Sample records for internal wave field

  1. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeesh, G.; Steiner, O.; Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in themore » Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.« less

  2. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    PubMed

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.

  3. In Pursuit of Internal Waves

    NASA Astrophysics Data System (ADS)

    Peacock, Thomas

    2014-11-01

    Orders of magnitude larger than surface waves, and so powerful that their generation impacts the lunar orbit, internal waves, propagating disturbances of a density-stratified fluid, are ubiquitous throughout the ocean and atmosphere. Following the discovery of the phenomenon of ``dead water'' by early Arctic explorers and the classic laboratory visualizations of the curious St. Andrew's Cross internal wave pattern, there has been a resurgence of interest in internal waves, inspired by their pivotal roles in local environmental and global climate processes, and their profound impact on ocean and aerospace engineering. We detail our widespread pursuit of internal waves through theoretical modeling, laboratory experiments and field studies, from the Pacific Ocean one thousand miles north and south of Hawaii, to the South China Sea, and on to the Arctic Ocean. We also describe our recent expedition to surf the most striking internal wave phenomenon of them all: the Morning Glory cloud in remote Northwest Australia. This work was supported by the National Science Foundation through a CAREER Grant OCE-064559 and through Grants OCE-1129757 and OCE-1357434, and by the Office of Naval Research through Grants N00014-09-1-0282, N00014-08-1-0390 and N00014-05-1-0575.

  4. Fate of internal waves on a shallow shelf

    NASA Astrophysics Data System (ADS)

    Davis, Kristen; Arthur, Robert; Reid, Emma; Decarlo, Thomas; Cohen, Anne

    2017-11-01

    Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a shelf-slope region of a coral atoll in the South China Sea. The spatially-continuous view of the near-bottom temperature field provided by the DTS offers a perspective of physical processes previously available only in laboratory settings or numerical models. These processes include internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, internal ``tide pools'' (dense water left behind after the retreat of an internal wave), and internal run-down (near-bottom, offshore-directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf - whether they are transmitted into shallow waters or reflected back offshore - is mediated by local water column density and shear structure, with important implications for nearshore distributions of energy, heat, and nutrients. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for field work supported by Academia Sinica and for K.D. and E.R. from NSF.

  5. Spontaneous generation and reversals of mean flows in a convectively-generated internal gravity wave field

    NASA Astrophysics Data System (ADS)

    Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael

    2017-11-01

    We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.

  6. Copepod Behavior Response in an Internal Wave Apparatus

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Jung, S.; Haas, K. A.

    2017-11-01

    This study is motivated to understand the bio-physical forcing in zooplankton transport in and near internal waves, where high levels of zooplankton densities have been observed in situ. A laboratory-scale internal wave apparatus was designed to create a standing internal wave for various physical arrangements that mimic conditions observed in the field. A theoretical analysis of a standing internal wave inside a two-layer stratification system including non-linear wave effects was conducted to derive the expressions for the independent variables controlling the wave motion. Focusing on a case with a density jump of 1.0 σt, a standing internal wave was generated with a clean interface and minimal mixing across the pycnocline. Spatial and frequency domain measurements of the internal wave were evaluated in the context of the theoretical analysis. Behavioral assays with a mixed population of three marine copepods were conducted in control (stagnant homogeneous fluid), stagnant density jump interface, and internal wave flow configurations. In the internal wave treatment, the copepods showed an acrobatic, orbital-like motion in and around the internal wave region (bounded by the crests and the troughs of the waves). Trajectories of passive, neutrally-buoyant particles in the internal wave flow reveal that they generally oscillate back-and-forth along fixed paths. Thus, we conclude that the looping, orbital trajectories of copepods in the region near the internal wave interface are due to animal behavior rather than passive transport.

  7. Surface manifestations of internal waves investigated by a subsurface buoyant jet: 3. Surface manifestations of internal waves

    NASA Astrophysics Data System (ADS)

    Bondur, V. G.; Grebenyuk, Yu. V.; Ezhova, E. V.; Kazakov, V. I.; Sergeev, D. A.; Soustova, I. A.; Troitskaya, Yu. I.

    2010-08-01

    In a large test reservoir at the Institute of Applied Physics, Russian Academy of Sciences, a series of experiments were performed to investigate the surface manifestations of internal waves radiated by a subsurface buoyant jet. The field of currents on the water surface of the reservoir was studied through the distribution of temperature with shallow thermocline. Using Particle Tracking Velocimetry (PTV), the velocity field of surface currents was measured. A theoretical model was developed to calculate the rates of disturbances on the surface. A comparison with experimental data indicated that the calculated data of the surface rate value are overestimated. This discrepancy was explained by the presence of a film of surface-active substances (SASs) with experimentally obtained parameters. Using scale modeling coefficients, we estimated the parameters of internal waves radiated by the subsurface wastewater system and the values of their surface manifestations in field conditions. We estimated the hydrodynamic contrasts in the field of surface waves, which can be caused by these inhomogeneous currents on the surface. For a wind velocity of 5 m/s, the magnitude of the contrast in the field of short waves can reach up to 10-25%, which is detected with confidence by remote-sensing methods.

  8. Investigating turbulent mixing rates and the internal wave field in the Southern Ocean: microstructure and finestructure data from DIMES

    NASA Astrophysics Data System (ADS)

    Sheen, K.; Naveira-Garabato, A. C.; Brearley, J. A.

    2012-04-01

    The principal objective of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) is to investigate the role of turbulent mixing in mediating the vertical and horizontal transport of water masses, which shape the overturning circulation. Here, microstructure and finestructure data, collected as part of this multi-component experiment, are presented. Direct observations of turbulent energy dissipation rates show that mid-depth diapycnal diffusivities increase progressively from O(10-5 m2s-1) in the Pacific sector of the Antarctic Circumpolar Current (ACC) to O(10-4 m2s-1) in the Scotia Sea. Analysis of coincident LADCP and CTD data demonstrates that enhanced turbulent dissipation rates are associated with a more energetic, less inertial internal wave field and increased upward energy propagation. Breaking lee waves, a process enhanced by stronger flow and rougher topography found in the eastern sections, is likely to be a key mechanism in determining the distribution of turbulent mixing in the ACC. Spatially varying discrepancies between the microstructure and finestructure mixing observations indicate regions where wave-wave interaction models break down and internal waves interact with the mean flow. An episodic enhancement of current velocities at 2000 m depth is observed in the northwest Scotia Sea in both LADCP and mooring data. Finestructure analysis indicates that this mid-depth jet has a profound impact of the internal wave field, causing both internal wave reflection and critical layer dissipation.

  9. Internal Wave Impact on the Performance of a Hypothetical Mine Hunting Sonar

    DTIC Science & Technology

    2014-10-01

    time steps) to simulate the propagation of the internal wave field through the mine field. Again the transmission loss and acoustic signal strength...dependent internal wave perturbed sound speed profile was evaluated by calculating the temporal variability of the signal excess (SE) of acoustic...internal wave perturbation of the sound speed profile, was calculated for a limited sound speed field time section. Acoustic signals were projected

  10. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves

  11. Internally driven inertial waves in geodynamo simulations

    NASA Astrophysics Data System (ADS)

    Ranjan, A.; Davidson, P. A.; Christensen, U. R.; Wicht, J.

    2018-05-01

    Inertial waves are oscillations in a rotating fluid, such as the Earth's outer core, which result from the restoring action of the Coriolis force. In an earlier work, it was argued by Davidson that inertial waves launched near the equatorial regions could be important for the α2 dynamo mechanism, as they can maintain a helicity distribution which is negative (positive) in the north (south). Here, we identify such internally driven inertial waves, triggered by buoyant anomalies in the equatorial regions in a strongly forced geodynamo simulation. Using the time derivative of vertical velocity, ∂uz/∂t, as a diagnostic for traveling wave fronts, we find that the horizontal movement in the buoyancy field near the equator is well correlated with a corresponding movement of the fluid far from the equator. Moreover, the azimuthally averaged spectrum of ∂uz/∂t lies in the inertial wave frequency range. We also test the dispersion properties of the waves by computing the spectral energy as a function of frequency, ϖ, and the dispersion angle, θ. Our results suggest that the columnar flow in the rotation-dominated core, which is an important ingredient for the maintenance of a dipolar magnetic field, is maintained despite the chaotic evolution of the buoyancy field on a fast timescale by internally driven inertial waves.

  12. Spatial Variation of Diapycnal Diffusivity Estimated From Seismic Imaging of Internal Wave Field, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Dickinson, Alex; White, N. J.; Caulfield, C. P.

    2017-12-01

    Bright reflections are observed within the upper 1,000 m of the water column along a seismic reflection profile that traverses the northern margin of the Gulf of Mexico. Independent hydrographic calibration demonstrates that these reflections are primarily caused by temperature changes associated with different water masses that are entrained into the Gulf along the Loop Current. The internal wave field is analyzed by automatically tracking 1,171 reflections, each of which is greater than 2 km in length. Power spectra of the horizontal gradient of isopycnal displacement, ϕξx, are calculated from these tracked reflections. At low horizontal wave numbers (kx<10-2 cpm), ϕξx∝kx-0.2±0.6, in agreement with hydrographic observations of the internal wave field. The turbulent spectral subrange is rarely observed. Diapycnal diffusivity, K, is estimated from the observed internal wave spectral subrange of each tracked reflection using a fine-scale parametrization of turbulent mixing. Calculated values of K vary between 10-8 and 10-4 m2 s-1 with a mean value of K˜4×10-6 m2 s-1. The spatial distribution of turbulent mixing shows that K˜10-7 m2 s-1 away from the shelf edge in the upper 300 m where stratification is strong. Mixing is enhanced by up to 4 orders of magnitude adjacent to the shoaling bathymetry of the continental slope. This overall pattern matches that determined by analyzing nearby suites of CTD casts. However, the range of values recovered by spectral analysis of the seismic image is greater as a consequence of significantly better horizontal resolution.

  13. Waves: Internal Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1999-01-01

    Oceanic internal tides are internal waves with tidal periodicities. They are ubiquitous throughout the ocean, although generally more pronounced near large bathymetric features such as mid-ocean ridges and continental slopes. The internal vertical displacements associated with these waves can be extraordinarily large. Near some shelf breaks where the surface tides are strong, internal displacements (e.g., of an isothermal surface) can exceed 200 meters. Displacements of 10 meters in the open ocean are not uncommon. The associated current velocities are usually comparable to or larger than the currents of the surface tide. On continental shelves internal tides can occasionally generate packets of internal solitons, which are detectable in remote sensing imagery. Other common nonlinear features are generation of higher harmonics (e.g., 6-hr waves) and wave breaking. Internal tides are known to be an important energy source for mixing of shelf waters. Recent research suggests that they may also be a significant energy source for deep-ocean mixing.

  14. Nonlinear Internal Wave Interaction in the China Seas

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hsu, Ming-K.

    1998-01-01

    This project researched the nonlinear wave interactions in the East China Sea, and the South China Sea, using Synthetic Aperture Radar (SAR) images. The complicated nature of the internal wave field, including the generation mechanisms, was studied, and is discussed. Discussion of wave-wave interactions in the East China Sea, the area of the China Sea northeast of Taiwan, and the Yellow Sea is included.

  15. Model-Data Assimilation of Internal Waves during ASIAEX-2001

    NASA Technical Reports Server (NTRS)

    Liu, Antony; Zhao, Yun-He; Tang, T. Y.; Ramp, Steven R.

    2003-01-01

    In recent Asian Seas International Acoustics Experiment (ASIAEX), extensive moorings have been deployed around the continental shelf break area in the northeast of South China Sea in May 2001. Simultaneous RADARSAT SAR images have been collected during the field test to integrate with the in-situ measurements from moorings, ship-board sensors, and CTD casts. Besides it provides synoptic information, satellite imagery is very useful for tracking the internal waves, and locating surface fronts and mesoscale features. During ASIAEX in May 2001, many large internal waves were observed at the test area and were the major oceanic features for acoustic volume interaction. Based on the internal wave distribution maps compiled from satellite data, the wave crest can be as long as 200 km with amplitude of 100 m. Environmental parameters have been calculated based on extensive CTD casts data near the ASIAEX area. Nonlinear internal wave models have been applied to integrate and assimilate both SAR and mooring data. Using SAR data in deep water as an initial condition, numerical simulations produce the wave evolution on the continental shelf and compared reasonably well with the mooring measurements at the downstream station. The shoaling, turning, and dissipation of large internal waves on the shelf break, elevation solitons, and wave-wave interaction have been studied and are very important issues for acoustic propagation. The internal wave effects on acoustic modal coupling has been implicated and discussed.

  16. On the generation of internal wave modes by surface waves

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  17. Generation of long subharmonic internal waves by surface waves

    NASA Astrophysics Data System (ADS)

    Tahvildari, Navid; Kaihatu, James M.; Saric, William S.

    2016-10-01

    A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.

