surveys, there is also positive bias in finding unobscured AGN, due to Compton reflection in the torus. These biases can be even stronger taking into account plausible intrinsic collimation of hard X-ray emission along the axis of the obscuring torus. Given the AGN luminosity function, which steepens at high luminosities, these observational biases lead to a decreasing observed fraction of obscured AGN with increasing luminosity even if this fraction has no intrinsic luminosity dependence. We find that if the central hard X-ray source in AGN is isotropic, the intrinsic (i.e. corrected for biases) obscured AGN fraction still shows a declining trend with luminosity, although the intrinsic obscured fraction is significantly larger than the observed one: the actual fraction is larger than ˜85 per cent at L ≲ 1042.5 erg s-1 (17-60 keV), and decreases to ≲60 per cent at L ≳ 1044 erg s-1. In terms of the half-opening angle θ of an obscuring torus, this implies that θ ≲ 30° in lower luminosity AGN, and θ ≳ 45° in higher luminosity ones. If, however, the emission from the central supermassive black hole is collimated as dL/dΩ ∝ cos α, the intrinsic dependence of the obscured AGN fraction is consistent with a luminosity-independent torus half-opening angle θ ˜ 30°.

  17. Seeking the Epoch of Maximum Luminosity for Dusty Quasars

    NASA Astrophysics Data System (ADS)

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine

    2014-08-01

    Infrared luminosities νL ν(7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 luminosity does not show a maximum at any redshift z < 5, reaching a plateau for z >~ 3 with maximum luminosity νL ν(7.8 μm) >~ 1047 erg s-1 luminosity functions show one quasar Gpc-3 having νL ν(7.8 μm) > 1046.6 erg s-1 for all 2 luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL ν(0.25 μm), have the largest values of the ratio νL ν(0.25 μm)/νL ν(7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define "obscured" quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ~ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ~ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  18. Multi-Bunch Simulations of the ILC for Luminosity Performance Studies

    SciTech Connect

    White, G.; Walker, N.; Schulte, D.; /CERN

    2005-07-11

    To study the luminosity performance of the International Linear Collider (ILC) with different design parameters, a simulation was constructed that tracks a multi-bunch representation of the beam from the Damping Ring extraction through to the Interaction Point. The simulation code PLACET is used to simulate the LINAC, MatMerlin is used to track through the Beam Delivery System and GUINEA-PIG for the beam-beam interaction. Included in the simulation are ground motion and wakefield effects, intra-train fast feedback and luminosity-based feedback systems. To efficiently study multiple parameters/multiple seeds, the simulation is deployed on the Queen Mary High-Throughput computing cluster at Queen Mary, University of London, where 100 simultaneous simulation seeds can be run.

  19. COMPARING SYMBIOTIC NEBULAE AND PLANETARY NEBULAE LUMINOSITY FUNCTIONS

    SciTech Connect

    Frankowski, Adam; Soker, Noam E-mail: soker@physics.technion.ac.i

    2009-10-01

    We compare the observed symbiotic nebulae (SyN) luminosity function (SyNLF) in the [O III] lambda5007 A line to the planetary nebulae (PN) luminosity function (PNLF) and find that the intrinsic SyNLF (ISyNLF) of galactic SyNs has-within its uncertainty of 0.5-0.8 mag-very similar cutoff luminosity and general shape to those of the PNLF. The [O III]/(Halpha+[N II]) line ratios of SyNs and PNs are shown to be also related. Possible implications of these results for the universality of the PNLF are briefly outlined.

  20. Deriving an X-ray luminosity function of dwarf novae

    SciTech Connect

    Byckling, Kristiina; Osborne, Julian; Mukai, Koji

    2010-07-15

    Current measurements of X-ray luminosity functions of dwarf novae contain biases due to high X-ray flux sources. We have obtained Suzaku, XMM-Newton and ASCA observations of nearby DNe which have parallax-based distance measurements, and carried out X-ray spectral analysis for these sources. Our primary goal is to derive a reliable X-ray luminosity function for this sample, and to compare it with existing X-ray luminosity functions. We briefly introduce the source sample and preliminary results.

  1. Infall-driven protostellar accretion and the solution to the luminosity problem

    SciTech Connect

    Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke

    2014-12-10

    We investigate the role of mass infall in the formation and evolution of protostars. To avoid ad hoc initial and boundary conditions, we consider the infall resulting self-consistently from modeling the formation of stellar clusters in turbulent molecular clouds. We show that infall rates in turbulent clouds are comparable to accretion rates inferred from protostellar luminosities or measured in pre-main-sequence stars. They should not be neglected in modeling the luminosity of protostars and the evolution of disks, even after the embedded protostellar phase. We find large variations of infall rates from protostar to protostar, and large fluctuations during the evolution of individual protostars. In most cases, the infall rate is initially of order 10{sup –5} M {sub ☉} yr{sup –1}, and may either decay rapidly in the formation of low-mass stars, or remain relatively large when more massive stars are formed. The simulation reproduces well the observed characteristic values and scatter of protostellar luminosities and matches the observed protostellar luminosity function. The luminosity problem is therefore solved once realistic protostellar infall histories are accounted for, with no need for extreme accretion episodes. These results are based on a simulation of randomly driven magnetohydrodynamic turbulence on a scale of 4 pc, including self-gravity, adaptive-mesh refinement to a resolution of 50 AU, and accreting sink particles. The simulation yields a low star formation rate, consistent with the observations, and a mass distribution of sink particles consistent with the observed stellar initial mass function during the whole duration of the simulation, forming nearly 1300 sink particles over 3.2 Myr.

  2. THE LUMINOSITY FUNCTION OF FERMI-DETECTED FLAT-SPECTRUM RADIO QUASARS

    SciTech Connect

    Ajello, M.; Shaw, M. S.; Romani, R. W.; Costamante, L.; Reimer, A.; Dermer, C. D.; King, O. G.; Max-Moerbeck, W.; Readhead, A.; Richards, J. L.; Stevenson, M. E-mail: msshaw@stanford.edu

    2012-06-01

    Fermi has provided the largest sample of {gamma}-ray-selected blazars to date. In this work we use a complete sample of flat spectrum radio quasars (FSRQs) detected during the first year of operation to determine the luminosity function (LF) and its evolution with cosmic time. The number density of FSRQs grows dramatically up to redshift {approx}0.5-2.0 and declines thereafter. The redshift of the peak in the density is luminosity dependent, with more luminous sources peaking at earlier times; thus the LF of {gamma}-ray FSRQs follows a luminosity-dependent density evolution similar to that of radio-quiet active galactic nuclei. Also, using data from the Swift Burst Alert Telescope we derive the average spectral energy distribution (SED) of FSRQs in the 10 keV-300 GeV band and show that there is no correlation between the luminosity at the peak of the {gamma}-ray emission component and its peak frequency. Using this luminosity-independent SED with the derived LF allows us to predict that the contribution of FSRQs to the Fermi isotropic {gamma}-ray background is 9.3{sup +1.6}{sub -1.0}% ({+-}3% systematic uncertainty) in the 0.1-100 GeV band. Finally we determine the LF of unbeamed FSRQs, finding that FSRQs have an average Lorentz factor of {gamma} = 11.7{sup +3.3}{sub -2.2}, that most are seen within 5 Degree-Sign of the jet axis, and that they represent only {approx}0.1% of the parent population.

  3. The Kinematics of the Lag-Luminosity Relationship

    SciTech Connect

    Salmonson, J D

    2004-03-17

    Herein I review the argument that kinematics, i.e. relativistic motions of the emitting source in gamma-ray bursts (GRBs), are the cause of the lag-luminosity relationship observed in bursts with known redshifts.

  4. A bimodal model for the galaxy luminosity function

    NASA Technical Reports Server (NTRS)

    Schaeffer, R.; Silk, J.

    1988-01-01

    The galaxy luminosity function in the Virgo cluster has been recently found to show a clear separation between bright galaxies and dwarf galaxies. Here, consideration is given to the effect on the luminosity function of galaxy binding energy which allows gas to be retained and star formation to proceed over about 1 Gyr in massive galaxies, but implies wind-driven mass loss and inefficient star formation in dwarf galaxies.

  5. Luminosity and carbon enhancement in N-type carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1978-01-01

    Recent observational data indicate the likelihood of a relation between luminosity and carbon enhancement in N-type irregularly variable carbon stars in the sense that the more luminous carbon stars appear to have smaller enhancements of carbon. No relation appears between carbon enhancement and red colors. The observational data are the luminosities of Peery (1975), the colors and CN band indices of Baumert (1972), the CO indices of Fay and Ridgway (1976), and the C2 indices of Gow (1977).

  6. The luminosity function for different morphological types in the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.

    1994-01-01

    We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.

  7. Streamlined subglacial bedforms on the Närke plain, south-central Sweden - Areal distribution, morphometrics, internal architecture and formation

    NASA Astrophysics Data System (ADS)

    Möller, Per; Dowling, Thomas P. F.

    2016-08-01

    A flow set of close to 1000 drumlins has been mapped by means of LiDAR-derived digital elevation models and investigated by trenching. The area is situated on the SW part of the Närke plain and its surrounding uplands in south-central Sweden, which was deglaciated in the early Preboreal in a glacioaquatic setting. We find that there is considerable morphological difference in drumlin distribution patterns over crystalline basement areas compared to streamlined terrain over Palaeozoic sedimentary rock basement. The former area is characterized by thin Quaternary drift and the drumlins are all of the rock-cored type, built due to active deposition of sediment around obstacles to glacier flow. The latter area is characterized by deep Quaternary drift and the drumlins are more elongate and also larger in all dimensions, as compared to rock-cored drumlins. Irrespective of these geomorphological differences on local landscape scale we find that drumlin morphometric values remain part of a morphological continuum at the regional scale. Based on the internal sediment architecture as revealed in two cross-drumlin sections we find that the soft-cored drumlins were formed by compressional constructive deformation, along with excavational deformation along the flanks of the emerging drumlins, which shaped the separating troughs. Intermediate-type drumlins are those that demonstrate a coupling between underlying Palaeozoic sediment strata in areas of shallow drift sheet. These are the result of differing rheological response between incorporated sedimentary rock and a deforming bed below the ice-bed interface. An overall conclusion is that we find geomorphic and architectural compositional differences between the drumlins and the flowset they form. We can closely relate these differences to contextual geological variations with respect to basement type and drift depth. We argue that drumlin formation is better explained not by one single 'unifying' process but rather a set of

  8. Galactic structure from the Spacelab infrared telescope. II - Luminosity models of the Milky Way

    NASA Technical Reports Server (NTRS)

    Kent, S. M.; Dame, T. M.; Fazio, G.

    1991-01-01

    A 2.4-micron map of the northern Galactic plan is used to determine the 3D luminosity distribution of the Milky Way. The radial surface brightness profile of the disk is found to have an exponential scale length of 3.0 kpc. In the solar neighborhood, the scale height is about 247 pc, which is in agreement with star counts perpendicular to the Galactic plane. The scale height is not constant with the radius but decreases to about 165 pc. To the first order, the bulge can be represented by an oblate spheroid with an axis ratio of 0.61. The 2.2-micron/12-micron flux ratio for the bulge is typical of other dust-free spheroidal systems. Luminosity fluctuations along the Galactic plane are found to be caused chiefly by variations in the line-of-sight extinction.

  9. Flat bunch creation and acceleration: a possible path for the LHC luminosity upgrade

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2009-05-01

    Increasing the collider luminosity by replacing bunches having Gaussian line-charge distribution with flat bunches, but with same beam-beam tune shift at collision, has been studied widely in recent years. But, creation of 'stable' flat bunches (and their acceleration) using a multiple harmonic RF system has not been fully explored. Here, we review our experience with long flat bunches in the barrier RF buckets at Fermilab.We presentsome preliminary results from beam dynamics simulations and recent beam studies in the LHC injectors to create stable flat bunches using double harmonic RF systems. The results deduced from these studies will be used to model the necessary scheme for luminosity upgrade in the LHC. We have also described a viable (and economical) way for creation and acceleration of flat bunches in the LHC. The flat bunch scheme may have many advantages over the LHC baseline scenario, particularly because of the reduced momentum spread of the bunch for increased intensities.

  10. Luminosity function and jet structure of Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    Pescalli, A.; Ghirlanda, G.; Salafia, O. S.; Ghisellini, G.; Nappo, F.; Salvaterra, R.

    2015-02-01

    The structure of gamma-ray burst (GRB) jets impacts on their prompt and afterglow emission properties. The jet of GRBs could be uniform, with constant energy per unit solid angle within the jet aperture, or it could be structured, namely with energy and velocity that depend on the angular distance from the axis of the jet. We try to get some insight about the still unknown structure of GRBs by studying their luminosity function. We show that low (1046-48 erg s-1) and high (i.e. with L ≥ 1050 erg s-1) luminosity GRBs can be described by a unique luminosity function, which is also consistent with current lower limits in the intermediate luminosity range (1048-50 erg s-1). We derive analytical expressions for the luminosity function of GRBs in uniform and structured jet models and compare them with the data. Uniform jets can reproduce the entire luminosity function with reasonable values of the free parameters. A structured jet can also fit adequately the current data, provided that the energy within the jet is relatively strongly structured, i.e. E ∝ θ-k with k ≥ 4. The classical E ∝ θ-2 structured jet model is excluded by the current data.

  11. International Collaborative Effort (ICE) on birthweight; plurality; and perinatal and infant mortality. II: Comparisons between birthweight distributions of births in member countries from 1970 to 1984.

    PubMed

    Evans, S; Alberman, E; Pashley, J; Hampton, B

    1989-01-01

    Member states of the International and Collaborative Effort (ICE) are the United States of America, England and Wales, Denmark, Bavaria and North Rhine-Westphalia of the Federal Republic of Germany, Israel, Japan, Norway, Scotland and Sweden. The group has collected, analysed and compared distributions of birthweight for member countries, where available from 1970 onwards, for singleton and all livebirths, stillbirths, early and late neonatal and postneonatal deaths. The present paper is an account of the differences in birthweight distributions, and trends over time seen between and within countries, for livebirths and stillbirths. The major findings are the relative robustness over time of the parameters which characterize the distribution of birthweight within countries, and the marked and consistent differences between these distributions in different countries. PMID:2801025

  12. PROPERTIES OF SATELLITE GALAXIES IN THE SDSS PHOTOMETRIC SURVEY: LUMINOSITIES, COLORS, AND PROJECTED NUMBER DENSITY PROFILES

    SciTech Connect

    Lares, M.; Lambas, D. G.; Dominguez, M. J.

    2011-07-15

    We analyze photometric data in the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) to infer statistical properties of faint satellites associated with isolated bright galaxies (M{sub r} < -20.5) in the redshift range 0.03 < z < 0.1. The mean projected radial number density profile shows an excess of companions in the photometric sample around the primaries, with approximately a power-law shape that extends up to {approx_equal} 700 kpc. Given this overdensity signal, a suitable background subtraction method is used to study the statistical properties of the population of bound satellites, down to magnitude M{sub r} = -14.5, in the projected radial distance range 100 < r{sub p} /kpc < 3(R{sub vir}). The maximum projected distance corresponds to the range 470-660 kpc for the different samples. We have also considered a color cut consistent with the observed colors of spectroscopic satellites in nearby galaxies so that distant redshifted galaxies do not dominate the statistics. We have tested the implementation of this background subtraction procedure using a mock catalog derived from the Millennium simulation semianalytic galaxy catalog based on a {Lambda} cold dark matter model. We find that the method is effective in reproducing the true projected radial satellite number density profile and luminosity distributions, providing confidence in the results derived from SDSS data. We find that the spatial extent of satellite systems is larger for bright, red primaries. Also, we find a larger spatial distribution of blue satellites. For the different samples analyzed, we derive the average number of satellites and their luminosity distributions down to M{sub r} = -14.5. The mean number of satellites depends very strongly on host luminosity. Bright primaries (M{sub r} < -21.5) host on average {approx}6 satellites with M{sub r} < -14.5. This number is reduced for primaries with lower luminosities (-21.5 < M{sub r} < -20.5) which have less than one satellite per host. We

  13. The Century Survey Galactic Halo Project. II. Global Properties and the Luminosity Function of Field Blue Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Kurtz, Michael J.; Allende Prieto, Carlos; Beers, Timothy C.; Wilhelm, Ronald

    2005-09-01

    We discuss a 175 deg2 spectroscopic survey for blue horizontal branch (BHB) stars in the Galactic halo. We use the Two Micron All Sky Survey (2MASS) and the Sloan Digital Sky Survey (SDSS) to select BHB candidates, and we find that the 2MASS and SDSS color selection is 38% and 50% efficient, respectively, for BHB stars. Our samples include one likely runaway B7 star 6 kpc below the Galactic plane. The global properties of the BHB samples are consistent with membership in the halo population: the median metallicity is [Fe/H]=-1.7, the velocity dispersion is 108 km s-1, and the mean Galactic rotation of the BHB stars 3 kpc<|z|<15 kpc is -4+/-30 km s-1. We discuss the theoretical basis of the Preston, Shectman, and Beers MV-color relation for BHB stars and conclude that the intrinsic shape of the BHB MV-color relation results from the physics of stars on the horizontal branch. We calculate the luminosity function for the field BHB star samples using the maximum likelihood method of Efstathiou and coworkers, which is unbiased by density variations. The field BHB luminosity function exhibits a steep rise at bright luminosities, a peak between 0.8luminosities. We compare the field BHB luminosity functions with the luminosity functions derived from 16 different globular cluster BHBs. Kolmogorov-Smirnov tests suggest that field BHB stars and BHB stars in globular clusters share a common distribution of luminosities, with the exception of globular clusters with extended BHBs.

  14. Blinn College Final Grade Distribution Report for Spring 1994 Semester. Student Performance Report. International Research Document No. 012E.

    ERIC Educational Resources Information Center

    Blinn Coll., Brenham, TX.

    Blinn College final course grade distributions are summarized for spring 1990 to 1994 in this four-part report. Section I presents tables of final grade distributions by campus and course in accounting; agriculture; anthropology; biology; business; chemistry; child development; communications; computer science; criminal justice; drama; emergency…

  15. X-ray selected quasars and Seyfert galaxies - Cosmological evolution, luminosity function, and contribution to the X-ray background

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.; Stocke, J. T.

    1984-01-01

    The cosmological evolution and the X-ray luminosity function of quasars and Seyfert galaxies (active galactic nuclei /AGNs/) are derived and discussed. The sample used consists of 56 objects extracted from the expanded Einstein Observatory Medium Sensitivity Survey, and it is exclusively defined by its X-ray properties. The distribution in space of X-ray selected AGNs is confirmed to be strongly nonuniform; the amount of cosmological evolution required by the data is in agreement with a previous determination based on a smaller sample of objects. The X-ray luminosity function (XLF) is derived. The high-luminosity part of the XLF is satisfactorily described by a power law of slope gamma approximately 3.6. A significant flattening is observed at low luminosities. The simultaneous determination of the cosmological evolution and of the X-ray luminosity function of AGNs is then used to estimate the contribution to the extragalactic diffuse X-ray background. Using the best fit values for the evolution of AGNs and for their volume density, it is found that they contribute approximately 80 percent of the 2 keV diffuse X-ray background. Uncertainties in this estimate are still rather large; however, it seems difficult to reconcile the data with a contribution much less than 50 percent.

  16. The intrinsic quasar luminosity function: Accounting for accretion disk anisotropy

    SciTech Connect

    DiPompeo, M. A.; Myers, A. D.; Brotherton, M. S.; Runnoe, J. C.; Green, R. F.

    2014-05-20

    Quasar luminosity functions are a fundamental probe of the growth and evolution of supermassive black holes. Measuring the intrinsic luminosity function is difficult in practice, due to a multitude of observational and systematic effects. As sample sizes increase and measurement errors drop, characterizing the systematic effects is becoming more important. It is well known that the continuum emission from the accretion disk of quasars is anisotropic—in part due to its disk-like structure—but current luminosity function calculations effectively assume isotropy over the range of unobscured lines of sight. Here, we provide the first steps in characterizing the effect of random quasar orientations and simple models of anisotropy on observed luminosity functions. We find that the effect of orientation is not insignificant and exceeds other potential corrections such as those from gravitational lensing of foreground structures. We argue that current observational constraints may overestimate the intrinsic luminosity function by as much as a factor of ∼2 on the bright end. This has implications for models of quasars and their role in the universe, such as quasars' contribution to cosmological backgrounds.

  17. Luminosity functions for very low mass stars and brown dwarfs

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; Bodenheimer, Peter

    1993-01-01

    A theoretical investigation of the luminosity function for low-mass objects to constrain the stellar initial mass function at the low-mass end is reported. The ways in which luminosity functions for low-mass stars are affected by star formation histories, brown dwarf and premain-sequence cooling rates and main-sequence mass luminosity relations, and the IMF are examined. Cooling rates and the mass-luminosity relation are determined through a new series of evolutionary calculations for very low mass stars and brown dwarfs in the range 0.05-0.50 solar mass. Model luminosity functions are constructed for specific comparison with the results of four recent observational surveys. The likelihood that the stellar mass function in the solar neighborhood is increasing at masses near the bottom of the main sequence and perhaps at lower masses is confirmed. In the most optimistic case, brown dwarfs contribute half of the local missing disk mass. The actual contribution is likely to be considerably less.

  18. An ionization chamber shower detector for the LHC Luminosity Monitor

    SciTech Connect

    Speziali, V.; Beche, J.F.; Burks, M.T.; Datte, P.S.; Haguenauer, M.; manfredi, P.F.; Millaud, J.E.; Placidi, M.; Ratti, L.; Re, V.; Riot, V.J.; Schmickler, H.; Turner, W.C.

    2000-10-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (~;;235W at design luminosity 1034cm-2s-1). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chamber is being developed for sampling the energy deposited near the maxima of the hadronic/ electromagnetic showers in these absorbers. The system design choices have been strongly influenced by optimization of signal to noise ratio and by the very high radiation environment. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. Data on each bunch are to be separately accumulated over multiple bunch crossings until the desired statistical accuracy is obtained. At design luminosity approximately 2x103 bunch crossings will suffice for a 1percent luminosity measurement. In this paper we report the first experimental results of the ionization chamber and analog electronics. Single 450GeV protons from the SPS at CERN are used to simulate the hadronic/electromagnetic showers produced by the forward collision products from the interaction regions of the LHC.

  19. THE ARECIBO METHANOL MASER GALACTIC PLANE SURVEY. III. DISTANCES AND LUMINOSITIES

    SciTech Connect

    Pandian, J. D.; Menten, K. M.; Goldsmith, P. F. E-mail: kmenten@mpifr-bonn.mpg.d

    2009-12-01

    We derive kinematic distances to the 86 6.7 GHz methanol masers discovered in the Arecibo Methanol Maser Galactic Plane Survey. The systemic velocities of the sources were derived from {sup 13}CO (J = 2-1), CS (J = 5-4), and NH{sub 3} observations made with the ARO Submillimeter Telescope, the APEX telescope, and the Effelsberg 100 m telescope, respectively. Kinematic distance ambiguities were resolved using H I self-absorption with H I data from the VLA Galactic Plane Survey. We observe roughly three times as many sources at the far distance compared to the near distance. The vertical distribution of the sources has a scale height of approx 30 pc, and is much lower than that of the Galactic thin disk. We use the distances derived in this work to determine the luminosity function of 6.7 GHz maser emission. The luminosity function has a peak at approximately 10{sup -6} L{sub sun}. Assuming that this luminosity function applies, the methanol maser population in the Large Magellanic Cloud and M33 is at least 4 and 14 times smaller, respectively, than in our Galaxy.

  20. SurveySim: a new MCMC code to explore the evolution of the IR luminosity function

    NASA Astrophysics Data System (ADS)

    Bonato, Matteo; Kurinsky, Noah; Sajina, Anna; Kirkpatrick, Allison; Pope, Alexandra; Silva, Andrea; Yan, Lin

    2016-01-01

    The Herschel and Spitzer space telescopes have been crucial in furthering our understanding of the formation and evolution of galaxies. However key questions, such as the role of SF and AGN in powering the IR output of galaxies remain unanswered. The large numbers of high redshift galaxies detected by recent IR surveys make individual spectroscopic follow-up impractical. However statistical trends in SED and luminosity function evolution in an entire population can be realized. We present a new open source Markov-Chain Monte Carlo code, SurveySim. It is built to constrain the spectral energy distribution and luminosity function evolution required to produce a given multi-wavelength survey. Its very general design allow us to use a wide range of different dusty galaxy populations (including SFGs, AGNs and Composites), luminosity function forms and SED templates. The code employs a multidimensional color-color diagnostic to determine goodness of fit. It simulates observational errors and takes into account incompleteness. Here, dusty high-z galaxies at different parts of the IR SED have been considered to analyze the relative selection biases.

  1. Exploring the Time Evolution of Luminosity and Pulse Profile in X-Ray Pulsars.

    NASA Astrophysics Data System (ADS)

    Laycock, Silas; Christodoulou, Dimitris; Cappallo, Rigel; Ho, Wynn; Coe, Malcolm; Corbet, Robin; Klus, Helen; Kazanas, Demosthenes; Galache, Jose Luis; Fingerman, Samuel; Yang, Jun; Norton, Scott

    2015-01-01

    We report progress in our effort to analyze and model the large collection of observations made by RXTE, XMM-Newton and Chandra of X-ray Binary Pulsars in the Magellanic Clouds. There are >2000 individual RXTE PCA, and > 200 XMM-Newton and Chandra observations of the Magellanic clouds. Each observation covers a large fraction of the whole SMC (or LMC) population, and we are able to deconvolve the often simultaneous signals to create a 20 year record of individual pulsar's activity. Together, these datasets cover the entire range of variability timescales and accretion regimes in High Mass X-ray Binaries. We are compiling a library of energy-resolved pulse profiles covering the entire luminosity and spin-period parameter space. In parallel we are developing a suite of computational models to parameterize the pulse profile morphology. We begin with a pair of isotropically emitting poles with general relativity, and then add complexity in the form of fan and pencil beam components. The initial goal is to discover the ratio of the beam components as a function of accretion rate and luminosity, and ultimately the distribution of offsets between magnetic and spin axes. These products are needed for the next generation of advances in neutron star theory and modeling. This unique dataset enables us to determine the upper and lower limits of accretion powered luminosity in a large statistically complete sample of neutron stars, and hence make several direct tests of fundamental NS parameters and accretion physics.

  2. WITNESSING THE DIFFERENTIAL EVOLUTION OF DISK GALAXIES IN LUMINOSITY AND SIZE VIA GRAVITATIONAL LENSING

    SciTech Connect

    Bandara, Kaushala; Crampton, David; Peng, Chien; Simard, Luc

    2013-11-01

    We take advantage of the magnification in size and flux of a galaxy provided by gravitational lensing to analyze the properties of 62 strongly lensed galaxies from the Sloan Lens ACS (SLACS) Survey. The sample of lensed galaxies spans a redshift range of 0.20 ≤ z ≤ 1.20 with a median redshift of z = 0.61. We use the lens modeling code LENSFIT to derive the luminosities, sizes, and Sérsic indices of the lensed galaxies. The measured properties of the lensed galaxies show a primarily compact, {sup d}isk{sup -}like population with the peaks of the size and Sérsic index distributions corresponding to ∼1.50 kpc and n ∼ 1, respectively. Comparison of the SLACS galaxies to a non-lensing, broadband imaging survey shows that a lensing survey allows us to probe a galaxy population that reaches ∼2 mag fainter. Our analysis allows us to compare the (z) = 0.61 disk galaxy sample (n ≤ 2.5) to an unprecedented local galaxy sample of ∼670, 000 SDSS galaxies at z ∼ 0.1; this analysis indicates that the evolution of the luminosity-size relation since z ∼ 1 may not be fully explained by a pure-size or pure-luminosity evolution but may instead require a combination of both. Our observations are also in agreement with recent numerical simulations of disk galaxies that show evidence of a mass-dependent evolution since z ∼ 1, where high-mass disk galaxies (M{sub *} > 10{sup 9} M{sub ☉}) evolve more in size and low-mass disk galaxies (M{sub *} ≤ 10{sup 9} M{sub ☉}) evolve more in luminosity.

  3. Binary Aggregations in Hierarchical Galaxy Formation: The Evolution of the Galaxy Luminosity Function

    NASA Astrophysics Data System (ADS)

    Menci, N.; Cavaliere, A.; Fontana, A.; Giallongo, E.; Poli, F.

    2002-08-01

    We develop a semianalytic model of hierarchical galaxy formation with an improved treatment of the evolution of galaxies inside dark matter halos. We take into account not only dynamical friction processes building up the central dominant galaxy but also binary aggregations of satellite galaxies inside a common halo. These deplete small to intermediate mass objects, affecting the slope of the luminosity function at its faint end, with significant observable consequences. We model the effect of two-body aggregations using the kinetic Smoluchowski equation. This flattens the mass function by an amount that depends on the histories of the host halos as they grow by hierarchical clustering. The description of gas cooling, star formation and evolution, and supernova feedback follows the standard prescriptions widely used in semianalytic modeling. We find that binary aggregations are effective in depleting the number of small/intermediate mass galaxies over the redshift range 1luminosity function at the faint end. At z~0 the flattening occurs for -20-16. We compare our predicted luminosity functions with those obtained from deep multicolor surveys in the Hubble Deep Field-North, Hubble Deep Field-South, and New Technology Telescope Deep Field in the rest-frame B and UV bands for the redshift ranges 01 and even more at z~3 by the effect of the binary aggregations. The predictions from our dynamical model are discussed and compared with the effects of complementary processes (additional starburst recipes, alternative sources of feedback, different mass distribution of the dark matter halos) that may conspire in affecting the shape of the luminosity function.

  4. Modeling the Redshift Evolution of the Normal Galaxy X-Ray Luminosity Function

    NASA Technical Reports Server (NTRS)

    Tremmel, M.; Fragos, T.; Lehmer, B. D.; Tzanavaris, P.; Belczynski, K.; Kalogera, V.; Basu-Zych, A. R.; Farr, W. M.; Hornschemeier, A.; Jenkins, L.; Ptak, A.; Zezas, A.

    2013-01-01

    Emission from X-ray binaries (XRBs) is a major component of the total X-ray luminosity of normal galaxies, so X-ray studies of high-redshift galaxies allow us to probe the formation and evolution of XRBs on very long timescales (approximately 10 Gyr). In this paper, we present results from large-scale population synthesis models of binary populations in galaxies from z = 0 to approximately 20. We use as input into our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. to self-consistently account for the star formation history (SFH) and metallicity evolution of each galaxy. We run a grid of 192 models, varying all the parameters known from previous studies to affect the evolution of XRBs. We use our models and observationally derived prescriptions for hot gas emission to create theoretical galaxy X-ray luminosity functions (XLFs) for several redshift bins. Models with low common envelope efficiencies, a 50% twins mass ratio distribution, a steeper initial mass function exponent, and high stellar wind mass-loss rates best match observational results from Tzanavaris & Georgantopoulos, though they significantly underproduce bright early-type and very bright (L(sub x) greater than 10(exp 41)) late-type galaxies. These discrepancies are likely caused by uncertainties in hot gas emission and SFHs, active galactic nucleus contamination, and a lack of dynamically formed low-mass XRBs. In our highest likelihood models, we find that hot gas emission dominates the emission for most bright galaxies. We also find that the evolution of the normal galaxy X-ray luminosity density out to z = 4 is driven largely by XRBs in galaxies with X-ray luminosities between 10(exp 40) and 10(exp 41) erg s(exp -1).

  5. Witnessing the Differential Evolution in Luminosity and Size of Disk Galaxies via Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Bandara, Kaushala; Crampton, D.; Peng, C. Y.; Simard, L.

    2012-01-01

    We take advantage of the magnification in size and flux of a galaxy, provided by gravitational lensing, to analyze the properties of 62 strongly lensed galaxies of the Sloan Lens ACS (SLACS) Survey. The sample of lensed galaxies span a redshift range of 0.20 <= z <= 1.20 with a median redshift of z = 0.61. We use the lens modeling code LENSFIT to derive the luminosities, sizes and Sersic indices of the lensed galaxies. The measured properties of the lensed galaxies show a primarily compact, "disk"-like population with the peaks of the size and Sersic index distributions corresponding to ˜1.50 kpc and n˜1 respectively. Comparison of the SLACS lensed galaxies to a non-lensing, broad-band imaging based survey shows that a lensing survey allows us to probe a galaxy population that is typically ˜ 2 magnitudes fainter. Our analysis allows us to compare the = 0.61 disk galaxy sample (n <= 2.5) to an unprecedented local galaxy sample of 670,131 SDSS galaxies at z ˜ 0.1, which indicates that the evolution of the luminosity-size relation since z ˜ 1 cannot be explained fully in terms of pure size evolution but must be caused by a combination of luminosity and size evolution. Our observations are in excellent agreement with recent numerical simulations of disk galaxies since z ˜ 1 that show evidence of mass-dependent evolution where high-mass disk galaxies (stellar mass > 109 solar masses) evolve more in size and low-mass disk galaxies (stellar mass <= 109 solar masses) evolve more in luminosity. The authors gratefully acknowledge the support from the National Research Council of Canada and NSERC through Discovery grants. CYP is grateful for funding support through the Plaskett Fellowship of the Herzberg Institute of Astrophysics (National Research Council of Canada).

