Sample records for internal magnetic fields

  1. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeesh, G.; Steiner, O.; Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in themore » Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.« less

  2. Saturn's Internal Magnetic Field Revealed by Cassini Grand Finale

    NASA Astrophysics Data System (ADS)

    Cao, H.; Dougherty, M. K.; Khurana, K. K.; Hunt, G. J.; Provan, G.; Kellock, S.; Burton, M. E.; Burk, T. A.

    2017-12-01

    Saturn's internal magnetic field has been puzzling since the first in-situ measurements during the Pioneer 11 Saturn flyby. Cassini magnetometer measurements prior to the Grand Finale phase established 1) the highly axisymmetric nature of Saturn's internal magnetic field with a dipole tilt smaller than 0.06 degrees, 2) at least an order of magnitude slower secular variation rate compared to that of the current geomagnetic field, and 3) expulsion of magnetic fluxes from the equatorial region towards high latitude. The highly axisymmetric nature of Saturn's intrinsic magnetic field not only challenges dynamo theory but also makes an accurate determination of the interior rotation rate of Saturn extremely difficult. The Cassini spacecraft entered the Grand Finale phase in April 2017, during which time the spacecraft dived through the gap between Saturn's atmosphere and the inner edge of the D-ring 22 times before descending into the deep atmosphere of Saturn. The unprecedented proximity to Saturn (reaching 2500 km above the cloud deck) and the highly inclined nature of the Grand Finale orbits provided an ideal opportunity to decode Saturn's internal magnetic field. The fluxgate magnetometer onboard Cassini made precise vector measurements during the Grand Finale phase. Magnetic signals from the interior of the planet, the magnetospheric ring current, the high-latitude field-aligned current (FAC) modulated by the 10.7 hour planetary period oscillation, and low-latitude FACs were observed during the Grand Finale phase. Here we report the magnetometer measurements during the Cassini Grand Finale phase, new features of Saturn's internal magnetic field revealed by these measurements (e.g., the high degree magnetic moments of Saturn, the level of axisymmetry beyond dipole), and implications for the deep interior of Saturn.

  3. Density-functional theory for internal magnetic fields

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.

    2018-01-01

    A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.

  4. Toroidal magnetized plasma device with sheared magnetic field lines using an internal ring conductor.

    PubMed

    Pierre, Th

    2013-01-01

    In a new toroidal laboratory plasma device including a poloidal magnetic field created by an internal circular conductor, the confinement efficiency of the magnetized plasma and the turbulence level are studied in different situations. The plasma density is greatly enhanced when a sufficiently large poloidal magnetic field is established. Moreover, the instabilities and the turbulence usually found in toroidal devices without sheared magnetic field lines are suppressed by the finite rotational transform. The particle confinement time is estimated from the measurement of the plasma decay time. It is compared to the Bohm diffusion time and to the value predicted by different diffusion models, in particular neoclassical diffusion involving trapped particles.

  5. Mercury's Internal Magnetic Field: Results from MESSENGER's Search for Remanent Crustal Magnetization Associated with Impact Basins

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.; Johnson, C. L.; Nicholas, J. B.; Philpott, L. C.; Korth, H.; Anderson, B. J.; Head, J. W., III; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Magnetic field measurements obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft in orbit around Mercury have entered a new phase since April 2014, with periapsis altitudes below 200 km. MESSENGER is now obtaining magnetic profiles across large impact features at altitudes less than the horizontal scale of those features. We use data from this latest phase to investigate evidence for remanent crustal magnetization specifically associated with impact basins and large craters. The spatial resolution of magnetic field measurements for investigating crustal magnetization is approximately equal to the altitude of the observations. We focus on large impact features because their relative ages provide a powerful chronological tool for interpreting any associated magnetic signatures. We examine profiles across large impact basins such as Caloris, Shakespeare, Budh-Sobkou and Goethe. For example, coverage over Caloris during the last year of the mission will be largely at night and will comprise 18 profiles with altitudes between 125 and 200 km and 12 profiles with altitudes between 50 and 125 km over the northern part of the basin. We use large-scale magnetospheric models developed with MESSENGER data to remove contributions from the offset axial dipole, magnetopause, and magnetotail. The residual magnetic fields above 200 km are still dominated by poorly understood magnetospheric fields such as those from the cusp and from Birkeland currents. We empirically average, or exclude observations from these local times, in order to search for repeatable internal field signals. We use local basis functions such as equivalent source dipoles, applied with regularization tools, in order to map the altitude-normalized magnetic field from internal sources. These internal sources may comprise both crustal and core contributions, and we use the information from the along-track magnetic gradient in order to separate these contributions.

  6. Asteroseismology can reveal strong internal magnetic fields in red giant stars.

    PubMed

    Fuller, Jim; Cantiello, Matteo; Stello, Dennis; Garcia, Rafael A; Bildsten, Lars

    2015-10-23

    Internal stellar magnetic fields are inaccessible to direct observations, and little is known about their amplitude, geometry, and evolution. We demonstrate that strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields can manifest themselves via depressed dipole stellar oscillation modes, arising from a magnetic greenhouse effect that scatters and traps oscillation-mode energy within the core of the star. The Kepler satellite has observed a few dozen red giants with depressed dipole modes, which we interpret as stars with strongly magnetized cores. We find that field strengths larger than ~10(5) gauss may produce the observed depression, and in one case we infer a minimum core field strength of ≈10(7) gauss. Copyright © 2015, American Association for the Advancement of Science.

  7. Public magnetic field exposure based on internal current density for electric low voltage systems.

    PubMed

    Keikko, Tommi; Seesvuori, Reino; Hyvönen, Martti; Valkealahti, Seppo

    2009-04-01

    A measurement concept utilizing a new magnetic field exposure metering system has been developed for indoor substations where voltage is transformed from a medium voltage of 10 or 20 kV to a low voltage of 400 V. The new metering system follows the guidelines published by the International Commission on Non-Ionizing Radiation Protection. It can be used to measure magnetic field values, total harmonic distortion of the magnetic field, magnetic field exposure ratios for public and workers, load current values, and total harmonic distortion of the load current. This paper demonstrates how exposure to non-sinusoidal magnetic fields and magnetic flux density exposure values can be compared directly with limit values for internal current densities in a human body. Further, we present how the magnetic field and magnetic field exposure behaves in the vicinity of magnetic field sources within the indoor substation and in the neighborhood. Measured magnetic fields around the substation components have been used to develop a measurement concept by which long-term measurements in the substations were performed. Long-term measurements revealed interesting and partly unexpected dependencies between the measured quantities, which have been further analyzed. The principle of this paper is to substitute a demanding exposure measurement with measurements of the basic quantities like the 50 Hz fundamental magnetic field component, which can be estimated based on the load currents for certain classes of substation lay-out.

  8. Internal split field generator

    DOEpatents

    Thundat,; George, Thomas [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  9. Refractory clad transient internal probe for magnetic field measurements in high temperature plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Hyundae; Cellamare, Vincent; Jarboe, Thomas R.; Mattick, Arthur T.

    2005-05-01

    The transient internal probe (TIP) is a diagnostic for local internal field measurements in high temperature plasmas. A verdet material, which rotates the polarization angle of the laser light under magnetic fields, is launched into a plasma at about 1.8km/s. A linearly polarized Ar+ laser illuminates the probe in transit and the light retroreflected from the probe is analyzed to determine the local magnetic field profiles. The TIP has been used for magnetic field measurements on the helicity injected torus where electron temperature Te⩽80eV. In order to apply the TIP in higher temperature plasmas, refractory clad probes have been developed utilizing a sapphire tube, rear disc, and a MgO window on the front. The high melting points of these refractory materials should allow probe operation at plasma electron temperatures up to Te˜300eV. A retroreflecting probe has also been developed using "catseye" optics. The front window is replaced with a plano-convex MgO lens, and the back surface of the probe is aluminized. This approach reduces spurious polarization effects and provides refractory cladding for the probe entrance face. In-flight measurements of a static magnetic field demonstrate the ability of the clad probes to withstand gun-launch acceleration, and provide high accuracy measurements of magnetic field.

  10. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less

  11. International cometary explorer encounter with giacobini-zinner: magnetic field observations.

    PubMed

    Smith, E J; Tsurutani, B T; Slvain, J A; Jones, D E; Siscoe, G L; Mendis, D A

    1986-04-18

    The vector helium magnetometer on the International Cometary Explorer observed the magnetic fields induced by the interaction of comet Giacobini-Zinner with the solar wind. A magnetic tail was penetrated approximately 7800 kilometers downstream from the comet and was found to be 10(4) kilometers wide. It consisted of two lobes, containing oppositely directed fields with strengths up to 60 nanoteslas, separated by a plasma sheet approximately 10(3)kilometers thick containing a thin current sheet. The magnetotail was enclosed in an extended ionosheath characterized by intense hydromagnetic turbulene and interplanetary fields draped around the comet. A distant bow wave, which may or may not have been a bow shock, was observed at both edges of the ionosheath. Weak turbulence was observed well upstream of the bow wave.

  12. PREFACE: 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3)

    NASA Astrophysics Data System (ADS)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-07-01

    The 3rd International Workshop on Materials Analysis and Processing in Materials Fields (MAP3) was held on 14-16 May 2008 at the University of Tokyo, Japan. The first was held in March 2004 at the National High Magnetic Field Laboratory in Tallahassee, USA. Two years later the second took place in Grenoble, France. MAP3 was held at The University of Tokyo International Symposium, and jointly with MANA Workshop on Materials Processing by External Stimulation, and JSPS CORE Program of Construction of the World Center on Electromagnetic Processing of Materials. At the end of MAP3 it was decided that the next MAP4 will be held in Atlanta, USA in 2010. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. MAP3 focused on the magnetic field interactions involved in the study and processing of materials in all disciplines ranging from physics to chemistry and biology: Magnetic field effects on chemical, physical, and biological phenomena Magnetic field effects on electrochemical phenomena Magnetic field effects on thermodynamic phenomena Magnetic field effects on hydrodynamic phenomena Magnetic field effects on crystal growth Magnetic processing of materials Diamagnetic levitation Magneto-Archimedes effect Spin chemistry Application of magnetic fields to analytical chemistry Magnetic orientation Control of structure by magnetic fields Magnetic separation and purification Magnetic field-induced phase transitions Materials properties in high magnetic fields Development of NMR and MRI Medical application of magnetic fields Novel magnetic phenomena Physical property measurement by Magnetic fields High magnetic field generation> MAP3 consisted of 84 presentations including 16 invited talks. This volume of Journal of Physics: Conference Series contains the proceeding of MAP3 with 34 papers that provide a scientific record of the topics covered by the conference with the special topics (13 papers) in

  13. Magnetic field dependence of the internal quality factor and noise performance of lumped-element kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Flanigan, D.; Johnson, B. R.; Abitbol, M. H.; Bryan, S.; Cantor, R.; Day, P.; Jones, G.; Mauskopf, P.; McCarrick, H.; Miller, A.; Zmuidzinas, J.

    2016-10-01

    We present a technique for increasing the internal quality factor of kinetic inductance detectors (KIDs) by nulling ambient magnetic fields with a properly applied magnetic field. The KIDs used in this study are made from thin-film aluminum, they are mounted inside a light-tight package made from bulk aluminum, and they are operated near 150 mK. Since the thin-film aluminum has a slightly elevated critical temperature (Tc = 1.4 K), it therefore transitions before the package (Tc = 1.2 K), which also serves as a magnetic shield. On cooldown, ambient magnetic fields as small as approximately 30 µT can produce vortices in the thin-film aluminum as it transitions because the bulk aluminum package has not yet transitioned and therefore is not yet shielding. These vortices become trapped inside the aluminum package below 1.2 K and ultimately produce low internal quality factors in the thin-film superconducting resonators. We show that by controlling the strength of the magnetic field present when the thin film transitions, we can control the internal quality factor of the resonators. We also compare the noise performance with and without vortices present, and find no evidence for excess noise beyond the increase in amplifier noise, which is expected with increasing loss.

  14. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles.

    PubMed

    Liu, Qian; Zhang, Jixi; Xia, Weiliang; Gu, Hongchen

    2012-06-07

    The advantages of using magnetic mesoporous silica nanoparticles (M-MSNs) in biomedical applications have been widely recognized. However, poor uptake efficiency may hinder the potential of M-MSNs in many applications, such as cell tracking, drug delivery, fluorescence and magnetic resonance imaging. An external magnetic field may improve the cellular uptake efficiency. In this paper, we evaluated the effect of a magnetic field on the uptake of M-MSNs. We found that the internalization of M-MSNs by A549 cancer cells could be accelerated and enhanced by a magnetic field. An endocytosis study indicated that M-MSNs were internalized by A549 cells mainly through an energy-dependent pathway, namely clathrin-induced endocytosis. Transmission electron microscopy showed that M-MSNs were trafficked into lysosomes. With the help of a magnetic field, anticancer drug-loaded M-MSNs induced elevated cancer cell growth inhibition.

  15. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  16. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  17. THE INTERNAL STRUCTURE OF OVERPRESSURED, MAGNETIZED, RELATIVISTIC JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martí, J. M.; Perucho, M.; Gómez, J. L.

    This work presents the first characterization of the internal structure of overpressured, steady superfast-magnetosonic relativistic jets in connection with their dominant type of energy. To this aim, relativistic magnetohydrodynamic simulations of different jet models threaded by a helical magnetic field have been analyzed covering a wide region in the magnetosonic Mach number–specific internal energy plane. The merit of this plane is that models dominated by different types of energy (internal energy: hot jets; rest-mass energy: kinetically dominated jets; magnetic energy: Poynting-flux-dominated jets) occupy well-separated regions. The analyzed models also cover a wide range of magnetizations. Models dominated by the internalmore » energy (i.e., hot models, or Poynting-flux-dominated jets with magnetizations larger than but close to one) have a rich internal structure characterized by a series of recollimation shocks and present the largest variations in the flow Lorentz factor (and internal energy density). Conversely, in kinetically dominated models, there is not much internal or magnetic energy to be converted into kinetic, and the jets are featureless with small variations in the flow Lorentz factor. The presence of a significant toroidal magnetic field threading the jet produces large gradients in the transversal profile of the internal energy density. Poynting-flux-dominated models with high magnetization (≈10 or larger) are prone to be unstable against magnetic pinch modes, which sets limits on the expected magnetization in parsec-scale active galactic nucleus jets or constrains their magnetic field configuration.« less

  18. Noninvasive valve monitor using constant magnetic and/or DC electromagnetic field

    DOEpatents

    Casada, D.A.; Haynes, H.D.

    1993-08-17

    One or more sources of steady magnetic field are carefully located on the outside of a valve body. The constant magnetic field is transmitted into the valve body and valve internals. A magnetic field detector carefully located on the outside of the valve body detects the intensity of the magnetic field at its location. As the position of a valve internal part is changed, there is an alteration in the magnetic field in the valve, and a consequent change in the detected magnetic field. Changes in the detected signal provide an indication of the position and motion of the valve internals.

  19. Noninvasive valve monitor using constant magnetic and/or DC electromagnetic field

    DOEpatents

    Casada, Donald A.; Haynes, Howard D.

    1993-01-01

    One or more sources of steady magnetic field are carefully located on the outside of a valve body. The constant magnetic field is transmitted into the valve body and valve internals. A magnetic field detector carefully located on the outside of the valve body detects the intensity of the magnetic field at its location. As the position of a valve internal part is changed, there is an alteration in the magnetic field in the valve, and a consequent change in the detected magnetic field. Changes in the detected signal provide an indication of the position and motion of the valve internals.

  20. Influence of magnetization on the applied magnetic field in various AMR regenerators

    NASA Astrophysics Data System (ADS)

    Mira, A.; de Larochelambert, T.; Espanet, C.; Giurgea, S.; Nika, P.; Bahl, C. R. H.; Bjørk, R.; Nielsen, K. K.

    2017-10-01

    The aim of this work is to assess the influence of a magnetic sample on the applied magnetic field inside the air gap of a magnetic circuit. Different magnetic sources including an electromagnet, a permanent magnet in a soft ferromagnetic toroidal yoke, as well as 2D and 3D Halbach cylinders are considered, using a numerical model. Gadolinium is chosen as magnetic material for the sample, due to its strong magnetocaloric properties and its wide use in magnetic refrigeration prototypes. We find that using uniform theoretical demagnetizing factors for cylinders or spheres results in a deviation of less than 2% in the calculation of internal magnetic fields at temperatures above the Curie point of gadolinium. Below the Curie point, a stronger magnetization of the cylinders and spheres leads to a larger deviation which can reach 8% when using uniform demagnetizing factors for internal magnetic field calculations.

  1. Planetary Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Christensen, Ulrich R.

    2017-06-01

    The Earth's magnetic field has been known for centuries. Since the mid-20th century space missions carrying vector magnetometers showed that most, but not all, solar system planets have a global magnetic field of internal origin. They also revealed a surprising diversity in terms of field strength and morphology. While Jupiter's field, like that of Earth, is dominated by a dipole moderately tilted relative to the planet's spin axis, with multipole components being subordinate but not negligible, the fields of Uranus and Neptune are multipole-dominated, whereas those of Saturn und Mercury are highly symmetric relative to the rotation axis. Planetary magnetism originates from a dynamo process, which requires a fluid and electrically conducting region in the interior with sufficiently rapid and complex flow. The magnetic fields are of interest for three reasons: (1) They provide ground truth for dynamo theory, which is a fundamental and not completely solved physical problem; (2) the magnetic field controls how the planet interacts with its space environment, for example, the solar wind; and (3) the existence (or nonexistence) and the properties of the field allow us to draw inferences on the constitution, dynamics, and thermal evolution of the planet's interior. For example, the lack of global magnetic fields at Mars and Venus can be explained if their iron cores, although liquid, are stably stratified. Numerical simulations of the geodynamo—in which convective flow in a rapidly rotating spherical shell representing the outer liquid iron core of the Earth leads to induction of electric currents and the associated magnetic field—have successfully reproduced many observed properties of the geomagnetic field. They have also provided guidelines on the factors controlling magnetic field strength and, tentatively, their morphology. For numerical reasons the simulations must employ viscosities far greater than those inside planets, and it is debatable whether they truly

  2. A Mapping Model for Magnetic Fields with q-profile Variations Typical of Internal Transport Barrier Experiments

    NASA Astrophysics Data System (ADS)

    Rapoport, B. I.; Pavlenko, I.; Weyssow, B.; Carati, D.

    2002-11-01

    Recent studies of ion and electron transport indicate that the safety factor profile, q(r), affects internal transport barrier (ITB) formation in magnetic confinement devices [1, 2]. These studies are consistent with experimental observations that low shear suppresses magnetic island interaction and associated stochasticity when the ITB is formed [3]. In this sense the position and quality of the ITB depend on the stochasticity of the magnetic field, and can be controlled by q(r). This study explores effects of the q-profile on magnetic field stochasticity using two-dimensional mapping techniques. Q-profiles typical of ITB experiments are incorporated into Hamiltonian maps to investigate the relation between magnetic field stochasticity and ITB parameters predicted by other models. It is shown that the mapping technique generates results consistent with these predictions, and suggested that Hamiltonian mappings can be useful as simple and computationally inexpensive approximation methods for describing the magnetic field in ITB experiments. 1. I. Voitsekhovitch et al. 29th EPS Conference on Plasma Physics and Controlled Fusion (2002). O-4.04. 2. G.M.D. Hogeweij et al. Nucl. Fusion. 38 (1998): 1881. 3. K.A. Razumova et al. Plasma Phys. Contr. Fusion. 42 (2000): 973.

  3. Separation of the Magnetic Field into Parts Produced by Internal and External Sources

    NASA Astrophysics Data System (ADS)

    Lazanja, David

    2005-10-01

    Given the total magnetic field on a toroidal plasma surface, a method for decomposing the field into a part due to internal currents (often the plasma) and a part due to external currents is presented. The decomposition exploits Laplace theory which is valid in the vacuum region between the plasma surface and the chamber walls. The method does not assume toroidal symmetry, and it is partly based on Merkel's 1986 work on vacuum field computations. A change in the plasma shape is produced by the total normal field perturbation on the plasma surface. This method allows a separation of the total normal field perturbation into a part produced by external currents and a part produced by the plasma response.

  4. Orbital effect of the magnetic field in dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  5. Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals

    DOE PAGES

    Rice, William D.; Liu, Wenyong; Baker, Thomas A.; ...

    2015-11-23

    Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn 2+, Co 2+ and so on) couple to band carriers via strong sp–d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical √N fluctuations of N spins are expected to generate giant effective magnetic fields B eff, whichmore » should dramatically impact carrier spin dynamics, even in the absence of any applied field. In this paper, we directly and unambiguously reveal the large B eff that exist in Mn 2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300–600 GHz) spin precession of photoinjected electrons is observed, indicating B eff ~ 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. Finally, these signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn 2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.« less

  6. Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Vourlidas, A.; Raymond, J. C.; Linton, M. G.; Al-haddad, N.; Savani, N. P.; Szabo, A.; Hidalgo, M. A.

    2018-02-01

    The magnetic topology, structure, and geometry of the magnetic obstacles embedded within interplanetary coronal mass ejections (ICMEs) are not yet fully and consistently described by in situ models and reconstruction techniques. The main goal of this work is to better understand the status of the internal magnetic field of ICMEs and to explore in situ signatures to identify clues to develop a more accurate and reliable in situ analytical models. We take advantage of more than 20 years of Wind observations of transients at 1 AU to compile a comprehensive database of ICMEs through three solar cycles, from 1995 to 2015. The catalog is publicly available at wind.gsfc.nasa.gov and is fully described in this article. We identify and collect the properties of 337 ICMEs, of which 298 show organized magnetic field signatures. To allow for departures from idealized magnetic configurations, we introduce the term "magnetic obstacle" (MO) to signify the possibility of more complex configurations. To quantify the asymmetry of the magnetic field strength profile within these events, we introduce the distortion parameter (DiP) and calculate the expansion velocity within the magnetic obstacle. Circular-cylindrical geometry is assumed when the magnetic field strength displays a symmetric profile. We perform a statistical study of these two parameters and find that only 35% of the events show symmetric magnetic profiles and a low enough expansion velocity to be compatible with the assumption of an idealized cylindrical static flux rope, and that 41% of the events do not show the expected relationship between expansion and magnetic field compression in the front, with the maximum magnetic field closer to the first encounter of the spacecraft with the magnetic obstacle; 18% show contractions ( i.e. apparent negative expansion velocity), and 30% show magnetic field compression in the back. We derive an empirical relation between DiP and expansion velocity that is the first step toward

  7. Self-induced quasistationary magnetic fields.

    PubMed

    Kamenetskii, E O

    2006-01-01

    The interaction of electromagnetic radiation with temporally dispersive magnetic solids of small dimensions may show very special resonant behaviors. The internal fields of such samples are characterized by magnetostatic-potential scalar wave functions. The oscillating modes have the energy orthogonality properties and unusual pseudoelectric (gauge) fields. Because of a phase factor, that makes the states single valued, a persistent magnetic current exists. This leads to appearance of an eigenelectric moment of a small disk sample. One of the intriguing features of the mode fields is dynamical symmetry breaking.

  8. Sensitivity of fields generated within magnetically shielded volumes to changes in magnetic permeability

    NASA Astrophysics Data System (ADS)

    Andalib, T.; Martin, J. W.; Bidinosti, C. P.; Mammei, R. R.; Jamieson, B.; Lang, M.; Kikawa, T.

    2017-09-01

    Future experiments seeking to measure the neutron electric dipole moment (nEDM) require stable and homogeneous magnetic fields. Normally these experiments use a coil internal to a passively magnetically shielded volume to generate the magnetic field. The stability of the magnetic field generated by the coil within the magnetically shielded volume may be influenced by a number of factors. The factor studied here is the dependence of the internally generated field on the magnetic permeability μ of the shield material. We provide measurements of the temperature-dependence of the permeability of the material used in a set of prototype magnetic shields, using experimental parameters nearer to those of nEDM experiments than previously reported in the literature. Our measurements imply a range of 1/μ dμ/dT from 0-2.7%/K. Assuming typical nEDM experiment coil and shield parameters gives μ/B0 dB0/dμ = 0.01, resulting in a temperature dependence of the magnetic field in a typical nEDM experiment of dB0/dT = 0 - 270 pT/K for B0 = 1 μT. The results are useful for estimating the necessary level of temperature control in nEDM experiments.

  9. Understanding lunar magnetic field through magnetization and dynamo mechanism

    NASA Astrophysics Data System (ADS)

    Singh, K. H.; Kuang, W.

    2016-12-01

    It has been known that the Moon does not have an active global magnetic field. But past missions to the Moon (e.g. Apollo missions, Lunar Prospector) have detected magnetic anomalies in many areas on the lunar surface. They carry rich information about geophysical processes on and within the Moon, thus central for understanding the structure and dynamics in the interior, e.g. the core and the suggested magma ocean. One unsettling problem for understanding the lunar magnetic anomaly is its origin. There have been several mechanisms suggested in the past, either on the anomalies in specific regions, or only at the conceptual stage. The latter include the paleo dynamo. The lunar dynamo mechanism is conceptually very simple: lunar crustal magnetization was acquired in an internal magnetic field that was generated and maintained by dynamo action in the lunar core. Could this simple mechanism suffice to explain most of the observed lunar magnetic anomalies? We present our theoretical calculations of possible paleo-lunar magnetic field strengths based on paleomagnetic measurements of Apollo samples.

  10. Dovetail spoke internal permanent magnet machine

    DOEpatents

    Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY

    2011-08-23

    An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.

  11. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    NASA Astrophysics Data System (ADS)

    Degmová, J.; Sitek, J.

    2010-07-01

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  12. International Geomagnetic Reference Field: the 12th generation

    NASA Astrophysics Data System (ADS)

    Thébault, Erwan; Finlay, Christopher C.; Beggan, Ciarán D.; Alken, Patrick; Aubert, Julien; Barrois, Olivier; Bertrand, Francois; Bondar, Tatiana; Boness, Axel; Brocco, Laura; Canet, Elisabeth; Chambodut, Aude; Chulliat, Arnaud; Coïsson, Pierdavide; Civet, François; Du, Aimin; Fournier, Alexandre; Fratter, Isabelle; Gillet, Nicolas; Hamilton, Brian; Hamoudi, Mohamed; Hulot, Gauthier; Jager, Thomas; Korte, Monika; Kuang, Weijia; Lalanne, Xavier; Langlais, Benoit; Léger, Jean-Michel; Lesur, Vincent; Lowes, Frank J.; Macmillan, Susan; Mandea, Mioara; Manoj, Chandrasekharan; Maus, Stefan; Olsen, Nils; Petrov, Valeriy; Ridley, Victoria; Rother, Martin; Sabaka, Terence J.; Saturnino, Diana; Schachtschneider, Reyko; Sirol, Olivier; Tangborn, Andrew; Thomson, Alan; Tøffner-Clausen, Lars; Vigneron, Pierre; Wardinski, Ingo; Zvereva, Tatiana

    2015-05-01

    The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth's magnetic field.

  13. The Need for High-Resolution Crustal Magnetic Field Data on Mars

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Russell, C. T.; Purucker, M. E.; Smrekar, S. E.

    2000-01-01

    Magnetometer observations from the Mars Global Surveyor spacecraft (MAG/ER on MGS) have confirmed that Mars does not presently have an internally-generated dipole magnetic field, and have also revealed intense remanent magnetism in the Martian crust. The remanent magnetic anomalies, most prevalent in the southern highlands region, are a record of the past history of the internal Mars dipole field. The MAG/ER data constitute a valuable data set for constraining the early thermal evolution of Mars and the history of the planetary magnetic field. However, the data lack the resolution needed to draw definite conclusions regarding the time history of the field. High-resolution magnetometer observations, obtained at low-altitude, are needed to complement and extend the MGS/ER data set and allow a definitive time history of the internal Mars dynamo to be constructed.

  14. [Proposal for magnetic/electromagnetic fields protection norms on national level].

    PubMed

    Dordević, Drago; Raković, Dejan

    2008-01-01

    The modern life is not possible without application of magnetic/electromagnetic fields, which can be both helpful and harmful for human body. The non-ionizing radiation, especially magnetic/electromagnetic fields of all frequencies (0-300 GHz), can have many harmful effects on the human health that is confirmed by numerous epidemiological studies, studies with volunteers, animal studies, and in vitro studies. Proposal for magnetic/electromagnetic fields protection norms on national level based on the WHO Program for Environment, International Commission on Non-Ionizing Radiation Protection (ICNIRP)], and WHO International EMF Project. Protection from harmful effects of the magnetic/electromagnetic fields is still a great problem in many countries of modern society--huge costs, impaired quality of life, and more important, damage to the human health. Numerous data and publications of harmful effects of the magnetic/electromagnetic fields represents one's country basic necessary documentation for making decisions and law documents for protection norms on national level concerning the health maintenance according to the ICNIRP normatives.

  15. Study of the interplay between magnetic shear and resonances using Hamiltonian models for the magnetic field lines

    NASA Astrophysics Data System (ADS)

    Firpo, M.-C.; Constantinescu, D.

    2011-03-01

    The issue of magnetic confinement in magnetic fusion devices is addressed within a purely magnetic approach. Using some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is shown in a unified way. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and stochastic transport reduction. When low shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be quite low. The approach can be applied to assess the robustness versus magnetic perturbations of general (almost) integrable magnetic steady states, including nonaxisymmetric ones such as the important single-helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  16. Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  17. Virtual special issue: Magnetic resonance at low fields

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2017-01-01

    It appears to be a common understanding that low magnetic fields need to be avoided in magnetic resonance, as sensitivity and the frequency dispersion of the chemical shift increase with increasing field strength. But there many reasons to explore magnetic resonance at low fields. The instrumentation tends to be far less expensive than high-field equipment, magnets are smaller and lighter, internal gradients in heterogeneous media are smaller, conductive media and even metals become transparent at low frequencies to electromagnetic fields, and new physics and phenomena await to be discovered. On account of an increasing attention of the scientific community to magnetic resonance at low field, we have decided to launch JMR's Virtual Special Issue Series with this compilation about Low-Field Magnetic Resonance. This topic, for which we have chosen to focus on articles reporting measurements at fields lower than 2 T, is of widespread interest to our readership. We are therefore happy to offer to this constituency a selected outlook based on papers published during the last five years (volumes 214-270) in the pages of The Journal of Magnetic Resonance. A brief survey of the topics covered in this Virtual Special Issue follows.

  18. Electric Field Feature of Moving Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chen, You Jun

    2001-05-01

    A new fundamental relationship of electric field with magnetic field has been inferred from the fundamental experimental laws and theories of classical electromagnetics. It can be described as moving magnetic field has or gives electric feature. When a field with magnetic induction of B moves in the velocity of V, it will show electric field character, the electric field intensity E is E = B x V and the direction of E is in the direction of the vector B x V. It is improper to use the time-varying electromagnetics theories as the fundamental theory of the electromagnetics and group the electromagnetic field into static kind and time-varying kind for the static is relative to motional not only time-varying. The relationship of time variation of magnetic field induction or magnetic flux with electric field caused by magnetic field is fellowship not causality. Thus time-varying magnetic field can cause electric field is not a nature principle. Sometime the time variation of magnetic flux is equal to the negative electromotive force or the time variation of magnetic field induction is equal to the negative curl of electric field caused by magnetic field motion, but not always. And not all motion of magnetic field can cause time variation of magnetic field. Therefore Faraday-Lenz`s law can only be used as mathematics tool to calculate the quantity relation of the electricity with the magnetism in some case like the magnetic field moving in uniform medium. Faraday-Lenz`s law is unsuitable to be used in moving uniform magnetic field or there is magnetic shield. Key word: Motional magnetic field, Magnetic induction, Electric field intensity, Velocity, Faraday-Lenz’s law

  19. Magnetic field structure and evolution features of selected stars. III.

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2016-01-01

    We present the results of modeling for about a hundred magnetic stars. It is shown that the dipole representation of magnetic field structures describes the distribution of the magnetic field over stellar surfaces fairly well. We analyze some patterns which support the relic hypothesis of magnetic field formation.Arguments are given in favor of the assumption that themain properties ofmagnetic stars—slow rotation, predominant orientation of magnetic field lines along the plane of the rotation equator, complex internal structures of magnetic fields—are acquired in the process of gravitational collapse. There are no conditions for that in the non-stationary Hayashi phase and in the stage of a radiative young star.

  20. The relationship between anatomically correct electric and magnetic field dosimetry and publishe delectric and magnetic field exposure limits.

    PubMed

    Kavet, Robert; Dovan, Thanh; Reilly, J Patrick

    2012-12-01

    Electric and magnetic field exposure limits published by International Commission for Non-Ionizing Radiation Protection and Institute of Electrical and Electronics Engineers are aimed at protection against adverse electrostimulation, which may occur by direct coupling to excitable tissue and, in the case of electric fields, through indirect means associated with surface charge effects (e.g. hair vibration, skin sensations), spark discharge and contact current. For direct coupling, the basic restriction (BR) specifies the not-to-be-exceeded induced electric field. The key results of anatomically based electric and magnetic field dosimetry studies and the relevant characteristics of excitable tissue were first identified. This permitted us to assess the electric and magnetic field exposure levels that induce dose in tissue equal to the basic restrictions, and the relationships of those exposure levels to the limits now in effect. We identify scenarios in which direct coupling of electric fields to peripheral nerve could be a determining factor for electric field limits.

  1. Decomposition of Magnetic Field Boundary Conditions into Parts Produced by Internal and External Sources

    NASA Astrophysics Data System (ADS)

    Lazanja, David; Boozer, Allen

    2006-10-01

    Given the total magnetic field on a toroidal plasma surface, a method for decomposing the field into a part due to internal currents (often the plasma) and a part due to external currents is presented. The method exploits Laplace theory which is valid in the vacuum region between the plasma surface and the chamber walls. The method is developed for the full three dimensional case which is necessary for studying stellarator plasma configurations. A change in the plasma shape is produced by the total normal field perturbation on the plasma surface. This method allows a separation of the total normal field perturbation into a part produced by external currents and a part produced by the plasma response. There are immediate applications to coil design. The computational procedure is based on Merkel's 1986 work on vacuum field computations. Several test cases are presented for toroidal surfaces which verify the method and computational robustness of the code.

  2. A proposed International Geomagnetic Reference Field for 1965- 1985.

    USGS Publications Warehouse

    Peddie, N.W.; Fabiano, E.B.

    1982-01-01

    A set of spherical harmonic models describing the Earth's main magnetic field from 1965 to 1985 has been developed and is proposed as the next revision of the International Geomagnetic Reference Field (IGRF). A tenth degree and order spherical harmonic model of the main field was derived from Magsat data. A series of eighth degree and order spherical harmonic models of the secular variation of the main field was derived from magnetic observatory annual mean values. Models of the main field at 1965, 1970, 1975, and 1980 were obtained by extrapolating the main-field model using the secular variation models.-Authors spherical harmonic models Earth main magnetic field Magsat data

  3. A magnetic field compatible graphene transmon

    NASA Astrophysics Data System (ADS)

    Kroll, James G.; Uilhoorn, Willemijn; de Jong, Damaz; Borsoi, Francesco; van der Enden, Kian; Goswami, Srijit; Cassidy, Maja; Kouwenhoven, Leo. P.

    Hybrid circuit QED is a key tool for readout and scaling of both semiconductor-based spin and topological quantum computing schemes. However, traditional approaches to circuit QED are incompatible with the strong external magnetic fields required for these qubits. Here we present measurements of a hybrid graphene-based transmon operating at 1 T. The device consists of coplanar waveguide resonators where the NbTiN thin film is patterned with a dense anti-dot lattice to trap Abriskov vortices, resulting in internal quality factors Qi >10^5 up to 6 T. Furthermore, the atomically thin nature of graphene in combination with the high critical field of its superconducting contacts makes it an ideal system for tolerating strong parallel magnetic fields. We combine these circuit elements to realize a magnetic field compatible transmon qubit. An external gate allows us to change the Josephson energy, and study the corresponding change in the resonator-qubit interaction in the dispersive regime. Two tone spectroscopy reveals a gate-tunable qubit peak at 1T. These experiments open up the possibility of fast charge parity measurements in high magnetic fields for readout of Majorana qubits..

  4. A quasi-hemispheric model of the Hermean's magnetic field

    NASA Astrophysics Data System (ADS)

    Thebault, E.; Oliveira, J.; Langlais, B.; Amit, H.

    2015-10-01

    We analyse and process magnetic field measurements provided by the MErcury Surface, Space ENvironment, Geochemistry, and Ranging (MESSENGER) mission. The vect or magnetic field measurements are modelled with a dedicated regional scheme expanded in space and in time. Compared to the widely used global Spherical Harmonics (SH), the regional approach is particularly well suited because the partial and quasi hemispheric distribution of the MESSENGER data represents no major numerical difficulty. We confirm that the internal magnetic field of Mercury is mostly axisymmetric with a magnetic equator shifted northward. However, we also observe a time dependency in the model that is at present hardly explained only by time variations of the external magnetic fields. We present the major spatial and temporal structures shown by the regional model.

  5. Planetary Magnetic Fields: Planetary Interiors and Habitability

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Shkolnik, Evgenya; Hallinan, Gregg; Planetary Habitability Study Team

    2016-06-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the Planetary Magnetic Fields: Planetary Interiors and Habitability Study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection. There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process. This report presents the findings from the Study, including potential mission concepts that emerged and future work in both modeling and observations. There was also an identification of that radio wavelength observations would likely be key to making significant progress in this field. The entire Study program would not have been possible without the generous support of the W. M. Keck Foundation. We thank Michele Judd, Tom Prince, and the staff of the W. M. Keck Institute for

  6. A β-Ta system for current induced magnetic switching in the absence of external magnetic field

    NASA Astrophysics Data System (ADS)

    Chen, Wenzhe; Qian, Lijuan; Xiao, Gang

    2018-05-01

    Magnetic switching via Giant Spin Hall Effect (GSHE) has received great interest for its role in developing future spintronics logic or memory devices. In this work, a new material system (i.e. a transition metal sandwiched between two ferromagnetic layers) with interlayer exchange coupling is introduced to realize the deterministic field-free perpendicular magnetic switching. This system uses β-Ta, as the GSHE agent to generate a spin current and as the interlayer exchange coupling medium to generate an internal field. The critical switching current density at zero field is on the order of 106 A/cm2 due to the large spin Hall angle of β-Ta. The internal field, along with switching efficiency, depends strongly on the orthogonal magnetization states of two ferromagnetic coupling layers in this system.

  7. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-03-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other

  8. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  9. Magnetostatic modes in ferromagnetic samples with inhomogeneous internal fields

    NASA Astrophysics Data System (ADS)

    Arias, Rodrigo

    2015-03-01

    Magnetostatic modes in ferromagnetic samples are very well characterized and understood in samples with uniform internal magnetic fields. More recently interest has shifted to the study of magnetization modes in ferromagnetic samples with inhomogeneous internal fields. The present work shows that under the magnetostatic approximation and for samples of arbitrary shape and/or arbitrary inhomogeneous internal magnetic fields the modes can be classified as elliptic or hyperbolic, and their associated frequency spectrum can be delimited. This results from the analysis of the character of the second order partial differential equation for the magnetostatic potential under these general conditions. In general, a sample with an inhomogeneous internal field and at a given frequency, may have regions of elliptic and hyperbolic character separated by a boundary. In the elliptic regions the magnetostatic modes have a smooth monotonic character (generally decaying form the surfaces (a ``tunneling'' behavior)) and in hyperbolic regions an oscillatory wave-like character. A simple local criterion distinguishes hyperbolic from elliptic regions: the sign of a susceptibility parameter. This study shows that one may control to some extent magnetostatic modes via external fields or geometry. R.E.A. acknowledges Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia under Project No. FB 0807 (Chile), Grant No. ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, and Proyecto Fondecyt 1130192.

  10. Electric-field-induced magnetic domain writing in a Co wire

    NASA Astrophysics Data System (ADS)

    Tanaka, Yuki; Hirai, Takamasa; Koyama, Tomohiro; Chiba, Daichi

    2018-05-01

    We have demonstrated that the local magnetization in a Co microwire can be switched by an application of a gate voltage without using any external magnetic fields. The electric-field-induced reversible ferromagnetic phase transition was used to realize this. An internal stray field from a ferromagnetic gate electrode assisted the local domain reversal in the Co wire. This new concept of electrical domain switching may be useful for dramatically reducing the power consumption of writing information in a magnetic racetrack memory, in which a shift of a magnetic domain by electric current is utilized.

  11. Trapped field internal dipole superconducting motor generator

    DOEpatents

    Hull, John R.

    2001-01-01

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  12. Concern that "EMF" magnetic fields from power lines cause cancer.