  18. Dynamic response of a riser under excitation of internal waves

    NASA Astrophysics Data System (ADS)

    Lou, Min; Yu, Chenglong; Chen, Peng

    2015-12-01

    In this paper, the dynamic response of a marine riser under excitation of internal waves is studied. With the linear approximation, the governing equation of internal waves is given. Based on the rigid-lid boundary condition assumption, the equation is solved by Thompson-Haskell method. Thus the velocity field of internal waves is obtained by the continuity equation. Combined with the modified Morison formula, using finite element method, the motion equation of riser is solved in time domain with Newmark-β method. The computation programs are compiled to solve the differential equations in time domain. Then we get the numerical results, including riser displacement and transfiguration. It is observed that the internal wave will result in circular shear flow, and the first two modes have a dominant effect on dynamic response of the marine riser. In the high mode, the response diminishes rapidly. In different modes of internal waves, the deformation of riser has different shapes, and the location of maximum displacement shifts. Studies on wave parameters indicate that the wave amplitude plays a considerable role in response displacement of riser, while the wave frequency contributes little. Nevertheless, the internal waves of high wave frequency will lead to a high-frequency oscillation of riser; it possibly gives rise to fatigue crack extension and partial fatigue failure.

  19. Reverberant shear wave fields and estimation of tissue properties

    NASA Astrophysics Data System (ADS)

    Parker, Kevin J.; Ormachea, Juvenal; Zvietcovich, Fernando; Castaneda, Benjamin

    2017-02-01

    The determination of shear wave speed is an important subject in the field of elastography, since elevated shear wave speeds can be directly linked to increased stiffness of tissues. MRI and ultrasound scanners are frequently used to detect shear waves and a variety of estimators are applied to calculate the underlying shear wave speed. The estimators can be relatively simple if plane wave behavior is assumed with a known direction of propagation. However, multiple reflections from organ boundaries and internal inhomogeneities and mode conversions can create a complicated field in time and space. Thus, we explore the mathematics of multiple component shear wave fields and derive the basic properties, from which efficient estimators can be obtained. We approach this problem from the historic perspective of reverberant fields, a conceptual framework used in architectural acoustics and related fields. The framework can be recast for the alternative case of shear waves in a bounded elastic media, and the expected value of displacement patterns in shear reverberant fields are derived, along with some practical estimators of shear wave speed. These are applied to finite element models and phantoms to illustrate the characteristics of reverberant fields and provide preliminary confirmation of the overall framework.

  20. Internal waves, Andaman Sea

    NASA Image and Video Library

    1994-09-30

    STS068-236-044 (30 September-11 October 1994) --- These internal waves in the Andaman Sea, west of Burma, were photographed from 115 nautical miles above Earth by the crew of the Space Shuttle Endeavour during the Space Radar Laboratory 2 (SRL-2) mission. The internal waves smooth out some of the capillary waves at the surface in bands and travel along the density discontinuity at the bottom of the mixed layer depth. There is little evidence of the internal waves at the surface. They are visible in the Space Shuttle photography because of sunglint, which reflects off the water.

  1. Internal Wave Generation by Convection

    NASA Astrophysics Data System (ADS)

    Lecoanet, Daniel Michael

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the

  2. Deep-water bedforms induced by refracting Internal Solitary Waves

    NASA Astrophysics Data System (ADS)

    Falcini, Federico; Droghei, Riccardo; Casalbore, Daniele; Martorelli, Eleonora; Mosetti, Renzo; Sannino, Gianmaria; Santoleri, Rosalia; Latino Chiocci, Francesco

    2017-04-01

    Subaqueous bedforms (or sand waves) are typically observed in those environments that are exposed to strong currents, characterized by a dominant unidirectional flow. However, sand-wave fields may be also observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs), induced by tides, can produce an effective, unidirectional boundary flow filed that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  3. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    Meneveau, C., and L. Shen (2014), Large-eddy simulation of offshore wind farm , Physics of Fluids, 26, 025101. Zhang, Z., Fringer, O.B., and S.R...being centimeter scale, surface mixed layer processes arising from the combined actions of tides, winds and mesoscale currents. Issues related to...the internal wave field and how it impacts the surface waves. APPROACH We are focusing on the problem of modification of the wind -wave field

  4. Effects of Small-Scale Bathymetric Roughness on the Global Internal Wave Field

    DTIC Science & Technology

    2008-09-30

    Navy. Much of the interest stems from the suggestion by Munk and Wunsch (1998) that the strength of the meridional overturning circulation is controlled... meridional overturning circulation . Journal of Physical Oceanography 32, 3578-3595. St. Laurent, L.C., 1999. Diapycnal advection by double diffusion...waves generated by flows over the rough seafloor. On the time scales of internal waves, mesoscale eddies and the general circulation can be regarded as

  5. The Massachusetts Bay internal wave experiment, August 1998: data report

    USGS Publications Warehouse

    Butman, Bradford; Alexander, P. Soupy; Anderson, Steven P.; Lightsom, Frances L.; Scotti, Alberto; Beardsley, Robert C.

    2006-01-01

    This data report presents oceanographic observations made in Massachusetts Bay (fig. 1) in August 1998 as part of the Massachusetts Bay Internal Wave Experiment (MBIWE98). MBIWE98 was carried out to characterize large-amplitude internal waves in Massachusetts Bay and to investigate the possible resuspension and transport of bottom sediments caused by these waves. This data report presents a description of the field program and instrumentation, an overview of the data through summary plots and statistics, and the time-series data in NetCDF format. The objective of this report is to make the data available in digital form and to provide summary plots and statistics to facilitate browsing of the data set. The existence of large-amplitude internal waves in Massachusetts Bay was first described by Halpern (1971). In summer when the water is stratified, packets of waves propagate westward into the bay on the flood (westward flowing) tide at about 0.5 m/s. The internal waves are observed in packets of 5-10 waves, have periods of 5-10 minutes and wavelengths of 200-400 m, and cause downward excursions of the thermocline of as much as 30 m. The waves are generated by interaction of the barotropic tide with Stellwagen Bank (Haury and others (1979). Several papers present analyses and interpretations of the data collected during the MBIWE98. Grosenbaugh and others (2002) report on the results of the horizontal array, Scotti and others (2005) describe a strategy for processing observations made by Acoustic Doppler Current Profilers (ADCPs) in the presence of short-wavelength internal waves, Butman and others (in press) describe the effect of these waves on sediment transport, and Scotti and others (in press) describe the energetics of the internal waves.

  6. Vertical structure of internal wave induced velocity for mode I and II solitary waves in two- and three-layer fluid

    NASA Astrophysics Data System (ADS)

    Gigiyatullin, Ayrat; Kurkin, Andrey; Kurkina, Oxana; Rouvinskaya, Ekaterina; Rybin, Artem

    2017-04-01

    With the use of the Gardner equation, or its variable-coefficient forms, the velocity components of fluid particles in the vertical section induced by a passage of internal waves can be estimated in weakly nonlinear limit. The horizontal velocity gives the greatest contribution into the local current speed. This is a typical property of long waves. This feature of an internal wave field may greatly contribute to the local sediment transport and/or resuspension. The velocity field induced by mode I and II internal solitary waves are studied. The contribution from second-order terms in asymptotic expansion into the horizontal velocity is estimated for the models of two- and three-layer fluid density stratification for solitons of positive and negative polarity, as well as for breathers of different shapes and amplitudes. The influence of the nonlinear correction manifests itself firstly in the shape of the lines of zero horizontal velocity: they are curved and the shape depends on the soliton amplitude and polarity while for the leading-order wave field they are horizontal. Also the wavefield accounting for the nonlinear correction for mode I waves has smaller maximal absolute values of negative velocities (near-surface for the soliton of elevation, and near-bottom for the soliton of depression) and larger maximums of positive velocities. Thus for the solitary internal waves of positive polarity weakly nonlinear theory overestimates the near-bottom velocities and underestimates the near-surface current. For solitary waves of negative polarity, which are the most typical for hydrological conditions of low and middle latitudes, the situation is the opposite. Similar estimations are produced for mode II waves, which possess more complex structure. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-35-00413.

  7. Homogeneous microwave field emitted propagating spin waves: Direct imaging and modeling

    NASA Astrophysics Data System (ADS)

    Lohman, Mathis; Mozooni, Babak; McCord, Jeffrey

    2018-03-01

    We explore the generation of propagating dipolar spin waves by homogeneous magnetic field excitation in the proximity of the boundaries of magnetic microstructures. Domain wall motion, precessional dynamics, and propagating spin waves are directly imaged by time-resolved wide-field magneto-optical Kerr effect microscopy. The aspects of spin wave generation are clarified by micromagnetic calculations matching the experimental results. The region of dipolar spin wave formation is confined to the local resonant excitation due to non-uniform internal demagnetization fields at the edges of the patterned sample. Magnetic domain walls act as a border for the propagation of plane and low damped spin waves, thus restraining the spin waves within the individual magnetic domains. The findings are of significance for the general understanding of structural and configurational magnetic boundaries for the creation, the propagation, and elimination of spin waves.

  8. On the coupled evolution of oceanic internal waves and quasi-geostrophic flow

    NASA Astrophysics Data System (ADS)

    Wagner, Gregory LeClaire

    Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic

  9. Internal waves in the Gulf of California - Observations from a spaceborne radar

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.; Holt, B.

    1984-01-01

    Pronounced signatures of internal waves were detected repeatedly in the Gulf of California by the Seasat synthetic aperture radar (SAR). A series of nine images with exactly repeating ground coverage was used to study the temporal variability of the internal wave field in the area. It was found that the number of observed wave groups was highly correlated with the strength of the local tides: the maximum number occurred during spring tides and the minimum number occurred during neap tides, indicating that the internal waves were tidally forced. Most of the wave activity was found to the north of 28 deg N where the tides were the strongest in the Gulf. The application of a simple, nonlinear internal wave model to the observations indicated that the peak-to-peak amplitude of the observed waves was about 50 m with an uncertainty of a factor of 2. The estimated upper bound for the rate of the loss of tidal energy to internal waves was about 5 x 10 to the 15th erg/s, representing only 10 percent of the rate of the dissipation of the dominant M2 tide in the Gulf.

  10. The Water Vapor Variability - Satellite/Sondes (WAVES) Field Campaigns

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Adam, M.; Barnet, C.; Bojkov, B.; Delgado, R.; Demoz, B.; Fitzgibbon, J.; Forno, R.; Herman, R.; Hoff, E.; hide

    2008-01-01

    Three NASA-funded field campaigns have been hosted at the Howard University Research Campus in Beltsville, MD. In each of the years 2006, 2007 and 2008, WAVES field campaigns have coordinated ozonesonde launches, lidar operations and other measurements with A-train satellite overpasses for the purposes of satellite validation. The unique mix of measurement systems, physical location and the interagency, international group of researchers and students has permitted other objectives, such as mesoscale meteorological studies, to be addressed as well. We review the goals and accomplishments of the three WAVES missions with the emphasis on the nonsatellite validation component of WAVES, as the satellite validation activities have been reported elsewhere.

  11. Frustrated total internal reflection acoustic field sensor

    DOEpatents

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  12. Gravitational wave-Gauge field oscillations

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Devulder, C.; Maksimova, N. A.

    2016-09-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multidimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  13. Internal Wave Study in the South China Sea Using SAR

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hsu, Ming-Kuang; Zukor, Dorothy (Technical Monitor)

    2000-01-01

    Recently, the internal wave distribution maps in the China Seas have been compiled from hundreds of ERS-1/2, RADARSAT, and Space Shuttle SAR (Synthetic Aperture Radar) images from 1993 to 1999. Based on internal wave distribution map, most of internal waves in the northeast part of South China Sea were propagating westward. The wave crest can be as long as 200 km with amplitude of 100 m due to strong current from the Kuroshio branching out into the South China Sea. Based on the observations from drilling rigs near DongSha Island by Amoco Production Co., the solitons may be generated in a 4 km wide channel between Batan and Sabtang islands in Luzon Strait. The proposed generation mechanism is similar to the lee wave formation from a shallow topography. Both depression and elevation internal waves have been observed in the same RADARSAT ScanSAR image on May 4, 1998 near DongSha Island. Furthermore, depression and elevation internal waves have also been observed by SAR at the same location on the shelf in April and June, 1993 (in different seasons) respectively. Numerical models have been used to interpret their generation mechanism and evolution processes. Based on the SAR images, near DongSha Island, the westward propagating huge internal solitons are often encountered and diffracted/broken by the coral reefs on the shelf. After passing the island, the diffracted waves will re-merge or interact with each other. It has been observed that after the nonlinear wave-wave interaction, the phase of wave packet is shifted and wavelength is also changed. Examples of mesoscale features observed in SAR images, such as fronts, raincells, bathymetry, ship wakes, and oil spills will be presented. Recent mooring measurements in April 1999 near Dongsha Island, future field test ASIAEX (Asian Seas International Acoustics Experiment) planned for April 2001, and some pretest survey data will be discussed in this paper.

  14. Study on internal flow and surface deformation of large droplet levitated by ultrasonic wave.

    PubMed

    Abe, Yutaka; Hyuga, Daisuke; Yamada, Shogo; Aoki, Kazuyoshi

    2006-09-01

    It is expected that new materials will be manufactured with containerless processing under the microgravity environment in space. Under the microgravity environment, handling technology of molten metal is important for such processes. There are a lot of previous studies about droplet levitation technologies, including the use of acoustic waves, as the holding technology. However, experimental and analytical information about the relationship between surface deformation and internal flow of a large levitated droplet is still unknown. The purpose of this study is to experimentally investigate the large droplet behavior levitated by the acoustic wave field and its internal flow. To achieve this, first, numerical simulation is conducted to clarify the characteristics of acoustic wave field. Second, the levitation characteristic and the internal flow of the levitated droplet are investigated by the ultrasonic standing wave under normal gravity environment. Finally, the levitation characteristic and internal flow of levitated droplet are observed under microgravity in an aircraft to compare results with the experiment performed under the normal gravity environment.