  6. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method

    PubMed Central

    Khosravi, H.; Hashemi, B.; Mahdavi, S. R.; Hejazi, P.

    2015-01-01

    Background Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. Objective The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. Method A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. Results The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. Conclusion There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external

  7. Adaptive Agent Modeling of Distributed Language: Investigations on the Effects of Cultural Variation and Internal Action Representations

    ERIC Educational Resources Information Center

    Cangelosi, Angelo

    2007-01-01

    In this paper we present the "grounded adaptive agent" computational framework for studying the emergence of communication and language. This modeling framework is based on simulations of population of cognitive agents that evolve linguistic capabilities by interacting with their social and physical environment (internal and external symbol…

  8. The galaxy UV luminosity function at z ≃ 2-4; new results on faint-end slope and the evolution of luminosity density

    NASA Astrophysics Data System (ADS)

    Parsa, Shaghayegh; Dunlop, James S.; McLure, Ross J.; Mortlock, Alice

    2016-03-01

    We present a new, robust measurement of the evolving rest-frame ultraviolet (UV) galaxy luminosity function (LF) over the key redshift range from z ≃ 2 to z ≃ 4. Our results are based on the high dynamic range provided by combining the Hubble Ultra Deep Field (HUDF), CANDELS/GOODS-South, and UltraVISTA/COSMOS surveys. We utilize the unparalleled multifrequency photometry available in this survey `wedding cake' to compile complete galaxy samples at z ≃ 2, 3, 4 via photometric redshifts (calibrated against the latest spectroscopy) rather than colour-colour selection, and to determine accurate rest-frame UV absolute magnitudes (M1500) from spectral energy distribution (SED) fitting. Our new determinations of the UV LF extend from M1500 ≃ -22 (AB mag) down to M1500 = -14.5, -15.5 and -16 at z ≃ 2, 3 and 4, respectively (thus, reaching ≃ 3-4 mag fainter than previous blank-field studies at z ≃ 2,3). At z ≃ 2, 3, we find a much shallower faint-end slope (α = -1.32 ± 0.03) than reported in some previous studies (α ≃ -1.7), and demonstrate that this new measurement is robust. By z ≃ 4, the faint-end slope has steepened slightly, to α = -1.43 ± 0.04, and we show that these measurements are consistent with the overall evolutionary trend from z = 0 to 8. Finally, we find that while characteristic number density (φ*) drops from z ≃ 2 to z ≃ 4, characteristic luminosity (M*) brightens by ≃ 1 mag. This, combined with the new flatter faint-end slopes, has the consequence that UV luminosity density (and hence unobscured star formation density) peaks at z ≃ 2.5-3, when the Universe was ≃ 2.5 Gyr old.

  9. The luminosity of the double-mode Cepheid Y Carinae

    NASA Technical Reports Server (NTRS)

    Evans, Nancy R.

    1992-01-01

    IUE spectra of the double-mode Cepheid Y Carinae have been used to determine the spectral type of the binary companion. From the companion spectral type (B9.O V), the absolute magnitude of the Cepheid is found to be -2.94 mag, with an estimated uncertainty of +/-0.3. This luminosity is in good agreement with that from the period-luminosity-color relation of Feast and Walker for the fundamental mode. This agreement, together with the large magnitude difference between the B9.0 V star and the Cepheid, confirm that the Cepheid is a normal classical Cepheid with a mass much larger than that inferred from the ratio of the two periods (beat mass). The two double-mode Cepheids with independently determined luminosities (Y Car and V 367 Sct) both fall on the blue edge of the instability strip.

  10. LUMINOSITY OPTIMIZATION USING AUTOMATED IR STEERING AT RHIC.

    SciTech Connect

    DREES,A.D'OTTAVIO,T.

    2004-07-05

    The goal of the RHIC 2004 Au-Au run was to maximize the achieved integrated luminosity. One way is to increase beam currents and minimize beam transverse emittances. Another important ingredient is the minimization of time spent on activities postponing the declaration of ''physics conditions'', i.e. stable beam conditions allowing the experimental detectors to take data. Since collision rates are particularly high in the beginning of the store the integrated luminosity benefits considerably from any minute saved early in the store. In the RHIC run 2004 a new IR steering application uses luminosity monitor signals as a feedback for a fully automated steering procedure. This report gives an overview of the used procedure and summarizes the achieved results.

  11. Reduction of beta* and increase of luminosity at RHIC

    SciTech Connect

    Pilat,F.; Bai, M.; Bruno, D.; Cameron, P.; Della Penna, A.; Drees, A.; Litvinenko, V.; Luo, Y.; Malitsky, N.; Marr, G.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Trbojevic, D.

    2009-05-04

    The reduction of {beta}* beyond the 1m design value at RHIC has been consistently achieved over the last 6 years of RHIC operations, resulting in an increase of luminosity for different running modes and species. During the recent 2007-08 deuteron-gold run the reduction to 0.70 from the design 1m achieved a 30% increase in delivered luminosity. The key ingredients allowing the reduction have been the capability of efficiently developing ramps with tune and coupling feedback, orbit corrections on the ramp, and collimation, to minimize beam losses in the final focus triplets, the main aperture limitations for the collision optics. We will describe the operational strategy used to reduce the {beta}*, at first squeezing the beam at store, to test feasibility, followed by the operationally preferred option of squeezing the beam during acceleration, and the resulting luminosity increase. We will conclude with future plans for the beta squeeze.

  12. The faintest stars - From Schmidt plates to luminosity functions

    NASA Technical Reports Server (NTRS)

    Tinney, C. G.; Reid, I. N.; Mould, J. R.

    1993-01-01

    We describe the construction of a photometric catalog from scans of IIIaF and IVN plate material in 11 fields of the UKSRC and POSSII surveys. The procedures used and quality checks applied are described in detail, and should be considered as illustrative for those planning scientific programs with the forthcoming scans of these surveys. We find our plate material is complete to I of about 18 and R of about 20.5 with photometric uncertainties of +/- 0.20 and +/- 0.25 magnitudes (respectively) at those limits. These data are used to construct luminosity functions for stars within 150 pc of the sun in four distinct directions. We find no significant evidence for variations in the form of the luminosity function in different locations within the Galactic disk. Approximately 10-20 percent variations are seen in the normalization of the luminosity function.

  13. CLIC Crab Cavity Design Optimisation for Maximum Luminosity

    SciTech Connect

    Dexter, A.C.; Burt, G.; Ambattu, P.K.; Dolgashev, V.; Jones, R.; /Manchester U.

    2012-04-25

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  14. RHIC 100 GeV Polarized Proton Luminosity

    SciTech Connect

    Zhang, S. Y.

    2014-01-17

    A big problem in RHIC 100 GeV proton run 2009 was the significantly lower luminosity lifetime than all previous runs. It is shown in this note that the beam intensity decay in run 2009 is caused by the RF voltage ramping in store. It is also shown that the beam decay is not clearly related to the beam momentum spread, therefore, not directly due to the 0.7m. β* Furthermore, the most important factor regarding the low luminosity lifetime is the faster transverse emittance growth in store, which is also much worse than the previous runs, and is also related to the RF ramping. In 100 GeV proton run 2012a, the RF ramping was abandoned, but the β* was increased to 0.85m, with more than 20% loss of luminosity, which is not necessary. It is strongly suggested to use smaller β* in 100 GeV polarized proton run 2015/2016

  15. Luminosity measurement in the L3 detector at LEP

    NASA Astrophysics Data System (ADS)

    Brock, I. C.; Engler, A.; Ferguson, T.; Filthaut, F.; Kraemer, R. W.; Merk, M.; Rippich, C.; Shi, X.; Shukla, J.; Sutton, R. B.; Tsipolitis, G.; Vogel, H.; You, J.; Lecoq, P.; Bobbink, G. J.; Buskens, J.; Cerjak, I.; Groenstege, H.; Koffeman, E.; Linde, F. L.; Raven, G.; Rewiersma, P.; Schuijlenberg, H. W. A.; de Waard, A.; Commichau, V.; Hangarter, K.; Schmitz, P.

    1996-02-01

    One of the limiting factors in the determination of the electroweak parameters from cross section measurements of e +e - annihilation close to the Z pole is the precision of the luminosity measurement. The luminosity monitor of the L3 detector at LEP and the analysis of its data are described. Using a combination of a BGO calorimeter and a 3-layer silicon tracker, the absolute luminosity has been measured with an experimental precision of 0.08% in 1993 and 0.05% in 1994. The measurement relies on a detailed understanding of small-angle elastic e +e - (Bhabha) scattering from the experimental and theoretical point of view, as well as an excellent knowledge of the detector geometry.

  16. The luminosity function of galaxies in compact groups

    NASA Technical Reports Server (NTRS)

    Ribeiro, A. L. B.; De Carvalho, R. R.; Zepf, S. E.

    1994-01-01

    We use counts of faint galaxies in the regions of compact groups to extend the study of the luminosity function of galaxies in compact groups to absolute magnitudes as faint as M(sub B) = -14.5 + 5 log h. We find a slope of the faint end of the luminosity function of approximately alpha = -0.8, with a formal uncertainty of 0.15. This slope is not significantly different from that found for galaxies in other environments. Our results do not support previous suggestions of a dramatic underabundance of intrinsically faint galaxies in compact groups, which were based on extrapolations from fits at brighter magnitudes. The normal faint-end slope of the luminosity function in compact groups is in agreement with previous evidence that most galaxies in compact groups have not been dramatically affected by recent merging.

  17. The LUCID detector ATLAS luminosity monitor and its electronic system

    NASA Astrophysics Data System (ADS)

    Manghi, F. Lasagni

    2016-07-01

    In 2015 LHC is starting a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely rebuilt, both the detector and the electronics, in order to cope with the new running conditions. The new detector electronics features a new read-out board (LUCROD) for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and a revisited LUMAT board for combination of signals from the two detectors. This note describes the new board design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  18. High time resolution luminosity profiles of Jellyfish (Super) Sprites

    NASA Astrophysics Data System (ADS)

    McHarg, M. G.; Ahrns, J.; Stenbaek-Nielsen, H. C.; Kammae, T.; Haaland, R. K.; Cummer, S. A.; Li, J.; Liu, N.; Yukman, P.

    2011-12-01

    We compare the time history of luminosity and VLF measurements associated with different classes of sprites. In particular we are interested in the larger "jellyfish, or super" sprites that are very bright, very brief duration sprites. Optical observations reveal these sprites are collections of multiple carrot sprites, comprised of both downward and upward propagating streamers. We find the time scales of super sprites are shorter than that for carrot sprites and column sprites. The exponential decrease in sprite luminosity has been related to the conductivity profile assumed for the middle atmosphere by [Barrington-Leigh et. al. (2002), doi: 10.1029/2001JA900117]. We investigate the possibility that the overall brighter and rapid decrease in jellyfish sprite luminosity compared to other types of sprites may be related to changes in the middle atmosphere conductivity, and/or in the driving electrostatic field associated with the causative lightning flash.

  19. CLIC crab cavity design optimisation for maximum luminosity

    NASA Astrophysics Data System (ADS)

    Dexter, A. C.; Burt, G.; Ambattu, P. K.; Dolgashev, V.; Jones, R.

    2011-11-01

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  20. XMM-Newton observations of the low-luminosity cataclysmic variable V405 Pegasi

    NASA Astrophysics Data System (ADS)

    Schwope, A. D.; Scipione, V.; Traulsen, I.; Schwarz, R.; Granzer, T.; Pires, A. M.; Thorstensen, J. R.

    2014-01-01

    Context. V405 Peg is a low-luminosity cataclysmic variable (CV) that was identified as the optical counterpart of the bright, high-latitude ROSAT all-sky survey source RBS1955. The system was suspected to belong to a largely undiscovered population of hibernating CVs. Despite intensive optical follow-up its subclass however remained undetermined. Aims: We want to further classify V405 Peg and understand its role in the CV zoo via its long-term behaviour, spectral properties, energy distribution and accretion luminosity. Methods: We perform a spectral and timing analysis of XMM-Newton X-ray and ultra-violet data. Archival WISE, HST, and Swift observations are used to determine the spectral energy distribution and characterize the long-term variability. Results: The X-ray spectrum is characterized by emission from a multi-temperature plasma. No evidence for a luminous soft X-ray component was found. Orbital phase-dependent X-ray photometric variability by ~50% occurred without significant spectral changes. No further periodicity was significant in our X-ray data. The average X-ray luminosity during the XMM-Newton observations was LX,bol ≃ 5 × 1030 erg s-1 but, based on the Swift observations, the corresponding luminosity varied between 5 × 1029 erg s-1 and 2 × 1031 erg s-1 on timescales of years. Conclusions: The CV subclass of this object remains elusive. The spectral and timing properties show commonalities with both classes of magnetic and non-magnetic CVs. The accretion luminosity is far below than that expected for a standard accreting CV at the given orbital period. Objects like V405 Peg might represent the tip of an iceberg and thus may be important contributors to the Galactic Ridge X-ray Emission. If so they will be uncovered by future X-ray surveys, e.g. with eROSITA. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  1. 3-D seismic analysis of a carbonate platform in the Molasse Basin - reef distribution and internal separation with seismic attributes

    NASA Astrophysics Data System (ADS)

    von Hartmann, Hartwig; Buness, Hermann; Krawczyk, Charlotte M.; Schulz, Rüdiger

    2012-10-01

    Carbonate platforms differ from clastic sedimentary environments by a greater heterogeneity, so that key horizons for mapping and compartmentalisation of the reservoir are generally missing. We show that different seismic attributes help to compete with these difficulties and to identify different carbonate facies within the platform. The Upper Jurassic carbonate platform in Southern Germany in the Molasse Basin is a main exploration target for hydrogeothermal projects. Knowledge about the distribution of different carbonate facies within the platform, which is overprinted by faults, is important for a realistic reservoir simulation. The platform with an average thickness of 600 meters was artificially divided into four layers of equal thickness. Within each layer the characteristic seismic pattern was visualized by different attributes (travel time mapping, spectral decomposition), allowing additionally for further depositional classification. Within the uppermost layer the coral reef distribution could be mapped. The reefs form several complexes of up to 12 square kilometres in size. The surrounding slope and trough areas are identified as well. Within the platform , the distribution of sponge reefs could be visualized. They form either amalgamations in distinct areas, or are spread as small singular structures with diameters of approximately less than hundred meters. Comparing tectonic elements and reef distribution within the whole platform reveals that the early topography triggered the reef distribution, while these lithologic inhomogenities influenced later on the local shape of tectonic lineaments. The fault system which dominates the structural style in the area is visible in the different transformations but does not obscure the facies distribution, which hindered former interpretations of the data set. In this way a reservoir model can incorporate now the first time the reef distribution within an area.

  2. Luminosity Coincident with Initial Breakdown Pulses in Lightning

    NASA Astrophysics Data System (ADS)

    Stolzenburg, M.; Marshall, T.; Karunarathne, S.; Karunarathna, N.; Vickers, L.; Warner, T. A.; Orville, R. E.; Betz, H.

    2012-12-01

    Time correlated high-speed video and electromagnetic data for 15 cloud-to-ground and intracloud lightning flashes reveal bursts of light, bright enough to be seen through intervening cloud, during the initial breakdown (IB) stage and within the first 3 ms after flash initiation. Each sudden increase in luminosity is coincident with a CG-type (12 cases) or IC-type (3 cases) IB pulse in fast electric field change records. Some of these IB pulses have a coincident VLF/LF (LINET) or a VHF (LDAR2) radiation source. The luminosity bursts of 14 CG flashes occur 11-340 ms before the first return stroke, at altitudes of 4-8 km, and at 4-41 km range from the camera. In seven cases, streamer-type linear segments visibly advance away from the first light burst for 55-200 μs, then the entire length dims, then the luminosity sequence repeats along the same path. These visible initial streamers lengthen intermittently to about 300-1500 m. Their estimated 2-D speeds are 4 to 18 x 10^5 m/s over the first few hundred microseconds and decrease by about 50% over the first 2 ms. In other cases, only a bright spot or a broad area of diffuse light, presumably scattered by intervening cloud, is visible. The bright area grows larger over 20-60 μs before the luminosity fades in about 100 μs, then this sequence may repeat several times. In several of the flashes a 1-2 ms period of little or no luminosity and small E-change is observed following the IB stage prior to stepped leader development. In this presentation we will show examples of the IB luminosity and coincident electromagnetic data.

  3. MODELING THE RED SEQUENCE: HIERARCHICAL GROWTH YET SLOW LUMINOSITY EVOLUTION

    SciTech Connect

    Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.

    2012-07-01

    We explore the effects of mergers on the evolution of massive early-type galaxies by modeling the evolution of their stellar populations in a hierarchical context. We investigate how a realistic red sequence population set up by z {approx} 1 evolves under different assumptions for the merger and star formation histories, comparing changes in color, luminosity, and mass. The purely passive fading of existing red sequence galaxies, with no further mergers or star formation, results in dramatic changes at the bright end of the luminosity function and color-magnitude relation. Without mergers there is too much evolution in luminosity at a fixed space density compared to observations. The change in color and magnitude at a fixed mass resembles that of a passively evolving population that formed relatively recently, at z {approx} 2. Mergers among the red sequence population ('dry mergers') occurring after z = 1 build up mass, counteracting the fading of the existing stellar populations to give smaller changes in both color and luminosity for massive galaxies. By allowing some galaxies to migrate from the blue cloud onto the red sequence after z = 1 through gas-rich mergers, younger stellar populations are added to the red sequence. This manifestation of the progenitor bias increases the scatter in age and results in even smaller changes in color and luminosity between z = 1 and z = 0 at a fixed mass. The resultant evolution appears much slower, resembling the passive evolution of a population that formed at high redshift (z {approx} 3-5), and is in closer agreement with observations. We conclude that measurements of the luminosity and color evolution alone are not sufficient to distinguish between the purely passive evolution of an old population and cosmologically motivated hierarchical growth, although these scenarios have very different implications for the mass growth of early-type galaxies over the last half of cosmic history.

  4. The AGN Contribution to Galaxy Merger Infrared Luminosities

    NASA Astrophysics Data System (ADS)

    Rosenthal, Lee; Hayward, Christopher C.; Smith, Howard; Ashby, Matthew; Hung, Chao-Ling; Martinez-Galarza, Rafael; Weiner, Aaron; Zezas, Andreas; Lanz, Lauranne

    2015-01-01

    We investigate the contribution of AGN activity to the infrared luminosity of interacting galaxies by analyzing dust radiative transfer calculations of a hydrodynamically simulated merger, created with the code GADGET-2. We focus on emission in the mid-IR to far-IR wavelength ranges, and trace the luminosity density of an interacting gas-rich galaxy pair throughout its evolution. We find that the AGN contribution to IR luminosity is greatest during and immediately after coalescence of the galaxies' central black holes. This period lasts roughly 80 Myr, during which time the increased influx of gas to the center of the merger increases the total luminosity by a factor of a thousand or more due to both increased star formation rate (SFR) and black hole accretion. We compare different interstellar medium models used to describe sub-resolution gas and dust clouds in the radiative transfer calculations by studying the color evolution of our merger in the Herschel Space Observatory photometric filter bands, and compare the results to Herschel observations. We conclude that using infrared luminosity as a simple surrogate for SFR can overestimate the true rate, due to the contribution of AGN or other dust heating mechanisms. This conclusion has an especially significant impact in assessing the star formation activity in high-redshift galaxies for which luminosity (the best measured property) may not accurately measure the SFR, and in cases where the molecular gas content can differ from that of local systems. Further work will extend this analysis to simulations of mergers between late-type galaxies. This work was supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851, by the Smithsonian Institution and by NASA grant NNX14AJ6IG.

  5. The use of airborne radar reflectometry to establish snow/firn density distribution on Devon Ice Cap, Canadian Arctic: A path to understanding complex heterogeneous internal layering patterns

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2014-12-01

    The internal layer stratigraphy of polar ice sheets revealed by airborne radio-echo sounding (RES) contains valuable information about past ice sheet mass balance and dynamics. Internal layers in the Antarctic and Greenland ice sheets are considered to be isochrones and are continuous over several hundreds of kilometres. In contrast, internal layers in Canadian Arctic ice caps appear to be very heterogeneous and fragmentary, consisting of highly discontinuous layers that can be traced over only a few to several tens of kilometres. Internal layers most likely relate to former ice surfaces (the upper few meters of snow/firn), the properties which are directly influenced by atmospheric conditions including the air temperature, precipitation rate, and prevailing wind pattern. We hypothesize that the heterogeneous and complex nature of layers in the Canadian Arctic results from highly variable snow and firn conditions at the surface. Characterizing surface properties such as variations in the snow/firn density from dry to wet snow/firn, as well as high-density shallow ice layers and lenses of refrozen water can help to elucidate the complex internal layer pattern in the Canadian Arctic ice caps. Estimates of the snow/firn surface density and roughness can be derived from reflectance and scattering information using the surface radar returns from RES measurements. Here we present estimates of the surface snow/firn density distribution over Devon Ice Cap in the Canadian Arctic derived by the Radar Statistical Reconnaissance (RSR) methodology (Grima et al., 2014, Planetary & Space Sciences) using data collected by recent airborne radar sounding programs. The RSR generates estimates of the statistical distribution of surface echo amplitudes over defined areas along a survey transect. The derived distributions are best-fitted with a theoretical stochastic envelope, parameterized with the signal reflectance and scattering, in order to separate those two components. Finally

  6. Radiation damage to scintillator in the D0 luminosity monitor

    SciTech Connect

    Casey, Brendan; DeVaughan, Kayle; Enari, Yuji; Partridge, Richard; Yacoob, Sahal; /Northwestern U.

    2006-12-01

    We report the result of evaluating radiation damage to Bicron BC408 plastic scintillator used in the D0 Luminosity Monitor during Run IIa. The Luminosity Monitor provides pseudo-rapidity coverage over the range 2.7 < |{eta}| < 4.4, with the radiation dose in Run IIa estimated to be 0.5 MRad for the region closest to the beams. We find the light yield is degraded by 10-15% due to radiation damage by comparing new and old scintillator in four observables: (1) visual inspection, (2) optical transmittance, (3) response to the radioactive source of {sup 90}Sr and (4) light yield for cosmic rays.

  7. Solar luminosity variations and the climate of Mars

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Gierasch, P. J.; Sagan, C.

    1975-01-01

    A simple climatological model of Mars indicates that its climate may be more sensitive to luminosity changes than earth's because of strong positive feedback mechanisms at work on Mars. Mariner 9 photographs of Mars show an abundance of large sinuous channels that point to an epoch of higher atmospheric pressures and abundant liquid water. Such an epoch could have been the result of large-scale solar luminosity variations. The climatological model suggests that other less controversial mechanisms, such as obliquity or polar albedo changes, also could have led to such an epoch.

  8. The 5-10 keV AGN luminosity function at 0.01 < z < 4.0

    NASA Astrophysics Data System (ADS)

    Fotopoulou, S.; Buchner, J.; Georgantopoulos, I.; Hasinger, G.; Salvato, M.; Georgakakis, A.; Cappelluti, N.; Ranalli, P.; Hsu, L. T.; Brusa, M.; Comastri, A.; Miyaji, T.; Nandra, K.; Aird, J.; Paltani, S.

    2016-03-01

    The active galactic nuclei (AGN) X-ray luminosity function traces actively accreting supermassive black holes and is essential for the study of the properties of the AGN population, black hole evolution, and galaxy-black hole coevolution. Up to now, the AGN luminosity function has been estimated several times in soft (0.5-2 keV) and hard X-rays (2-10 keV). AGN selection in these energy ranges often suffers from identification and redshift incompleteness and, at the same time, photoelectric absorption can obscure a significant amount of the X-ray radiation. We estimate the evolution of the luminosity function in the 5-10 keV band, where we effectively avoid the absorbed part of the spectrum, rendering absorption corrections unnecessary up to NH ~ 1023 cm-2. Our dataset is a compilation of six wide, and deep fields: MAXI, HBSS, XMM-COSMOS, Lockman Hole, XMM-CDFS, AEGIS-XD, Chandra-COSMOS, and Chandra-CDFS. This extensive sample of ~1110 AGN (0.01 < z < 4.0, 41 < log Lx < 46) is 98% redshift complete with 68% spectroscopic redshifts. For sources lacking a spectroscopic redshift estimation we use the probability distribution function of photometric redshift estimation specifically tuned for AGN, and a flat probability distribution function for sources with no redshift information. We use Bayesian analysis to select the best parametric model from simple pure luminosity and pure density evolution to more complicated luminosity and density evolution and luminosity-dependent density evolution (LDDE). We estimate the model parameters that describe best our dataset separately for each survey and for the combined sample. We show that, according to Bayesian model selection, the preferred model for our dataset is the LDDE. Our estimation of the AGN luminosity function does not require any assumption on the AGN absorption and is in good agreement with previous works in the 2-10 keV energy band based on X-ray hardness ratios to model the absorption in AGN up to redshift three

  9. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    NASA Astrophysics Data System (ADS)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  10. Intracellular distribution of TM4SF1 and internalization of TM4SF1-antibody complex in vascular endothelial cells

    SciTech Connect

    Sciuto, Tracey E.; Merley, Anne; Lin, Chi-Iou; Richardson, Douglas; Liu, Yu; Li, Dan; Dvorak, Ann M.; Dvorak, Harold F.; Jaminet, Shou-Ching S.

    2015-09-25

    Transmembrane-4 L-six family member-1 (TM4SF1) is a small plasma membrane-associated glycoprotein that is highly and selectively expressed on the plasma membranes of tumor cells, cultured endothelial cells, and, in vivo, on tumor-associated endothelium. Immunofluorescence microscopy also demonstrated TM4SF1 in cytoplasm and, tentatively, within nuclei. With monoclonal antibody 8G4, and the finer resolution afforded by immuno-nanogold transmission electron microscopy, we now demonstrate TM4SF1 in uncoated cytoplasmic vesicles, nuclear pores and nucleoplasm. Because of its prominent surface location on tumor cells and tumor-associated endothelium, TM4SF1 has potential as a dual therapeutic target using an antibody drug conjugate (ADC) approach. For ADC to be successful, antibodies reacting with cell surface antigens must be internalized for delivery of associated toxins to intracellular targets. We now report that 8G4 is efficiently taken up into cultured endothelial cells by uncoated vesicles in a dynamin-dependent, clathrin-independent manner. It is then transported along microtubules through the cytoplasm and passes through nuclear pores into the nucleus. These findings validate TM4SF1 as an attractive candidate for cancer therapy with antibody-bound toxins that have the capacity to react with either cytoplasmic or nuclear targets in tumor cells or tumor-associated vascular endothelium. - Highlights: • Anti-TM4SF1 antibody 8G4 was efficiently taken up by cultured endothelial cells. • TM4SF1–8G4 internalization is dynamin-dependent but clathrin-independent. • TM4SF1–8G4 complexes internalize along microtubules to reach the perinuclear region. • Internalized TM4SF1–8G4 complexes pass through nuclear pores into the nucleus. • TM4SF1 is an attractive candidate for ADC cancer therapy.

  11. Potential for luminosity improvement for low-energy RHIC operation

    SciTech Connect

    Fedotov A. V.

    2012-05-20

    At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam energies corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low energies. However, the luminosity is very low at lowest energies of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low energies, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall potential luminosity improvement for low-energy RHIC operation from cooling is summarized for various energies, taking into account all these limitations as well as beam lifetime measured during the low-energy RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.

  12. On the temporal fluctuations of pulsating auroral luminosity

    SciTech Connect

    Yamamoto, Tatsundo )

    1988-02-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations.

  13. Luminosity Function of Faint Globular Clusters in M87

    SciTech Connect

    Waters, Christopher Z.; Zepf, Stephen E.; Lauer, Tod R.; Baltz, Edward A.; Silk, Joseph; /Oxford U.

    2006-07-14

    We present the luminosity function to very faint magnitudes for the globular clusters in M87, based on a 30 orbit Hubble Space Telescope (HST) WFPC2 imaging program. The very deep images and corresponding improved false source rejection allow us to probe the mass function further beyond the turnover than has been done before. We compare our luminosity function to those that have been observed in the past, and confirm the similarity of the turnover luminosity between M87 and the Milky Way. We also find with high statistical significance that the M87 luminosity function is broader than that of the Milky Way. We discuss how determining the mass function of the cluster system to low masses can constrain theoretical models of the dynamical evolution of globular cluster systems. Our mass function is consistent with the dependence of mass loss on the initial cluster mass given by classical evaporation, and somewhat inconsistent with newer proposals that have a shallower mass dependence. In addition, the rate of mass loss is consistent with standard evaporation models, and not with the much higher rates proposed by some recent studies of very young cluster systems. We also find that the mass-size relation has very little slope, indicating that there is almost no increase in the size of a cluster with increasing mass.

  14. Absolute luminosity measurements with the LHCb detector at the LHC

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.

  15. Luminosity Variations Along Bunch Trains in PEP-II

    SciTech Connect

    Decker, F.J.; Boyes, M.; Colocho, W.S.; Novokhatski, A.; Sullivan, M.K.; Turner, J.L.; Weathersby, S.P.; Wienands, U.; Yocky, G.; /SLAC

    2007-05-18

    In the spring of 2005 after a long shut-down, the luminosity of the B-Factory PEP-II decreased along the bunch trains by about 25-30%. There were many reasons studied which could have caused this performance degradation, like a bigger phase transient due to an additional RF station in the Low-Energy-Ring (LER), bad initial vacuum, electron cloud, chromaticity, steering, dispersion in cavities, beam optics, etc. The initial specific luminosity of 4.2 sloped down to 3.2 and even 2.8 for a long train (typical: 130 of 144), later in the run with higher currents and shorter trains (65 of 72) the numbers were more like 3.2 down to 2.6. Finally after steering the interaction region for an unrelated reason (overheated BPM buttons) and the consequential lower luminosity for two weeks, the luminosity slope problem was mysteriously gone. Several parameters got changed and there is still some discussion about which one finally fixed the problem. Among others, likely candidates are: the LER betatron function in x at the interaction point got reduced, making the LER x stronger, dispersion reduction in the cavities, and finding and fixing a partially shorted magnet.

  16. Solar luminosity variations and the climate of Mars

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Gierasch, P. J.; Sagan, C.

    1974-01-01

    Attempts to resolve the solar neutrino flux problem have led to suggestions of large scale oscillations in the solar luminosity on a geological time scale. A simple climatological model of Mars indicates that its climate may be much more sensitive to luminosity changes than the earth's because of strong positive feedback mechanisms at work on Mars. Mariner-9 photographs of Mars show an abundance of large sinuous channels that point to an epoch of higher atmospheric pressures and abundant liquid water. Such an epoch could have been the result of large-scale, solar luminosity variations. However, our climatological model suggests that other less controversial mechanisms, such as obliquity or polar albedo changes, also could have led to such an epoch. As more becomes known about Mars, it may prove possible to formulate a history of Martian climate. By discovering effects that cannot be due to other mechanisms one may be able to form a chronology of solar luminosity variations to compare with data from the earth.