    PubMed

    Repacholi, Michael

    2012-06-01

    In 2002, the International Agency for Research on Cancer (IARC, 2002) categorized extremely low frequency (ELF) (including the power frequencies of 50 and 60 Hz) magnetic fields as "possibly carcinogenic to humans." That was based on pooled analyses of epidemiological research that reported an association between exposure to low-level magnetic fields and childhood leukemia. In 2007 a task group of scientific experts convened by the World Health Organization (WHO) acknowledged the IARC categorization but found that the laboratory studies and other research results did not support the association. Taking all evidence into account WHO reported that it could not confirm the existence of any health consequences from exposure to low-level magnetic fields. There remains continuing concern by some people that exposure to power frequency magnetic fields may cause adverse health effects, particularly childhood leukemia. Public health authorities need to fully understand the reasons for that ongoing concern and effective ways to address it. This paper describes what drives the concern, including how people perceive risks, how WHO and other public health authorities assess scientific research to determine whether health risks exist and the conclusions they have reached about power frequency magnetic fields. This paper also addresses the scientific basis of international exposure guidelines for power frequency magnetic fields and what precautionary measures are warranted to address the concern. Copyright © 2012. Published by Elsevier B.V.

  13. Magnetic Fields in the Galaxy

    NASA Astrophysics Data System (ADS)

    Mayo, Elizabeth A.

    2009-01-01

    Interstellar magnetic fields are believed to play a crucial role in the star-formation process, therefore a comprehensive study of magnetic fields is necessary in understanding the origins of stars. These projects use observational data obtained from the Very Large Array (VLA) in Socorro, NM. The data reveal interstellar magnetic field strengths via the Zeeman effect in radio frequency spectral lines. This information provides an estimate of the magnetic energy in star-forming interstellar clouds in the Galaxy, and comparisons can be made with these energies and the energies of self-gravitation and internal motions. From these comparisons, a better understanding of the role of magnetic fields in the origins of stars will emerge. NGC 6334 A is a compact HII region at the center of what is believed to be a large, rotating molecular torus (Kramer et al. (1997)). This is a continuing study based on initial measurements of the HI and OH Zeeman effect (Sarma et al. (2000)). The current study includes OH observations performed by the VLA at a higher spatial resolution than previously published data, and allows for a better analysis of the spatial variations of the magnetic field. A new model of the region is also developed based on OH opacity studies, dust continuum maps, radio spectral lines, and infrared (IR) maps. The VLA has been used to study the Zeeman effect in the 21cm HI line seen in absorption against radio sources in the Cygnus-X region. These sources are mostly galactic nebulae or HII regions, and are bright and compact in this region of the spectrum. HI absorption lines are strong against these regions and the VLA is capable of detecting the weak Zeeman effect within them. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.

  14. Arrangement for measuring the field angle of a magnetic field as a function of axial position within a magnet bore tube

    DOEpatents

    Pidcoe, Stephen V.; Zink, Roger A.; Boroski, William N.; McCaw, William R.

    1993-01-01

    An arrangement for measuring the field angle of a magnetic field as a function of axial position within a magnet bore tube of a magnet such as is used with the Superconducting Super Collider (SSC). The arrangement includes a magnetic field alignment gauge that is carried through the magnet bore tube by a positioning shuttle in predetermined increments. The positioning shuttle includes an extensible body assembly which is actuated by an internal piston arrangement. A pair of spaced inflatable cuffs are carried by the body assembly and are selectively actuated in cooperation with pressurizing of the piston to selectively drive the positioning shuttle in an axial direction. Control of the shuttle is provided by programmed electronic computer means located exteriorly of the bore tube and which controls valves provided pressurized fluid to the inflatable cuss and the piston arrangement.

  15. The International Geomagnetic Reference Field: the twelfth generation

    NASA Astrophysics Data System (ADS)

    Thebault, Erwan; Finlay, Christopher; The IGRF Working Group

    2015-04-01

    The IGRF is an internationally-agreed reference model of the Earth's magnetic field produced under the auspices of the International Association of Geomagnetism and Aeronomy. The IGRF-12 is the latest update of this well-known model which is used each year by many thousands of users for both industrial and scientific purposes. In October 2014, ten institutions worldwide have made contributions to the IGRF. These models were evaluated and the twelfth generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014. In this presentation, we will report on the IGRF activities, briefly describe the candidate models, summarize the evaluation of models performed by different independent teams, show how the IGRF-12 models were calculated and finally discuss some of the main magnetic features of this new model.

  16. A deep dynamo generating Mercury's magnetic field.

    PubMed

    Christensen, Ulrich R

    2006-12-21

    Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned.

  17. Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-10-01

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  18. Mercury's Crustal Magnetic Field from MESSENGER Data

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Johnson, C.

    2017-12-01

    We present a regional spherical-harmonic based crustal magnetic field model for Mercury between latitudes 45° and 70° N, derived from MESSENGER magnetic field data. In addition to contributions from the core dynamo, the bow shock, and the magnetotail, Mercury's magnetic field is also influenced by interactions with the solar wind. The resulting field-aligned currents generate magnetic fields that are typically an order of magnitude stronger at spacecraft altitude than the field from sources within Mercury's crust. These current sources lie within the satellite path and so the resulting magnetic field can not be modeled using potential-field approaches. However, these fields are organized in the local-time frame and their spatial structure differs from that of the smaller-scale crustal field. We account for large-scale magnetic fields in the local-time reference frame by subtracting from the data a low-degree localized vector spherical-harmonic model including curl components fitted at satellite altitude. The residual data exhibit consistent signals across individual satellite tracks in the body fixed reference frame, similar to those obtained via more rudimentary along-track filtering approaches. We fit a regional internal-source spherical-harmonic model to the night-time radial component of the residual data, allowing a maximum spherical-harmonic degree of L = 150. Due to the cross-track spacing of the satellite tracks, spherical-harmonic degrees beyond L = 90 are damped. The strongest signals in the resulting model are in the region around the Caloris Basin and over Suisei Planitia, as observed previously. Regularization imposed in the modeling allows the field to be downward continued to the surface. The strongest surface fields are 30 nT. Furthermore, the regional power spectrum of the model shows a downward dipping slope between spherical-harmonic degrees 40 and 80, hinting that the main component of the crustal field lies deep within the crust.

  19. Magnetic Field Transport in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Jafari, Amir; Vishniac, Ethan T.

    2018-02-01

    The leading models for launching astrophysical jets rely on strong poloidal magnetic fields threading the central parts of their host accretion disks. Numerical simulations of magneto-rotationally turbulent disks suggest that such fields are actually advected from the environment by the accreting matter rather than generated by internal dynamos. This is puzzling from a theoretical point of view, since the reconnection of the radial field across the midplane should cause an outward drift on timescales much shorter than the accretion time. We suggest that a combination of effects are responsible for reducing the radial field near the midplane, causing efficient inward advection of the poloidal field. Magnetic buoyancy in subsonic turbulence pushes the field lines away from the midplane, decreasing the large-scale radial field in the main body of the disk. In magneto-rotationally driven turbulence, magnetic buoyancy dominates over the effects of turbulent pumping, which works against it, and turbulent diamagnetism, which works with it, in determining the vertical drift of the magnetic field. Balancing buoyancy with diffusion implies that the bending angle of the large-scale poloidal field can be very large near the surface, as required for outflows, but vanishes near the midplane, which impedes turbulent reconnection and outward diffusion. This effect becomes less efficient as the poloidal flux increases. This suggests that accretion disks are less likely to form jets if they have a modest ratio of outer to inner radii or if the ambient field is very weak. The former effect is probably responsible for the scarcity of jets in cataclysmic variable systems.

  20. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  1. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma.

    PubMed

    Cheng, Yu; Muroski, Megan E; Petit, Dorothée C M C; Mansell, Rhodri; Vemulkar, Tarun; Morshed, Ramin A; Han, Yu; Balyasnikova, Irina V; Horbinski, Craig M; Huang, Xinlei; Zhang, Lingjiao; Cowburn, Russell P; Lesniak, Maciej S

    2016-02-10

    Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  3. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    NASA Astrophysics Data System (ADS)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  4. Saturn's Magnetic Field from the Cassini Grand Finale orbits

    NASA Astrophysics Data System (ADS)

    Dougherty, M. K.; Cao, H.; Khurana, K. K.; Hunt, G. J.; Provan, G.; Kellock, S.; Burton, M. E.; Burk, T. A.

    2017-12-01

    The fundamental aims of the Cassini magnetometer investigation during the Cassini Grand Finale orbits were determination of Saturn's internal planetary magnetic field and the rotation rate of the deep interior. The unique geometry of the orbits provided an unprecedented opportunity to measure the intrinsic magnetic field at close distances never before encountered. The surprising close alignment of Saturn's magnetic axis with its spin axis, known about since the days of Pioneer 11, has been a focus of the team's analysis since Cassini Saturn Orbit Insertion. However, the varying northern and southern magnetospheric planetary period oscillations, which fill the magnetosphere, has been a factor in masking the field signals from the interior. Here we describe an overview of the magnetometer results from the Grand Finale orbits, including confirmation of the extreme axisymmetric nature of the planetary magnetic field, implications for knowledge of the rotation rate and the behaviour of external magnetic fields (arising from the ring current, field aligned currents both at high and low latitudes and the modulating effect of the planetary period oscillations).

  5. Correlation between magnetic and electric field perturbations in the field-aligned current regions deduced from DE 2 observations

    NASA Technical Reports Server (NTRS)

    Ishii, M.; Sugiura, M.; Iyemori, T.; Slavin, J. A.

    1992-01-01

    The satellite-observed high correlations between magnetic and electric field perturbations in the high-latitude field-aligned current regions are investigated by examining the dependence of the relationship between Delta-B and E on spatial scale, using the electric and magnetic field data obtained by DE 2 in the polar regions. The results are compared with the Pedersen conductivity inferred from the international reference ionosphere model and the Alfven wave velocity calculated from the in situ ion density and magnetic field measurements.

  6. Magnetic Fields Versus Gravity

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  7. High resolution NMR imaging using a high field yokeless permanent magnet.

    PubMed

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  8. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  9. Weak, Quiet Magnetic Fields Seen in the Venus Atmosphere

    PubMed Central

    Zhang, T. L.; Baumjohann, W.; Russell, C. T.; Luhmann, J. G.; Xiao, S. D.

    2016-01-01

    The existence of a strong internal magnetic field allows probing of the interior through both long term changes of and short period fluctuations in that magnetic field. Venus, while Earth’s twin in many ways, lacks such a strong intrinsic magnetic field, but perhaps short period fluctuations can still be used to probe the electrical conductivity of the interior. Toward the end of the Venus Express mission, an aerobraking campaign took the spacecraft below the ionosphere into the very weakly electrically conducting atmosphere. As the spacecraft descended from 150 to 140 km altitude, the magnetic field became weaker on average and less noisy. Below 140 km, the median field strength became steady but the short period fluctuations continued to weaken. The weakness of the fluctuations indicates they might not be useful for electromagnetic sounding of the atmosphere from a high altitude platform such as a plane or balloon, but possibly could be attempted on a lander. PMID:27009234

  10. Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph

    2018-06-01

    Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  11. Determination of coronal magnetic fields from vector magnetograms

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1993-01-01

    This report covers technical progress during the second year of the contract entitled 'Determination of Coronal Magnetic Fields from Vector Magnetograms,' NASW-4728, between NASA and Science Applications International Corporation, and covers the period January 1, 1993 to December 31, 1993. Under this contract SAIC has conducted research into the determination of coronal magnetic fields from vector magnetograms, including the development and application of algorithms to determine force-free coronal fields above selected observations of active regions. The contract began on June 30, 1992 and has a completion date of December 31, 1994. This contract is a continuation of work started in a previous contract, NASW-4571, which covered the period November 15, 1990 to December 14, 1991. During this second year we have concentrated on studying additional active regions and in using the estimated coronal magnetic fields to compare to coronal features inferred from observations.

  12. Low-degree Structure in Mercury's Planetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.; Johnson, Catherine L.; Korth, Haje; Winslow, Reka M.; Borovsky, Joseph E.; Purucker, Michael E.; Slavin, James A.; Solomon, Sean C.; Zuber, Maria T.; McNutt, Ralph L. Jr.

    2012-01-01

    The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.

  13. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states

    PubMed Central

    Heo, Changhoon; Kiselev, Nikolai S.; Nandy, Ashis Kumar; Blügel, Stefan; Rasing, Theo

    2016-01-01

    Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion. PMID:27273157

  14. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states.

    PubMed

    Heo, Changhoon; Kiselev, Nikolai S; Nandy, Ashis Kumar; Blügel, Stefan; Rasing, Theo

    2016-06-08

    Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion.

  15. History of Solar Magnetic Fields Since George Ellery Hale

    NASA Astrophysics Data System (ADS)

    Stenflo, J. O.

    2017-09-01

    As my own work on the Sun's magnetic field started exactly 50 years ago at Crimea in the USSR, I have been a participant in the field during nearly half the time span since Hale's discovery in 1908 of magnetic fields in sunspots. The present historical account is accompanied by photos from my personal slide collection, which show a number of the leading personalities who advanced the field in different areas: measurement techniques, from photographic to photoelectric and imaging methods in spectro-polarimetry; theoretical foundations of MHD and the origin of cosmic magnetic fields (birth of dynamo theory); the quest for increased angular resolution from national projects to international consortia (for instruments both on ground and in space); introduction of the Hanle effect in astrophysics and the Second Solar Spectrum as its playground; small-scale nature of the field, the fundamental resolution limit, and transcending it by resolution-independent diagnostics.

  16. Strong Magnetic Field Characterisation

    DTIC Science & Technology

    2012-04-01

    an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699

  17. Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Hendrickson, Christopher L; Blakney, Greg T; Nikolaev, Eugene

    2015-01-01

    A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design.

  18. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  19. Integration of magnetic field and electron reflection data to improve Mars internal magnetic field model definition at 185 km altitude

    NASA Astrophysics Data System (ADS)

    Mozzoni, D. T.; Cain, J. C.; Lillis, R. J.

    2012-12-01

    Because no further projects are planned to better define the global magnetic field about Mars, it is important to utilize present the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER) data to its fullest. Challenges in deriving an accurate model include the fact that the mapping orbit of MGS was limited to two local times, and also had a narrow distribution of data ranging from only southern latitudes below 350 km to only northern latitudes over 400 km. The aerobraking and science phasing orbit data below 350 km down to near 100 km was nearly all on the sunlit side with its strong distortions from the solar wind and embedded ionospheric currents. The improvement reported herein is from the addition of the projected total field evaluated at 185 km above the areoid. These data are derived from extrapolation of the pitch angle distributions of ER data to the reflection altitudes and adjustment to a common data altitude. Crucial to this analysis is the angular distribution of the magnetic field itself below MGS. Thus it was an iterative process whereby the 185 km data sets were recalculated based on the last iterative solutions from the magnetic field models derived including these data. The statistical improvements at the ER mapped altitudes after 5 iterations was to reduce the initial 2.0 nT sigma differences with a Gaussian spread of 20 nT to 0.5 nT and a spread of 12 nT. Unfortunately, many areas of very high field especially provided no data as they were on closed field lines. However, the iterative solutions also improved the 185 km scalar maps significantly from the original based on linear field line estimates, up to several hundred nT. The next step planned is to utilize the concept suggested by Connerney to use along-track gradients, especially those at lowest altitudes on the dayside, to input to the model sets. Preliminary tests indicate the possibility of added improvements in the missing ER data areas once this technique is perfected.

  20. Large-scale, near-field magnetic fields from external sources and the corresponding induced internal field

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.

    1985-01-01

    Data from Magsat analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The Magsat data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.

  1. Magnetic field evolution in white dwarfs: The hall effect and complexity of the field

    NASA Technical Reports Server (NTRS)

    Muslimov, A. G.; Van Horn, H. M.; Wood, M. A.

    1995-01-01

    We calculate the evolution of the magnetic fields in white dwarfs, taking into account the Hall effect. Because this effect depends nonlinearly upon the magnetic field strength B, the time dependences of the various multipole field components are coupled. The evolution of the field is thus significantly more complicated than has been indicated by previous investigations. Our calculations employ recent white dwarf evolutionary sequences computed for stars with masses 0.4, 0.6, 0.8, and 1.0 solar mass. We show that in the presence of a strong (up to approximately 10(exp 9) G) internal toroidal magnetic field; the evolution of even the lowest order poloidal modes can be substantially changed by the Hall effect. As an example, we compute the evolution of an initially weak quadrupole component, which we take arbitrarily to be approximately 0.1%-1% of the strength of a dominant dipole field. We find that coupling provided by the Hall effect can produce growth of the ratio of the quadrupole to the dipole component of the surface value of the magnetic field strength by more than a factor of 10 over the 10(exp 9) to 10(exp 10) year cooling lifetime of the white dwarf. Some consequences of these results for the process of magnetic-field evolution in white dwarfs are briefly discussed.

  2. A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.; Espley, J. R.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Herceg, M.; Bloxham, J.; Moore, K. M.; Bolton, S. J.; Levin, S. M.

    2018-03-01

    A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of 45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary ("internal") field, combined with a simple model of the magnetodisc for the field ("external") due to distributed magnetospheric currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model ("Juno Reference Model through Perijove 9") of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed view of a planetary dynamo beyond Earth.

  3. The International Geomagnetic Reference Field, 2005

    USGS Publications Warehouse

    Rukstales, Kenneth S.; Love, Jeffrey J.

    2007-01-01

    This is a set of five world charts showing the declination, inclination, horizontal intensity, vertical component, and total intensity of the Earth's magnetic field at mean sea level at the beginning of 2005. The charts are based on the International Geomagnetic Reference Field (IGRF) main model for 2005 and secular change model for 2005-2010. The IGRF is referenced to the World Geodetic System 1984 ellipsoid. Additional information about the USGS geomagnetism program is available at: http://geomag.usgs.gov/

  4. Moon Exploration from "apollo" Magnetic and Gravity Field Data

    NASA Astrophysics Data System (ADS)

    Kharitonov, Andrey

    Recently, the great value is given to various researches of the Moon, as nearest nature satellite of the Earth, because there is preparation for forthcoming starts on the Moon of the American, European, Russian, Chinese, Indian new Orbiters and Landers. Designing of International Lu-nar bases is planned also. Therefore, in the near future the series of the questions connected with placing of International Lunar bases which coordinates substantially should to be connected with heterogeneity of the internal structure of the Moon can become especially interesting. If in the Moon it will be possible to find large congestions of water ice and those chemical elements which stocks in the Earth are limited this area of the Moon can become perspective for Inter-national Lunar bases. To solve a question of research of the deep structure of the Moon in the locations of International Lunar bases, competently, without excessive expenses for start new various under the form of the Lunar orbit of automatic space vehicles (polar, equatorial, inclined to the rotation axis) and their altitude of flight, which also not always were connected with investigation programs of measured fields (video observation, radio-frequency sounding, mag-netic, gravity), is possible if already from the available information of space vehicles APOLLO, SMART1, KAGUYA, LCROSS, LRO, CHANDRAYAAN-1, CHANG'E-1 it will be possible to analyse simultaneously some various fields, at different altitudes of measuring over the surface (20-300 km) of the Moon. The experimental data of the radial component magnetic field and gravity field the Moon measured at different altitudes, in its equatorial part have been analysed for the research of the deep structure of the Moon. This data has been received as a result of start of space vehicles -APOLLO-15 and APOLLO-16 (USA), and also the Russian space vehicles "LUNOHOD". Authors had been used the data of a magnetic field of the Moon at flight altitude 160, 100, 75, 30, 0 km

  5. A time-averaged regional model of the Hermean magnetic field

    NASA Astrophysics Data System (ADS)

    Thébault, E.; Langlais, B.; Oliveira, J. S.; Amit, H.; Leclercq, L.

    2018-03-01

    This paper presents the first regional model of the magnetic field of Mercury developed with mathematical continuous functions. The model has a horizontal spatial resolution of about 830 km at the surface of the planet, and it is derived without any a priori information about the geometry of the internal and external fields or regularization. It relies on an extensive dataset of the MESSENGER's measurements selected over its entire orbital lifetime between 2011 and 2015. A first order separation between the internal and the external fields over the Northern hemisphere is achieved under the assumption that the magnetic field measurements are acquired in a source free region within the magnetospheric cavity. When downward continued to the core-mantle boundary, the model confirms some of the general structures observed in previous studies such as the dominance of zonal field, the location of the North magnetic pole, and the global absence of significant small scale structures. The transformation of the regional model into a global spherical harmonic one provides an estimate for the axial quadrupole to axial dipole ratio of about g20/g10 = 0.27 . This is much lower than previous estimates of about 0.40. We note that it is possible to obtain a similar ratio provided that more weight is put on the location of the magnetic equator and less elsewhere.

  6. Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field.

    PubMed

    Heyner, Daniel; Wicht, Johannes; Gómez-Pérez, Natalia; Schmitt, Dieter; Auster, Hans-Ulrich; Glassmeier, Karl-Heinz

    2011-12-23

    The observed weakness of Mercury's magnetic field poses a long-standing puzzle to dynamo theory. Using numerical dynamo simulations, we show that it could be explained by a negative feedback between the magnetospheric and the internal magnetic fields. Without feedback, a small internal field was amplified by the dynamo process up to Earth-like values. With feedback, the field strength saturated at a much lower level, compatible with the observations at Mercury. The classical saturation mechanism via the Lorentz force was replaced by the external field impact. The resulting surface field was dominated by uneven harmonic components. This will allow the feedback model to be distinguished from other models once a more accurate field model is constructed from MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and BepiColombo data.

  7. Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause.

    PubMed

    Korth, Haje; Tsyganenko, Nikolai A; Johnson, Catherine L; Philpott, Lydia C; Anderson, Brian J; Al Asad, Manar M; Solomon, Sean C; McNutt, Ralph L

    2015-06-01

    Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT R M 3 , where R M is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross-tail current sheet. The cross-tail current is described by a disk-shaped current near the planet and a sheet current at larger (≳ 5  R M ) antisunward distances. The tail currents are constrained by minimizing the root-mean-square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause.

  8. Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause

    PubMed Central

    Tsyganenko, Nikolai A.; Johnson, Catherine L.; Philpott, Lydia C.; Anderson, Brian J.; Al Asad, Manar M.; Solomon, Sean C.; McNutt, Ralph L.

    2015-01-01

    Abstract Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT RM 3, where RM is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross‐tail current sheet. The cross‐tail current is described by a disk‐shaped current near the planet and a sheet current at larger (≳ 5 RM) antisunward distances. The tail currents are constrained by minimizing the root‐mean‐square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause. PMID:27656335

  9. Solar magnetic fields

    NASA Astrophysics Data System (ADS)

    Hood, Alan W.; Hughes, David W.

    2011-08-01

    This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions of this field that can impact on the Earth's environment. These global coronal variations can be modelled to a surprising degree of accuracy. Recent high resolution observations of the Sun's magnetic field in quiet regions, away from sunspots, show that there is a continual evolution of a small-scale magnetic field, presumably produced by small-scale dynamo action in the solar interior. Sunspots, a natural consequence of the large-scale dynamo, emerge, evolve and disperse over a period of several days. Numerical simulations can help to determine the physical processes governing the emergence of sunspots. We discuss the interaction of these emerging fields with the pre-existing coronal field, resulting in a variety of dynamic phenomena.

  10. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  11. Building Magnetic Fields in White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    White dwarfs, the compact remnants left over at the end of low- and medium-mass stars lifetimes, are often found to have magnetic fields with strengths ranging from thousands to billions of times that of Earth. But how do these fields form?MultiplePossibilitiesAround 1020% of white dwarfs have been observed to have measurable magnetic fields with a wide range of strengths. There are several theories as to how these fields might be generated:The fields are fossil.The original weak magnetic fields of the progenitor stars were amplified as the stars cores evolved into white dwarfs.The fields are caused by binary interactions.White dwarfs that formed in the merger of a binary pair might have had a magnetic field amplified as a result of a dynamo that was generated during the merger.The fields were produced by some other internal physical mechanism during the cooling of the white dwarf itself.In a recent publication, a team of authors led by Jordi Isern (Institute of Space Sciences, CSIC, and Institute for Space Studies of Catalonia, Spain) explored this third possibility.Dynamos from CrystallizationThe inner and outer boundaries of the convective mantle of carbon/oxygen white dwarfs of two different masses (top vs. bottom panel) as a function of luminosity. As the white dwarf cools (toward the right), the mantle grows thinner due to the crystallization and settling of material. [Isern et al. 2017]As white dwarfs have no nuclear fusion at their centers, they simply radiate heat and gradually cool over time. The structure of the white dwarf undergoes an interesting change as it cools, however: though the object begins as a fluid composed primarily of an ionized mixture of carbon and oxygen (and a few minor species like nickel and iron), it gradually crystallizes as its temperature drops.The crystallized phase of the white dwarf is oxygen-rich which is denser than the liquid, so the crystallized material sinks to the center of the dwarf as it solidifies. As a result, the

  12. Evolution of protoplanetary disks with dynamo magnetic fields

    NASA Technical Reports Server (NTRS)

    Reyes-Ruiz, M.; Stepinski, Tomasz F.

    1994-01-01

    The notion that planetary systems are formed within dusty disks is certainly not a new one; the modern planet formation paradigm is based on suggestions made by Laplace more than 200 years ago. More recently, the foundations of accretion disk theory where initially developed with this problem in mind, and in the last decade astronomical observations have indicated that many young stars have disks around them. Such observations support the generally accepted model of a viscous Keplerian accretion disk for the early stages of planetary system formation. However, one of the major uncertainties remaining in understanding the dynamical evolution of protoplanetary disks is the mechanism responsible for the transport of angular momentum and subsequent mass accretion through the disk. This is a fundamental piece of the planetary system genesis problem since such mechanisms will determine the environment in which planets are formed. Among the mechanisms suggested for this effect is the Maxwell stress associated with a magnetic field treading the disk. Due to the low internal temperatures through most of the disk, even the question of the existence of a magnetic field must be seriously studied before including magnetic effects in the disk dynamics. On the other hand, from meteoritic evidence it is believed that magnetic fields of significant magnitude existed in the earliest, PP-disk-like, stage of our own solar system's evolution. Hence, the hypothesis that PP disks are magnetized is not made solely on the basis of theory. Previous studies have addressed the problem of the existence of a magnetic field in a steady-state disk and have found that the low conductivity results in a fast diffusion of the magnetic field on timescales much shorter than the evolutionary timescale. Hence the only way for a magnetic field to exist in PP disks for a considerable portion of their lifetimes is for it to be continuously regenerated. In the present work, we present results on the self

  13. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-01

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  14. The BGS magnetic field candidate models for the 12th generation IGRF

    NASA Astrophysics Data System (ADS)

    Hamilton, Brian; Ridley, Victoria A.; Beggan, Ciarán D.; Macmillan, Susan

    2015-05-01

    We describe the candidate models submitted by the British Geological Survey for the 12th generation International Geomagnetic Reference Field. These models are extracted from a spherical harmonic `parent model' derived from vector and scalar magnetic field data from satellite and observatory sources. These data cover the period 2009.0 to 2014.7 and include measurements from the recently launched European Space Agency (ESA) Swarm satellite constellation. The parent model's internal field time dependence for degrees 1 to 13 is represented by order 6 B-splines with knots at yearly intervals. The parent model's degree 1 external field time dependence is described by periodic functions for the annual and semi-annual signals and by dependence on the 20-min Vector Magnetic Disturbance index. Signals induced by these external fields are also parameterized. Satellite data are weighted by spatial density and by two different noise estimators: (a) by standard deviation along segments of the satellite track and (b) a larger-scale noise estimator defined in terms of a measure of vector activity at the geographically closest magnetic observatories to the sample point. Forecasting of the magnetic field secular variation beyond the span of data is by advection of the main field using core surface flows.

  15. Skyrmion robustness in noncentrosymmetric magnets with axial symmetry: The role of anisotropy and tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Leonov, A. O.; Kézsmárki, I.

    2017-12-01

    We investigate the stability of Néel skyrmions against tilted magnetic fields in polar magnets with uniaxial anisotropy ranging from easy-plane to easy-axis type. We construct the corresponding phase diagrams and investigate the internal structure of skewed skyrmions with displaced cores. We find that moderate easy-plane anisotropy increases the stability range of Néel skyrmions for fields along the symmetry axis, while moderate easy-axis anisotropy enhances their robustness against tilted magnetic fields. We stress that the direction along which the skyrmion cores are shifted depends on the symmetry of the underlying crystal lattice. The cores of Néel skyrmions, realized in polar magnets with Cn v symmetry, are displaced either along or opposite to the off-axis (in-plane) component of the magnetic field depending on the rotation sense of the magnetization, dictated by the sign of the Dzyaloshinskii constant. The core shift of antiskyrmions, present in noncentrosymmetric magnets with D2 d symmetry, depends on the in-plane orientation of the magnetic field and can be parallel, antiparallel, or perpendicular to it. We argue that the role of anisotropy in magnets with axially symmetric crystal structure is different from that in cubic helimagnets. Our results can be applied to address recent experiments on polar magnets with C3 v symmetry, GaV4S8 and GaV4Se8 , and Mn1.4Pt0.9Pd0.1Sn with D2 d symmetry.

  16. Extremely low-frequency magnetic fields of transformers and possible biological and health effects.

    PubMed

    Sirav, Bahriye; Sezgin, Gaye; Seyhan, Nesrin

    2014-12-01

    Physiological processes in organisms can be influenced by extremely low-frequency (ELF) electromagnetic energy. Biological effect studies have great importance; as well as measurement studies since they provide information on the real exposure situations. In this study, the leakage magnetic fields around a transformer were measured in an apartment building in Küçükçekmece, Istanbul, and the measurement results were evaluated with respect to the international exposure standards. The transformer station was on the bottom floor of a three-floor building. It was found that people living and working in the building were exposed to ELF magnetic fields higher than the threshold magnetic field value of the International Agency for Research on Cancer (IARC). Many people living in this building reported health complaints such as immunological problems of their children. There were child-workers working in the textile factories located in the building. Safe distances or areas for these people should be recommended. Protective measures could be implemented to minimize these exposures. Further residential exposure studies are needed to demonstrate the exposure levels of ELF magnetic fields. Precautions should, therefore, be taken either to reduce leakage or minimize the exposed fields. Shielding techniques should be used to minimize the leakage magnetic fields in such cases.

  17. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  18. Magnetorheological effect in the magnetic field oriented along the vorticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzhir, P., E-mail: pavel.kuzhir@unice.fr; Magnet, C.; Fezai, H.

    2014-11-01

    In this work, we have studied the magnetorheological (MR) fluid rheology in the magnetic field parallel to the fluid vorticity. Experimentally, the MR fluid flow was realized in the Couette coaxial cylinder geometry with the magnetic field parallel to the symmetry axis. The rheological measurements were compared to those obtained in the cone-plate geometry with the magnetic field perpendicular to the lower rheometer plate. Experiments revealed a quasi-Bingham behavior in both geometries with the stress level being just a few dozens of percent smaller in the Couette cylindrical geometry at the same internal magnetic field. The unexpectedly high MR responsemore » in the magnetic field parallel to the fluid vorticity is explained by stochastic fluctuations of positions and orientations of the particle aggregates. These fluctuations are induced by magnetic interactions between them. Once misaligned from the vorticity direction, the aggregates generate a high stress independent of the shear rate, and thus assimilated to the suspension apparent (dynamic) yield stress. Quantitatively, the fluctuations of the aggregate orientation are modeled as a rotary diffusion process with a diffusion constant proportional to the mean square interaction torque. The model gives a satisfactory agreement with the experimental field dependency of the apparent yield stress and confirms the nearly quadratic concentration dependency σ{sub Y}∝Φ{sup 2.2}, revealed in experiments. The practical interest of this study lies in the development of MR smart devices with the magnetic field nonperpendicular to the channel walls.« less

  19. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  20. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  1. Effects of head field and AC field on magnetization reversal for microwave assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Kase, Aina; Akagi, Fumiko; Yoshida, Kazuetsu

    2018-05-01

    Microwave assisted magnetic recording (MAMR) is a promising recording method for achieving high recording densities in hard disk drives. In MAMR, the AC field from a spin-torque oscillator (STO) assists the head field with magnetization reversal in a medium. Therefore, the relationship between the head field and the AC field is very important. In this study, the effects of the head field and the AC field on magnetization reversal were analyzed using a micromagnetic simulator that takes the magnetic interactions between a single-pole type (SPT) write-head, an exchange coupled composite (ECC) medium, and the STO into account. As a result, the magnetization reversal was assisted not just by the y-component of the AC field (Hstoy) but also by the y-component of the head field (Hhy) in the medium. The Hhy over 100 kA/m with a frequency of about 15.5 GHz induced the magnetic resonance. The large Hhy was produced by the field from the STO to the SPT head.

  2. Numerical Calculation of Non-uniform Magnetization Using Experimental Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    Jhun, Bukyoung; Jhun, Youngseok; Kim, Seung-wook; Han, JungHyun

    2018-05-01

    A relation between the distance from the surface of a magnet and the number of cells required for a numerical calculation in order to secure the error below a certain threshold is derived. We also developed a method to obtain the magnetization at each part of the magnet from the experimentally measured magnetic field. This method is applied to three magnets with distinct patterns on magnetic-field-viewing film. Each magnet showed a unique pattern of magnetization. We found that the magnet that shows symmetric magnetization on the magnetic-field-viewing film is not uniformly magnetized. This method can be useful comparing the magnetization between magnets that yield typical magnetic field and those that yield atypical magnetic field.

  3. Magnetic fields for transporting charged beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include themore » fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries.« less

  4. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  5. Effects of radio frequency magnetic fields on iron release from cage proteins.

    PubMed

    Céspedes, Oscar; Ueno, Shoogo

    2009-07-01

    Ferritin, the iron cage protein, contains a superparamagnetic ferrihydrite nanoparticle formed from the oxidation and absorption of Fe(2+) ions. This nanoparticle increases its internal energy when exposed to alternating magnetic fields due to magnetization lag. The energy is then dissipated to the surrounding proteic cage, affecting its functioning. In this article we show that the rates of iron chelation with ferrozine, an optical marker, are reduced by up to a factor of 3 in proteins previously exposed to radio frequency magnetic fields of 1 MHz and 30 microT for several hours. The effect is non-thermal and depends on the frequency-amplitude product of the magnetic field. (c) 2009 Wiley-Liss, Inc.

  6. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  7. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  8. Reservoir computer predictions for the Three Meter magnetic field time evolution

    NASA Astrophysics Data System (ADS)

    Perevalov, A.; Rojas, R.; Lathrop, D. P.; Shani, I.; Hunt, B. R.

    2017-12-01

    The source of the Earth's magnetic field is the turbulent flow of liquid metal in the outer core. Our experiment's goal is to create Earth-like dynamo, to explore the mechanisms and to understand the dynamics of the magnetic and velocity fields. Since it is a complicated system, predictions of the magnetic field is a challenging problem. We present results of mimicking the three Meter experiment by a reservoir computer deep learning algorithm. The experiment is a three-meter diameter outer sphere and a one-meter diameter inner sphere with the gap filled with liquid sodium. The spheres can rotate up to 4 and 14 Hz respectively, giving a Reynolds number near to 108. Two external electromagnets apply magnetic fields, while an array of 31 external and 2 internal Hall sensors measure the resulting induced fields. We use this magnetic probe data to train a reservoir computer to predict the 3M time evolution and mimic waves in the experiment. Surprisingly accurate predictions can be made for several magnetic dipole time scales. This shows that such a complicated MHD system's behavior can be predicted. We gratefully acknowledge support from NSF EAR-1417148.

  9. Magnetic fields at neptune.

    PubMed

    Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1989-12-15

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes

  10. Magnetic field therapy: a review.

    PubMed

    Markov, Marko S

    2007-01-01

    There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation.

  11. Organic magnetic field sensor

    DOEpatents

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  12. Improvement of persistent magnetic field trapping in bulk Y-Ba-Cu-O superconductors

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Weinstein, Roy

    1993-01-01

    For type-II superconductors, magnetic field can be trapped due to persistent internal supercurrent. Quasi-persistent magnetic fields near 2 T at 60 K (and 1.4 T at 77 K) have been measured in minimagnets made of proton-irradiated melt-textured Y-Ba-Cu-O (MT-Y123) samples. Using the trapping effect, high-field permanent magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for high-temperature superconductor (HTS) wires. A phenomenological current model has been developed to account for the trapped field intensity and profile in HTS samples. This model is also a guide to select directions of materials development to further improve field trapping properties. General properties such as magnetic field intensities, spatial distributions, stabilities, and temperature dependence of trapped field are discussed.

  13. Dynamics assembly of magnetic microparticles suspended in moving droplets under the influence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Strey, Helmut; Brouzes, Eric; Kruse, Travis

    2013-03-01

    Droplet microfluidics has experienced tremendous growth, particularly since it is well suited for single-cell manipulation and analysis. As mature methods for high throughput droplet manipulation have been developed a technological bottleneck of current droplet microfluidics is that because droplets are separated, sequential chemical reactions are more difficult to achieve. For example, it is very difficult to concentrate target molecules, especially since every reaction step adds volume to the droplets. Our solution to this problem is to employ functionalized magnetic beads inside droplets. The basic idea is that an external magnetic field could be used to concentrate the magnetic beads in one part of the droplet and those could then be extracted by splitting the droplet. Here we present an experimental study of the self-assembly of superparamagnetic microparticles that are suspended in moving droplets and experience a combination of forces due to the internal fluid flow fields and external magnetic fields. We observed that this interplay of flow fields coupled to the formation of particle assemblies leads to the formations of stable patterns depending on the flow speed and magnetic field strength. An understanding of this dynamic assembly is critical in employing external forces for applications in separation and sorting. Funding through NYSTAR, Center for Advanced Technology and a grant from NIH-NHGRI (1 R21 HG006206-01).

  14. Induction of cell death by magnetic particles in response to a gradient magnetic field inside a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Amaya-Jaramillo, Carlos David; Pérez-Portilla, Adriana Patricia; Serrano-Olmedo, José Javier; Ramos-Gómez, Milagros

    2017-10-01

    A new instrument based on a magnetic force produced by an alternating magnetic field gradient, which is obtained through Maxwell coils, inside a constant field magnet has been designed and used to produce cell death. We have determined the interaction of microparticles and cells under different conditions such as incubation time with microparticles, particle size, magnetic field exposition time, and different current waveforms at different frequencies to produce a magnetic field gradient. We determined that the highest rate of cell death occurs at a frequency of 1 Hz with a square waveform and 1 h of irradiation. This method could be of great interest to remove cancer cells due mainly to the alterations in stiffness observed in the membranes of the tumor cells. Cancer cells can be eliminated in response to the forces caused by the movement of magnetic nanoparticles of the appropriate size under the application of a specific magnetic field. [Figure not available: see fulltext.

  15. Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Vladimir V.

    Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics,more » magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution <5 μm to study the small-scale plasma structures, implement two-frame shadowgraphy/interferometry, and develop methods for investigation of strong magnetic fields. New diagnostics will help to understand better basic physical processes in Z pinches. A 3D internal structure of the pinch and characteristic instabilities will be studied in wire arrays with different configurations and compared with 3D MHD simulations and analytical models. Mechanisms of “enhanced heating” of Z-pinch plasma will be studied. Fast dynamics of

  16. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  17. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  18. Magnetic field dependent atomic tunneling in non-magnetic glasses

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  19. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  20. Hanle Effect Diagnostics of the Coronal Magnetic Field: A Test Using Realistic Magnetic Field Configurations

    NASA Astrophysics Data System (ADS)

    Raouafi, N.-E.; Solanki, S. K.; Wiegelmann, T.

    2009-06-01

    Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H I Lyα and β lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H I Lyβ, are useful for such measurements.

  1. The Juno Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-11-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  2. The Juno Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Benna, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; hide

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through

  3. Relativistic thermal plasmas - Effects of magnetic fields

    NASA Technical Reports Server (NTRS)

    Araki, S.; Lightman, A. P.

    1983-01-01

    Processes and equilibria in finite, relativistic, thermal plasmas are investigated, taking into account electron-positron creation and annihilation, photon production by internal processes, and photon production by a magnetic field. Inclusion of the latter extends previous work on such plasmas. The basic relations for thermal, Comptonized synchrotron emission are analyzed, including emission and absorption without Comptonization, Comptonized thermal synchrotron emission, and the Comptonized synchrotron and bremsstrahlung luminosities. Pair equilibria are calculated, including approximations and dimensionless parameters, the pair balance equation, maximum temperatures and field strengths, and individual models and cooling curves.

  4. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  5. Studying internal and external magnetic fields in Japan using MAGSAT data

    NASA Technical Reports Server (NTRS)

    Fukushima, N. (Principal Investigator); Maeda, H.; Yukutake, T.; Tanaka, M.; Oshima, S.; Ogawa, K.; Kawamura, M.; Miyazaki, Y.; Uyeda, S.; Kobayashi, K.

    1980-01-01

    Examination of the total intensity data of CHRONIT on a few paths over Japan and its neighboring sea shows MAGSAT is extremely useful for studying the local magnetic anomaly. In high latitudes, the signatures of field aligned currents are clearly recognized. These include (1) the persistent basic pattern of current flow; (2) the more intense currents in the summer hemisphere than in the winter hemisphere; (3) more fluctuations in current intensities in summer dawn hours; and (4) apparent dawn-dusk asymmetry in the field-aligned current intensity between the north and south polar regions.