  15. Topographic coupling of surface and internal Kelvin waves. [of ocean

    NASA Technical Reports Server (NTRS)

    Chao, S.-Y.

    1980-01-01

    An analysis is presented for computing the diffraction of barotropic Kelvin waves by a localized topographical irregularity on flat-bottom ocean with an arbitrary vertical stratification. It was shown that all baroclinic Kelvin waves will be generated downstream of the bump, with the first baroclinic mode having the largest amplitude. The Poincare waves predominate in the lowest modes, and are more directionally anisotropic. It was concluded that baroclinic Poincare waves radiating offshore from the bump topography could contribute to the internal wave field in the open ocean and provide an alternative mechanism to dissipate the barotropic tides.

  16. Internal Waves in the East Australian Current

    NASA Astrophysics Data System (ADS)

    Alford, Matthew H.; Sloyan, Bernadette M.; Simmons, Harper L.

    2017-12-01

    Internal waves, which drive most ocean turbulence and add "noise" to lower-frequency records, interact with low-frequency current systems and topography in yet poorly known ways. Taking advantage of a heavily instrumented, 14 month mooring array, internal waves in the East Australian Current (EAC) are examined for the first time. Internal wave horizontal kinetic energy (HKE) is within a factor of 2 of the Garrett-Munk (1976) spectrum. Continuum internal waves, near-inertial waves, and internal tides together constitute a significant percentage of the total velocity variance. Mode-1 internal tide energy fluxes are southward and much smaller than energy times group velocity, consistent with reflection at the continental slope of incident waves generated from near New Caledonia and the Solomon Islands. Internal tide HKE is highly phase variable, consistent with refraction by the variable EAC. Mode-1 near-inertial wave energy fluxes are of comparable magnitude and are equatorward and episodic, consistent with generation by storms farther poleward. These processes are considered together in the complex environment of the EAC.

  17. Instabilities of Internal Gravity Wave Beams

    NASA Astrophysics Data System (ADS)

    Dauxois, Thierry; Joubaud, Sylvain; Odier, Philippe; Venaille, Antoine

    2018-01-01

    Internal gravity waves play a primary role in geophysical fluids: They contribute significantly to mixing in the ocean, and they redistribute energy and momentum in the middle atmosphere. Until recently, most studies were focused on plane wave solutions. However, these solutions are not a satisfactory description of most geophysical manifestations of internal gravity waves, and it is now recognized that internal wave beams with a confined profile are ubiquitous in the geophysical context. We discuss the reason for the ubiquity of wave beams in stratified fluids, which is related to the fact that they are solutions of the nonlinear governing equations. We focus more specifically on situations with a constant buoyancy frequency. Moreover, in light of recent experimental and analytical studies of internal gravity beams, it is timely to discuss the two main mechanisms of instability for those beams: (a) the triadic resonant instability generating two secondary wave beams and (b) the streaming instability corresponding to the spontaneous generation of a mean flow.

  18. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array ofmore » newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will

  19. Open Ocean Internal Waves, South China Sea

    NASA Technical Reports Server (NTRS)

    1989-01-01

    These open ocean internal waves were seen in the south China Sea (19.5N, 114.5E). These sets of internal waves most likely coincide with tidal periods about 12 hours apart. The wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch across and beyond this photo for over 75 miles. At lower right, the surface waves are moving at a 30% angle to the internal waves, with parallel low level clouds.

  20. Internal Wave Apparatus for Copepod Behavior Assays

    NASA Astrophysics Data System (ADS)

    Jung, S.; Haas, K. A.; Webster, D. R.

    2015-11-01

    Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves are generated through oscillations of the pycnocline in stratified waters and thereby create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. Thus, a coupled quantification of copepod behavior and hydrodynamic cues will provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in a two-layer stratification. Three cases are chosen with density jump ranging between 0.75 - 1.5 kg/m3. Analytical analysis of the two-layer system provides guidance of the target forcing frequency to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location are used to quantify the wave characteristics. A copepod behavior assay is conducted, and sample trajectories are analyzed to identify copepod response to internal wave structure.

  1. Converging Oceaniac Internal Waves, Somalia, Africa

    NASA Image and Video Library

    1988-10-03

    The arculate fronts of these apparently converging internal waves off the northeast coast of Somalia (11.5N, 51.5E) probably were produced by interaction with two parallel submarine canyons off the Horn of Africa. Internal waves are packets of tidally generated waves traveling within the ocean at varying depths and are not detectable by any surface disturbance.

  2. THOR Field and Wave Processor - FWP

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Rothkaehl, Hanna; Balikhin, Michael; Zaslavsky, Arnaud; Nakamura, Rumi; Khotyaintsev, Yuri; Uhlir, Ludek; Lan, Radek; Yearby, Keith; Morawski, Marek; Winkler, Marek

    2016-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first mission ever flown in space dedicated to plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer and search-coil magnetometer (SCM) and perform data digitization and on-board processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The feasibility of making highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation complemented by a thorough electromagnetic cleanliness program will further improve on this heritage. Taking advantage of the capabilities of modern electronics, FWP will provide simultaneous synchronized waveform and spectral data products at high time resolution from the numerous THOR sensors, taking advantage of the large telemetry bandwidth of THOR. FWP will also implement a plasma a resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will be interfaced with the particle instrument data processing unit (PPU) via a dedicated digital link which will enable performing on board correlation between waves and particles, quantifying the transfer of energy between waves and particles. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden

  3. The Effects of Internal Waves on Acoustic Normal Modes.

    DTIC Science & Technology

    1984-12-01

    amplitudes derived by suppressing azimuthal acoustic fluctuations are still valid as long as each range function is interpreted as a sum over all the...thatp HTp HTv + CvS(!!)(..)(25 The hydrodynamic equations appropriate to an ocean are Du p b + p(fxuL) + Vp - = V-A + F (2.6a) Do + pv.u 0(2.6b) pT Ln+ V... interpreted their scattering coefficients as representing contributions from the internal wave field with hori- zontal wave numbers equal to the

  4. An original method for characterizing internal waves

    NASA Astrophysics Data System (ADS)

    Casagrande, Gaëlle; Varnas, Alex Warn; Folégot, Thomas; Stéphan, Yann

    This study consisted in the characterization of internal waves in the south of the Strait of Messina (Italy). The observational data consisted in thermistor string profiles from the Coastal Ocean Acoustic Changes at High frequencies (COACH06) sea trial. An empirical orthogonal function analysis is applied to the data. The first two spatial empirical modes represent over 99% of the variability, and their corresponding time-dependent expansion coefficients take higher absolute values during internal wave events. In order to check how the expansion coefficients vary during an internal wave event, their time derivative, called here changing rates, are computed. It shows that each wave of an internal wave train is characterized by a double oscillation of the changing rates. At the front of the wave, both changing rates increase in absolute value with opposite sign, and then decrease to become null at the maximum amplitude of the wave. At the rear of the wave, the changing rates describe another period, again with opposite sign. This double oscillation can be used as a detector of internal waves, but it can also give information on the width of the wave, by measuring the length of the oscillation, as this information may sometimes be hard to read straight out of the data. When plotting the changing rates one versus another, the resulting scatter diagram puts on a butterfly shape that illustrates well this behaviour.

  5. Internal Waves, South China Sea

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Subsurface ocean currents, frequently referred to as internal waves, are frequently seen from space under the right lighting conditions when depth penetration can be achieved. These internal waves observed in the South China Sea off the SE coast of the island of Hainan (18.5N, 110.5E) visibly demonstrate turbidity in the ocean's depths at the confluence of conflicting currents.

  6. Island-Trapped Waves, Internal Waves, and Island Circulation

    DTIC Science & Technology

    2014-09-30

    from the government of Palau to allow us to deliver some water and food to the officers. Governor Patris of Hatohobei State and the Coral Reef ...Island-trapped waves , internal waves , and island circulation T. M. Shaun Johnston Scripps Institution of Oceanography University of California...large islands (Godfrey, 1989; Firing et al., 1999); • Westward propagating eddies and/or Rossby waves encounter large islands and produce boundary

  7. Internal Waves in CVX

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.

    1996-01-01

    Near the liquid-vapor critical point, density stratification supports internal gravity waves which affect 1-g viscosity measurements in the CVX (Critical Viscosity of Xenon) experiment. Two internal-wave modes were seen in the horizontal viscometer. The frequencies of the two modes had different temperature dependences: with decreasing temperature, the higher frequency increased monotonically from 0.7 to 2.8 Hz, but the lower frequency varied non-monotonically, with a maximum of 1.0 Hz at 20 mK above the critical temperature. The measured frequencies agree with independently calculated frequencies to within 15%.

  8. The Impact of Internal Wave Seasonality on the Continental Shelf Energy Budget

    NASA Astrophysics Data System (ADS)

    Wihsgott, Juliane U.; Sharples, Jonathan; Hopkins, Joanne; Palmer, Matthew R.; Mattias Green, J. A.

    2017-04-01

    Heating-stirring models are widely used to simulate the timing and strength of stratification in continental shelf environments. Such models are based on bulk potential energy (PE) budgets: the loss of PE due to thermal stratification is balanced by wind and tidal mixing. The model often fails to accurately predict the observed vertical structure, as it only considers forces acting on the surface and bottom boundary of the water column. This highlights the need for additional internal energy sources to close this budget, and produce an accurate seasonal cycle of stratification. We present new results that test the impact of boundary layer and internal wave forcing on stratification and vertical density structure in continental shelves. A new series of continuous measurements of full water depth vertical structure, dynamics and meteorological data spanning 17 months (March'14-July'15) provide unprecedented coverage over a full seasonal cycle at a station 120 km north-east from the continental shelf break. We observe a highly variable but energetic internal wave field from the onset of stratification that suggests a continuous supply of internal PE. The heating-stirring model reproduces bulk characteristics of the seasonal cycle. While it accurately predicts the timing of the onset in spring and peak stratification in late summer there is a persistent 20 J m-3 positive offset between the model and observations throughout this period. By including a source of internal energy in the model we improve the prediction for the strength of stratification and the vertical distribution of heat. Yet a constant source of PE seems to result in a seasonal discrepancy resulting in too little mixing during strong stratification and too much mixing during transient periods. The discrepancy seen in the model is consistent with the seasonality observed in the internal wave field. We will establish the role that changing stratification (N2) exerts on the internal wave field and vice

  9. Internal Waves, South China Sea

    NASA Image and Video Library

    1983-06-24

    STS007-05-245 (18-24 June 1983) --- A rare view of internal waves in the South China Sea. Several different series of internal waves are represented in the 70mm frame, exposed with a handheld camera by members of the STS-7 astronaut crew aboard the Earth-orbiting Challenger. The land area visible in the lower left is part of the large island of Hainan, China.

  10. Internal Waves, Indian Ocean

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This photograph, taken in sunglint conditions, captures open ocean internal waves which are diffracting around shoals south of the Seychelle islands (4.5S, 55.5E) and recombining to form interference patterns. The clouds to the north of the waves cover two of the Seychelle islands: Silhouette and Mahe. Mahe is the main island of the archipelago. The small rocky island surrounded by reef around which the waves diffract is Platte Island.

  11. Experimental Study of Internal Waves and Vortices Past 2d Obstacles In A Continuously Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Mitkin, V.

    Experimental investigations of fine and macroscopic structures of density and veloc- ity disturbances generated by a towing cylinder or a vertical strip in a linearly strati- fied liquid are carried out in a rectangular tank. A density gradient field is visualised by different Schlieren methods (direct shadow, 'slit-knife', 'slit-thread', 'natural rain- bow') characterised by a high spatial resolution. Profiles of fluid velocity are visu- alised by density markers U wakes past a vertically descending sugar crystal or an ascending gas bubble. In a fluid at rest the density marker acts as a vertical linear source of internal oscillations, which allows us to measure buoyancy frequency over all depth by the Schlieren instrument directly or by a conductivity probe in a particular point. Sensitive methods reveal a set of high gradient interfaces inside and outside the downstream wake besides well-known large-scale elements: upstream disturbances, attached internal waves and vortices. High gradient interfaces bound compact vor- tices. Vortices moving with respect to environment emit their own systems of internal waves randomising a regular pattern of attached antisymmetric internal waves. But after a rather long time a wave recurrence occurs and a regular but symmetric struc- ture of the longest waves (similar to the pattern of initial attached internal waves) is observed again. Results of studying of the influence of obstacles shape on phase struc- ture and amplitudes of attached internal waves field, vortex formation, their structure and characteristics are presented.

  12. THOR Fields and Wave Processor - FWP

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud

    2017-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the

  13. Bed failure induced by internal solitary waves

    NASA Astrophysics Data System (ADS)

    Rivera-Rosario, Gustavo A.; Diamessis, Peter J.; Jenkins, James T.