  17. The luminosity function at z ∼ 8 from 97 Y-band dropouts: Inferences about reionization

    SciTech Connect

    Schmidt, Kasper B.; Treu, Tommaso; Kelly, Brandon C.; Trenti, Michele; Bradley, Larry D.; Stiavelli, Massimo; Oesch, Pascal A.; Shull, J. Michael

    2014-05-01

    We present the largest search to date for Y-band dropout galaxies (z ∼ 8 Lyman break galaxies, LBGs) based on 350 arcmin{sup 2} of Hubble Space Telescope observations in the V, Y, J, and H bands from the Brightest of Reionizing Galaxies (BoRG) survey. In addition to previously published data, the BoRG13 data set presented here includes approximately 50 arcmin{sup 2} of new data and deeper observations of two previous BoRG pointings, from which we present 9 new z ∼ 8 LBG candidates, bringing the total number of BoRG Y-band dropouts to 38 with 25.5 ≤ m{sub J} ≤ 27.6 (AB system). We introduce a new Bayesian formalism for estimating the galaxy luminosity function, which does not require binning (and thus smearing) of the data and includes a likelihood based on the formally correct binomial distribution as opposed to the often-used approximate Poisson distribution. We demonstrate the utility of the new method on a sample of 97 Y-band dropouts that combines the bright BoRG galaxies with the fainter sources published in Bouwens et al. from the Hubble Ultra Deep Field and Early Release Science programs. We show that the z ∼ 8 luminosity function is well described by a Schechter function over its full dynamic range with a characteristic magnitude M{sup ⋆}=−20.15{sub −0.38}{sup +0.29}, a faint-end slope of α=−1.87{sub −0.26}{sup +0.26}, and a number density of log{sub 10} ϕ{sup ⋆}[Mpc{sup −3}]=−3.24{sub −0.24}{sup +0.25}. Integrated down to M = –17.7, this luminosity function yields a luminosity density log{sub 10} ϵ[erg s{sup −1} Hz{sup −1} Mpc{sup −3}]=25.52{sub −0.05}{sup +0.05}. Our luminosity function analysis is consistent with previously published determinations within 1σ. The error analysis suggests that uncertainties on the faint-end slope are still too large to draw a firm conclusion about its evolution with redshift. We use our statistical framework to discuss the implication of our study for the physics of

  18. Characterizing Quasar Outflows III: SEDs, and Bolometric Luminosity Estimates

    NASA Astrophysics Data System (ADS)

    Richmond, Joseph; Robbins, J. M.; Ganguly, R.; Stark, M. A.; Christenson, D. H.; Derseweh, J. A.; Townsend, S. L.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we add photometry from both the Two Micron All-Sky Survey (2MASS) and from the Wide-Field Infrared Survey Explorer (WISE). 2MASS photometry covers the rest-frame optical regime of these qusars, while the WISE W1, W2, and W3 bands cover the rest-frame wavelength ranges 0.9-1.27 micron, 1.35-1.75 micron, and 2.52-5.51 micron, respectively. The preliminary release of WISE data cover 3800 of our quasars. In an accompnying poster, we have subjectively divided these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). Here, we present average SEDs for these subsamples, estimates of bolometric luminosity, and explore changes in SED based on both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the

  19. Status and Outlook for the RHIC Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2010-02-01

    As the world highest energy heavy ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been the center for exploring the universe at its infant stage. The operations of RHIC over the past decade has produced many results. A new state of matter, the quark-gluon plasma which is believed to only have existed right after the birth of the universe, was first observed at RHIC during the collisions of Au ions. The experimental data also revealed that this new state of matter behaves like a perfect fluid. In addition to the heavy ion program, RHIC is also capable to accelerate polarized proton beams to high energy, which allows one to explore the spin structure of polarized protons. Both the heavy ion program and spin physics program require high luminosities at RHIC. Various efforts aimed at increasing the RHIC luminosity of heavy ion and polarized proton collisions, such as NEG coating beam pipes to reduce electron clouds, using intrabeam scattering lattice for heavy ion operations as well as longitudinal stochastic cooling. The average store luminosity of Au collisions at a beam energy of 100 GeV/u has reached 1027cm-2s-1. The average store luminosity of RHIC polarized proton collisions at a beam energy of 100 GeV reached 28x1030cm-2s-1 and 55x1030 cm-2s-1 for the polarized proton collisions at a beam energy 250 GeV. Currently, the luminosity is limited by beam-beam effects for polarized proton collisions and intrabeam scattering for heavy ion collisions. Novel techniques are explored and under development to address these issues. The addition of transverse stochastic cooling will minimize the beam size growth due to intrabeam scattering and increase the heavy ion luminosity lifetime. The technique of using 9MHz cavity to accelerate polarized protons minimizes the electron cloud effect, which can cause emittance blowup. It also helps to preserve the longitudinal emittance and yields shorter bunches. The technique of employing an

  20. DIRECT OXYGEN ABUNDANCES FOR LOW-LUMINOSITY LVL GALAXIES

    SciTech Connect

    Berg, Danielle A.; Skillman, Evan D.; Marble, Andrew R.; Engelbracht, Charles W.; Van Zee, Liese; Lee, Janice C.; Kennicutt, Robert C. Jr.; Calzetti, Daniela; Dale, Daniel A.; Johnson, Benjamin D. E-mail: skillman@astro.umn.edu E-mail: amarble@nso.edu E-mail: jlee@stsci.edu E-mail: ddale@uwyo.edu

    2012-08-01

    We present MMT spectroscopic observations of H II regions in 42 low luminosity galaxies in the Spitzer Local Volume Legacy survey. For 31 of the 42 galaxies in our sample, we were able to measure the temperature sensitive [O III] {lambda}4363 line at a strength of 4{sigma} or greater, and thus determine oxygen abundances using the 'direct' method. Our results provide the first 'direct' estimates of oxygen abundance for 19 of these galaxies. 'Direct' oxygen abundances were compared to B-band luminosities, 4.5 {mu}m luminosities, and stellar masses in order to characterize the luminosity-metallicity and mass-metallicity relationships at low luminosity. We present and analyze a 'Combined Select' sample composed of 38 objects (drawn from a sub-set of our parent sample and the literature) with 'direct' oxygen abundances and reliable distance determinations (based on the tip of the red giant branch or Cepheid variables). Consistent with previous studies, the B band and 4.5 {mu}m luminosity-metallicity relationships for the 38 objects were found to be 12 + log(O/H) = (6.27 {+-} 0.21) + (- 0.11 {+-} 0.01)M{sub B} and 12 + log(O/H) = (6.10 {+-} 0.21) + (- 0.10 {+-} 0.01)M{sub [4.5]} with dispersions of {sigma} = 0.15 and 0.14, respectively. The slopes of the optical and near-IR L-Z relationships have been reported to be different for galaxies with luminosities greater than that of the LMC. However, the similarity of the slopes of the optical and near-IR L-Z relationships for our sample probably reflects little influence by dust extinction in the low luminosity galaxies. For this sample, we derive a mass-metallicity relationship of 12 + log(O/H) = (5.61 {+-} 0.24) + (0.29 {+-} 0.03)log (M{sub *}), which agrees with previous studies; however, the dispersion ({sigma} = 0.15) is not significantly lower than that of the L-Z relationships. Because of the low dispersions in these relationships, if an accurate distance is available, the luminosity of a low luminosity galaxy is

  1. Cosmic Evolution of Long Gamma-Ray Burst Luminosity

    NASA Astrophysics Data System (ADS)

    Deng, Can-Min; Wang, Xiang-Gao; Guo, Bei-Bei; Lu, Rui-Jing; Wang, Yuan-Zhu; Wei, Jun-Jie; Wu, Xue-Feng; Liang, En-Wei

    2016-03-01

    The cosmic evolution of gamma-ray burst (GRB) luminosity is essential for revealing the GRB physics and for using GRBs as cosmological probes. We investigate the luminosity evolution of long GRBs with a large sample of 258 Swift/BAT GRBs. By describing the peak luminosity evolution of individual GRBs as {L}{{p}}\\propto \\text{}{(1+z)}k, we get k=1.49+/- 0.19 using the nonparametric τ statistics method without considering observational biases of GRB trigger and redshift measurement. By modeling these biases with the observed peak flux and characterizing the peak luminosity function of long GRBs as a smoothly broken power law with a break that evolves as {L}{{b}}\\propto {(1+z)}{k{{b}}}, we obtain {k}{{b}}={1.14}-0.47+0.99 through simulations based on the assumption that the long GRB rate follows the star formation rate incorporating the cosmic metallicity history. The derived k and kb values are systematically smaller than those reported in previous papers. By removing the observational biases of the GRB trigger and redshift measurement based on our simulation analysis, we generate mock complete samples of 258 and 1000 GRBs to examine how these biases affect the τ statistics method. We get k=0.94+/- 0.14 and k=0.80+/- 0.09 for the two samples, indicating that these observational biases may lead to overestimating the k value. With the large uncertainty of kb derived from our simulation analysis, one cannot even convincingly argue for a robust evolution feature of the GRB luminosity.

  2. DISK GALAXIES WITH BROKEN LUMINOSITY PROFILES FROM COSMOLOGICAL SIMULATIONS

    SciTech Connect

    Martinez-Serrano, F. J.; Serna, A.; Domenech-Moral, M.; Dominguez-Tenreiro, R.

    2009-11-10

    We present smoothed particle hydrodynamics cosmological simulations of the formation of three disk galaxies with a detailed treatment of chemical evolution and cooling. The resulting galaxies have properties compatible with observations: relatively high disk-to-total ratios, thin stellar disks, and good agreement with the Tully-Fisher and the luminosity-size relations. They present a break in the luminosity profile at 3.0 +- 0.5 disk scale lengths while showing an exponential mass profile without any apparent breaks, which is in line with recent observational results. Since the stellar mass profile is exponential, only differences in the stellar populations can be the cause of the luminosity break. Although we find a cutoff for the star formation rate (SFR) imposed by a density threshold in our star formation model, it does not coincide with the luminosity break and is located at 4.3 +- 0.4 disk scale lengths, with star formation going on between both radii. The color profiles and the age profiles are 'U-shaped', with the minimum for both profiles located approximately at the break radius. The SFR to stellar mass ratio increases until the break, explaining the coincidence of the break with the minimum of the age profile. Beyond the break, we find a steep decline in the gas density and, consequently, a decline in the SFR and redder colors. We show that most stars (64%-78%) in the outer disk originate in the inner disk and afterward migrate there. Such stellar migrations are likely the main origin of the U-shaped age profile and, therefore, of the luminosity break.

  3. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82

    SciTech Connect

    McGreer, Ian D.; Fan Xiaohui; Jiang Linhua; Richards, Gordon T.; Strauss, Michael A.; Ross, Nicholas P.; White, Martin; Shen Yue; Schneider, Donald P.; Brandt, W. Niel; Myers, Adam D.; DeGraf, Colin; Glikman, Eilat; Ge Jian; Streblyanska, Alina

    2013-05-10

    We present a measurement of the Type I quasar luminosity function at z = 5 using a large sample of spectroscopically confirmed quasars selected from optical imaging data. We measure the bright end (M{sub 1450} < -26) with Sloan Digital Sky Survey (SDSS) data covering {approx}6000 deg{sup 2}, then extend to lower luminosities (M{sub 1450} < -24) with newly discovered, faint z {approx} 5 quasars selected from 235 deg{sup 2} of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in the Southern Galactic Cap). The faint sample includes 14 quasars with spectra obtained as ancillary science targets in the SDSS-III Baryon Oscillation Spectroscopic Survey, and 59 quasars observed at the MMT and Magellan telescopes. We construct a well-defined sample of 4.7 < z < 5.1 quasars that is highly complete, with 73 spectroscopic identifications out of 92 candidates. Our color selection method is also highly efficient: of the 73 spectra obtained, 71 are high-redshift quasars. These observations reach below the break in the luminosity function (M{sub 1450}{sup *}{approx}-27). The bright-end slope is steep ({beta} {approx}< -4), with a constraint of {beta} < -3.1 at 95% confidence. The break luminosity appears to evolve strongly at high redshift, providing an explanation for the flattening of the bright-end slope reported previously. We find a factor of {approx}2 greater decrease in the number density of luminous quasars (M{sub 1450} < -26) from z = 5 to z = 6 than from z = 4 to z = 5, suggesting a more rapid decline in quasar activity at high redshift than found in previous surveys. Our model for the quasar luminosity function predicts that quasars generate {approx}30% of the ionizing photons required to keep hydrogen in the universe ionized at z = 5.

  4. SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA

    SciTech Connect

    Foley, Ryan J.; Kirshner, Robert P.; Challis, Peter J.; Friedman, Andrew S.; Chornock, Ryan; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Cenko, S. Bradley; Modjaz, Maryam; Silverman, Jeffrey M.; Wood-Vasey, W. Michael

    2009-08-15

    We present ultraviolet, optical, and near-infrared photometry as well as optical spectra of the peculiar supernova (SN) 2008ha. SN 2008ha had a very low peak luminosity, reaching only M{sub V} = -14.2 mag, and low line velocities of only {approx}2000 km s{sup -1} near maximum brightness, indicating a very small kinetic energy per unit mass of ejecta. Spectroscopically, SN 2008ha is a member of the SN 2002cx-like class of SNe, a peculiar subclass of SNe Ia; however, SN 2008ha is the most extreme member, being significantly fainter and having lower line velocities than the typical member, which is already {approx}2 mag fainter and has line velocities {approx}5000 km s{sup -1} smaller (near maximum brightness) than a normal SN Ia. SN 2008ha had a remarkably short rise time of only {approx}10 days, significantly shorter than either SN 2002cx-like objects ({approx}15 days) or normal SNe Ia ({approx}19.5 days). The bolometric light curve of SN 2008ha indicates that SN 2008ha peaked at L {sub peak} = (9.5 {+-} 1.4) x 10{sup 40} erg s{sup -1}, making SN 2008ha perhaps the least luminous SN ever observed. From its peak luminosity and rise time, we infer that SN 2008ha generated (3.0 {+-} 0.9) x 10{sup -3} M {sub sun} of {sup 56}Ni, had a kinetic energy of {approx}2 x 10{sup 48} erg, and ejected 0.15 M {sub sun} of material. The host galaxy of SN 2008ha has a luminosity, star formation rate, and metallicity similar to those of the Large magellanic Cloud. We classify three new (and one potential) members of the SN 2002cx-like class, expanding the sample to 14 (and one potential) members. The host-galaxy morphology distribution of the class is consistent with that of SNe Ia, Ib, Ic, and II. Several models for generating low-luminosity SNe can explain the observations of SN 2008ha; however, if a single model is to describe all SN 2002cx-like objects, deflagration of carbon-oxygen white dwarfs, with SN 2008ha being a partial deflagration and not unbinding the progenitor star, is

  5. Imaging spectroscopy diagnosis of internal electron temperature and density distributions of plasma cloud surrounding hydrogen pellet in the Large Helical Device

    SciTech Connect

    Motojima, G.; Sakamoto, R.; Goto, M.; Matsuyama, A.; Yamada, H.; Mishra, J. S.

    2012-09-15

    To investigate the behavior of hydrogen pellet ablation, a novel method of high-speed imaging spectroscopy has been used in the Large Helical Device (LHD) for identifying the internal distribution of the electron density and temperature of the plasma cloud surrounding the pellet. This spectroscopic system consists of a five-branch fiberscope and a fast camera, with each objective lens having a different narrow-band optical filter for the hydrogen Balmer lines and the background continuum radiation. The electron density and temperature in the plasma cloud are obtained, with a spatial resolution of about 6 mm and a temporal resolution of 5 Multiplication-Sign 10{sup -5} s, from the intensity ratio measured through these filters. To verify the imaging, the average electron density and temperature also have been measured from the total emission by using a photodiode, showing that both density and temperature increase with time during the pellet ablation. The electron density distribution ranging from 10{sup 22} to 10{sup 24} m{sup -3} and the temperature distribution around 1 eV have been observed via imaging. The electron density and temperature of a 0.1 m plasma cloud are distributed along the magnetic field lines and a significant electron pressure forms in the plasma cloud for typical experimental conditions of the LHD.

  6. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    DOE PAGESBeta

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to comparemore » internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.« less

  7. Evaluation of internal potential distribution and carrier extraction properties of organic solar cells through Kelvin probe and time-of-flight measurements

    SciTech Connect

    Tanaka, Yuya; Oda, Keisuke; Nakayama, Yasuo; Noguchi, Yutaka Ishii, Hisao; Takahashi, Jun-ichi; Tokairin, Hiroshi

    2014-09-21

    The carrier extraction property of a prototypical small molecule organic solar cell (OSC) composed of copper phthalocyanine (CuPc), C⁶⁰, and bathocuproine (BCP) was studied on the basis of the internal potential distribution and carrier dynamics in the device. The internal potential distribution in the OSC structure at the interfaces and in the bulk region was determined by the Kelvin probe method. Significant potential gradients were found in the CuPc film on indium tin oxide and in the C⁶⁰ film on CuPc, consistent with charge transfer through the contacts. Moreover, surface potential of the BCP layer grew linearly with increasing film thickness with a slope of ca. 35 mV/nm (giant surface potential: GSP), which indicated spontaneous orientation polarization in the film. The potential gradient and GSP significantly changed the built-in potential of the device. Current–voltage and modified time-of-flight measurements revealed that the BCP layer worked as an electron injection and extraction layer despite the wide energy gap. These results were discussed based on the contributions of GSP and the gap states in the BCP layer.

  8. Investigation of element distribution and homogeneity of TXRF samples using SR-micro-XRF to validate the use of an internal standard and improve external standard quantification.

    PubMed

    Horntrich, C; Smolek, S; Maderitsch, A; Simon, R; Kregsamer, P; Streli, C

    2011-06-01

    Total reflection X-ray fluorescence analysis (TXRF) offers a nondestructive qualitative and quantitative analysis of trace elements. Due to its outstanding properties TXRF is widely used in the semiconductor industry for the analysis of silicon wafer surfaces and in the chemical analysis of liquid samples. Two problems occur in quantification: the large statistical uncertainty in wafer surface analysis and the validity of using an internal standard in chemical analysis. In general TXRF is known to allow for linear calibration. For small sample amounts (low nanogram (ng) region) the thin film approximation is valid neglecting absorption effects of the exciting and the detected radiation. For higher total amounts of samples deviations from the linear relation between fluorescence intensity and sample amount can be observed. This could be caused by the sample itself because inhomogeneities and different sample shapes can lead to differences of the emitted fluorescence intensities and high statistical errors. The aim of the study was to investigate the elemental distribution inside a sample. Single and multi-element samples were investigated with Synchrotron-radiation-induced micro X-ray Fluorescence Analysis (SR-μ-XRF) and with an optical microscope. It could be proven that the microscope images are all based on the investigated elements. This allows the determination of the sample shape and potential inhomogeneities using only light microscope images. For the multi-element samples, it was furthermore shown that the elemental distribution inside the samples is homogeneous. This justifies internal standard quantification. PMID:21190102

  9. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    SciTech Connect

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to compare internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.

  10. Structural-acoustic model of a rectangular plate-cavity system with an attached distributed mass and internal sound source: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Pirnat, Miha; Čepon, Gregor; Boltežar, Miha

    2014-03-01

    In this paper three approaches are combined to develop a structural-acoustic model of a rectangular plate-cavity system with an attached distributed mass and internal sound source. The first approach results from a recently presented analysis based on the Rayleigh-Ritz method and is used to circumvent the difficulties in obtaining the natural frequencies and mode shapes of a plate with an attached, distributed mass. Furthermore, different plate boundary conditions can be accommodated. The resulting mode shapes are defined as continuous functions; this is advantageous as they can be directly used in the second approach, i.e., the classic modal-interaction approach in order to obtain the coupled equations of the system. Finally, in the third approach a group of point sources emitting a pressure pulse in the time domain is used to model an internal sound source. For the validation of the developed model an experiment was conducted in two configurations using a simply supported aluminium plate and a clamped plate coupled with a plexiglas box containing a loudspeaker. Good agreement was found between the analytical and experimental data.

  11. The Dependence of galaxy colors on luminosity and environment at z~0.4

    SciTech Connect

    Yee, H.K.C.; Hsieh, B.C.; Lin, Huan; Gladders, M.D.; /Carnegie Inst. Observ.

    2005-08-01

    The authors analyze the B-R{sub c} colors of galaxies as functions of luminosity and local galaxy density using a large photometric redshift catalog based on the Red-Sequence Cluster Survey. They select two samples of galaxies with a magnitude limit of M{sub R{sub e}} < -18.5 and redshift ranges of 0.2 {le} z < 0.4 and 0.4 {le} x < 0.6 containing 10{sup 5} galaxies each. they model the color distributions of subsamples of galaxies and derive the red galaxy fraction and peak colors of red and blue galaxies as functions of galaxy luminosity and environment. The evolution of these relationships over the redshift range of x {approx} 0.5 to z {approx} 0.05 is analyzed in combination with published results from the Sloan Digital Sky Survey. They find that there is a strong evolution in the restframe peak color of bright blue galaxies in that they become redder with decreasing redshift, while the colors of faint blue galaxies remain approximately constant. This effect supports the ''downsizing'' scenario of star formation in galaxies. While the general dependence of the galaxy color distributions on the environment is small, they find that the change of red galaxy fraction with epoch is a function of the local galaxy density, suggesting that the downsizing effect may operate with different timescales in regions of different galaxy densities.

  12. Tidally triggered galaxy formation. I - Evolution of the galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    Lacey, Cedric; Silk, Joseph

    1991-11-01

    Motivated by accumulating evidence that large-scale galactic star formation is initiated and sustained by tidal interactions, a phenomenological model is developed for the galaxy luminosity function, commencing from a galaxy mass function that is predicted by a hierarchical model of structure formation such as the cold dark matter dominated cosmology. The epoch of luminous galaxy formation and the galactic star-formation rate are determined by the environment. Gas cooling and star-formation feedback are incorporated; the present epoch luminosity function of bright galaxies and the distribution of galaxy colors are well reproduced. Biasing, via the preferential formation of luminous galaxies in denser regions associated with groups of clusters, is a natural outcome of this tidally triggered star-formation model. A large frequency is inferred of 'failed' galaxies, prematurely stripped by supernova-driven winds, that populate groups and clusters in the form of low surface brightness gas-poor dwarfs, and of 'retarded' galaxies, below the threshold for effective star formation, in the field, detectable as gas-rich, extremely low surface brightness objects. Predictions are presented for the evolution with redshift of the distribution of characteristic star formation timescales, galaxy ages, and colors. Estimates are also made of galaxy number counts, and it is suggested that dwarf galaxies undergoing bursts of star formation at z of about 1 may dominate the counts at the faintest magnitudes.

  13. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    SciTech Connect

    Unseren, M.A.

    1997-04-20

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  14. Direct Oxygen Abundances for the Lowest Luminosity LVL Galaxies

    NASA Astrophysics Data System (ADS)

    Berg, Danielle; Skillman, E. D.; Marble, A. R.; van Zee, L.; Engelbracht, C. W.

    2012-01-01

    We present new MMT spectroscopic observations of HII regions in 42 of the lowest luminosity galaxies in the Spitzer Local Volume Legacy (LVL) survey. For 31 of the galaxies in our sample we were able to measure the [OIII] ? auroral line at a strength of 4σ or greater, and thus determine oxygen abundances using the direct method. Direct oxygen abundances were compared to B-band luminosity, 4.5 μm luminosity, and stellar mass to characterize the luminosity-metallicity (L-Z) and mass-metallicity (M-Z) relationships at low-luminosity. We examined a "Combined Select” sample composed of 38 objects, from the present sample and the literature, with direct oxygen abundances and reliable distance determinations (based on the tip of the red giant branch or Cepheid variables). The B-band and 4.5 μm L-Z relationships were found to be 12+log(O/H) = (6.19±0.07) + (-0.12±0.01)MB and 12+log(O/H) = (5.93±0.11) + (-0.11±0.01)M[4.5] with dispersions of σ = 0.17 and σ = 0.14 respectively. Since the slope of the L-Z relationship doesn't seem to vary from the optical to the near-IR, as has been observed in studies of more luminous galaxies, we propose that less extinction due to dust is created in the lowest luminosity galaxies. We subsequently derived a M-Z relationship of 12+log(O/H) = (5.49±0.23) + (0.31±0.03)log M*, with a dispersion of σ = 0.16. None of the relationships seem to hold an advantage with respect to dispersion, supporting the idea of minimized dust. Additionally, the trend of N/O abundance with respect to B-V color and oxygen abundance was examined. Similar to the conclusions of van Zee & Haynes (2006), we find a positive correlation between N/O ratio and B-V color: log(N/O) = 0.92 (B-V) - 1.83. Furthermore, there are no objects with high N/O ratio below 12+log(O/H)=7.9.

  15. Differential Spectral Synthesis of Low-Luminosity Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Jones, Lewis Alexander

    In this thesis, a study of the spectral variations in the integrated light of eight low-luminosity elliptical galaxies is presented. The unique opportunity provided by low-luminosity elliptical galaxies to study integrated spectra at high line definition is the motivation behind the observational approach for this study. A long wavelength baseline is sacrificed in favor of working at high resolution (~2 Å FWHM) with a large variety of narrow absorption features in a smaller wave-length window. A new spectral library has been developed with this approach in mind. The library consists of spectra of 684 stars all observed with the Coudé Feed Telescope and Spectrograph at the Kitt Peak National Observatory, covering the spectral ranges 3820-4500 Å and 4780-5450 Å and at a spectral resolution of ~2 Å FWHM. The coverage of the library is complete for spectral types A-K and luminosity classes I-V, in the range -2.5 <= FeH; <= +0.5, while the O, B, and M stars are near solar. The empirical investigation of the galaxy spectra in reference to the stellar sequences of the spectral library yields several key results. (1) There is a spread in the mean spectral types of the low-luminosity ellliptical galaxies. (2) The galaxies are similar in evolved star content, Fe line strengths, and their evolved star light is dominated by solar type giants. (3) Five of the eight galaxies are shown to contain less than a 5% hot star contribution, which is inconsistent with the prediction of ~10% from the simple model of chemical evolution (Worthey, Dorman, and Jones 1996). (4) From variations in the balance of dwarf and giant light in the galaxy spectra it is claimed that there is a spread in the mean stellar ages of the low-luminosity elliptical galaxies. These results are interpreted in the context of the evolutionary synthesis models of Worthey (1994). The main result from the comparison of the galaxies and models is that the low-luminosity elliptical galaxies show a large spread in

  16. VizieR Online Data Catalog: 2-10keV luminosity function of AGN (Ranalli+, 2016)

    NASA Astrophysics Data System (ADS)

    Ranalli, P.; Koulouridis, E.; Georgantopoulos, I.; Fotopoulou, S.; Hsu, L.-T.; Salvato, M.; Comastri, A.; Pierre, M.; Cappelluti, N.; Carrera, F. J.; Chiappetti, L.; Clerc, N.; Gilli, R.; Iwasawa, K.; Pacaud, F.; Paltani, S.; Plionis, E.; Vignali, C.

    2016-02-01

    The XMM-LSS, XMM-CDFS, and XMM-COSMOS are three surveys with complementary properties in terms of luminosity and redshift coverage. We used these three surveys to derive Bayesian estimates of the unabsorbed luminosity function (LF) of AGN in the 2-10keV band. The LF estimates are presented as a set of samples from the posterior probability distribution of the LF parameters. The LF is parameterised as a double power-law, with either the luminosity and density evolution (LADE) model, or the luminosity-dependent density evolution (LDDE) model. The double power-law is described by Eq.(10) in the paper. The LADE and LDDE models are described by Eqs.(11-14) and Eqs.(15-17), respectively. A Fortran 2008 implementation of these models can be found in file src2/lumf_funcs.f90 of the LFTools package, in the classes doublepowerlaw, ladevol, and lddevol (see the paper). (8 data files).

  17. Connecting faint-end slopes of the Lyman α emitter and Lyman-break galaxy luminosity functions

    NASA Astrophysics Data System (ADS)

    Gronke, M.; Dijkstra, M.; Trenti, M.; Wyithe, S.

    2015-05-01

    We predict Lyman α (Lyα) luminosity functions (LFs) of Lyα-selected galaxies (Lyα emitters, or LAEs) at z = 3-6 using the phenomenological model. This model combines observed UV-LFs of Lyman-break galaxies (LBGs, or drop-out galaxies), with constraints on their distribution of Lyα line strengths as a function of UV-luminosity and redshift. Our analysis shows that while Lyα LFs of LAEs are generally not Schechter functions, these provide a good description over the luminosity range of log10(Lα/erg s-1) = 41-44. Motivated by this result, we predict Schechter function parameters at z = 3-6. Our analysis further shows that (i) the faint-end slope of the Lyα LF is steeper than that of the UV-LF of LBGs, (with a median αLyα < -2.0 at z ≳ 4), and (ii) a turnover in the Lyα LF of LAEs at Lyα luminosities 1040 ≲ Lα ≲ 1041 erg s-1 may signal a flattening of UV-LF of LBGs at -12 > MUV > -14. We discuss the implications of these results - which can be tested directly with upcoming surveys - for the Epoch of Reionization.

  18. 3D Tomography of Accretionary Lapilli From The Island of Stromboli (Aeolian Archipelago, Italy): Spatial Arrangement, Internal Structure, Grain Size Distribution and Chemical Characterization

    NASA Astrophysics Data System (ADS)

    Morgavi, D.; Ielpo, M.; Valentini, L.; Laeger, K.; Paredes, J.; Petrelli, M.; Costa, A.; Perugini, D.

    2015-12-01

    The Secche di Lazzaro formation (7 Ka) is a phreatomagmatic deposit in the south-western part of the island of Stromboli (Aeolian Archipelago, Italy). The volcanic sequence is constituted by three main sub-units. In two of them abundant accretionary lapilli are present. We performed granulometric analysis to describe the spatial arrangement and the grain-size distribution of the lapilli inside the deposit. Lapilli were characterized by SEM investigations (BSE images). EMPA and LA-ICP-MS analyses of major and trace elements on glasses and minerals were performed. Although BSE images provide accurate morphological information, they do not allow the real 3D microstructure to be accessed. Therefore, non-invasive 3D imaging of the lapilli was performed by X-ray micro-tomography (X-mCT). The results of the X-mCT measurements provided a set of 2D cross-sectional slices stacked along the vertical axis, with a voxel size varying between 2.7 and 4.1 mm, depending on the size of the sample. The X-mCT images represent a mapping of X-ray attenuation, which in turn depends on the density of the phases distributed within the sample. This technique helped us to better constrain the particle and crystal distribution inside the accretionary lapilli. The recognized phases are: glass, clinopyroxene, plagioclase and Ti-Fe minerals. We discover also a high concentration of Na, Cl and SO3 in the ash matrix. This evidence is ubiquitous in all the accretionary lapilli. The work presented here could define a new route for future studies in the field of physical volcanology as X-ray micro-tomography could be a useful, non destructive technique to better characterize the internal structure of accretionary lapilli helping us to describe grain-size distribution of component particles and their spatial distribution within aggregates.

  19. Biokinetics of systemically distributed 60Co in the rat: an experimental model useful in evaluating medical countermeasures for internal contamination.

    PubMed

    Weber, Waylon; Doyle-Eisele, Melanie; Seilkop, Steven K; Guilmette, Raymond

    2012-10-01

    LBERI, a member of the Medical Countermeasures to Radiologic Threats (MCART) consortium funded by NIAID, was tasked to develop biokinetic models for the distribution of radionuclide threats using the most likely routes of incorporation in both small and large animals. In this paper, the biokinetics of systemically administered soluble (60)Co have been examined. Male and female jugular-vein-catheterized (JVC) F344 rats received intravenous (IV) doses of 11.2 kBq of (60)CoCl2. The distribution of the radiocobalt was followed for 28 d with tissue sampling done at 1 and 4 h, and at 1, 2, 4, 8, 16, and 28 d. Urine and feces were collected daily. Tissues and excreta were analyzed by gamma pulse height analysis. Within 8 d, 93% of the cobalt was eliminated from the body, primarily though urine. The highest tissue burdens were found in the liver, gastrointestinal (GI) tract, and muscle shortly after administration. These tissues cleared quickly, so that by the conclusion of the 28-d study, less than 3% of the injected dose remained in the body. The results are comparable to published literature values for tissue content of (60)Co and for excretion patterns up to 30 d after injection. These results will provide the data needed to construct a biokinetic model for the unperturbed biokinetics of (60)Co in rats, which will subsequently be used to evaluate the impact of administered decorporating agents on organ radiation doses. The animal model described in this paper is representative of that used for other routes of radionuclide administration, such as inhalation, ingestion, and wound contamination, that have been studied at LBERI in support of the MCART and NIAID programs. PMID:22929473

  20. Magnitude of Residual Internal Anatomy Motion on Heavy Charged Particle Dose Distribution in Respiratory Gated Lung Therapy

    SciTech Connect

    Mori, Shinichiro Asakura, Hiroshi; Kandatsu, Susumu; Kumagai, Motoki; Baba, Masayuki; Endo, Masahiro

    2008-06-01

    Purpose: To assess the variation in carbon beam dose distribution due to residual motion in lung cancer patients undergoing respiratory-gated radiotherapy. Methods and Materials: A total of 11 lung cancer patients underwent four-dimensional computed tomography with a 256-multislice computed tomography scanner under free-breathing conditions. A compensating bolus was designed to cover the treatment beam for all planning target volumes during a 30% duty cycle centered on exhalation (gating window). This bolus was applied to the four-dimensional computed tomography data for one respiratory cycle, and then the carbon beam dose distribution was calculated. Results: A water equivalent pathlength variation of <5 mm was observed in the gating window, but this increased to {<=}20 mm on inhalation. As a result, beam overshoot/undershoot occurred around inhalation, which increased the excessive dosing to normal tissues and the organs at risk. The dose for >95% volume irradiation is dependent on the respiratory phase but not the gating window. However, the dose for >95% volume irradiation correlated well with the tumor displacement distance. More than 90% of the dose for >95% volume irradiation could be delivered in the gating window with <4-mm tumor displacement resulting from exhalation. Conclusion: The results of our study have shown that even when the treatment beam delivery occurs outside the gating window, the prescribed dose to the target is not affected in patients with a tumor displacement of <4 mm. Thus, respiratory gating is not required in radiotherapy for patients with <4-mm tumor displacement in a respiratory cycle.