  6. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2010-01-01

    The Spiral Magnetic Motor, which can accelerate a magnetized rotor through 90% of its cycle with only permanent magnets, was an energy milestone for the 20th century patents by Kure Tekkosho in the 1970's. However, the Japanese company used old ferrite magnets which are relatively weak and an electrically-powered coil to jump start every cycle, which defeated the primary benefit of the permanent magnet motor design. The principle of applying an inhomogeneous, anisotropic magnetic field gradient force Fz = μ cos φ dB/dz, with permanent magnets is well-known in physics, e.g., Stern-Gerlach experiment, which exploits the interaction of a magnetic moment with the aligned electron spins of magnetic domains. In this case, it is applied to dB/dθ in polar coordinates, where the force Fθ depends equally on the magnetic moment, the cosine of the angle between the magnetic moment and the field gradient. The radial magnetic field increases in strength (in the attractive mode) or decreases in strength (in the repulsive mode) as the rotor turns through one complete cycle. An electromagnetic pulsed switching has been historically used to help the rotor traverse the gap (detent) between the end of the magnetic stator arc and the beginning (Kure Tekko, 1980). However, alternative magnetic pulse and switching designs have been developed, as well as strategic eddy current creation. This work focuses on the switching mechanism, novel magnetic pulse methods and advantageous angular momentum improvements. For example, a collaborative effort has begun with Toshiyuki Ueno (University of Tokyo) who has invented an extremely low power, combination magnetostrictive-piezoelectric (MS-PZT) device for generating low frequency magnetic fields and consumes "zero power" for static magnetic field production (Ueno, 2004 and 2007a). Utilizing a pickup coil such as an ultra-miniature millihenry inductor with a piezoelectric actuator or simply Wiegand wire geometry, it is shown that the necessary

  7. The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel

    NASA Astrophysics Data System (ADS)

    Valiallah Mousavi, S.; Barzegar Gerdroodbary, M.; Sheikholeslami, Mohsen; Ganji, D. D.

    2016-09-01

    In this study, two dimensional numerical simulations are performed to investigate the influence of the magnetic field on the nanofluid flow inside a sinusoidal channel. This work reveals the influence of variable magnetic field in the heat transfer of heat exchanger while the mixture is in a single phase. In this heat exchanger, the inner tube is sinusoidal and the outer tube is considered smooth. The magnetic field is applied orthogonal to the axis of the sinusoidal tube. In our study, the ferrofluid (water with 4 vol% nanoparticles (Fe3O4)) flows in a channel with sinusoidal bottom. The finite volume method with the SIMPLEC algorithm is used for handling the pressure-velocity coupling. The numerical results present validated data with experimentally measured data and show good agreement with measurement. The influence of different parameters, like the intensity of magnetic field and Reynolds number, on the heat transfer is investigated. According to the obtained results, the sinusoidal formation of the internal tube significantly increases the Nusselt number inside the channel. Our findings show that the magnetic field increases the probability of eddy formation inside the cavities and consequently enhances the heat transfer (more than 200%) in the vicinity of the magnetic field at low Reynolds number ( Re=50). In addition, the variation of the skin friction shows that the magnetic field increases the skin friction (more than 600%) inside the sinusoidal channel.

  8. Operation of A Sunpower M87 Cryocooler In A Magnetic Field

    NASA Technical Reports Server (NTRS)

    Breon, S. R.; Shirey, K. A.; Banks, I. S.; Warner, B. A.; Boyle, R. F.; Mustafi, S.; Krebs,Carolyn A. (Technical Monitor)

    2002-01-01

    The Alpha Magnetic Spectrometer-02 (AMS-02) is an experiment that will be flown as an attached payload on the International Space Station to detect dark matter and antimatter. It uses large superconducting magnets cooled with superfluid helium to bend the path of cosmic particles through a series of detectors, which then measure the mass, speed, charge, and direction of the particles. Four Sunpower M87N Stirling-cycle cryocoolers are used to extend the mission life by cooling the outer vapor-cooled shield of the dewar. The main magnet coils are separated by a distance of approximately 1 m and the coolers are located approximately 1.5 m from the center line of the magnet, where the field is as high as 925 gauss perpendicular to the cryocooler axis and 400 gauss along the cryocooler axis. Interactions between the applied magnetic field and the linear motor may result in additional forces and torques on the compressor piston. Motion of the compressor arid displacer pistons through the magnetic field spatial gradients will generate eddy currents. Additional eddy currents are created during magnet charge, discharge, and quench by the time-varying magnetic field. The results of tests to determine the magnitude of the forces, torques, and heating effects, as well as the need for additional magnetic shielding, are presented.

  9. Methods of Using a Magnetic Field Response Sensor Within Closed, Electrically Conductive Containers

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Taylor, Bryant D.

    2010-01-01

    Magnetic field response sensors are a class of sensors that are powered via oscillating magnetic fields, and when electrically active, respond with their own magnetic fields with attributes dependent upon the magnitude of the physical quantity being measured. A magnetic field response recorder powers and interrogates the magnetic sensors [see Magnetic-Field-Response Measurement- Acquisition System, NASA Tech Briefs Vol. 30, No, 6 (June 2006, page 28)]. Electrically conductive containers have low transmissivity for radio frequency (RF) energy and thus present problems for magnetic field response sensors. It is necessary in some applications to have a magnetic field response sensor s capacitor placed in these containers. Proximity to conductive surfaces alters the inductance and capacitance of the sensors. As the sensor gets closer to a conductive surface, the electric field and magnetic field energy of the sensor is reduced due to eddy currents being induced in the conductive surface. Therefore, the capacitors and inductors cannot be affixed to a conductive surface or embedded in a conductive material. It is necessary to have a fixed separation away from the conductive material. The minimum distance for separation is determined by the desired sensor response signal to noise ratio. Although the inductance is less than what it would be if it were not in proximity to the conductive surface, the inductance is fixed. As long as the inductance is fixed, all variations of the magnetic field response are due to capacitance changes. Numerous variations of inductor mounting can be utilized, such as providing a housing that provides separation from the conductive material as well as protection from impact damage. The sensor can be on the same flexible substrate with a narrow throat portion of the sensor between the inductor and the capacitor, Figure 1. The throat is of sufficient length to allow the capacitor to be appropriately placed within the container and the inductor

  10. Magnetically modified bioсells in constant magnetic field

    NASA Astrophysics Data System (ADS)

    Abramov, E. G.; Panina, L. K.; Kolikov, V. A.; Bogomolova, E. V.; Snetov, V. N.; Cherepkova, I. A.; Kiselev, A. A.

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell' size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae.

  11. Magnetism and High-magnetic Field Magnetization in Alkali Superoxide CsO2

    NASA Astrophysics Data System (ADS)

    Miyajima, Mizuki; Astuti, Fahmi; Kakuto, Takeshi; Matsuo, Akira; Puspita Sari, Dita; Asih, Retno; Okunishi, Kouichi; Nakano, Takehito; Nozue, Yasuo; Kindo, Koichi; Watanabe, Isao; Kambe, Takashi

    2018-06-01

    Alkali superoxide CsO2 is one of the candidates for the spin-1/2 one-dimensional (1D) antiferromagnet, which may be sequentially formed by an ordering of the π-orbital of O2 - molecule below TS ˜ 70 K. Here, we report the magnetism and the high-magnetic field magnetization in pulsed-magnetic fields up to 60 T in powder CsO2. We obtained the low temperature phase diagram around the antiferromagnetic ordering temperature TN = 9.6 K under the magnetic field. At T = 1.3 K, we observed a remarkable up-turn curvature in the magnetization around a saturation field of ˜60 T, which indicates the low-dimensional nature of the spin system. The saturated magnetization is also estimated to be ˜1μB, which corresponds to spin-1/2. In this study we compare it with the theoretical calculation.

  12. Effects of magnetic fields during high voltage live-line maintenance

    NASA Astrophysics Data System (ADS)

    Göcsei, Gábor; Kiss, István, Dr; Németh, Bálint

    2015-10-01

    In case of transmission and distribution networks, extra low frequency (typically 50 or 60 Hz) electric and magnetic fields have to be taken into consideration separately from each other. Health effects have been documented from exposures to both types of fields. Magnetic fields are qualified as possibly carcinogenic to humans (category “2B”) by WHO's cancer research institute, International Agency for Research on Cancer (IARC), so it is essential to protect the workers against their harmful effects. During live-line maintenance (LLM) electric fields can be shielded effectively by different kinds of conductive clothing, which are enclosed metal surfaces acting as a Faraday-cage. In practice laboratory measurements also prove their efficiency, the required shielding ratio is above 99% by the related standard.. A set of measurements have proved that regular conductive clothing used against the electric fields cannot shield the magnetic fields effectively at all. This paper introduces the possible risks of LLM from the aspect of the health effects of magnetic fields. Although in this case the principle of shielding the electric fields cannot be applied, new considerations in equipment design and technology can be used as a possible solution. Calculations and simulations based on the data of the Hungarian transmission network - which represents the European grid as a part of ENTSO-E - and high-current laboratory measurement results also prove the importance of the topic.

  13. Investigations on magnetic field induced optical transparency in magnetic nanofluids

    NASA Astrophysics Data System (ADS)

    Mohapatra, Dillip Kumar; Philip, John

    2018-02-01

    We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.

  14. Octet baryons in large magnetic fields

    NASA Astrophysics Data System (ADS)

    Deshmukh, Amol; Tiburzi, Brian C.

    2018-01-01

    Magnetic properties of octet baryons are investigated within the framework of chiral perturbation theory. Utilizing a power counting for large magnetic fields, the Landau levels of charged mesons are treated exactly giving rise to baryon energies that depend nonanalytically on the strength of the magnetic field. In the small-field limit, baryon magnetic moments and polarizabilities emerge from the calculated energies. We argue that the magnetic polarizabilities of hyperons provide a testing ground for potentially large contributions from decuplet pole diagrams. In external magnetic fields, such contributions manifest themselves through decuplet-octet mixing, for which possible results are compared in a few scenarios. These scenarios can be tested with lattice QCD calculations of the octet baryon energies in magnetic fields.

  15. Cosmic Rays in Intermittent Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particlemore » energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.« less

  16. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  17. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-04

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.

  18. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells

    NASA Astrophysics Data System (ADS)

    Spyridopoulou, K.; Makridis, A.; Maniotis, N.; Karypidou, N.; Myrovali, E.; Samaras, T.; Angelakeris, M.; Chlichlia, K.; Kalogirou, O.

    2018-04-01

    Recent investigations have attempted to understand and exploit the impact of magnetic field-actuated internalized magnetic nanoparticles (MNPs) on the proliferation rate of cancer cells. Due to the complexity of the parameters governing magnetic field-exposure though, individual studies to date have raised contradictory results. In our approach we performed a comparative analysis of key parameters related to the cell exposure of cancer cells to magnetic field-actuated MNPs, and to the magnetic field, in order to better understand the factors affecting cellular responses to magnetic field-stimulated MNPs. We used magnetite MNPs with a hydrodynamic diameter of 100 nm and studied the proliferation rate of MNPs-treated versus untreated HT29 human colon cancer cells, exposed to either static or alternating low frequency magnetic fields with varying intensity (40-200 mT), frequency (0-8 Hz) and field gradient. All three parameters, field intensity, frequency, and field gradient affected the growth rate of cells, with or without internalized MNPs, as compared to control MNPs-untreated and magnetic field-untreated cells. We observed that the growth inhibitory effects induced by static and rotating magnetic fields were enhanced by pre-treating the cells with MNPs, while the growth promoting effects observed in alternating field-treated cells were weakened by MNPs. Compared to static, rotating magnetic fields of the same intensity induced a similar extend of cell growth inhibition, while alternating fields of varying intensity (70 or 100 mT) and frequency (0, 4 or 8 Hz) induced cell proliferation in a frequency-dependent manner. These results, highlighting the diverse effects of mode, intensity, and frequency of the magnetic field on cell growth, indicate that consistent and reproducible results can be achieved by controlling the complexity of the exposure of biological samples to MNPs and external magnetic fields, through monitoring crucial experimental parameters. We

  19. MAGNETIC BRAIDING AND PARALLEL ELECTRIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilmot-Smith, A. L.; Hornig, G.; Pontin, D. I.

    2009-05-10

    The braiding of the solar coronal magnetic field via photospheric motions-with subsequent relaxation and magnetic reconnection-is one of the most widely debated ideas of solar physics. We readdress the theory in light of developments in three-dimensional magnetic reconnection theory. It is known that the integrated parallel electric field along field lines is the key quantity determining the rate of reconnection, in contrast with the two-dimensional case where the electric field itself is the important quantity. We demonstrate that this difference becomes crucial for sufficiently complex magnetic field structures. A numerical method is used to relax a braided magnetic field towardmore » an ideal force-free equilibrium; the field is found to remain smooth throughout the relaxation, with only large-scale current structures. However, a highly filamentary integrated parallel current structure with extremely short length-scales is found in the field, with the associated gradients intensifying during the relaxation process. An analytical model is developed to show that, in a coronal situation, the length scales associated with the integrated parallel current structures will rapidly decrease with increasing complexity, or degree of braiding, of the magnetic field. Analysis shows the decrease in these length scales will, for any finite resistivity, eventually become inconsistent with the stability of the coronal field. Thus the inevitable consequence of the magnetic braiding process is a loss of equilibrium of the magnetic field, probably via magnetic reconnection events.« less

  20. Magnetizing technique for permanent magnets by intense static fields generated by HTS bulk magnets: Numerical Analysis

    NASA Astrophysics Data System (ADS)

    N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.

    A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.

  1. Observing Interstellar and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  2. Spherical Magnetic Vortex in an External Potential Field: A Dissipative Contraction

    NASA Astrophysics Data System (ADS)

    Solov'ev, A. A.

    2013-09-01

    We consider the dissipative evolution of a spherical magnetic vortex with a force-free internal structure, located in a resistive medium and held in equilibrium by the potential external field. The magnetic field inside the sphere is force-free (the model of Chandrasekhar in Proc. Natl. Acad. Sci. 42, 1, 1956). Topologically, it is a set of magnetic toroids enclosed in spherical layers. A new exact MHD solution has been derived, describing a slow, uniform, radial compression of a magnetic spheroid under the pressure of an ambient field, when the plasma density and pressure are growing inside it. There is no dissipation in the potential field outside the sphere, but inside the sphere, where the current density can be high enough, the magnetic energy is continuously converted into heat. Joule dissipation lowers the magnetic pressure inside the sphere, which balances the pressure of the ambient field. This results in radial contraction of the magnetic sphere with a speed defined by the conductivity of the plasma and the characteristic spatial scale of the magnetic field inside the sphere. Formally, the sphere shrinks to zero within a finite time interval (magnetic collapse). The time of compression can be relatively small, within a day, even for a sphere with a radius of about 1 Mm, if the magnetic helicity trapped initially in the sphere (which is proportional to the number of magnetic toroids in the sphere) is quite large. The magnetic system is open along its axis of symmetry. On this axis, the magnetic and electric fields are strictly radial and sign-variable along the radius, so the plasma will be ejected along the axis of magnetic sphere outwards in both directions (as jets) at a rate much higher than the diffusive one, and the charged particles will be accelerated unevenly, in spurts, creating quasi-regular X-ray spikes. The applications of the solution to solar flares are discussed.

  3. Tripolar electric field Structure in guide field magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  4. EVIDENCE OF MAGNETIC FIELD SWITCH-OFF IN COLLISIONLESS MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenti, M. E.; Lapenta, G.; Goldman, M.

    2015-09-10

    The long-term evolution of large domain particle-in-cell simulations of collisionless magnetic reconnection is investigated following observations that show two possible outcomes for collisionless reconnection: toward a Petschek-like configuration or toward multiple X points. In the present simulation, a mixed scenario develops. At earlier time, plasmoids are emitted, disrupting the formation of Petschek-like structures. Later, an almost stationary monster plasmoid forms, preventing the emission of other plasmoids. A situation reminiscent of Petschek’s switch-off then ensues. Switch-off is obtained through a slow shock/rotational discontinuity compound structure. Two external slow shocks (SS) located at the separatrices reduce the in-plane tangential component of themore » magnetic field, but not to zero. Two transitions reminiscent of rotational discontinuities (RD) in the internal part of the exhaust then perform the final switch-off. Both the SS and the RD are characterized through analysis of their Rankine–Hugoniot jump conditions. A moderate guide field is used to suppress the development of the firehose instability in the exhaust.« less

  5. Comparison of cardiac and 60 Hz magnetically induced electric fields measured in anesthetized rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.L.; Creim, J.A.

    1997-06-01

    Extremely low frequency magnetic fields interact with an animal by inducing internal electric fields, which are in addition to the normal endogenous fields present in living animals. Male rats weighing about 560 g each were anesthetized with ketamine and xylazine. Small incisions were made in the ventral body wall at the chest and upper abdomen to position a miniature probe for measuring internal electric fields. The calibration constant for the probe size was 5.7 mm, with a flat response from at least 12 Hz to 20 kHz. A cardiac signal, similar to the normal electrocardiogram with a heart rate ofmore » about 250 bpm, was readily obtained at the chest. Upon analysis of its spectrum, the cardiac field detected by the probe had a broad maximum at 32--95 Hz. When the rates were exposed to a 1 mT, 60 Hz magnetic field, a spike appeared in the spectrum at 60 Hz. The peak-to-peak magnitudes of electric fields associated with normal heart function were comparable to fields induced by a 1 mT magnetic field at 60 Hz for those positions measured on the body surface. Within the body, or in different directions relative to the applied field, the induced fields were reduced. The cardiac field increased near the heart, becoming much larger than the induced field. Thus, the cardiac electric field, together with the other endogenous fields, combine with induced electric fields and help to provide reference levels for the induced-field dosimetry of ELF magnetic field exposures of living animals.« less

  6. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  7. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K.

    PubMed

    Tomita, Masaru; Murakami, Masato

    2003-01-30

    Large-grain high-temperature superconductors of the form RE-Ba-Cu-O (where RE is a rare-earth element) can trap magnetic fields of several tesla at low temperatures, and so can be used for permanent magnet applications. The magnitude of the trapped field is proportional to the critical current density and the volume of the superconductor. Various potential engineering applications for such magnets have emerged, and some have already been commercialized. However, the range of applications is limited by poor mechanical stability and low thermal conductivity of the bulk superconductors; RE-Ba-Cu-O magnets have been found to fracture during high-field activation, owing to magnetic pressure. Here we present a post-fabrication treatment that improves the mechanical properties as well as thermal conductivity of a bulk Y-Ba-Cu-O magnet, thereby increasing its field-trapping capacity. First, resin impregnation and wrapping the materials in carbon fibre improves the mechanical properties. Second, a small hole drilled into the centre of the magnet allows impregnation of Bi-Pb-Sn-Cd alloy into the superconductor and inclusion of an aluminium wire support, which results in a significant enhancement of thermal stability and internal mechanical strength. As a result, 17.24 T could be trapped, without fracturing, in a bulk Y-Ba-Cu-O sample of 2.65 cm diameter at 29 K.

  8. Large-scale, near-Earth, magnetic fields from external sources and the corresponding induced internal field

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.

    1983-01-01

    Data from MAGSAT analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-Earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The MAGSAT data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the Earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.

  9. Operating a magnetic nozzle helicon thruster with strong magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira

    2016-03-01

    A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  10. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  11. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, E.N.

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case themore » phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references.« less

  12. Magnetic Field Synthesis for Microwave Magnetics.

    DTIC Science & Technology

    1982-04-01

    Uniform Fields Ferrimagnetic Films Yettrium Iron Garnet Magnetic Fields 2.ABSTRACT (Continue en reviresde It neceeectv .. d identify by block num~ber) he...Iron Garnet ," Proc. of IEEE, 64 794 (1976). 3. J. H. Collins and F. A. Pizzarello, "Propagating Magnetic Waves in Thick Films : A Complementary...E. Wigen, "Exchange-Dominated Surface Spin Waves in Thin Yttrium-Iron- Garnet Films ," Phys. Rev. B, 11 420 (1975). 36. C. Vittoria and J. H. Schelleng

  13. Interaction of neutrons with layered magnetic media in oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Nikitenko, Yu. V.; Ignatovich, V. K.; Radu, F.

    2011-06-01

    New experimental possibilities of investigating layered magnetic structures in oscillating magnetic fields are discussed. Spin-flip and nonspin-flip neutron reflection and transmission probabilities show a frequency dependency near the magnetic neutron resonance condition. This allows to increase the precision of the static magnetic depth profile measurements of the magnetized matter. Moreover, this opens new possibilities of measuring the induction of the oscillating field inside the matter and determining the magnetic susceptibility of the oscillating magnetic field. Refraction of neutrons as they pass through a magnetic prism in the presence of an oscillating magnetic field is also investigated. A non-polarized neutron beam splits into eight spatially separated neutron beams, whose intensity and polarization depend on the strength and frequency of the oscillating field. Also, it is shown that the oscillating magnetic permeability of an angstrom-thick layer can be measured with a neutron wave resonator.

  14. Disruption of coronal magnetic field arcades

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.

    1994-01-01

    The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.

  15. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    PubMed

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  16. DC-magnetic field vector measurement

    NASA Technical Reports Server (NTRS)

    Schmidt, R.

    1981-01-01

    A magnetometer experiment was designed to determine the local magnetic field by measuring the total of the Earth's magnetic field and that of an unknown spacecraft. The measured field vector components are available to all onboard experiments via the Spacelab command and data management system. The experiment consists of two parts, an electronic box and the magnetic field sensor. The sensor includes three independent measuring flux-gate magnetometers, each measuring one component. The physical background is the nonlinearity of the B-H curve of a ferrite material. Two coils wound around a ferrite rod are necessary. One of them, a tank coil, pumps the ferrite rod at approximately 20 kilohertz. As a consequence of the nonlinearity, many harmonics can be produced. The second coil (i.e., the detection coil) resonates to the first harmonic. If an unknown dc or low-frequency magnetic field exists, the amplitude of the first harmonic is a measure for the unknown magnetic field. The voltages detected by the sensors are to be digitized and transferred to the command and data management system.

  17. Full particle orbit effects in regular and stochastic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ogawa, Shun; Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; del Castillo-Negrete, Diego; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-07-01

    We present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. We show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the

  18. [Creatinine and calcium in urine and blood after brief exposure to magnetic fields].

    PubMed

    Schmidt, F; Mannsåker, T; Løvlie, R

    1999-02-10

    In this experimental study, 35 males were exposed to artificial magnetic fields. The fields were produced by a set of Helmholz coils internally isolated by a Faraday cage which effectively eliminated electrical fields. Each participant stayed inside the coils for 40 minutes on two occasions with an interval of seven days, but was actually only once exposed to a static magnetic field (9.6 mT) and oscillating magnetic fields of variable frequency and strength. Urine and blood samples were taken before and after exposure, and before and after non-exposure. Analysis detected significant changes in serum creatinine level after exposure (p < 0.0001). The changes in serum creatinine level in the nonexposed situation were significantly smaller than the changes found in the exposed situation (p < 0.0001). The changes i urine creatinine after 40 minutes of exposure was also found to be significant (p < 0.01). Exposure to magnetic fields may induce biological reactions.

  19. Probing Magnetic Fields of Early Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    How do magnetic fields form and evolve in early galaxies? A new study has provided some clever observations to help us answer this question.The Puzzle of Growing FieldsDynamo theory is the primary model describing how magnetic fields develop in galaxies. In this picture, magnetic fields start out as weak seed fields that are small and unordered. These fields then become ordered and amplified by large-scale rotation and turbulence in galaxy disks and halos, eventually leading to the magnetic fields we observe in galaxies today.Schematic showinghow to indirectly measure protogalactic magnetic fields. The measured polarization of a background quasar is altered by the fields in a foreground protogalaxy. Click for a closer look! [Farnes et al. 2017/Adolf Schaller/STSCI/NRAO/AUI/NSF]To test this model, we need observations of the magnetic fields in young protogalaxies. Unfortunately, we dont have the sensitivity to be able to measure these fields directly but a team of scientists led by Jamie Farnes (Radboud University in the Netherlands) have come up with a creative alternative.The key is to find early protogalaxies that absorb the light of more distant background objects. If a protogalaxy lies between us and a distant quasar, then magnetic fields of the protogalaxy if present will affect the polarization measurements of the background quasar.Observing Galactic Building BlocksTop: Redshift distribution for the background quasars in the authors sample. Bottom: Redshift distribution for the foreground protogalaxies the authors are exploring. [Farnes et al. 2017]Farnes and collaborators examined two types of foreground protogalaxies: Damped Lyman-Alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). They obtained polarimetric data for a sample of 114 distant quasars with nothing in the foreground (the control sample), 19 quasars with DLAs in the foreground, and 27 quasars with LLSs in the foreground. They then used statistical analysis techniques to draw conclusions about

  20. Application peculiarities of magnetic materials for protection from magnetic fields

    NASA Astrophysics Data System (ADS)

    Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.

    2016-02-01

    In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.

  1. Magnetic Field Noise Changes Effect of Combined Magnetic Field on Gravitropic Reaction of Cress Roots.

    NASA Astrophysics Data System (ADS)

    Bogatina, Nina; Kordyum, Elizabeth; Sheykina, Nadezhda

    The gravitropic reaction of cress roots in combined magnetic field was studied in details. It was shown that the negative roots gravitropism observed at the frequency of alternating component of combined magnetic field adjusted to the Ca ion cyclotron frequency could be observed only at Nayquist magnetic field noise level under 5 nT/Hz. While the magnetic noise level was increasing the negative gravitropism was disappearing. The inhibition of gravitropic reaction was observed in all cases. The effect was accompanied by the changes in the noise spectrum generated by cress roots.

  2. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  3. Bats respond to very weak magnetic fields.

    PubMed

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  4. Magnetic Field Observations at Purcell, Oklahoma Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, P. J.; Gibson, J. P.

    The campaign “Magnetic Field Observations at Purcell, Oklahoma” installed a ground-based magnetometer at Purcell’s U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility boundary installation at the Kessler Atmospheric and Ecological Field Station, University of Oklahoma, to measure local magnetic field variations. It is a part of the nine stations of the Mid-continent MAgnetoseismic Chain (McMAC) placed as close to the 330° magnetic longitude as possible. This is the meridian in the world where land covers the greatest continuous range in magnetic latitude. Figure 1 shows the map of the magnetometer stations along the 330th magnetic meridian,more » including the Purcell (PCEL) station. The main scientific objective of the campaign is to detect the field line resonance (FLR) frequencies of the magnetic field line connected to the Purcell station. This magnetic field line extends from Purcell to the outer space at distances as far as 2 Earth radii (RE). To accurately identify FLR frequencies, however, simultaneous measurements at slightly different latitudes along the same meridian are necessary to allow the use of the cross-phase technique. This consideration explains the arrangement to operate magnetometers at the Americus (AMER) and Richardson (RICH) stations nearby. The measured resonant frequency can infer the plasma mass density along the field line through the method of normal-mode magnetoseismology. The magnetometer at the Purcell station can detect many other types of magnetic field fluctuations associated with the changes in the electric currents in the ionosphere and the magnetosphere, which by large are affected by the solar activity. In other words, the magnetic field data collected by this campaign are also useful for understanding space weather phenomena. The magnetometer was installed at Purcell’s ARM boundary facility in March 27, 2006. The construction of the triaxial fluxgate magnetometer used

  5. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  6. Two-dimensional Fermi gas in spin-dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Anzai, Takaaki; Nishida, Yusuke

    Experimental techniques in ultracold atoms allow us to tune parameters of the system at will. In particular, synthetic magnetic fields have been created by using the atom-light coupling and, therefore, it is interesting to study what kinds of quantum phenomena appear in correlated ultracold atoms subjected to synthetic magnetic fields. In this work, we consider a two-dimensional Fermi gas with two spin states in spin-dependent magnetic fields which are assumed to be antiparallel for different spin states. By studying the ground-state phase diagram within the mean-field approximation, we find quantum spin Hall and superfluid phases separated by a second-order phase transition. We also show that there are regions where the superfluid gap parameter is proportional to the attractive coupling, which is in marked contrast to the usual exponential dependence. Moreover, we elucidate that the universality class of the phase transition belongs to that of the XY model at special points of the phase boundary, while it belongs to that of a dilute Bose gas anywhere else. International Research Center for Nanoscience and Quantum Physics, Tokyo Institute of Technology.

  7. Operating a magnetic nozzle helicon thruster with strong magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Kazunori, E-mail: kazunori@ecei.tohoku.ac.jp; Komuro, Atsushi; Ando, Akira

    A pulsed axial magnetic field up to ∼2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ∼9.5 mN for magnetic field above ∼2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ionmore » flow energy in the magnetic nozzle, agree within ∼50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.« less

  8. Measurement of magnetic field fluctuations and diamagnetic currents within a laser ablation plasma interacting with an axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, S.; Horioka, K.; Okamura, M.

    Here, the guiding of laser ablation plasmas with axial magnetic fields has been used for many applications, since its effectiveness has been proven empirically. For more sophisticated and complicated manipulations of the plasma flow, the behavior of the magnetic field during the interaction and the induced diamagnetic current in the plasma plume needs to be clearly understood. To achieve the first milestone for establishing magnetic plasma manipulation, we measured the spatial and temporal fluctuations of the magnetic field caused by the diamagnetic current. We showed that the small fluctuations of the magnetic field can be detected by using a simplemore » magnetic probe. We observed that the field penetrates to the core of the plasma plume. The diamagnetic current estimated from the magnetic field had temporal and spatial distributions which were confirmed to be correlated with the transformation of the plasma plume. Our results show that the measurement by the magnetic probe is an effective method to observe the temporal and spatial distributions of the magnetic field and diamagnetic current. The systematic measurement of the magnetic field variations is a valuable method to establish the magnetic field manipulation of the laser ablation plasma.« less

  9. Measurement of magnetic field fluctuations and diamagnetic currents within a laser ablation plasma interacting with an axial magnetic field

    DOE PAGES

    Ikeda, S.; Horioka, K.; Okamura, M.

    2017-10-10

    Here, the guiding of laser ablation plasmas with axial magnetic fields has been used for many applications, since its effectiveness has been proven empirically. For more sophisticated and complicated manipulations of the plasma flow, the behavior of the magnetic field during the interaction and the induced diamagnetic current in the plasma plume needs to be clearly understood. To achieve the first milestone for establishing magnetic plasma manipulation, we measured the spatial and temporal fluctuations of the magnetic field caused by the diamagnetic current. We showed that the small fluctuations of the magnetic field can be detected by using a simplemore » magnetic probe. We observed that the field penetrates to the core of the plasma plume. The diamagnetic current estimated from the magnetic field had temporal and spatial distributions which were confirmed to be correlated with the transformation of the plasma plume. Our results show that the measurement by the magnetic probe is an effective method to observe the temporal and spatial distributions of the magnetic field and diamagnetic current. The systematic measurement of the magnetic field variations is a valuable method to establish the magnetic field manipulation of the laser ablation plasma.« less

  10. The Martian crustal magnetic field as seen from MGS and MAVEN

    NASA Astrophysics Data System (ADS)

    Langlais, B.; Thebault, E.

    2017-12-01

    We present a new model of the Martian crustal magnetic field. This model combines constraints from all available measurements made by Mars Global Surveyor (1997-2006) and MAVEN (2014-). This is the first time a planet (besides the Earth) is flown twice with spacecraft providing high quality vector magnetic field measurements over its entire surface. Both missions have pros and cons which are fully taken into account and exploited. The constant altitude and local time of MGS during its (high altitude) mapping orbit phases allows to separate static, internal fields from transient, external fields. Low altitude measurements (below 250 km) by MAVEN allow to a posteriori validate MGS magnetic field measurements both on the day and night sides. The indirect estimates of the field intensity by the Electron Reflectometer experiment completes the dataset. The new model in constructed with carefully selected measurements, using local and extrapolated proxies to estimate the level of the external field activity. Tracks are individually checked to remove spurious or noisy measurements. The final model has a horizontal resolution close to 100 km. At a local scale, anomalies are better defined, which should ease their interpretation in terms of magnetization properties and processes. During this presentation we will compare this model to previous ones and discuss its new findings.

  11. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  12. Measurement of internal defects in aluminum using a nano-granular in-gap magnetic sensor

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Yabukami, S.; Totsuka, J.; Koyama, S.; Hayasaka, J.; Wako, N.; Arai, K. I.

    2015-05-01

    Techniques for identifying defects in metals are very important in a wide variety of manufacturing areas. The present paper reports an eddy current testing method that employs a nano-granular in-gap magnetic sensor (GIGS) to detect internal defects in aluminum boards. The GIGS consists of a tunnel magnetoresistive film with nanometer sized grains and two yokes. In the presence of an external magnetic field, the nano-granular film exhibits only a small change in resistance due to the tunnel magnetoresistive effect. However, by placing it between two yokes, the magnetic flux can be greatly concentrated, thus increasing the change in resistance. The GIGS is a magnetic-field sensor that exploits this principle to achieve enhanced sensitivity. Moreover, because it has a cross-sectional yolk area of just 80 μm × 0.5 μm, it achieves outstanding spatial resolution. In the present study, it is used in combination with an eddy-current method in order to detect internal defects in aluminum. In this method, an excitation coil is used to apply an AC magnetic field perpendicular to the aluminum surface. This induces eddy currents in the metal, which in turn give rise to an AC magnetic field, which is then measured by the GIGS. The presence of defects in the aluminum distorts the eddy current flow, causing a change in the magnitude and distribution of the magnetic field. Such changes can be detected using the GIGS. In the present study, the proposed method was used to successfully detect indentations with diameters of 5 mm on the rear surface of an aluminum plate.

  13. GUMICS-4 Year Run: Ground Magnetic Field Predictions

    NASA Astrophysics Data System (ADS)

    Honkonen, I. J.; Viljanen, A.; Juusola, L.; Facsko, G.; Vanhamäki, H.

    2013-12-01

    Space weather can have severe effects even at ground level when Geomagnetically Induced Currents (GIC) disrupt power transmission networks, the worst case being a complete blackout affecting millions of people. The importance of space weather forecasting as well as the need for model improvement and validation has been recognized internationally. The recently concluded GUMICS-4 one year run, in which solar wind observations obtained from OMNIWeb for the period 2002-01-29 to 2003-02-02 were given as input to the model, will allow GUMICS to be validated against observations on an unprecedented scale. The performance of GUMICS can be quantified statistically, as a function of, for example, the solar wind driver, various geomagnetic indices, magnetic local time and other parameters. Here we concentrate on the ability of GUMICS to predict ground magnetic field observations for one year of simulated results. The ground magnetic field predictions are compared to observations of the mainland IMAGE magnetometer stations located at CGM latitudes 54-68 N. Furthermore the GIC derived from ground magnetic field predictions are compared to observations along the natural gas pipeline at Mäntsälä, South Finland. Various metrics are used to objectively evaluate the performance of GUMICS as a function of different parameters, thereby providing significant insight into the space weather forecasting ability of models based on first principles.

  14. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  15. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  16. High speed internal permanent magnet machine and method of manufacturing the same

    DOEpatents

    Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY

    2011-09-13

    An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple permanent magnets for generating a magnetic field, which interacts with the stator magnetic field to produce torque. The permanent magnets are disposed between the stacks. The rotor assembly also includes multiple bottom wedges disposed on the bottom structures of the shaft and configured to hold the multiple stacks and the multiple permanent magnets.

  17. Galileo magnetometer results from the Millennium Mission: Rotation rate and secular variation of the internal magnetic field

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Yu, Z. J.; Kivelson, M. G.; Khurana, K. K.

    2000-10-01

    The System III (1965.0) rotation period of Jupiter, as defined by the IAU based on early radio astronomical data, is 9h 55m 29.71s. Higgins et al. (JGR, 22033, 1997) have suggested, based on more recent radio data, that this period is too high by perhaps 25 ms. In the 25 years since the Pioneer and Voyager measurements, such an error would cause a 6 degree shift in apparent longitude of features tied to the internal magnetic field. A comparison of the longitude of the projection of the dipole moment obtained over the period 1975-1979 with that obtained by Galileo today shows that the average dipole location has drifted only one degree eastward in System III (1965.0). This one-degree shift is not significant given the statistical errors. A possible resolution to this apparent paradox is that the dipole moment observation is sensitive to the lower order field while the radio measurement is sensitive to the high order field at low altitude. Estimates of the secular variation from the in situ data are being pursued.

  18. NEAR-IR IMAGING POLARIMETRY TOWARD A BRIGHT-RIMMED CLOUD: MAGNETIC FIELD IN SFO 74

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusune, Takayoshi; Sugitani, Koji; Miao, Jingqi

    2015-01-01

    We have made near-infrared (JHK {sub s}) imaging polarimetry of a bright-rimmed cloud (SFO 74). The polarization vector maps clearly show that the magnetic field in the layer just behind the bright rim is running along the rim, quite different from its ambient magnetic field. The direction of the magnetic field just behind the tip rim is almost perpendicular to that of the incident UV radiation, and the magnetic field configuration appears to be symmetric as a whole with respect to the cloud symmetry axis. We estimated the column and number densities in the two regions (just inside and farmore » inside the tip rim) and then derived the magnetic field strength, applying the Chandrasekhar-Fermi method. The estimated magnetic field strength just inside the tip rim, ∼90 μG, is stronger than that far inside, ∼30 μG. This suggests that the magnetic field strength just inside the tip rim is enhanced by the UV-radiation-induced shock. The shock increases the density within the top layer around the tip and thus increases the strength of the magnetic field. The magnetic pressure seems to be comparable to the turbulent one just inside the tip rim, implying a significant contribution of the magnetic field to the total internal pressure. The mass-to-flux ratio was estimated to be close to the critical value just inside the tip rim. We speculate that the flat-topped bright rim of SFO 74 could be formed by the magnetic field effect.« less

  19. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    NASA Astrophysics Data System (ADS)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  20. Compensation of Gradient-Induced Magnetic Field Perturbations

    PubMed Central

    Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.

    2008-01-01

    Pulsed magnetic field gradients are essential for MR imaging and localized spectroscopy applications. However, besides the desired linear field gradients, pulsed currents in a strong external magnetic field also generate unwanted effects like eddy currents, gradient coil vibrations and acoustic noise. While the temporal magnetic field perturbations associated with eddy currents lead to spectral line shape distortions and signal loss, the vibration-related modulations lead to anti-symmetrical sidebands of any large signal (i.e. water), thereby obliterating the signals from smaller signals (i.e. metabolites). Here the measurement, characterization and compensation of vibrations-related magnetic field perturbations is presented. Following a quantitative evaluation of the various temporal components of the main magnetic field, a digital B0 magnetic field waveform is generated which reduces all temporal variations of the main magnetic field to within the spectral noise level. PMID:18329304

  1. Close binary evolution. II. Impact of tides, wind magnetic braking, and internal angular momentum transport

    NASA Astrophysics Data System (ADS)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.

    2018-01-01

    Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The

  2. Do habitable worlds require magnetic fields?

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Egan, H. L.; Ma, Y. J.; Jarvinen, R.; Jakosky, B. M.; Moore, T. E.; Garcia-Sage, K.

    2017-12-01

    Of the three terrestrial worlds that have significant atmospheres (Venus, Earth, and Mars), only Earth also possesses a global dynamo magnetic field. This magnetic field is often thought to have shielded the planet from the impinging solar wind, preventing the atmosphere from being stripped away to space. The atmospheres of Mars and Venus, by contrast, are thought to have escaped to space or been dessicated (respectively) due at least in part to their planet's lack of global magnetic field. The assumption that global scale magnetic fields are a necessary requirement for surface habitability is widely used both in the planetary and exoplanetary communities, but this assumption has been called into question in recent years based both on theoretical arguments and on observations returned by spacecraft. Here we summarize the arguments "for" and "against" the importance of magnetic fields for planetary habitability, and review the observations that teach us about the role of magnetic fields. We then identify several ongoing efforts and likely fruitful avenues for determining whether a dynamo field is necessary for life to be possible at a planet's surface.

  3. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    NASA Astrophysics Data System (ADS)

    Shipley, G. A.; Awe, T. J.; Hutsel, B. T.; Slutz, S. A.; Lamppa, D. C.; Greenly, J. B.; Hutchinson, T. M.

    2018-05-01

    Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate d I / d t = 5 k A / n s . After the cold fuel is magnetized, a rapidly rising current ( 200 k A / n s ) generates a calculated electric field of 64 M V / m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. A range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.

  4. Radio frequency magnetic field effects on molecular dynamics and iron uptake in cage proteins.

    PubMed

    Céspedes, Oscar; Inomoto, Osamu; Kai, Shoichi; Nibu, Yoshinori; Yamaguchi, Toshio; Sakamoto, Nobuyoshi; Akune, Tadahiro; Inoue, Masayoshi; Kiss, Takanobu; Ueno, Shoogo

    2010-05-01

    The protein ferritin has a natural ferrihydrite nanoparticle that is superparamagnetic at room temperature. For native horse spleen ferritin, we measure the low field magnetic susceptibility of the nanoparticle as 2.2 x 10(-6) m(3) kg(-1) and its Néel relaxation time at about 10(-10) s. Superparamagnetic nanoparticles increase their internal energy when exposed to radio frequency magnetic fields due to the lag between magnetization and applied field. The energy is dissipated to the surrounding peptidic cage, altering the molecular dynamics and functioning of the protein. This leads to an increased population of low energy vibrational states under a magnetic field of 30 microT at 1 MHz, as measured via Raman spectroscopy. After 2 h of exposure, the proteins have a reduced iron intake rate of about 20%. Our results open a new path for the study of non-thermal bioeffects of radio frequency magnetic fields at the molecular scale.