    2017-07-01

    The pressure field inside a porous bed induced by the passage of an Internal Solitary Wave (ISW) of depression is examined using high-accuracy numerical simulations. The velocity and density fields are obtained by solving the Dubreil-Jacotin-Long Equation, for a two-layer, continuously stratified water column. The total wave-induced pressure across the surface of the bed is computed by vertically integrating for the hydrostatic and nonhydrostatic contributions. The bed is assumed to be a continuum composed of either sand or silt, with a small amount of trapped gas. Results show variations in pore-water pressure penetrating deeper into more conductive materials and remaining for a prolonged period after the wave has passed. In order to quantify the potential for failure, the vertical pressure gradient is compared against the buoyant weight of the bed. The pressure gradient exceeds this weight for weakly conductive materials. Failure is further enhanced by a decrease in bed saturation, consistent with studies in surface-wave induced failure. In deeper water, the ISW-induced pressure is stronger, causing failure only for weakly conductive materials. The pressure associated with the free-surface displacement that accompanies ISWs is significant, when the water depth is less than 100 m, but has little influence when it is greater than 100 m, where the hydrostatic pressure due to the pycnocline displacement is much larger. Since the pore-pressure gradient reduces the specific weight of the bed, results show that particles are easier for the flow to suspend, suggesting that pressure contributes to the powerful resuspension events observed in the field.

  14. Internal Ocean Waves

    NASA Image and Video Library

    2006-07-17

    The false-color VNIR image from NASA Terra spacecraft was acquired off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction.

  15. A Comparison Between Internal Waves Observed in the Southern Ocean and Lee Wave Generation Theory

    NASA Astrophysics Data System (ADS)

    Nikurashin, M.; Benthuysen, J.; Naveira Garabato, A.; Polzin, K. L.

    2016-02-01

    Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a few kilometers above rough bottom topography. The enhancement is co-located with the deep-reaching fronts of the Antarctic Circumpolar Current, suggesting that the internal waves and turbulence are sustained by near-bottom flows interacting with rough topography. Recent numerical simulations confirm that oceanic flows impinging on rough small-scale topography are very effective generators of internal gravity waves and predict vigorous wave radiation, breaking, and turbulence within a kilometer above bottom. However, a linear lee wave generation theory applied to the observed bottom topography and mean flow characteristics has been shown to overestimate the observed rates of the turbulent energy dissipation. In this study, we compare the linear lee wave theory with the internal wave kinetic energy estimated from finestructure data collected as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). We show that the observed internal wave kinetic energy levels are generally in agreement with the theory. Consistent with the lee wave theory, the observed internal wave kinetic energy scales quadratically with the mean flow speed, stratification, and topographic roughness. The correlation coefficient between the observed internal wave kinetic energy and mean flow and topography parameters reaches 0.6-0.8 for the 100-800 m vertical wavelengths, consistent with the dominant lee wave wavelengths, and drops to 0.2-0.5 for wavelengths outside this range. A better agreement between the lee wave theory and the observed internal wave kinetic energy than the observed turbulent energy dissipation suggests remote breaking of internal waves.

  16. Numerical assessment of factors affecting nonlinear internal waves in the South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    2014-02-01

    Nonlinear internal waves in the South China Sea exhibit diverse characteristics, which are associated with the complex conditions in Luzon Strait, such as the double ridge topography, the Earth’s rotation, variations in stratification and the background current induced by the Kuroshio. These effects are individually assessed using the MITgcm. The performance of the model is first validated through comparison with field observations. Because of in-phased ray interaction, the western ridge in Luzon Strait intensifies the semidiurnal internal tides generated from the eastern ridge, thus reinforcing the formation of nonlinear internal waves. However, the ray interaction for K1 forcing becomes anti-phased so that the K1 internal tide generation is reduced by the western ridge. Not only does the rotational dispersion suppress internal tide generation, it also inhibits nonlinear steepening and consequent internal solitary wave formation. As a joint effect, the double ridges and the rotational dispersion result in a paradoxical phenomenon: diurnal barotropic tidal forcing is dominant in Luzon Strait, but semidiurnal internal tides prevail in the deep basin of the South China Sea. The seasonal variation of the Kuroshio is consistent with the seasonal appearance of nonlinear internal waves in the South China Sea. The model results show that the westward inflow due to the Kuroshio intrusion reduces the amplitude of internal tides in the South China Sea, causing the weakening or absence of internal solitary waves. Winter stratification cannot account for the significant reduction of nonlinear internal waves, because the amplitude growth of internal tides due to increased thermocline tilting counteracts the reduced nonlinearity caused by thermocline deepening.

  17. Description of a computer program to calculate reacting supersonic internal flow fields with shock waves using viscous characteristics: Program manual and sample calculations

    NASA Technical Reports Server (NTRS)

    Cavalleri, R. J.; Agnone, A. M.

    1972-01-01

    A computer program for calculating internal supersonic flow fields with chemical reactions and shock waves typical of supersonic combustion chambers with either wall or mid-stream injectors is described. The usefulness and limitations of the program are indicated. The program manual and listing are presented along with a sample calculation.

  18. Multi-scale phenomena of rotation-modified mode-2 internal waves

    NASA Astrophysics Data System (ADS)

    Deepwell, David; Stastna, Marek; Coutino, Aaron

    2018-03-01

    We present high-resolution, three-dimensional simulations of rotation-modified mode-2 internal solitary waves at various rotation rates and Schmidt numbers. Rotation is seen to change the internal solitary-like waves observed in the absence of rotation into a leading Kelvin wave followed by Poincaré waves. Mass and energy is found to be advected towards the right-most side wall (for a Northern Hemisphere rotation), leading to increased amplitude of the leading Kelvin wave and the formation of Kelvin-Helmholtz (K-H) instabilities on the upper and lower edges of the deformed pycnocline. These fundamentally three-dimensional instabilities are localized within a region near the side wall and intensify in vigour with increasing rotation rate. Secondary Kelvin waves form further behind the wave from either resonance with radiating Poincaré waves or the remnants of the K-H instability. The first of these mechanisms is in accord with published work on mode-1 Kelvin waves; the second is, to the best of our knowledge, novel to the present study. Both types of secondary Kelvin waves form on the same side of the channel as the leading Kelvin wave. Comparisons of equivalent cases with different Schmidt numbers indicate that while adopting a numerically advantageous low Schmidt number results in the correct general characteristics of the Kelvin waves, excessive diffusion of the pycnocline and various density features precludes accurate representation of both the trailing Poincaré wave field and the intensity and duration of the Kelvin-Helmholtz instabilities.

  19. The formation and fate of internal waves in the South China Sea

    NASA Astrophysics Data System (ADS)

    Alford, Matthew H.; Peacock, Thomas; MacKinnon, Jennifer A.; Nash, Jonathan D.; Buijsman, Maarten C.; Centuroni, Luca R.; Chao, Shenn-Yu; Chang, Ming-Huei; Farmer, David M.; Fringer, Oliver B.; Fu, Ke-Hsien; Gallacher, Patrick C.; Graber, Hans C.; Helfrich, Karl R.; Jachec, Steven M.; Jackson, Christopher R.; Klymak, Jody M.; Ko, Dong S.; Jan, Sen; Johnston, T. M. Shaun; Legg, Sonya; Lee, I.-Huan; Lien, Ren-Chieh; Mercier, Matthieu J.; Moum, James N.; Musgrave, Ruth; Park, Jae-Hun; Pickering, Andrew I.; Pinkel, Robert; Rainville, Luc; Ramp, Steven R.; Rudnick, Daniel L.; Sarkar, Sutanu; Scotti, Alberto; Simmons, Harper L.; St Laurent, Louis C.; Venayagamoorthy, Subhas K.; Wang, Yu-Huai; Wang, Joe; Yang, Yiing J.; Paluszkiewicz, Theresa; (David) Tang, Tswen-Yung

    2015-05-01

    Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

  20. The formation and fate of internal waves in the South China Sea.

    PubMed

    Alford, Matthew H; Peacock, Thomas; MacKinnon, Jennifer A; Nash, Jonathan D; Buijsman, Maarten C; Centurioni, Luca R; Centuroni, Luca R; Chao, Shenn-Yu; Chang, Ming-Huei; Farmer, David M; Fringer, Oliver B; Fu, Ke-Hsien; Gallacher, Patrick C; Graber, Hans C; Helfrich, Karl R; Jachec, Steven M; Jackson, Christopher R; Klymak, Jody M; Ko, Dong S; Jan, Sen; Johnston, T M Shaun; Legg, Sonya; Lee, I-Huan; Lien, Ren-Chieh; Mercier, Matthieu J; Moum, James N; Musgrave, Ruth; Park, Jae-Hun; Pickering, Andrew I; Pinkel, Robert; Rainville, Luc; Ramp, Steven R; Rudnick, Daniel L; Sarkar, Sutanu; Scotti, Alberto; Simmons, Harper L; St Laurent, Louis C; Venayagamoorthy, Subhas K; Wang, Yu-Huai; Wang, Joe; Yang, Yiing J; Paluszkiewicz, Theresa; Tang, Tswen-Yung David

    2015-05-07

    Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

  1. Evolution of Nonlinear Internal Waves in China Seas

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.

    1997-01-01

    Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.

  2. Generation and Evolution of Internal Waves in Luzon Strait

    DTIC Science & Technology

    2016-03-01

    1 DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in...internal tides, inertial waves , nonlinear internal waves (NLIWs), and turbulence mixing––in the ocean and thereby help develop improved parameterizations of...mixing for ocean models. Mixing within the stratified ocean is a particular focus as the complex interplay of internal waves from a variety of

  3. Open ocean Internal Waves, Namibia Coast, Africa.

    NASA Image and Video Library

    1990-12-10

    These open ocean Internal Waves were seen off the Namibia Coast, Africa (23.0S, 14.0E). The periodic and regularly spaced sets of internal waves most likely coincide with tidal periods about 12 hours apart. The wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch across and beyond the distance of the photo. The waves are intersecting the Namibia coastline at about a 30 degree angle.

  4. Open ocean Internal Waves, Namibia Coast, Africa.

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These open ocean Internal Waves were seen off the Namibia Coast, Africa (23.0S, 14.0E). The periodic and regularly spaced sets of internal waves most likely coincide with tidal periods about 12 hours apart. The wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch across and beyond the distance of the photo. The waves are intersecting the Namibia coastline at about a 30 degree angle.

  5. Internal waves interacting with particles in suspension

    NASA Astrophysics Data System (ADS)

    Micard, Diane

    2016-04-01

    Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.

  6. The Fate and Impact of Internal Waves in Nearshore Ecosystems

    NASA Astrophysics Data System (ADS)

    Woodson, C. B.

    2018-01-01

    Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.

  7. The Fate and Impact of Internal Waves in Nearshore Ecosystems.

    PubMed

    Woodson, C B

    2018-01-03

    Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.

  8. Internal Waves, Western Indian Ocean

    NASA Image and Video Library

    1991-12-01

    STS044-79-077 (24 Nov.-1 Dec. 1991) --- This photograph, captured from the Earth-orbiting Space Shuttle Atlantis, shows sunglint pattern in the western tropical Indian Ocean. Several large internal waves reflect around a shallow area on the sea floor. NASA scientists studying the STS-44 photography believe the shallow area to be a sediment (a submerged mountain) on top of the Mascarene Plateau, located northeast of Madagascar at approximately 5.6 degrees south latitude and 55.7 degrees east longitude. Internal waves are similar to surface ocean waves, except that they travel inside the water column along the boundary between water layers of different density. At the surface, their passage is marked on the sea surface by bands of smooth and rough water. These bands appear in the sunglint pattern as areas of brighter or darker water. NASA scientists point out that, when the waves encounter an obstacle, such as a near-surface seamount, they bend or refract around the obstacle in the same manner as surface waves bend around an island or headland.

  9. Generation and Evolution of Internal Waves in Luzon Strait

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in Luzon...inertial waves , nonlinear internal waves (NLIWs), and turbulence mixing––in the ocean and thereby help develop improved parameterizations of mixing for...ocean models. Mixing within the stratified ocean is a particular focus as the complex interplay of internal waves from a variety of sources and

  10. Ocean Wave Simulation Based on Wind Field

    PubMed Central

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718

  11. Ocean Wave Simulation Based on Wind Field.

    PubMed

    Li, Zhongyi; Wang, Hao

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  12. The generation of gravitational waves. I - Weak-field sources

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Kovacs, S. J.

    1975-01-01

    This paper derives and summarizes a 'plug-in-and-grind' formalism for calculating the gravitational waves emitted by any system with weak internal gravitational fields. If the internal fields have negligible influence on the system's motions, the formalism reduces to standard 'linearized theory'. Independent of the effects of gravity on the motions, the formalism reduces to the standard 'quadrupole-moment formalism' if the motions are slow and internal stresses are weak. In the general case, the formalism expresses the radiation in terms of a retarded Green's function for slightly curved spacetime and breaks the Green's function integral into five easily understood pieces: direct radiation, produced directly by the motions of the source; whump radiation, produced by the 'gravitational stresses' of the source; transition radiation, produced by a time-changing time delay ('Shapiro effect') in the propagation of the nonradiative 1/r field of the source; focusing radiation, produced when one portion of the source focuses, in a time-dependent way, the nonradiative field of another portion of the source; and tail radiation, produced by 'back-scatter' of the nonradiative field in regions of focusing.