  1. BIOKINETICS OF SYSTEMICALLY DISTRIBUTED CO-60 IN THE RAT: AN EXPERIMENTAL MODEL USEFUL IN EVALUATING MEDICAL COUNTERMEASURES FOR INTERNAL CONTAMINATION

    PubMed Central

    Weber, Waylon; Doyle-Eisele, Melanie; Seilkop, Steven K.; Guilmette, Raymond

    2012-01-01

    LBERI, a member of the Medical Countermeasures to Radiologic Threats (MCART) consortium funded by NIAID, was tasked to develop biokinetic models for the distribution of radionuclide threats using the most likely routes of incorporation in both small and large animals. In the present paper, the biokinetics of systemically administered soluble cobalt-60 (60Co) have been examined. Male and female jugular-vein-catheterized (JVC) F344 rats received intravenous (IV) doses of 11.2 kBq of 60CoCl2. The distribution of the radiocobalt was followed for 28 d, with tissue sampling done at 1 and 4 h, and at 1, 2, 4, 8, 16, and 28 d. Urine and feces were collected daily. Tissues and excreta were analyzed by gamma pulse height analysis. Within 8d, 93% of the cobalt was eliminated from the body primarily though urine. The highest tissue burdens were found in liver, gastrointestinal (GI) tract, and muscle shortly after administration. These tissues cleared quickly so that by the conclusion of the 28-d study, less than 3% of the recovered dose remained in the body. The results are comparable to published literature values for tissue content of 60Co and for excretion patterns up to 30 d after injection. These results will provide the data needed to construct a biokinetic model for the unperturbed biokinetics of 60Co in rats, which will subsequently be used to evaluate the impact of administered decorporating agents on organ radiation doses. The animal model described in this paper is representative of that used for other routes of radionuclide administration such as inhalation, ingestion and wound contamination that have been studied at LBERI in support of the MCART and NIAID programs. PMID:22929473

  2. Performance evaluation and spatial sludge distribution at facultative and maturation ponds treating wastewater from an international airport.

    PubMed

    Passos, Ricardo Gomes; von Sperling, Marcos; Ribeiro, Thiago Bressani

    2014-01-01

    This paper presents a performance evaluation of facultative and maturation ponds in series treating wastewater from a large and intensively used international airport in Brazil, based on 16 years of regular monitoring. The wastewater from the airport showed similar or slightly lower concentrations compared to typical domestic sewage for most of the quality parameters. The contribution of effluents with possible industrial features (aircraft toilets and hangar effluent) did not seem to have adversely affected the characteristics of the influent in terms of aptitude to biological treatment. Overall, the ponds operated under very underloaded conditions (mean loading rate of 44 kg biochemical oxygen demand/ha.d in the facultative pond) and presented a satisfactory quality in terms of effluent concentrations for most parameters. A bathymetric survey of the ponds was done manually by a low-cost measurer constructed specifically for this purpose. After 27 years of operation, only 25% and 18% of the volumes of the facultative and maturation ponds were occupied by sludge. Specific sludge accumulation rates were 0.0071 m³/passenger.year for the facultative pond and 0.00017 m³/passenger.year for the maturation pond. PMID:25051468

  3. Intracellular distribution of TM4SF1 and internalization of TM4SF1-antibody complex in vascular endothelial cells.

    PubMed

    Sciuto, Tracey E; Merley, Anne; Lin, Chi-Iou; Richardson, Douglas; Liu, Yu; Li, Dan; Dvorak, Ann M; Dvorak, Harold F; Jaminet, Shou-Ching S

    2015-09-25

    Transmembrane-4 L-six family member-1 (TM4SF1) is a small plasma membrane-associated glycoprotein that is highly and selectively expressed on the plasma membranes of tumor cells, cultured endothelial cells, and, in vivo, on tumor-associated endothelium. Immunofluorescence microscopy also demonstrated TM4SF1 in cytoplasm and, tentatively, within nuclei. With monoclonal antibody 8G4, and the finer resolution afforded by immuno-nanogold transmission electron microscopy, we now demonstrate TM4SF1 in uncoated cytoplasmic vesicles, nuclear pores and nucleoplasm. Because of its prominent surface location on tumor cells and tumor-associated endothelium, TM4SF1 has potential as a dual therapeutic target using an antibody drug conjugate (ADC) approach. For ADC to be successful, antibodies reacting with cell surface antigens must be internalized for delivery of associated toxins to intracellular targets. We now report that 8G4 is efficiently taken up into cultured endothelial cells by uncoated vesicles in a dynamin-dependent, clathrin-independent manner. It is then transported along microtubules through the cytoplasm and passes through nuclear pores into the nucleus. These findings validate TM4SF1 as an attractive candidate for cancer therapy with antibody-bound toxins that have the capacity to react with either cytoplasmic or nuclear targets in tumor cells or tumor-associated vascular endothelium. PMID:26241677

  4. Mass-luminosity relation of low mass stars.

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.; Piskunov, A. E.; Shpil'Kina, D. A.

    1997-04-01

    The data on dynamic masses and multicolor photometry of 56 M-type components of binary/multiple systems was collected. Critical evaluation of late type stars bolometric correction scales have been performed. Our refined and reduced data is compared with published empirical and theoretical mass-luminosity relations. Our data does not exclude the existence of a step-like feature at M_V_=12mag. The best agreement between observations and theoretical models is found for recent calculations of D'Antona & Mazzitelli (1994ApJS...90..467D) with Alexander opacities. We conclude that present-day knowledge of the mass-luminosity relation at faintest magnitudes is not sufficient for making definite conclusions on the initial mass function of low mass stars.

  5. SLHC, the High-Luminosity Upgrade (public event)

    ScienceCinema

    None

    2011-10-06

    In the morning of June 23rd a public event is organised in CERN's Council Chamber with the aim of providing the particle physics community with up-to-date information about the strategy for the LHC luminosity upgrade and to describe the current status of preparation work. The presentations will provide an overview of the various accelerator sub-projects, the LHC physics prospects and the upgrade plans of ATLAS and CMS. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the LHC High Luminosity Upgrade project. Informing the public is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  6. Luminosity variations in several parallel auroral arcs before auroral breakup

    NASA Astrophysics Data System (ADS)

    Safargaleev, V.; Lyatsky, W.; Tagirov, V.

    1997-08-01

    Variation of the luminosity in two parallel auroral arcs before auroral breakup has been studied by using digitised TV-data with high temporal and spatial resolution. The intervals when a new arc appears near already existing one were chosen for analysis. It is shown, for all cases, that the appearance of a new arc is accompanied by fading or disappearance of another arc. We have named these events out-of-phase events, OP. Another type of luminosity variation is characterised by almost simultaneous enhancement of intensity in the both arcs (in-phase event, IP). The characteristic time of IP events is 10-20 s, whereas OP events last about one minute. Sometimes out-of-phase events begin as IP events. The possible mechanisms for OP and IP events are discussed.

  7. Searching for Tight Gamma-Ray Burst Luminosity Relations

    NASA Astrophysics Data System (ADS)

    Qi, Shi; Lu, Tan

    2015-01-01

    With the latest sample of 116 GRBs with measured redshift and spectral parameters, we investigate 6 2D correlations and 14 derived 3D correlations of GRBs to explore the possibility of decreasing the intrinsic scatters of the luminosity relations of GRBs. We find the 3D correlation of Epeak-τRT-L to be evidently tighter than its corresponding 2D correlations, i.e., the Epeak-L and τRT-L correlations. In addition, the coefficients before the logarithms of Epeak and τRT in the Epeak-τRT-L correlation are almost exact opposites of each other. We discuss how our findings can be interpreted/understood in the framework of the definition of the luminosity (energy released in units of time).

  8. Intermediate-Band Photometric Luminosity Descrimination for M Stars

    NASA Astrophysics Data System (ADS)

    Robertson, T. H.; Furiak, N. M.

    1995-12-01

    Synthetic photometry has been used to design an intermediate-band filter to be used with CCD cameras to facilitate the luminosity classification of M stars. Spectrophotometric data published by Gunn & Stryker (1983) were used to test various bandwidths and centers. Based on these calculations an intermediate-band filter has been purchased. This filter is being used in conjunction with standard BVRI filters to test its effectiveness in luminosity classification of M stars having a wide range of temperatures and different chemical compositions. The results of the theoretical calculations, filter design specifications and preliminary results of the testing program are presented. This research is supported in part by funds provided by Ball State University, The Fund for Astrophysical Research and the Indiana Academy of Science.

  9. Flame luminosity and unburned hydrocarbon measurements in swirling combustion

    SciTech Connect

    Giovanetti, A.J.; Hoult, D.P.; Keck, J.C.; Sarofim, A.F.

    1980-07-01

    The relationship between flame luminosity and unburned hydrocarbon concentration was studied using an atmospheric, tubular burner. Spectroscopic studies were conducted for different fuels, including kerosene, nitrogen-doped kerosene, and shale oil. Independent exhaust gas analyses were performed on shale oil and nitrogen-doped kerosene. At a particular fuel equivalence ratio, measurements showed flame luminosity to be a function of unburned hydrocarbons. Unburned hydrocarbons were found to become significant prior to an equivalence ratio corresponding to the flame's change from blue to yellow. This critical condition is a function of fuel-air mixing and inlet air preheat temperature. Spectroscopic work revealed presence of strong carbon, hydrocarbon, amine, and cyanide band spectra for the nitrogen-containing fuels. Exhaust gas analyses for shale oil and a comparable nitrogen-doped kerosene were similar.

  10. Dynamic aperture studies for the LHC high luminosity lattice

    SciTech Connect

    Maria, R. de; Giovannozzi, M.; McIntosh, E.; Nosochkov, Y. M.; Cai, Y.; Wang, M. -H.

    2015-07-14

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  11. z ~ 1 Lyα Emitters. I. The Luminosity Function

    NASA Astrophysics Data System (ADS)

    Wold, Isak G. B.; Barger, Amy J.; Cowie, Lennox L.

    2014-03-01

    We construct a flux-limited sample of 135 candidate z ~ 1 Lyα emitters (LAEs) from Galaxy Evolution Explorer (GALEX) grism data using a new data cube search method. These LAEs have luminosities comparable to those at high redshifts and lie within a 7 Gyr gap present in existing LAE samples. We use archival and newly obtained optical spectra to verify the UV redshifts of these LAEs. We use the combination of the GALEX UV spectra, optical spectra, and X-ray imaging data to estimate the active galactic nucleus (AGN) fraction and its dependence on Lyα luminosity. We remove the AGNs and compute the luminosity function (LF) from 60 z ~ 1 LAE galaxies. We find that the best-fit LF implies a luminosity density increase by a factor of ~1.5 from z ~ 0.3 to z ~ 1 and ~20 from z ~ 1 to z ~ 2. We find a z ~ 1 volumetric Lyα escape fraction of 0.7% ± 0.4%. Based in part on data obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. Based in part on zCOSMOS observations carried out using the Very Large Telescope at the ESO Paranal Observatory under Program ID: LP175.A-0839.

  12. THE GALAXY LUMINOSITY FUNCTION DURING THE REIONIZATION EPOCH

    SciTech Connect

    Trenti, M.; Shull, J. M.; Stiavelli, M.; Bradley, L. D.; Bouwens, R. J.; Illingworth, G. D.; Oesch, P.; Carollo, C. M.

    2010-05-10

    The new Wide Field Camera 3/IR observations on the Hubble Ultra-Deep Field (HUDF) started investigating the properties of galaxies during the reionization epoch. To interpret these observations, we present a novel approach inspired by the conditional luminosity function method. We calibrate our model to observations at z = 6 and assume a non-evolving galaxy luminosity versus halo mass relation. We first compare model predictions against the luminosity function (LF) measured at z = 5 and z = 4. We then predict the LF at z {>=} 7 under the sole assumption of evolution in the underlying dark-matter halo mass function. Our model is consistent with the observed z {approx_gt} 7 galaxy number counts in the HUDF survey and suggests a possible steepening of the faint-end slope of the LF: {alpha}(z {approx_gt} 8) {approx_lt} -1.9 compared to {alpha} = -1.74 at z = 6. Although we currently see only the brightest galaxies, a hidden population of lower luminosity objects (L/L {sub *} {approx_gt} 10{sup -4}) might provide {approx_gt}75% of the total reionizing flux. Assuming escape fraction f {sub esc} {approx} 0.2, clumping factor C {approx} 5, top-heavy initial mass function (IMF), and low metallicity, galaxies below the detection limit produce complete reionization at z {approx_gt} 8. For solar metallicity and normal stellar IMF, reionization finishes at z {approx_gt} 6, but a smaller C/f {sub esc} is required for an optical depth consistent with the Wilkinson Microwave Anisotropy Probe measurement. Our model highlights that the star formation rate in sub-L {sub *} galaxies has a quasi-linear relation to dark-matter halo mass, suggesting that radiative and mechanical feedback were less effective at z {>=} 6 than today.

  13. LHC Abort Gap Cleaning Studies During Luminosity Operation

    SciTech Connect

    Gianfelice-Wendt, E.; Bartmann, W.; Boccardi, A.; Bracco, C.; Bravin, E.; Goddard, B.; Hofle, W.; Jacquet, D.; Jeff, A.; Kain, V.; Meddahi, M.; /CERN

    2012-05-11

    The presence of significant intensities of un-bunched beam is a potentially serious issue in the LHC. Procedures using damper kickers for cleaning both the Abort Gap (AG) and the buckets targeted for injection, are currently in operation at flat bottom. Recent observations of relatively high population of the AG during physics runs brought up the need for AG cleaning during luminosity operation. In this paper the results of experimental studies performed in October 2011 are presented.

  14. Physics of a high-luminosity Tau-Charm Factory

    SciTech Connect

    King, M.E.

    1992-10-01

    This paper highlights the physics capabilities of a Tau-Charm Factory; i.e., high luminosity ({approximately}10{sup 33}cm{sup {minus}2}s{sup {minus}1}) e{sup +}e{sup {minus}} collider operating in the center-of-mass energy range of 3-5 GeV, with a high-precision, general-purpose detector. Recent developments in {tau} and charm physics are emphasized.

  15. Near-UV Snapshot Survey of Low Luminosity AGNs

    NASA Astrophysics Data System (ADS)

    Gonzalez-Delgado, Rosa

    2005-07-01

    Low-luminosity active galactic nuclei {LLAGNs} comprise 30% of all bright galaxies {B<12.5} and are the most common type of AGN. These include low-luminosity Seyfert galaxies, LINERs, and transition-type objects {TOs, also called weak-[OI] LINERs}. What powers them is still at the forefront of AGN research. To unveil the nature of the central source we propose a near-UV snapshot survey of 50 nearby LLAGNs using ACS/HRC and the filter {F330W}, a configuration which is optimal to detect faint star forming regions around their nuclei. These images will complement optical and near-IR images available in the HST archive, providing a panchromatic atlas of the inner regions of these galaxies, which will be used to study their nuclear stellar population. Our main goals are to: 1} Investigate the presence of nuclear unresolved sources that can be attributed to an AGN; 2} Determine the frequency of nuclear and circumnuclear stellar clusters, and whether they are more common in Transition Objects {TOs} than in LINERs; 3} Characterize the sizes, colors, luminosities, masses and ages of these clusters; 4} Derive the luminosity function of star clusters and study their evaporation over time in the vicinity of AGNs. Finally, the results of this project will be combined with those of a previous similar one for Seyfert galaxies in order to compare the nature of the nuclear sources and investigate if there could be an evolution from Seyferts to TOs and LINERs. By adding UV images to the existing optical and near-IR ones, this project will also create an extremely valuable database for astronomers with a broad range of scientific interests.

  16. High-field Magnet Development toward the High Luminosity LHC

    SciTech Connect

    Apollinari, Giorgio

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  17. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gladwin, D.; Stewart, P.; Stewart, J.

    2011-02-01

    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control

  18. Luminosities for two yellow supergiants - Nonvariables and the instability strip

    NASA Technical Reports Server (NTRS)

    Evans, Nancy R.

    1993-01-01

    The luminosities for two yellow supergiants HD 183864 and Psi And = HD 223047 are determined from the IUE spectra of their hot companions. The absolute magnitudes of HD 183864 and HD 223047 are -2.3 and -2.1 mag, respectively, and their companions have spectral types of A0.0 V and B8.8 V. The companion of Psi And is compatible with the orbital motion tentatively detected by speckle interferometric observations. The supergiant luminosities are combined with the Cepheid luminosities determined in the same way, and also the variables and nonvariables from Schmidt's studies of open clusters. As found by Schmidt, the variable and nonvariable supergiants have almost no overlap in the HR diagram. The combined sample defines the locus of the helium burning blue loops of evolutionary tracks. Because no nonvariables are found to the blue of fainter Cepheids, the observed blue edge of the Cepheid region may be partly determined by the blue loops rather than by the region of pulsational instability.

  19. Generalized Continuity Equation Solutions for the QSO Luminosity Function

    NASA Astrophysics Data System (ADS)

    Caditz, David M.

    2016-04-01

    We present a generalized continuity equation that describes the relationship between the statistical and physical evolution of populations of astronomical objects. This equation allows us to parameterize the luminosity function (LF) in terms of physically meaningful quantities, such as creation timescale, τs, object evolutionary timescale, τg, and lifetime, am. The shape and evolution of the LF are shown to be sensitive to these physical parameters, with large regions of the parameter space producing relatively simple evolutionary scenarios such as density evolution (DE) or luminosity evolution (LE). Regions of parameter space where τs ≲ 0.3tH and τg ≲ 0.5tH, where tH is the Hubble time, may be characterized by more complex evolution including the natural formation of a double power-law shape and mixed density and luminosity evolution (ME). This result has important consequences for the interpretation of the quasi-stellar object (QSO) LF, implying that the timescales for creation and physical evolution may fall near the above range. A fit to QSO survey data for redshifts 0.68 < z < 4 implies that τs ∼ 0.2tH and τg ∼ 0.05tH with QSOs having a maximum lifetime of am ∼ 0.25tH.

  20. Gamma-ray luminosity function of BL Lac objects

    NASA Astrophysics Data System (ADS)

    Zeng, Houdun; Yan, Dahai; Zhang, Li

    2014-06-01

    The gamma-ray luminosity function (GLF) of BL Lac objects is constructed by using a sample of BL Lac objects with redshifts selected from the Second LAT AGN catalog. The GLFs of BL Lacs in the frame of the pure density evolution (PDE), the pure luminosity evolution (PLE), and the luminosity-dependent density (LDDE) models are determined by using the Markov Chain Monte Carlo (MCMC) technique, respectively. Our results suggest that the PDE model can give best description for BL Lac GLF based on the combination of constraints of model parameters and good fits to the observed data of Fermi-Large Area Telescope (LAT) BL Lacs, but other two models (PLE and LDDE) cannot be excluded. Based on our constructed GLFs, the contribution to the extragalactic diffuse gamma-ray background (EGRB) from BL Lacs is estimated, and ˜1-5 per cent of the EGRB in the 0.1-100 GeV band is found to come from unresolved BL Lacs (including the cascade emission). In addition, it is found that the BL Lac GLF is very different from flat spectrum radio quasar GLF and then the contribution of blazars to the EGRB should be estimated separately.

  1. The graviton luminosity of the sun and other stars

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1985-01-01

    Graviton production in electron-electron (e-e) and electron-ion (e-z) scattering is evaluated in the Born approximation. The calculation is compared with that for photon production, that is, Coulomb quadrupole bremsstrahlung, and a number of results are taken over from that problem. Application is made to the sun, and it is found that for the solar plasma the main contribution to the graviton luminosity comes from the central core at r/R approximately 0.1. The total luminosity (Lg) in gravitons is about 7.9 x 10 to the 14th ergs/s, close to an earlier estimate by Weinberg (1965, 1972); about 33 percent of the total results from e-e collisions with the rest from e-z collisions (mainly e-p and e-alpha). Approximate corrections to Born formulas are evaluated, and this Lg includes the associated (approximately + or - 10 percent, respectively) modification. The quantum-mechanical aspects of the solar Lg problem are discussed, and it is shown why a previous classical calculation overestimated Lg by about an order of magnitude. Production of gravitons in binary collisions in other types of stars is discussed briefly. It is found that Lg varies very little along the main sequence. White dwarfs have a typical graviton luminosity LWD approximately 10 to the 19th ergs/s, while neutron stars have LNS approximately 10 to the 25th ergs/s; these estimates are very rough.

  2. Tidal dwarf galaxies and the luminosity-metallicity relation .

    NASA Astrophysics Data System (ADS)

    Sweet, S. M.; Drinkwater, M. J.; Meurer, G.; Bekki, K.; Dopita, M. A.; Kilborn, V.; Nicholls, D.

    We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M_R˜ -13. We use the \\citet{Dopita2013} metallicity calibrations to calibrate the relation for all of the data in this analysis. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 ± 0.05, while SDSS dwarfs fainter than M_R = -16 have a mean metallicity of 12 + log(O/H) = 8.28 ± 0.10, regardless of their luminosity. Our hydrodynamical simuations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M_R˜ -16 our sample of 53 star-forming galaxies in 9 HI gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes there is an increase in dispersion in metallicity of our sample. In our sample we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6), and four (21%) very metal poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation. Further details of this analysis are available in Sweet et al. (2013, ApJ submitted).

  3. Commissioning and Alignment of the Pixel Luminosity Telescope of CMS

    NASA Astrophysics Data System (ADS)

    Riley, Grant; CMS Collaboration

    2015-04-01

    The Pixel Luminosity Telescope (PLT) is one of the newest additions to the CMS detector at the LHC. It consists of 16 3-layer telescopes of silicon pixel detectors pointing toward the interaction point at the center of CMS. The pixel detectors are based on the same technology as the silicon pixel detector of CMS. The chips have an additional output, called a fast-out. This fast-out is sent whenever a hit is detected, and will be used to measure the luminosity. The fast-out can also be used to self trigger the the PLT allowing for measurement of the systematics and beam backgrounds. The PLT is expected to significantly improve the precision of the luminosity measurement that is fundamental for particle searches and cross section measurements with the CMS detector. Furthermore, with reconstructed particle trajectories, measurements of beam backgrounds and the location of the interaction point centroid can be obtained. First experiences with the PLT detector before and after installation are presented and the track reconstruction is discussed.

  4. MULTI-WAVELENGTH OBSERVATIONS OF A SAMPLE OF INTERMEDIATE-LUMINOSITY RADIO-LOUD ACTIVE GALAXIES

    SciTech Connect

    Lewis, Karen T.; Sambruna, Rita M.; Cheung, Chi C.; Eracleous, Michael; Kadler, Matthias

    2011-07-15

    We present the results from exploratory (12-23 ks) XMM-Newton observations of six optically selected, radio-loud active galactic nuclei (AGNs), together with new radio data and a reanalysis of their archival SDSS spectra. The sources were selected in an effort to expand the current sample of radio-loud AGNs suitable for detailed X-ray spectroscopy studies. The sample includes three broad-line and three narrow-line sources, with X-ray luminosities of the order of L{sub 2-10keV} {approx} 10{sup 43} erg s{sup -1}. The EPIC spectra of the broad-lined sources can be described by single power laws with photon indices {Gamma} {approx} 1.6 and little to negligible absorption (N{sub H} {approx}<10{sup 21} cm{sup -2}); on the contrary, significant absorption is detected in the narrow-lined objects, N{sub H} {approx} 10{sup 23} cm{sup -2}, one of which displays a prominent (equivalent width {approx}2 keV) Fe K{alpha} emission line. Studying their location in several luminosity-luminosity diagrams for radio-loud AGNs, we find that the sources fall at the lower end of the distribution for bright, classical radio-loud AGNs and close to LINER-like sources. As such, and as indicated by the ratios of their optical emission lines, we conclude that the sources of our sample fall on the border between radiatively efficient and inefficient accretion flows. Future deeper studies of these targets at X-rays and longer wavelengths will expand our understanding of the central engines of radio-loud AGNs at a critical transition region.

  5. On the Existence of Low-Luminosity Cataclysmic Variables Beyond the Orbital Period Minimum

    NASA Technical Reports Server (NTRS)

    Howell, Steve B.; Rappaport, Saul; Politano, Michael

    1997-01-01

    Models of the present-day intrinsic population of cataclysmic variables predict that 99 per cent of these systems should be of short orbital period. The Galaxy is old enough that approx. 70 per cent of these stars will have already reached their orbital period minimum (approx. 80 min), and should be evolving back toward longer periods. Mass-transfer rates in these highly evolved binaries are predicted to be less or equal to 10(exp -11), leading to M(sub V) of approx. 10 or fainter, and the secondaries would be degenerate, brown dwarf-like stars. Recent observations of a group of low-luminosity dwarf novae (TOADS) provide observational evidence for systems with very low intrinsic M,. and possibly low-mass secondaries. We carry out population synthesis and evolution calculations for a range of assumed ages of the Galaxy in order to study P(sub orb) and M distributions for comparison with the TOAD observations. We speculate that at least some of the TOADs are the predicted very low- luminosity, post-period-minimum cataclysmic variables containing degenerate (brown dwarf-like) secondaries having masses between 0.02 and 0.06 M, and radii near 0.1 R., We show that these low-luminosity systems are additionally interesting in that they can be used to set a lower limit on the age of the Galaxy. The TOAD with the longest orbital period currently known (123 min), corresponds to a Galaxy age of at least 8.6 x 10(exp 9) yr.

  6. THE RELATIONSHIP BETWEEN X-RAY LUMINOSITY AND MAJOR FLARE LAUNCHING IN GRS 1915+105

    SciTech Connect

    Punsly, Brian; Rodriguez, Jerome E-mail: brian.punsly@comdev-usa.com

    2013-02-20

    We perform the most detailed analysis to date of the X-ray state of the Galactic black hole candidate GRS 1915+105 just prior to (0-4 hr) and during the brief (1-7 hr) ejection of major (superluminal) radio flares. A very strong model independent correlation is found between the 1.2 keV-12 keV X-ray flux 0-4 hr before flare ejections with the peak optically thin 2.3 GHz emission of the flares. This suggests a direct physical connection between the energy in the ejection and the luminosity of the accretion flow preceding the ejection. In order to quantify this concept, we develop techniques to estimate the intrinsic (unabsorbed) X-ray luminosity, L {sub intrinsic}, from RXTE All Sky Monitor data and to implement known methods to estimate the time-averaged power required to launch the radio emitting plasmoids, Q (sometimes called jet power). We find that the distribution of intrinsic luminosity from 1.2 keV-50 keV, L {sub intrinsic} (1.2-50), is systematically elevated just before ejections compared to arbitrary times when there are no major ejections. The estimated Q is strongly correlated with L {sub intrinsic} (1.2-50) 0-4 hr before the ejection, the increase in L {sub intrinsic} (1.2-50) in the hours preceding the ejection and the time-averaged L {sub intrinsic} (1.2-50) during the flare rise. Furthermore, the total time-averaged power during the ejection (Q + the time average of L {sub intrinsic} (1.2-50) during ejection) is strongly correlated with L {sub intrinsic} (1.2-50) just before launch with near equality if the distance to the source is Almost-Equal-To 10.5 kpc.

  7. AN INTERMEDIATE LUMINOSITY TRANSIENT IN NGC 300: THE ERUPTION OF A DUST-ENSHROUDED MASSIVE STAR

    SciTech Connect

    Berger, E.; Soderberg, A. M.; Foley, R. J.; Dupree, A. K.; Chevalier, R. A.; Fransson, C.; Leonard, D. C.; Debes, J. H.; Diamond-Stanic, A. M.; Tremonti, C. A.; Ivans, I. I.; Thompson, I. B.; Simmerer, J.

    2009-07-10

    We present multi-epoch high-resolution optical spectroscopy, UV/radio/X-ray imaging, and archival Hubble and Spitzer observations of an intermediate luminosity optical transient recently discovered in the nearby galaxy NGC 300. We find that the transient (NGC 300 OT2008-1) has a peak absolute magnitude of M{sub bol} {approx} -11.8 mag, intermediate between novae and supernovae, and similar to the recent events M85 OT2006-1 and SN 2008S. Our high-resolution spectra, the first for this event, are dominated by intermediate velocity ({approx}200-1000 km s{sup -1}) hydrogen Balmer lines and Ca II emission and absorption lines that point to a complex circumstellar environment, reminiscent of the yellow hypergiant IRC+10420. In particular, we detect asymmetric Ca II H and K absorption with a broad red wing extending to {approx}10{sup 3} km s{sup -1}, indicative of gas inflow at high velocity (possibly the wind of a massive binary companion). The low luminosity, intermediate velocities, and overall similarity to a known eruptive star indicate that the event did not result in a complete disruption of the progenitor. We identify the progenitor in archival Spitzer observations, with deep upper limits from Hubble data. The spectral energy distribution points to a dust-enshrouded star with a luminosity of about 6 x 10{sup 4} L{sub sun}, indicative of a {approx}10-20 M{sub sun} progenitor (or binary system). This conclusion is in good agreement with our interpretation of the outburst and circumstellar properties. The lack of significant extinction in the transient spectrum indicates that the dust surrounding the progenitor was cleared by the outburst. We thus predict that the progenitor should be eventually visible with Hubble if the transient event marks an evolutionary transition to a dust-free state, or with Spitzer if the event marks a cyclical process of dust formation.

  8. Evidence of parsec-scale jets in low-luminosity active galactic nuclei

    SciTech Connect

    Mezcua, M.; Prieto, M. A.

    2014-05-20

    The nuclear radio emission of low-luminosity active galactic nuclei (LLAGNs) is often associated with unresolved cores. In this paper we show that most LLAGNs present extended jet radio emission when observed with sufficient angular resolution and sensitivity. They are thus able to power, at least, parsec-scale radio jets. To increase the detection rate of jets in LLAGNs, we analyze subarcsecond resolution data of three low-ionization nuclear emission regions. This yields the detection of extended jet-like radio structures in NGC 1097 and NGC 2911 and the first resolved parsec-scale jet of NGC 4594 (Sombrero). The three sources belong to a sample of nearby LLAGNs for which high-spatial-resolution spectral energy distribution of their core emission is available. This allows us to study their accretion rate and jet power (Q {sub jet}) without drawing on (most) of the ad hoc assumptions usually considered in large statistical surveys. We find that those LLAGNs with large-scale radio jets (>100 pc) have Q {sub jet} > 10{sup 42} erg s{sup –1}, while the lowest Q {sub jet} correspond to those LLAGNs with parsec-scale (≤100 pc) jets. The Q {sub jet} is at least as large as the radiated bolometric luminosity for all LLAGN, in agreement with previous statistical studies. Our detection of parsec-scale jets in individual objects further shows that the kinematic jet contribution is equally important in large- or parsec-scale objects. We also find that the Eddington-scaled accretion rate is still highly sub-Eddingtonian (<10{sup –4}) when adding the Q {sub jet} to the total emitted luminosity (radiated plus kinetic). This indicates that LLAGNs are not only inefficient radiators but that they also accrete inefficiently or are very efficient advectors.

  9. AN EXPONENTIAL DECLINE AT THE BRIGHT END OF THE z = 6 GALAXY LUMINOSITY FUNCTION

    SciTech Connect

    Willott, Chris J.; McLure, Ross J.; Bruce, Victoria A.; Hibon, Pascale; McCracken, Henry J.; Kneib, Jean-Paul; Ilbert, Olivier; Bonfield, David G.; Jarvis, Matt J.

    2013-01-01

    We present the results of a search for the most luminous star-forming galaxies at redshifts z Almost-Equal-To 6 based on Canada-France-Hawaii Telescope Legacy Survey data. We identify a sample of 40 Lyman break galaxies (LBGs) brighter than magnitude z' = 25.3 across an area of almost 4 deg{sup 2}. Sensitive spectroscopic observations of seven galaxies provide redshifts for four, of which only two have moderate to strong Ly{alpha} emission lines. All four have clear continuum breaks in their spectra. Approximately half of the LBGs are spatially resolved in 0.7 arcsec seeing images, indicating larger sizes than lower luminosity galaxies discovered with the Hubble Space Telescope, possibly due to ongoing mergers. The stacked optical and infrared photometry is consistent with a galaxy model with stellar mass {approx}10{sup 10} M{sub Sun }. There is strong evidence for substantial dust reddening with a best-fit A{sub V} = 0.75 and A{sub V} > 0.48 at 2{sigma} confidence, in contrast to the typical dust-free galaxies of lower luminosity at this epoch. The spatial extent and spectral energy distribution suggest that the most luminous z Almost-Equal-To 6 galaxies are undergoing merger-induced starbursts. The luminosity function of z = 5.9 star-forming galaxies is derived. This agrees well with previous work and shows strong evidence for an exponential decline at the bright end, indicating that the feedback processes that govern the shape of the bright end are occurring effectively at this epoch.

  10. Evidence of Parsec-scale Jets in Low-luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mezcua, M.; Prieto, M. A.