  5. Characterization of methanol as a magnetic field tracer in star-forming regions

    NASA Astrophysics Data System (ADS)

    Lankhaar, Boy; Vlemmings, Wouter; Surcis, Gabriele; van Langevelde, Huib Jan; Groenenboom, Gerrit C.; van der Avoird, Ad

    2018-02-01

    Magnetic fields play an important role during star formation1. Direct magnetic field strength observations have proven particularly challenging in the extremely dynamic protostellar phase2-4. Because of their occurrence in the densest parts of star-forming regions, masers, through polarization observations, are the main source of magnetic field strength and morphology measurements around protostars2. Of all maser species, methanol is one of the strongest and most abundant tracers of gas around high-mass protostellar disks and in outflows. However, as experimental determination of the magnetic characteristics of methanol has remained largely unsuccessful5, a robust magnetic field strength analysis of these regions could hitherto not be performed. Here, we report a quantitative theoretical model of the magnetic properties of methanol, including the complicated hyperfine structure that results from its internal rotation6. We show that the large range in values of the Landé g factors of the hyperfine components of each maser line lead to conclusions that differ substantially from the current interpretation based on a single effective g factor. These conclusions are more consistent with other observations7,8 and confirm the presence of dynamically important magnetic fields around protostars. Additionally, our calculations show that (nonlinear) Zeeman effects must be taken into account to further enhance the accuracy of cosmological electron-to-proton mass ratio determinations using methanol9-12.

  6. Cosmic-Ray Propagation in Turbulent Spiral Magnetic Fields Associated with Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Fatuzzo, Marco; Adams, Fred C.

    2018-04-01

    External cosmic rays impinging upon circumstellar disks associated with young stellar objects provide an important source of ionization, and, as such, play an important role in disk evolution and planet formation. However, these incoming cosmic rays are affected by a variety of physical processes internal to stellar/disk systems, including modulation by turbulent magnetic fields. Globally, these fields naturally provide both a funneling effect, where cosmic rays from larger volumes are focused into the disk region, and a magnetic mirroring effect, where cosmic rays are repelled due to the increasing field strength. This paper considers cosmic-ray propagation in the presence of a turbulent spiral magnetic field, analogous to that produced by the solar wind. The interaction of this wind with the interstellar medium defines a transition radius, analogous to the heliopause, which provides the outer boundary to this problem. We construct a new coordinate system where one coordinate follows the spiral magnetic field lines and consider magnetic perturbations to the field in the perpendicular directions. The presence of magnetic turbulence replaces the mirroring points with a distribution of values and moves the mean location outward. Our results thus help quantify the degree to which cosmic-ray fluxes are reduced in circumstellar disks by the presence of magnetic field structures that are shaped by stellar winds. The new coordinate system constructed herein should also be useful in other astronomical applications.

  7. Saturn's very axisymmetric magnetic field: No detectable secular variation or tilt

    NASA Astrophysics Data System (ADS)

    Cao, Hao; Russell, Christopher T.; Christensen, Ulrich R.; Dougherty, Michele K.; Burton, Marcia E.

    2011-04-01

    Saturn is the only planet in the solar system whose observed magnetic field is highly axisymmetric. At least a small deviation from perfect symmetry is required for a dynamo-generated magnetic field. Analyzing more than six years of magnetometer data obtained by Cassini close to the planet, we show that Saturn's observed field is much more axisymmetric than previously thought. We invert the magnetometer observations that were obtained in the "current-free" inner magnetosphere for an internal model, varying the assumed unknown rotation rate of Saturn's deep interior. No unambiguous non-axially symmetric magnetic moment is detected, with a new upper bound on the dipole tilt of 0.06°. An axisymmetric internal model with Schmidt-normalized spherical harmonic coefficients g10 = 21,191 ± 24 nT, g20 = 1586 ± 7 nT. g30 = 2374 ± 47 nT is derived from these measurements, the upper bounds on the axial degree 4 and 5 terms are 720 nT and 3200 nT respectively. The secular variation for the last 30 years is within the probable error of each term from degree 1 to 3, and the upper bounds are an order of magnitude smaller than in similar terrestrial terms for degrees 1 and 2. Differentially rotating conducting stable layers above Saturn's dynamo region have been proposed to symmetrize the magnetic field (Stevenson, 1982). The new upper bound on the dipole tilt implies that this stable layer must have a thickness L >= 4000 km, and this thickness is consistent with our weak secular variation observations.

  8. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  9. Unique topological characterization of braided magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeates, A. R.; Hornig, G.

    We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove thatmore » it uniquely characterizes the field line mapping and hence the magnetic topology.« less

  10. Effect of sample initial magnetic field on the metal magnetic memory NDT result

    NASA Astrophysics Data System (ADS)

    Moonesan, Mahdi; Kashefi, Mehrdad

    2018-08-01

    One of the major concerns regarding the use of Metal Magnetic Memory (MMM) technique is the complexity of residual magnetization effect on output signals. The present study investigates the influence of residual magnetic field on stress induced magnetization. To this end, various initial magnetic fields were induced on a low carbon steel sample, and for each level of residual magnetic field, the sample was subjected to a set of 4-point bending tests and, their corresponding MMM signals were collected from the surface of the bended sample using a tailored metal magnetic memory scanning device. Results showed a strong correlation between sample residual magnetic field and its corresponding level of stress induced magnetic field. It was observed that the sample magnetic field increases with applying the bending stress as long as the initial residual magnet field is low (i.e. <117 mG), but starts decreasing with higher levels of initial residual magnetic fields. Besides, effect of bending stress on the MMM output of a notched sample was investigated. The result, again, showed that MMM signals exhibit a drop at stress concentration zone when sample has high level of initial residual magnetic field.

  11. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  12. Significance of the Eccentricity of the Earth's Magnetic Field for the Magnetosphere and Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Koochak, Z.; Fraser-Smith, A. C.

    2016-12-01

    This paper is an extension of an earlier study of the centered and eccentric dipole models of the Earth's magnetic field [Fraser-Smith, 1987]. We have used the 1980-2015 International Geomagnetic Reference Field (IGRF) Gauss coefficients to recalculate the magnetic dipole moments and magnetic pole positions for both the centered and eccentric dipoles for an additional 35 years, thus bringing them up to date. These magnetic field models play an important role in ionosphere modification, since they influence the properties of the ionosphere. However it is not widely known that the nominal origin of the Earth's magnetic field is offset from the center of the Earth by nearly 10% of the Earth's radius, which must similarly lead to an offset of some of the larger-scale modifying effects such as those associated with the magnetosphere. We describe this offset magnetic field here to help identify its effects in ionospheric modification experiments.

  13. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  15. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    PubMed

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  16. Diffusion of magnetic field via turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the

  17. Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei

    2018-04-01

    We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.

  18. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  19. The synchronous orbit magnetic field data set

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1979-01-01

    The magnetic field at synchronous orbit is the result of superposition of fields from many sources such as the earth, the magnetopause, the geomagnetic tail, the ring current and field-aligned currents. In addition, seasonal changes in the orientation of the earth's dipole axis causes significant changes in each of the external sources. Main reasons for which the synchronous orbit magnetic field data set is a potentially valuable resource are outlined. The primary reason why synchronous magnetic field data have not been used more extensively in magnetic field modeling is the presence of absolute errors in the measured fields. Nevertheless, there exists a reasonably large collection of synchronous orbit magnetic field data. Some of these data can be useful in quantitative modeling of the earth's magnetic field. A brief description is given of the spacecraft, the magnetometers, the standard graphical data displays, and the digital data files.

  20. Planetary Magnetic Fields: Planetary Interiors and Habitability W. M. Keck Institute for Space Studies Report

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg

    2017-05-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck

  1. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  2. Energy dissipation of composite multifilamentary superconductors for high-current ramp-field magnet applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gung, C.Y.

    1993-01-01

    Energy dissipation, which is also called AC loss, of a composite multifilamentary superconducting wire is one of the most fundamental concerns in building a stable superconducting magnet. Characterization and reduction of AC losses are especially important in designing a superconducting magnet for generating transient magnetic fields. The goal of this thesis is to improve the understanding of AC-loss properties of superconducting wires developed for high-current ramp-field magnet applications. The major tasks include: (1) building an advanced AC-loss measurement system, (2) measuring AC losses of superconducting wires under simulated pulse magnet operations, (3) developing an analytical model for explaining the newmore » AC-loss properties found in the experiment, and (4) developing a computational methodology for comparing AC losses of a superconducting wire with those of a cable for a superconducting pulse magnet. A new experimental system using an isothermal calorimetric method was designed and constructed to measure the absolute AC losses in a composite superconductor. This unique experimental setup is capable of measuring AC losses of a brittle Nb{sub 3}Sn wire carrying high AC current in-phase with a large-amplitude pulse magnetic field. Improvements of the accuracy and the efficiency of this method are discussed. Three different types of composite wire have been measured: a Nb{sub 3}Sn modified jelly-roll (MJR) internal-tin wire used in a prototype ohmic heating coil, a Nb{sub 3}Sn internal-tin wire developed for a fusion reactor ohmic heating coil, and a NbTi wire developed for the magnets in a particle accelerator. The cross sectional constructions of these wires represent typical commercial wires manufactured for pulse magnet applications.« less

  3. Magnetic Field Amplification in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Xu, Siyao; Lazarian, Alex

    2017-12-01

    Based on the new findings on the turbulent dynamo in Xu & Lazarian, we examine the magnetic field amplification in the context of supernova remnants. Due to the strong ion-neutral collisional damping in the weakly ionized interstellar medium, the dynamo in the preshock turbulence remains in the damping kinematic regime, which leads to a linear-in-time growth of the magnetic field strength. The resultant magnetic field structure enables effective diffusion upstream and shock acceleration of cosmic rays to energies above the “knee.” Differently, the nonlinear dynamo in the postshock turbulence leads to a linear-in-time growth of the magnetic energy due to the turbulent magnetic diffusion. Given a weak initial field strength in the postshock region, the magnetic field saturates at a significant distance from the shock front as a result of the inefficiency of the nonlinear dynamo. This result is in a good agreement with existing numerical simulations and well explains the X-ray spots detected far behind the shock front.

  4. Minimizing magnetic fields for precision experiments

    NASA Astrophysics Data System (ADS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  5. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI.

    PubMed

    Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe

    2010-12-01

    We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. Copyright © 2010 John Wiley & Sons, Ltd.

  6. PREFACE: Yamada Conference LX on Research in High Magnetic Fields (RHMF2006)

    NASA Astrophysics Data System (ADS)

    Motokawa, Mitsuhiro

    2006-12-01

    The 60th Yamada Conference on Research in High Magnetic Fields (RHMF2006) was held at Sendai Civic Auditorium, Miyagi Prefecture, Japan, from 16 - 19 August 2006, as the 8th RHMF. The first was held in Osaka (1982) followed by Leuven (1988), Amsterdam (1991), Nijmegen (1994), Sydney (1997), Porto (2000), and Toulouse (2003). RHMF2006, which was also a satellite conference of the 17th International Conference on Magnetism (Kyoto, 20 - 25 August 2006), covered a broad range of topics concerned with research in high magnetic fields: (1) magnetism, (2) strongly correlated electron systems, (3) superconductors, (4) metals and metallic nanostructures, (5) molecular systems, (6) semiconductors, (7) field effects on non-magnetic systems, (8) neutron and x-ray experiments in high magnetic fields, (9) magnet technology, (10) measurement techniques in high magnetic fields, and (11) high field facilities. First of all we would like to express sincere thanks to the Yamada Science Foundation for their support and encouragement. We would like to thank all the members of the International Advisory Committee and the Program Committee for their collaboration. The conference was organized as usual with oral sessions having both invited and contributed talks and poster sessions. The technical program started on the morning of Thursday 17 August, with a tutorial lecture by Professor M von Ortenberg. The special posters were invited to introduce recent activities and up-to-date equipment of 17 high field facilities in the world. On the Friday evening, we had a banquet at Sendai City Museum for the history and culture of Sendai, with Emeritus Professor M Date (a Chairman for the first conference in Osaka) and many other guests. The conference was closed with a talk by Professor F Herlach on the afternoon of Saturday 19 August. We heard with great pleasure the announcement from Professor J Wosnitza that next RHMF will be held in Dresden in 2009. This conference had 197 participants, 9 of

  7. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  8. Magnetic field effects in proteins

    NASA Astrophysics Data System (ADS)

    Jones, Alex R.

    2016-06-01

    Many animals can sense the geomagnetic field, which appears to aid in behaviours such as migration. The influence of man-made magnetic fields on biology, however, is potentially more sinister, with adverse health effects being claimed from exposure to fields from mobile phones or high voltage power lines. Do these phenomena have a common, biophysical origin, and is it even plausible that such weak fields can profoundly impact noisy biological systems? Radical pair intermediates are widespread in protein reaction mechanisms, and the radical pair mechanism has risen to prominence as perhaps the most plausible means by which even very weak fields might impact biology. In this New Views article, I will discuss the literature over the past 40 years that has investigated the topic of magnetic field effects in proteins. The lack of reproducible results has cast a shadow over the area. However, magnetic field and spin effects have proven to be useful mechanistic tools for radical mechanism in biology. Moreover, if a magnetic effect on a radical pair mechanism in a protein were to influence a biological system, the conditions necessary for it to do so appear increasing unlikely to have come about by chance.

  9. Pilot study of extremely low frequency magnetic fields emitted by transformers in dwellings. Social aspects.

    PubMed

    Zaryabova, Victoria; Shalamanova, Tsvetelina; Israel, Michel

    2013-06-01

    A large number of epidemiologic studies examining the potential effect of residential exposure to extremely-low frequency (ELF) magnetic fields and childhood leukemia have been published. Two pooled analyses [Ahlbom A, Day N, Feychting M, Roman E, Skinner J, Dockerty J, Linet M, et al. (2000). A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 83(5):692-698; Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh AM (2000). A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Epidemiology. 11(6):624-634], which included the major epidemiologic studies on ELF magnetic fields and childhood leukemia showed twofold increase in childhood leukemia risk in association with residential ELF exposure above 0.3-0.4 μT. Based on "limited" epidemiologic evidence linking ELF exposure to childhood leukemia and "inadequate evidence" for carcinogenicity of ELF in rodent bioassays, the International Agency for Research on Cancer (IARC) classified ELF magnetic fields as a possible human carcinogen (2B classification) [International Agency for Research on Cancer (IARC) (2002). Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 80. IARC Press: Lyon], confirmed by WHO on the basis of studies published after 2000 [World Health Organization. Extremely low frequency fields. In: 238 Environmental health criteria, Geneva: WHO; 2007]. The analysis of more recent studies of ELF magnetic fields and childhood leukemia had small findings and propose methodological improvements concerning the uncertainties in epidemiological approaches and exposure assessment, bias in selection of controls [Kheifets L, Oksuzyan S (2008). Exposure assessment and other challenges in non-ionizing radiation studies of childhood leukaemia. Radiat Prot Dosimetry. 132(2):139-147]. By the end of 2010, 37 countries had been identified for possible participation

  10. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  11. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    DOE PAGES

    Shipley, Gabriel A.; Awe, Thomas James; Hutsel, Brian Thomas; ...

    2018-05-03

    We present Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate dI/dt=5 kA/ns. After the cold fuel is magnetized,more » a rapidly rising current (200 kA/ns) generates a calculated electric field of 64 MV/m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. Lastly, a range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.« less

  12. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipley, Gabriel A.; Awe, Thomas James; Hutsel, Brian Thomas

    We present Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate dI/dt=5 kA/ns. After the cold fuel is magnetized,more » a rapidly rising current (200 kA/ns) generates a calculated electric field of 64 MV/m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. Lastly, a range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.« less

  13. Dramatic impact of the giant local magnetic fields on spin-dependent recombination processes in gadolinium based garnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, N. G., E-mail: nikolai.romanov@mail.ioffe.ru; Tolmachev, D. O.; Gurin, A. S.

    2015-06-29

    A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd{sup 3+} ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials wasmore » shown to accumulate significant energy which can be released in external magnetic fields.« less

  14. Proton imaging of stochastic magnetic fields

    NASA Astrophysics Data System (ADS)

    Bott, A. F. A.; Graziani, C.; Tzeferacos, P.; White, T. G.; Lamb, D. Q.; Gregori, G.; Schekochihin, A. A.

    2017-12-01

    Recent laser-plasma experiments (Fox et al., Phys. Rev. Lett., vol. 111, 2013, 225002; Huntington et al., Nat. Phys., vol. 11(2), 2015, 173-176 Tzeferacos et al., Phys. Plasmas, vol. 24(4), 2017a, 041404; Tzeferacos et al., 2017b, arXiv:1702.03016 [physics.plasm-ph]) report the existence of dynamically significant magnetic fields, whose statistical characterisation is essential for a complete understanding of the physical processes these experiments are attempting to investigate. In this paper, we show how a proton-imaging diagnostic can be used to determine a range of relevant magnetic-field statistics, including the magnetic-energy spectrum. To achieve this goal, we explore the properties of an analytic relation between a stochastic magnetic field and the image-flux distribution created upon imaging that field. This `Kugland image-flux relation' was previously derived (Kugland et al., Rev. Sci. Instrum. vol. 83(10), 2012, 101301) under simplifying assumptions typically valid in actual proton-imaging set-ups. We conclude that, as with regular electromagnetic fields, features of the beam's final image-flux distribution often display a universal character determined by a single, field-scale dependent parameter - the contrast parameter s/{\\mathcal{M}}lB$ - which quantifies the relative size of the correlation length B$ of the stochastic field, proton displacements s$ due to magnetic deflections and the image magnification . For stochastic magnetic fields, we establish the existence of four contrast regimes, under which proton-flux images relate to their parent fields in a qualitatively distinct manner. These are linear, nonlinear injective, caustic and diffusive. The diffusive regime is newly identified and characterised. The nonlinear injective regime is distinguished from the caustic regime in manifesting nonlinear behaviour, but as in the linear regime, the path-integrated magnetic field experienced by the beam can be extracted uniquely. Thus, in the linear and

  15. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    PubMed

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  16. Full particle orbit effects in regular and stochastic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Shun; Cambon, Benjamin P.; Leoncini, Xavier

    Here we present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, themore » particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. Finally, we show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and

  17. Full particle orbit effects in regular and stochastic magnetic fields

    DOE PAGES

    Ogawa, Shun; Cambon, Benjamin P.; Leoncini, Xavier; ...

    2016-07-18

    Here we present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, themore » particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. Finally, we show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and

  18. Magnetocaloric effect: permanent magnet array for generation of high magnetic fields

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Jae; Kenkel, John; Jiles, David

    2002-03-01

    The magnetocaloric effect (MCE), the heating or cooling of magnetic materials in a magnetic field, is unusually large in the Gd_5(Si_xGe_1-x)4 alloy system. Normally the maximum in the MCE occurs at the Curie temperature (Tc) because the spin entropy change is a maximum. By suitable selection of the composition of this alloy system the Curie temperature can be changed over the range 25 K for x = 0 to 340 K for x =1, and the composition range around x = 0.5 exhibits the largest magnetocaloric effect. In order to increase the amount of heat exchanged the change in applied magnetic field should be as large as possible, and in this research values above 1.5 Tesla are suggested. We have studied a permanent magnet array based on NdFeB, which with a remanent magnetization of only 1.2 Tesla can still generate a magnetic flux density, or magnetic induction B of 2-3 Tesla. In order to generate the high magnetic induction in the absence of a power supply, a modified hollow cylindrical permanent magnet array (HCPMA) has been designed to produce the required strength of magnetic field. Soft magnetic materials including permalloy (NiFe) were used for focusing the magnetic field in the central region. The magnitude of the magnetic flux density at the center was about 2 Tesla. The magnitude and homogeneity of the magnetic field for this design are comparable with the conventional C-shaped yoke and HCPMA. This can be easily adapted for a low power rotary system in which the magnetocaloric material can be exposed alternately to high and low magnetic fields so that it can accept and reject heat from its surroundings.

  19. Numerical analysis of magnetic field in superconducting magnetic energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanamaru, Y.; Amemiya, Y.

    1991-09-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES formore » reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.« less

  20. Investigations of a simulated geomagnetic field experienced by the International Space Station on attentional performance

    NASA Astrophysics Data System (ADS)

    Del Seppia, C.; Mezzasalma, L.; Messerotti, M.; Cordelli, A.; Ghione, S.

    2009-01-01

    We have previously reported that the exposure to an abnormal magnetic field simulating the one encountered by the International Space Station (ISS) orbiting around the Earth may enhance autonomic response to emotional stimuli. Here we report the results of the second part of that study which tested whether this field also affects cognitive functions. Twenty-four volunteers participated in the study, 12 exposed to the natural geomagnetic field and 12 to the magnetic field encountered by ISS. The test protocol consisted of a set of eight tests chosen from a computerized test battery for the assessment of attentional performance. The duration of exposure was 90 min. No effect of exposure to ISS magnetic field was observed on attentional performance.

  1. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  2. The energy of a prolate spheroidal shell in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Koksharov, Yu. A.

    2017-04-01

    The problem of the energy of a spheroidal magnetic shell, solved by methods of classical electrodynamics, arises, in particular, upon the study of thin-wall biocompatible microcapsules in connection with a pressing issue of targeted drug delivery. The drug inside a microcapsule should be released from the shell at a required instant of time by destroying the capsule's shell. The placement inside a shell of magnetic nanoparticles sensitive to an external magnetic field theoretically makes it possible to solve both problems: to transport a capsule to the required place and to destroy its shell. In particular, the shell can be destroyed under the action of internal stress when the shape of a capsule is changed. In this paper, the analysis of the model of a magnetic microcapsule in the form of a prolate spheroidal shell is performed and formulas for the magnetostatic and magnetic free energy when the magnetic field is directed along the major axis of the spheroid are derived.

  3. Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field.

    PubMed

    Jiang, Pengfei; Zhang, Yixian; Zhu, Chaonan; Zhang, Wenjing; Mao, Zhengwei; Gao, Changyou

    2016-12-01

    Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe 3 O 4 /BSA) particles were prepared, which showed a spherical morphology with a diameter below 200 nm, negatively charged surface, and tunable magnetic property. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field, resulting in almost twice intracellular amount of the particles within 21 d compared to that of the magnetic field free control. Uptake of the Fe 3 O 4 /BSA particles enhanced significantly the osteogenic differentiation of MSCs under a static magnetic field, as evidenced by elevated alkaline phosphatase (ALP) activity, calcium deposition, and expressions of collagen type I and osteocalcin at both mRNA and protein levels. Therefore, uptake of the Fe 3 O 4 /BSA particles brings significant influence on the differentiation of MSCs under magnetic field, and thereby should be paid great attention for practical applications. Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe 3 O 4 /BSA) particles with a diameter below 200nm, negatively charged surface, tunable Fe 3 O 4 content and subsequently adjustable magnetic property were prepared. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field. Uptake of the Fe 3 O 4 /BSA particles enhanced significantly the osteogenic differentiation of MSCs under a constant static magnetic field, while the magnetic particles and external magnetic field alone do not influence significantly the

  4. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  5. The effect of the earth's and stray magnetic fields on mobile mass spectrometer systems.

    PubMed

    Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Short, R Timothy; Gill, Chris G; Krogh, Erik T

    2015-02-01

    Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity.

  6. Radio-frequency and microwave energies, magnetic and electric fields

    NASA Technical Reports Server (NTRS)

    Michaelson, S. M.

    1975-01-01

    The biological effects of radio frequency, including microwave, radiation are considered. Effects on body temperature, the eye, reproductive systems, internal organs, blood cells, the cardiovascular system, and the central nervous system are included. Generalized effects of electric and magnetic fields are also discussed. Experimentation with animals and clinical studies on humans are cited, and possible mechanisms of the effects observed are suggested.

  7. What humankind can expect with an inversion of Earth’s magnetic field: threats real and imagined

    NASA Astrophysics Data System (ADS)

    Tsareva, O. O.; Zelenyi, L. M.; Malova, H. V.; Podzolko, M. V.; Popova, E. P.; Popov, V. Yu

    2018-02-01

    Earth’s global magnetic field generated by an internal dynamo mechanism has been continuously changing on different time scales since its formation. Paleodata indicate that relatively long periods of evolutionary changes can be replaced by quick magnetic inversions. Based on observations, Earth’s magnetic field is currently weakening and the magnetic poles are shifting, possibly indicating the beginning of the inversion process. This paper invokes Gauss coefficients to approximate the behavior of Earth’s magnetic field components over the past 100 years. Using the extrapolation method, it is estimated that the magnetic dipole component will vanish by the year 3600 and at that time the geomagnetic field will be determined by a smaller value of a quadrupole magnetic component. A numerical model is constructed which allows evaluating and comparing both galactic and solar cosmic ray fluxes in Earth’s magnetosphere and on its surface during periods of dipole or quadrupole domination. The role of the atmosphere in absorbing particles of cosmic rays is taken into account. An estimate of the radiation danger to humans is obtained for the ground level and for the International Space Station altitude of ∼ 400 km. It is shown that in the most unfavorable, minimum field interval of the inversion process, the galactic cosmic ray flux increases by no more than a factor of three, implying that the radiation danger does not exceed the maximum permissible dose. Thus, the danger of magnetic inversion periods generally should not have fatal consequences for humans and nature as a whole, despite dramatically changing the structure of Earth’s magnetosphere.

  8. Optimization study on the magnetic field of superconducting Halbach Array magnet

    NASA Astrophysics Data System (ADS)

    Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.

    2017-07-01

    This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.

  9. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2010-01-01

    Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected. PMID:20732895

  10. Magnetic field effect for cellulose nanofiber alignment

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Chen, Yi; Kang, Kwang-Sun; Park, Young-Bin; Schwartz, Mark

    2008-11-01

    Regenerated cellulose formed into cellulose nanofibers under strong magnetic field and aligned perpendicularly to the magnetic field. Well-aligned microfibrils were found as the exposure time of the magnetic field increased. Better alignment and more crystalline structure of the cellulose resulted in the increased decomposition temperature of the material. X-ray crystallograms showed that crystallinity index of the cellulose increased as the exposure time of the magnetic field increased.

  11. Magnetic field induced dynamical chaos.

    PubMed

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  12. Planetary Magnetic Fields and Climate Evolution

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Leblanc, F.; Luhmann, J. G.; Moore, T. E.; Tian, F.

    We explore the possible connections between magnetic fields and climate at the terrestrial bodies Venus, Earth, Mars, and Titan. Magnetic fields are thought to have negligible effects on the processes that change a planet's climate, except for processes that alter the abundance of atmospheric gases. Particles can be added or removed at the top of an atmosphere, where collisions are infrequent and a more substantial fraction of particles are ionized (and therefore subject to magnetic forces) than at lower altitudes. The absence of a global magnetic field at Mars for much of its history may have contributed to the removal of a substantial fraction of its atmosphere to space. The persistence of a global magnetic field should have decreased both ionization and removal of atmospheric ions by several processes, and may have indirectly decreased the loss rate of neutral particles as well. While it is convenient to think of magnetic fields as shields for planetary atmospheres from impinging plasma (such as the solar wind), observations of ions escaping from Earth's polar cusp regions suggest that magnetic shielding effects may not be as effective as previously thought. One explanation that requires further testing is that magnetic fields transfer momentum and energy from incident plasma to localized regions of the atmosphere, resulting in similar (or possibly greater) escape rates than if the momentum and energy were imparted more globally to the atmosphere in the absence of a magnetic field. Trace gases can be important for climate despite their low relative abundance in planetary atmospheres. At Venus, removal of O+ over the history of the planet has likely contributed to the loss of water from the atmosphere, leading to a runaway greenhouse situation and having implications for the chemistry of atmosphere-surface interactions. Conversely, Titan's robust atmospheric chemistry may result from the addition of trace amounts of oxygen from Saturn's magnetosphere, which then

  13. Convection and magnetic field generation in the interior of planets (August Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Christensen, U. R.

    2009-04-01

    Thermal convection driven by internal energy plays a role of paramount importance in planetary bodies. Its numerical modeling has been an essential tool for understanding how the internal engine of a planet works. Solid state convection in the silicate or icy mantles is the cause of endogenic tectonic activity, volcanism and, in the case of Earth, of plate motion. It also regulates the energy budget of the entire planet, including that of its core, and controls the presence or absence of a dynamo. The complex rheology of solid minerals, effects of phase transitions, and chemical heterogeneity are important issues in mantle convection. Examples discussed here are the convection pattern in Mars and the complex morphology of subducted slabs that are observed by seismic tomography in the Earth's mantle. Internally driven convection in the deep gas envelopes of the giant planets is possibly the cause for the strong jet streams at the surfaces that give rise to their banded appearance. Modeling of the magnetohydrodynamic flow in the conducting liquid core of the Earth has been remarkably successful in reproducing the primary properties of the geomagnetic field. As an examplefor attempts to explain also secondary properties, I will discuss dynamo models that account for the thermal coupling to the mantle. The understanding of the somewhat enigmatic magnetic fields of some other planets is less advanced. Here I will show that dynamos that operate below a stable conducting layer in the upper part of the planetary core can explain the unusual magnetic field properties of Mercury and Saturn. The question what determines the strength of a dynamo-generated magnetic field has been a matter of debate. From a large set of numerical dynamo simulations that cover a fair range of control parameters, we find a rule that relates magnetic field strength to the part of the energy flux that is thermodynamically available to be transformed into other forms of energy. This rules predicts

  14. Radio scintillations observed during atmospheric occultations of Voyager: Internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.

    1983-01-01

    The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.

  15. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  16. Magnetic space-based field measurements

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1981-01-01

    Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.

  17. The magnetic field of a permanent hollow cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.

    2016-09-01

    Based on the rational version of M AXWELL's equations according to T RUESDELL and T OUPIN or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider M AXWELL's equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.

  18. Application of the magnetic fluid as a detector for changing the magnetic field

    NASA Astrophysics Data System (ADS)

    Zyatkov, D.; Yurchenko, A.; Yurchenko, V.; Balashov, V.

    2018-05-01

    In article the possibility of use of magnetic fluid as a sensitive element for fixing of change of induction of magnetic field in space is considered. Importance of solvable tasks is connected with search of the perspective magnetic substances susceptible to weak magnetic field. The results of a study of the capacitive method for fixing the change in the magnetic field on the basis of a ferromagnetic liquid are presented. The formation of chain structures in the ferrofluid from magnetic particles under the influence of the applied magnetic field leads to a change in the capacitance of the plate condenser. This task has important practical value for development of a magnetosensitive sensor of change of magnetic field.

  19. Magnetic vortex nucleation modes in static magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanatka, Marek; Urbanek, Michal; Jira, Roman

    The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less

  20. Magnetic vortex nucleation modes in static magnetic fields

    DOE PAGES

    Vanatka, Marek; Urbanek, Michal; Jira, Roman; ...

    2017-10-03

    The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less

  1. Measurements of intermediate-frequency electric and magnetic fields in households

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aerts, Sam, E-mail: sam.aerts@intec.ugent.be

    Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300 Hz to 1 MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g., induction cookers and compact fluorescent lighting). In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields in the IF range typically present in residencesmore » as well as emitted by a wide range of household appliances under real-life circumstances. Using spot measurements, residential IF field levels were found to be generally low, while the use of certain appliances at close distance (20 cm) may result in a relatively high exposure. Overall, appliance emissions contained either harmonic signals, with fundamental frequencies between 6 kHz and 300 kHz, which were sometimes accompanied by regions in the IF spectrum of rather noisy, elevated field strengths, or much more capricious spectra, dominated by 50 Hz harmonics emanating far in the IF domain. The maximum peak field strengths recorded at 20 cm were 41.5 V/m and 2.7 A/m, both from induction cookers. Finally, none of the appliance emissions in the IF range exceeded the exposure summation rules recommended by the International Commission on Non-Ionizing Radiation Protection guidelines and the International Electrotechnical Commission (IEC 62233) standard at 20 cm and beyond (maximum exposure quotients EQ{sub E} 1.0 and {sub E}Q{sub H} 0.13). - Highlights: • Survey of residential electric and magnetic fields at intermediate frequencies (IF). • IF-EF and -MF emitted by 280 household appliances were characterised. • Strongest emitters were induction cookers, CFLs, LCD-TVs, and microwave ovens.

  2. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure.

    PubMed

    Xia, Ji; Wang, Fuyin; Luo, Hong; Wang, Qi; Xiong, Shuidong

    2016-04-29

    Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP) cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG) written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas.

  3. Geophysical exploration with audio frequency magnetic fields

    NASA Astrophysics Data System (ADS)

    Labson, V. F.

    1985-12-01

    Experience with the Audio Frequency Magnetic (AFMAG) method has demonstrated that an electromagnetic exploration system using the Earth's natural audiofrequency magnetic fields as an energy source, is capable of mapping subsurface electrical structure in the upper kilometer of the Earth's crust. The limitations are resolved by adapting the tensor analysis and remote reference noise bias removal techniques from the geomagnetic induction and magnetotelluric methods to the computation of the tippers. After a through spectral study of the natural magnetic fields, lightweight magnetic field sensors, capable of measuring the magnetic field throughout the year were designed. A digital acquisition and processing sytem, with the ability to provide audiofrequency tipper results in the field, was then built to complete the apparatus. The new instrumetnation was used in a study of the Mariposa, California site previously mapped with AFMAG. The usefulness of natural magnetic field data in mapping an electrical conductive body was again demonstrated. Several field examples are used to demonstrate that the proposed procedure yields reasonable results.

  4. Measuring magnetic field vector by stimulated Raman transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenli; Wei, Rong, E-mail: weirong@siom.ac.cn; Lin, Jinda

    2016-03-21

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields,more » beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.« less

  5. A Comparative Analysis of the Magnetic Field Signals over Impact Structures on the Earth, Mars and the Moon

    NASA Technical Reports Server (NTRS)

    Isac, Anca; Mandea, Mioara; Purucker, Michael; Langlais, Benoit

    2015-01-01

    An improved description of magnetic fields of terrestrial bodies has been obtained from recent space missions, leading to a better characterization of the internal fields including those of crustal origin. One of the striking differences in their crustal magnetic field is the signature of large impact craters. A comparative analysis of the magnetic characteristics of these structures can shed light on the history of their respective planetary-scale magnetic dynamos. This has motivated us to identify impact craters and basins, first by their quasi-circular features from the most recent and detailed topographic maps and then from available global magnetic field maps. We have examined the magnetic field observed above 27 complex craters on the Earth, 34 impact basins on Mars and 37 impact basins on the Moon. For the first time, systematic trends in the amplitude and frequency of the magnetic patterns, inside and outside of these structures are observed for all three bodies. The demagnetization effects due to the impact shock wave and excavation processes have been evaluated applying the Equivalent Source Dipole forward modeling approach. The main characteristics of the selected impact craters are shown. The trends in their magnetic signatures are indicated, which are related to the presence or absence of a planetary-scale dynamo at the time of their formation and to impact processes. The low magnetic field intensity at center can be accepted as the prime characteristic of a hypervelocity impact and strongly associated with the mechanics of impact crater formation. In the presence of an active internal field, the process of demagnetization due to the shock impact is associated with post-impact remagnetization processes, generating a more complex magnetic signature.

  6. Internal Magnetic Field on the Two-Dimensional Triangular Lattice Formed by Mo3O8 Trimers

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Nozaki, Hiroshi; Umegaki, Izumi; Haraguchi, Yuya; Michioka, Chishiro; Ueda, Hiroaki; Yoshimura, Kazuyoshi; Sassa, Yasmine; Forslund, Ola Kenji; Andreica, Daniel; Goko, Tatsuo; Amato, Alex; Månsson, Martin

    In order to elucidate the magnetic ground state of the cluster magnets with a half filled triangular lattice, we have recorded zero field (ZF-) and weak transverse field (wTF-) μ+SR spectra using powder samples of Li2InMo3O8 and Li2ScMo3O8 down to 1.9 K. The ZF measurements at 1.9 K demonstrated the presence of static magnetic order in Li2InMo3O8, whereas paramagnetic nature in Li2ScMo3O8. The wTF measurements clarified that the magnetic transition occurs at around 11 K (= TN) in Li2InMo3O8. However, for Li2ScMo3O8, there is no detectable change in the ZF- and wTF-μ+SR fit-parameters in the temperature range between 60 and 1.9 K.

  7. Polarized radiation diagnostics of stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Mathys, Gautier

    The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the

  8. Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karličić, Danilo; Cajić, Milan; Murmu, Tony

    2014-06-21

    Nanocomposites and magnetic field effects on nanostructures have received great attention in recent years. A large amount of research work was focused on developing the proper theoretical framework for describing many physical effects appearing in structures on nanoscale level. Great step in this direction was successful application of nonlocal continuum field theory of Eringen. In the present paper, the free transverse vibration analysis is carried out for the system composed of multiple single walled carbon nanotubes (MSWCNT) embedded in a polymer matrix and under the influence of an axial magnetic field. Equivalent nonlocal model of MSWCNT is adopted as viscoelasticallymore » coupled multi-nanobeam system (MNBS) under the influence of longitudinal magnetic field. Governing equations of motion are derived using the Newton second low and nonlocal Rayleigh beam theory, which take into account small-scale effects, the effect of nanobeam angular acceleration, internal damping and Maxwell relation. Explicit expressions for complex natural frequency are derived based on the method of separation of variables and trigonometric method for the “Clamped-Chain” system. In addition, an analytical method is proposed in order to obtain asymptotic damped natural frequency and the critical damping ratio, which are independent of boundary conditions and a number of nanobeams in MNBS. The validity of obtained results is confirmed by comparing the results obtained for complex frequencies via trigonometric method with the results obtained by using numerical methods. The influence of the longitudinal magnetic field on the free vibration response of viscoelastically coupled MNBS is discussed in detail. In addition, numerical results are presented to point out the effects of the nonlocal parameter, internal damping, and parameters of viscoelastic medium on complex natural frequencies of the system. The results demonstrate the efficiency of the suggested methodology to find the

  9. Picturing the Sun’s Magnetic Field

    NASA Image and Video Library

    2017-12-08

    This illustration lays a depiction of the sun's magnetic fields over an image captured by NASA’s Solar Dynamics Observatory on March 12, 2016. The complex overlay of lines can teach scientists about the ways the sun's magnetism changes in response to the constant movement on and inside the sun. Note how the magnetic fields are densest near the bright spots visible on the sun – which are magnetically strong active regions – and many of the field lines link one active region to another. This magnetic map was created using the PFSS – Potential Field Source Surface – model, a model of the magnetic field in the sun’s atmosphere based on magnetic measurements of the solar surface. The underlying image was taken in extreme ultraviolet wavelengths of 171 angstroms. This type of light is invisible to our eyes, but is colorized here in gold. Credits: NASA/SDO/AIA/LMSAL NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Safety of implantable pacemakers and cardioverter defibrillators in the magnetic field of a novel remote magnetic navigation system.

    PubMed

    Jilek, Clemens; Tzeis, Stylianos; Reents, Tilko; Estner, Heidi-Luise; Fichtner, Stephanie; Ammar, Sonia; Wu, Jinjin; Hessling, Gabriele; Deisenhofer, Isabel; Kolb, Christof

    2010-10-01

    Electromagnetic interference with pacemaker and implantable cardioverter defibrillator (ICD) systems may cause temporary or permanent system malfunction of implanted devices. The aim of this study was to evaluate potential interference of a novel magnetic navigation system with implantable rhythm devices. A total of 121 devices (77 pacemakers, 44 ICDs) were exposed to an activated NIOBE II® Magnetic Navigation System (Stereotaxis, St. Louis, MO, USA) at the maximal magnetic field strength of 0.1 Tesla and evaluated in vitro with respect to changes in parameter settings of the device, changes of the battery status/detection of elective replacement indication, or alterations of data stored in the device. A total of 115 out of 121 (95%) devices were free of changes in parameter settings, battery status, and internally stored data after repeated exposition to the electromagnetic field of the remote magnetic navigation system. Interference with the magnetic navigation field was observed in 6 pacemakers, resulting in reprogramming to a power-on-reset mode with or without detection of the elective replacement indication in 5 devices and abnormal variance of battery status in one device. All pacemakers could be reprogrammed to the initial modes and the battery status proved to be normal some minutes after the pacemakers had been removed from the magnetic field. Interference of a remote magnetic navigation system (at maximal field strength) with pacemakers and ICDs not connected to leads with antitachycardic detection and therapies turned off is rare. Occurring functional abnormalities could be reprogrammed in our sample. An in vitro study will give information about interference of devices connected to leads. © 2010 Wiley Periodicals, Inc.