  13. Internal gravity wave contributions to global sea surface variability

    NASA Astrophysics Data System (ADS)

    Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.

    2016-02-01

    High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.

  14. THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.

    PubMed

    Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige

    2013-09-15

    We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.

  15. Laboratory-Scale Internal Wave Apparatus for Studying Copepod Behavior

    NASA Astrophysics Data System (ADS)

    Jung, S.; Webster, D. R.; Haas, K. A.; Yen, J.

    2016-02-01

    Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. The objective is to provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in two-layer stratification. Two cases were chosen with density jump of 1 and 1.5 sigma-t units. Analytical analysis of the two-layer system provided guidance to the target forcing frequency needed to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location were used to quantify the wave characteristics. The results show a close match to the target wave parameters. Marine copepod (mixed population of Acartia tonsa, Temora longicornis, and Eurytemora affinis) behavior assays were conducted for three different physical arrangements: (1) no density stratification, (2) stagnant two-layer density stratification, and (3) two-layer density stratification with internal wave motion. Digitized trajectories of copepod swimming behavior indicate that in the control (case 1) the animals showed no preferential motion in terms of direction. In the stagnant density jump treatment (case 2) copepods preferentially moved horizontally, parallel to the density interface. In the internal wave treatment (case 3) copepods demonstrated orbital trajectories near the density interface.

  16. Three Waves of International Student Mobility (1999-2020)

    ERIC Educational Resources Information Center

    Choudaha, Rahul

    2017-01-01

    This article analyses the changes in international student mobility from the lens of three overlapping waves spread over seven years between 1999 and 2020. Here a wave is defined by the key events and trends impacting international student mobility within temporal periods. Wave I was shaped by the terrorist attacks of 2001 and enrolment of…

  17. Synchronism of nonlinear internal waves in a three-layer fluid

    NASA Astrophysics Data System (ADS)

    Talipova, Tatiana; Kurkina, Oxana; Terletska, Katerina; Rouvinskaya, Ekaterina

    2017-04-01

    In a three layer fluid with arbitrary layer widths and densities the existence of long internal solitons and breathers is proven theoretically and numerically, see for example (Pelinovsky et al., 2007; Lamb et al., 2007). The existence of breather-like waves of the intermediate length is also shown in numerical simulations (Terletska et al., 2016). For such waves conditions of synchronism are valid when a breather of the first mode and a soliton of the second mode move together with the same speed and form an asymmetric solitary wave of the second mode. The process of strong interaction of long nonlinear internal waves in the framework of three-layer Camassa-Choi model demonstrates the same effect (Jo&Choi, 2014; Barros, 2016). We analyze possible synchronism conditions for steady-state internal waves in a three-layer fluid analytically the framework of the Gardner equation, which is valid for long weakly nonlinear internal waves. The equations for synchronism conditions are derived and considered in terms of wave amplitudes, layer widths and density jumps. The configurations of three-layer fluid are found for which such a synchronism is possible. References: Barros R. Large amplitude internal waves in three-layer flows. The forth international conference "Nonlinear Waves - Theory and Applications", MS7, Beijing, China, June 25 - 28, 2016 Pelinovsky E., Polukhina O., Slunyaev A., Talipova T. Internal solitary waves // Chapter 4 in the book "Solitary Waves in Fluids". WIT Press. Southampton, Boston. 2007. P. 85 - 110. K. Terletska., K. T. Jung, T. Talipova, V. Maderich, I. Brovchenko and R. Grimshaw Internal breather-like wave generation by the second mode solitary wave interaction with a step// Physics of Fluids, 2016, accepted

  18. The generation and propagation of internal gravity waves in a rotating fluid

    NASA Technical Reports Server (NTRS)

    Maxworthy, T.; Chabert Dhieres, G.; Didelle, H.

    1984-01-01

    The present investigation is concerned with an extension of a study conducted bu Maxworthy (1979) on internal wave generation by barotropic tidal flow over bottom topography. A short series of experiments was carried out during a limited time period on a large (14-m diameter) rotating table. It was attempted to obtain, in particular, information regarding the plan form of the waves, the exact character of the flow over the obstacle, and the evolution of the waves. The main basin was a dammed section of a long free surface water tunnel. The obstacle was towed back and forth by a wire harness connected to an electronically controlled hydraulic piston, the stroke and period of which could be independently varied. Attention is given to the evolution of the wave crests, the formation of solitary wave groups the evolution of the three-dimensional wave field wave shapes, the wave amplitudes, and particle motion.

  19. Internal waves and modern and ancient hiatuses in pelagic caps of Pacific guyots and seamounts

    NASA Astrophysics Data System (ADS)

    Mitchell, Neil; Simmons, Harper; Lear, Carrie

    2013-04-01

    Locations of recent non-deposition and ancient hiatuses in the pelagic caps of guyots and seamounts are compared with paleotemperature and physiographic information to speculate on the character of internal tidal waves in the upper Pacific Ocean through the Cenozoic. Internal tidal waves are generated where the ocean barotropic tide passes over the Hawaiian and other major ridges in the Pacific basin. Drill core and geophysical evidence for sediment accumulation, non-deposition or erosion are used to classify broadly sites as either accumulating or eroding/non-depositing in the recent geological past. When these classified sites are compared against results of a numerical model of the internal tide field (Simmons, Ocean Mod. 2008), the sites accumulating particles over the past few million years are all found to lie away from beams of the modeled internal tide, while those that have not been accumulating are in areas of high internal wave energy. Given the correspondence to modern internal wave conditions, we examine whether internal tides can explain ancient hiatuses at the drill sites. For example, Late Cenozoic pelagic caps on guyots among the Marshall Islands contain two hiatuses of broadly similar age, but the dates of the first pelagic sediments deposited following each hiatus do not correlate between guyots, suggesting that they originate not from universal factors (e.g., water chemistry) but local, probably physical factors, such as internal tides. We investigate how changing boundary conditions such as ocean temperature and basin physiography may have affected the geometry and vigour of internal tides through the Cenozoic. Changes in the geometry of ridges underlying the Solomon, Bonin and Marianas Island chains caused by plate tectonics and subsidence may be responsible for sediment hiatuses at these far-field guyot sites.

  20. Internal waves and modern and ancient hiatuses in pelagic caps of Pacific guyots and seamounts

    NASA Astrophysics Data System (ADS)

    Mitchell, N. C.; Simmons, H. L.; Lear, C. H.

    2012-12-01

    Locations of recent non-deposition and ancient hiatuses in the pelagic caps of guyots and seamounts are compared with paleotemperature and physiographic information to speculate on the character of internal tidal waves in the upper Pacific Ocean through the Cenozoic. Internal tidal waves are generated where the ocean barotopic tide passes over the Hawaiian and other major ridges in the Pacific basin. Drill core and geophysical evidence for sediment accumulation, non-deposition or erosion are used to classify broadly sites as either accumulating or eroding/non-depositing in the recent geological past. When these classified sites are compared against results of a numerical model of the internal tide field (Simmons, Ocean Mod. 2008), the sites accumulating particles over the past few million years are all found to lie away from beams of the modeled internal tide, while those that have not been accumulating are in areas of high internal wave energy. Given the correspondence to modern internal wave conditions, we examine whether internal tides can explain ancient hiatuses at the drill sites. For example, Late Cenozoic pelagic caps on guyots among the Marshall Islands contain two hiatuses of broadly similar age, but the dates of the first pelagic sediments deposited following each hiatus do not correlate between guyots, suggesting that they originate not from universal factors (e.g., water chemistry) but local, probably physical factors, such as internal tides. We investigate how changing boundary conditions such as ocean temperature and basin physiography may have affected the geometry and vigour of internal tides through the Cenozoic. Changes in the geometry of ridges underlying the Solomon, Bonin and Marianas Island chains caused by plate tectonics and subsidence may be responsible for sediment hiatuses at these far-field guyot sites.

  1. Statistical properties of nonlinear one-dimensional wave fields

    NASA Astrophysics Data System (ADS)

    Chalikov, D.

    2005-06-01

    A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.

  2. Radio scintillations observed during atmospheric occultations of Voyager: Internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.

    1983-01-01

    The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.

  3. Internal wave damping in the East China in late summer 2014

    NASA Astrophysics Data System (ADS)

    Kuh Kang, Sok; Lee, Jae Hak; Park, Jae-Hun; Kim, Eun Jin; Hong, Chang Su

    2016-04-01

    A field measurement was carried out to observe generation, propagation and damping of the internal waves on the continental shelf around 31N in the East China Sea during September 16-27, 2014. Two trawl-resistant bottom mount ADCPs (M1, M2) were deployed along 126.5oE with 10 km apart. Over the 10 km distance the dominant frequency internal wave group with periods around 500 s is estimated to dissipate its energy by about 30%. The damping process appears to be partly related with the higher-mode evolution at the downward station M1, compared with the 1st-mode dominancy at the upstream station (M2). Our observations suggest that the damping processes of internal waves on the continental shelf of the East China Sea occur by rather complicated manners than by the simple process due to frictional decaying. This work was partially supported by KIOST projects (PE99396)and this research has been performed as collaborative research project of project No (Development of HPC-based management system againstnational scale disaster) and supported by the KOREA INSTITUTE of SCIENCE and TECHNOLOGY INFORMATION (KISTI).

  4. Influence of Internal Waves on Transport by a Gravity Current

    NASA Astrophysics Data System (ADS)

    Koseff, Jeffrey; Hogg, Charlie; Ouillon, Raphael; Ouellette, Nicholas; Meiburg, Eckart

    2017-11-01

    Gravity currents moving along the continental slope can be influenced by internal waves shoaling on the slope resulting in mixing between the gravity current and the ambient fluid. Whilst some observations of the potential influence of internal waves on gravity currents have been made, the process has not been studied systematically. We present laboratory experiments, and some initial numerical simulations, in which a gravity current descends down a sloped boundary through a pycnocline at the same time as an internal wave at the pycnocline shoals on the slope. Measurements of the downslope mass flux of the gravity current fluid in cases with different amplitudes of the incident internal wave will be discussed. For the parameter regime considered, the mass flux in the head of the gravity current was found to reduce with increasingly larger incident amplitude waves. This reduction was effectively caused by a ``decapitation'' process whereby the breaking internal wave captures and moves fluid from the head of the gravity current back up the slope. The significance of the impact of the internal waves on gravity current transport, strongly suggests that the local internal wave climate may need to be considered when calculating gravity current transport. The Bob and Norma Street Environmental Fluid Mechanics Laboratory.

  5. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait.

    PubMed

    Droghei, R; Falcini, F; Casalbore, D; Martorelli, E; Mosetti, R; Sannino, G; Santoleri, R; Chiocci, F L

    2016-11-03

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary "current" that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  6. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    PubMed Central

    Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.

    2016-01-01

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities. PMID:27808239

  7. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    NASA Astrophysics Data System (ADS)

    Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.

    2016-11-01

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  8. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection, and dynamical chaos

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-07-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the `dipole dichotomy' problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localized region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organization of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetized region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  9. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection and dynamical chaos

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-04-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  10. Dense Gravity Currents with Breaking Internal Waves

    NASA Astrophysics Data System (ADS)

    Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey

    2017-11-01

    Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.

  11. Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V.; Sadovnikov, A. V.

    We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development ofmore » magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.« less

  12. Internal Wave-Convection-Mean Flow Interactions

    NASA Astrophysics Data System (ADS)

    Lecoanet, D.; Couston, L. A.; Favier, B.; Le Bars, M.

    2017-12-01

    We present a series of simulations of Boussinesq fluid with a nonlinear equation of state which in thermal equilibrium is convective in the bottom part of the domain, but stably stratified in the upper part of the domain. The stably stratified region supports internal gravity waves, which are excited by the convection. The convection can significantly affected by the stably stratified region. Furthermore, the waves in the stable region can interact nonlinearly to drive coherent mean flows which exhibit regular oscillations, similar to the QBO in the Earth's atmosphere. We will describe the dependence of the mean flow oscillations on the properties of the convection which generate the internal waves. This provides a novel framework for understanding mean flow oscillations in the Earth's atmosphere, as well as the atmospheres of giant planets.

  13. Relativistic nonlinear plasma waves in a magnetic field

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Pellat, R.

    1975-01-01

    Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.

  14. International cometary explorer encounter with giacobini-zinner: magnetic field observations.

    PubMed

    Smith, E J; Tsurutani, B T; Slvain, J A; Jones, D E; Siscoe, G L; Mendis, D A

    1986-04-18

    The vector helium magnetometer on the International Cometary Explorer observed the magnetic fields induced by the interaction of comet Giacobini-Zinner with the solar wind. A magnetic tail was penetrated approximately 7800 kilometers downstream from the comet and was found to be 10(4) kilometers wide. It consisted of two lobes, containing oppositely directed fields with strengths up to 60 nanoteslas, separated by a plasma sheet approximately 10(3)kilometers thick containing a thin current sheet. The magnetotail was enclosed in an extended ionosheath characterized by intense hydromagnetic turbulene and interplanetary fields draped around the comet. A distant bow wave, which may or may not have been a bow shock, was observed at both edges of the ionosheath. Weak turbulence was observed well upstream of the bow wave.