    2014-05-01

    The nuclear radio emission of low-luminosity active galactic nuclei (LLAGNs) is often associated with unresolved cores. In this paper we show that most LLAGNs present extended jet radio emission when observed with sufficient angular resolution and sensitivity. They are thus able to power, at least, parsec-scale radio jets. To increase the detection rate of jets in LLAGNs, we analyze subarcsecond resolution data of three low-ionization nuclear emission regions. This yields the detection of extended jet-like radio structures in NGC 1097 and NGC 2911 and the first resolved parsec-scale jet of NGC 4594 (Sombrero). The three sources belong to a sample of nearby LLAGNs for which high-spatial-resolution spectral energy distribution of their core emission is available. This allows us to study their accretion rate and jet power (Q jet) without drawing on (most) of the ad hoc assumptions usually considered in large statistical surveys. We find that those LLAGNs with large-scale radio jets (>100 pc) have Q jet > 1042 erg s-1, while the lowest Q jet correspond to those LLAGNs with parsec-scale (<=100 pc) jets. The Q jet is at least as large as the radiated bolometric luminosity for all LLAGN, in agreement with previous statistical studies. Our detection of parsec-scale jets in individual objects further shows that the kinematic jet contribution is equally important in large- or parsec-scale objects. We also find that the Eddington-scaled accretion rate is still highly sub-Eddingtonian (<10-4) when adding the Q jet to the total emitted luminosity (radiated plus kinetic). This indicates that LLAGNs are not only inefficient radiators but that they also accrete inefficiently or are very efficient advectors.

  11. The 2-10 keV unabsorbed luminosity function of AGN from the LSS, CDFS, and COSMOS surveys

    NASA Astrophysics Data System (ADS)

    Ranalli, P.; Koulouridis, E.; Georgantopoulos, I.; Fotopoulou, S.; Hsu, L.-T.; Salvato, M.; Comastri, A.; Pierre, M.; Cappelluti, N.; Carrera, F. J.; Chiappetti, L.; Clerc, N.; Gilli, R.; Iwasawa, K.; Pacaud, F.; Paltani, S.; Plionis, E.; Vignali, C.

    2016-05-01

    The XMM-Large scale structure (XMM-LSS), XMM-Cosmological evolution survey (XMM-COSMOS), and XMM-Chandra deep field south (XMM-CDFS) surveys are complementary in terms of sky coverage and depth. Together, they form a clean sample with the least possible variance in instrument effective areas and point spread function. Therefore this is one of the best samples available to determine the 2-10 keV luminosity function of active galactic nuclei (AGN) and their evolution. The samples and the relevant corrections for incompleteness are described. A total of 2887 AGN is used to build the LF in the luminosity interval 1042-1046 erg s-1 and in the redshift interval 0.001-4. A new method to correct for absorption by considering the probability distribution for the column density conditioned on the hardness ratio is presented. The binned luminosity function and its evolution is determined with a variant of the Page-Carrera method, which is improved to include corrections for absorption and to account for the full probability distribution of photometric redshifts. Parametric models, namely a double power law with luminosity and density evolution (LADE) or luminosity-dependent density evolution (LDDE), are explored using Bayesian inference. We introduce the Watanabe-Akaike information criterion (WAIC) to compare the models and estimate their predictive power. Our data are best described by the LADE model, as hinted by the WAIC indicator. We also explore the recently proposed 15-parameter extended LDDE model and find that this extension is not supported by our data. The strength of our method is that it provides unabsorbed, non-parametric estimates, credible intervals for luminosity function parameters, and a model choice based on predictive power for future data. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA.Tables with the samples of the posterior probability distributions

  12. Study of dose distribution in a human body in international space station compartments with the tissue-equivalent spherical phantom

    PubMed Central

    Shurshakov, Vyacheslav A.; Tolochek, Raisa V.; Kartsev, Ivan S.; Petrov, Vladislav M.; Nikolaev, Igor V.; Moskalyova, Svetlana I.; Lyagushin, Vladimir I.

    2014-01-01

    Space radiation is known to be key hazard of manned space mission. To estimate accurately radiation health risk detailed study of dose distribution inside human body by means of human phantom is conducted. In the space experiment MATROSHKA-R, the tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS for more than 8 years. Owing to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a real human body. If compared with the anthropomorphic phantom Rando used inside and outside the ISS, the spherical phantom has lower mass, smaller size and requires less crew time for the detector installation/retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2 and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 1700 days in 8 sessions. In the first phase of the experiment with the spherical phantom, the dose measurements were realized with only passive detectors (thermoluminescent and solid-state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. Maximum dose rate measured in the phantom is obviously due to the galactic cosmic ray (GCR) and Earth' radiation belt contribution on

  13. The internal distribution of nickel and thallium in two freshwater invertebrates and its relevance to trophic transfer.

    PubMed

    Dumas, Julie; Hare, Landis

    2008-07-15

    Although nickel and thallium are present at potentially harmful concentrations in some lakes, there is little information on their bioaccumulation and transfer up aquatic food webs. To measure the propensity of animals for accumulating and transferring these contaminants along food chains, we exposed two common types of invertebrates, an insect (Chironomus riparius) and a worm (Tubifex tubifex), to these metals spiked into sediment. We then measured the subcellular distribution of Ni and Tl in these invertebrates to estimate the likelihood that these metals will have toxic effects on these prey or be transferred to higher trophic levels. In both species, at least half of their Ni and TI was present in fractions that are purportedly detoxified (granules and metal-binding proteins). Furthermore, based on information in the literature concerning prey subcellular fractions that are likely to be trophically available (TAM), we estimate that much of the Ni and TI in these animals (43-84%) is available for transfer to a predator. To test this prediction, we fed these invertebrates to the alderfly Sialis velata, and measured the efficiency with which this predator assimilated Ni and Tl from each prey type. The majority of both trace metals (58-83%) was assimilated by the predator, which suggests that these contaminants would be easily transferred along aquatic food chains and that models describing Ni and Tl accumulation by aquatic animals should consider food as a source of these metals. The proportion of metal that could potentially be taken up by a consumer (% TAM) and the actual percentage assimilated by S. velata fell on or reasonably close to a 1:1 line for the 4 prey-metal combinations. PMID:18754361

  14. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    SciTech Connect

    Goodsitt, Mitchell M. Shenoy, Apeksha; Howard, David; Christodoulou, Emmanuel; Dewaraja, Yuni K.; Shen, Jincheng; Schipper, Matthew J.; Wilderman, Scott; Chun, Se Young

    2014-05-15

    for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa.

  15. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    PubMed Central

    Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.

    2014-01-01

    for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa. PMID:24784380

  16. Revisiting the relationship between 6 μm and 2-10 keV continuum luminosities of AGN

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Rovilos, E.; Hernán-Caballero, A.; Barcons, X.; Blain, A.; Caccianiga, A.; Della Ceca, R.; Severgnini, P.

    2015-05-01

    We have determined the relation between the AGN luminosities at rest-frame 6 μm associated with the dusty torus emission and at 2-10 keV energies using a complete, X-ray-flux-limited sample of 232 AGN drawn from the Bright Ultra-hard XMM-Newton Survey. The objects have intrinsic X-ray luminosities between 1042 and 1046 erg s-1 and redshifts from 0.05 to 2.8. The rest-frame 6 μm luminosities were computed using data from the Wide-field Infrared Survey Explorer and are based on a spectral energy distribution decomposition into AGN and galaxy emission. The best-fitting relationship for the full sample is consistent with being linear, L6 μm ∝ L_{2-10 keV}^{0.99± 0.03}, with intrinsic scatter, Δ log L6 μm ˜ 0.35 dex. The L_{6 μ m}/L_{2-10 keV} luminosity ratio is largely independent of the line-of-sight X-ray absorption. Assuming a constant X-ray bolometric correction, the fraction of AGN bolometric luminosity reprocessed in the mid-IR decreases weakly, if at all, with the AGN luminosity, a finding at odds with simple receding torus models. Type 2 AGN have redder mid-IR continua at rest-frame wavelengths <12 μm and are overall ˜1.3-2 times fainter at 6 μm than type 1 AGN at a given X-ray luminosity. Regardless of whether type 1 and type 2 AGN have the same or different nuclear dusty toroidal structures, our results imply that the AGN emission at rest-frame 6 μm is not isotropic due to self-absorption in the dusty torus, as predicted by AGN torus models. Thus, AGN surveys at rest-frame ˜6 μm are subject to modest dust obscuration biases.

  17. Population declines lead to replicate patterns of internal range structure at the tips of the distribution of the California red-legged frog (Rana draytonii)

    USGS Publications Warehouse

    Richmond, Jonathan Q.; Backlin, Adam R.; Tatarian, Patricia J.; Solvesky, Ben G.; Fisher, Robert N.

    2014-01-01

    Demographic declines and increased isolation of peripheral populations of the threatened California red-legged frog (Rana draytonii) have led to the formation of internal range boundaries at opposite ends of the species’ distribution. While the population genetics of the southern internal boundary has been studied in some detail, similar information is lacking for the northern part of the range. In this study, we used microsatellite and mtDNA data to examine the genetic structuring and diversity of some of the last remaining R. draytonii populations in the northern Sierra Nevada, which collectively form the northern external range boundary. We compared these data to coastal populations in the San Francisco Bay Area, where the species is notably more abundant and still exists throughout much of its historic range. We show that ‘external’ Sierra Nevada populations have lower genetic diversity and are more differentiated from one another than their ‘internal’ Bay Area counterparts. This same pattern was mirrored across the distribution in California, where Sierra Nevada and Bay Area populations had lower allelic variability compared to those previously studied in coastal southern California. This genetic signature of northward range expansion was mirrored in the phylogeography of mtDNA haplotypes; northern Sierra Nevada haplotypes showed greater similarity to haplotypes from the south Coast Ranges than to the more geographically proximate populations in the Bay Area. These data cast new light on the geographic origins of Sierra Nevada R. draytonii populations and highlight the importance of distinguishing the genetic effects of contemporary demographic declines from underlying signatures of historic range expansion when addressing the most immediate threats to population persistence. Because there is no evidence of contemporary gene flow between any of the Sierra Nevada R. draytonii populations, we suggest that management activities should focus on

  18. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture/Electrospray Ionization

    NASA Astrophysics Data System (ADS)

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-09-01

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed noncontact liquid-vortex capture probe has been used to efficiently collect material ablated by a 355 nm UV laser in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appears to be classic electrospray ionization spectra; however, the `softness' of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. In this work, a series of benzylpyridinium salts were employed as thermometer ions to compare internal energy distributions between electrospray ionization and the UV laser ablation/liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. These data, along with results from the analysis the biological molecules bradykinin and angiotensin III indicated that the ions or their fragments formed directly by UV laser ablation that survive the liquid capture/electrospray ionization process were likely to be an extremely small component of the total ion signal observed. Instead, the preponderate neutral molecules, clusters, and particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream, then electrosprayed, were the principal source of the ion signal observed. Thus, the electrospray ionization process used controls the overall `softness' of this technique.

  19. A revisit of gamma-ray luminosity function and contribution to the extragalactic diffuse gamma-ray background for Fermi FSRQs

    NASA Astrophysics Data System (ADS)

    Zeng, Houdun; Yan, Dahai; Zhang, Li

    2013-05-01

    A clean sample of flat-spectrum radio quasars (FSRQs) has been provided by Fermi Large Area Telescope (LAT) in two years of operation. Based on this sample, we reconstruct the gamma-ray luminosity function (GLF) in the framework of the luminosity-dependent density evolution (LDDE) model, and obtain the best-fitting GLF by comparing the distributions of observed redshifts, luminosities, indexes and source counts with the predicted distribution of the GLF through the Markov Chain Monte Carlo (MCMC) method which constrains the model parameters in an efficient way. Using the best-fitting GLF, we estimate the contribution of Fermi-undetected FSRQs to the extragalactic diffuse gamma-ray background (EGRB), and find that the contribution of unresolved FSRQs to the EGRB is 10.1 ± 4.7 per cent in the 0.1-100 GeV band. We also study the influence of different bins of redshifts, luminosities and spectral indices on the contribution to EGRB from the unresolved FSRQs, and find that the contributions of unresolved FSRQs in the redshift range of z = 0.0-2.0 and in the gamma-ray luminosity range of 1044-1048 erg s-1 are ˜90 per cent, respectively.

  20. The CMS Luminosity Measurement and Results of its First Calibration using Van de Meer Scans

    NASA Astrophysics Data System (ADS)

    Werner, Jeremy; Adam, Nadia; Halyo, Valerie; Hunt, Adam; Jones, John; Marlow, Daniel

    2010-02-01

    We present an overview of the hadronic forward calorimeter (HF) based luminosity measurement at CMS, with an emphasis on the results of the recent Van de Meer scans. We describe the HF luminosity readout along with the methods used to extract the relative luminosity measurement at CMS. Finally, we review the procedure to calibrate the luminosity measurement and present the results from the first collisions. )

  1. Schlieren photographs and internal pressure distributions for three-dimensional sidewall-compression scramjet inlets at a Mach number of 6 in CF4

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1993-01-01

    Three-dimensional sidewall-compression scramjet inlets with leading-edge sweeps of 30 deg and 70 deg were tested in the Langley Hypersonic CF4 Tunnel at a Mach number of 6 and a free-stream ratio of specific heats of 1.2. The parametric effects of leading-edge sweep, cowl position, contraction ratio, and Reynolds number were investigated. The models were instrumented with static pressure orifices distributed on the sidewalls, baseplate, and cowl. Schlieren movies were made of selected tunnel runs for flow visualization of the entrance plane and cowl region. Although these movies could not show the internal flow, the effect of the internal flow on the external flow was evident by way of spillage. The purpose is to provide a preliminary data release for the investigation. The models, facility, and testing methods are described, and the test matrix and a tabulation of tunnel runs are provided. Line plots highlighting the stated parametric effects and a representative set of schlieren photographs are presented without analysis.

  2. Modern and subrecent spatial distribution and characteristics of sediment infill controlled by internal depositional dynamics, Laguna Potrok Aike (southern Patagonia, Argentina)

    NASA Astrophysics Data System (ADS)

    Kastner, S.; Ohlendorf, C.; Haberzettl, T.; Lücke, A.; Maidana, N. I.; Mayr, C.; Schäbitz, F.; Zolitschka, B.

    2009-04-01

    Situated in the dry steppe environment of south-eastern Patagonia the 100 m deep and max. 770 ka old maar lake Laguna Potrok Aike (51°58'S, 70°23'W) has a high potential as a palaeolimnological key site for the reconstruction of terrestrial palaeoclimate conditions. As this area is sensitive to variations in southern hemispheric wind and pressure systems the lake holds a unique lacustrine record of palaeoclimatic and palaeoecological variability. Depositional changes inferred from the lacustrine sediment sequence as well as subaerial and subaquatic lake level terraces provide detailed information about the water budget of the lake related to the variability of the Southern Hemispheric Westerlies. For this reason the lake was chosen as an ICDP drilling site in 2008 within the "Potrok Aike maar lake sediment archive drilling project" (PASADO). Based on high resolution multi-proxy investigations of the last 16,000 years carried out on a 18.9 m long sediment record (Haberzettl et al., 2007; Mayr et al., 2009; Wille et al., 2007) this study focuses on the understanding of internal depositional dynamics which control the characteristics and spatial distribution of the sediment infill of this lake. Furthermore, it provides information improving the accuracy of the interpretation of the long sediment record recovered within the PASADO project. A survey of the spatial sediment distribution was carried out in 2005 using 46 gravity cores of up to 49 cm length covering a range of water depths from 9 to 100 m. All 46 cores were scanned with X-ray fluorescence technique and for magnetic susceptibility with up to 1 mm spatial resolution. Using Ca and Ti as well as magnetic susceptibility data the cores were correlated and linked to the established age model (Haberzettl et al., 2005). As these parameters vary considerably and not consistently within the suite of littoral cores, a correlation prior to the 2005 sediment surface is solely based on cores from water depths exceeding

  3. Fossil group origins. III. The relation between optical and X-ray luminosities

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Aguerri, J. A. L.; De Grandi, S.; D'Onghia, E.; Barrena, R.; Boschin, W.; Méndez-Abreu, J.; Sánchez-Janssen, R.; Zarattini, S.; Biviano, A.; Castro-Rodriguez, N.; Corsini, E. M.; del Burgo, C.; Iglesias-Páramo, J.; Vilchez, J. M.

    2014-05-01

    Aims: This study is part of the Fossil group origins (FOGO) project which aims to carry out a systematic and multiwavelength study of a large sample of fossil systems. Here we focus on the relation between the optical luminosity (Lopt) and X-ray luminosity (LX). Methods: Out of a total sample of 28 candidate fossil systems, we consider a sample of 12 systems whose fossil classification has been confirmed by a companion study. They are compared with the complementary sample of 16 systems whose fossil nature has not been confirmed and with a subsample of 102 galaxy systems from the RASS-SDSS galaxy cluster survey. Fossil and normal systems span the same redshift range 0 distribution. For each fossil system, the LX in the 0.1-2.4 keV band is computed using data from the ROSAT All Sky Survey to be comparable to the estimates of the comparison sample. For each fossil and normal system we homogeneously compute Lopt in the r-band within the characteristic cluster radius, using data from the Sloan Digital Sky Survey Data Release 7. Results: We sample the LX-Lopt relation over two orders of magnitude in LX. Our analysis shows that fossil systems are not statistically distinguishable from the normal systems through the 2D Kolmogorov-Smirnov test nor the fit of the LX-Lopt relation. Thus, the optical luminosity of the galaxy system does strongly correlate with the X-ray luminosity of the hot gas component, independently of whether the system is fossil or not. We discuss our results in comparison with previous literature. Conclusions: We conclude that our results are consistent with the classical merging scenario of the brightest galaxy formed via merger/cannibalism of other group galaxies with conservation of the optical light. We find no evidence for a peculiar state of the hot intracluster medium. Tables 1 and 2 are available in electronic form at http://www.aanda.org

  4. COSMOLOGICAL DEPENDENCE OF THE MEASUREMENTS OF LUMINOSITY FUNCTION, PROJECTED CLUSTERING AND GALAXY-GALAXY LENSING SIGNAL

    SciTech Connect

    More, Surhud

    2013-11-10

    Observables such as the galaxy luminosity function, Φ(M), projected galaxy clustering, w {sub p}(r {sub p}), and the galaxy-galaxy lensing signal, ΔΣ(r {sub p}), are often measured from galaxy redshift surveys assuming a fiducial cosmological model for calculating distances to, and between galaxies. There are a growing number of studies that perform joint analyses of these measurements and constrain cosmological parameters. We quantify the amount by which such measurements systematically vary as the fiducial cosmology used for the measurements is changed, and show that these effects can be significant at high redshifts (z ∼ 0.5). Cosmological analyses (or halo occupation distribution analyses) that use the luminosity function, clustering and the galaxy-galaxy lensing signal but ignore such systematic effects may bias the inference of the parameters. We present a simple way to account for the differences in the cosmological model used for the measurements and those used for the prediction of observables, thus allowing a fair comparison between models and data.

  5. Mid-infrared properties of nearby low-luminosity AGN at high angular resolution

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Gandhi, P.; Smette, A.; Hönig, S. F.; Duschl, W. J.

    2011-12-01

    We present high spatial resolution mid-infrared (MIR) 12 μm continuum imaging of low-luminosity active galactic nuclei (LLAGN) obtained with VLT/VISIR. Our goal is to determine whether the nuclear MIR emission of LLAGN is consistent with the existence of a dusty obscuring torus, the key component of the unification model for AGN. Based on available hard X-ray luminosities and the previously known tight correlation between the hard X-ray and 12 μm luminosities, we selected a sample of 17 nearby LLAGN without available VISIR N-band photometry. Combined with archival VISIR data of 9 additional LLAGN with available X-ray measurements, the dataset represents the bulk of southern LLAGN currently detectable from the ground in the MIR. Of the 17 observed LLAGN, 7 are detected, while upper limits are derived for the 10 non-detections. This increases the total number of AGN detected with VLT/VISIR to more than 50. All detections except NGC 3125 appear point-like on a spatial scale of ~0.35″. The detections do not significantly deviate from the known MIR-X-ray correlation but exceed it by a factor of ~10 down to luminosities <1041 erg/s with a narrow scatter (σ = 0.35 dex, Spearman rank ρ = 0.92). The latter is dominated by the uncertainties in the X-ray luminosity. Interestingly, a similar correlation with a comparable slope but with a normalization differing by ~2.6 orders of magnitude has been found for local starburst galaxies. In addition, we compared the VISIR data with lower spatial resolution data from Spitzer/IRS and IRAS. By using a scaled starburst template spectral energy distribution and the polycyclic aromatic hydrocarbon (PAH) 11.3 μm emission line, we were able to restrict the maximum nuclear star-formation contamination of the VISIR photometry to ≲30% for 75% of the LLAGN. Exceptions are NGC 1097 and NGC 1566, which may possess unresolved strong PAH emission. Furthermore, the MIR-X-ray luminosity ratio is unchanged over more than 4 orders of

  6. A MULTIVARIATE FIT LUMINOSITY FUNCTION AND WORLD MODEL FOR LONG GAMMA-RAY BURSTS

    SciTech Connect

    Shahmoradi, Amir

    2013-04-01

    It is proposed that the luminosity function, the rest-frame spectral correlations, and distributions of cosmological long-duration (Type-II) gamma-ray bursts (LGRBs) may be very well described as a multivariate log-normal distribution. This result is based on careful selection, analysis, and modeling of LGRBs' temporal and spectral variables in the largest catalog of GRBs available to date: 2130 BATSE GRBs, while taking into account the detection threshold and possible selection effects. Constraints on the joint rest-frame distribution of the isotropic peak luminosity (L{sub iso}), total isotropic emission (E{sub iso}), the time-integrated spectral peak energy (E{sub p,z}), and duration (T{sub 90,z}) of LGRBs are derived. The presented analysis provides evidence for a relatively large fraction of LGRBs that have been missed by the BATSE detector with E{sub iso} extending down to {approx}10{sup 49} erg and observed spectral peak energies (E{sub p} ) as low as {approx}5 keV. LGRBs with rest-frame duration T{sub 90,z} {approx}< 1 s or observer-frame duration T{sub 90} {approx}< 2 s appear to be rare events ({approx}< 0.1% chance of occurrence). The model predicts a fairly strong but highly significant correlation ({rho} = 0.58 {+-} 0.04) between E{sub iso} and E{sub p,z} of LGRBs. Also predicted are strong correlations of L{sub iso} and E{sub iso} with T{sub 90,z} and moderate correlation between L{sub iso} and E{sub p,z}. The strength and significance of the correlations found encourage the search for underlying mechanisms, though undermine their capabilities as probes of dark energy's equation of state at high redshifts. The presented analysis favors-but does not necessitate-a cosmic rate for BATSE LGRBs tracing metallicity evolution consistent with a cutoff Z/Z{sub Sun} {approx} 0.2-0.5, assuming no luminosity-redshift evolution.

  7. Measurement and analysis of internal stress distributions created in gelatin simulated-brain tissue by a pulsed laser-induced liquid jet.

    PubMed

    Kato, T; Arafune, T; Washio, T; Nakagawa, A; Ogawa, Y; Tominaga, T; Sakuma, I; Kobayashi, E

    2014-01-01

    Transsphenoidal surgery is currently employed to treat complex lesions beyond the sella turcica; however, the procedure can be limited by difficulties encountered in dealing with small blood vessels, deep and narrow working spaces, and awkward working angles. To overcome these problems, we have developed a pulsed laser-induced liquid jet system that can dissect tumor tissue while preserving fine blood vessels within deep and narrow working spaces. We have previously evaluated the utility and safety of this procedure. However, the effects of the pulsejet after being injected into the brain are not yet well understood. Especially, the behavior of the stress distribution created by the jet is important because it has recently been reported that high acoustic pressures can affect the brain. In this study, we measured internal stress distributions in a gelatin simulated-brain using photoelasticity experiments. We used a high-speed camera with an image sensor on which an array of micropolarizers was attached to measure the stresses and the shear wave created when the pulsejet enters the simulated brain. PMID:25570972

  8. Electron-density distribution in CuFeS2 as determined by 63,65Cu NMR in an internal magnetic field

    NASA Astrophysics Data System (ADS)

    Pogoreltsev, A. I.; Gavrilenko, A. N.; Matukhin, V. L.; Korzun, B. V.; Schmidt, E. V.

    2013-07-01

    NMR spectra of 63,65Cu in an internal magnetic field were studied experimentally. The electric field gradient (EFG) at Cu nuclei in chalcopyrite CuFeS2 was evaluated ab initio by using a cluster approach. Calculations were carried out in the framework of the self-consistent field restricted open-shell Hartree-Fock method (SCF-LCAO-ROHF). The largest cluster for which calculations were carried out had the formula Cu9Fe10S28 n ( R ~ 6 Å, 47 atoms), where n is the cluster charge. The best agreement of the quadrupole parameters (quadrupole frequency νQ and EFG tensor asymmetry parameter η) that were determined experimentally (νQ = 1.29 MHz, η = 0.34) and were calculated (νQ = 1.40 MHz, η = 0.50) was obtained for the cluster Cu9Fe10S28 -4. Maps of electron-density distribution in the neighborhood of the Cu quadrupolar nucleus were built for the cluster Cu9Fe10S28 -4. It was suggested based on an analysis of the obtained electron-density distribution that the bond in chalcopyrite is not covalent. The energy-level diagram that was calculated in the ROHF high-spin approximation defined rather well chalcopyrite as a semiconductor with a very narrow LUMO-HOMO gap and was consistent with the notion of chalcopyrite as a gapless semiconductor.

  9. Revisiting the luminosity function of single halo white dwarfs

    NASA Astrophysics Data System (ADS)

    Cojocaru, Ruxandra; Torres, Santiago; Althaus, Leandro G.; Isern, Jordi; García-Berro, Enrique

    2015-09-01

    Context. White dwarfs are the fossils left by the evolution of low- and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. Aims: We present a population synthesis study of the luminosity function of halo white dwarfs, aimed at investigating which information can be derived from the currently available observed data. Methods: We employ an up-to-date population synthesis code based on Monte Carlo techniques, which incorporates the most recent and reliable cooling sequences for metal-poor progenitors as well as an accurate modeling of the observational biases. Results: We find that because the observed sample of halo white dwarfs is restricted to the brightest stars, only the hot branch of the white dwarf luminosity function can be used for these purposes, and that its shape function is almost insensitive to the most relevant inputs, such as the adopted cooling sequences, the initial mass function, the density profile of the stellar spheroid, or the adopted fraction of unresolved binaries. Moreover, since the cutoff of the observed luminosity has not yet been determined only the lower limits to the age of the halo population can be placed. Conclusions: We conclude that the current observed sample of the halo white dwarf population is still too small to obtain definite conclusions about the properties of the stellar halo, and the recently computed white dwarf cooling sequences, which incorporate residual hydrogen burning, should be assessed using metal-poor globular clusters.

  10. Pulsar gamma-rays: Spectra luminosities and efficiencies

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1980-01-01

    The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

  11. Redshifts of low-X-ray luminosity clusters of galaxies

    SciTech Connect

    Kowalski, M.P.; Ulmer, M.P.; Hintzen, P.

    1987-06-01

    Measurements of redshifts and velocity dispersions are presented for Abell clusters A539, A1185, and A1228, and the southern clusters S1840-623, S1904-618, S1908-566, and S2000-561. All these clusters have reported X-ray luminosities or upper limits. Finding charts for the clusters are presented, and the measured heliocentric redshifts are given along with redshifts obtained by other investigators. Comments are made about each cluster. The technique used to derive the redshifts is summarized. 32 references.

  12. Redshifts of low-X-ray luminosity clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Kowalski, M. P.; Ulmer, M. P.; Hintzen, P.

    1987-01-01

    Measurements of redshifts and velocity dispersions are presented for Abell clusters A539, A1185, and A1228, and the southern clusters S1840-623, S1904-618, S1908-566, and S2000-561. All these clusters have reported X-ray luminosities or upper limits. Finding charts for the clusters are presented, and the measured heliocentric redshifts are given along with redshifts obtained by other investigators. Comments are made about each cluster. The technique used to derive the redshifts is summarized.

  13. Redshifts of low-X-ray luminosity clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Ulmer, M. P.; Hintzen, P.

    1987-06-01

    Measurements of redshifts and velocity dispersions are presented for Abell clusters A539, A1185, and A1228, and the southern clusters S1840-623, S1904-618, S1908-566, and S2000-561. All these clusters have reported X-ray luminosities or upper limits. Finding charts for the clusters are presented, and the measured heliocentric redshifts are given along with redshifts obtained by other investigators. Comments are made about each cluster. The technique used to derive the redshifts is summarized.

  14. On Schmidt's Vm estimator and other estimators of luminosity functions

    NASA Technical Reports Server (NTRS)

    Felten, J. E.

    1976-01-01

    Schmidt's (1968) estimator, sometimes used to calculate the luminosity function from a complete sample of observed objects, can be generalized naively to the case in which the maximum distance for detection is a function of the direction. Though unbiased, this estimator then does not have minimum variance and, in some cases, is inferior to the classical estimator. The classical estimator, however, is biased when the magnitude boxes are not infinitesimal. A generalization of Schmidt's estimator is proposed which is unbiased and usually superior to both Schmidt's and the classical estimator. Variance formulas and numerical examples are given. The results can be used in combining several catalogs.

  15. HERA LUMINOSITY UPGRADE SUPERCONDUCTING MAGNET PRODUCTION AT BNL.

    SciTech Connect

    PARKER,B.; ANERELLA,M.; ESCALLIER,J.; GHOSH,A.; JAIN,A.; MARONE,A.; MURATORE,J.; PRODELL,A.; THOMPSON,P.; WANDERER,P.; WU,K.C.

    2000-09-17

    Production of two types of superconducting multi-function magnets, needed for the HEX4 Luminosity Upgrade is underway at BNL. Coil winding is now completed and cryostat assembly is in progress. Magnet type GO and type GG cold masses have been satisfactorily cold tested in vertical dewars and the first fully assembled GO magnet system has been horizontally cold tested and shipped to DESY. Warm measurements confirm that the coils meet challenging harmonic content targets. In this paper we discuss GO and GG magnet design and construction solutions, field harmonic measurements and quench test results.

  16. Elevated Optical Luminosity for Gamma-ray Blazar BL Lacertae

    NASA Astrophysics Data System (ADS)

    Furniss, A.; Fumagalli, M.; Hogan, M.; Kaplan, K.; Prochaska, P. X.; Williams, D. A.

    2012-06-01

    We report on the increased optical luminosity of BL Lacertae (RA=22h02m43.29s, dec=42d16m39.98s), a low-frequency-peaked gamma-ray emitting blazar at a redshift of 0.068 (3EG J2202+4225, 2FGL J2202.8+4216). We have collected regular R-band exposures for BL Lacertae as part of a larger optical monitoring program of gamma-ray-bright blazars using the Super-LOTIS (Livermore Optical Transient Imaging System) robotic telescope at the Steward Observatory on Kitt Peak, near Tucson Arizona.

  17. Radiation environment and shielding for a high luminosity collider detector

    SciTech Connect

    Diwan, M.V.; Fisyak, Y.; Mokhov, N.V.

    1995-12-01

    Detectors now under design for use in the proposed high energy high luminosity colliders must deal with unprecedented radiation levels. We have performed a comprehensive study for the GEM detector at the SSC to determine the best way to shield critical detector components from excessive radiation, with special attention paid to the low energy neutrons and photons. We have used several detailed Monte-Carlo simulations to calculate the particle fluxes in the detector. We describe these methods and demonstrate that two orders of magnitude reduction in the neutron and photon fluxes can be obtained with appropriate shielding of critical forward regions such as the low beta quadrupoles and the forward calorimeter.

  18. IUE observations of blue halo high luminosity stars

    NASA Technical Reports Server (NTRS)

    Hack, M.; Franco, M. L.; Stalio, R.

    1981-01-01

    Two high luminosity population II blue stars of high galactic latitude, BD+33 deg 2642 and HD 137569 were observed at high resolution. The stellar spectra show the effect of mass loss in BD+33 deg 2642 and abnormally weak metallic lines in HD 137569. The interstellar lines in the direction of BD+33 deg 2642, which lies at a height z greater than or equal to 6.2 kpc from the galactic plane, are split into two components. No high ionization stages are found at the low velocity component; nor can they be detected in the higher velocity clouds because of mixing with the corresponding stellar/circumstellar lines.

  19. Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Sloan, G. C.; Soszyński, I.; Petersen, E. A.

    2009-11-01

    Context: Mass loss is one of the fundamental properties of Asymptotic Giant Branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking, particularly its dependence on metallicity. Aims: To investigate the relation between mass loss, luminosity and pulsation period for a large sample of evolved stars in the Small and Large Magellanic Cloud. Methods: Dust radiative transfer models are presented for 101 carbon stars and 86 oxygen-rich evolved stars in the Magellanic Clouds for which 5-35 μm Spitzer IRS spectra are available. The spectra are complemented with available optical and infrared photometry to construct the spectral energy distribution. A minimisation procedure is used to fit luminosity, mass-loss rate and dust temperature at the inner radius. Different effective temperatures and dust content are also considered. Periods from the literature and from new OGLE-III data are compiled and derived. Results: We derive (dust) mass-loss rates and luminosities for the entire sample. Based on luminosities, periods and amplitudes and colours, the O-rich stars are classified as foreground objects, AGB stars and Red Super Giants. For the O-rich stars silicates based on laboratory optical constants are compared to “astronomical silicates”. Overall, the grain type by Volk & Kwok (1988, ApJ, 331, 435) fits the data best. However, the fit based on laboratory optical constants for the grains can be improved by abandoning the small-particle limit. The influence of grain size, core-mantle grains and porosity are explored. A computationally convenient method that seems to describe the observed properties in the 10 μm window are a distribution of hollow spheres with a large vacuum fraction (typically 70%), and grain size of about 1 μm. Relations between mass-loss rates and luminosity and pulsation

  20. The luminosity function of the brightest galaxies in the IRAS survey

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Sanders, D. B.; Madore, B. F.; Neugebauer, G.; Persson, C. J.; Persson, S. E.; Rice, W. L.