  11. The large-scale magnetic field in the solar wind. [astronomical models of interplanetary magnetics and the solar magnetic field

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    1976-01-01

    A literature review is presented of theoretical models of the interaction of the solar wind and interplanetary magnetic fields. Observations of interplanetary magnetic fields by the IMP and OSO spacecraft are discussed. The causes for cosmic ray variations (Forbush decreases) by the solar wind are examined. The model of Parker is emphasized. This model shows the three dimensional magnetic field lines of the solar wind to have the form of spirals wrapped on cones. It is concluded that an out-of-the-ecliptic solar probe mission would allow the testing and verification of the various theoretical models examined. Diagrams of the various models are shown.

  12. Investigations of a simulated geomagnetic field experienced by the International Space Station on attentional performance.

    PubMed

    Del Seppia, Cristina; Mezzasalma, Lorena; Messerotti, Mauro; Cordelli, Alessandro; Ghione, Sergio

    2009-01-01

    We have previously reported that the exposure to an abnormal magnetic field simulating the one encountered by the International Space Station (ISS) orbiting around the Earth may enhance autonomic response to emotional stimuli. Here we report the results of the second part of that study which tested whether this field also affects cognitive functions. Twenty-four volunteers participated in the study, 12 exposed to the natural geomagnetic field and 12 to the magnetic field encountered by ISS. The test protocol consisted of a set of eight tests chosen from a computerized test battery for the assessment of attentional performance. The duration of exposure was 90 min. No effect of exposure to ISS magnetic field was observed on attentional performance. (c) 2008 Wiley-Liss, Inc.

  13. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  14. Magnetic-Field-Response Measurement-Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  15. Seminal magnetic fields from inflato-electromagnetic inflation

    NASA Astrophysics Data System (ADS)

    Membiela, Federico Agustín; Bellini, Mauricio

    2012-10-01

    We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B ij in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance.

  16. Brushed permanent magnet DC MLC motor operation in an external magnetic field.

    PubMed

    Yun, J; St Aubin, J; Rathee, S; Fallone, B G

    2010-05-01

    Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of

  17. 36-segmented high magnetic field hexapole magnets for electron cyclotron resonance ion source.

    PubMed

    Sun, L T; Zhao, H W; Zhang, Z M; Wang, H; Ma, B H; Zhang, X Z; Li, X X; Feng, Y C; Li, J Y; Guo, X H; Shang, Y; Zhao, H Y

    2007-05-01

    Two high magnetic field hexapoles for electron cyclotron resonance ion source (ECRIS) have successfully fabricated to provide sufficient radial magnetic confinement to the ECR plasma. The highest magnetic field at the inner pole tip of one of the magnets exceeds 1.5 T, with the inner diameter (i.d.)=74 mm. The other hexapole magnet provides more than 1.35 T magnetic field at the inner pole tip, and the i.d. is 84 mm. In this article, we discuss the necessity to have a good radial magnetic field confinement and the importance of a Halbach hexapole to a high performance ECRIS. The way to design a high magnetic field Halbach structure hexapole and one possible solution to the self-demagnetization problem are both discussed. Based on the above discussions, two high magnetic field hexapoles have been fabricated to be utilized on two high performance ECRISs in Lanzhou. The preliminary results obtained from the two ECR ion sources are given.

  18. Casting the Coronal Magnetic Field Reconstructions with Magnetic Field Constraints above the Photosphere in 3D Using MHD Bifrost Model

    NASA Astrophysics Data System (ADS)

    Fleishman, G. D.; Anfinogentov, S.; Loukitcheva, M.; Mysh'yakov, I.; Stupishin, A.

    2017-12-01

    Measuring and modeling coronal magnetic field, especially above active regions (ARs), remains one of the central problems of solar physics given that the solar coronal magnetism is the key driver of all solar activity. Nowadays the coronal magnetic field is often modelled using methods of nonlinear force-free field reconstruction, whose accuracy has not yet been comprehensively assessed. Given that the coronal magnetic probing is routinely unavailable, only morphological tests have been applied to evaluate performance of the reconstruction methods and a few direct tests using available semi-analytical force-free field solution. Here we report a detailed casting of various tools used for the nonlinear force-free field reconstruction, such as disambiguation methods, photospheric field preprocessing methods, and volume reconstruction methods in a 3D domain using a 3D snapshot of the publicly available full-fledged radiative MHD model. We take advantage of the fact that from the realistic MHD model we know the magnetic field vector distribution in the entire 3D domain, which enables us to perform "voxel-by-voxel" comparison of the restored magnetic field and the true magnetic field in the 3D model volume. Our tests show that the available disambiguation methods often fail at the quiet sun areas, where the magnetic structure is dominated by small-scale magnetic elements, while they work really well at the AR photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although does produce a more force-free boundary condition, also results in some effective `elevation' of the magnetic field components. The effective `elevation' height turns out to be different for the longitudinal and transverse components of the magnetic field, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolation performed starting from actual AR photospheric magnetogram (i.e., without preprocessing) are

  19. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure

    PubMed Central

    Xia, Ji; Wang, Fuyin; Luo, Hong; Wang, Qi; Xiong, Shuidong

    2016-01-01

    Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP) cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG) written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas. PMID:27136564

  20. Magnetic-Field Hazards Bibliography.

    DTIC Science & Technology

    1985-09-01

    Field Hazards Bibliography 15. Bianchi, A.; Capraro, V., and Gualtierotti, T., "Decrease of the sodium transport across frog skin in a steady magnetic...Effects of static magnetic field on some lipid and protein metabolic processes of rabbit, J. Transport . Med. 34:376 (1980). 56. Nakhil ’Nitskaya, Z. N... Brain ," Elsevier Pub. Co., New York. 3. Aleksandrovskaya, M. M.; Kholodov, Yu. A., "The potential role of neruaglia in the onset of a bioelectrical

  1. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    DOE PAGES

    Yu, J.; Li, L. Y.; Cao, J. B.; ...

    2016-07-28

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (B z-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainlymore » pancake distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.« less

  2. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.; Li, L. Y.; Cao, J. B.

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (B z-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainlymore » pancake distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.« less

  3. Spin dephasing in a magnetic dipole field.

    PubMed

    Ziener, C H; Kampf, T; Reents, G; Schlemmer, H-P; Bauer, W R

    2012-05-01

    Transverse relaxation by dephasing in an inhomogeneous field is a general mechanism in physics, for example, in semiconductor physics, muon spectroscopy, or nuclear magnetic resonance. In magnetic resonance imaging the transverse relaxation provides information on the properties of several biological tissues. Since the dipole field is the most important part of the multipole expansion of the local inhomogeneous field, dephasing in a dipole field is highly important in relaxation theory. However, there have been no analytical solutions which describe the dephasing in a magnetic dipole field. In this work we give a complete analytical solution for the dephasing in a magnetic dipole field which is valid over the whole dynamic range.

  4. Development of 3-dimensional compact magnetic dosimeter for environmental magnetic field monitoring

    NASA Astrophysics Data System (ADS)

    Kubota, Yusuke; Obayashi, Haruo; Miyahara, Akira; Ohno, Kazuko; Nakamura, Kouichi; Horii, Kenzi

    1991-07-01

    A computer-driven, three-dimensional magnetic fluxmeter to be used for magnetic field dosimetry has been developed. A magnetic monitor applicable to this object should be measurable to an absolute value of local magnetic field strength and also be able to record its time integration as a measure of exposed dose to the magnetic field. The present fluxmeter consists of signal amplifiers, rectifiers, an A/D converter, and a pocket computer (PC). The signal outputs from the sensors are processed with the PC to compose an absolute strength of magnetic flux density and its time-integrated value. The whole system is driven by a battery and is quite compact in size to be used as a handy portable system. Further details of the design, idea, construction, specification, and testing result of the fluxmeter are described. The measurable range are from 0.4G to 20,000G in normal mode and 8mG to 400G in high-sensitivity AC mode, and the sensitivity is well independent of the magnetic field direction. These measured data are displayed in real time on the LCD panel of the PC and memorized in RAM files. Possible application of the fluxmeter is discussed with special attention to the search of the leakage and/or disturbing error fields around LHD (Large Helical Device) and other magnetic systems, the individual dose control to the workers in strong magnetic fields, and the evaluation of the effects of long irradiation of magnetic fields.

  5. Magnetic field amplification by the r-mode instability

    NASA Astrophysics Data System (ADS)

    Chugunov, A. I.; Friedman, J. L.; Lindblom, L.; Rezzolla, L.

    2017-12-01

    We discuss the magnetic field enhancement by unstable r-modes (driven by the gravitational radiation reaction force) in rotating stars. In the absence of a magnetic field, gravitational radiation exponentially increases the r-mode amplitude α, and accelerates differential rotation (secular motion of fluid elements). For a magnetized star, differential rotation enhances the magnetic field energy. Rezzolla et al (2000-2001) argued that if the magnetic energy grows faster than the gravitational radiation reaction force pumps energy into the r-modes, then the r-mode instability is suppressed. Chugunov (2015) demonstrated that without gravitational radiation, differential rotation can be treated as a degree of freedom decoupled from the r-modes and controlled by the back reaction of the magnetic field. In particular, the magnetic field windup does not damp r-modes. Here we discuss the effect of the back reaction of the magnetic field on differential rotation of unstable r-modes, and show that it limits the generated magnetic field and the magnetic energy growth rate preventing suppression of the r-mode instability by magnetic windup at low saturation amplitudes, α ≪ 1, predicted by current models.

  6. The electrical conductivity of the Earth's upper mantle as estimated from satellite measured magnetic field variations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Didwall, E. M.

    1981-01-01

    Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.

  7. Photospheric magnetic fields in six magnetographs

    NASA Astrophysics Data System (ADS)

    Virtanen, Ilpo; Mursula, Kalevi

    2016-10-01

    Photospheric magnetic field has been routinely observed since 1950s, but calibrated digital data exist only since 1970s. The longest uniform data set is measured at the Wilcox Solar Observatory (WSO), covering 40 years from 1976 onwards. However, the WSO instrument operates in very low spatial resolution and suffers from saturation of strong fields. Other, higher resolution instruments like those at NSO Kitt Peak (KP) offer a more detailed view of the solar magnetic field, but several instrument updates make the data less uniform. While the different observatories show a similar large scale structure of the photospheric field, the measured magnetic field intensities differ significantly between the observatories. In this work we study the photospheric magnetic fields and, especially, the scaling of the magnetic field intensity between six independent data sets. We use synoptic maps constructed from the measurements of the photospheric magnetic field at Wilcox Solar Observatory, Mount Wilson Observatory (MWO), Kitt Peak (KP), SOLIS, SOHO/MDI and SDO/HMI. We calculate the harmonic expansion of the magnetic field from all six data sets and investigate the scaling of harmonic coefficients between the observations. We investigate how scaling depends on latitude and field strength, as well as on the solar cycle phase, and what is the effect of polar field filling in KP, SOLIS and MDI. We find that scaling factors based on harmonic coefficients are in general smaller than scaling factors based on pixel-by-pixel comparison or histogram techniques. This indicates that a significant amount of total flux is contained in the high harmonics of the higher resolution observations that are beyond the resolution of WSO. We note that only scaling factors based on harmonic coefficients should be used when using the PFSS-model, since the other methods tend to lead to overestimated values of the magnetic flux. The scaling of the low order harmonic coefficients is typically different

  8. Optimization of the Magnetic Field Homogeneity Area for Solenoid Type Magnets

    NASA Astrophysics Data System (ADS)

    Perepelkin, Eugene; Polyakova, Rima; Tarelkin, Aleksandr; Kovalenko, Alexander; Sysoev, Pavel; Sadovnikova, Marianne; Yudin, Ivan

    2018-02-01

    Homogeneous magnetic fields are important requisites in modern physics research. In this paper we discuss the problem of magnetic field homogeneity area maximization for solenoid magnets. We discuss A-model and B-model, which are basic types of solenoid magnets used to provide a homogeneous field, and methods for their optimization. We propose C-model which can be used for the NICA project. We have also carried out a cross-check of the C-model with the parameters stated for the CLEO II detector.

  9. Evaluation of models proposed for the 1991 revision of the International Geomagnetic Reference Field

    USGS Publications Warehouse

    Peddie, N.W.

    1992-01-01

    The 1991 revision of the International Geomagnetic Reference Field (IGRF) comprises a definitive main-field model for 1985.0, a main-field model for 1990.0, and a forecast secular-variation model for the period 1990-1995. The five 1985.0 main-field models and five 1990.0 main-field models that were proposed have been evaluated by comparing them with one another, with magnetic observatory data, and with Project MAGNET aerial survey data. The comparisons indicate that the main-field models proposed by IZMIRAN, and the secular-variation model proposed jointly by the British Geological Survey and the US Naval Oceanographic Office, should be assigned relatively lower weight in the derivation of the new IGRF models. -Author

  10. Magnetic shielding of large high-power-satellite solar arrays using internal currents

    NASA Technical Reports Server (NTRS)

    Parker, L. W.; Oran, W. A.

    1979-01-01

    Present concepts for solar power satellites involve dimensions up to tens of kilometers and operating internal currents up to hundreds of kiloamperes. A question addressed is whether the local magnetic fields generated by these strong currents during normal operation can shield the array against impacts by plasma ions and electrons (and from thruster plasmas) which can cause possible losses such as power leakage and surface erosion. One of several prototype concepts was modeled by a long narrow rectangular panel 2 km wide and 20 km long. The currents flow in a parallel across the narrow dimension (sheet current) and along the edge (wire currents). The wire currents accumulate from zero to 100 kiloamp and are the dominant sources. The magnetic field is approximated analytically. The equations of motion for charged particles in this magnetic field are analyzed. The ion and electron fluxes at points on the surface are represented analytically for monoenergetic distributions and are evaluated.

  11. Predicting thermal history a-priori for magnetic nanoparticle hyperthermia of internal carcinoma

    NASA Astrophysics Data System (ADS)

    Dhar, Purbarun; Sirisha Maganti, Lakshmi

    2017-08-01

    This article proposes a simplistic and realistic method where a direct analytical expression can be derived for the temperature field within a tumour during magnetic nanoparticle hyperthermia. The approximated analytical expression for thermal history within the tumour is derived based on the lumped capacitance approach and considers all therapy protocols and parameters. The present method is simplistic and provides an easy framework for estimating hyperthermia protocol parameters promptly. The model has been validated with respect to several experimental reports on animal models such as mice/rabbit/hamster and human clinical trials. It has been observed that the model is able to accurately estimate the thermal history within the carcinoma during the hyperthermia therapy. The present approach may find implications in a-priori estimation of the thermal history in internal tumours for optimizing magnetic hyperthermia treatment protocols with respect to the ablation time, tumour size, magnetic drug concentration, field strength, field frequency, nanoparticle material and size, tumour location, and so on.

  12. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  13. Magnetic field sources and their threat to magnetic media

    NASA Technical Reports Server (NTRS)

    Jewell, Steve

    1993-01-01

    Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

  14. Field Mapping System for Solenoid Magnet

    NASA Astrophysics Data System (ADS)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  15. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  16. Magnetic fringe field interference between the quadrupole and corrector magnets in the CSNS/RCS

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Kang, Wen; Deng, Changdong; Sun, Xianjing; Li, Li; Wu, Xi; Gong, Lingling; Cheng, Da; Zhu, Yingshun; Chen, Fusan

    2017-03-01

    The Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) employs large aperture quadrupole and corrector magnets with small aspect ratios and relatively short iron to iron separations; so the fringe field interference becomes serious which results in integral field strength reduction and extra field harmonics. We have performed 3D magnetic field simulations to investigate the magnetic field interference in the magnet assemblies and made some adjustments on the magnet arrangement. The Fourier analysis is used to quantify the integral gradient reduction and field harmonic changes of the quadrupole magnets. Some magnetic field measurements are undertaken to verify the simulation results. The simulation details and the major results are presented in this paper.

  17. Precision measurement of magnetic characteristics of an article with nullification of external magnetic fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B. (Inventor); Narvaez, Pablo (Inventor); Mcauley, James M. (Inventor)

    1992-01-01

    An apparatus for characterizing the magnetic field of a device under test is discussed. The apparatus is comprised of five separate devices: (1) a device for nullifying the ambient magnetic fields in a test environment area with a constant applied magnetic field; (2) a device for rotating the device under test in the test environment area; (3) a device for sensing the magnetic field (to obtain a profile of the magnetic field) at a sensor location which is along the circumference of rotation; (4) a memory for storing the profiles; and (5) a processor coupled to the memory for characterizing the magnetic field of the device from the magnetic field profiles thus obtained.

  18. Reducing blood viscosity with magnetic fields

    NASA Astrophysics Data System (ADS)

    Tao, R.; Huang, K.

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ˜1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells’ normal function. This technology has much potential for physical therapy.

  19. An industrial design solution for integrating NMR magnetic field sensors into an MRI scanner.

    PubMed

    Kennedy, Michael; Lee, Yoojin; Nagy, Zoltan

    2018-08-01

    Neuroimaging research relies on the skills of increasingly multidisciplinary individuals and often requires the installation and use of additional home-built or third-party equipment. The purpose of the present work was the safe, ergonomic, durable, and aesthetically pleasing installation of magnetic field monitoring equipment into a scanner, while keeping the setup compatible with standard operating procedures. An extensive set of steps was required to design a 3D printed solution to install a magnetic field camera into the eight-channel head coil of a 3T MRI scanner. First, the outer surface of the plastic coil housing was recreated into a 3D model, and the installation of the magnetic field sensors around this 3D model was performed in a virtual environment. The 3D printed solution was then assembled and tested for safety, reproducible performance, and image quality. The 3D printed solution holds the probes in stable positions and guides the necessary cables in an organized fashion and away from the volunteer. Assembly is easy and the solution is ergonomic, durable, and safe. We did not find excessive heating in the 3D printed parts, nor in the electronics, that they help to incorporate. The material used interferes minimally with transmit B1+ field. The design met all of the boundary conditions for a durable, safe, cost-effective, attractive, and functional installation. This work will provide the basis for installing the magnetic field sensors into other available head coils, and for designing the experimental setup for projects with varying experimental requirements. Magn Reson Med 80:833-839, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. A portable magnetic field of >3 T generated by the flux jump assisted, pulsed field magnetization of bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Difan; Ainslie, Mark D.; Shi, Yunhua; Dennis, Anthony R.; Huang, Kaiyuan; Hull, John R.; Cardwell, David A.; Durrell, John H.

    2017-02-01

    A trapped magnetic field of greater than 3 T has been achieved in a single grain GdBa2Cu3O7-δ (GdBaCuO) bulk superconductor of diameter 30 mm by employing pulsed field magnetization. The magnet system is portable and operates at temperatures between 50 K and 60 K. Flux jump behaviour was observed consistently during magnetization when the applied pulsed field, Ba, exceeded a critical value (e.g., 3.78 T at 60 K). A sharp dBa/dt is essential to this phenomenon. This flux jump behaviour enables the magnetic flux to penetrate fully to the centre of the bulk superconductor, resulting in full magnetization of the sample without requiring an applied field as large as that predicted by the Bean model. We show that this flux jump behaviour can occur over a wide range of fields and temperatures, and that it can be exploited in a practical quasi-permanent magnet system.

  1. Magnetic-field-controlled reconfigurable semiconductor logic.

    PubMed

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

    2013-02-07

    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.

  2. Design of a dual sensor probe array for internal field measurement in Versatile Experiment Spherical Torusa)

    NASA Astrophysics Data System (ADS)

    Jeong-hun, Yang; Chung, Kyoung-Jae; An, YoungHwa; Jung, Bong Ki; Jo, Jong Gab; Hwang, Y. S.

    2012-10-01

    A dual sensor probe array is designed and constructed for internal magnetic field measurement at Versatile Experiment Spherical Torus (VEST) at the Seoul National University. Simultaneous use of Hall sensors and chip inductors allows cross-calibration among the measurements and compensation for each other's weaknesses while their small sizes are expected to cause only mild plasma perturbations. Calibration of the dual sensor probe array, using a Helmholtz coil, shows good sensitivity for the magnetic field measurement of the VEST. Prior to Ohmic start-up, the magnetic field structure inside the vacuum chamber is measured by using the calibrated probe array. The dual sensor probe array is expected to be useful in analyzing the temporal magnetic field structure change during the magnetic reconnection and in reconstruction of the current profile during the discharge of the VEST device.

  3. Coronal magnetic fields and the solar wind

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.

    1972-01-01

    Current information is presented on coronal magnetic fields as they bear on problems of the solar wind. Both steady state fields and coronal transient events are considered. A brief critique is given of the methods of calculating coronal magnetic fields including the potential (current free) models, exact solutions for the solar wind and field interaction, and source surface models. These solutions are compared with the meager quantitative observations which are available at this time. Qualitative comparisons between the shapes of calculated magnetic field lines and the forms visible in the solar corona at several recent eclipses are displayed. These suggest that: (1) coronal streamers develop above extended magnetic arcades which connect unipolar regions of opposite polarity; and (2) loops, arches, and rays in the corona correspond to preferentially filled magnetic tubes in the approximately potential field.

  4. Electron beam therapy with coil-generated magnetic fields.

    PubMed

    Nardi, Eran; Barnea, Gideon; Ma, Chang-Ming

    2004-06-01

    This paper presents an initial study on the issues involved in the practical implementation of the use of transverse magnetic fields in electron beam therapy. By using such magnetic fields the dose delivered to the tumor region can increase significantly relative to that deposited to the healthy tissue. Initially we calculated the magnetic fields produced by the Helmholtz coil and modified Helmholtz coil configurations. These configurations, which can readily be used to generate high intensity magnetic fields, approximate the idealized magnetic fields studied in our previous publications. It was therefore of interest to perform a detailed study of the fields produced by these configurations. Electron beam dose distributions for 15 MeV electrons were calculated using the ACCEPTM code for a 3T transverse magnetic field produced by the modified Helmholtz configuration. The dose distribution was compared to those obtained with no magnetic field. The results were similar to those obtained in our previous work, where an idealized step function magnetic field was used and a 3T field was shown to be the optimal field strength. A simpler configuration was also studied in which a single external coil was used to generate the field. Electron dose distributions are also presented for a given geometry and given magnetic field strength using this configuration. The results indicate that this method is more difficult to apply to radiotherapy due to its lack of symmetry and its irregularity. For the various configurations dealt with here, a major problem is the need to shield the magnetic field in the beam propagation volume, a topic that must be studied in detail.

  5. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    NASA Astrophysics Data System (ADS)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  6. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  7. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L.

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  8. On the Helicity of Open Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Prior, C.; Yeates, A. R.

    2014-06-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  9. The Strongest Magnetic Field in Sunspots

    NASA Astrophysics Data System (ADS)

    Okamoto, J.; Sakurai, T.

    2017-12-01

    Sunspots are concentrations of magnetic fields on the solar surface. Generally, the strongest magnetic field in each sunspot is located in the dark umbra in most cases. A typical field strength in sunspots is around 3,000 G. On the other hand, some exceptions also have been found in complex sunspots with bright regions such as light bridges that separate opposite polarity umbrae, for instance with a strength of 4,300 G. However, the formation mechanism of such strong fields outside umbrae is still puzzling. Here we report an extremely strong magnetic field in a sunspot, which was located in a bright region sandwiched by two opposite-polarity umbrae. The strength is 6,250 G, which is the largest ever observed since the discovery of magnetic field on the Sun in 1908 by Hale. We obtained 31 scanned maps of the active region observed by Hinode/SOT/SP with a cadence of 3 hours over 5 days (February 1-6, 2014). Considering the spatial and temporal evolution of the vector magnetic field and the Doppler velocity in the bright region, we suggested that this strong field region was generated as a result of compression of one umbra pushed by the outward flow from the other umbra (Evershed flow), like the subduction of the Earth's crust in plate tectonics.

  10. Magnetic field gradients and their uses in the study of the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A.; Southam, J. R.

    1991-01-01

    Magnetic field gradients are discussed from the standpoint of their usefulness in modeling crustal magnetizations. The fact that gradients enhance shorter wavelength features helps reduce both the core signal and the signal from external fields in comparison with the crustal signal. If the gradient device can be oriented, then directions of lineation can be determined from single profiles, and anomalies caused by unlineated sources can be identified.

  11. Magnetic field sensor based on cascaded microfiber coupler with magnetic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Lianmin; Su, Delong; Wang, Zhaofang

    A kind of magnetic field sensor based on cascaded microfiber coupler with magnetic fluid is proposed and experimentally demonstrated. The magnetic fluid is utilized as the cladding of the fused regions of the cascaded microfiber coupler. As the interference valley wavelength of the sensing structure is sensitive to the ambient variation, considering the magnetic-field-dependent refractive index of magnetic fluid, the proposed structure is employed for magnetic field sensing. The effective coupling length for each coupling region of the as-fabricated cascaded microfiber coupler is 6031 μm. The achieved sensitivity is 125 pm/Oe, which is about three times larger than that of the previouslymore » similar structure based on the single microfiber coupler. Experimental results indicate that the sensing sensitivity can be easily improved by increasing the effective coupling length or cascading more microfiber couplers. The proposed magnetic field sensor is attractive due to its low cost, immunity to electromagnetic interference, as well as high sensitivity, which also has the potentials in other tunable all-fiber photonic devices, such as filter.« less

  12. Magnetic Fields and Bow Shocks Illustration

    NASA Image and Video Library

    2013-02-19

    This illustration shows quasi-parallel top and quasi-perpendicular bottom magnetic field conditions at a planetary bow shock. Bow shocks are shockwaves created when the solar wind blows on a planet magnetic field.

  13. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.

    2015-05-19

    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  14. Magnetic fields of young solar twins

    NASA Astrophysics Data System (ADS)

    Rosén, L.; Kochukhov, O.; Hackman, T.; Lehtinen, J.

    2016-09-01

    Aims: The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and to understand the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. Methods: We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Results: Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100 Myr to 250 Myr, while there is no significant age dependence of the mean magnetic field strength for stars with ages 250-650 Myr. The spread in the mean field strength between different stars is comparable to the scatter between different observations of individual stars. The meridional field component is weaker than the radial and azimuthal field components in 15 of the 16 magnetic maps. It turns out that 89-97% of the magnetic field energy is contained in l = 1 - 3. There is also no clear trend with age and distribution of field energy into poloidal/toroidal and axisymmetric/non-axisymmetric components within the sample. The two oldest stars in this study show an octupole component that is twice as strong as the quadrupole component. This is only seen in 1 of the 13 maps of the younger stars. One star, χ1 Ori, displays two field polarity switches during almost 5 yr of observations suggesting a magnetic cycle length of 2, 6, or 8 yr. Based on observations made with the HARPSpol instrument on the ESO 3.6 m

  15. Alaska and Yukon magnetic compilation, residual total magnetic field

    USGS Publications Warehouse

    Miles, W.; Saltus, Richard W.; Hayward, N.; Oneschuk, D.

    2017-01-01

    This map is a compilation of aeromagnetic surveys over Yukon and eastern Alaska. Aeromagnetic surveys measure the total intensity of the earth's magnetic field. The field was measured by a magnetometer aboard an aircraft flown in parallel lines spaced at 200 m to 10000 m across the map area. The magnetic field reflects magnetic properties of bedrock and provides qualitative and quantitative information used in geological mapping. Understanding the geology will help geologists map the area, assist mineral/hydrocarbon exploration activities, and provide useful information necessary for communities, aboriginal associations, and government to make land use decisions. This survey was flown to improve our knowledge of the area. It will support ongoing geological mapping and resource assessment.

  16. Dynamo magnetic-field generation in turbulent accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1991-01-01

    Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.

  17. Magnetic Thermometer: Thermal effect on the Agglomeration of Magnetic Nanoparticles by Magnetic field

    NASA Astrophysics Data System (ADS)

    Jin, Daeseong; Kim, Hackjin

    2018-03-01

    We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.

  18. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection, and dynamical chaos

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-07-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the `dipole dichotomy' problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localized region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organization of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetized region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  19. Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection that Fits the Breakout Model of Solar Magnetic Eruptions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Moore, R. L.

    2003-01-01

    We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from AR10030 on 2002 July 15. The TRACE CIV observations clearly show a flux tube that is helical and that is erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption starts 25 seconds after the peak of the flare s strongest impulsive spike of microwave gryosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double CME. The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection heats the two-ribbon flare and might or might not produce the helix. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is associated with rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel, and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation. However, the observations are compatible with internal reconnection in a sheared magnetic arcade in the formation and eruption of the helix.

  20. Reduction of magnetic field fluctuations in powered magnets for NMR using inductive measurements and sampled-data feedback control.

    PubMed

    Li, Mingzhou; Schiano, Jeffrey L; Samra, Jenna E; Shetty, Kiran K; Brey, William W

    2011-10-01

    Resistive and hybrid (resistive/superconducting) magnets provide substantially higher magnetic fields than those available in low-temperature superconducting magnets, but their relatively low spatial homogeneity and temporal field fluctuations are unacceptable for high resolution NMR. While several techniques for reducing temporal fluctuations have demonstrated varying degrees of success, this paper restricts attention to methods that utilize inductive measurements and feedback control to actively cancel the temporal fluctuations. In comparison to earlier studies using analog proportional control, this paper shows that shaping the controller frequency response results in significantly higher reductions in temporal fluctuations. Measurements of temporal fluctuation spectra and the frequency response of the instrumentation that cancels the temporal fluctuations guide the controller design. In particular, we describe a sampled-data phase-lead-lag controller that utilizes the internal model principle to selectively attenuate magnetic field fluctuations caused by the power supply ripple. We present a quantitative comparison of the attenuation in temporal fluctuations afforded by the new design and a proportional control design. Metrics for comparison include measurements of the temporal fluctuations using Faraday induction and observations of the effect that the fluctuations have on nuclear resonance measurements. Copyright © 2011. Published by Elsevier Inc.

  1. Magnetar Giant Flares in Multipolar Magnetic Fields. III. Multipolar Magnetic Field Structure Variations

    NASA Astrophysics Data System (ADS)

    Yao, Guang-Rui; Huang, Lei; Yu, Cong; Shen, Zhi-Qiang

    2018-02-01

    We have analyzed the multipolar magnetic field structure variation at neutron star surface by means of the catastrophic eruption model and find that the variation of the geometry of multipolar fields on the magnetar surface could result in the catastrophic rearrangement of the magnetosphere, which provides certain physical mechanism for the outburst of giant flares. The magnetospheric model we adopted consists of two assumptions: (1) a helically twisted flux rope is suspended in an ideal force-free magnetosphere around the magnetar, and (2) a current sheet emerges during the flux rope evolution. Magnetic energy accumulates during the flux rope’s gradual evolution along with the variation of magnetar surface magnetic structure before the eruption. The two typical behaviors, either state transition or catastrophic escape, would take place once the flux rope loses equilibrium; thus, tremendous accumulated energy is radiated. We have investigated the equilibrium state of the flux rope and the energy release affected by different multipolar structures and find structures that could trigger violent eruption and provide the radiation approximately 0.5% of the total magnetic energy during the giant flare outburst. Our results provide certain multipolar structures of the neutron star’s magnetic field with an energy release percentage 0.42% in the state transition and 0.51% in the catastrophic escape case, which are sufficient for the previously reported energy release from SGR 1806–20 giant flares.

  2. Magnetic Fields in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  3. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Ananya, E-mail: banerjee.ananya2008@gmail.com; Sarkar, A.

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained andmore » agreement between theory and experiment are good.« less

  4. Magnetic field in expanding quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Stewart, Evan; Tuchin, Kirill

    2018-04-01

    Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in the background electromagnetic field generated by external sources and, on the other hand, to investigate the dynamics of magnetic field in the background plasma. We also argue that the wake induced by the magnetic field in plasma is negligible.

  5. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  6. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  7. The Relationship between Ultraviolet Line Emission and Magnetic Field Strength in Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Cash, Jennifer; Mason, Keith O.; Herzog, Adrienne E.

    1999-02-01

    We present the first UV spectral observations of six magnetic cataclysmic variables discovered by the ROSAT Wide Field Camera (WFC). Using the^ International Ultraviolet Explorer (IUE), 1200-3400 Å spectra were obtained of the AM Herculis stars RE 0531-46, RE 1149+28, RE 1844-74, QS Tel (RE 1938-46), and HU Aqr (RE 2107-05) and the DQ Herculis star PQ Gem (RE 0751+14). The high-state UV spectra are dominated by strong emission lines. Continuum flux distributions for these stars (from 100 to 5500 Å) reveal that over this entire range, none of the spectral energy distributions can be fitted by a single-valued blackbody. Our new UV observations and additional archival IUE spectra were used to discover a correlation between the strength of the high-state UV emission lines and the strength of the white dwarf magnetic field. Model spectral results are used to confirm the production of the UV emission lines by photoionization from X-ray and EUV photons.

  8. Equatorial magnetic field of the near-Earth magnetotail

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Motoba, T.

    2017-08-01

    The equatorial magnetic field of the nightside magnetosphere is critical for understanding not only the configuration of the magnetotail but also its state and dynamics. The present study observationally addresses various aspects of the equatorial magnetic field, such as its spatial distribution, possible antisunward gradients, and extremely weak magnetic fields, with emphasis on the transition region between dipolar and stretched magnetic configurations. The results are summarized as follows: (1) the transition of the tail magnetic field from a near-Earth dipolar configuration to a stretched one farther out takes place around -12 ≤ Xagsm ≤ -9 RE, although instantaneous configurations can vary significantly; (2) the average equatorial magnetic field in this transition region is noticeably weaker at solar minimum presumably reflecting weaker nightside magnetospheric currents closer to Earth; (3) the statistical comparison of equatorial magnetic fields measured simultaneously at two locations indicates that the gradient of the equatorial magnetic field is directed predominantly earthward, and it is suggested that apparent tailward gradients observed can be very often attributed to other factors such as structures in the Y direction and local fluctuations; (4) however, the gradient can be transiently directed tailward in association with the dipolarization of local magnetic field; (5) extremely weak (≤ 2 nT) magnetic fields are occasionally observed in the transition region during the substorm growth phase and during prolonged quiet intervals, but the association with steady magnetospheric convection, which was suggested before, cannot be confirmed possibly because of its rare occurrence.

  9. Magnetic fields in an expanding universe

    NASA Astrophysics Data System (ADS)

    Kastor, David; Traschen, Jennie

    2014-04-01

    We find a solution to 4D Einstein-Maxwell theory coupled to a massless dilaton field, for all values of the dilaton coupling, describing a Melvin magnetic field in an expanding universe with ‘stiff matter’ equation of state parameter w = +1. As the universe expands, magnetic flux becomes more concentrated around the symmetry axis for dilaton coupling a\\lt1/\\sqrt{3} and more dispersed for a\\gt1/\\sqrt{3}. An electric field circulates around the symmetry axis in the direction determined by Lenz's law. For a = 0 the magnetic flux through a disc of fixed comoving radius is proportional to the proper area of the disc. This result disagrees with the usual expectation based on a test magnetic field that this flux should be constant, and we show why this difference arises. We also find a Melvin solution in an accelerating universe with w = -7/9 for a dilaton field with a certain exponential potential.

  10. On turbulent diffusion of magnetic fields and the loss of magnetic flux from stars

    NASA Technical Reports Server (NTRS)

    Vainshtein, Samuel I.; Rosner, Robert

    1991-01-01

    The turbulent diffusion of magnetic fields in astrophysical objects, and the processes leading to magnetic field flux loss from such objects are discussed with attention to the suppression of turbulent diffusion by back-reaction of magnetic fields on small spatial scales, and on the constraint imposed on magnetic flux loss by flux-freezing within stars. Turbulent magnetic diffusion can be suppressed even for very weak large-scale magnetic fields, so that 'standard' turbulent diffusion is incapable of significant magnetic flux destruction within a star. Finally, magnetic flux loss via winds is shown to be generally ineffective, no matter what the value of the effective magnetic Reynolds number is.

  11. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  12. The magnetic field of ζ Orionis A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J.-C.; Rivinius, Th.

    2015-10-01

    Context. ζ Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. Aims: We aim at verifying the presence of a magnetic field in ζ Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field. Methods: Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the least-squares deconvolution technique to extract the magnetic information. Results: We confirm that ζ Ori A is magnetic. We find that the supergiant component ζ Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~140 G. Because the magnetic field is weak and the stellar wind is strong, ζ Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion ζ Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ~300 G. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.Appendix A is available in electronic form at http://www.aanda.org

  13. Orienting Paramecium with intense static magnetic fields

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  14. Magnetic Guarding: Experimental and Numerical Results

    NASA Astrophysics Data System (ADS)

    Heinrich, Jonathon; Font, Gabriel; Garrett, Michael; Rose, D.; Genoni, T.; Welch, D.; McGuire, Thomas

    2017-10-01

    The magnetic field topology of Lockheed Martin's Compact Fusion Reactor (CFR) concept requires internal magnetic field coils. Internal coils for similar devices have leveraged levitating coils or coils with magnetically guarded supports. Magnetic guarding of supports has been investigated for multipole devices (theoretically and experimentally) without conclusive results. One outstanding question regarding magnetic guarding of supports is the magnitude and behavior of secondary plasma drifts resulting from magnetic guard fields (grad-B drifts, etc). We present magnetic-implicit PIC modeling results and preliminary proof of concept experimental results on magnetic guarding of internal-supports and the subsequent reduction in total plasma losses.

  15. Plasma Equilibria With Stochastic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Krommes, J. A.; Reiman, A. H.

    2009-05-01

    Plasma equilibria that include regions of stochastic magnetic fields are of interest in a variety of applications, including tokamaks with ergodic limiters and high-pressure stellarators. Such equilibria are examined theoretically, and a numerical algorithm for their construction is described.^2,3 % The balance between stochastic diffusion of magnetic lines and small effects^2 omitted from the simplest MHD description can support pressure and current profiles that need not be flattened in stochastic regions. The diffusion can be described analytically by renormalizing stochastic Langevin equations for pressure and parallel current j, with particular attention being paid to the satisfaction of the periodicity constraints in toroidal configurations with sheared magnetic fields. The equilibrium field configuration can then be constructed by coupling the prediction for j to Amp'ere's law, which is solved numerically. A. Reiman et al., Pressure-induced breaking of equilibrium flux surfaces in the W7AS stellarator, Nucl. Fusion 47, 572--8 (2007). J. A. Krommes and A. H. Reiman, Plasma equilibrium in a magnetic field with stochastic regions, submitted to Phys. Plasmas. J. A. Krommes, Fundamental statistical theories of plasma turbulence in magnetic fields, Phys. Reports 360, 1--351.

  16. Constraints on primordial magnetic fields from inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel; Kobayashi, Takeshi, E-mail: drgreen@cita.utoronto.ca, E-mail: takeshi.kobayashi@sissa.it

    2016-03-01

    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T{sub reh} ∼< 10{sup 2} MeV can magnetic fields of 10{sup −15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative timemore » kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.« less

  17. Tailoring magnetic field gradient design to magnet cryostat geometry.

    PubMed

    Trakic, A; Liu, F; Lopez, H S; Wang, H; Crozier, S

    2006-01-01

    Eddy currents induced within a magnetic resonance imaging (MRI) cryostat bore during pulsing of gradient coils can be applied constructively together with the gradient currents that generate them, to obtain good quality gradient uniformities within a specified imaging volume over time. This can be achieved by simultaneously optimizing the spatial distribution and temporal pre-emphasis of the gradient coil current, to account for the spatial and temporal variation of the secondary magnetic fields due to the induced eddy currents. This method allows the tailored design of gradient coil/magnet configurations and consequent engineering trade-offs. To compute the transient eddy currents within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using total-field scattered-field (TFSF) scheme has been performed and validated.

  18. Magnetic Fields and Multiple Protostar Formation

    NASA Astrophysics Data System (ADS)

    Boss, A. P.

    2001-12-01

    Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception, and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamical calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, in spite of ample evidence for the importance of magnetic support of pre-collapse clouds. We present here the first numerical hydrodynamical survey of the full effects of magnetic fields on the collapse and fragmentation of dense cloud cores. The models are calculated with a three dimensional, finite differences code which solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of order four) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically-supported dense cloud cores

  19. Response of Materials Subjected to Magnetic Fields

    DTIC Science & Technology

    2011-08-31

    is a superconducting Helmholtz coil capable of operating at up to 6 Tesla. Access to the high magnetic field at the center of the magnet is by...conducting sphere moves through the magnetic field gradient (0 to 4 Tesla over ~20cm) at low velocity (under the influence of gravity for 1 meter). Area...sphere moves through the magnetic field gradient (0 to 4 Tesla over ~20cm) at high velocity (under the influence of gravity for 1 meter). Figure 8

  20. Modelling of induced electric fields based on incompletely known magnetic fields

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; De Santis, Valerio; Cruciani, Silvano; Campi, Tommaso; Feliziani, Mauro

    2017-08-01

    Determining the induced electric fields in the human body is a fundamental problem in bioelectromagnetics that is important for both evaluation of safety of electromagnetic fields and medical applications. However, existing techniques for numerical modelling of induced electric fields require detailed information about the sources of the magnetic field, which may be unknown or difficult to model in realistic scenarios. Here, we show how induced electric fields can accurately be determined in the case where the magnetic fields are known only approximately, e.g. based on field measurements. The robustness of our approach is shown in numerical simulations for both idealized and realistic scenarios featuring a personalized MRI-based head model. The approach allows for modelling of the induced electric fields in biological bodies directly based on real-world magnetic field measurements.