  15. Ambient seismic wave field

    PubMed Central

    NISHIDA, Kiwamu

    2017-01-01

    The ambient seismic wave field, also known as ambient noise, is excited by oceanic gravity waves primarily. This can be categorized as seismic hum (1–20 mHz), primary microseisms (0.02–0.1 Hz), and secondary microseisms (0.1–1 Hz). Below 20 mHz, pressure fluctuations of ocean infragravity waves reach the abyssal floor. Topographic coupling between seismic waves and ocean infragravity waves at the abyssal floor can explain the observed shear traction sources. Below 5 mHz, atmospheric disturbances may also contribute to this excitation. Excitation of primary microseisms can be attributed to topographic coupling between ocean swell and seismic waves on subtle undulation of continental shelves. Excitation of secondary microseisms can be attributed to non-linear forcing by standing ocean swell at the sea surface in both pelagic and coastal regions. Recent developments in source location based on body-wave microseisms enable us to estimate forcing quantitatively. For a comprehensive understanding, we must consider the solid Earth, the ocean, and the atmosphere as a coupled system. PMID:28769015

  16. Internal Ocean Waves

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1

  17. Resonant generation of internal waves on the soft sea bed by a surface water wave

    NASA Astrophysics Data System (ADS)

    Wen, Feng

    1995-08-01

    The nonlinear response of an initially flat sea bed to a monochromatic surface progressive wave was studied using the multiple scale perturbation method. Two opposite-traveling subliminal internal ``mud'' waves are selectively excited and form a resonant triad with the surface wave. The amplitudes of the internal waves grow on a time scale much longer than the period of the surface wave. It was found that the sea bed response is critically dependent on the density ratio of water and soil, depth of water, and depth and viscosity of the saturated soil. The result of instability analysis is in qualitative agreement with the result of a wave flume experiment.

  18. FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK USING THE THREE DIMENSIONAL METHOD OF CHARACTERISTICS WITH DISCRETE SHOCK WAVE FITTING

    NASA Technical Reports Server (NTRS)

    Bishop, A. R.

    1994-01-01

    This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters

  19. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Falcini, Federico; Martorelli, Eleonora; Salusti, Ettore; Sannino, Gianmaria; Santoleri, Rosalia; Chiocci, Francesco

    2015-04-01

    In the last decade joint marine geology and physical oceanography studies are demonstrating the inherited connection between deep-water sedimentary processes and dynamics of water masses in a fruitful exchange in which bedforms type and geometry highlight slow or periodic bottom current processes or event of and oceanography explains and predicts morphological and sedimentary pattern at the seafloor. We investigate the presence of an intriguing up-slope migrating and rotating sand waves observed off the north entrance of the Messina Strait by taking into account the main oceanographic process occurring in the Strait, namely the presence of tidal induced internal solitary waves (ISWs). We hypothesize that the observed deflected pattern of these sand waves is due to refraction of wave occurring at the LIW-MAW interface and that the motion of the grains is due to the increased particle velocity field during the passage of ISWs. We modeled their formations and compared the results with the observed geometries of the dune field. Our findings suggest an intrinsic relationship between the dune filed and the presence of internal solitary waves, and provide some insights about their dynamics and migration rate as in accordance with previous measurements and analysis. We believe that our work represents an innovative and promising link between the geological and oceanographic communities, and gives some insights on the role of ISWs on sedimentary process.

  20. Open ocean Internal Waves, Namibia Coast, Africa.

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These open ocean Internal Waves were seen off the Namibia Coast, Africa (19.5S, 11.5E). The periodic and regularly spaced sets of incoming internal appear to be diffracting against the coastline and recombining to form a network of interference patterns. They seem to coincide with tidal periods about 12 hours apart and wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch beyond the image.

  1. Open ocean Internal Waves, Namibia Coast, Africa.

    NASA Image and Video Library

    1990-12-10

    These open ocean Internal Waves were seen off the Namibia Coast, Africa (19.5S, 11.5E). The periodic and regularly spaced sets of incoming internal appear to be diffracting against the coastline and recombining to form a network of interference patterns. They seem to coincide with tidal periods about 12 hours apart and wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch beyond the image.

  2. Shoaling internal solitary waves of depression over gentle slopes

    NASA Astrophysics Data System (ADS)

    Rivera, Gustavo; Diamessis, Peter

    2017-11-01

    The shoaling of an internal solitary wave (ISW) of depression over gentle slopes is explored through fully nonlinear and non-hydrostatic simulations using a high resolution/accuracy deformed spectral multidomain penalty method. During shoaling, the wave does not disintegrate as in the case of steeper slope but, instead, maintains its symmetric shape. At the core of the wave, an unstable region forms, characterized by the entrapment of heavier-over-light fluid. The formation of this convective instability is attributed to the vertical stretching by the ISW of the near-surface vorticity layer associated with the baroclinic background current. According to recent field observations in the South China Sea, the unstable region drives localized turbulent mixing within the wave, estimated to be up to four times larger than that in the open ocean, in the form of a recirculating trapped core. In this talk, emphasis is placed on the structure of the unstable region and the persistence of a possible recirculating core using simulations which capture 2D wave propagation combined with 3D representation of the transition to turbulence. As such, a preliminary understanding of the underlying fluid mechanics and the potential broader oceanic significance of ISWs with trapped cores is offered. Financial support gratefully acknowledged to NSF OCE Grant 1634257.

  3. The international workshop on wave hindcasting and forecasting and the coastal hazards symposium

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Swail, Val; Babanin, Alexander V.; Horsburgh, Kevin

    2015-05-01

    Following the 13th International Workshop on Wave Hindcasting and Forecasting and 4th Coastal Hazards Symposium in October 2013 in Banff, Canada, a topical collection has appeared in recent issues of Ocean Dynamics. Here, we give a brief overview of the history of the conference since its inception in 1986 and of the progress made in the fields of wind-generated ocean waves and the modelling of coastal hazards before we summarize the main results of the papers that have appeared in the topical collection.

  4. Fast torsional waves and strong magnetic field within the Earth's core.

    PubMed

    Gillet, Nicolas; Jault, Dominique; Canet, Elisabeth; Fournier, Alexandre

    2010-05-06

    The magnetic field inside the Earth's fluid and electrically conducting outer core cannot be directly probed. The root-mean-squared (r.m.s.) intensity for the resolved part of the radial magnetic field at the core-mantle boundary is 0.3 mT, but further assumptions are needed to infer the strength of the field inside the core. Recent diagnostics obtained from numerical geodynamo models indicate that the magnitude of the dipole field at the surface of a fluid dynamo is about ten times weaker than the r.m.s. field strength in its interior, which would yield an intensity of the order of several millitesla within the Earth's core. However, a 60-year signal found in the variation in the length of day has long been associated with magneto-hydrodynamic torsional waves carried by a much weaker internal field. According to these studies, the r.m.s. strength of the field in the cylindrical radial direction (calculated for all length scales) is only 0.2 mT, a figure even smaller than the r.m.s. strength of the large-scale (spherical harmonic degree n field visible at the core-mantle boundary. Here we reconcile numerical geodynamo models with studies of geostrophic motions in the Earth's core that rely on geomagnetic data. From an ensemble inversion of core flow models, we find a torsional wave recurring every six years, the angular momentum of which accounts well for both the phase and the amplitude of the six-year signal for change in length of day detected over the second half of the twentieth century. It takes about four years for the wave to propagate throughout the fluid outer core, and this travel time translates into a slowness for Alfvén waves that corresponds to a r.m.s. field strength in the cylindrical radial direction of approximately 2 mT. Assuming isotropy, this yields a r.m.s. field strength of 4 mT inside the Earth's core.

  5. Antiferromagnetic Spin Wave Field-Effect Transistor

    DOE PAGES

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; ...

    2016-04-06

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibilitymore » of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.« less

  6. Magnetostatic modes in ferromagnetic samples with inhomogeneous internal fields

    NASA Astrophysics Data System (ADS)

    Arias, Rodrigo

    2015-03-01

    Magnetostatic modes in ferromagnetic samples are very well characterized and understood in samples with uniform internal magnetic fields. More recently interest has shifted to the study of magnetization modes in ferromagnetic samples with inhomogeneous internal fields. The present work shows that under the magnetostatic approximation and for samples of arbitrary shape and/or arbitrary inhomogeneous internal magnetic fields the modes can be classified as elliptic or hyperbolic, and their associated frequency spectrum can be delimited. This results from the analysis of the character of the second order partial differential equation for the magnetostatic potential under these general conditions. In general, a sample with an inhomogeneous internal field and at a given frequency, may have regions of elliptic and hyperbolic character separated by a boundary. In the elliptic regions the magnetostatic modes have a smooth monotonic character (generally decaying form the surfaces (a ``tunneling'' behavior)) and in hyperbolic regions an oscillatory wave-like character. A simple local criterion distinguishes hyperbolic from elliptic regions: the sign of a susceptibility parameter. This study shows that one may control to some extent magnetostatic modes via external fields or geometry. R.E.A. acknowledges Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia under Project No. FB 0807 (Chile), Grant No. ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, and Proyecto Fondecyt 1130192.

  7. Helicons in uniform fields. I. Wave diagnostics with hodograms

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2018-03-01

    The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.

  8. Excitation of parasitic waves in forward-wave amplifiers with weak guiding fields.

    PubMed

    Nusinovich, G S; Romero-Talamás, C A; Han, Y

    2012-12-01

    To produce high-power coherent electromagnetic radiation at frequencies from microwaves up to terahertz, the radiation sources should have interaction circuits of large cross sections, i.e., the sources should operate in high-order modes. In such devices, the excitation of higher-order parasitic modes near cutoff where the group velocity is small and, hence, start currents are low can be a serious problem. The problem is especially severe in the sources of coherent, phase-controlled radiation, i.e., the amplifiers or phase-locked oscillators. This problem was studied earlier [Nusinovich, Sinitsyn, and Antonsen, Phys. Rev. E 82, 046404 (2010)] for the case of electron focusing by strong guiding magnetic fields. For many applications it is desirable to minimize these focusing fields. Therefore in this paper we analyze the problem of excitation of parasitic modes near cutoff in forward-wave amplifiers with weak focusing fields. First, we study the large-signal operation of such a device with a signal wave only. Then, we analyze the self-excitation conditions of parasitic waves near cutoff in the presence of the signal wave. It is shown that the main effect is the suppression of the parasitic wave in large-signal regimes. At the same time, there is a region of device parameters where the presence of signal waves can enhance excitation of parasitic modes. The role of focusing fields in such effects is studied.

  9. Generation of internal solitary waves by frontally forced intrusions in geophysical flows.

    PubMed

    Bourgault, Daniel; Galbraith, Peter S; Chavanne, Cédric

    2016-12-06

    Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.

  10. Dynamics of internal waves on the Southeast Florida shelf: Implications for cross-shelf exchange and turbulent mixing on a barrier reef system

    NASA Astrophysics Data System (ADS)

    Davis, Kristen Alexis

    The dynamics of internal waves shoaling on the Southeast Florida shelf and the resulting stratified turbulence in the shelf bottom boundary layer are investigated using observational studies completed during the summers of 2003-2005. This work is driven by a desire to understand the effects of internal wave-driven flow and the shoreward transport of cool, nutrient-rich water masses on cross-shelf exchange, vertical mixing, and mass transfer to benthic reef organisms. Shelf sea internal wave fields are typically highly variable and dominated by wind and tidal forces. However, this is not necessarily true for outer shelf regions or very narrow shelves where remote physical processes originating over the slope or deep ocean may exert a strong influence on the internal wave climate. During the summers of 2003 and 2004 observational studies were conducted to examine the effects of a western boundary current (the Florida Current), tides, and wind on the mean currents and internal wave field on the outer Southeast Florida shelf. We present evidence that suggests that the Florida Current plays as large a role in the determination of the high frequency internal wave field as tidal forces. These observations and analyses show that it is necessary to include the forcing from the Florida Current meanders and instabilities in order to predict accurately the episodic nature of the internal wave field on the Southeast Florida shelf. Deep ocean and continental shelf processes intersect at the shelf edge and influence the exchange of water masses and their associated characteristics including heat, nutrients, sediment, and larvae across the shelf. Thus, the dynamics of cross-shelf circulation have important consequences for organisms living on the shelf. In the second phase of this work, we investigate physical mechanisms controlling the exchange of water masses during the summer season across the Southeast Florida shelf. A time series of cross-shelf transport from May to August

  11. Radiating Instabilities of Internal Inertio-gravity Waves

    NASA Astrophysics Data System (ADS)

    Kwasniok, F.; Schmitz, G.

    The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.