    1987-01-01

    Results from a study of the far infrared properties of the brightest galaxies in the IRAS survey are described. There is a correlation between the infrared luminosity and the infrared to optical luminosity ratio and between the infrared luminosity and the far infrared color temperature in these galaxies. The infrared bright galaxies represent a significant component of extragalactic objects in the local universe, being comparable in space density to the Seyferts, optically identified starburst galaxies, and more numerous than quasars at the same bolometric luminosity. The far infrared luminosity in the local universe is approximately 25% of the starlight output in the same volume.

  1. Cross-correlation of SDSS DR7 quasars and DR10 BOSS galaxies: The weak luminosity dependence of quasar clustering at z ∼ 0.5

    SciTech Connect

    Shen, Yue; McBride, Cameron K.; Swanson, Molly E. C.; White, Martin; Kirkpatrick, Jessica A.; Ross, Nicholas P.; Schlegel, David J.; Zheng, Zheng; Myers, Adam D.; Guo, Hong; Zehavi, Idit; Padmanabhan, Nikhil; Parejko, John K.; Schneider, Donald P.; Streblyanska, Alina; Pan, Kaike; Bizyaev, Dmitry; Brewington, Howard; Ebelke, Garrett; Malanushenko, Viktor; and others

    2013-12-01

    We present the measurement of the two-point cross-correlation function (CCF) of 8198 Sloan Digital Sky Survey Data Release 7 quasars and 349,608 Data Release 10 CMASS galaxies from the Baryonic Oscillation Spectroscopic Survey at 0.3 < z < 0.9. The CCF can be reasonably well fit by a power-law model ξ{sub QG}(r) = (r/r {sub 0}){sup –γ} on projected scales of r{sub p} = 2-25 h {sup –1} Mpc with r {sub 0} = 6.61 ± 0.25 h {sup –1} Mpc and γ = 1.69 ± 0.07. We estimate a quasar linear bias of b{sub Q} = 1.38 ± 0.10 at (z) = 0.53 from the CCF measurements, which corresponds to a characteristic host halo mass of ∼4 × 10{sup 12} h {sup –1} M {sub ☉}, compared with a ∼10{sup 13} h {sup –1} M {sub ☉} characteristic host halo mass for CMASS galaxies. Based on the clustering measurements, most quasars at z-bar ∼0.5 are not the descendants of their higher luminosity counterparts at higher redshift, which would have evolved into more massive and more biased systems at low redshift. We divide the quasar sample in luminosity and constrain the luminosity dependence of quasar bias to be db{sub Q} /dlog L = 0.20 ± 0.34 or 0.11 ± 0.32 (depending on different luminosity divisions) for quasar luminosities –23.5 > M{sub i} (z = 2) > –25.5, implying a weak luminosity dependence of clustering for luminous quasars at z-bar ∼0.5. We compare our measurements with theoretical predictions, halo occupation distribution (HOD) models, and mock catalogs. These comparisons suggest that quasars reside in a broad range of host halos. The host halo mass distributions significantly overlap with each other for quasars at different luminosities, implying a poor correlation between halo mass and instantaneous quasar luminosity. We also find that the quasar HOD parameterization is largely degenerate such that different HODs can reproduce the CCF equally well, but with different satellite fractions and host halo mass distributions. These results highlight the limitations

  2. A high-redshift IRAS galaxy with huge luminosity - Hidden quasar or protogalaxy?

    NASA Technical Reports Server (NTRS)

    Rowan-Robinson, M.; Broadhurst, T.; Oliver, S. J.; Taylor, A. N.; Lawrence, A.; Mcmahon, R. G.; Lonsdale, C. J.; Hacking, P. B.; Conrow, T.

    1991-01-01

    An emission line galaxy with the enormous far-IR luminosity of 3 x 10 to the 14th solar has been found at z = 2.286. The spectrum is very unusual, showing lines of high excitation but with very weak Lyman-alpha emission. A self-absorbed synchrotron model for the IR energy distribution cannot be ruled out, but a thermal origin seems more plausible. A radio-quiet quasar embedded in a very dusty galaxy could account for the IR emission, as might a starburst embedded in 1-10 billion solar masses of dust. The latter case demands so much dust that the object would probably be a massive galaxy in the process of formation. The presence of a large amount of dust in an object of such high redshift implies the generation of heavy elements at an early cosmological epoch.

  3. SIMILAR RADIATION MECHANISM IN GAMMA-RAY BURSTS AND BLAZARS: EVIDENCE FROM TWO LUMINOSITY CORRELATIONS

    SciTech Connect

    Wang, F. Y.; Yi, S. X.; Dai, Z. G.

    2014-05-01

    Active galactic nuclei and gamma-ray bursts (GRBs) are powerful astrophysical events with relativistic jets. In this Letter, the broadband spectral properties of GRBs and well-observed blazars are compared. The distribution of GRBs is consistent with the well-known blazar sequence including the νL {sub ν}(5 GHz) – α{sub RX} and νL {sub ν}(5 GHz) – ν{sub peak} correlations, where α{sub RX} is defined as the broadband spectral slope in radio-to-X-ray bands, and ν{sub peak} is defined as the spectral peak frequency. Moreover, GRBs occupy the low radio luminosity end of these sequences. These two correlations suggest that GRBs could have a radiation process, i.e., synchrotron radiation, similar to blazars both in the prompt emission and afterglow phases.

  4. Models of stellar population at high redshift, as constrained by PN yields and luminosity function

    NASA Astrophysics Data System (ADS)

    Maraston, Claudia

    2015-08-01

    Stellar population models are the tool to derive the properties of real galaxies, or predict them via galaxy formation models. A constructive approach is to use nearby stellar systems to calibrate uncertain quantities in stellar evolution. These checks and comparisons are particulary needed for evolved and short stellar phases such as the Thermally-Pulsing Asymptotic giant branch, after whcih intermediate-mass stars evolve through the planetary nebula stage. Given the stellar mass range for which the fuel consumption along the TP-AGB is larger, high-redshift galaxies are the best probes of our modelling. I shall present the models, discuss how different prescription for the treatment of this stellar phase affects the integrated spectral energy distribution and how these compare to galaxy data, and discuss implications for the PN nebulae luminosity function and stellar remnants stemming from the various assumptions.

  5. The luminosity law of ellipticals; a test of a family of anisotropic models on eight galaxies.

    NASA Astrophysics Data System (ADS)

    Bertin, G.; Saglia, R. P.; Stiavelli, M.

    An important clue to the structure and dynamics of elliptical galaxies is provided by the empirical r1/4 luminosity law proposed by de Vaucouleurs (1948). The existence of such a law is indicative of a common underlying mass distribution in these galaxies. The fact that this law is universal suggests that essentially a single physical mechanism characterizes the formation of ellipticals. The authors report on a recent study where they have analyzed published photometric and kinematical data for a set of bright elliptical galaxies (NGC 3379, NGC 4374, NGC 4472, NGC 4486, NGC 4636, NGC 7562, NGC 7619, and NGC 7626) in terms of self-consistent anisotropic models under the assumption of constant mass-to-light ratio.

  6. Evolutionary tracks of individual quasars in the mass-luminosity plane

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.; Elvis, Martin; Amarie, Mihail

    2011-07-01

    Previous work on the quasar mass-luminosity plane indicates the possibility that quasars of the same central black hole mass might follow a common evolutionary track, independent of the properties of the host galaxy. We consider two simple models for the evolution of individual quasars. Requiring these tracks to lie within the observed quasar locus at all redshifts strongly constrains the model parameters, but does allow some solutions. These solutions include a family of tracks with similar shape but different initial masses that might match the observed quasar distributions at all redshifts z < 2.0. This family of solutions is characterized by short (1-2 Gyr) lifetimes, a duty cycle in which the quasar is on at least 25 per cent of the time, and a rapid decline in Eddington ratio, perhaps with LEdd∝ t-6 or steeper.

  7. QSO Narrow [OIII] Line Width and Host Galaxy Luminosity

    NASA Astrophysics Data System (ADS)

    Bonning, E. W.; Shields, G. A.; Salviander, S.

    2004-05-01

    Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.

  8. Upper limits to the annihilation radiation luminosity of Centaurus A

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cline, T. L.; Paciesas, W. S.; Teegarden, B. J.; Tueller, J.; Dirouchoux, P.; Hameury, J. M.

    1983-01-01

    A high resolution observation of the active nucleus galaxy Centaurus A (NGC 5128) was made by the GSFC low energy gamma-ray spectrometer (LEGS) during a balloon flight on 1981 November 19. The measured spectrum between 70 and 500 keV is well represented by a power law of the form 1.05 x 10 (-4) (E/100 keV) (-1.59) ph/sq cm/s with no breaks or line features observed. The 98 percent confidence (2 sigma) flux upper limit for a narrow (3 keV) 511-keV positron annihilation line is 9.9 x 10 (-4) ph/sq cm/s. Using this upper limit, the ratio of the narrow-line annihilation radiation luminosity to the integral or = 511 keV luminosity is estimated to be 0.09 (2 sigma upper limit). This is compared with the measured value for our Galactic center in the Fall of 1979 of 0.10 to 0.13, indicating a difference in the emission regions in the nuclei of the two galaxies.

  9. Low extreme-ultraviolet luminosities impinging on protoplanetary disks

    SciTech Connect

    Pascucci, I.; Hendler, N. P.; Ricci, L.; Gorti, U.; Hollenbach, D.; Brooks, K. J.; Contreras, Y.

    2014-11-01

    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the extreme-ultraviolet (EUV) luminosity impinging on 14 disks around young (∼2-10 Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 10{sup 42} photons s{sup –1} for all sources without jets and lower than 5 × 10{sup 40} photons s{sup –1} for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [Ne II] 12.81 μm luminosities from three disks with slow [Ne II]-detected winds. This indicates that the [Ne II] line in these sources primarily traces a mostly neutral wind where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative mass loss rates than those predicted by EUV-driven models alone. In summary, our results suggest that high-energy stellar photons other than EUV may dominate the dispersal of protoplanetary disks around sun-like stars.

  10. Colorblind vision; luminosity losses in the spectrum for dichromats.

    PubMed

    HECHT, S; HSIA, Y

    1947-11-20

    1. Measurements have been made of the dark-adapted foveal threshold of normal and colorblind persons in five parts of the spectrum using a 1 degrees circular test field. 2. Compared to normals, protanopes (red-blinds) show an elevation of the threshold which increases slowly from blue to yellow and rises rapidly thereafter until in the red the threshold is more than ten times as high as normal. Deuteranopes (green-blinds) do not show so high an elevation, their maximum in the green being only about 70 per cent above normal. 3. These threshold elevations correspond to luminosity losses in the spectrum. For the protanope the total loss in the spectrum is nearly one-half of the normal luminosity; for the deuteranope it is nearly two-fifths of normal. 4. Such losses support the idea that colorblindness corresponds to the loss of one of the three receptor systems usually postulated to account for normal color vision. However, the color sensations reported by colorblind persons, especially monocular colorblinds, do not support the idea of a lost or inactivated receptor system. A fresh explanation for colorblindness is called for to reconcile these conflicting kinds of evidence. PMID:18896937

  11. High luminosity electron-hadron collider eRHIC

    SciTech Connect

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  12. Low Extreme-ultraviolet Luminosities Impinging on Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Pascucci, I.; Ricci, L.; Gorti, U.; Hollenbach, D.; Hendler, N. P.; Brooks, K. J.; Contreras, Y.

    2014-11-01

    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the extreme-ultraviolet (EUV) luminosity impinging on 14 disks around young (~2-10 Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 1042 photons s-1 for all sources without jets and lower than 5 × 1040 photons s-1 for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [Ne II] 12.81 μm luminosities from three disks with slow [Ne II]-detected winds. This indicates that the [Ne II] line in these sources primarily traces a mostly neutral wind where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative mass loss rates than those predicted by EUV-driven models alone. In summary, our results suggest that high-energy stellar photons other than EUV may dominate the dispersal of protoplanetary disks around sun-like stars.

  13. Seven rules of international distribution.

    PubMed

    Arnold, D

    2000-01-01

    A multinational entering a new market in a developing country knows that on its own, it cannot master local business practices, meet regulatory requirements, hire and manage local personnel, and gain access to potential customers. So it partners with a local distributor. At first, sales take off, revenues grow, and the entry seems like a smart move. But when sales plateau, the corporation begins blaming the distributor for not investing sufficiently in business growth or expanding markets, and the distributor claims that it hasn't received enough support and that the corporation's expectations are too high. The key to solving such problems lies in recognizing that the phases are predictable and can be planned for. As a new business grows in an emerging market, its marketing strategy needs to evolve, and each sequential phase requires different skills, financial investments, and management resources. The author offers seven strategies to manage the multinational-distributor partnership. He discusses what to consider when choosing a distributor, how to structure the relationship between the two partners, what resources the multinational should commit, and what can be expected in return. He states that a successful distributor must risk investing in training, information services, and advertising and promotion in order to implement the company's marketing strategy and grow the business. Paying attention at the start of a partnership can result in a better working relationship between a multinational and a distributor, along with more consistent sales and growth for the corporation. PMID:11184967

  14. The IRIS Data Management Center: An international "network of networks", providing open, automated access to geographically distributed sensors of geophysical and environmental data.

    NASA Astrophysics Data System (ADS)

    Benson, R. B.; Ahern, T. K.; Trabant, C.

    2006-12-01

    The IRIS Data Management System has long supported international collaboration for seismology by both deploying a global network of seismometers and creating and maintaining an open and accessible archive in Seattle, WA, known as the Data Management Center (DMC). With sensors distributed on a global scale spanning more than 30 years of digital data, the DMC provides a rich repository of observations across broad time and space domains. Primary seismological data types include strong motion and broadband seismometers, conventional and superconducting gravimeters, tilt and creep meters, GPS measurements, along with other similar sensors that record accurate and calibrated ground motion. What may not be as well understood is the volume of environmental data that accompanies typical seismological data these days. This poster will review the types of time-series data that are currently being collected, how they are collected, and made freely available for download at the IRIS DMC. Environmental sensor data that is often co-located with geophysical data sensors include temperature, barometric pressure, wind direction and speed, humidity, insolation, rain gauge, and sometimes hydrological data like water current, level, temperature and depth. As the primary archival institution of the International Federation of Digital Seismograph Networks (FDSN), the IRIS DMC collects approximately 13,600 channels of real-time data from 69 different networks, from close to 1600 individual stations, currently averaging 10Tb per year in total. A major contribution to the IRIS archive currently is the EarthScope project data, a ten-year science undertaking that is collecting data from a high-resolution, multi-variate sensor network. Data types include magnetotelluric, high-sample rate seismics from a borehole drilled into the San Andreas fault (SAFOD) and various types of strain data from the Plate Boundary Observatory (PBO). In addition to the DMC, data centers located in other countries

  15. THE MID-INFRARED LUMINOSITY FUNCTION AT z < 0.3 FROM 5MUSES: UNDERSTANDING THE STAR FORMATION/ACTIVE GALACTIC NUCLEUS BALANCE FROM A SPECTROSCOPIC VIEW

    SciTech Connect

    Wu Yanling; Shi Yong; Helou, George; Armus, Lee; Stierwalt, Sabrina; Dale, Daniel A.; Papovich, Casey; Rahman, Nurur; Dasyra, Kalliopi E-mail: yong@ipac.caltech.edu E-mail: lee@ipac.caltech.edu E-mail: ddale@uwyo.edu E-mail: nurur@astro.umd.edu

    2011-06-10

    We present rest-frame 15 and 24 {mu}m luminosity functions (LFs) and the corresponding star-forming LFs at z < 0.3 derived from the 5MUSES sample. Spectroscopic redshifts have been obtained for {approx}98% of the objects and the median redshift is {approx}0.12. The 5-35 {mu}m Infrared Spectrograph spectra allow us to estimate accurately the luminosities and build the LFs. Using a combination of starburst and quasar templates, we quantify the star formation (SF) and active galactic nucleus (AGN) contributions in the mid-IR spectral energy distribution. We then compute the SF LFs at 15 and 24 {mu}m, and compare with the total 15 and 24 {mu}m LFs. When we remove the contribution of AGNs, the bright end of the LF exhibits a strong decline, consistent with the exponential cutoff of a Schechter function. Integrating the differential LF, we find that the fractional contribution by SF to the energy density is 58% at 15 {mu}m and 78% at 24 {mu}m, while it goes up to {approx}86% when we extrapolate our mid-IR results to the total IR luminosity density. We confirm that the AGNs play more important roles energetically at high luminosities. Finally, we compare our results with work at z {approx} 0.7 and confirm that evolution on both luminosity and density is required to explain the difference in the LFs at different redshifts.

  16. Variations of the core luminosity and solar neutrino fluxes

    NASA Astrophysics Data System (ADS)

    Grandpierre, Attila

    The aim of the present work is to analyze the geological and astrophysical data as well as presenting theoretical considerations indicating the presence of dynamic processes present in the solar core. The dynamic solar model (DSM) is suggested to take into account the presence of cyclic variations in the temperature of the solar core. Comparing the results of calculations of the CO2 content, albedo and solar evolutionary luminosity changes with the empirically determined global earthly temperatures, and taking into account climatic models, I determined the relation between the earthly temperature and solar luminosity. These results indicate to the observed maximum of 10o change on the global terrestrial surface temperature a related solar luminosity change around 4-5 % on a ten million years timescale, which is the timescale of heat diffusion from the solar core to the surface. The related solar core temperature changes are around 1 % only. At the same time, the cyclic luminosity changes of the solar core are shielded effectively by the outer zones since the radiation diffusion takes more than 105 years to reach the solar surface. The measurements of the solar neutrino fluxes with Kamiokande 1987-1995 showed variations higher than 40 % around the average, at the Super-Kamiokande the size of the apparent scatter decreased to 13 %. This latter scatter, if would be related completely to stochastic variations of the central temperature, would indicate a smaller than 1 % change. Fourier and wavelet analysis of the solar neutrino fluxes indicate only a marginally significant period around 200 days (Haubold, 1998). Helioseismic measurements are known to be very constraining. Actually, Castellani et al. (1999) remarked that the different solar models lead to slightly different sound speeds, and the different methods of regularization yield slightly different sound speeds, too. Therefore, they doubled the found parameter variations, and were really conservative assuming

  17. The ACS Virgo Cluster Survey. XII. The Luminosity Function of Globular Clusters in Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Jordán, Andrés; McLaughlin, Dean E.; Côté, Patrick; Ferrarese, Laura; Peng, Eric W.; Mei, Simona; Villegas, Daniela; Merritt, David; Tonry, John L.; West, Michael J.

    2007-07-01

    massive galaxies. We probe the variation of the GCLF to projected galactocentric radii of 20-35 kpc in the Virgo giants M49 and M87, finding that the turnover point is essentially constant over these spatial scales. Our fits of evolved Schechter functions imply average dynamical mass losses (Δ) over a Hubble time that vary more than MTO, and systematically but nonmonotonically as a function of galaxy luminosity. If the initial GC mass distributions rose steeply toward low masses as we assume, then these losses fall in the range 2×105 Msolar<~Δ<106 Msolar per GC for all of our galaxies. The trends in Δ are broadly consistent with observed, small variations of the mean GC half-light radius in ACSVCS galaxies, and with rough estimates of the expected scaling of average evaporation rates (galaxy densities) versus total luminosity. We agree with previous suggestions that if the full GCLF is to be understood in more detail, especially alongside other properties of GC systems, the next generation of GCLF models will have to include self-consistent treatments of dynamical evolution inside time-dependent galaxy potentials. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  18. Discrete knot ejection from the jet in a nearby low-luminosity active galactic nucleus, M81*

    NASA Astrophysics Data System (ADS)

    King, Ashley L.; Miller, Jon M.; Bietenholz, Michael; Gültekin, Kayhan; Reynolds, Mark T.; Mioduszewski, Amy; Rupen, Michael; Bartel, Norbert

    2016-08-01

    Observational constraints of the relativistic jets from black holes have largely come from the most powerful and extended jets, leaving the nature of the low-luminosity jets a mystery. M81* is one of the nearest low-luminosity jets and it emitted an extremely large radio flare in 2011, allowing us to study compact core emission with unprecedented sensitivity and linear resolution. Using a multiwavelength campaign, we were able to track the flare as it re-brightened and became optically thick. Simultaneous X-ray observations indicated that the radio re-brightening was preceded by a low-energy X-ray flare at least 12 days earlier. Associating the time delay (tdelay) between the two bands with the cooling time in a synchrotron flare, we find that the magnetic field strength was 1.9 < B < 9.2 G, which is consistent with magnetic field estimate from spectral energy distribution modelling, B < 10.2 G. In addition, Very Long Baseline Array observations at 23 GHz clearly illustrate a discrete knot moving at a low relativistic speed of vapp/c = 0.51 +/- 0.17 associated with the initial radio flare. The observations indicate radial jet motions for the first time in M81*. This has profound implications for jet production, as it means radial motion can be observed in even the lowest-luminosity AGN, but at slower velocities and smaller radial extents (≍104 RG).

  19. Mini Survey of SDSS [OIII] AGN with Swift: Testing the Hypothesis that L(sub [OIII]) Traces AGN Luminosity

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. Recent work strongly suggests every massive galaxy has a central black hole. However most of these objects either are not radiating or have been very difficult to detect We are now in the era of large surveys, and the luminosity function (LF] of AGN has been estimated in various ways. In the X-ray band. Chandra and XMM surveys have revealed that the LF of hard X-ray selected AGN shows a strong luminosity-dependent evolution with a dramatic break towards low L(sub x) (at all z). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of optically-selected samples shows no such break and no differences between narrow and broad-line objects. If as been suggested, hard X ray and optical emission line can both can be fair indicators of AGN activity, it is important to first understand how reliable these characteristics are if we hope to understand the apparent discrepancy in the LFs.

  20. Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz-Mie theory: internal and external field distribution.

    PubMed

    Wang, J J; Gouesbet, G; Han, Y P; Gréhan, G

    2011-01-01

    Based on the recent results in the generalized Lorenz-Mie theory, solutions for scattering problems of a sphere with an eccentrically located spherical inclusion illuminated by an arbitrary shaped electromagnetic beam in an arbitrary orientation are obtained. Particular attention is paid to the description and application of an arbitrary shaped beam in an arbitrary orientation to the scattering problem under study. The theoretical formalism is implemented in a homemade computer program written in FORTRAN. Numerical results concerning spatial distributions of both internal and external fields are displayed in different formats in order to properly display exemplifying results. More specifically, as an example, we consider the case of a focused fundamental Gaussian beam (TEM(00) mode) illuminating a glass sphere (having a real refractive index equal to 1.50) with an eccentrically located spherical water inclusion (having a real refractive index equal to 1.33). Displayed results are for various parameters of the incident electromagnetic beam (incident orientation, beam waist radius, location of the beam waist center) and of the scatterer system (location of the inclusion inside the host sphere and relative diameter of the inclusion to the host sphere). PMID:21200408

  1. Integrated Logistics Support Analysis of the International Space Station Alpha, Background and Summary of Mathematical Modeling and Failure Density Distributions Pertaining to Maintenance Time Dependent Parameters

    NASA Technical Reports Server (NTRS)

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The process of predicting the values of maintenance time dependent variable parameters such as mean time between failures (MTBF) over time must be one that will not in turn introduce uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. A minor deviation in the values of the maintenance time dependent variable parameters such as MTBF over time will have a significant impact on the logistics resources demands, International Space Station availability and maintenance support costs. There are two types of parameters in the logistics and maintenance world: a. Fixed; b. Variable Fixed parameters, such as cost per man hour, are relatively easy to predict and forecast. These parameters normally follow a linear path and they do not change randomly. However, the variable parameters subject to the study in this report such as MTBF do not follow a linear path and they normally fall within the distribution curves which are discussed in this publication. The very challenging task then becomes the utilization of statistical techniques to accurately forecast the future non-linear time dependent variable arisings and events with a high confidence level. This, in turn, shall translate in tremendous cost savings and improved availability all around.

  2. Optimizing granules size distribution for aerobic granular sludge stability: Effect of a novel funnel-shaped internals on hydraulic shear stress.

    PubMed

    Zhou, Jia-Heng; Zhang, Zhi-Ming; Zhao, Hang; Yu, Hai-Tian; Alvarez, Pedro J J; Xu, Xiang-Yang; Zhu, Liang

    2016-09-01

    A novel funnel-shaped internals was proposed to enhance the stability and pollutant removal performance of an aerobic granular process by optimizing granule size distribution. Results showed up to 68.3±1.4% of granules in novel reactor (R1) were situated in optimal size range (700-1900μm) compared to less than 29.7±1.1% in conventional reactor (R2), and overgrowth of large granules was effectively suppressed without requiring additional energy. Consequently, higher total nitrogen (TN) removal (81.6±2.1%) achieved in R1 than in R2 (48.1±2.7%). Hydraulic analysis revealed the existence of selectively assigning hydraulic pressure in R1. The total shear rate (τtotal) on large granules was 3.07±0.14 times higher than that of R2, while τtotal of small granules in R1 was 70.7±4.6% in R2. Furthermore, large granules in R1 with intact extracellular polymeric substances (EPS) outer layer structure entrapped hydroxyapatite at center, which formed a core structure and further enhanced the stability of aerobic granules. PMID:27281434

  3. 2012 best practices for repositories collection, storage, retrieval, and distribution of biological materials for research international society for biological and environmental repositories.

    PubMed

    2012-04-01

    Third Edition [Formula: see text] [Box: see text] Printed with permission from the International Society for Biological and Environmental Repositories (ISBER) © 2011 ISBER All Rights Reserved Editor-in-Chief Lori D. Campbell, PhD Associate Editors Fay Betsou, PhD Debra Leiolani Garcia, MPA Judith G. Giri, PhD Karen E. Pitt, PhD Rebecca S. Pugh, MS Katherine C. Sexton, MBA Amy P.N. Skubitz, PhD Stella B. Somiari, PhD Individual Contributors to the Third Edition Jonas Astrin, Susan Baker, Thomas J. Barr, Erica Benson, Mark Cada, Lori Campbell, Antonio Hugo Jose Froes Marques Campos, David Carpentieri, Omoshile Clement, Domenico Coppola, Yvonne De Souza, Paul Fearn, Kelly Feil, Debra Garcia, Judith Giri, William E. Grizzle, Kathleen Groover, Keith Harding, Edward Kaercher, Joseph Kessler, Sarah Loud, Hannah Maynor, Kevin McCluskey, Kevin Meagher, Cheryl Michels, Lisa Miranda, Judy Muller-Cohn, Rolf Muller, James O'Sullivan, Karen Pitt, Rebecca Pugh, Rivka Ravid, Katherine Sexton, Ricardo Luis A. Silva, Frank Simione, Amy Skubitz, Stella Somiari, Frans van der Horst, Gavin Welch, Andy Zaayenga 2012 Best Practices for Repositories: Collection, Storage, Retrieval and Distribution of Biological Materials for Research INTERNATIONAL SOCIETY FOR BIOLOGICAL AND ENVIRONMENTAL REPOSITORIES (ISBER) INTRODUCTION T he availability of high quality biological and environmental specimens for research purposes requires the development of standardized methods for collection, long-term storage, retrieval and distribution of specimens that will enable their future use. Sharing successful strategies for accomplishing this goal is one of the driving forces for the International Society for Biological and Environmental Repositories (ISBER). For more information about ISBER see www.isber.org . ISBER's Best Practices for Repositories (Best Practices) reflect the collective experience of its members and has received broad input from other repository professionals. Throughout this document

  4. Type Ia Supernova Spectral Line Ratios as LuminosityIndicators

    SciTech Connect

    Bongard, Sebastien; Baron, E.; Smadja, G.; Branch, David; Hauschildt, Peter H.

    2005-12-07

    Type Ia supernovae have played a crucial role in thediscovery of the dark energy, via the measurement of their light curvesand the determination of the peak brightness via fitting templates to theobserved lightcurve shape. Two spectroscopic indicators are also known tobe well correlated with peak luminosity. Since the spectroscopicluminosity indicators are obtained directly from observed spectra, theywill have different systematic errors than do measurements usingphotometry. Additionally, these spectroscopic indicators may be usefulfor studies of effects of evolution or age of the SNe~;Ia progenitorpopulation. We present several new variants of such spectroscopicindicators which are easy to automate and which minimize the effects ofnoise. We show that these spectroscopic indicators can be measured byproposed JDEM missions such as snap and JEDI.

  5. The evolution of solar ultraviolet luminosity. [influence on planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.; Walker, J. C. G.

    1982-01-01

    Astronomical observations of stars analogous to the sun are used to construct a tentative account of the evolution of solar UV luminosity. Evidence exists that the young sun was a much more powerful source of energetic particles and radiation than it is today, and while on the main sequence, solar activity has declined as an inverse power law of age as a consequence of angular momentum loss to the solar wind. Observations of pre-main sequence stars indicate that before the sun reached the main sequence, it may have emitted as much as ten thousand times the amount of ultraviolet radiation that it does today. The impact of the results on knowledge of photochemistry and escape of constituents of primordial planetary atmospheres is discussed.

  6. Intermediate luminosity optical transients during the grazing envelope evolution (GEE)

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2016-08-01

    By comparing photon diffusion time with gas outflow time, I argue that a large fraction of the energy carried by the jets during the grazing envelope evolution (GEE) might end in radiation, hence leading to an intermediate luminosity optical transient (ILOT). In the GEE a companion orbiting near the outskirts of the larger primary star accretes mass through an accretion disk, and launches jets that efficiently remove the envelope gas from the vicinity of the secondary star. In cases of high mass accretion rates onto the stellar companion the energy carried by the jets surpass the recombination energy from the ejected mass, and when the primary star is a giant this energy surpasses also the gravitational binding energy of the binary system. Some future ILOTs of giant stars might be better explained by the GEE than by merger and common envelope evolution without jets.

  7. UPGRADE OF RHIC VACUUM SYSTEMS FOR HIGH LUMINOSITY OPERATION.

    SciTech Connect

    HSEUH, H.C.; MAPES, M.; SMART, L.A.; TODD, R.; WEISS, D.

    2005-05-16

    With increasing ion beam intensity during recent RHIC operations, rapid pressure rises of several decades were observed at most warm sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping and anti-grazing ridges have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and logging were enhanced. Preventive measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed and summarized.

  8. Levitating atmospheres of Eddington-luminosity neutron stars

    NASA Astrophysics Data System (ADS)

    Wielgus, Maciek; Sądowski, Aleksander; Kluźniak, Włodek; Abramowicz, Marek; Narayan, Ramesh

    2016-06-01

    We construct models of static, spherically symmetric shells supported by the radiation flux of a luminous neutron star in the Schwarzschild metric. The atmospheres are disconnected from the star and levitate above its surface. Gas pressure and density inversion appear in the inner region of these atmospheres, which is a purely relativistic phenomenon. We account for the scattering opacity dependence on temperature green by using the Klein-Nishina formula. The relativistic M1 closure scheme for the radiation tensor provides a general relativity-consistent treatment of the photon flux and radiation tensor anisotropy. In this way, we are able to address atmospheres of both large and moderate/low optical depths with the same set of equations. We discuss properties of the levitating atmospheres and find that they may indeed be optically thick, with the distance between star surface and the photosphere expanding as luminosity increases. These results may be relevant for the photosphereric radius expansion X-ray bursts.

  9. 60 micron luminosity evolution of rich clusters of galaxies

    SciTech Connect

    Kelly, D.M.; Rieke, G.H. )

    1990-10-01

    The average 60-micron flux has been determined for a collection of optically selected galaxy clusters at redshifts ranging from 0.30 to 0.92. The result, 26 mJy per cluster, represents the faintest flux determination known of using the IRAS data base. The flux from this set of clusters has been compared to the 60-micron flux from a sample of nearby galaxy clusters. It is found that the far-infrared luminosity evolution in cluster galaxies can be no more than a factor of 1.7 from z = 0.4 to the present epoch. This upper limit is close to the evolution predicted for simple aging of the stellar populations. Additional processes such as mergers, cannibalism, or enhanced rates of starbursts appear to occur at a low enough level that they have little influence on the far-infrared emission from clusters over this redshift range. 38 refs.

  10. 60 micron luminosity evolution of rich clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Kelly, Douglas M.; Rieke, George H.