  1. A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR

    PubMed Central

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.

    2007-01-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306

  2. A field-sweep/field-lock system for superconducting magnets--Application to high-field EPR.

    PubMed

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G

    2006-12-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of +/-0.4 T and a resolution of up to 10(-5) T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR.

  3. Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection

    DOEpatents

    Xu, Shoujun [Berkeley, CA; Lowery, Thomas L [Belmont, MA; Budker, Dmitry [El Cerrito, CA; Yashchuk, Valeriy V [Richmond, CA; Wemmer, David E [Berkeley, CA; Pines, Alexander [Berkeley, CA

    2009-08-11

    A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

  4. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  5. Rationale for a GRAVSAT-MAGSAT mission: A perspective on the problem of external/internal transient field effects

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1985-01-01

    The Earth's magnetic field at MAGSAT altitudes not only has contributions from the Earth's core and static magnetization in the lithosphere, but also from external electric current systems in the ionosphere and magnetosphere, along with induced electric currents flowing in the conducting earth. Hermance assessed these last two contributions; the external time-varying fields and their associated internal counter-parts which are electromagnetically induced. It is readily recognized that during periods of magnetic disturbance, external currents often contribute from 10's to 100's of nanoteslas (gammas) to observations of the Earth's field. Since static anomalies from lithospheric magnetization are of this same magnitude or less, these external source fields must be taken into account when attempting to delineate gross structural features in the crust.

  6. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  7. Deformation of Water by a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chen, Zijun; Dahlberg, E. Dan

    2011-03-01

    After the discovery that superconducting magnets could levitate diamagnetic objects,1,2 researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields,3-5 which was given the name "The Moses Effect."5 Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary were produced by superconducting magnets.

  8. Decadal-period external magnetic field variations resolved with eigenanalysis

    NASA Astrophysics Data System (ADS)

    Shore, Robert; Whaler, Kathryn; Macmillan, Susan; Beggan, Ciarán; Velímský, Jakub; Olsen, Nils

    2017-04-01

    Variations in the magnetic field at and above the Earth's surface permeate the interior of our planet, and can be used to determine the electrical conductivity of the mantle. Presently, the annual and semi-annual period fields induced by magnetospheric and ionospheric currents, suitable to estimate mantle conductivity in the approximate depth range 1,200-2,000 km, are subject to large uncertainty since they overlap with the periods on which the core field also changes significantly. It is timely to obtain an improved determination of the spatial geometry of the external, inducing, fields in order to better separate their internal, induced, part from that generated in the core. We apply the method of Empirical Orthogonal Functions (EOFs) to a dataset of ground-based magnetic observatory hourly means in order to decompose the external magnetic field during quiet times over a full 11-year solar cycle into its modes of maximum variance. This allows us to assess the spatial structures and magnitude changes of its dominant spatio-temporal patterns. Specifically, our focus is on isolating the long period external inducing fields as they penetrate to the depths of the mantle where the conductivity is least constrained. We expand ground-based measurements in the inertial local-time frame to produce spherical harmonic models of the dominant long period signals isolated by the EOF method. Whilst the ring current dominates the decomposition, we show that an annual and a semi-annual oscillation are important in describing the full inducing field. Each of these terms exhibits a modulation from the 11-year solar cycle. In summary, the most important harmonic in the description of the inducing fields is P10, followed by P21. There are lesser but still significant contributions from the P11 and P20 harmonics.

  9. Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid

    NASA Astrophysics Data System (ADS)

    Yang, Dexing; Du, Lei; Xu, Zengqi; Jiang, Yajun; Xu, Jian; Wang, Meirong; Bai, Yang; Wang, Haiyan

    2014-02-01

    A magnetic field sensor based on a tilted fiber Bragg grating (TFBG) coated with magnetic fluid is proposed and demonstrated experimentally. The sensing element is made by injecting the magnetic fluid into a capillary tube which contains a TFBG. The resonant wavelengths of the cladding modes of TFBG shift by varying the magnetic field which is perpendicular to the axis of TFBG. The results indicate that the resonant wavelength shifts of the cladding modes show a nonlinear dependence on the magnetic field. As the magnetic field increases to 32 mT, the largest resonant wavelength shift reaches to 106 pm. Moreover, this sensor shows good repeatability when it is used for magnetic field sensing.

  10. Surface flux density distribution characteristics of bulk high- Tc superconductor in external magnetic field

    NASA Astrophysics Data System (ADS)

    Torii, S.; Yuasa, K.

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  11. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  12. Anisotropic magnetic particles in a magnetic field

    PubMed Central

    Martchenko, Ilya; Mihut, Adriana M.; Bialik, Erik; Hirt, Ann M.; Rufier, Chantal; Menzel, Andreas; Dietsch, Hervé; Linse, Per

    2016-01-01

    We characterize the structural properties of magnetic ellipsoidal hematite colloids with an aspect ratio ρ ≈ 2.3 using a combination of small-angle X-ray scattering and computer simulations. The evolution of the phase diagram with packing fraction φ and the strength of an applied magnetic field B is described, and the coupling between orientational order of magnetic ellipsoids and the bulk magnetic behavior of their suspension addressed. We establish quantitative structural criteria for the different phase and arrest transitions and map distinct isotropic, polarized non-nematic, and nematic phases over an extended range in the φ–B coordinates. We show that upon a rotational arrest of the ellipsoids around φ = 0.59, the bulk magnetic behavior of their suspension switches from superparamagnetic to ordered weakly ferromagnetic. If densely packed and arrested, these magnetic particles thus provide persisting remanent magnetization of the suspension. By exploring structural and magnetic properties together, we extend the often used colloid-atom analogy to the case of magnetic spins. PMID:27722439

  13. A model of the magnetosheath magnetic field during magnetic clouds

    NASA Astrophysics Data System (ADS)

    Turc, L.; Fontaine, D.; Savoini, P.; Kilpua, E. K. J.

    2014-02-01

    Magnetic clouds (MCs) are huge interplanetary structures which originate from the Sun and have a paramount importance in driving magnetospheric storms. Before reaching the magnetosphere, MCs interact with the Earth's bow shock. This may alter their structure and therefore modify their expected geoeffectivity. We develop a simple 3-D model of the magnetosheath adapted to MCs conditions. This model is the first to describe the interaction of MCs with the bow shock and their propagation inside the magnetosheath. We find that when the MC encounters the Earth centrally and with its axis perpendicular to the Sun-Earth line, the MC's magnetic structure remains mostly unchanged from the solar wind to the magnetosheath. In this case, the entire dayside magnetosheath is located downstream of a quasi-perpendicular bow shock. When the MC is encountered far from its centre, or when its axis has a large tilt towards the ecliptic plane, the MC's structure downstream of the bow shock differs significantly from that upstream. Moreover, the MC's structure also differs from one region of the magnetosheath to another and these differences vary with time and space as the MC passes by. In these cases, the bow shock configuration is mainly quasi-parallel. Strong magnetic field asymmetries arise in the magnetosheath; the sign of the magnetic field north-south component may change from the solar wind to some parts of the magnetosheath. We stress the importance of the Bx component. We estimate the regions where the magnetosheath and magnetospheric magnetic fields are anti-parallel at the magnetopause (i.e. favourable to reconnection). We find that the location of anti-parallel fields varies with time as the MCs move past Earth's environment, and that they may be situated near the subsolar region even for an initially northward magnetic field upstream of the bow shock. Our results point out the major role played by the bow shock configuration in modifying or keeping the structure of the MCs

  14. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  15. Magnetic field decay in black widow pulsars

    NASA Astrophysics Data System (ADS)

    Mendes, Camile; de Avellar, Marcio G. B.; Horvath, J. E.; Souza, Rodrigo A. de; Benvenuto, O. G.; De Vito, M. A.

    2018-04-01

    We study in this work the evolution of the magnetic field in `redback-black widow' pulsars. Evolutionary calculations of these `spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value (`bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.

  16. A magnetic-piezoelectric smart material-structure sensing three axis DC and AC magnetic-fields

    NASA Astrophysics Data System (ADS)

    Hung, Chiao-Fang; Chen, Chin-Chung; Yeh, Po-Chen; Chen, Po-Wen; Chung, Tien-Kan

    2017-12-01

    In this paper, we demonstrate a smart material-structure can sense not only three-axis AC magnetic-fields but also three-axis DC magnetic-fields. Under x-axis and z-axis AC magnetic field ranging from 0.2 to 3.2 gauss, sensing sensitivity of the smart material-structure stimulated at resonant frequency is approximate 8.79 and 2.80 mV/gauss, respectively. In addition, under x-axis and z-axis DC magnetic fields ranging from 2 to 12 gauss, the sensitivity of the smart material-structure is 1.24-1.54 and 1.25-1.41 mV/gauss, respectively. In addition, under x-axis and z-axis DC magnetic fields ranging from 12 to 20 gauss, the sensitivity of the smart material-structure is 5.17-6.2 and 3.97-4.57 mV/gauss, respectively. These experimental results show that the smart material-structure successfully achieves three-axis DC and AC magnetic sensing as we designed. Furthermore, we also compare the results of the AC and DC magnetic-field sensing to investigate discrepancies. Finally, when applying composite magnetic-fields to the smart material-structure, the smart material-structure shows decent outputs as expected (consistent to the sensing principle). In the future, we believe the smart material-structure capable of sensing AC and DC magnetic fields will have more applications than conventional structures capable of sensing only DC or AC magnetic field. Thus, the smart material-structure will be an important design reference for future magnetic-field sensing technologies.

  17. Domain Wall Depinning Assisted by Current-Induced Oersted Field in Nano-oxide Layer Inserted Magnetic Stripes

    NASA Astrophysics Data System (ADS)

    Nam, Chunghee; Cho, Beong-Ki

    2011-11-01

    The effect of the local Oersted field on a pinned domain wall (DW) was investigated in a magnetic spin-valve nanowire. The Oersted field is produced by a low current, which is confined under a nano-oxide layer (NOL) inserted into the NiFe layer in sub/NiFe/Cu/NiFe/NOL/NiFe. It was found that the depinning field of the pinned DW decreases linearly as the magnitude of current (or equivalently Oersted field) increases. The Oersted field was believed to change the internal magnetic structure of DW, such that the DW pinning energy was lowered, resulting in the reduction of the depinning field.

  18. Sources of magnetic fields in recurrent interplanetary streams

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Behannon, K. W.; Hansen, S. F.; Pneuman, G. W.; Feldman, W. C.

    1978-01-01

    The paper examines sources of magnetic fields in recurrent streams observed by the Imp 8 and Heos spacecraft at 1 AU and by Mariner 10 en route to Mercury between October 31, 1973 and February 9, 1974, during Carrington rotations 1607-1610. Although most fields and plasmas at 1 AU were related to coronal holes and the magnetic field lines were open in those holes, some of the magnetic fields and plasmas at 1 AU were related to open field line regions on the sun which were not associated with known coronal holes, indicating that open field lines may be more basic than coronal holes as sources of the solar wind. Magnetic field intensities in five equatorial coronal holes, certain photospheric magnetic fields, and the coronal footprints of the sector boundaries on the source surface are characterized.

  19. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  20. Measuring the Earth's Magnetic Field in a Laboratory

    ERIC Educational Resources Information Center

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  1. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  2. An algorithm for deriving core magnetic field models from the Swarm data set

    NASA Astrophysics Data System (ADS)

    Rother, Martin; Lesur, Vincent; Schachtschneider, Reyko

    2013-11-01

    In view of an optimal exploitation of the Swarm data set, we have prepared and tested software dedicated to the determination of accurate core magnetic field models and of the Euler angles between the magnetic sensors and the satellite reference frame. The dedicated core field model estimation is derived directly from the GFZ Reference Internal Magnetic Model (GRIMM) inversion and modeling family. The data selection techniques and the model parameterizations are similar to what were used for the derivation of the second (Lesur et al., 2010) and third versions of GRIMM, although the usage of observatory data is not planned in the framework of the application to Swarm. The regularization technique applied during the inversion process smoothes the magnetic field model in time. The algorithm to estimate the Euler angles is also derived from the CHAMP studies. The inversion scheme includes Euler angle determination with a quaternion representation for describing the rotations. It has been built to handle possible weak time variations of these angles. The modeling approach and software have been initially validated on a simple, noise-free, synthetic data set and on CHAMP vector magnetic field measurements. We present results of test runs applied to the synthetic Swarm test data set.

  3. Shear-induced inflation of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    1989-01-01

    Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z)squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes.

  4. Shear-induced inflation of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    1990-01-01

    Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z) squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes.

  5. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  6. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  7. Parallel Electric Field on Auroral Magnetic Field Lines.

    NASA Astrophysics Data System (ADS)

    Yeh, Huey-Ching Betty

    1982-03-01

    The interaction of Birkeland (magnetic-field-aligned) current carriers and the Earth's magnetic field results in electrostatic potential drops along magnetic field lines. The statistical distributions of the field-aligned potential difference (phi)(,(PARLL)) were determined from the energy spectra of electron inverted "V" events observed at ionospheric altitude for different conditions of geomagnetic activity as indicated by the AE index. Data of 1270 electron inverted "V"'s were obtained from Low-Energy Electron measurements of the Atmosphere Explorer-C and -D Satellite (despun mode) in the interval January 1974-April 1976. In general, (phi)(,(PARLL)) is largest in the dusk to pre-midnight sector, smaller in the post-midnight to dawn sector, and smallest in the near noon sector during quiet and disturbed geomagnetic conditions; there is a steady dusk-dawn-noon asymmetry of the global (phi)(,(PARLL)) distribution. As the geomagnetic activity level increases, the (phi)(,(PARLL)) pattern expands to lower invariant latitudes, and the magnitude of (phi)(,(PARLL)) in the 13-24 magnetic local time sector increases significantly. The spatial structure and intensity variation of the global (phi)(,(PARLL)) distribution are statistically more variable, and the magnitudes of (phi)(,(PARLL)) have smaller correlation with the AE-index, in the post-midnight to dawn sector. A strong correlation is found to exist between upward Birkeland current systems and global parallel potential drops, and between auroral electron precipitation patterns and parallel potential drops, regarding their mophology, their intensity and their dependence of geomagnetic activity. An analysis of the fine-scale simultaneous current-voltage relationship for upward Birkeland currents in Region 1 shows that typical field-aligned potential drops are consistent with model predictions based on linear acceleration of the charge carriers through an electrostatic potential drop along convergent magnetic field

  8. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  9. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

    1998-11-24

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  10. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, Mark E.; Benicewicz, Brian C.; Douglas, Elliot P.

    1998-01-01

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  11. Active magnetic force microscopy of Sr-ferrite magnet by stimulating magnetization under an AC magnetic field: Direct observation of reversible and irreversible magnetization processes

    NASA Astrophysics Data System (ADS)

    Cao, Yongze; Kumar, Pawan; Zhao, Yue; Yoshimura, Satoru; Saito, Hitoshi

    2018-05-01

    Understanding the dynamic magnetization process of magnetic materials is crucial to improving their fundamental properties and technological applications. Here, we propose active magnetic force microscopy for observing reversible and irreversible magnetization processes by stimulating magnetization with an AC magnetic field based on alternating magnetic force microscopy with a sensitive superparamagnetic tip. This approach simultaneously measures sample's DC and AC magnetic fields. We used this microscopy approach to an anisotropic Sr-ferrite (SrF) sintered magnet. This is a single domain type magnet where magnetization mainly changes via magnetic rotation. The proposed method can directly observe the reversible and irreversible magnetization processes of SrF and clearly reveal magnetic domain evolution of SrF (without stimulating magnetization—stimulating reversible magnetization—stimulating irreversible magnetization switching) by slowly increasing the amplitude of the external AC magnetic field. This microscopy approach can evaluate magnetic inhomogeneity and explain the local magnetic process within the permanent magnet.

  12. Magnetic field errors tolerances of Nuclotron booster

    NASA Astrophysics Data System (ADS)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  13. Magnetic field, reconnection, and particle acceleration in extragalactic jets

    NASA Technical Reports Server (NTRS)

    Romanova, M. M.; Lovelace, R. V. E.

    1992-01-01

    Extra-galactic radio jets are investigated theoretically taking into account that the jet magnetic field is dragged out from the central rotating source by the jet flow. Thus, magnetohydrodynamic models of jets are considered with zero net poloidal current and flux, and consequently a predominantly toroidal magnetic field. The magnetic field naturally has a cylindrical neutral layer. Collisionless reconnection of the magnetic field in the vicinity of the neutral layer acts to generate a non-axisymmetric radial magnetic field. In turn, axial shear-stretching of reconnected toroidal field gives rise to a significant axial magnetic field if the flow energy-density is larger than the energy-density of the magnetic field. This can lead to jets with an apparent longitudinal magnetic field as observed in the Fanaroff-Riley class II jets. In the opposite limit, where the field energy-density is large, the field remains mainly toroidal as observed in Fanaroff-Riley class I jets. Driven collisionless reconnection at neutral layers may lead to acceleration of electrons to relativistic energies in the weak electrostatic field of the neutral layer. A simple model is discussed for particle acceleration at neutral layers in electron/positron and electron/proton plasmas.

  14. Electric-field-driven switching of individual magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Hsu, Pin-Jui; Kubetzka, André; Finco, Aurore; Romming, Niklas; von Bergmann, Kirsten; Wiesendanger, Roland

    2017-02-01

    Controlling magnetism with electric fields is a key challenge to develop future energy-efficient devices. The present magnetic information technology is mainly based on writing processes requiring either local magnetic fields or spin torques, but it has also been demonstrated that magnetic properties can be altered on the application of electric fields. This has been ascribed to changes in magnetocrystalline anisotropy caused by spin-dependent screening and modifications of the band structure, changes in atom positions or differences in hybridization with an adjacent oxide layer. However, the switching between states related by time reversal, for example magnetization up and down as used in the present technology, is not straightforward because the electric field does not break time-reversal symmetry. Several workarounds have been applied to toggle between bistable magnetic states with electric fields, including changes of material composition as a result of electric fields. Here we demonstrate that local electric fields can be used to switch reversibly between a magnetic skyrmion and the ferromagnetic state. These two states are topologically inequivalent, and we find that the direction of the electric field directly determines the final state. This observation establishes the possibility to combine electric-field writing with the recently envisaged skyrmion racetrack-type memories.

  15. Diffusion of Magnetic Field and Removal of Magnetic Flux from Clouds Via Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; Lazarian, A.; de Gouveia Dal Pino, E. M.; Cho, J.

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the

  16. Coronal magnetic fields from multiple type II bursts

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Raveesha, K. H.; Subramanian, K. R.

    Coronal magnetic fields from multiple type II bursts Vijayakumar H Doddamani1*, Raveesha K H2 and Subramanian3 1Bangalore University, Bangalore, Karnataka state, India 2CMR Institute of Technology, Bangalore, Karnataka state, India 3 Retd, Indian Institute of Astrophysics, Bangalore, Karnataka state, India Abstract Magnetic fields play an important role in the astrophysical processes occurring in solar corona. In the solar atmosphere, magnetic field interacts with the plasma, producing abundant eruptive activities. They are considered to be the main factors for coronal heating, particle acceleration and the formation of structures like prominences, flares and Coronal Mass Ejections. The magnetic field in solar atmosphere in the range of 1.1-3 Rsun is especially important as an interface between the photospheric magnetic field and the solar wind. Its structure and time dependent change affects space weather by modifying solar wind conditions, Cho (2000). Type II doublet bursts can be used for the estimation of the strength of the magnetic field at two different heights. Two type II bursts occur sometimes in sequence. By relating the speed of the type II radio burst to Alfven Mach Number, the Alfven speed of the shock wave generating type II radio burst can be calculated. Using the relation between the Alfven speed and the mean frequency of emission, the magnetic field strength can be determined at a particular height. We have used the relative bandwidth and drift rate properties of multiple type II radio bursts to derive magnetic field strengths at two different heights and also the gradient of the magnetic field in the outer corona. The magnetic field strength has been derived for different density factors. It varied from 1.2 to 2.5 gauss at a solar height of 1.4 Rsun. The empirical relation of the variation of the magnetic field with height is found to be of the form B(R) = In the present case the power law index ‘γ’ varied from -3 to -2 for variation of

  17. Study of magnetofluidic laser scattering under rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Pai, Chintamani; Shalini, M.; Varma, Vijaykumar B.; Radha, S.; Nagarajan, R.; Ramanujan, Raju V.

    2018-04-01

    Magnetic field driven self-assembly of magnetic nanoparticles provides wireless programmable approach for tunable magnetofluidic laser scattering. In this work, we study magnetofluidic laser scattering from a commercial aqueous magnetic fluid (EMG 707) under an external rotating magnetic field. A set-up is developed to generate rotating magnetic field for the purpose. Self-assembled magnetic nanoparticle structures in the form of chains and bundles are formed along the magnetic field. This creates a linear streak formation in the forward laser scattering. Rotating magnetic field produces rotating linear streak. We report our initial results of rotating linear streaks at 3 rpm, 6 rpm and 10 rpm and our analysis of the patterns. The studies are useful for developing magnetic fluid based optical devices.

  18. Magnetic fields of intermediate mass T Tauri stars

    NASA Astrophysics Data System (ADS)

    Lavail, A.; Kochukhov, O.; Hussain, G. A. J.; Alecian, E.; Herczeg, G. J.; Johns-Krull, C.

    2017-12-01

    Aims: In this paper, we aim to measure the strength of the surface magnetic fields for a sample of five intermediate mass T Tauri stars and one low mass T Tauri star from late-F to mid-K spectral types. While magnetic fields of T Tauri stars at the low mass range have been extensively characterized, our work complements previous studies towards the intermediate mass range; this complementary study is key to evaluate how magnetic fields evolve during the transition from a convective to a radiative core. Methods: We studied the Zeeman broadening of magnetically sensitive spectral lines in the H-band spectra obtained with the CRIRES high-resolution near-infrared spectrometer. These data are modelled using magnetic spectral synthesis and model atmospheres. Additional constraints on non-magnetic line broadening mechanisms are obtained from modelling molecular lines in the K band or atomic lines in the optical wavelength region. Results: We detect and measure mean surface magnetic fields for five of the six stars in our sample: CHXR 28, COUP 107, V2062 Oph, V1149 Sco, and Par 2441. Magnetic field strengths inferred from the most magnetically sensitive diagnostic line range from 0.8 to 1.8 kG. We also estimate a magnetic field strength of 1.9 kG for COUP 107 from an alternative diagnostic. The magnetic field on YLW 19 is the weakest in our sample and is marginally detected, with a strength of 0.8 kG. Conclusions: We populate an uncharted area of the pre-main-sequence HR diagram with mean magnetic field measurements from high-resolution near-infrared spectra. Our sample of intermediate mass T Tauri stars in general exhibits weaker magnetic fields than their lower mass counterparts. Our measurements will be used in combination with other spectropolarimetric studies of intermediate mass and lower mass T Tauri stars to provide input into pre-main-sequence stellar evolutionary models.

  19. Temperature and magnetic field induced multiple magnetic transitions in DyAg(2).

    PubMed

    Arora, Parul; Chattopadhyay, M K; Sharath Chandra, L S; Sharma, V K; Roy, S B

    2011-02-09

    The magnetic properties of the rare-earth intermetallic compound DyAg(2) are studied in detail with the help of magnetization and heat capacity measurements. It is shown that the multiple magnetic phase transitions can be induced in DyAg(2) both by temperature and magnetic field. The detailed magnetic phase diagram of DyAg(2) is determined experimentally. It was already known that DyAg(2) undergoes an incommensurate to commensurate antiferromagnetic phase transition close to 10 K. The present experimental results highlight the first order nature of this phase transition, and show that this transition can be induced by magnetic field as well. It is further shown that another isothermal magnetic field induced transition or metamagnetic transition exhibited by DyAg(2) at still lower temperatures is also of first order nature. The multiple magnetic phase transitions in DyAg(2) give rise to large peaks in the temperature dependence of the heat capacity below 17 K, which indicates its potential as a magnetic regenerator material for cryocooler related applications. In addition it is found that because of the presence of the temperature and field induced magnetic phase transitions, and because of short range magnetic correlations deep inside the paramagnetic regime, DyAg(2) exhibits a fairly large magnetocaloric effect over a wide temperature window, e.g., between 10 and 60 K.

  20. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  1. Magnetic field distribution in superconducting composites as revealed by ESR-probe and magnetization

    NASA Astrophysics Data System (ADS)

    Davidov, D.; Bontemps, N.; Golosovsky, M.; Waysand, G.

    1998-03-01

    The distribution of a static magnetic field in superconductor-insulator composites consisting of BSCCO (YBCO) powder in paraffin wax is studied by ESR bulk probing and magnetization. The average field and field variance in the non-superconducting host are measured as function of temperature and volume fraction of superconductor. We develop a model of the field distribution in dilute magnetic and superconducting composites that relates the field inhomogeneity to magnetization and particle shape. We find that this model satisfactorily describes field distribution in our superconducting composites in the regime of strong flux pinning, i.e. below irreversibility line. We find deviations from the model above the irreversibility line and attribute this to flux motion. We show that the field distribution in superconducting composites is determined not only by magnetization and particle shape, but is strongly affected by the flux profile within the superconducting particles.

  2. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  3. Sources of magnetic fields in recurrent interplanetary streams

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Behannon, K. W.; Hansen, S. F.; Pneuman, G. W.; Feldman, W. C.

    1977-01-01

    The sources of magnetic fields in recurrent streams were examined. Most fields and plasmas at 1 AU were related to coronal holes, and the magnetic field lines were open in those holes. Some of the magnetic fields and plasmas were related to open field line regions on the sun which were not associated with known coronal holes, indicating that open field lines are more basic than coronal holes as sources of the solar wind. Magnetic field intensities in five equatorial coronal holes ranged from 2G to 18G. Average measured photospheric magnetic fields along the footprints of the corresponding unipolar fields on circular equatorial arcs at 2.5 solar radii had a similar range and average, but in two cases the intensities were approximately three times higher than the projected intensities. The coronal footprints of the sector boundaries on the source surface at 2.5 solar radii, meandered between -45 deg and +45 deg latitude, and their inclination ranged from near zero to near ninety degrees.

  4. A Dynamic Model of Mercury's Magnetospheric Magnetic Field

    PubMed Central

    Johnson, Catherine L.; Philpott, Lydia; Tsyganenko, Nikolai A.; Anderson, Brian J.

    2017-01-01

    Abstract Mercury's solar wind and interplanetary magnetic field environment is highly dynamic, and variations in these external conditions directly control the current systems and magnetic fields inside the planetary magnetosphere. We update our previous static model of Mercury's magnetic field by incorporating variations in the magnetospheric current systems, parameterized as functions of Mercury's heliocentric distance and magnetic activity. The new, dynamic model reproduces the location of the magnetopause current system as a function of systematic pressure variations encountered during Mercury's eccentric orbit, as well as the increase in the cross‐tail current intensity with increasing magnetic activity. Despite the enhancements in the external field parameterization, the residuals between the observed and modeled magnetic field inside the magnetosphere indicate that the dynamic model achieves only a modest overall improvement over the previous static model. The spatial distribution of the residuals in the magnetic field components shows substantial improvement of the model accuracy near the dayside magnetopause. Elsewhere, the large‐scale distribution of the residuals is similar to those of the static model. This result implies either that magnetic activity varies much faster than can be determined from the spacecraft's passage through the magnetosphere or that the residual fields are due to additional external current systems not represented in the model or both. Birkeland currents flowing along magnetic field lines between the magnetosphere and planetary high‐latitude regions have been identified as one such contribution. PMID:29263560

  5. Pulsed field probe of real time magnetization dynamics in magnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Foulkes, T.; Syed, M.; Taplin, T.

    2015-05-01

    Magnetic nanoparticles (MNPs) are extensively used in biotechnology. These applications rely on magnetic properties that are a keen function of MNP size, distribution, and shape. Various magneto-optical techniques, including Faraday Rotation (FR), Cotton-Mouton Effect, etc., have been employed to characterize magnetic properties of MNPs. Generally, these measurements employ AC or DC fields. In this work, we describe the results from a FR setup that uses pulsed magnetic fields and an analysis technique that makes use of the entire pulse shape to investigate size distribution and shape anisotropy. The setup employs a light source, polarizing components, and a detector that are used to measure the rotation of light from a sample that is subjected to a pulsed magnetic field. This magnetic field "snapshot" is recorded alongside the intensity pulse of the sample's response. This side by side comparison yields useful information about the real time magnetization dynamics of the system being probed. The setup is highly flexible with variable control of pulse length and peak magnitude. Examining the raw data for the response of bare Fe3O4 and hybrid Au and Fe3O4 nanorods reveals interesting information about Brownian relaxation and the hydrodynamic size of these nanorods. This analysis exploits the self-referencing nature of this measurement to highlight the impact of an applied field on creating a field induced transparency for a longitudinal measurement. Possible sources for this behavior include shape anisotropy and field assisted aggregate formation.

  6. Canard and mixed mode oscillations in an excitable glow discharge plasma in the presence of inhomogeneous magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Pankaj Kumar, E-mail: pankaj.shaw@saha.ac.in; Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in; Nurujjaman, Md., E-mail: jaman-nonlinear@yahoo.co.in

    2015-12-15

    We report on the experimental observation of canard orbit and mixed mode oscillations (MMOs) in an excitable glow discharge plasma induced by an external magnetic field perturbation using a bar magnet. At a small value of magnetic field, small amplitude quasiperiodic oscillations were excited, and with the increase in the magnetic field, large amplitude oscillations were excited. Analyzing the experimental results, it seems that the magnetic field could be playing the role of noise for such nonlinear phenomena. It is observed that the noise level increases with the increase in magnetic field strength. The experimental results have also been corroboratedmore » by a numerical simulation using a FitzHugh-Nagumo like macroscopic model derived from the basic plasma equations and phenomenology, where the noise has been included to represent the internal plasma noise. This macroscopic model shows MMO in the vicinity of the canard point when an external noise is added.« less

  7. Axisymmetric magnetic modes of neutron stars having mixed poloidal and toroidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Lee, Umin

    2018-05-01

    We calculate axisymmetric magnetic modes of a neutron star possessing a mixed poloidal and toroidal magnetic field, where the toroidal field is assumed to be proportional to a dimensionless parameter ζ0. Here, we assume an isentropic structure for the neutron star and consider no effects of rotation. Ignoring the equilibrium deformation due to the magnetic field, we employ a polytrope of the index n = 1 as the background model for our modal analyses. For the mixed poloidal and toroidal magnetic field with ζ _0\

  8. Theoretical validation for changing magnetic fields of systems of permanent magnets of drum separators

    NASA Astrophysics Data System (ADS)

    Lozovaya, S. Y.; Lozovoy, N. M.; Okunev, A. N.

    2018-03-01

    This article is devoted to the theoretical validation of the change in magnetic fields created by the permanent magnet systems of the drum separators. In the article, using the example of a magnetic separator for enrichment of highly magnetic ores, the method of analytical calculation of the magnetic fields of systems of permanent magnets based on the Biot-Savart-Laplace law, the equivalent solenoid method, and the superposition principle of fields is considered.

  9. L10-MnGa based magnetic tunnel junction for high magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wang, H. L.; Wang, X. L.; Wei, D. H.; Zhao, J. H.

    2017-07-01

    We report on the investigation of the magnetic tunnel junction structure designed for high magnetic field sensors with a perpendicularly magnetized L10-MnGa reference layer and an in-plane magnetized Fe sensing layer. A large linear tunneling magnetoresistance ratio up to 27.4% and huge dynamic range up to 5600 Oe have been observed at 300 K, with a low nonlinearity of 0.23% in the optimized magnetic tunnel junction (MTJ). The field response of tunneling magnetoresistance is discussed to explain the field sensing properties in the dynamic range. These results indicate that L10-MnGa based orthogonal MTJ is a promising candidate for a high performance magnetic field sensor with a large dynamic range, high endurance and low power consumption.

  10. DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Burdin, Dmitrii; Chashin, Dmitrii; Ekonomov, Nikolai; Fetisov, Leonid; Fetisov, Yuri; Shamonin, Mikhail

    2016-09-01

    Recently, highly sensitive magnetic field sensors using the magnetoelectric effect in composite ferromagnetic-piezoelectric layered structures have been demonstrated. However, most of the proposed concepts are not useful for measuring dc magnetic fields, because the conductivity of piezoelectric layers results in a strong decline of the sensor’s sensitivity at low frequencies. In this paper, a novel functional principle of magnetoelectric sensors for dc magnetic field measurements is described. The sensor employs the nonlinear effect of voltage harmonic generation in a composite magnetoelectric structure under the simultaneous influence of a strong imposed ac magnetic field and a weak dc magnetic field to be measured. This physical effect arises due to the nonlinear dependence of the magnetostriction in the ferromagnetic layer on the magnetic field. A sensor prototype comprising of a piezoelectric fibre transducer sandwiched between two layers of the amorphous ferromagnetic Metglas® alloy was fabricated. The specifications regarding the magnetic field range, frequency characteristics, and noise level were studied experimentally. The prototype showed the responsivity of 2.5 V mT-1 and permitted the measurement of dc magnetic fields in the range of ~10 nT to about 0.4 mT. Although sensor operation is based on the nonlinear effect, the sensor response can be made linear with respect to the measured magnetic field in a broad dynamic range extending over 5 orders of magnitude. The underlying physics is explained through a simplified theory for the proposed sensor. The functionality, differences and advantages of the magnetoelectric sensor compare well with fluxgate magnetometers. The ways to enhance the sensor performance are considered.

  11. Numerical field evaluation of healthcare workers when bending towards high-field MRI magnets.

    PubMed

    Wang, H; Trakic, A; Liu, F; Crozier, S

    2008-02-01

    In MRI, healthcare workers may be exposed to strong static and dynamic magnetic fields outside of the imager. Body motion through the strong, non-uniform static magnetic field generated by the main superconducting magnet and exposure to gradient-pulsed magnetic fields can result in the induction of electric fields and current densities in the tissue. The interaction of these fields and occupational workers has attracted an increasing awareness. To protect occupational workers from overexposure, the member states of the European Union are required to incorporate the Physical Agents Directive (PAD) 2004/40/EC into their legislation. This study presents numerical evaluations of electric fields and current densities in anatomically equivalent male and female human models (healthcare workers) as they lean towards the bores of three superconducting magnet models (1.5, 4, and 7 T) and x-, y-, and z- gradient coils. The combined effect of the 1.5 T superconducting magnet and the three gradient coils on the body models is compared with the contributions of the magnet and gradient coils in separation. The simulation results indicate that it is possible to induce field quantities of physiological significance, especially when the MRI operator is bending close towards the main magnet and all three gradient coils are switched simultaneously. (c) 2008 Wiley-Liss, Inc.

  12. A new ring-shape high-temperature superconducting trapped-field magnet

    NASA Astrophysics Data System (ADS)

    Sheng, Jie; Zhang, Min; Wang, Yawei; Li, Xiaojian; Patel, Jay; Yuan, Weijia

    2017-09-01

    This paper presents a new trapped-field magnet made of second-generation high-temperature superconducting (2G HTS) rings. This so-called ring-shape 2G HTS magnet has the potential to provide much stronger magnetic fields relative to existing permanent magnets. Compared to existing 2G HTS trapped- field magnets, e.g. 2G HTS bulks and stacks, this new ring-shape 2G HTS magnet is more flexible in size and can be made into magnets with large dimensions for industrial applications. Effective magnetization is the key to being able to use trapped-field magnets. Therefore, this paper focuses on the magnetization mechanism of this new magnet using both experimental and numerical methods. Unique features have been identified and quantified for this new type of HTS magnet in the field cooling and zero field cooling process. The magnetization mechanism can be understood by the interaction between shielding currents and the penetration of external magnetic fields. An accumulation in the trapped field was observed by using multiple pulse field cooling. Three types of demagnetization were studied to measure the trapped-field decay for practical applications. Our results show that this new ring-shape HTS magnet is very promising in the trapping of a high magnetic field. As a super-permanent magnet, it will have a significant impact on large-scale industrial applications, e.g. the development of HTS machines with a very high power density and HTS magnetic resonance imaging devices.

  13. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  14. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  15. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  16. Magnetic field affects enzymatic ATP synthesis.

    PubMed

    Buchachenko, Anatoly L; Kuznetsov, Dmitry A

    2008-10-01

    The rate of ATP synthesis by creatine kinase extracted from V. xanthia venom was shown to depend on the magnetic field. The yield of ATP produced by enzymes with 24Mg2+ and 26Mg2+ ions in catalytic sites increases by 7-8% at 55 mT and then decreases at 80 mT. For enzyme with 25Mg2+ ion in a catalytic site, the ATP yield increases by 50% and 70% in the fields 55 and 80 mT, respectively. In the Earth field the rate of ATP synthesis by enzyme, in which Mg2+ ion has magnetic nucleus 25Mg, is 2.5 times higher than that by enzymes, in which Mg2+ ion has nonmagnetic, spinless nuclei 24Mg or 26Mg. Both magnetic field effect and magnetic isotope effect demonstrate that the ATP synthesis is an ion-radical process, affected by Zeeman interaction and hyperfine coupling in the intermediate ion-radical pair.

  17. The approximation of anomalous magnetic field by array of magnetized rods

    NASA Astrophysics Data System (ADS)

    Denis, Byzov; Lev, Muravyev; Natalia, Fedorova

    2017-07-01

    The method for calculation the vertical component of an anomalous magnetic field from its absolute value is presented. Conversion is based on the approximation of magnetic induction module anomalies by the set of singular sources and the subsequent calculation for the vertical component of the field with the chosen distribution. The rods that are uniformly magnetized along their axis were used as a set of singular sources. Applicability analysis of different methods of nonlinear optimization for solving the given task was carried out. The algorithm is implemented using the parallel computing technology on the NVidia GPU. The approximation and calculation of vertical component is demonstrated for regional magnetic field of North Eurasia territories.

  18. Magnetic field dependent electronic transport of Mn4 single-molecule magnet.

    NASA Astrophysics Data System (ADS)

    Haque, F.; Langhirt, M.; Henderson, J. J.; Del Barco, E.; Taguchi, T.; Christou, G.

    2010-03-01

    We have performed single-electron transport measurements on a Mn4 single-molecule magnet (SMM) in where amino groups were added to electrically protect the magnetic core and to increase the stability of the molecule when deposited on the single-electron transistor (SET) chip. A three-terminal SET with nano-gap electro-migrated gold electrodes and a naturally oxidized Aluminum back gate. Experiments were conducted at temperatures down to 230mK in the presence of high magnetic fields generated by a superconducting vector magnet. Mn4 molecules were deposited from solution to form a mono-layer. The optimum deposition time was determined by AFM analysis on atomically flat gold surfaces. We have observed Coulomb blockade an electronic excitations that curve with the magnetic field and present zero-field splitting, which represents evidence of magnetic anisotropy. Level anticrossings and large excitations slopes are associated with the behavior of molecular states with high spin values (S ˜ 9), as expected from Mn4.

  19. Energy buildup in sheared force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  20. Magnetic properties of artificially designed magnetic stray field landscapes in laterally confined exchange-bias layers.

    PubMed

    Mitin, D; Kovacs, A; Schrefl, T; Ehresmann, A; Holzinger, D; Albrecht, M

    2018-08-31

    Magnetic stray fields generated by domain walls (DWs) have attracted significant attention as they might be employed for precise positioning and active control of micro- and nano-sized magnetic objects in fluids or in the field of magnonics. The presented work intends to investigate the near-field response of magnetic stray field landscapes above generic types of charged DWs as occurring in thin films with in-plane anisotropy and preferential formation of Néel type DWs when disturbed by external magnetic fields. For this purpose, artificial magnetic stripe domain patterns with three defined domain configurations, i.e. head-to-head (tail-to-tail), head-to-side, and side-by-side, were fabricated via ion bombardment induced magnetic patterning of an exchange-biased IrMn/CoFe bilayer. The magnetic stray field landscapes as well as the local magnetization reversal of the various domain configurations were analyzed in an external magnetic field by scanning magnetoresistive microscopy and compared to micromagnetic simulations.

  1. An active role for magnetic fields in solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1976-01-01

    Observations of photospheric magnetic fields are reviewed to determine whether changes in such fields can be related to flare activity, assuming that magnetic fields play an active role in providing flare energy. An intimate relation between emerging fields and bright flare knots is noted, and it is shown that the activation and eruption of an H-alpha filament is indicative of a major disruption of a magnetic field just prior to a flare. Observations of twisting motions in a filament just before a flare are discussed, erupting untwisting filaments are taken as unambiguous evidence for restructuring of the magnetic fields associated with flares, and it is argued that magnetic-field changes in the midst of most flares are obvious. It is concluded that successive brightenings in a family of loops may be evidence for the spread of a magnetic-field reconnection point from one field concentration to another and that flares may well take place in regions of field-line reconnection. This latter conclusion is illustrated using an empirical flare model that involves field-line reconnection, filament activation, and emerging magnetic flux.

  2. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    PubMed

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.