  12. Laboratory and numerical simulation of internal wave attractors and their instability.

    NASA Astrophysics Data System (ADS)

    Brouzet, Christophe; Dauxois, Thierry; Ermanyuk, Evgeny; Joubaud, Sylvain; Sibgatullin, Ilias

    2015-04-01

    Internal wave attractors are formed as result of focusing of internal gravity waves in a confined domain of stably stratified fluid due to peculiarities of reflections properties [1]. The energy injected into domain due to external perturbation, is concentrated along the path formed by the attractor. The existence of attractors was predicted theoretically and proved both experimentally and numerically [1-4]. Dynamics of attractors is greatly influenced by geometrical focusing, viscous dissipation and nonlinearity. The experimental setup features Schmidt number equal to 700 which impose constraints on resolution in numerical schemes. Also for investigation of stability on large time intervals (about 1000 periods of external forcing) numerical viscosity may have significant impact. For these reasons, we have chosen spectral element method for investigation of this problem, what allows to carefully follow the nonlinear dynamics. We present cross-comparison of experimental observations and numerical simulations of long-term behavior of wave attractors. Fourier analysis and subsequent application of Hilbert transform are used for filtering of spatial components of internal-wave field [5]. The observed dynamics shows a complicated coupling between the effects of local instability and global confinement of the fluid domain. The unstable attractor is shown to act as highly efficient mixing box providing the efficient energy pathway from global-scale excitation to small-scale wave motions and mixing. Acknowledgement, IS has been partially supported by Russian Ministry of Education and Science (agreement id RFMEFI60714X0090) and Russian Foundation for Basic Research, grant N 15-01-06363. EVE gratefully acknowledges his appointment as a Marie Curie incoming fellow at Laboratoire de physique ENS de Lyon. This work has been partially supported by the ONLITUR grant (ANR-2011-BS04-006-01) and achieved thanks to the resources of PSMN from ENS de Lyon 1. Maas, L. R. M. & Lam, F

  13. Spherical-wave expansions of piston-radiator fields.

    PubMed

    Wittmann, R C; Yaghjian, A D

    1991-09-01

    Simple spherical-wave expansions of the continuous-wave fields of a circular piston radiator in a rigid baffle are derived. These expansions are valid throughout the illuminated half-space and are useful for efficient numerical computation in the near-field region. Multipole coefficients are given by closed-form expressions which can be evaluated recursively.

  14. Rogue waves of the Kundu-Eckhaus equation in a chaotic wave field.

    PubMed

    Bayindir, Cihan

    2016-03-01

    In this paper we study the properties of the chaotic wave fields generated in the frame of the Kundu-Eckhaus equation (KEE). Modulation instability results in a chaotic wave field which exhibits small-scale filaments with a free propagation constant, k. The average velocity of the filaments is approximately given by the average group velocity calculated from the dispersion relation for the plane-wave solution; however, direction of propagation is controlled by the β parameter, the constant in front of the Raman-effect term. We have also calculated the probabilities of the rogue wave occurrence for various values of propagation constant k and showed that the probability of rogue wave occurrence depends on k. Additionally, we have showed that the probability of rogue wave occurrence significantly depends on the quintic and the Raman-effect nonlinear terms of the KEE. Statistical comparisons between the KEE and the cubic nonlinear Schrödinger equation have also been presented.

  15. Hypothetical Mine Hunting Sonar - Internal Wave Impact on Performance

    DTIC Science & Technology

    2014-12-09

    5e-02 1 OeOO~. ?’•’~~~·0 0 20 40 60 SE dB 80 100 120 Histogrilm of SE45200 FM=174 w=BO 11e-01l 𔃺 5 e-0 2 I n. nUn ~ OeOO -4...question its use as a reliable mine detection system. This signal excess variability study needs to be improved in a number of ways: 1. the impact of...profile and its perturbation by the seasonally changing internal wave fields needs to be addressed and 4. acoustic signal propagation studies focused

  16. Numerical simulations of internal wave generation by convection in water.

    PubMed

    Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton J; Vasil, Geoffrey M; Brown, Benjamin P; Quataert, Eliot; Oishi, Jeffrey S

    2015-06-01

    Water's density maximum at 4°C makes it well suited to study internal gravity wave excitation by convection: an increasing temperature profile is unstable to convection below 4°C, but stably stratified above 4°C. We present numerical simulations of a waterlike fluid near its density maximum in a two-dimensional domain. We successfully model the damping of waves in the simulations using linear theory, provided we do not take the weak damping limit typically used in the literature. To isolate the physical mechanism exciting internal waves, we use the spectral code dedalus to run several simplified model simulations of our more detailed simulation. We use data from the full simulation as source terms in two simplified models of internal-wave excitation by convection: bulk excitation by convective Reynolds stresses, and interface forcing via the mechanical oscillator effect. We find excellent agreement between the waves generated in the full simulation and the simplified simulation implementing the bulk excitation mechanism. The interface forcing simulations overexcite high-frequency waves because they assume the excitation is by the "impulsive" penetration of plumes, which spreads energy to high frequencies. However, we find that the real excitation is instead by the "sweeping" motion of plumes parallel to the interface. Our results imply that the bulk excitation mechanism is a very accurate heuristic for internal-wave generation by convection.

  17. Electron-cyclotron damping of helicon waves in low diverging magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, T.; Charles, C.; Boswell, R. W.

    2011-04-15

    Particle-in-cell simulations are performed to investigate wave propagation and absorption behavior of low-field (B{sub 0}<5 mT) helicon waves in the presence of a diverging magnetic field. The 1D electromagnetic simulations, which include experimental external magnetic field profiles, provide strong evidence for electron-cyclotron damping of helicon waves in the spatially decaying nonuniform magnetic field. For a dipole-type magnetic field configuration, the helicon waves are absence in the downstream (lower field) region of the plasma and are observed to be completely absorbed. As the magnetic field is changed slightly however, wave damping decreases, and waves are able to propagate freely downstream, confirmingmore » previous experimental measurements of this phenomenon.« less

  18. A statistical model of the wave field in a bounded domain

    NASA Astrophysics Data System (ADS)

    Hellsten, T.

    2017-02-01

    Numerical simulations of plasma heating with radiofrequency waves often require repetitive calculations of wave fields as the plasma evolves. To enable effective simulations, bench marked formulas of the power deposition have been developed. Here, a statistical model applicable to waves with short wavelengths is presented, which gives the expected amplitude of the wave field as a superposition of four wave fields with weight coefficients depending on the single pass damping, as. The weight coefficient for the wave field coherent with that calculated in the absence of reflection agrees with the coefficient for strong single pass damping of an earlier developed heuristic model, for which the weight coefficients were obtained empirically using a full wave code to calculate the wave field and power deposition. Antennas launching electromagnetic waves into bounded domains are often designed to produce localised wave fields and power depositions in the limit of strong single pass damping. The reflection of the waves changes the coupling that partly destroys the localisation of the wave field, which explains the apparent paradox arising from the earlier developed heuristic formula that only a fraction as2(2-as) and not as of the power is absorbed with a profile corresponding to the power deposition for the first pass of the rays. A method to account for the change in the coupling spectrum caused by reflection for modelling the wave field with ray tracing in bounded media is proposed, which should be applicable to wave propagation in non-uniform media in more general geometries.

  19. An Evaluation of a Numerical Prediction Method for Electric Field Strength of Low Frequency Radio Waves based on Wave-Hop Ionospheric Propagation

    NASA Astrophysics Data System (ADS)

    Kitauchi, H.; Nozaki, K.; Ito, H.; Kondo, T.; Tsuchiya, S.; Imamura, K.; Nagatsuma, T.; Ishii, M.

    2014-12-01

    We present our recent efforts on an evaluation of the numerical prediction method of electric field strength for ionospheric propagation of low frequency (LF) radio waves based on a wave-hop propagation theory described in Section 2.4 of Recommendation ITU-R P.684-6 (2012), "Prediction of field strength at frequencies below about 150 kHz," made by International Telecommunication Union Radiocommunication Sector (ITU-R). As part of the Japanese Antarctic Research Expedition (JARE), we conduct on-board measurements of the electric field strengths and phases of LF 40 kHz and 60 kHz of radio signals (call sign JJY) continuously along both the ways between Tokyo, Japan and Syowa Station, the Japanese Antarctic station, at 69° 00' S, 39° 35' E on East Ongul Island, Lützow-Holm Bay, East Antarctica. The measurements are made by a newly developed, highly sensitive receiving system installed on board the Japanese Antarctic research vessel (RV) Shirase. We obtained new data sets of the electric field strength up to approximately 13,000-14,000 km propagation of LF JJY 40 kHz and 60 kHz radio waves by utilizing a newly developed, highly sensitive receiving system, comprised of an orthogonally crossed double-loop antenna and digital-signal-processing lock-in amplifiers, on board RV Shirase during the 55th JARE from November 2013 to April 2014. We have made comparisons between those on-board measurements and the numerical predictions of field strength for long-range propagation of low frequency radio waves based on a wave-hop propagation theory described in Section 2.4 of Recommendation ITU-R P.684-6 (2012) to show that our results qualitatively support the recommended wave-hop theory for the great-circle paths approximately 7,000-8,000 km and 13,000-14,000 km propagations.

  20. The Formation and Fate of Internal Waves in the South China Sea

    DTIC Science & Technology

    2015-11-05

    FOf’miiiiiiM and Fate at Internal Waves In the South •C:hln;~t Sea --- --------· . _.,.. --- -------Author(s) Name{s) (Firsi,MI,La$t), Code, Atfi(iation...Tswen-Yung (David) Tang7 Internal gravity waves , the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in...for man-made structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their

  1. Internal wave mode resonant triads in an arbitrarly stratified finite-depth ocean with background rotation

    NASA Astrophysics Data System (ADS)

    Varma, Dheeraj; Mathur, Manikandan

    2017-11-01

    Internal tides generated by barotropic tides on bottom topography or the spatially compact near-inertial mixed layer currents excited by surface winds can be conveniently represented in the linear regime as a superposition of vertical modes at a given frequency in an arbitrarily stratified ocean of finite depth. Considering modes (m , n) at a frequency ω in the primary wave field, we derive the weakly nonlinear solution, which contains a secondary wave at 2 ω that diverges when it forms a resonant triad with the primary waves. In nonuniform stratifications, resonant triads are shown to occur when the horizontal component of the classical RTI criterion k->1 +k->2 +k->3 = 0 is satisfied along with a non-orthogonality criterion. In nonuniform stratifications with a pycnocline, infinitely more pairs of primary wave modes (m , n) result in RTI when compared to a uniform stratification. Further, two nearby high modes at around the near-inertial frequency often form a resonant triad with a low mode at 2 ω , reminiscent of the features of PSI near the critical latitude. The theoretical framework is then adapted to investigate RTI in two different scenarios: low-mode internal tide scattering over topography, and internal wave beams incident on a pycnocline. The authors thank the Ministry of Earth Sciences, Government of India for financial support under the Monsoon Mission Grant MM/2014/IND-002.

  2. Influence of magnetic field configuration on magnetohydrodynamic waves in Earth's core

    NASA Astrophysics Data System (ADS)

    Knezek, Nicholas; Buffett, Bruce

    2018-04-01

    We develop a numerical model to study magnetohydrodynamic waves in a thin layer of stratified fluid near the surface of Earth's core. Past studies have been limited to using simple background magnetic field configurations. However, the choice of field distribution can dramatically affect the structure and frequency of the waves. To permit a more general treatment of background magnetic field and layer stratification, we combine finite volume and Fourier methods to describe the wave motions. We validate our model by comparisons to previous studies and examine the influence of background magnetic field configuration on two types of magnetohydrodynamic waves. We show that the structure of zonal Magnetic-Archimedes-Coriolis (MAC) waves for a dipole background field is unstable to small perturbations of the field strength in the equatorial region. Modifications to the wave structures are computed for a range of field configurations. In addition, we show that non-zonal MAC waves are trapped near the equator for realistic magnetic field distributions, and that their latitudinal extent depends upon the distribution of magnetic field strength at the CMB.

  3. Alfven waves in spiral interplanetary field

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1973-01-01

    A theoretical study is presented of the Alfven waves in the spiral interplanetary magnetic field. The Alfven waves under consideration are arbitrary, large amplitude, non-monochromatic, microscale waves of any polarization. They superpose on a mesoscale background flow of thermally anisotropic plasma. Using WKB approximation, an analytical solution for the amplitude vectors is obtained as a function of the background flow properties: density, velocity, Alfven speed, thermal anisotropy, and the spiral angel. The necessary condition for the validity of the WKB solution is discussed. The intensity of fluctuations is calculated as a function of heliocentric distance. Relative intensity of fluctuations as compared with the magnitude of the background field has its maximum in the region near l au. Thus outside of this region, the solar wind is less turbulent.

  4. Wave field synthesis, adaptive wave field synthesis and ambisonics using decentralized transformed control: Potential applications to sound field reproduction and active noise control

    NASA Astrophysics Data System (ADS)

    Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw

    2005-09-01

    Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to

  5. Properties of internal solitary waves in a symmetric three-layer fluid

    NASA Astrophysics Data System (ADS)

    Vladykina, E. A.; Polukhina, O. E.; Kurkin, A. A.