    1990-01-01

    The average 60-micron flux has been determined for a collection of optically selected galaxy clusters at redshifts ranging from 0.30 to 0.92. The result, 26 mJy per cluster, represents the faintest flux determination known of using the IRAS data base. The flux from this set of clusters has been compared to the 60-micron flux from a sample of nearby galaxy clusters. It is found that the far-infrared luminosity evolution in cluster galaxies can be no more than a factor of 1.7 from z = 0.4 to the present epoch. This upper limit is close to the evolution predicted for simple aging of the stellar populations. Additional processes such as mergers, cannibalism, or enhanced rates of starbursts appear to occur at a low enough level that they have little influence on the far-infrared emission from clusters over this redshift range.

  11. On the maximum luminosity in X-ray bursts

    NASA Technical Reports Server (NTRS)

    Van Paradijs, J.

    1981-01-01

    A qualitative model is proposed which relates the burst behavior of 1608-52 observed by Murakami et al (1980) to the composition of the envelope in which the X-ray bursts occur. The model provides an explanation for the large scatter in the peak fluxes when the accretion rate is high. A flux would be transported outward at the top of the convective region which equals 1.5 to 2 times the Eddington limit appropriate to a helium-rich gas. Upon traversing the outer part of the accreted layer, which is not affected by the nuclear processes and is therefore hydrogen-rich, this flux is about a factor of 3 to 4 higher than the local value of the Eddington luminosity.

  12. Jet or Shock Breakout? The Low-Luminosity GRB 060218

    NASA Astrophysics Data System (ADS)

    Irwin, Christopher; Chevalier, Roger

    2016-01-01

    We consider a model for the long-duration, low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The components of our model are: (1) a long-lived (tj ~ 3000 s) central engine and accompanying low-luminosity (Lj ~ 1045 erg s-1), mildly relativistic jet; (2) a low-mass (~ 10-2 Msun) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ~ 0.1) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the prompt nonthermal X-rays and γ-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ~ 1013 cm can explain the early optical peak. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ~ 30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that ultra-long bursts such as GRB 060218 and GRB 100316D may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt high-energy emission from the supernova.

  13. The Origin of Intermediate-Luminosity Red Transients

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2014-10-01

    Intermediate-luminosity red transients (ILRTs) are a new class of optical transients. They have maximum luminosities between novae and SNe, and outbursts lasting several months, becoming cool, dusty, and extremely red as the eruptions proceed. A prototype is V838 Mon, which illuminated a spectacular light echo. Their outbursts may be due to catastrophic stellar collisions and mergers. This is demonstrably true for V1309 Sco, which was a contact binary before its eruption and is now a single star. However, it is not yet clear whether all ILRTs are due to mergers.I propose WFC3 imaging of 3 ILRTs: (1) V4332 Sgr, which erupted in the Galactic bulge in 1994, is now a 19th-mag, very red remnant. Based on a high degree of linear polarization in ground-based measurements, it has been proposed that it is surrounded and obscured by a dusty, edge-on envelope, ejected during a stellar merger. If so, V4332 Sgr ought to display a dark lane at HST imaging resolution. (2) M31 RV is an ILRT that occurred in the bulge of M31 in 1988. HST images of the site taken between 1999 and 2010 failed to reveal a credible remnant of this event. However, models of expanding dusty envelopes predict that eventually, as the optical depth diminishes, the remnant should brighten. The passage of 5 years since the last HST observation of the field justifies another attempt to identify the putative merged binary. (3) CK Vul, the bright "nova" of 1670, is a candidate ILRT because of its red color and an outburst light curve resembling that of V838 Mon. A faint bipolar nebula lies at the site of CK Vul, but no credible remnant star has been found in ground-based images. HST resolution may reveal it.

  14. The Galaxy UV Luminosity Function before the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Mason, Charlotte A.; Trenti, Michele; Treu, Tommaso

    2015-11-01

    We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a mass-dependent, but redshift-independent, efficiency. We introduce a new self-consistent treatment of the halo star formation history, which allows us to make predictions at z > 10 (lookback time ≲500 Myr), when growth is rapid. With a calibration at a single redshift to set the stellar-to-halo mass ratio, and no further degrees of freedom, our model captures the evolution of the UV LF over all available observations (0 ≲ z ≲ 10). The significant drop in luminosity density of currently detectable galaxies beyond z ˜ 8 is explained by a shift of star formation toward less massive, fainter galaxies. Assuming that star formation proceeds down to atomic cooling halos, we derive a reionization optical depth τ ={0.056}-0.010+0.007, fully consistent with the latest Planck measurement, implying that the universe is fully reionized at z={7.84}-0.98+0.65. In addition, our model naturally produces smoothly rising star formation histories for galaxies with L ≲ L* in agreement with observations and hydrodynamical simulations. Before the epoch of reionization at z > 10 we predict the LF to remain well-described by a Schechter function, but with an increasingly steep faint-end slope (α ˜ -3.5 at z ˜ 16). Finally, we construct forecasts for surveys with James Webb Space Telescope (JWST) and Wide-field Infrared Survey Telescope (WFIRST) and predict that galaxies out to z ˜ 14 will be observed. Galaxies at z > 15 will likely be accessible to JWST and WFIRST only through the assistance of strong lensing magnification.

  15. Jet or Shock Breakout? The Low-Luminosity GRB 060218

    NASA Astrophysics Data System (ADS)

    Irwin, Christopher M.; Chevalier, Roger A.

    2016-05-01

    We consider a model for the low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The model components are: (1) a long-lived (tj ˜ 3000 s) central engine and accompanying low-luminosity (Lj ˜ 1047 erg s-1), mildly relativistic (γ ˜ 10) jet; (2) a low-mass (˜4 × 10-3M⊙) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ˜ 0.1 mag) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the nonthermal X-rays and γ-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ˜1013 cm can explain the early optical emission. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ˜30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that bursts such as GRB 060218 may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt emission from the supernova.

  16. Jet or shock breakout? The low-luminosity GRB 060218

    NASA Astrophysics Data System (ADS)

    Irwin, Christopher M.; Chevalier, Roger A.

    2016-08-01

    We consider a model for the low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The model components are: (1) a long-lived (tj ˜ 3000 s) central engine and accompanying low-luminosity (Lj ˜ 1047 erg s-1), mildly relativistic (γ ˜ 10) jet; (2) a low-mass (˜4 × 10-3 M⊙) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ˜ 0.1 mag) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the non-thermal X-rays and gamma-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ˜1013 cm can explain the early optical emission. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ˜30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that bursts such as GRB 060218 may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt emission from the supernova.

  17. The Luminosities of Type II Cepheids and RR Lyrae Variables

    NASA Astrophysics Data System (ADS)

    Feast, Michael W.

    2010-02-01

    Recent work on the luminosities of type II Cepheids (CephIIs) and RR Lyrae variables is reviewed. In the near infrared (JHK_{s}) the CephIIs in globular clusters show a narrow, linear, period-luminosity relation over their whole period range (˜ 1 to 100 days). The CephIIs in the general field of the LMC follow this relation for periods shorter than ˜ 20 days. At longer period (the region of the RV Tau stars), the LMC field stars have a significant scatter and in the mean are more luminous than the PL relation. The OGLEIII optical data for the LMC field variables show similar trends. Infrared colours of stars in the RV Tau period range show marked mean differences between three groupings; the Galactic field, the LMC field, and globular clusters. In the case of the Galactic field, at least, this may be strongly influenced by selection effects. In the period range ˜ 4 to 20 days (the W Vir range) there are stars lying above the PL relation which may be recognized by their light curves and are all likely to be binaries. The bright Galactic variable, κ Pav probably belongs to this group. There is evidence that CephIIs in the general field (LMC and Galaxy) have a wider range of masses than those in globular clusters. At present the CephII PL zero-point depends on the pulsation parallaxes of two stars. Zero-points of RR Lyrae M_{V}-[Fe/H] and K_{s}-log P relations can be obtained from trigonometrical, statistical and pulsation parallaxes. These zero-points are compared with those for CephIIs and with the classical Cepheid scale using variables of these three types in the LMC. Within the uncertainties (˜ 0.1m) the various scales are in agreement.

  18. Tracing galaxy evolution by their present-day luminosity function

    NASA Astrophysics Data System (ADS)

    Tempel, Elmo

    2011-04-01

    Galaxies, which are complex objects containing up to several tens of billions stars, as well as gas and dust, are remarkable objects. The Universe contains a very diverse "zoo" of galaxies: there are galaxies with a discy shape and spiral structure, elliptical galaxies, and even galaxies, which show no sign of structure. This variety of galaxies leads to the basic question: how the galaxies form and evolve and which processes shape the structure of galaxies? Due to the complexity of galaxy formation and evolution, this question is still an unresolved puzzle and it is one of the biggest challenges in modern cosmology. The present thesis is based on large galaxy surveys and concentrates on the large-scale structure: how galaxy evolution is related to the surrounding large-scale environment of superclusters and voids. To study the evolution of galaxies, we use the luminosity function, which is in this respect one of the most fundamental of all cosmological observables. One of the principal results of the present study was the conclusion that the evolution of spiral galaxies is almost independent of the global environment, especially for blue and red spirals separately, showing that the formation of spiral galaxies has to be similar in all environments. Meanwhile, the luminosity function of elliptical galaxies depends strongly on the environment. This shows that the global environmental density is an important factor (via merging history) in the formation of elliptical galaxies. The results of the present study show clearly, that besides the local/group environment, the global (supercluster-void) environment plays also an important role in the formation and evolution of galaxies. Accounting for the role of global environment can help to solve several problems in the present picture of galaxy formation and evolution.

  19. The XXL Survey. II. The bright cluster sample: catalogue and luminosity function

    NASA Astrophysics Data System (ADS)

    Pacaud, F.; Clerc, N.; Giles, P. A.; Adami, C.; Sadibekova, T.; Pierre, M.; Maughan, B. J.; Lieu, M.; Le Fèvre, J. P.; Alis, S.; Altieri, B.; Ardila, F.; Baldry, I.; Benoist, C.; Birkinshaw, M.; Chiappetti, L.; Démoclès, J.; Eckert, D.; Evrard, A. E.; Faccioli, L.; Gastaldello, F.; Guennou, L.; Horellou, C.; Iovino, A.; Koulouridis, E.; Le Brun, V.; Lidman, C.; Liske, J.; Maurogordato, S.; Menanteau, F.; Owers, M.; Poggianti, B.; Pomarède, D.; Pompei, E.; Ponman, T. J.; Rapetti, D.; Reiprich, T. H.; Smith, G. P.; Tuffs, R.; Valageas, P.; Valtchanov, I.; Willis, J. P.; Ziparo, F.

    2016-06-01

    Context. The XXL Survey is the largest survey carried out by the XMM-Newton satellite and covers a total area of 50 square degrees distributed over two fields. It primarily aims at investigating the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. The survey will ultimately uncover several hundreds of galaxy clusters out to a redshift of ~2 at a sensitivity of ~10-14 erg s-1 cm-2 in the [0.5-2] keV band. Aims: This article presents the XXL bright cluster sample, a subsample of 100 galaxy clusters selected from the full XXL catalogue by setting a lower limit of 3 × 10-14 erg s-1 cm-2 on the source flux within a 1' aperture. Methods: The selection function was estimated using a mixture of Monte Carlo simulations and analytical recipes that closely reproduce the source selection process. An extensive spectroscopic follow-up provided redshifts for 97 of the 100 clusters. We derived accurate X-ray parameters for all the sources. Scaling relations were self-consistently derived from the same sample in other publications of the series. On this basis, we study the number density, luminosity function, and spatial distribution of the sample. Results: The bright cluster sample consists of systems with masses between M500 = 7 × 1013 and 3 × 1014 M⊙, mostly located between z = 0.1 and 0.5. The observed sky density of clusters is slightly below the predictions from the WMAP9 model, and significantly below the prediction from the Planck 2015 cosmology. In general, within the current uncertainties of the cluster mass calibration, models with higher values of σ8 and/or ΩM appear more difficult to accommodate. We provide tight constraints on the cluster differential luminosity function and find no hint of evolution out to z ~ 1. We also find strong evidence for the presence of large-scale structures in the XXL bright cluster sample and identify five new superclusters. Based on

  20. The Radio luminosity Function of Radio-Loud Quasars from the 7C Redshift Survey

    NASA Technical Reports Server (NTRS)

    Willott, Chris J.; Rawlings, Steve; Blundell, Katherine M.; Lacy, Mark

    1998-01-01

    We present a complete sample of 24 radio-loud quasars (RLQs) from the new 7C Redshift Survey. Every quasar with a low-frequency (151 MHz) radio flux-density S(sub 151) > 0.5 Jy in two regions of the sky covering 0.013 sr is included; 23 of these have sufficient extended flux to meet the selection criteria, 18 of these have steep radio spectra (hereafter denoted as SSQs). The key advantage of this sample over most samples of RLQs is the lack of an optical magnitude limit. By combining the 7C and 3CRR samples, we have investigated the properties of RLQs as a function of redshift z and radio luminosity L(sub 151). We derive the radio luminosity function (RLF) of RLQs and find that the data are well fitted by a single power-law with slope alpha(sub 1) = 1.9 +/- 0.1 (for H(sub 0) = 50 km/s.Mpc, OMEGA(sub M) = 1, OMEGA(sub DELTA) = 0). We find that there must be a break in the RLQ RLF at log(sub 10)(L(sub 151)/W Hz.sr) approximately < or = 27, in order for the models to be consistent with the 7C and 6C source counts. The z-dependence of the RLF follows a one-tailed gaussian which peaks at z = 1.7 +/- 0.2. We find no evidence for a decline in the co-moving space density of RLQs at higher redshifts. A positive correlation between the radio and optical luminosities of SSQs is observed, confirming a result of Serjeant. We are able to rule out this correlation being due to selection effects or biases in our combined sample. The radio-optical correlation and best-fit model RLF enable us to estimate the distribution of optical magnitudes of quasars in samples selected at low radio frequencies, We con- clude that for samples with S(sub 151) approximately < or = 1 Jy one must use optical data significantly deeper than the POSS-I limit (R approximately equal 20), in order to avoid severe incompleteness.

  1. THE NUCLEAR INFRARED EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mason, R. E.; Lopez-Rodriguez, E.; Packham, C.; Alonso-Herrero, A.; Elitzur, M.; Aretxaga, I.; Roche, P. F.; Oi, N.

    2012-07-15

    We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs), and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGNs; L{sub bol} {approx}< 10{sup 42} erg s{sup -1}). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGNs, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGNs have not yet been well determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (1) At the low-luminosity, low-Eddington-ratio (log L{sub bol}/L{sub Edd} < -4.6) end of the sample, we identify 'host-dominated' galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (2) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGNs that genuinely lack a broad-line region. (3) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR 'dust bump'. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGNs do not host a Seyfert-like obscuring torus. We anticipate that detailed modeling of the new data and SEDs in terms of accretion disk, jet, radiatively inefficient accretion flow, and torus components will provide further insights into the nuclear

  2. The HerMES submillimetre local and low-redshift luminosity functions

    NASA Astrophysics Data System (ADS)

    Marchetti, L.; Vaccari, M.; Franceschini, A.; Arumugam, V.; Aussel, H.; Béthermin, M.; Bock, J.; Boselli, A.; Buat, V.; Burgarella, D.; Clements, D. L.; Conley, A.; Conversi, L.; Cooray, A.; Dowell, C. D.; Farrah, D.; Feltre, A.; Glenn, J.; Griffin, M.; Hatziminaoglou, E.; Heinis, S.; Ibar, E.; Ivison, R. J.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Page, M. J.; Papageorgiou, A.; Pearson, C. P.; Pérez-Fournon, I.; Pohlen, M.; Rigopoulou, D.; Roseboom, I. G.; Rowan-Robinson, M.; Schulz, B.; Scott, Douglas; Seymour, N.; Shupe, D. L.; Smith, A. J.; Symeonidis, M.; Valtchanov, I.; Viero, M.; Wang, L.; Wardlow, J.; Xu, C. K.; Zemcov, M.

    2016-02-01

    We used wide-area surveys over 39 deg2 by the HerMES (Herschel Multi-tiered Extragalactic Survey) collaboration, performed with the Herschel Observatory SPIRE multiwavelength camera, to estimate the low-redshift, 0.02 < z < 0.5, monochromatic luminosity functions (LFs) of galaxies at 250, 350 and 500 μm. Within this redshift interval, we detected 7087 sources in five independent sky areas, ˜40 per cent of which have spectroscopic redshifts, while for the remaining objects photometric redshifts were used. The SPIRE LFs in different fields did not show any field-to-field variations beyond the small differences to be expected from cosmic variance. SPIRE flux densities were also combined with Spitzer photometry and multiwavelength archival data to perform a complete spectral energy distribution fitting analysis of SPIRE detected sources to calculate precise k-corrections, as well as the bolometric infrared (IR; 8-1000 μm) LFs and their low-z evolution from a combination of statistical estimators. Integration of the latter prompted us to also compute the local luminosity density and the comoving star formation rate density (SFRD) for our sources, and to compare them with theoretical predictions of galaxy formation models. The LFs show significant and rapid luminosity evolution already at low redshifts, 0.02 < z < 0.2, with L_{IR}^{*} ∝ (1+z)^{6.0± 0.4} and Φ _{IR}^{*} ∝ (1+z)^{-2.1± 0.4}, L_{250}^{*} ∝ (1+z)^{5.3± 0.2} and Φ _{250}^{*} ∝ (1+z)^{-0.6± 0.4} estimated using the IR bolometric and the 250 μm LFs, respectively. Converting our IR LD estimate into an SFRD assuming a standard Salpeter initial mass function and including the unobscured contribution based on the UV dust-uncorrected emission from local galaxies, we estimate an SFRD scaling of SFRD0 + 0.08z, where SFRD0 ≃ (1.9 ± 0.03) × 10-2 [M⊙ Mpc-3] is our total SFRD estimate at z ˜ 0.02.

  3. The galaxy luminosity function in groups and clusters: the faint-end upturn and the connection to the field luminosity function

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Wen; Ménard, Brice; Mo, Houjun

    2016-07-01

    We characterize the luminosity functions of galaxies residing in z ˜ 0 groups and clusters over the broadest ranges of luminosity and mass reachable by the Sloan Digital Sky Survey. Our measurements cover four orders of magnitude in luminosity, down to about Mr = -12 mag or L = 107 L⊙, and three orders of magnitude in halo mass, from 1012 to 1015 M⊙. We find a characteristic scale, Mr ˜ -18 mag or L ˜ 109 L⊙, below which the slope of the luminosity function becomes systematically steeper. This trend is present for all halo masses and originates mostly from red satellites. This ubiquitous faint-end upturn suggests that it is formation, rather than halo-specific environmental effect, that plays a major role in regulating the stellar masses of faint satellites. We show that the satellite luminosity functions can be described in a simple manner by a double Schechter function with amplitudes scaling with halo mass over the entire range of observables. Combining these conditional luminosity functions with the dark matter halo mass function, we accurately recover the entire field luminosity function over 10 visual magnitudes and reveal that satellite galaxies dominate the field luminosity function at magnitudes fainter than -17. We find that the luminosity functions of blue and red satellite galaxies show distinct shapes and we present estimates of the stellar mass fraction as a function of halo mass and galaxy type. Finally, using a simple model, we demonstrate that the abundances and the faint-end slopes of blue and red satellite galaxies can be interpreted in terms of their formation history, with two distinct modes separated by some characteristic time.

  4. The jets-accretion relation, mass-luminosity relation in Fermi blazars

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoling; Zhang, Xiong; Zhang, Haojing; Xiong, Dingrong; Li, Bijun; Cha, Yongjuan; Chen, Yongyun; Huang, Xia; Wang, Yuwei

    2015-05-01

    A sample of 111 Fermi blazars each with a well-established radio core luminosity, broad-line luminosity, bolometric luminosity and black hole mass has been compiled from the literatures. We present a significant correlation between radio core and broad-line emission luminosities that supports a close link between accretion processes and relativistic jets. Analysis reveals a relationship of which is consistant with theoretical predicted coefficient and supports that blazar jets are powered by energy extraction from a rapidly spinning Kerr black hole through the magnetic field provided by the accretion disk. Through studying the correlation between the intrinsic bolometric luminosity and the black hole mass, we find a relationship of which supports mass-luminosity relation for Fermi blazars derived in this work is a powerlaw relation similar to that for main-sequence stars. Finally, EVOLUTIONARY SEQUENCE OF BLAZARS is discussed.

  5. Calibrating the Optical Luminosity of Red Clump Stars: An Archival Study of Star Clusters

    NASA Astrophysics Data System (ADS)

    Grocholski, Aaron

    2010-09-01

    The core helium burning stars of the red clump {RC} are a conspicuous feature in the color-magnitude diagram of many stellar populations. Its ease of identification, along with its relative brightness {M_I 0} make the RC a popular feature for HST studies of stellar populations in galaxies out to a few Mpc. Such studies generally interpret the data through comparison to theoretical isochrones. For accurate results, the theoretical predictions must be calibrated to match the RC properties of observed populations of known age and metallicity. However, no large scale studies of the luminosity of the RC currently exist in the optical bands. We propose to remedy this situation with an archival study of RC properties in star clusters in the Milky Way, LMC, and SMC. We will focus on HST images of globular clusters, but we will augment the sample with ground-based open cluster observations to extend the coverage of parameter space. The goal is to build a large and homogeneous database, through new analysis and incorporation of literature data, of cluster ages, abundances, distances, and RC photometry. This database will allow us to explore the variations in the RC luminosity as a function of age and [Fe/H] over the full range of parameter space where the RC exists, for both the V and I bands. The results will provide a fundamental calibration for all future HST studies of stellar populations and distances of nearby galaxies using the RC. They will also allow for verification or improvement of theoretical models for red giant phase evolution. This in turn will help many subjects, from stellar modeling to population synthesis and fitting of spectral energy distributions of distant galaxies.

  6. Very low-luminosity Class I/flat outflow sources in σ Orionis

    NASA Astrophysics Data System (ADS)

    Riaz, B.; Thompson, M.; Whelan, E. T.; Lodieu, N.

    2015-01-01

    We present an optical to submillimetre multiwavelength study of two very low-luminosity Class I/flat systems, Mayrit 1701117 and Mayrit 1082188, in the σ Orionis cluster. We performed moderate-resolution (R ˜ 1000) optical (˜0.4-0.9 μm) spectroscopy with the Cassegrain Twin Spectrograph (TWIN) spectrograph at the Calar Alto 3.5-m telescope. The spectra for both sources show prominent emission in accretion- and outflow-associated lines. The mean accretion rate measured from multiple line diagnostics is 6.4 × 10-10 M⊙ yr-1 for Mayrit 1701117 and 2.5 × 10-10 M⊙ yr-1 for Mayrit 1082188. The outflow mass-loss rates for the two systems are similar and estimated to be ˜1 × 10-9 M⊙ yr-1. The activity rates are within the range observed for low-mass Class I protostars. We obtained submillimetre continuum observations with the Submillimetre Common-User Bolometer Array (SCUBA-2) bolometer at the James Clerk Maxwell Telescope. Both objects are detected at a ≥5σ level in the SCUBA-2 850-μm band. The bolometric luminosity of the targets as measured from the observed spectral energy distribution over ˜0.8-850 μm is 0.18 ± 0.04 L⊙ for Mayrit 1701117 and 0.16 ± 0.03 L⊙ for Mayrit 1082188 and is in the very low mass range. The total dust+gas mass derived from submillimetre fluxes is ˜36 MJup and ˜22 MJup for Mayrit 1701117 and Mayrit 1082188, respectively. There is the possibility that some of the envelope material might be dissipated by the strong outflows driven by these sources, resulting in a final mass of the system close to or below the substellar limit.

  7. Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation

    DOE PAGESBeta

    Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu

    2015-09-18

    We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 1043.0 erg s–1 while the low redshifts (z ≤ 0.3) show an excessmore » in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 1041.6 erg s–1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)–1 at z ≤ 2 while the faint end evolves as ~3(z + 1)–1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.« less

  8. The dust grain size-stellar luminosity trend in debris discs

    NASA Astrophysics Data System (ADS)

    Pawellek, Nicole; Krivov, Alexander V.

    2015-12-01

    The cross-section of material in debris discs is thought to be dominated by the smallest grains that can still stay in bound orbits despite the repelling action of stellar radiation pressure. Thus the minimum (and typical) grain size smin is expected to be close to the radiation pressure blowout size sblow. Yet a recent analysis of a sample of Herschel-resolved debris discs showed the ratio smin/sblow to systematically decrease with the stellar luminosity from about 10 for solar-type stars to nearly unity in the discs around the most luminous A-type stars. Here, we explore this trend in more detail, checking how significant it is and seeking to find possible explanations. We show that the trend is robust to variation of the composition and porosity of dust particles. For any assumed grain properties and stellar parameters, we suggest a recipe of how to estimate the `true' radius of a spatially unresolved debris disc, based solely on its spectral energy distribution. The results of our collisional simulations are qualitatively consistent with the trend, although additional effects may also be at work. In particular, the lack of grains with small smin/sblow for lower luminosity stars might be caused by the grain surface energy constraint that should limit the size of the smallest collisional fragments. Also, a better agreement between the data and the collisional simulations is achieved when assuming debris discs of more luminous stars to have higher dynamical excitation than those of less-luminous primaries. This would imply that protoplanetary discs of more massive young stars are more efficient in forming big planetesimals or planets that act as stirrers in the debris discs at the subsequent evolutionary stage.

  9. PHASE-AVERAGED SPECTRA AND LUMINOSITIES OF GAMMA-RAY EMISSIONS FROM YOUNG ISOLATED PULSARS

    SciTech Connect

    Li, X.; Jiang, Z. J.; Zhang, L.

    2013-03-10

    We study the phase-averaged spectra and luminosities of {gamma}-ray emissions from young, isolated pulsars within a revised outer gap model. In the revised version of the outer gap, there are two possible cases for the outer gaps: the fractional size of the outer gap is estimated through the photon-photon pair process in the first case (Case I), and is limited by the critical field lines in the second case (Case II). The fractional size is described by Case I if the fractional size at the null charge surface in Case I is smaller than that in Case II, and vice versa. Such an outer gap can extend from the inner boundary, whose radial distance to the neutron star is less than that of the null charge surface to the light cylinder for a {gamma}-ray pulsar with a given magnetic inclination. When the shape of the outer gap is determined, assuming that high-energy emission at an averaged radius of the field line in the center of the outer gap, with a Gaussian distribution of the parallel electric field along the gap height, represents typical emission, the phase-averaged {gamma}-ray spectrum for a given pulsar can be estimated in the revised model with three model parameters. We apply the model to explain the phase-averaged spectra of the Vela (Case I) and Geminga (Case II) pulsars. We also use the model to fit the phase-averaged spectra of 54 young, isolated {gamma}-ray pulsars, and then calculate the {gamma}-ray luminosities and compare them with the observed data from Fermi-LAT.

  10. The effects of magnetic field, age and intrinsic luminosity on Crab-like pulsar wind nebulae

    NASA Astrophysics Data System (ADS)

    Torres, D. F.; Martín, J.; de Oña Wilhelmi, E.; Cillis, Analia

    2013-12-01

    We investigate the time-dependent behaviour of Crab-like pulsar wind nebulae (PWNe) generating a set of models using four different initial spin-down luminosities (L0 = {1, 0.1, 0.01, 0.001} × L0,Crab), eight values of magnetic fraction (η = 0.001, 0.01, 0.03, 0.1, 0.5, 0.9, 0.99 and 0.999, i.e. from fully particle dominated to fully magnetically dominated nebulae) and three distinctive ages: 940, 3000 and 9000 years. We find that the self-synchrotron Compton (SSC) contribution is irrelevant for LSD = 0.1, 1 and 10 per cent of the Crab power, disregarding the age and the magnetic fraction. SSC only becomes relevant for highly energetic (˜70 per cent of the Crab), particle dominated nebulae at low ages (of less than a few kyr), located in a far-infrared (FIR) background with relatively low energy density. Since no pulsar other than Crab is known to have these features, these results clarify why the Crab nebula, and only it, is SSC dominated. No young PWN would be detectable at TeV energies if the pulsar's spin-down power is 0.1 per cent Crab or lower. For 1 per cent of the Crab spin-down, only particle-dominated nebulae can be detected by HESS-like telescopes when young enough (with details depending on the precise injection and environmental parameters). Above 10 per cent of the Crab's power, all PWNe are detectable by HESS-like telescopes if they are particle dominated, no matter the age. The impact of the magnetic fraction on the final spectral energy distribution is varied and important, generating order of magnitude variations in the luminosity output for systems that are otherwise the same (equal P, dot{P}, injection and environment).

  11. Luminosity function of [O II] emission-line galaxies in the MassiveBlack-II simulation

    NASA Astrophysics Data System (ADS)

    Park, KwangHo; Di Matteo, Tiziana; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu; Khandai, Nishikanta

    2015-11-01

    We examine the luminosity function (LF) of [O II] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [O II] emission line luminosity L([O II]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [O II] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([O II]) = 1043.0 erg s-1 while the low redshifts (z ≤ 0.3) show an excess in the prediction of bright [O II] galaxies, but still displaying a good match with observations below L([O II]) = 1041.6 erg s-1. Based on the validity in reproducing the properties of [O II] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [O II] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from -3 to -2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)-1 at z ≤ 2 while the faint end evolves as ˜3(z + 1)-1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [O III] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. Finally, we show that the auto-correlation function of [O II] and [O III] emitting galaxies shows a rapid evolution from z = 2 to 1.

  12. The Connection Between Galaxy Environment and the Luminosity Function Slopes of Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Cook, David O.; Dale, Daniel A.; Lee, Janice C.; Thilker, David A.; Calzetti, Daniela; Kennicutt, Robert

    2016-06-01

    We present the first study of GALEX far ultra-violet (FUV) luminosity functions of individual star-forming regions within a sample of 258 nearby galaxies spanning a large range in total stellar mass and star formation properties. We identify ~65,000 star-forming regions (i.e., FUV sources), measure each galaxy's luminosity function, and characterize the relationships between the luminosity function slope (α) and several global galaxy properties. A final sample of \

  13. Testing and Improving the Luminosity Relations for Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Collazzi, Andrew C.

    2012-01-01

    Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable property of a burst light curve or spectrum is correlated with the burst luminosity. These luminosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and hence the known luminosities. GRBs have thus become known as a type of "standard candle” where standard candle is meant in the usual sense that luminosities can be derived from measurable properties of the bursts. GRBs can therefore be used for the same cosmology applications as Type Ia supernovae, including the construction of the Hubble Diagram and measuring massive star formation rate. The greatest disadvantage of using GRBs as standard candles is that their accuracy is lower than desired. With the recent advent of GRBs as a new standard candle, every effort must be made to test and improve the distance measures. Here, methods are employed to do just that. First, generalized forms of two tests are performed on the luminosity relations. All the luminosity relations pass one of these tests, and all but two pass the other. Even with this failure, redundancies in using multiple luminosity relations allows all the luminosity relations to retain value. Next, the "Firmani relation” is shown to have poorer accuracy than first advertised. It is also shown to be derivable from two other luminosity relations. For these reasons, the Firmani relation is useless for cosmology. The Amati relation is then revisited and shown to be an artifact of a combination of selection effects. Therefore, the Amati relation is also not good for cosmology. Fourthly, the systematic errors involved in measuring a luminosity indicator (Epeak) are measured. The result is an irreducible systematic error of 28%. Finally, the work concludes with a discussion about the impact of the work and the future of GRB luminosity relations.

  14. New 3D bathymetry and sediment distribution in Lake Vostok: Implication for pre-glacial origin and numerical modeling of the internal processes within the lake

    NASA Astrophysics Data System (ADS)

    Filina, Irina Y.; Blankenship, Donald D.; Thoma, Malte; Lukin, Valery V.; Masolov, Valery N.; Sen, Mrinal K.