  3. Review of russian literature on biological action of DC and low-frequency AC magnetic fields.

    PubMed

    Zhadin, M N

    2001-01-01

    This review considers the Russian scientific literature on the influence of weak static and of low-frequency alternating magnetic fields on biological systems. The review covers the most interesting works and the main lines of investigation during the period 1900 to the present. Shown here are the historical roots, beginning with the ideas of V. Vernadsky and A. Chizhevsky, which led in the field of Russian biology to an increasing interest in magnetic fields, based on an intimate connection between solar activity and life on the Earth, and which determined the peculiar development of Russian magnetobiology. The variety of studies on the effects of magnetic storms and extremely low-frequency, periodic variations of the geomagnetic field on human beings and animals as well as on social phenomena are described. The diverse experiments involving artificial laboratory magnetic fields acting on different biological entities under different conditions are also considered. A series of theoretical advances are reviewed that have paved the way for a step-by-step understanding of the mechanisms of magnetic field effects on biological systems. The predominantly unfavorable influence of magnetic fields on living beings is shown, but the cases of favorable influence of magnetic fields on human beings and lower animals are demonstrated as well. The majority of Russian investigations in this area of science has been unknown among the non-Russian speaking audience for many reasons, primarily because of a language barrier. Therefore, it is hoped that this review may be of interest to the international scientific community. Copyright 2001 Wiley-Liss, Inc.

  4. A component compensation method for magnetic interferential field

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Wan, Chengbiao; Pan, Mengchun; Liu, Zhongyan; Sun, Xiaoyong

    2017-04-01

    A new component searching with scalar restriction method (CSSRM) is proposed for magnetometer to compensate magnetic interferential field caused by ferromagnetic material of platform and improve measurement performance. In CSSRM, the objection function for parameter estimation is to minimize magnetic field (components and magnitude) difference between its measurement value and reference value. Two scalar compensation method is compared with CSSRM and the simulation results indicate that CSSRM can estimate all interferential parameters and external magnetic field vector with high accuracy. The magnetic field magnitude and components, compensated with CSSRM, coincide with true value very well. Experiment is carried out for a tri-axial fluxgate magnetometer, mounted in a measurement system with inertial sensors together. After compensation, error standard deviation of both magnetic field components and magnitude are reduced from more than thousands nT to less than 20 nT. It suggests that CSSRM provides an effective way to improve performance of magnetic interferential field compensation.

  5. Granular cells in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Jurčák, J.; Lemmerer, B.; van Noort, M.

    2017-10-01

    We present a statistical study of the dependencies of the shapes and sizes of the photospheric convective cells on the magnetic field properties. This analysis is based on a 2.5 hour long SST observations of active region NOAA 11768. We have blue continuum images taken with a cadence of 5.6 sec that are used for segmentation of individual granules and 270 maps of spectropolarimetric CRISP data allowing us to determine the properties of the magnetic field along with the line-of-sight velocities. The sizes and shapes of the granular cells are dependent on the the magnetic field strength, where the granules tend to be smaller in regions with stronger magnetic field. In the presence of highly inclined magnetic fields, the eccentricity of granules is high and we do not observe symmetric granules in these regions. The mean up-flow velocities in granules as well as the granules intensities decrease with increasing magnetic field strength.

  6. Solar Mean Magnetic Field Observed by GONG

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Petrie, G.; Clark, R.; GONG Team

    2009-05-01

    The average line-of-sight (LOS) magnetic field of the Sun has been observed for decades, either by measuring the circular polarization across a selected spectrum line using integrated sunlight or by averaging such measurements in spatially resolved images. The GONG instruments produce full-disk LOS magnetic images every minute, which can be averaged to yield the mean magnetic field nearly continuously. Such measurements are well correlated with the heliospheric magnetic field observed near Earth about 4 days later. They are also a measure of solar activity on long and short time scales. Averaging a GONG magnetogram, with nominal noise of 3 G per pixel, results in a noise level of about 4 mG. This is low enough that flare-related field changes have been seen in the mean field signal with time resolution of 1 minute. Longer time scales readily show variations associated with rotation of magnetic patterns across the solar disk. Annual changes due to the varying visibility of the polar magnetic fields may also be seen. Systematic effects associated with modulator non-uniformity require correction and limit the absolute accuracy of the GONG measurements. Comparison of the measurements with those from other instruments shows high correlation but suggest that GONG measurements of field strength are low by a factor of about two. The source of this discrepancy is not clear. Fourier analysis of 2007 and 2008 time series of the GONG mean field measurements shows strong signals at 27.75 and 26.84/2 day (synodic) periods with the later period showing more power. The heliospheric magnetic field near Earth shows the same periods but with reversed power dominance. The Global Oscillation Network Group (GONG) project is managed by NSO, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation.

  7. Charged-particle motion in multidimensional magnetic-field turbulence

    NASA Technical Reports Server (NTRS)

    Giacalone, J.; Jokipii, J. R.

    1994-01-01

    We present a new analysis of the fundamental physics of charged-particle motion in a turbulent magnetic field using a numerical simulation. The magnetic field fluctuations are taken to be static and to have a power spectrum which is Kolmogorov. The charged particles are treated as test particles. It is shown that when the field turbulence is independent of one coordinate (i.e., k lies in a plane), the motion of these particles across the magnetic field is essentially zero, as required by theory. Consequently, the only motion across the average magnetic field direction that is allowed is that due to field-line random walk. On the other hand, when a fully three-dimensional realization of the turbulence is considered, the particles readily cross the field. Transport coefficients both along and across the ambient magnetic field are computed. This scheme provides a direct computation of the Fokker-Planck coefficients based on the motions of individual particles, and allows for comparison with analytic theory.

  8. Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr

    During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less

  9. Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient

    PubMed Central

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-01-01

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air. PMID:23443127

  10. Evaporation rate of water as a function of a magnetic field and field gradient.

    PubMed

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-12-11

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.

  11. Manipulating Cells with Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Valles, J. M.; Guevorkian, K.

    2005-07-01

    We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

  12. Supercold technique duplicates magnetic field in second superconductor

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1964-01-01

    A superconductor cylinder, charged with a high magnetic field, can be used to create a similar field in a larger cylinder. The uncharged cylinder is precooled, lowered into a helium dewar system, and fitted around the cylinder with the magnetic field. Magnetic flux lines pass through the two cylinders.

  13. Fluorescent lamp with static magnetic field generating means

    DOEpatents

    Moskowitz, Philip E.; Maya, Jakob

    1987-01-01

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.

  14. Effect of magnetic field on noncollinear magnetism in classical bilinear-biquadratic Heisenberg model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in

    We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlightsmore » a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.« less

  15. Trapped magnetic field of a mini-bulk magnet using YBaCuO at 77 K

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    2001-09-01

    Melt-processed rare earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field. Solidification processes for producing (L)RE123 superconductors and pinning centers in the (L)RE123 matrix are effective for obtaining high Jc, leading to high-field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated train. We fabricated a mini-superconducting bulk magnet of 200×100 mm2, consisting of 18 bulks, which are a square 33 mm on a side and 10 mm in thickness, and magnetized the mini-magnet by field cooling. The mini-magnet showed the trapped magnetic field of larger than 0.1 T on the surface of the outer vessel of the magnet. The present preliminary study discusses trapped magnetic field properties of the mini-bulk magnet using YBaCuO superconductors at 77 K.

  16. Reversing the polarity of a cochlear implant magnet after magnetic resonance imaging.

    PubMed

    Jeon, Ju Hyun; Bae, Mi Ran; Chang, Jae Won; Choi, Jae Young

    2012-08-01

    The number of patients with cochlear implant (CI) has been rapidly increasing in recent years, and these patients show a growing need of examination by magnetic resonance imaging (MRI). However, the use of MRI on patients with CI is restricted by the internal magnet of the CI. Many studies have investigated the safety of performing 1.5T MRI on patients with CI, which is now being practiced in a clinical setting. We experienced a case in which the polarity of the cochlear implant magnet was reversed after the patient was examined using 1.5T MRI. The external device was attached to the internal device oppositely. We could not find displacement of the internal device, magnet, or electrode upon radiological evaluation. We came up with two possible mechanisms by which the polarity of the magnet reversed. The first possibility was that the magnetic field of MRI reversed the polarity of the magnet. The second was that the internal magnet was physically realigned while interacting with the MRI. We believe the second hypothesis to be more reliable. A removable magnet and a loose magnet boundary of a CI device may have allowed for physical reorientation of the internal magnet. Therefore, in order to avoid these complications, first, the internal magnet must not be aligned anti-parallel with the magnetic polarity of MRI. In the Siemens MRI, the vector of the magnetic field is downward, so implant site should be placed in facing upwards to minimize demagnetization. In the GE Medical Systems MRI, the vector of the magnetic field is upward, so the implant site should be placed facing downwards. Second, wearing of a commercial mold which is fixed to the internal device before performing MRI can be helpful. In addition, any removable internal magnets in a CI device should be removed before MRI, especially in the trunk. However, to ultimately solve this problem, the pocket of the internal magnet should be redesigned for safety. Copyright © 2011. Published by Elsevier Ireland Ltd.

  17. Resonance magnetoplasticity in ultralow magnetic fields

    NASA Astrophysics Data System (ADS)

    Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.

    2016-09-01

    Resonance relaxation displacements of dislocations in NaCl crystals placed in crossed static and alternating ultralow magnetic fields in the electron paramagnetic resonance scheme are discussed. The Earth's magnetic field B Earth ≈ 50μT and other fields in the range of 26-261 μT are used as the static field. New strongly anisotropic properties of the effect have been revealed. Frequency spectra including numerous peaks of paths at low pump frequencies beginning with 10 kHz, as well as the quartet of equidistant peaks at high frequencies ( 1.4 MHz at B= B Earth), have been measured. The effect is also observed in the pulsed pump field with a resonance duration of 0.5 μs. Resonance changes have been detected in the microhardness of ZnO, triglycine sulfate, and potassium hydrogen phthalate crystals after their exposure in the Earth's magnetic field in the same electron paramagnetic resonance scheme.

  18. The significance of vector magnetic field measurements

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.

    1990-01-01

    Observations of four flaring solar active regions, obtained during 1980-1986 with the NASA Marshall vector magnetograph (Hagyard et al., 1982 and 1985), are presented graphically and characterized in detail, with reference to nearly simultaneous Big Bear Solar Observatory and USAF ASW H-alpha images. It is shown that the flares occurred where local photospheric magnetic fields differed most from the potential field, with initial brightening on either side of a magnetic-neutral line near the point of maximum angular shear (rather than that of maximum magnetic-field strength, typically 1 kG or greater). Particular emphasis is placed on the fact that these significant nonpotential features were detected only by measuring all three components of the vector magnetic field.

  19. Transport of Charged Particles in Turbulent Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Parashar, T.; Subedi, P.; Sonsrettee, W.; Blasi, P.; Ruffolo, D. J.; Matthaeus, W. H.; Montgomery, D.; Chuychai, P.; Dmitruk, P.; Wan, M.; Chhiber, R.

    2017-12-01

    Magnetic fields permeate the Universe. They are found in planets, stars, galaxies, and the intergalactic medium. The magnetic field found in these astrophysical systems are usually chaotic, disordered, and turbulent. The investigation of the transport of cosmic rays in magnetic turbulence is a subject of considerable interest. One of the important aspects of cosmic ray transport is to understand their diffusive behavior and to calculate the diffusion coefficient in the presence of these turbulent fields. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here, we will particularly focus on calculating diffusion coefficients of charged particles and magnetic field lines in a fully three-dimensional isotropic turbulent magnetic field with no mean field, which may be pertinent to many astrophysical situations. For charged particles in isotropic turbulence we identify different ranges of particle energy depending upon the ratio of the Larmor radius of the charged particle to the characteristic outer length scale of the turbulence. Different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical ideas are tested against results of detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields. We also discuss two different methods of generating random magnetic field to study charged particle propagation using numerical simulation. One method is the usual way of generating random fields with a specified power law in wavenumber space, using Gaussian random variables. Turbulence, however, is non-Gaussian, with variability that comes in bursts called intermittency. We therefore devise a way to generate synthetic intermittent fields which have many properties of realistic turbulence. Possible applications of such synthetically generated intermittent fields are

  20. Magnetic field diffusion and dissipation in reversed-field plasmas

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Gladd, N. T.; Huba, J. D.

    1981-01-01

    A diffusion equation is derived which describes the evolution of a magnetic field in a plasma of arbitrary beta and resistivity. The equation is valid for a one-dimensional slab geometry, assumes the plasma remains in quasi-equilibrium throughout its evolution and does not include thermal transport. Scaling laws governing the rate of change of the magnetic energy, particle drift energy, and magnetic flux are calculated. It is found that the magnetic free energy can be substantially larger than the particle drift energy and can be an important energy reservoir in driving plasma instabilities (e.g., the lower-hybrid-drift instability). In addition, the effect of a spatially varying resistivity on the evolution of a reversed-field plasma is studied. The resistivity model used is based upon the anomalous transport properties associated with the nonlocal mode structure of the lower-hybrid-drift instability. The relevance of this research to laboratory plasmas (e.g., theta pinches, reversed-field theta pinches) and space plasmas (e.g., the earth's magnetotail) is discussed.

  1. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  2. Magnetic field effect on spoke behaviour

    NASA Astrophysics Data System (ADS)

    Hnilica, Jaroslav; Slapanska, Marta; Klein, Peter; Vasina, Petr

    2016-09-01

    The investigations of the non-reactive high power impulse magnetron sputtering (HiPIMS) discharge using high-speed camera imaging, optical emission spectroscopy and electrical probes showed that plasma is not homogeneously distributed over the target surface, but it is concentrated in regions of higher local plasma density called spokes rotating above the erosion racetrack. Magnetic field effect on spoke behaviour was studied by high-speed camera imaging in HiPIMS discharge using 3 inch titanium target. An employed camera enabled us to record two successive images in the same pulse with time delay of 3 μs between them, which allowed us to determine the number of spokes, spoke rotation velocity and spoke rotation frequency. The experimental conditions covered pressure range from 0.15 to 5 Pa, discharge current up to 350 A and magnetic fields of 37, 72 and 91 mT. Increase of the magnetic field influenced the number of spokes observed at the same pressure and at the same discharge current. Moreover, the investigation revealed different characteristic spoke shapes depending on the magnetic field strength - both diffusive and triangular shapes were observed for the same target material. The spoke rotation velocity was independent on the magnetic field strength. This research has been financially supported by the Czech Science Foundation in frame of the project 15-00863S.

  3. Fluorescent lamp with static magnetic field generating means

    DOEpatents

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  4. SYNTHETIC OBSERVATIONS OF MAGNETIC FIELDS IN PROTOSTELLAR CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joyce W. Y.; Hull, Charles L. H.; Offner, Stella S. R., E-mail: chat.hull@cfa.harvard.edu, E-mail: jwyl1g12@soton.ac.uk

    The role of magnetic fields in the early stages of star formation is not well constrained. In order to discriminate between different star formation models, we analyze 3D magnetohydrodynamic simulations of low-mass cores and explore the correlation between magnetic field orientation and outflow orientation over time. We produce synthetic observations of dust polarization at resolutions comparable to millimeter-wave dust polarization maps observed by the Combined Array for Research in Millimeter-wave Astronomy and compare these with 2D visualizations of projected magnetic field and column density. Cumulative distribution functions of the projected angle between the magnetic field and outflow show different degreesmore » of alignment in simulations with differing mass-to-flux ratios. The distribution function for the less magnetized core agrees with observations finding random alignment between outflow and field orientations, while the more magnetized core exhibits stronger alignment. We find that fractional polarization increases when the system is viewed such that the magnetic field is close to the plane of the sky, and the values of fractional polarization are consistent with observational measurements. The simulation outflow, which reflects the underlying angular momentum of the accreted gas, changes direction significantly over over the first ∼0.1 Myr of evolution. This movement could lead to the observed random alignment between outflows and the magnetic fields in protostellar cores.« less

  5. Deriving the Coronal Magnetic Field Using Parametric Transformation Analysis

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    When plasma-beta greater than 1 then the gas pressure dominates over the magnetic pressure. This ratio as a function along the coronal magnetic field lines varies from beta greater than 1 in the photosphere at the base of the field lines, to beta much less than 1 in the mid-corona, to beta greater than 1 in the upper corona. Almost all magnetic field extrapolations do not or cannot take into account the full range of beta. They essentially assume beta much less than 1, since the full boundary conditions do not exist in the beta greater than 1 regions. We use a basic parametric representation of the magnetic field lines such that the field lines can be manipulated to match linear features in the EUV and SXR coronal images in a least squares sense. This research employs free-form deformation mathematics to generate the associated coronal magnetic field. In our research program, the complex magnetic field topology uses Parametric Transformation Analysis (PTA) which is a new and innovative method to describe the coronal fields that we are developing. In this technique the field lines can be viewed as being embedded in a plastic medium, the frozen-in-field-line concept. As the medium is deformed the field lines are similarly deformed. However the advantage of the PTA method is that the field line movement represents a transformation of one magnetic field solution into another magnetic field solution. When fully implemented, this method will allow the resulting magnetic field solution to fully match the magnetic field lines with EUV/SXR coronal loops by minimizing the differences in direction and dispersion of a collection of PTA magnetic field lines and observed field lines. The derived magnetic field will then allow beta greater than 1 regions to be included, the electric currents to be calculated, and the Lorentz force to be determined. The advantage of this technique is that the solution is: (1) independent of the upper and side boundary conditions, (2) allows non

  6. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization.

    PubMed

    Chiba, D; Kawaguchi, M; Fukami, S; Ishiwata, N; Shimamura, K; Kobayashi, K; Ono, T

    2012-06-06

    Controlling the displacement of a magnetic domain wall is potentially useful for information processing in magnetic non-volatile memories and logic devices. A magnetic domain wall can be moved by applying an external magnetic field and/or electric current, and its velocity depends on their magnitudes. Here we show that the applying an electric field can change the velocity of a magnetic domain wall significantly. A field-effect device, consisting of a top-gate electrode, a dielectric insulator layer, and a wire-shaped ferromagnetic Co/Pt thin layer with perpendicular anisotropy, was used to observe it in a finite magnetic field. We found that the application of the electric fields in the range of ± 2-3 MV cm(-1) can change the magnetic domain wall velocity in its creep regime (10(6)-10(3) m s(-1)) by more than an order of magnitude. This significant change is due to electrical modulation of the energy barrier for the magnetic domain wall motion.

  7. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars.

    PubMed

    Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Huber, Daniel; García, Rafael A; Bedding, Timothy R; Bildsten, Lars; Aguirre, Victor Silva

    2016-01-21

    Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6-2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars.

  8. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velas, K. M.; Milroy, R. D.

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub θ}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter usedmore » in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.« less

  9. A multifunctional energy-saving magnetic field generator.

    PubMed

    Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua

    2018-03-01

    To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.

  10. A multifunctional energy-saving magnetic field generator

    NASA Astrophysics Data System (ADS)

    Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua

    2018-03-01

    To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.

  11. Electric-field control of magnetic moment in Pd

    PubMed Central

    Obinata, Aya; Hibino, Yuki; Hayakawa, Daichi; Koyama, Tomohiro; Miwa, Kazumoto; Ono, Shimpei; Chiba, Daichi

    2015-01-01

    Several magnetic properties have recently become tunable with an applied electric field. Particularly, electrically controlled magnetic phase transitions and/or magnetic moments have attracted attention because they are the most fundamental parameters in ferromagnetic materials. In this study, we showed that an electric field can be used to control the magnetic moment in films made of Pd, usually a non-magnetic element. Pd ultra-thin films were deposited on ferromagnetic Pt/Co layers. In the Pd layer, a ferromagnetically ordered magnetic moment was induced by the ferromagnetic proximity effect. By applying an electric field to the ferromagnetic surface of this Pd layer, a clear change was observed in the magnetic moment, which was measured directly using a superconducting quantum interference device magnetometer. The results indicate that magnetic moments extrinsically induced in non-magnetic elements by the proximity effect, as well as an intrinsically induced magnetic moments in ferromagnetic elements, as reported previously, are electrically tunable. The results of this study suggest a new avenue for answering the fundamental question of “can an electric field make naturally non-magnetic materials ferromagnetic?” PMID:26391306

  12. Construction of Solar-Wind-Like Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Roberts, Dana Aaron

    2012-01-01

    Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.

  13. Accounting for crustal magnetization in models of the core magnetic field

    NASA Technical Reports Server (NTRS)

    Jackson, Andrew

    1990-01-01

    The problem of determining the magnetic field originating in the earth's core in the presence of remanent and induced magnetization is considered. The effect of remanent magnetization in the crust on satellite measurements of the core magnetic field is investigated. The crust as a zero-mean stationary Gaussian random process is modelled using an idea proposed by Parker (1988). It is shown that the matrix of second-order statistics is proportional to the Gram matrix, which depends only on the inner-products of the appropriate Green's functions, and that at a typical satellite altitude of 400 km the data are correlated out to an angular separation of approximately 15 deg. Accurate and efficient means of calculating the matrix elements are given. It is shown that the variance of measurements of the radial component of a magnetic field due to the crust is expected to be approximately twice that in horizontal components.

  14. Magnetic field mediated conductance oscillation in graphene p–n junctions

    NASA Astrophysics Data System (ADS)

    Cheng, Shu-Guang

    2018-04-01

    The electronic transport of graphene p–n junctions under perpendicular magnetic field is investigated in theory. Under low magnetic field, the transport is determined by the resonant tunneling of Landau levels and conductance versus magnetic field shows a Shubnikov–de Haas oscillation. At higher magnetic field, the p–n junction subjected to the quasi-classical regime and the formation of snake states results in periodical backscattering and transmission as magnetic field varies. The conductance oscillation pattern is mediated both by magnetic field and the carrier concentration on bipolar regions. For medium magnetic field between above two regimes, the combined contributions of resonant tunneling, snake states oscillation and Aharanov–Bohm interference induce irregular oscillation of conductance. At very high magnetic field, the system is subjected to quantum Hall regime. Under disorder, the quantum tunneling at low magnetic field is slightly affected and the oscillation of snake states at higher magnetic field is suppressed. In the quantum Hall regime, the conductance is a constant as predicted by the mixture rule.

  15. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  16. Delta-configurations - Flare activity and magnetic-field structure

    NASA Technical Reports Server (NTRS)

    Patty, S. R.; Hagyard, M. J.

    1986-01-01

    Complex sunspots in four active regions of April and May 1980, all exhibiting regions of magnetic classification delta, were studied using data from the NASA Marshall Space Flight Center vector magnetograph. The vector magnetic field structure in the vicinity of each delta was determined, and the location of the deltas in each active region was correlated with the locations and types of flare activity for the regions. Two types of delta-configuration were found to exist, active and inactive, as defined by the relationships between magnetic field structure and activity. The active delta exhibited high flare activity, strong horizontal gradients of the longitudinal (line-of-sight) magnetic field component, a strong transverse (perpendicular to line-of-sight) component, and a highly nonpotential orientation of the photospheric magnetic field, all indications of a highly sheared magnetic field. The inactive delta, on the other hand, exhibited little or no flare production, weaker horizontal gradients of the longitudinal component, weaker transverse components, and a nearly potential, nonsheared orientation of the magnetic field. It is concluded that the presence of such sheared fields is the primary signature by which the active delta may be distinguished, and that it is this shear which produces the flare activity of the active delta.

  17. A 0.5 Tesla Transverse-Field Alternating Magnetic Field Demagnetizer

    NASA Astrophysics Data System (ADS)

    Schillinger, W. E.; Morris, E. R.; Finn, D. R.; Coe, R. S.

    2015-12-01

    We have built an alternating field demagnetizer that can routinely achieve a maximum field of 0.5 Tesla. It uses an amorphous magnetic core with an air-cooled coil. We have started with a 0.5 T design, which satisfies most of our immediate needs, but we can certainly achieve higher fields. In our design, the magnetic field is transverse to the bore and uniform to 1% over a standard (25 mm) paleomagnetic sample. It is powered by a 1 kW power amplifier and is compatible with our existing sample handler for automated demagnetization and measurement (Morris et al., 2009). It's much higher peak field has enabled us to completely demagnetize many of the samples that previously we could not with commercial equipment. This capability is especially needed for high-coercivity sedimentary and igneous rocks that contain magnetic minerals that alter during thermal demagnetization. It will also enable detailed automated demagnetization of high coercivity phases in extraterrestrial samples, such as native iron, iron-alloy and sulfide minerals that are common in lunar rocks and meteorites. Furthermore, it has opened the door for us to use the rock-magnetic technique of component analysis, using coercivity distributions derived from very detailed AF demagnetization of NRM and remanence produced in the laboratory to characterize the magnetic mineralogy of sedimentary rocks. In addition to the many benefits this instrument has brought to our own research, a much broader potential impact is to replace the transverse coils in automated AF demagnetization systems, which typically are limited to peak fields around 0.1 T.

  18. Influence of toroidal magnetic field in multiaccreting tori

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Montani, G.

    2018-06-01

    We analysed the effects of a toroidal magnetic field in the formation of several magnetized accretion tori, dubbed as ringed accretion discs (RADs), orbiting around one central Kerr supermassive black hole (SMBH) in active galactic nuclei (AGNs), where both corotating and counterotating discs are considered. Constraints on tori formation and emergence of RADs instabilities, accretion on to the central attractor and tori collision emergence, are investigated. The results of this analysis show that the role of the central BH spin-mass ratio, the magnetic field and the relative fluid rotation and tori rotation with respect the central BH, are crucial elements in determining the accretion tori features, providing ultimately evidence of a strict correlation between SMBH spin, fluid rotation, and magnetic fields in RADs formation and evolution. More specifically, we proved that magnetic field and discs rotation are in fact strongly constrained, as tori formation and evolution in RADs depend on the toroidal magnetic fields parameters. Eventually, this analysis identifies specific classes of tori, for restrict ranges of magnetic field parameter, that can be observed around some specific SMBHs identified by their dimensionless spin.

  19. Measurements of Photospheric and Chromospheric Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2017-09-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.

  20. [Magnetic fields in physical therapy. Experience in orthopedics and traumatology rehabilitation].

    PubMed

    Borg, M J; Marcuccio, F; Poerio, A M; Vangone, A

    1996-10-01

    The present research is based on the premise that magnetic fields stimulate biological tissues, as many international works assert. They believe in the real aid of this therapeutical treatment in orthopedy and traumatology. The authors work in Rehabilitation Department of a traumatological hospital, so they have studied therapeutical results in ELF magnetotherapy on their patients for as long as six months.

  1. Magnetic Field Investigations During ROSETTA's Steins Flyby

    NASA Astrophysics Data System (ADS)

    Glassmeier, K.; Auster, H.; Richter, I.; Motschmann, U.; RPC/ROMAP Teams

    2009-05-01

    During the recent Steins flyby of the ROSETTA spacecraft magnetic field measurements have been made with both, the RPC orbiter magnetometer and the ROMAP lander magnetometer. These combined magnetic field measurements allow a detailed examination of any magnetic signatures caused either directly by the asteroid or indirectly by Steins different modes of interaction with the solar wind. Comparing our measurements with simulation results show that Steins does not possess a significant remanent magnetization. The magnetization is estimated at less than 1 mAm2/kg. This is significantly different from results at Braille and Gaspra.

  2. Influence of Magnetic Fields on Magneto-Aerotaxis

    PubMed Central

    Bennet, Mathieu; McCarthy, Aongus; Fix, Dmitri; Edwards, Matthew R.; Repp, Felix; Vach, Peter; Dunlop, John W. C.; Sitti, Metin; Buller, Gerald S.; Klumpp, Stefan; Faivre, Damien

    2014-01-01

    The response of cells to changes in their physico-chemical micro-environment is essential to their survival. For example, bacterial magnetotaxis uses the Earth's magnetic field together with chemical sensing to help microorganisms move towards favoured habitats. The studies of such complex responses are lacking a method that permits the simultaneous mapping of the chemical environment and the response of the organisms, and the ability to generate a controlled physiological magnetic field. We have thus developed a multi-modal microscopy platform that fulfils these requirements. Using simultaneous fluorescence and high-speed imaging in conjunction with diffusion and aerotactic models, we characterized the magneto- aerotaxis of Magnetospirillum gryphiswaldense. We assessed the influence of the magnetic field (orientation; strength) on the formation and the dynamic of a micro-aerotactic band (size, dynamic, position). As previously described by models of magnetotaxis, the application of a magnetic field pointing towards the anoxic zone of an oxygen gradient results in an enhanced aerotaxis even down to Earth's magnetic field strength. We found that neither a ten-fold increase of the field strength nor a tilt of 45° resulted in a significant change of the aerotactic efficiency. However, when the field strength is zeroed or when the field angle is tilted to 90°, the magneto-aerotaxis efficiency is drastically reduced. The classical model of magneto-aerotaxis assumes a response proportional to the cosine of the angle difference between the directions of the oxygen gradient and that of the magnetic field. Our experimental evidence however shows that this behaviour is more complex than assumed in this model, thus opening up new avenues for research. PMID:24983865

  3. D-shaped tilted fiber Bragg grating using magnetic fluid for magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Ying, Yu; Zhang, Rui; Si, Guang-Yuan; Wang, Xin; Qi, Yuan-Wei

    2017-12-01

    In our work, a numerical investigation of a magnetic field sensor based on a D-shaped tilted fiber Bragg grating and magnetic fluid is performed. The sensing probe is constructed by placing the magnetic fluid film on the flat surface of the D-shaped tilted fiber Bragg grating. We investigate the resonance wavelengths of the proposed structure with different tilted angles of grating ranging from 0° to 20°, and analyze the magnetic field sensing characteristics. The simulation results show that the optical fiber sensor exhibits optimal transmission characteristics with a tilted angle of 8°. The wavelength sensitivity of the magnetic field sensor is as high as -0.18nm/Oe in the range of 30Oe-270Oe, and it demonstrates a linearity up to R2= -0.9998. Such sensor has potential applications in determining magnetic sensing field.

  4. Magnetic field angle dependent hysteresis of a magnetorheological suspension

    NASA Astrophysics Data System (ADS)

    Dohmen, Eike; Borin, Dmitry; Zubarev, Andrey

    2017-12-01

    Magnetorheological (MR) materials are of growing interest for a development and realisation of adaptive components and damping devices. The influence of the magnetic field orientation on the rheological properties of smart materials like MR fluids or magnetic hybrid composites is a key aspect which still is not fully understood, but occurs in almost every real life MR application. To cope with the practical needs and efficiently utilise these smart materials while taking into account their material phenomena experimentally validated practice-oriented models are needed. The authors use a coupled phenomenological approach to adjust and discuss a developed theoretical model based on experimentally obtained data. In addition the data helps to get a better understanding of internal processes and interrelations in MR suspensions.

  5. Neutron stars velocities and magnetic fields

    NASA Astrophysics Data System (ADS)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  6. Study of Bacterial Response to Antibiotics in Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Abdul-Moqueet, Mohammad; Albalawi, Abdullah; Masood, Samina

    Effect of low magnetic fields on bacterial growth has been well established. Current study shows how different magnetic fields effect the bacterial response to antibiotics shows that the bacterial infections treatment and disease cure is changed in the presence of weak fields. This study has focused on understanding how different types of low magnetic fields change the response the bacterium to antibiotics in a liquid medium. This low magnetic field coupled with the introduction of antibiotics to the growth medium shows a drop in the growth curve. The most significant effect of low magnetic fields was seen with the uniform electromagnetic field as compared to the similar strength of constant static magnetic field produced by a bar magnets.

  7. Measuring surface magnetic fields of red supergiant stars

    NASA Astrophysics Data System (ADS)

    Tessore, B.; Lèbre, A.; Morin, J.; Mathias, P.; Josselin, E.; Aurière, M.

    2017-07-01

    Context. Red supergiant (RSG) stars are very massive cool evolved stars. Recently, a weak magnetic field was measured at the surface of α Ori and this is so far the only M-type supergiant for which a direct detection of a surface magnetic field has been reported. Aims: By extending the search for surface magnetic field in a sample of late-type supergiants, we want to determine whether the surface magnetic field detected on α Ori is a common feature among the M-type supergiants. Methods: With the spectropolarimeter Narval at Télescope Bernard-Lyot we undertook a search for surface magnetic fields in a sample of cool supergiant stars, and we analysed circular polarisation spectra using the least-squares deconvolution technique. Results: We detect weak Zeeman signatures of stellar origin in the targets CE Tau, α1 Her and μ Cep. For the latter star, we also show that cross-talk from the strong linear polarisation signals detected on this star must be taken into account. For CE Tau and μ Cep, the longitudinal component of the detected surface fields is at the Gauss-level, such as in α Ori. We measured a longitudinal field almost an order of magnitude stronger for α1 Her. We also report variability of the longitudinal magnetic field of CE Tau and α1 Her, with changes in good agreement with the typical atmospheric dynamics time-scales. We also report a non-detection of magnetic field at the surface of the yellow supergiant star ρ Cas. Conclusions: The two RSG stars of our sample, CE Tau and μ Cep, display magnetic fields very similar to that of α Ori. The non-detection of a magnetic field on the post-RSG star ρ Cas suggests that the magnetic field disappears, or at least becomes undetectable with present methods, at later evolutionary stages. Our analysis of α1 Her supports the proposed reclassification of the star as an M-type asymptotic giant branch star. Based on observations obtained at the Télescope Bernard Lyot (TBL) at the Observatoire du Pic du Midi

  8. Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.

    PubMed

    Moelker, Adriaan; Wielopolski, Piotr A; Pattynama, Peter M T

    2003-02-01

    The need for better signal-to-noise ratios and resolution has pushed magnetic resonance imaging (MRI) towards high-field MR-scanners for which only little data on MR-related acoustic noise production have been published. The purpose of this study was to validate the theoretical relationship of sound pressure level (SPL) and static magnetic field strength. This is relevant for allowing adequate comparisons of acoustic data of MR systems at various magnetic field strengths. Acoustic data were acquired during various pulse sequences at field strengths of 0.5, 1.0, 1.5 and 2.0 Tesla using the same MRI unit by means of a Helicon rampable magnet. Continuous-equivalent, i.e. time-averaged, linear SPLs and 1/3-octave band frequencies were recorded. Ramping from 0.5 to 1.0 Tesla and from 1.0 to 2.0 Tesla resulted in an SPL increase of 5.7 and 5.2 dB(L), respectively, when averaged over the various pulse sequences. Most of the acoustic energy was in the 1-kHz frequency band, irrespective of magnetic field strength. The relation between field strength and SPL was slightly non-linear, i.e. a slightly less increase at higher field strengths, presumably caused by the elastic properties of the gradient coil encasings.

  9. Measuring the Large-scale Solar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.; Scherrer, P. H.; Peterson, E.; Svalgaard, L.

    2017-12-01

    The Sun's large-scale magnetic field is important for determining global structure of the corona and for quantifying the evolution of the polar field, which is sometimes used for predicting the strength of the next solar cycle. Having confidence in the determination of the large-scale magnetic field of the Sun is difficult because the field is often near the detection limit, various observing methods all measure something a little different, and various systematic effects can be very important. We compare resolved and unresolved observations of the large-scale magnetic field from the Wilcox Solar Observatory, Heliseismic and Magnetic Imager (HMI), Michelson Doppler Imager (MDI), and Solis. Cross comparison does not enable us to establish an absolute calibration, but it does allow us to discover and compensate for instrument problems, such as the sensitivity decrease seen in the WSO measurements in late 2016 and early 2017.

  10. Magnetic field tunable dielectric dispersion in successive field-induced magnetic phases of the geometrically frustrated magnet CuFeO2 up to 28 T

    NASA Astrophysics Data System (ADS)

    Tamatsukuri, H.; Mitsuda, S.; Hiroura, K.; Nakajima, T.; Fujihala, M.; Yamano, M.; Toshioka, Y.; Kaneko, C.; Takehana, K.; Imanaka, Y.; Terada, N.; Kitazawa, H.

    2018-06-01

    We find magnetic-field-dependent dielectric dispersions specific to successive field-induced magnetic phases of a geometrically frustrated magnet CuFeO2 up to 28 T. The dielectric dispersions in the three field-induced collinear-commensurate magnetic phases are well described by the superposition of Debye-type relaxations, and the number of contributions to the Debye-type dispersions differs in these phases. In contrast, the dielectric dispersions in the noncollinear-incommensurate phase, known as a spin-driven ferroelectric phase, cannot be simply described by the Debye-type relaxations. In addition, we find that the temperature dependence of the Debye relaxation frequencies follows the Arrhenius law, and that the activation energies derived from the Arrhenius equation also depend on the magnetic field. Considering the magnetostriction effect in combination with elongation/contraction of spins resulting from the application of a magnetic field, we show that the number of Debye relaxation components is equivalent to the number of states of local Fe3O clusters determined by oxygen displacement within a triangular Fe lattice. Based on this correspondence, we propose a possible explanation that excess charges resulting from a lack of stoichiometry hop over the double-well potentials within each local Fe3O cluster, like small polarons.

  11. Report of the panel on geopotential fields: Magnetic field, section 9

    NASA Technical Reports Server (NTRS)

    Achache, Jose J.; Backus, George E.; Benton, Edward R.; Harrison, Christopher G. A.; Langel, Robert A.

    1991-01-01

    The objective of the NASA Geodynamics program for magnetic field measurements is to study the physical state, processes and evolution of the Earth and its environment via interpretation of measurements of the near Earth magnetic field in conjunction with other geophysical data. The fields measured derive from sources in the core, the lithosphere, the ionosphere, and the magnetosphere. Panel recommendations include initiation of multi-decade long continuous scalar and vector measurements of the Earth's magnetic field by launching a five year satellite mission to measure the field to about 1 nT accuracy, improvement of our resolution of the lithographic component of the field by developing a low altitude satellite mission, and support of theoretical studies and continuing analysis of data to better understand the source physics and improve the modeling capabilities for different source regions.

  12. Superconducting Sphere in an External Magnetic Field Revisited

    ERIC Educational Resources Information Center

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  13. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  14. Magnetic Turbulence, Fast Magnetic Field line Diffusion and Small Magnetic Structures in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Zimbardo, G.; Pommois, P.; Veltri, P.

    2003-09-01

    The influence of magnetic turbulence on magnetic field line diffusion has been known since the early days of space and plasma physics. However, the importance of ``stochastic diffusion'' for energetic particles has been challenged on the basis of the fact that sharp gradients of either energetic particles or ion composition are often observed in the solar wind. Here we show that fast transverse field line and particle diffusion can coexist with small magnetic structures, sharp gradients, and with long lived magnetic flux tubes. We show, by means of a numerical realization of three dimensional magnetic turbulence and by use of the concepts of deterministic chaos and turbulent transport, that turbulent diffusion is different from Gaussian diffusion, and that transport can be inhomogeneous even if turbulence homogeneously fills the heliosphere. Several diagnostics of field line transport and flux tube evolution are shown, and the size of small magnetic structures in the solar wind, like gradient scales and flux tube thickness, are estimated and compared to the observations.

  15. Merging magnetic droplets by a magnetic field pulse

    NASA Astrophysics Data System (ADS)

    Wang, Chengjie; Xiao, Dun; Liu, Yaowen

    2018-05-01

    Reliable manipulation of magnetic droplets is of immense importance for their applications in spin torque oscillators. Using micromagnetic simulations, we find that the antiphase precession state, which originates in the dynamic dipolar interaction effect, is a favorable stable state for two magnetic droplets nucleated at two identical nano-contacts. A magnetic field pulse can be used to destroy their stability and merge them into a big droplet. The merging process strongly depends on the pulse width as well as the pulse strength.

  16. Antiferromagnetic nano-oscillator in external magnetic fields

    NASA Astrophysics Data System (ADS)

    Checiński, Jakub; Frankowski, Marek; Stobiecki, Tomasz

    2017-11-01

    We describe the dynamics of an antiferromagnetic nano-oscillator in an external magnetic field of any given time distribution. The oscillator is powered by a spin current originating from spin-orbit effects in a neighboring heavy metal layer and is capable of emitting a THz signal in the presence of an additional easy-plane anisotropy. We derive an analytical formula describing the interaction between such a system and an external field, which can affect the output signal character. Interactions with magnetic pulses of different shapes, with a sinusoidal magnetic field and with a sequence of rapidly changing magnetic fields are discussed. We also perform numerical simulations based on the Landau-Lifshitz-Gilbert equation with spin-transfer torque effects to verify the obtained results and find a very good quantitative agreement between analytical and numerical predictions.

  17. Monolayer phosphorene under time-dependent magnetic field

    NASA Astrophysics Data System (ADS)

    Nascimento, J. P. G.; Aguiar, V.; Guedes, I.

    2018-02-01

    We obtain the exact wave function of a monolayer phosphorene under a low-intensity time-dependent magnetic field using the dynamical invariant method. We calculate the quantum-mechanical energy expectation value and the transition probability for a constant and an oscillatory magnetic field. For the former we observe that the Landau level energy varies linearly with the quantum numbers n and m and the magnetic field intensity B0. No transition takes place. For the latter, we observe that the energy oscillates in time, increasing linearly with the Landau level n and m and nonlinearly with the magnetic field. The (k , l) →(n , m) transitions take place only for l = m. We investigate the (0,0) →(n , 0) and (1 , l) and (2 , l) probability transitions.