    2008-11-01

    A new distribution of water and unconsolidated sediments in subglacial Lake Vostok, East Antarctica was developed via inversion of airborne gravity data constrained by 60 seismic soundings. A model was developed for host rock with a density of 2550 kg/m 3 that was inferred from prior 2D modeling. Our 3D bathymetry model of Lake Vostok corresponds better with seismic data (RMS of 125 m) than two previous models based on the same gravity dataset. The good match in both water and sediment thicknesses between the gravity model and seismic measurements confirms two major facts about Lake Vostok: (1) the lake is hosted by sedimentary rocks, and (2) the bottom of the lake is covered with a layer of unconsolidated sediments that does not exceed 300 m in the southern basin and thickens almost to 400 m in the northern basin. Our new bathymetry model suggests much shallower water thicknesses (up to twice the previous estimates) in the middle and northern parts of the lake, while the water layer is thicker in the southern basin. Numerical modeling of the internal processes in the lake reveals the relevance of our new bathymetry model to the basal mass balance. A significant decrease in transport is observed in the shallower northern basin, as well as a decrease of 33% in the turbulent kinetic energy. However, only minor differences were observed in the distribution of the calculated freezing and melting zones compared to previous models. Estimates for the sedimentation rates for six possible mechanisms were made. Possible sedimentation mechanisms are: (1) fluvial and periglacial, i.e. those that are active prior to the establishment of a large subglacial lake; (2) deposition due to overlying ice sheet, including melting out of the ice, as well as bulldozering by the overriding ice; and (3) suspended sediments from subglacial water flow including those deposited by periodical subglacial outbursts. The estimates for these mechanisms show that unconsolidated sediments of the

  15. GAMMA-RAY BURST LUMINOSITY RELATIONS: TWO-DIMENSIONAL VERSUS THREE-DIMENSIONAL CORRELATIONS

    SciTech Connect

    Yu Bo; Qi Shi; Lu Tan

    2009-11-01

    The large scatters of luminosity relations of gamma-ray bursts (GRBs) have been one of the most important reasons that prevent the extensive applications of GRBs in cosmology. In this paper, we extend the two-dimensional (2D) luminosity relations with tau{sub lag}, V, E {sub peak}, and tau{sub RT} as the luminosity indicators to three dimensions (3D) using the same set of luminosity indicators to explore the possibility of decreasing the intrinsic scatters. We find that, for the 3D luminosity relations between the luminosity and an energy scale (E{sub peak}) and a timescale (tau{sub lag} or tau{sub RT}), their intrinsic scatters are considerably smaller than those of corresponding 2D luminosity relations. Enlightened by the result and the definition of the luminosity (energy released in units of time), we discussed possible reasons behind this result, which may give us helpful suggestions on seeking more precise luminosity relations for GRBs in the future.

  16. The luminosity function for the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1989-01-01

    The luminosity function for two complete slices of the extension of the CfA redshift survey is calculated. The nonparametric technique of Lynden-Bell (1971) and Turner (1979) is used to determine the shape for the luminosity function of the 12 deg slice of the redshift survey. The amplitude of the luminosity function is determined, taking large-scale inhomogeneities into account. The effects of the Malmquist bias on a magnitude-limited redshift survey are examined, showing that the random errors in the magnitudes for the 12 deg slice affect both the determination of the luminosity function and the spatial density constrast of large scale structures.

  17. The Herschel ATLAS: Evolution of the 250 Micrometer Luminosity Function Out to z = 0.5

    NASA Technical Reports Server (NTRS)

    Dye, S.; Dunne, L.; Eales, S.; Smith, D. J. B.; Amblard, A.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.; Blain, A. W.; Bonfield, D. G.; Bremer, M.; Burgarella, D.; Buttiglione, S.; Cameron, E.; Cava, A.; Clements, D. L.; Cooray, A.; Croom, S.; Dariush, A.; de Zotti, G.; Driver, S.; Dunlop, J. S.; Frayer, D.; Leeuw, L.

    2010-01-01

    We have determined the luminosity function of 250 micrometer-selected galaxies detected in the approximately equal to 14 deg(sup 2) science demonstration region of the Herschel-ATLAS project out to a redshift of z = 0.5. Our findings very clearly show that the luminosity function evolves steadily out to this redshift. By selecting a sub-group of sources within a fixed luminosity interval where incompleteness effects are minimal, we have measured a smooth increase in the comoving 250 micrometer luminosity density out to z = 0.2 where it is 3.6(sup +1.4) (sub -0.9) times higher than the local value.

  18. Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer

    NASA Astrophysics Data System (ADS)

    Magnelli, B.; Elbaz, D.; Chary, R. R.; Dickinson, M.; Le Borgne, D.; Frayer, D. T.; Willmer, C. N. A.

    2011-04-01

    Aims: We derive the evolution of the infrared luminosity function (LF) over the last 4/5ths of cosmic time using deep 24 and 70 μm imaging of the GOODS North and South fields. Methods: We use an extraction technique based on prior source positions at shorter wavelengths to build the 24 and 70 μm source catalogs. The majority (93%) of the sources have a spectroscopic (39%) or a photometric redshift (54%) and, in our redshift range of interest (i.e., 1.3 < z < 2.3) s20% of the sources have a spectroscopic redshift. To extend our study to lower 70 μm luminosities we perform a stacking analysis and we characterize the observed L24/(1 + z) vs. L70/(1 + z) correlation. Using spectral energy distribution (SED) templates which best fit this correlation, we derive the infrared luminosity of individual sources from their 24 and 70 μm luminosities. We then compute the infrared LF at zs1.55 ± 0.25 and zs2.05 ± 0.25. Results: We observe the break in the infrared LF up to zs2.3. The redshift evolution of the infrared LF from z = 1.3 to z = 2.3 is consistent with a luminosity evolution proportional to (1 + z)1.0 ± 0.9 combined with a density evolution proportional to (1 + z)-1.1 ± 1.5. At zs2, luminous infrared galaxies (LIRGs: 1011L⊙ < LIR < 1012 L⊙) are still the main contributors to the total comoving infrared luminosity density of the Universe. At zs2, LIRGs and ultra-luminous infrared galaxies (ULIRGs: 1012L⊙ < LIR) account for s49% and s17% respectively of the total comoving infrared luminosity density of the Universe. Combined with previous results using the same strategy for galaxies at z < 1.3 and assuming a constant conversion between the infrared luminosity and star-formation rate (SFR) of a galaxy, we study the evolution of the SFR density of the Universe from z = 0 to z = 2.3. We find that the SFR density of the Universe strongly increased with redshift from z = 0 to z = 1.3, but is nearly constant at higher redshift out to z = 2.3. As part of the

  19. Infrared luminosity functions for the young stellar population associated with the L1641 molecular cloud

    NASA Technical Reports Server (NTRS)

    Strom, Karen M.; Strom, Stephen E.; Merrill, K. M.

    1993-01-01

    Results are reported of a deep near-IR imaging survey which samples 0.77 sq deg of the L1641 star-forming complex and reaches 5 sigma limits at J (1.25 micron,), H (1.65 micron), and K (2.2 microns) of 16.8, 15.8, and 14.7 mag, respectively. A population of about 1500 stars spread throughout the cloud, seven small aggregates comprised of 10-50 stars whose typical projected surface densities exceed that of the distributed population by factors of 4-10, and a heretofore unknown, partially embedded dense cluster comprised of about 150 stars are identified. Analysis of the distribution of (J-H), (H-K), and (R-I) colors for these groups suggest that, in all cases, the stellar populations are dominated by solar-type PMS stars which appear to contain a mix of objects analogous to weak-line T Tauri stars. The present observed luminosity functions are based on reddening-corrected J-band magnitude.

  20. Lightning current and luminosity at and above channel bottom for return strokes and M-components

    NASA Astrophysics Data System (ADS)

    Carvalho, F. L.; Uman, M. A.; Jordan, D. M.; Ngin, T.

    2015-10-01

    We measured current and luminosity at the channel bottom of 12 triggered lightning discharges including 44 return strokes, 23 M-components, and 1 initial continuous current pulse. Combined current and luminosity data for impulse currents span a 10-90% risetime range from 0.15 to 192 µs. Current risetime and luminosity risetime at the channel bottom are roughly linearly correlated (τr,I = 0.71τr,L1.08). We observed a time delay between current and the resultant luminosity at the channel bottom, both measured at 20% of peak amplitude, that is approximately linearly related to both the luminosity 10-90% risetime (Δt20,b = 0.24τr,L1.12) and the current 10-90% risetime (Δt20,b = 0.35τr,I1.03). At the channel bottom, the peak current is roughly proportional to the square root of the peak luminosity (IP = 21.89LP0.57) over the full range of current and luminosity risetimes. For two return strokes we provide measurements of stroke luminosity vs. time for 11 increasing heights to 115 m altitude. We assume that measurements above the channel bottom behave similarly to those at the bottom and find that (1) one return stroke current peak decayed at 115 m to about 47% of its peak value at channel bottom, while the luminosity peak at 115 m decayed to about 20%, and for the second stroke 38% and 12%, respectively; and (2) measured upward return stroke luminosity speeds of the two strokes of 1.10 × 108 and 9.7 × 107 ms-1 correspond to current speeds about 30% faster. These results represent the first determination of return stroke current speed and current peak value above ground derived from measured return stroke luminosity data.

  1. An extended galactic population of low-luminosity x-ray sources (CVs?) and the diffuse x-ray background

    NASA Technical Reports Server (NTRS)

    Maoz, Eyal; Grindlay, Jonathan E.

    1995-01-01

    The incompatibility of the properties of the X-ray background (XRB) with active galactic nuclei (AGNs) contributing approximately greater than 60% at energies of a few keV has often been interpreted as being due to a substantial contribution of a new population of yet unrecognized X-ray sources. The existence of such population has been recently suggested also by an analysis of very deep ROSAT observations which revealed a considerable excess of faint X-ray sources over that expected from QSO evolution models, and that the average spectrum of the resolved sources becomes harder with decreasing flux limit. These sources could be extragalactic in origin, but if they make a substantial contribution to the XRB then they must exhibit much weaker clustering than galaxies or QSOs in order to be consistent with the stringent constraints on source clustering imposed by autocorrelation analyses of the unresolved XRB. We investigate the possibility that the indicated new population of X-ray sources is Galactic in origin. Examining spherical halo and thick disk distributions, we derive the allowed properties of such populations which would resolve the discrepancy found in the number counts of faint sources and be consistent with observational constraints on the total background intensity, the XRB anisotropy, the number of unidentified bright sources, the Galaxy's total X-ray luminosity, and with the results of fluctuation analyses of the unresolved XRB. We find that a flattened Galactic halo (or a thick disk) distribution with a scale height of a few kpc is consistent with all the above requirements. The typical X-ray luminosity of the sources is approximately equal to 10(exp 30-31)ergs/s in the 0.5-2 keV band, the number density of sources in the solar vicinity is approximately 10(exp -4.5)pc(exp -3), their total number in the Galaxy is approximately 10(exp 8.5), and their total contribution to the Galaxy's X-ray luminosity is approximately 10(exp 39) ergs/s. We discuss the

  2. 'Harder when Brighter' Spectral Variability in Low-Luminosity AGN

    NASA Astrophysics Data System (ADS)

    Connolly, S.; McHardy, I.; Skipper, C.; Dwelly, T.

    2015-07-01

    We present X-ray spectral variability of four low accretion rate AGN - M81, NGC 1097, NGC 1052 and NGC 3998 - as observed by Swift and RXTE. All four objects were selected due to having spectra which hardened with increasing count rate, converse to the `softer when brighter' behaviour normally observed in AGN with higher accretion rates. The spectra were summed in flux bins and fitted with a variety of models. A simple absorbed power law model was found to fit the spectra of M81, NGC 1097 and NGC 3998 well, whilst NGC 1052 required a partially covered power law model. In all four cases, the most likely main source of spectral variability is found to be luminosity-dependent changes in the photon index of the power law component. An anticorrelation between the photon index and the count rate is found in all of the sources. The anticorrelation is likely to be caused by accretion via a radiatively-inefficient accretion flow, expected in low-Eddington ratio systems such as these, and/or due to the presence of a jet. This behaviour is similar to that seen in the `hard state' of X-ray binaries, implying that these LLAGN are in a similar state.

  3. On the luminosity distance and the epoch of acceleration

    NASA Astrophysics Data System (ADS)

    Sutherland, Will; Rothnie, Paul

    2015-02-01

    Standard cosmological models based on general relativity (GR) with dark energy predict that the Universe underwent a transition from decelerating to accelerating expansion at a moderate redshift zacc ˜ 0.7. Clearly, it is of great interest to directly measure this transition in a model-independent way, without the assumption that GR is the correct theory of gravity. We explore to what extent supernova (SN) luminosity distance measurements provide evidence for such a transition: we show that, contrary to intuition, the well-known `turnover' in the SN distance residuals Δμ relative to an empty (Milne) model does not give firm evidence for such a transition within the redshift range spanned by SN data. The observed turnover in that diagram is predominantly due to the negative curvature in the Milne model, not the deceleration predicted by Λ cold dark matter and relatives. We show that there are several advantages in plotting distance residuals against a flat, non-accelerating model (w = -1/3), and also remapping the z-axis to u = ln (1 + z); we outline a number of useful and intuitive properties of this presentation. We conclude that there are significant complementarities between SNe and baryon acoustic oscillations (BAOs): SNe offer high precision at low redshifts and give good constraints on the net amount of acceleration since z ˜ 0.7, but are weak at constraining zacc; while radial BAO measurements are probably superior for placing direct constraints on zacc.

  4. The winds of high luminosity late-type bright stars

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Carpenter, K. G.

    1989-01-01

    The occurrence and characteristics of the Fe II line asymmetries were studied to determine the radial dependence of the wind velocity for each star. The dependence of the Fe II profiles on spectral type and luminosity class and thus the variation of the velocity fields with stellar type was also investigated. This allows the generality of the results reported for alpha Ori by Carpenter (1984b) to be judged. In addition, new atomic data was used along with observations of the C II (UV 0.01) multiplet to estimate N(sub e) in the stellar winds. Measures of relative Fe II fluxes can be used in a probability-of-escape model to determine the opacity and hydrogen column density versus height in the chromosphere of each star. Finally, analysis of the fluorescent Fe II lines (pumped by Ly alpha) near 2507 A will yield estimates of the intrinsic stellar Ly alpha flux that cannot be measured directly because of interstellar and circumstellar absorption. One important goal of the effort was to acquire high resolution spectra of the whole 2300 to 3200 A region of 13 luminous K and M stars as a data base that will be enormously valuable in planning observations with the Hubble Space Telescope High Resolution Spectrograph. It is also proposed to follow up the recent discovery of significant variations in the Fe II chromospheric emission line profiles from the M-giant Gamma Cru for the purpose of determining the underlying cause of the variations.

  5. Radio-Optical Alignments in a Low Radio Luminosity Sample

    NASA Technical Reports Server (NTRS)

    Lacy, Mark; Ridgway, Susan E.; Wold, Margrethe; Lilje, Per B.; Rawlings, Steve

    1999-01-01

    We present an optically-based study of the alignment between the radio axes and the optical major axes of eight z approximately 0.7 radio galaxies in a 7C sample. The radio galaxies in this sample are approximately 20-times less radio luminous than 3C galaxies at the same redshift, and are significantly less radio-luminous than any other well-defined samples studied to date. Using Nordic Optical Telescope images taken in good seeing conditions at rest-frame wavelengths just longward of the 4000A break, we find a statistically significant alignment effect in the 7C sample. Furthermore, in two cases where the aligned components are well separated from the host we have been able to confirm spectroscopically that they are indeed at the same redshift as the radio galaxy. However, a quantitative analysis of the alignment in this sample and in a corresponding 3C sample from HST (Hubble Space Telescope) archival data indicates that the percentage of aligned flux may be lower and of smaller spatial scale in the 7C sample. Our study suggests that alignments on the 50-kpc scale are probably closely related to the radio luminosity, whereas those on the 15 kpc scale are not. We discuss these results in the context of popular models for the alignment effect.

  6. Peak luminosity correlated low-frequency oscillations in black holes

    NASA Astrophysics Data System (ADS)

    Li, Z. B.; Gao, H. Q.; Zhang, Z.; Zhang, S.; Qu, J. L.; Zhang, C. M.; Song, L. M.

    2014-05-01

    Based on Rossi X-ray Timing Explorer (RXTE) observational data, we study the timing and spectral properties of some peculiar low-frequency (LF) quasi-periodic oscillations (QPOs), which have been found at the peak luminosity of the outburst of some transient black hole (BH) binaries: the 2005 outburst of GRO J1655-40, the 2003 outburst of H1743-322 and the 1998 outburst of XTE J1550-564. Appearing in the ultraluminous state, these QPOs from different sources show some common properties. The amplitude is very weak (less than 1 per cent) and the quality factor is larger than 6. Moreover, these QPOs (about several Hz) sometimes show up simultaneously with another QPO (about 10 Hz), but their frequencies are not harmonically related. We also find that the frequencies of these QPOs are inversely correlated with the mass of the BH, which implies that these QPOs might be correlated with the innermost stable circular orbit. The QPO frequency is also negative correlated with the inner disc radius among BHs. However, its frequency is too low to ascribe it to the Keperlian orbit frequency. Moreover, we discuss the physical origin of these QPOs and we suggest that they are not produced by the viscous variability of the inner disc either.

  7. Luminosity distance in Swiss-cheese cosmology with randomized voids and galaxy halos

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Kumar, Naresh; Wasserman, Ira

    2013-08-01

    We study the fluctuations in luminosity distance due to gravitational lensing produced both by galaxy halos and large-scale voids. Voids are represented via a “Swiss-cheese” model consisting of a ΛCDM Friedmann-Robertson-Walker background from which a number of randomly distributed, spherical regions of comoving radius 35 Mpc are removed. A fraction of the removed mass is then placed on the shells of the spheres, in the form of randomly located halos. The halos are assumed to be nonevolving and are modeled with Navarro-Frenk-White profiles of a fixed mass. The remaining mass is placed in the interior of the spheres, either smoothly distributed or as randomly located halos. We compute the distribution of magnitude shifts using a variant of the method of Holz and Wald [Phys. Rev. D 58, 063501 (1998)], which includes the effect of lensing shear. In the two models we consider, the standard deviation of this distribution is 0.065 and 0.072 magnitudes and the mean is -0.0010 and -0.0013 magnitudes, for voids of radius 35 Mpc and the sources at redshift 1.5, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation due to voids and halos is a factor ˜3 larger than that due to 35 Mpc voids alone with a 1 Mpc shell thickness, which we studied in our previous work. We also study the effect of the existence of evacuated voids, by comparing to a model where all the halos are randomly distributed in the interior of the sphere with none on its surface. This does not significantly change the variance but does significantly change the demagnification tail. To a good approximation, the variance of the distribution depends only on the mean column density of halos (halo mass divided by its projected area), the concentration parameter of the halos, and the fraction of the mass density that is in the form of halos (as opposed to smoothly distributed); it is independent of how the halos are distributed in space. We derive an approximate analytic

  8. Ultra-faint ultraviolet galaxies at z ∼ 2 behind the lensing cluster A1689: The luminosity function, dust extinction, and star formation rate density

    SciTech Connect

    Alavi, Anahita; Siana, Brian; Freeman, William R.; Dominguez, Alberto; Richard, Johan; Stark, Daniel P.; Robertson, Brant; Scarlata, Claudia; Teplitz, Harry I.; Rafelski, Marc; Kewley, Lisa

    2014-01-10

    We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in the range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust

  9. Calculation of integrated luminosity for beams stored in the Tevatron collider

    SciTech Connect

    Finley, D.A.

    1989-03-20

    A model for calculating the integrated luminosity of beams stored in the Tevatron collider will be presented. The model determines the instantaneous luminosity by calculating the overlap integral of bunched beams passing through the interaction region. The calculation accounts for the variation in beam size due to the beta functions and also for effects due to finite longitudinal emittance and non-zero dispersion in the interaction region. The integrated luminosity is calculated for the beams as they evolve due to processes including collisions and intrabeam scattering. The model has been applied to both the extant and upgraded Tevatron collider, but is not limited to them. The original motivation for developing the computer model was to determine the reduction in luminosity due to beams with non-zero longitudinal emittances. There are two effects: the transverse beam size is increased where the dispersion is non-zero; the finite length of the beam bunch combined with an increasing /beta/ function results in an increased transverse beam size at the ends of the bunch. The derivation of a sufficiently useful analytic expression for the luminosity proved to be intractable. Instead, a numerical integration computer program was developed to calculate the luminosity in the presence of a finite longitudinal emittance. The program was then expanded into a model which allows the luminosity to vary due to changes in emittances and reduction in bunch intensities. At that point, it was not difficult to calculate the integrated luminosity. 5 refs., 2 figs., 4 tabs.

  10. The X-ray luminosity functions of Abell clusters from the Einstein Cluster Survey

    NASA Technical Reports Server (NTRS)

    Burg, R.; Giacconi, R.; Forman, W.; Jones, C.

    1994-01-01

    We have derived the present epoch X-ray luminosity function of northern Abell clusters using luminosities from the Einstein Cluster Survey. The sample is sufficiently large that we can determine the luminosity function for each richness class separately with sufficient precision to study and compare the different luminosity functions. We find that, within each richness class, the range of X-ray luminosity is quite large and spans nearly a factor of 25. Characterizing the luminosity function for each richness class with a Schechter function, we find that the characteristic X-ray luminosity, L(sub *), scales with richness class as (L(sub *) varies as N(sub*)(exp gamma), where N(sub *) is the corrected, mean number of galaxies in a richness class, and the best-fitting exponent is gamma = 1.3 +/- 0.4. Finally, our analysis suggests that there is a lower limit to the X-ray luminosity of clusters which is determined by the integrated emission of the cluster member galaxies, and this also scales with richness class. The present sample forms a baseline for testing cosmological evolution of Abell-like clusters when an appropriate high-redshift cluster sample becomes available.

  11. Luminosity Improvement at PEP-II Based on Optics Model and Beam-Beam Simulation

    SciTech Connect

    Cai, Y.; Colocho, W.; Diecker, F-J.; Nosochkov, Y.; Raimondi, P.; Seeman, J.; Sonnad, K.; Sullivan, M.; Turner, J.; Weaver, M.; Wienands, U.; Wittmer, W.; Woodley, M.; Yan, Y.; Yock, G.; /SLAC

    2006-06-21

    Since the beginning of this year, we have made significant improvements in the machine optics at PEP-II. As a result, the specific luminosity increased nearly 20%. The largest luminosity gain actually came from minimizing nonlinear chromatic effects and running both rings much closer to the half integer resonance in the horizontal plane.

  12. The large-scale distribution and internal geometry of the fall 2000 Po River flood deposit: Evidence from digital X-radiography

    USGS Publications Warehouse

    Wheatcroft, R.A.; Stevens, A.W.; Hunt, L.M.; Milligan, T.G.

    2006-01-01

    Event-response coring on the Po River prodelta (northern Adriatic Sea) coupled with shipboard digital X-radiography, resistivity profiling, and grain-size analyses permitted documentation of the initial distribution and physical properties of the October 2000 flood deposit. The digital X-radiography system comprises a constant-potential X-ray source and an amorphous silicon imager with an active area of 29??42 cm and 12-bit depth resolution. Objective image segmentation algorithms based on bulk density (brightness), layer contacts (edge detection) and small-scale texture (fabric) were used to identify the flood deposit. Results indicate that the deposit formed in water depths of 6-29 m immediately adjacent to the three main distributary mouths of the Po (Pila, Tolle and Gnocca/Goro). Maximal thickness was 36 cm at a 20-m site off the main mouth (Pila), but many other sites hadthicknesses >20 cm. The Po flood deposit has a complex internal stratigraphy, with multiple layers, a diverse suite of physical sedimentary structures (e.g., laminations, ripple cross bedding, lenticular bedding, soft-sediment deformation structures), and dramatic changes in grain size that imply rapid deposition and fluctuations in energy during emplacement. Based on the flood deposit volume and well-constrained measurements of deposit bulk density the mass of the flood deposit was estimated to be 16??109 kg, which is about two-thirds of the estimated suspended sediment load delivered by the river during the event. The locus of deposition, overall thickness, and stratigraphic complexity of the flood deposit can best be explained by the relatively long sediment throughput times of the Po River, whereby sediment is delivered to the ocean during a range of conditions (i.e., the storm responsible for the precipitation is long gone), the majority of which are reflective of the fair-weather condition. Sediment is therefore deposited proximal to the river mouths, where it can form thick, but

  13. A COMPLETE SAMPLE OF BRIGHT SWIFT LONG GAMMA-RAY BURSTS. I. SAMPLE PRESENTATION, LUMINOSITY FUNCTION AND EVOLUTION

    SciTech Connect

    Salvaterra, R.; Campana, S.; Vergani, S. D.; Covino, S.; D'Avanzo, P.; Fugazza, D.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Sbarufatti, B.; Tagliaferri, G.; Nava, L.; Flores, H.; Piranomonte, S.

    2012-04-10

    We present a carefully selected sub-sample of Swift long gamma-ray bursts (GRBs) that is complete in redshift. The sample is constructed by considering only bursts with favorable observing conditions for ground-based follow-up searches, which are bright in the 15-150 keV Swift/BAT band, i.e., with 1-s peak photon fluxes in excess to 2.6 photons s{sup -1} cm{sup -2}. The sample is composed of 58 bursts, 52 of them with redshift for a completeness level of 90%, while another two have a redshift constraint, reaching a completeness level of 95%. For only three bursts we have no constraint on the redshift. The high level of redshift completeness allows us for the first time to constrain the GRB luminosity function and its evolution with cosmic times in an unbiased way. We find that strong evolution in luminosity ({delta}{sub l} = 2.3 {+-} 0.6) or in density ({delta}{sub d} = 1.7 {+-} 0.5) is required in order to account for the observations. The derived redshift distributions in the two scenarios are consistent with each other, in spite of their different intrinsic redshift distributions. This calls for other indicators to distinguish among different evolution models. Complete samples are at the base of any population studies. In future works we will use this unique sample of Swift bright GRBs to study the properties of the population of long GRBs.

  14. Optical Variability of Quasars as a Function of Luminosity and Redshift

    NASA Astrophysics Data System (ADS)

    Gaskell, C. M.; Koratkar, A. P.; Kwon, T.-Y.; Liang, Y.; Scott, J. H.; Wysota, A.

    1987-09-01

    Various models of the "central engine" in quasars make different predictions of how the degree of variability and its timescale vary with luminosity. In the past there have been conflicting claims about the luminosity and redshift dependence of quasar variability. We have examined the photographic light curves obtained at the Rosemary Hill Observatory (U. of Florida) and the Royal Greenwich Observatory (Herstmonceux) for over a hundred quasars (both radio-loud and radio-quiet). We demonstrate how the previously-reported redshift dependence is a consequence of time dilation, and find that, after allowance for this, there is no luminosity dependence in the amplitude of variability. High-luminosity quasars are not less variable than their low-luminosity counterparts. This creates major difficulties for some classes of quasar model with discrete accretion events (e.g., gas cloud or disrupted stars being "swallowed" directly).

  15. Very low luminosity active galaxies and the X-ray background

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Soltan, A.; Keel, W. C.

    1984-01-01

    The properties of very low luminosity active galactic nuclei are not well studied, and, in particular, their possible contribution to the diffuse X-ray background is not known. In the present investigation, an X-ray luminosity function for the range from 10 to the 39th to 10 to the 42.5th ergs/s is constructed. The obtained X-ray luminosity function is integrated to estimate the contribution of these very low luminosity active galaxies to the diffuse X-ray background. The construction of the X-ray luminosity function is based on data obtained by Keel (1983) and some simple assumptions about optical and X-ray properties.

  16. Galaxy luminosity function and Tully-Fisher relation: reconciled through rotation-curve studies

    SciTech Connect

    Cattaneo, Andrea; Salucci, Paolo; Papastergis, Emmanouil E-mail: salucci@sissa.it

    2014-03-10

    The relation between galaxy luminosity L and halo virial velocity v {sub vir} required to fit the galaxy luminosity function differs from the observed Tully-Fisher relation between L and disk speed v {sub rot}. Because of this, the problem of reproducing the galaxy luminosity function and the Tully-Fisher relation simultaneously has plagued semianalytic models since their inception. Here we study the relation between v {sub rot} and v {sub vir} by fitting observational average rotation curves of disk galaxies binned in luminosity. We show that the v {sub rot}-v {sub vir} relation that we obtain in this way can fully account for this seeming inconsistency. Therefore, the reconciliation of the luminosity function with the Tully-Fisher relation rests on the complex dependence of v {sub rot} on v {sub vir}, which arises because the ratio of stellar mass to dark matter mass is a strong function of halo mass.

  17. Correlations between the far-infrared, radio, and blue luminosities of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Condon, J. J.; Anderson, M. L.; Helou, G.

    1991-01-01

    FIR-radio luminosity correlations are presently derived for two statistically complete samples spanning a wide luminosity range. While observed correlations are tight, they are not linear; the observed scattering is mostly intrinsic. An empirical correction to the radio luminosities, based on observed blue luminosities, makes the corrected FIR-radio correlation linear and eliminates most of the residual variance. A two-component model that is consistent with the improved correlation is proposed for the heating luminosity within galaxies. The first, radio-loud component contains young massive stars that heat the dust, while contributing to the cool cirrus dust-heating interstellar radiation field. The second, radio-quiet component is made up of less massive older stars.

  18. Operation of the Cherenkov Detector DIRC of BaBar at High Luminosity

    SciTech Connect

    Spanier, Stefane

    2001-03-07

    The DIRC (acronym for Detection of Internally Reflected Cherenkov (light)) is the ring imaging Cherenkov detector of the BaBar detector at the Pep-II ring of SLAC. It provides the identification of pions, kaons and protons for momenta up to 4 GeV/c with high efficiency. This is needed to reconstruct CP-violating B-decay final states and to provide B-meson flavour tagging for time dependent asymmetry measurements. The DIRC radiators consists of long rectangular bars made of synthetic fused silica and the photon detector is a water tank equipped with an array of 10,752 conventional photomultipliers. At the end of the year 2000 BaBar has recorded about 22 million {bar B}B pairs reaching the design luminosity of L = 3 x 10{sup 33}/cm{sup 2}s. The ability to keep the beam background level low at highest collision rates and the long term reliability of the DIRC components during continuous data taking are requirements of BaBar to accomplish its physics program.

  19. Metal Abundances of KISS Galaxies. V. Nebular Abundances of 15 Intermediate Luminosity Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Hirschauer, Alec S.; Salzer, John J.; Bresolin, Fabio; Saviane, Ivo; Yegorova, Irina

    2015-09-01

    We present high signal-to-noise ratio spectroscopy of 15 emission-line galaxies cataloged in the KPNO International Spectroscopic Survey, selected for their possession of high equivalent width [O iii] lines. The primary goal of this study was to attempt to derive direct-method (Te) abundances for use in constraining the upper-metallicity branch of the {R}23 relation. The spectra cover the full optical region from [O ii]λλ3726,3729 to [S iii]λλ9069,9531 and include the measurement of [O iii]λ4363 in 13 objects. From these spectra, we determine abundance ratios of helium, nitrogen, oxygen, neon, sulfur, and argon. We find these galaxies to predominantly possess oxygen abundances in the range of 8.0 ≲ 12+log(O/H) ≲ 8.3. We present a comparison of direct-method abundances with empirical strong-emission-line techniques, revealing several discrepancies. We also present a comparison of direct-method oxygen abundance calculations using electron temperatures determined from emission lines of O++ and S++, finding a small systematic shift to lower Te (∼1184 K) and higher metallicity (∼0.14 dex) for sulfur-derived Te compared to oxygen-derived Te. Finally, we explore in some detail the different spectral activity types of targets in our sample, including regular star-forming galaxies, those with suspected AGN contamination, and a local pair of low-metallicity, high-luminosity compact objects.

  20. THE LUMINOSITY PROFILE AND STRUCTURAL PARAMETERS OF THE ANDROMEDA GALAXY

    SciTech Connect

    Courteau, Stephane; Widrow, Lawrence M.; McDonald, Michael; Guhathakurta, Puragra; Zhu Yucong

    2011-09-20

    We have constructed an extended composite luminosity profile for the Andromeda galaxy, M31, and have decomposed it into three basic luminous structural components: a bulge, a disk, and a halo. The dust-free Spitzer/Infrared Array Camera (IRAC) imaging and extended spatial coverage of ground-based optical imaging and deep star counts allow us to map M31's structure from its center to 22 kpc along the major axis. We apply, and address the limitations of, different decomposition methods for the one-dimensional luminosity profiles and two-dimensional images. These methods include nonlinear least-squares and Bayesian Monte Carlo Markov chain analyses. The basic photometric model for M31 has a Sersic bulge with shape index n {approx_equal} 2.2 {+-} .3 and effective radius R{sub e} = 1.0 {+-} 0.2 kpc, and a dust-free exponential disk of scale length R{sub d} = 5.3 {+-} .5 kpc; the parameter errors reflect the range between different decomposition methods. Despite model covariances, the convergence of solutions based on different methods and current data suggests a stable set of structural parameters. The ellipticities ({epsilon} = 1 - b/a) of the bulge and the disk from the IRAC image are 0.37 {+-} 0.03 and 0.73 {+-} 0.03, respectively. The bulge parameter n is rather insensitive to bandpass effects and its value (2.2) suggests a first rapid formation via mergers followed by secular growth from the disk. The M31 halo has a two-dimensional power-law index {approx_equal} - 2.5 {+-} 0.2 (or -3.5 in three-dimensional), comparable to that of the Milky Way. We find that the M31 bulge light is mostly dominant over the range R{sub min} {approx}< 1.2 kpc. The disk takes over in the range 1.2 kpc {approx}< R{sub min} {approx}< 9 kpc, whereas the halo dominates at R{sub min} {approx}> 9 kpc. The stellar nucleus, bulge, disk, and halo components each contribute roughly 0.05%, 23%, 73%, and 4% of the total light of M31 out to 200 kpc along the minor axis. Nominal errors for the