  18. SQUIDs De-fluxing Using a Decaying AC Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlashov, Andrei Nikolaevich; Semenov, Vasili Kirilovich; Anderson, Bill

    Flux trapping is the Achilles’ heel of all superconductor electronics. The most direct way to avoid flux trapping is a prevention of superconductor circuits from exposure to magnetic fields. Unfortunately this is not feasible if the circuits must be exposed to a strong DC magnetic field even for a short period of time. For example, such unavoidable exposures take place in superparamagnetic relaxation measurements (SPMR) and ultra-low field magnetic resonance imaging (ULF MRI) using unshielded thin-film SQUID-based gradiometers. Unshielded SQUIDs stop working after being exposed to DC magnetic fields of only a few Gauss in strength. In this paper wemore » present experimental results with de-fluxing of planar thin-film LTS SQUID-based gradiometers using a strong decaying AC magnetic field. We used four commercial G136 gradiometers for SPMR measurements with up to a 10 mT magnetizing field. Strong 12.9 kHz decaying magnetic field pulses reliably return SQUIDs to normal operation 50 ms after zeroing the DC magnetizing field. This new AC de-fluxing method was also successfully tested with seven other different types of LTS SQUID sensors and has been shown to dissipate extremely low energy.« less

  19. Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks

    NASA Astrophysics Data System (ADS)

    Mai, Chuhong; Desch, Steven J.; Boley, Aaron C.; Weiss, Benjamin P.

    2018-04-01

    Recent laboratory efforts have constrained the remanent magnetizations of chondrules and the magnetic field strengths to which the chondrules were exposed as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors of ∼10–30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.

  20. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Smith, Carl H. (Inventor); Nordman, Catherine A. (Inventor); Jander, Albrecht (Inventor); Qian, Zhenghong (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  1. The mechanisms of the effects of magnetic fields on cells

    NASA Astrophysics Data System (ADS)

    Kondrachuk, A.

    The evolution of organisms in conditions of the Earth magnetism results in close dependence of their functioning on the properties of the Earth magnetic field. The magnetic conditions in space flight differ from those on the Earth (e.g. much smaller values of magnetic filed) that effect various processes in living organisms. Meanwhile the mechanisms of interaction of magnetic fields with cell structures are poorly understood and systemized. The goal of the present work is to analyze and estimate the main established mechanisms of "magnetic fields - cell" interaction. Due to variety and complexity of the effects the analysis is mainly restricted to biological effects of the static magnetic field at a cellular level. 1) Magnetic induction. Static magnetic fields exert forces on moving ions in solution (e.g., electrolytes), giving rise to induced electric fields and currents. This effect may be especially important when the currents changed due to the magnetic field application are participating in some receptor functions of cells (e.g. plant cells). 2) Magneto-mechanical effect of reorientation. Uniform static magnetic fields produce torques on certain molecules with anisotropic magnetic properties, which results in their reorientation and spatial ordering. Since the structures of biological cells are magnetically and mechanically inhomogeneous, the application of a homogeneous magnetic field may cause redistribution of stresses within cells, deformation of intracellular structures, change of membrane permeability, etc. 3) Ponderomotive effects. Spatially non-uniform magnetic field exerts ponderomotive force on magnetically non-uniform cell structures. This force is proportional to the gradient of the square of magnetic field and the difference of magnetic susceptibilities of the component of the cell and its environment. 4) Biomagnetic effects. Magnetic fields can exert torques and translational forces on ferromagnetic structures, such as magnetite and ferritins

  2. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.

    2017-06-01

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  3. Characterization of magnetic force microscopy probe tip remagnetization for measurements in external in-plane magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weis, Tanja; Engel, Dieter; Ehresmann, Arno

    2008-12-15

    A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.

  4. Magnetic Fields in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Briggs, G.; Ferrario, L.; Tout, C. A.; Wickramasinghe, D. T.

    2018-01-01

    Wickramasinghe et al. (2014) and Briggs et al. (2015) have proposed that the strong magnetic fields observed in some single white dwarfs (MWDs) are formed by an α—Ω dynamo driven by differential rotation when two stars, the more massive one with a degenerate core, merge during common envelope (CE) evolution (Ferrario et al., 2015b). We synthesise a population of binaries to investigate if fields in the magnetic cataclysmic variables (MCVs) may also originate during stellar interaction in the CE phase.

  5. Superconductor shields test chamber from ambient magnetic fields

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1965-01-01

    Shielding a test chamber for magnetic components enables it to maintain a constant, low magnetic field. The chamber is shielded from ambient magnetic fields by a lead foil cylinder maintained in a superconducting state by liquid helium.

  6. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a

  7. Magnetic fields in turbulent quark matter and magnetar bursts

    NASA Astrophysics Data System (ADS)

    Dvornikov, Maxim

    We analyze the magnetic field evolution in dense quark matter with unbroken chiral symmetry, which can be found inside quark and hybrid stars. The magnetic field evolves owing to the chiral magnetic effect in the presence of the electroweak interaction between quarks. In our study, we also take into account the magnetohydrodynamic turbulence effects in dense quark matter. We derive the kinetic equations for the spectra of the magnetic helicity density and the magnetic energy density as well as for the chiral imbalances. On the basis of the numerical solution of these equations, we find that turbulence effects are important for the behavior of small scale magnetic fields. It is revealed that, under certain initial conditions, these magnetic fields behave similarly to the electromagnetic flashes of some magnetars. We suggest that fluctuations of magnetic fields, described in frames of our model, which are created in the central regions of a magnetized compact star, can initiate magnetar bursts.

  8. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores andmore » the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.« less

  9. The origin, evolution and signatures of primordial magnetic fields.

    PubMed

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ∼  10(-16) Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  10. Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Longfeng; Pu, Shengli, E-mail: shlpu@usst.edu.cn; Tang, Jiali

    2015-05-11

    A kind of magnetic field sensor using a microfiber coupler (MFC) surrounded with magnetic fluid (MF) is proposed and experimentally demonstrated. As the MFC is strongly sensitive to the surrounding refractive index (RI) and MF's RI is sensitive to magnetic field, the magnetic field sensing function of the proposed structure is realized. Interrogation of magnetic field strength is achieved by measuring the dip wavelength shift and transmission loss change of the transmission spectrum. The experimental results show that the sensitivity of the sensor is wavelength-dependent. The maximum sensitivity of 191.8 pm/Oe is achieved at wavelength of around 1537 nm in this work.more » In addition, a sensitivity of −0.037 dB/Oe is achieved by monitoring variation of the fringe visibility. These suggest the potential applications of the proposed structure in tunable all-in-fiber photonic devices such as magneto-optical modulator, filter, and sensing.« less

  11. Cloaking magnetic field and generating electric field with topological insulator and superconductor bi-layer sphere

    NASA Astrophysics Data System (ADS)

    Xu, Jin

    2017-12-01

    When an electric field is applied on a topological insulator, not only the electric field is generated, but also the magnetic field is generated, vice versa. I designed topological insulator and superconductor bi-layer magnetic cloak, derived the electric field and magnetic field inside and outside the topological insulator and superconductor sphere. Simulation and calculation results show that the applied magnetic field is screened by the topological insulator and superconductor bi-layer, and the electric field is generated in the cloaked region.

  12. The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field

    NASA Technical Reports Server (NTRS)

    Kulsrud, Russell M.; Anderson, Stephen W.

    1992-01-01

    The fluctuation spectrum that must arise in a mean field dynamo generation of galactic fields if the initial field is weak is considered. A kinetic equation for its evolution is derived and solved. The spectrum evolves by transfer of energy from one magnetic mode to another by interaction with turbulent velocity modes. This kinetic equation is valid in the limit that the rate of evolution of the magnetic modes is slower than the reciprocal decorrelation time of the turbulent modes. This turns out to be the case by a factor greater than 3. Most of the fluctuation energy concentrates on small scales, shorter than the hydrodynamic turbulent scales. The fluctuation energy builds up to equipartition with the turbulent energy in times that are short compared to the e-folding time of the mean field. The turbulence becomes strongly modified before the dynamo amplification starts. Thus, the kinematic assumption of the mean dynamo theory is invalid. Thus, the galactic field must have a primordial origin, although it may subsequently be modified by dynamo action.

  13. Flux Transport and the Sun's Global Magnetic Field

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2010-01-01

    The Sun s global magnetic field is produced and evolved through the emergence of magnetic flux in active regions and its transport across the solar surface by the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective flows of granulation, supergranulation, and giant cell convection. Maps of the global magnetic field serve as the inner boundary condition for space weather. The photospheric magnetic field and its evolution determine the coronal and solar wind structures through which CMEs must propagate and in which solar energetic particles are accelerated and propagate. Producing magnetic maps which best represent the actual field configuration at any instant requires knowing the magnetic field over the observed hemisphere as well as knowing the flows that transport flux. From our Earth-based vantage point we only observe the front-side hemisphere and each pole is observable for only six months of the year at best. Models for the surface magnetic flux transport can be used to provide updates to the magnetic field configuration in those unseen regions. In this presentation I will describe successes and failures of surface flux transport and present new observations on the structure, the solar cycle variability, and the evolution of the flows involved in magnetic flux transport. I find that supergranules play the dominant role due to their strong flow velocities and long lifetimes. Flux is transported by differential rotation and meridional flow only to the extent that the supergranules participate in those two flows.

  14. Fractional dynamics of charged particles in magnetic fields

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  15. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection and dynamical chaos

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-04-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  16. Diagnostics of vector magnetic fields

    NASA Technical Reports Server (NTRS)

    Stenflo, J. O.

    1985-01-01

    It is shown that the vector magnetic fields derived from observations with a filter magnetograph will be severely distorted if the spatially unresolved magnetic structure is not properly accounted for. Thus the apparent vector field will appear much more horizontal than it really is, but this distortion is strongly dependent on the area factor and the temperature line weakenings. As the available fluxtube models are not sufficiently well determined, it is not possible to correct the filter magnetograph observations for these effects in a reliable way, although a crude correction is of course much better than no correction at all. The solution to this diagnostic problem is to observe simultaneously in suitable combinations of spectral lines, and/or use Stokes line profiles recorded with very high spectral resolution. The diagnostic power of using a Fourier transform spectrometer for polarimetry is shown and some results from I and V spectra are illustrated. The line asymmetries caused by mass motions inside the fluxtubes adds an extra complication to the diagnostic problem, in particular as there are indications that the motions are nonstationary in nature. The temperature structure appears to be a function of fluxtube diameter, as a clear difference between plage and network fluxtubes was revealed. The divergence of the magnetic field with height plays an essential role in the explanation of the Stokes V asymmetries (in combination with the mass motions). A self consistent treatment of the subarcsec field geometry may be required to allow an accurate derivation of the spatially averaged vector magnetic field from spectrally resolved data.

  17. High magnetic field magnetization of a new triangular lattice antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, H. D.; Stritzinger, Laurel Elaine Winter; Harrison, Neil

    2017-03-23

    In CsV(MoO 4) 2, the magnetic V 3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO 4) 2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Willmore » it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V 3+ (3d 2) ions. Apparently we need higher field to reach 1/3 value or full moment.« less

  18. Control of reversible magnetization switching by pulsed circular magnetic field in glass-coated amorphous microwires

    NASA Astrophysics Data System (ADS)

    Chizhik, Alexander; Zhukov, Arkady; Gonzalez, Julian; Stupakiewicz, Andrzej

    2018-02-01

    Magnetization reversal in magnetic microwires was studied in the presence of external mechanical stress and helical magnetic fields using the magneto-optical Kerr effect. It was found that a combination of tuned magnetic anisotropy and a direct current or pulsed circular magnetic field activated different types of magnetization reversal scenarios. The application of the pulsed magnetic field of 10 ns time duration induced a transient controlling action to switch the magnetic states without activating a domain wall motion. This created a promising method for tuning the giant magneto-impedance effect.

  19. Optical field induced rotation of polarization in rubidium atoms with the additional magnetic field

    NASA Astrophysics Data System (ADS)

    Ummal Momeen, M.; Hu, Jianping

    2017-11-01

    We present the magnetic and optical field induced rotation of polarization in 87Rb and 85Rb atoms at geophysical magnetic fields. The line shape varies considerably in the presence of a magnetic field of the order of a few mG. Multiple Zeeman sublevel EIT systems involving rubidium atoms are investigated. Theoretical formalism of optical field induced polarization rotation in the presence of a magnetic field is discussed by considering all the Zeeman sublevels. It is noted that the ground state population distribution also plays a major role.

  20. A Quantitative Determination of Magnetic Nanoparticle Separation Using On-Off Field Operation of Quadrupole Magnetic Field-Flow Fractionation (QMgFFF)

    PubMed Central

    Orita, Toru; Moore, Lee R.; Joshi, Powrnima; Tomita, Masahiro; Horiuchi, Takashi; Zborowski, Maciej

    2014-01-01

    Quadrupole Magnetic Field-Flow Fractionation (QMgFFF) is a technique for characterization of sub-micrometer magnetic particles based on their retention in the magnetic field from flowing suspensions. Different magnetic field strengths and volumetric flow rates were tested using on-off field application and two commercial nanoparticle preparations that significantly differed in their retention parameter, λ (by nearly 8-fold). The fractograms showed a regular pattern of higher retention (98.6% v. 53.3%) for the larger particle (200 nm v. 90 nm) at the higher flow rate (0.05 mL/min v. 0.01 mL/min) at the highest magnetic field (0.52 T), as expected because of its lower retention parameter. The significance of this approach is a demonstration of a system that is simpler in operation than a programmed field QMgFFF in applications to particle mixtures consisting of two distinct particle fractions. This approach could be useful for detection of unwanted particulate contaminants, especially important in industrial and biomedical applications. PMID:23842422

  1. Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.

    2018-01-01

    The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.

  2. Optical fiber F-P magnetic field sensor based on magnetostrictive effect of magnetic fluid

    NASA Astrophysics Data System (ADS)

    Shi, Fuquan; Luo, Yan; Che, Jiajia; Ren, Zhijun; peng, Baojin

    2018-07-01

    magnetic field sensor of air-gap Fabry-Perot fiber interferometersis proposed based on magnetostrictive effect. The sensor is consisted of single-model fiber (SMF), air-gap, no-core fiber (NCF) and magnetic fluid. Those are sealed in the capillary, SMF and NCF are connect with air chamber and magnetic fluid column. With the presence of an external magnetic field, air chamber cavity length changes because of the magneto-volume variation of magnetic fluids. This situation causes a change in the optical path difference. Detection of the drift of interference spectrum leads to the detection of the change in magnetic field. When the magnetic field is parallel to the direction in which the capillary is placed, the sensitivity is 0.2347 nm/mT; when the magnetic fluid is perpendicular to the direction in which the capillary is placed, the sensitivity is 0.325 nm/http://mT.%20In.

  3. The mean magnetic field of the sun - Method of observation and relation to the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.; Kotov, V.; Severnyi, A. B.; Howard, R.

    1977-01-01

    The mean solar magnetic field as measured in integrated light has been observed since 1968. Since 1970 it has been observed both at Hale Observatories and at the Crimean Astrophysical Observatory. The observing procedures at both observatories and their implications for mean field measurements are discussed. A comparison of the two sets of daily observations shows that similar results are obtained at both observatories. A comparison of the mean field with the interplanetary magnetic polarity shows that the IMF sector structure has the same pattern as the mean field polarity.

  4. Observations of magnetic fields on solar-type stars

    NASA Technical Reports Server (NTRS)

    Marcy, G. W.

    1982-01-01

    Magnetic-field observations were carried out for 29 G and K main-sequence stars. The area covering-factors of magnetic regions tends to be greater in the K dwarfs than in the G dwarfs. However, no spectral-type dependence is found for the field strengths, contrary to predictions that pressure equilibrium with the ambient photospheric gas pressure would determine the surface field strengths. Coronal soft X-ray fluxes from the G and K dwarfs correlate well with the fraction of the stellar surface covered by magnetic regions. The dependence of coronal soft X-ray fluxes on photospheric field strengths is consistent with Stein's predicted generation-rates for Alfven waves. These dependences are inconsistent with the one dynamo model for which a specific prediction is offered. Finally, time variability of magnetic fields is seen on the two active stars that have been extensively monitored. Significant changes in magnetic fields are seen to occur on timescales as short as one day.

  5. Plasma separation from magnetic field lines in a magnetic nozzle

    NASA Technical Reports Server (NTRS)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  6. The ARASE (ERG) magnetic field investigation

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ayako; Teramoto, Mariko; Nomura, Reiko; Nosé, Masahito; Fujimoto, Akiko; Tanaka, Yoshimasa; Shinohara, Manabu; Nagatsuma, Tsutomu; Shiokawa, Kazuo; Obana, Yuki; Miyoshi, Yoshizumi; Mita, Makoto; Takashima, Takeshi; Shinohara, Iku

    2018-03-01

    The fluxgate magnetometer for the Arase (ERG) spacecraft mission was built to investigate particle acceleration processes in the inner magnetosphere. Precise measurements of the field intensity and direction are essential in studying the motion of particles, the properties of waves interacting with the particles, and magnetic field variations induced by electric currents. By observing temporal field variations, we will more deeply understand magnetohydrodynamic and electromagnetic ion-cyclotron waves in the ultra-low-frequency range, which can cause production and loss of relativistic electrons and ring-current particles. The hardware and software designs of the Magnetic Field Experiment (MGF) were optimized to meet the requirements for studying these phenomena. The MGF makes measurements at a sampling rate of 256 vectors/s, and the data are averaged onboard to fit the telemetry budget. The magnetometer switches the dynamic range between ± 8000 and ± 60,000 nT, depending on the local magnetic field intensity. The experiment is calibrated by preflight tests and through analysis of in-orbit data. MGF data are edited into files with a common data file format, archived on a data server, and made available to the science community. Magnetic field observation by the MGF will significantly improve our knowledge of the growth and decay of radiation belts and ring currents, as well as the dynamics of geospace storms.

  7. Magnetic skyrmions in confined geometries: Effect of the magnetic field and the disorder

    NASA Astrophysics Data System (ADS)

    Juge, Roméo; Je, Soong-Geun; de Souza Chaves, Dayane; Pizzini, Stefania; Buda-Prejbeanu, Liliana D.; Aballe, Lucia; Foerster, Michael; Locatelli, Andrea; Menteş, Tevfik Onur; Sala, Alessandro; Maccherozzi, Francesco; Dhesi, Sarnjeet S.; Auffret, Stéphane; Gautier, Eric; Gaudin, Gilles; Vogel, Jan; Boulle, Olivier

    2018-06-01

    We report on the effect of the lateral confinement and a perpendicular magnetic field on isolated room-temperature magnetic skyrmions in sputtered Pt/Co/MgO nanotracks and nanodots. We show that the skyrmions size can be easily tuned by playing on the lateral dimensions of the nanostructures and by using external magnetic field amplitudes of a few mT, which allow to reach sub-100 nm diameters. Our XMCD-PEEM observations also highlight the important role of the pinning on the skyrmions size and stability under an out-of-plane magnetic field. Micromagnetic simulations reveal that the effect of local pinning can be well accounted for by considering the thin film grain structure with local anisotropy variations and reproduce well the dependence of the skyrmion diameter on the magnetic field and the geometry.

  8. Driven acoustic oscillations within a vertical magnetic field

    NASA Technical Reports Server (NTRS)

    Hindman, Bradley W.; Zweibel, Ellen G.; Cally, P. S.

    1995-01-01

    The effects of a vertical magnetic field on p-mode frequencies, line widths, and eigenfunctions, are examined. A solar model, consisting of a neutrally stable polytropic interior matched to an isothermal chromosphere, is applied. The p-modes are produced by a spatially distributed driver. The atmosphere is threaded by a constant vertical magnetic field. The frequency shifts due to the vertical magnetic field are found to be much smaller than the shifts caused by horizontal fields of similar strength. A large vertical field of 2000 G produces shifts of several nHz. It is found that the frequency shifts decrease with increasing frequency and increase with field strength. The coupling of the acoustic fast mode to the escaping slow modes is inefficient. Constant vertical magnetic field models are therefore incapable of explaining the high level of absorption observed in sunspots and plage.

  9. Quadrupole magnetic field-flow fractionation: A novel technique for the characterization of magnetic particles

    NASA Astrophysics Data System (ADS)

    Carpino, Francesca

    In the last few decades, the development and use of nanotechnology has become of increasing importance. Magnetic nanoparticles, because of their unique properties, have been employed in many different areas of application. They are generally made of a core of magnetic material coated with some other material to stabilize them and to help disperse them in suspension. The unique feature of magnetic nanoparticles is their response to a magnetic field. They are generally superparamagnetic, in which case they become magnetized only in a magnetic field and lose their magnetization when the field is removed. It is this feature that makes them so useful for drug targeting, hyperthermia and bioseparation. For many of these applications, the synthesis of uniformly sized magnetic nanoparticles is of key importance because their magnetic properties depend strongly on their dimensions. Because of the difficulty of synthesizing monodisperse particulate materials, a technique capable of characterizing the magnetic properties of polydisperse samples is of great importance. Quadrupole magnetic field-flow fractionation (MgFFF) is a technique capable of fractionating magnetic particles based on their content of magnetite or other magnetic material. In MgFFF, the interplay of hydrodynamic and magnetic forces separates the particles as they are carried along a separation channel. Since the magnetic field and the gradient in magnetic field acting on the particles during their migration are known, it is possible to calculate the quantity of magnetic material in the particles according to their time of emergence at the channel outlet. Knowing the magnetic properties of the core material, MgFFF can be used to determine both the size distribution and the mean size of the magnetic cores of polydisperse samples. When magnetic material is distributed throughout the volume of the particles, the derived data corresponds to a distribution in equivalent spherical diameters of magnetic material in

  10. Shaped superconductor cylinder retains intense magnetic field

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Wahlquist, H.

    1964-01-01

    The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.

  11. Solar and Interstellar Magnetic Fields Artist Concept

    NASA Image and Video Library

    2012-12-03

    This artist concept shows the different expected directions of the magnetic fields in interstellar space black lines and the magnetic field emanating from our sun white lines as NASA Voyager 1 spacecraft travels northward out of the heliosphere.

  12. Magnetic field reversals in the Milky Way- "cherchez le champ magnetique".

    NASA Astrophysics Data System (ADS)

    Vallee, J. P.

    1996-04-01

    Radio observations of nearby spiral galaxies have tremendously enhanced our knowledge of their global magnetic field distributions. Recent theoretical developments in the area of dynamos have also helped in the interpretation of magnetic field data in spiral galaxies. When it comes to the magnetic field in the Milky Way galaxy, our position in the Milky Way's galactic disk hinders our attempts at interpreting the observational data. This makes the proposition of "cherchez le champ magnetique" a difficult one to follow. Some recent papers have attempted to fit magnetic field models to spiral galaxies, and in particular to the Milky Way galaxy. Magnetic field reversals in the Milky Way are crucial to all interpretations, be they axisymmetric spiral (ASS) or bisymmetric spiral (BSS) global magnetic field models. Magnetic field reversals can be found in both ASS and BSS magnetic field models, not just BSS ones. The axisymmetric spiral (ASS) magnetic field models produced by the dynamo theory already predict magnetic field reversals, and they are of the type observed in the Milky Way. The small number of magnetic field reversals observed in the Milky Way is compatible with the ASS magnetic field models. The bisymmetric spiral (BSS) magnetic field models as applied to the pulsar RM data and to the QSO and galaxies data have many problems, due to the many pitfalls in model fitting the magnetic field reversals observed in the Milky Way. Many pitfalls are discussed here, including the incomplete comparisons of BSS versus ASS models, the number of spiral arms to be used in modelling, and the proper distance to pulsars via the more accurate distribution of thermal electrons within spiral arms. The two magnetic field reversals in our Milky Way are clearly located in the interarm regions. Predicted magnetic field reversals are periodic, while observed ones are not periodic. Magnetic field reversals cannot be masked effectively by local interstellar magnetised shells. The

  13. Assessing human exposure to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper reviews published literature and current problems relating to the assessment of occupational and residential human exposures to power-frequency electric and magnetic fields. Available occupational exposure data suggest that the class of job titles known as electrical workers may be an effective surrogate for time-weighted-average (TWA) magnetic-field (but not electric-field) exposure. Current research in occupational-exposure assessment is directed to the construction of job-exposure matrices based on electric- and magnetic-field measurements and estimates of worker exposures to chemicals and other factors of interest. Recent work has identified five principal sources of residential magnetic fields: electric power transmission lines, electric power distribution lines, ground currents, home wiring, and home appliances. Existing residential-exposure assessments have used one or more of the following techniques: questionnaires, wiring configuration coding, theoretical field calculations, spot electric- and magnetic-field measurements, fixed-site magnetic-field recordings, personal- exposure measurements, and geomagnetic-field measurements. Available normal-power magnetic-field data for residences differ substantially between studies. It is not known if these differences are due to geographical differences, differences in measurement protocols, or instrumentation differences. Wiring codes and measured magnetic fields (but not electric fields) are associated weakly. Available data suggest, but are far from proving, that spot measurements may be more effective than wire codes as predictors of long-term historical magnetic-field exposure. Two studies find that away-from-home TWA magnetic-field exposures are less variable than at-home exposures. The importance of home appliances as contributors to total residential magnetic-field exposure is not known at this time. It also is not known what characteristics (if any) of residential electric and magnetic fields are

  14. Zero field reversal probability in thermally assisted magnetization reversal

    NASA Astrophysics Data System (ADS)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  15. Modeling magnetic field amplification in nonlinear diffusive shock acceleration

    NASA Astrophysics Data System (ADS)

    Vladimirov, Andrey

    2009-02-01

    This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.

  16. Whistler mode refraction in highly nonuniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R.

    2016-12-01

    In a large laboratory plasma the propagation of whistler modes is measured in highly nonuniform magnetic fields created by a current-carrying wires. Ray tracing is not applicable since the wavelength and gradient scale length are comparable. The waves are excited with a loop antenna near the wire. The antenna launches an m=1 helicon mode in a uniform plasma. The total magnetic field consists of a weak uniform background field and a nearly circular field of a straight wire across the background field. A circular loop produces 3D null points and a 2D null line. The whistler wave propagation will be shown. It is relevant to whistler mode propagation in space plasmas near magnetic null-points, small flux ropes, lunar crustal magnetic fields and active wave injection experiments.

  17. EDITORIAL: Selected papers from the 19th International Colloquium on Magnetic Films and Surfaces

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Inoue, J.

    2007-03-01

    The 19th International Colloquium on Magnetic Films and Surfaces (ICMFS 2006) was held on 14-18 August 2006 at the Sendai International Center in Sendai, Japan. The purpose of the Colloquium was to bring together scientists working on magnetic thin films and surfaces and to provide an opportunity for presentation and discussion of recent experimental and theoretical advances in the field. 285 scientists from 17 countries (Japan: 167, overseas: 118) participated in the Colloquium, as well as 6 family members. There were 56 oral and 178 poster presentations. The oral presentations consisted of 3 plenary talks, 23 invited talks and 30 contributed talks. The number of presentations by scientific category are as follows: Spin dependent transport: 43 Magnetic storage/memory: 9 Magnetization reversal and fast dynamics: 15 Spin injection and spin transfer torque: 26 Magnetic thin films and multilayers: 71 High spin polarization materials: 17 Hard and soft magnetic materials: 3 Magneto-optics: 5 Characterization techniques for thin films and surfaces: 7 Exchange coupling: 13 Micro- and nanopatterned magnetic structures: 18 Micromagnetic modelling: 2 One of the characteristics of the present Colloquium is an increase in the number of presentations in the field of spin-electronics, as seen above. This Cluster Issue of Journal of Physics D: Applied Physics includes several important papers in this rapidly developing field. We believe that, in the future, the field of magnetic materials will maintain its popularity and, on top of that, other fields such as spintronics materials, materials related to life sciences and medicine and also materials related to the environment will be investigated further. The ICMFS Conference started in London in 1964, and is now one of the world-wide conferences on magnetism. The Colloquium has been held in Japan four times now: the previous ones being the 5th ICMFS in the Mount Fuji area, the 10th at Yokohama and the 17th at Kyoto, which was

  18. Determination of Coronal Magnetic Fields from Vector Magnetograms

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1997-01-01

    During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that

  19. Magnetic field exposure stiffens regenerating plant protoplast cell walls.

    PubMed

    Haneda, Toshihiko; Fujimura, Yuu; Iino, Masaaki

    2006-02-01

    Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.

  20. Magnetic flux concentrations from dynamo-generated fields

    NASA Astrophysics Data System (ADS)

    Jabbari, S.; Brandenburg, A.; Losada, I. R.; Kleeorin, N.; Rogachevskii, I.

    2014-08-01

    Context. The mean-field theory of magnetized stellar convection gives rise to two distinct instabilities: the large-scale dynamo instability, operating in the bulk of the convection zone and a negative effective magnetic pressure instability (NEMPI) operating in the strongly stratified surface layers. The latter might be important in connection with magnetic spot formation. However, as follows from theoretical analysis, the growth rate of NEMPI is suppressed with increasing rotation rates. On the other hand, recent direct numerical simulations (DNS) have shown a subsequent increase in the growth rate. Aims: We examine quantitatively whether this increase in the growth rate of NEMPI can be explained by an α2 mean-field dynamo, and whether both NEMPI and the dynamo instability can operate at the same time. Methods: We use both DNS and mean-field simulations (MFS) to solve the underlying equations numerically either with or without an imposed horizontal field. We use the test-field method to compute relevant dynamo coefficients. Results: DNS show that magnetic flux concentrations are still possible up to rotation rates above which the large-scale dynamo effect produces mean magnetic fields. The resulting DNS growth rates are quantitatively reproduced with MFS. As expected for weak or vanishing rotation, the growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong gravity and large turbulent magnetic diffusivity. Conclusions: Magnetic flux concentrations are still possible for rotation rates above which dynamo action takes over. For the solar rotation rate, the corresponding turbulent turnover time is about 5 h, with dynamo action commencing in the layers beneath.

  1. Field dependence of the magnetic correlations of the frustrated magnet SrDy2O4

    NASA Astrophysics Data System (ADS)

    Gauthier, N.; Fennell, A.; Prévost, B.; Désilets-Benoit, A.; Dabkowska, H. A.; Zaharko, O.; Frontzek, M.; Sibille, R.; Bianchi, A. D.; Kenzelmann, M.

    2017-05-01

    The frustrated magnet SrDy2O4 exhibits a field-induced phase with a magnetization plateau at 1 /3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below T ≈0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. The long-range ordered structure in field contrasts with the short-range order found at zero field, and is probably reached through enhanced quantum fluctuations with increasing fields.

  2. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2007-01-01

    Magnetic field response sensors designed as passive inductor- capacit or circuits produce magnetic field responses whose harmonic frequenci es correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induc tion. A radio frequency antenna produces the time varying magnetic fi eld used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for disce rning changes in sensor's response frequency, resistance and amplitud e is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminat ing the need to have a data acquisition channel dedicated to each se nsor. The method does not require the sensors to be in proximity to a ny form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  3. Magnetic Cloud Field Intensities and Solar Wind Velocities

    NASA Technical Reports Server (NTRS)

    Gonzalez, Walter D.; Clau de Gonzalez, Alicia D.; Tsurutani, Bruce T.; Arballo, John K.

    1997-01-01

    For the sets of magnetic clouds studied in this work we have shown that there is a general relationship between their magnetic fields strength and velocities. With a clear tendency that the faster the speed of the cloud the higher the magnetic field.

  4. The effects of magnetic field in plume region on the performance of multi-cusped field thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Peng, E-mail: hupengemail@126.com; Liu, Hui, E-mail: thruster@126.com; Yu, Daren

    2015-10-15

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field in the plume region were investigated. Five magnetic field shielding rings were separately mounted near the exit of discharge channel to decrease the strength of magnetic field in the plume region in different levels, while the magnetic field in the upstream was well maintained. The test results show that the electron current increases with the decrease of magnetic field strength in the plume region, which gives rise to higher propellant utilization and lower current utilization. On the other hand, the stronger magnetic field in the plume regionmore » improves the performance at low voltages (high current mode) while lower magnetic field improves the performance at high voltages (low current mode). This work can provide some optimal design ideas of the magnetic strength in the plume region to improve the performance of thruster.« less

  5. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  6. Effects of coil orientation and magnetic field shield on transcranial magnetic stimulation in cats.

    PubMed

    Nakatoh, S; Kitagawa, H; Kawaguchi, Y; Nakamura, H; Takano, H; Tsuji, H

    1998-09-01

    To obtain suitable stimulus conditions for transcranial magnetic stimulation, the evoked compound muscle action potential (ECMAP), evoked spinal cord potential (ESCP), and magnetic and electric fields were analyzed in cats with and without the use of a magnetic field shield. Cats were stimulated using a figure 8 magnetic coil placed on the cranium above the motor cortex. The maximum ECMAP amplitude was recorded when the electric current in the coil was in the mediolateral direction, regardless of whether a magnetic shield with a 5 x 5 cm window was used. ECMAP and ESCP thresholds were reduced when magnetic shielding was in place. Due to the edge effect, the strengths of the magnetic and electric fields were highest in the brainstem area, which is an inhomogeneous volume conductor of the cat's cranium. A large induced electric field directed caudally elicited ECMAP and ESCP responses effectively when a magnetic shield with a 5 x 5 cm window was in place.

  7. Magnetomigration of rare-earth ions in inhomogeneous magnetic fields.

    PubMed

    Franczak, Agnieszka; Binnemans, Koen; Jan Fransaer

    2016-10-05

    The effects of external inhomogenous (gradient) magnetic fields on the movement of the rare-earth ions: Dy 3+ , Gd 3+ and Y 3+ , in initially homogeneous aqueous solutions have been investigated. Differences in the migration of rare-earth ions in gradient magnetic fields were observed, depending on the magnetic character of the ions: paramagnetic ions of Dy 3+ and Gd 3+ move towards regions of the sample where the magnetic field gradient is the strongest, while diamagnetic ions of Y 3+ move in the opposite direction. It has been showed that the low magnetic field gradients, such the ones generated by permanent magnets, are sufficient to observe the magnetomigration effects of the ions in solution. The present work clearly establishes the behavior of magnetically different ions in initially homogeneous aqueous solutions exposed to magnetic field gradients. To this avail, a methodology for measuring the local concentration differences of metal ions in liquid samples was developed.

  8. Magnetic-Field-Tunable Superconducting Rectifier

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  9. Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection that Fits the Breakout Model of Solar Magnetic Eruptions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Moore, R. L.

    2004-01-01

    We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from active region 10030 on 2002 July 15. The TRACE C IV observations clearly show a flux tube that is helical and erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption. as determined by a linear backward extrapolation, starts 25 s after the peak of the flare's strongest impulsive spike of microwave gyrosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double coronal mass ejection (CME). The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection releases the helix and heats the two-ribbon flare. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is compatible with the observed rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel. and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation.

  10. High magnetic field test of bismuth Hall sensors for ITER steady state magnetic diagnostic.

    PubMed

    Ďuran, I; Entler, S; Kohout, M; Kočan, M; Vayakis, G

    2016-11-01

    Performance of bismuth Hall sensors developed for the ITER steady state magnetic diagnostic was investigated for high magnetic fields in the range ±7 T. Response of the sensors to the magnetic field was found to be nonlinear particularly within the range ±1 T. Significant contribution of the planar Hall effect to the sensors output voltage causing undesirable cross field sensitivity was identified. It was demonstrated that this effect can be minimized by the optimization of the sensor geometry and alignment with the magnetic field and by the application of "current-spinning technique."

  11. Analysis of recurrent patterns in toroidal magnetic fields.

    PubMed

    Sanderson, Allen R; Chen, Guoning; Tricoche, Xavier; Pugmire, David; Kruger, Scott; Breslau, Joshua

    2010-01-01

    In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.

  12. Effect of Weak Magnetic Field on Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.

  13. Magnetic fields in non-convective regions of stars.

    PubMed

    Braithwaite, Jonathan; Spruit, Henk C

    2017-02-01

    We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them; the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and their observational effects are examined. We look at possible dynamo mechanisms that run on differential rotation rather than convection. Finally, we turn to neutron stars with a discussion of the possible origins for their magnetic fields.

  14. Magnetic fields in non-convective regions of stars

    PubMed Central

    Braithwaite, Jonathan

    2017-01-01

    We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them; the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and their observational effects are examined. We look at possible dynamo mechanisms that run on differential rotation rather than convection. Finally, we turn to neutron stars with a discussion of the possible origins for their magnetic fields. PMID:28386410

  15. Calculating Coronal Mass Ejection Magnetic Field at 1 AU Using Solar Observables

    NASA Astrophysics Data System (ADS)

    Chen, J.; Kunkel, V.

    2013-12-01

    It is well-established that most major nonrecurrent geomagnetic storms are caused by solar wind structures with long durations of strong southward (Bz < 0) interplanetary magnetic field (IMF). Such geoeffective IMF structures are associated with CME events at the Sun. Unfortunately, neither the duration nor the internal magnetic field vector of the ejecta--the key determinants of geoeffectiveness--is measurable until the observer (e.g., Earth) passes through the ejecta. In this paper, we discuss the quantitative relationships between the ejecta magnetic field at 1 AU and remotely observable solar quantities associated with the eruption of a given CME. In particular, we show that observed CME trajectories (position-time data) within, say, 1/3 AU of the Sun, contain sufficient information to allow the calculation of the ejecta magnetic field (magnitude and components) at 1 AU using the Erupting Flux Rope (EFR) model of CMEs. Furthermore, in order to accurately determine the size and arrival time of the ejecta as seen by a fixed observer at 1 AU (e.g., ACE), it is essential to accurately calculate the three-dimensional geometry of the underlying magnetic structure. Accordingly, we have extended the physics-based EFR model to include a self-consistent calculation of the transverse expansion taking into account the non-symmetric drag coupling between an expanding CME flux rope and the ambient solar wind. The dependence of the minor radius of the flux rope at 1 AU that determines the perceived size of the ejecta on solar quantities is discussed. Work supported by the NRL Base Program.

  16. Enhanced proton acceleration in an applied longitudinal magnetic field

    DOE PAGES

    Arefiev, A.; Toncian, T.; Fiksel, G.

    2016-10-31

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the lasermore » energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.« less

  17. Enhanced proton acceleration in an applied longitudinal magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arefiev, A.; Toncian, T.; Fiksel, G.

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the lasermore » energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.« less

  18. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis.

    PubMed

    Paun, Irina Alexandra; Popescu, Roxana Cristina; Calin, Bogdan Stefanita; Mustaciosu, Cosmin Catalin; Dinescu, Maria; Luculescu, Catalin Romeo

    2018-02-07

    We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size helped us to find an optimum pore size between 20-40 µm. Starting from optimized 3D structures, we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT on cell proliferation and differentiation, by ALP (alkaline phosphatase) production, Alizarin Red and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than 2 as compared with the same structure in the absence of a magnetic field.

  19. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis

    PubMed Central

    Paun, Irina Alexandra; Popescu, Roxana Cristina; Calin, Bogdan Stefanita; Mustaciosu, Cosmin Catalin; Dinescu, Maria; Luculescu, Catalin Romeo

    2018-01-01

    We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size helped us to find an optimum pore size between 20–40 µm. Starting from optimized 3D structures, we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT on cell proliferation and differentiation, by ALP (alkaline phosphatase) production, Alizarin Red and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than 2 as compared with the same structure in the absence of a magnetic field. PMID:29414875

  20. The magnetic field of the Milky Way

    NASA Astrophysics Data System (ADS)

    Jansson, Ronnie

    The magnetic field of the Milky Way is a significant component of our Galaxy, and impacts a great variety of Galactic processes. For example, it regulates star formation, accelerates cosmic rays, transports energy and momentum, acts as a source of pressure, and obfuscates the arrival directions of ultrahigh energy cosmic rays (UHECRs). This thesis is mainly concerned with the large scale Galactic magnetic field (GMF), and the effect it has on UHECRs. In Chapter 1 we review what is known about Galactic and extragalactic magnetic fields, their origin, the different observables of the GMF, and the ancillary data that is necessary to constrain astrophysical magnetic fields. Chapter 2 introduces a method to quantify the quality-of-fit between data and observables sensitive to the large scale Galactic magnetic field. We combine WMAP5 polarized synchrotron data and rotation measures of extragalactic sources in a joint analysis to obtain best-fit parameters and confidence levels for GMF models common in the literature. None of the existing models provide a good fit in both the disk and halo regions, and in many instances best-fit parameters are quite different than the original values. We introduce a simple model of the magnetic field in the halo that provides a much improved fit to the data. We show that some characteristics of the electron densities can already be constrained using our method and with future data it may be possible to carry out a self-consistent analysis in which models of the GMF and electron densities are simultaneously optimized. Chapter 3 investigates the observed excess of UHECRs in the region of the sky close to the nearby radio galaxy Centaurus A. We constrain the large-scale Galactic magnetic field and the small-scale random magnetic field in the direction of Cen A, and estimate the deflection of the observed UHECRs and predict their source positions on the sky. We find that the deflection due to random fields are small compared to deflections