    2009-04-01

    Though all the natural media have smooth density stratifications (with the exception of special cases such as sea surface, inversion layer in the atmosphere), the scales of density variations can be different, and some of them can be considered as very sharp. Therefore for the description of internal wave propagation and interaction in the ocean and atmosphere the n-layer models are often used. In these models density profile is usually approximated by a piecewise-constant function. The advantage of the layered models is the finite number of parameters and relatively simple solutions of linear and weakly nonlinear problems. Layered models are also very popular in the laboratory experiments with stratified fluid. In this study we consider symmetric, continuously stratified, smoothed three-layer fluid bounded by rigid horizontal surface and bottom. Three-layer stratification is proved to be a proper approximation of sea water density profile in some basins in the World Ocean with specific hydrological conditions. Such a medium is interesting from the point of view of internal gravity wave dynamics, because in the symmetric case it leads to disappearing of quadratic nonlinearity when described in the framework of weakly nonlinear evolutionary models, that are derived through the asymptotic expansion in small parameters of nonlinearity and dispersion. The goal of our study is to determine the properties of localized stationary internal gravity waveforms (solitary waves) in this symmetric three-layer fluid. The investigation is carried out in the framework of improved mathematical model describing the transformation of internal wave fields generated by an initial disturbance. The model is based on the program complex for the numerical simulation of the two-dimensional (vertical plane) fully nonlinear Euler equations for incompressible stratified fluid under the Boussinesq approximation. Initial disturbances of both polarities evolve into stationary, solitary-like waves

  6. Head-on collision of the second mode internal solitary waves

    NASA Astrophysics Data System (ADS)

    Terletska, Kateryna; Maderich, Vladimir; Jung, Kyung Tae

    2017-04-01

    Second mode internal waves are widespread in offshore areas, and they frequently follow the first mode internal waves on the oceanic shelf. Large amplitude internal solitary waves (ISW) of second mode containing trapped cores associated with closed streamlines can also transport plankton and nutrients. An interaction of ISWs with trapped cores takes place in a specific manner. It motivated us to carry out a computational study of head-on collision of ISWs of second mode propagating in a laboratory-scale numerical tank using the nonhydrostatic 3D numerical model based on the Navier-Stokes equations for a continuously stratified fluid. Three main classes of ISW of second mode propagating in the pycnocline layer of thickness h between homogeneous deep layers can be identified: (i) the weakly nonlinear waves; (ii) the stable strongly nonlinear waves with trapped cores; and (iii) the shear unstable strongly nonlinear waves (Maderich et al., 2015). Four interaction regimes for symmetric collision were separated from simulation results using this classification: (A) an almost elastic interaction of the weakly nonlinear waves; (B) a non-elastic interaction of waves with trapped cores when ISW amplitudes were close to critical non-dimensional amplitude a/h; (C) an almost elastic interaction of stable strongly nonlinear waves with trapped cores; (D) non-elastic interaction of the unstable strongly nonlinear waves. The unexpected result of simulation was that relative loss of energy due to the collision was maximal for regime B. New regime appeared when ISW of different amplitudes belonged to class (ii) collide. In result of interaction the exchange of mass between ISW occurred: the trapped core of smaller wave was entrained by core of larger ISW without mixing forming a new ISW of larger amplitude whereas in smaller ISW core of smaller wave totally substituted by fluid from larger wave. Overall, the wave characteristics induced by head-on collision agree well with the

  7. The reflection and diffraction of internal waves from the junction of a slit and a half-space, with application to submarine canyons

    NASA Astrophysics Data System (ADS)

    Grimshaw, R. H. J.; Baines, P. G.; Bell, R. C.

    1985-07-01

    We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/ cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.

  8. Role of internal demagnetizing field for the dynamics of a surface-modulated magnonic crystal

    NASA Astrophysics Data System (ADS)

    Langer, M.; Röder, F.; Gallardo, R. A.; Schneider, T.; Stienen, S.; Gatel, C.; Hübner, R.; Bischoff, L.; Lenz, K.; Lindner, J.; Landeros, P.; Fassbender, J.

    2017-05-01

    This work aims to demonstrate and understand the key role of local demagnetizing fields in hybrid structures consisting of a continuous thin film with a stripe modulation on top. To understand the complex spin dynamics of these structures, the magnonic crystal was reconstructed in two different ways—performing micromagnetic simulations based on the structural shape as well as based on the internal demagnetizing field, which both are mapped on the nanoscale using electron holography. The simulations yield the frequency-field dependence as well as the angular dependence revealing the governing role of the internal field landscape around the backward-volume geometry. Simple rules for the propagation vector and the mode localization are formulated in order to explain the calculated mode profiles. Treating internal demagnetizing fields equivalent to anisotropies, the complex angle-dependent spin-wave behavior is described for an in-plane rotation of the external field.

  9. Propagation regimes and populations of internal waves in the Mediterranean Sea basin

    NASA Astrophysics Data System (ADS)

    Kurkina, Oxana; Rouvinskaya, Ekaterina; Talipova, Tatiana; Soomere, Tarmo

    2017-02-01

    The geographical and seasonal distributions of kinematic and nonlinear parameters of long internal waves are derived from the Generalized Digital Environmental Model (GDEM) climatology for the Mediterranean Sea region, including the Black Sea. The considered parameters are phase speed of long internal waves and the coefficients at the dispersion, quadratic and cubic terms of the weakly-nonlinear Korteweg-de Vries-type models (in particular, the Gardner model). These parameters govern the possible polarities and shapes of solitary internal waves, their limiting amplitudes and propagation speeds. The key outcome is an express estimate of the expected parameters of internal waves for different regions of the Mediterranean basin.

  10. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.

    PubMed

    Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin

    2011-09-01

    A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America

  11. Surfing the Pacific Island chains: linking internal wave energetics to coral reef benthic community patterns.

    NASA Astrophysics Data System (ADS)

    Painter Jones, Matilda; Green, Mattias; Gove, Jamison; Williams, Gareth

    2017-04-01

    The ocean is saturated with internal waves at tidal frequency. The energy associated with conversion from barotropic to baroclinic can enhance mixing and upwelling at sites of generation and dissipation, which in turn can drive primary production. Hotspots of internal wave generation are located at sudden changes in topography with the Hawaiian archipelago identified as an area of intense internal wave activity. The role of internal waves as a driver of benthic reef community is unexplored and could be key to coral reefs survival in the unknown future. Using a Pacific wide map of internal wave flux and barotropic-to-baroclinic conversion at an unprecedented 1/30th degree resolution, energy budgets were developed for four islands to evaluate dissipation and generation of internal waves. Spatiotemporal variations in benthic community structure were plotted around each island and related to changes in internal wave energetics using a boosted regression tree. Contrasting spatial patterns and species assemblages were seen around islands with distinct internal wave regimes. The relative importance and influence of internal waves on coral reef ecosystems is evaluated.

  12. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Falcini, Federico; Martorelli, Eleonora; Casalbore, Daniele; Mosetti, Renzo; Salusti, Ettore; Sannino, Gianmaria; Santoleri, Rosalia; Chiocci, Francesco

    2016-04-01

    Joint marine geology and physical oceanography studies seek to demonstrate the inherited connection between seafloor sedimentary processes and seawater dynamics in a fruitful exchange. While seafloor morphology highlights the long-term action of bottom currents, oceanographic models attempt to explain and predict morphogenetic processes and sedimentary pattern at the seafloor [Blodeaux, 2001; Martorelli et al., 2010; Belde et al., 2015]. A sand waves field we observed off the Messina Strait (Mediterranean Sea) give us the opportunity to demonstrate the value of such a multidisciplinary approach. We interpret these sand-waves as formed by tidal-induced internal solitary waves (ISWs) that generate within the Strait [Alpers and Salusti, 1983; Sapia and Salusti; 1987; Artale et al., 1990; Bradt et al., 1999]. We hypothesize that the deflected pattern (i.e., the depth-dependent orientation) of these sand waves is due to refraction of ISWs occurring at the interface between the Levantine Intermediate Water (LIW) and the Modified Atlantic Water (MAW), caused by interaction with a topographic mound; while the motion of sediment is caused by the bottom velocity field associated with the ISW trough. Both numerical and in situ data provide hints regarding the formation of the observed geometries and give useful information about their dynamics and migration rate. We believe that our work represents an innovative and promising link between the geological and oceanographic communities, adding some insights on the role of ISWs on sedimentary process and the structure of continental margins [Puig et al, 2004; Haren et al., 2013]. References: Blondeaux, P. (2001). Mechanics of coastal forms. Annual Review of Fluid Mechanics, 33(1), 339-370. Martorelli, E., Falcini, F., Salusti, E., & Chiocci, F. L. (2010). Analysis and modeling of contourite drifts and contour currents off promontories in the Italian Seas (Mediterranean Sea). Marine Geology, 278(1), 19-30. Belde, J., Back, S

  13. Estimates of the Attenuation Rates of Baroclinic Tidal Energy Caused by Resonant Interactions Among Internal Waves based on the Weak Turbulence Theory

    NASA Astrophysics Data System (ADS)

    Onuki, Y.; Hibiya, T.

    2016-02-01

    The baroclinic tides are thought to be the dominant energy source for turbulent mixing in the ocean interior. In contrast to the geography of the energy conversion rates from the barotropic to baroclinic tides, which has been clarified in recent numerical studies, the global distribution of the energy sink for the resulting low-mode baroclinic tides remains obscure. A key to resolve this issue is the resonant wave-wave interactions, which transfer part of the baroclinic tidal energy to the background internal wave field enhancing the local energy dissipation rates. Recent field observations and numerical studies have pointed out that parametric subharmonic instability (PSI), one of the resonant interactions, causes significant energy sink of baroclinic tidal energy at mid-latitudes. The purpose of this study is to analyze the quantitative aspect of PSI to demonstrate the global distribution of the intensity of resonant wave interactions, namely, the attenuation rate of low-mode baroclinic tidal energy. Our approach is basically following the weak turbulence theory, which is the standard theory for resonant wave-wave interactions, where techniques of singular perturbation and statistical physics are employed. This study is, however, different from the classical theory in some points; we have reformulated the weak turbulence theory to be applicable to low-mode internal waves and also developed its numerical calculation method so that the effects of stratification profile and oceanic total depth can be taken into account. We have calculated the attenuation rate of low-mode baroclinic tidal waves interacting with the background Garrett-Munk internal wave field. The calculated results clearly show the rapid attenuation of baroclinic tidal energy at mid-latitudes, in agreement with the results from field observations and also show the zonal inhomogeneity of the attenuation rate caused by the density structures associated with the subtropical gyre. This study is expected

  14. Contribution of non-resonant wave-wave interactions in the dynamics of long-crested sea wave fields

    NASA Astrophysics Data System (ADS)

    Benoit, Michel

    2017-04-01

    Gravity waves fields at the surface of the oceans evolve under the combined effects of several physical mechanisms, of which nonlinear wave-wave interactions play a dominant role. These interactions transfer energy between components within the energy spectrum and allow in particular to explain the shape of the distribution of wave energy according to the frequencies and directions of propagation. In the oceanic domain (deep water conditions), dominant interactions are third-order resonant interactions, between quadruplets (or quartets) of wave components, and the evolution of the wave spectrum is governed by a kinetic equation, established by Hasselmann (1962) and Zakharov (1968). The kinetic equation has a number of interesting properties, including the existence of self-similar solutions and cascades to small and large wavelengths of waves, which can be studied in the framework of the wave (or weak) turbulence theory (e.g. Badulin et al., 2005). With the aim to obtain more complete and precise modelling of sea states dynamics, we investigate here the possibility and consequences of taking into account the non-resonant interactions -quasi-resonant in practice- among 4 waves. A mathematical formalism has recently been proposed to account for these non-resonant interactions in a statistical framework by Annenkov & Shrira (2006) (Generalized Kinetic Equation, GKE) and Gramstad & Stiassnie (2013) (Phase Averaged Equation, PAE). In order to isolate the non-resonant contributions, we limit ourselves here to monodirectional (i.e. long-crested) wave trains, since in this case the 4-wave resonant interactions vanish. The (stochastic) modelling approaches proposed by Annenkov & Shrira (2006) and Gramstad & Stiassnie (2013) are compared to phase-resolving (deterministic) simulations based on a fully nonlinear potential approach (using a high-order spectral method, HOS). We study and compare the evolution dynamics of the wave spectrum at different time scales (i.e. over

  15. Numerical analysis of internal waves in stratified wake flows

    NASA Astrophysics Data System (ADS)

    Fraunie, Philppe

    2014-05-01

    In laboratory investigations, increased attention has been given to internal waves generated by stationary placed oscillating sources and moving bodies in stratified fluids [1]. The main attention was paid to study flows past bodies of perfect shapes like sphere [2], cylinder [3] of thin strip [3] which are the best theoretical (analytical or numerical) studies. Due to simplicity of geometry, flow around a strip has a potential to investigate separately effects of a drag and lift forces on the body by changing the slope of the horizontally moving strip which can be placed vertically [1], horizontally [2], or be tilted under some angle to the direction of towing velocity [5]. Numeric modeling of a flow past vertical strip uniformly towing with permanent velocity in horizontal direction in a linearly stratified talk which was based on a finite differences solver adapted to the low Reynolds Navier-Stokes equation with transport equation for salinity (LES simulation [6] and RANS [7]) has demonstrated reasonable agreement with data of Schlieren visualization, density marker and probe measurements of internal wave fields. The chosen test cases allowed demonstrating the ability of selected numerical methods to represent stably stratified flows over horizontal strip [4] and hill type 2D obstacles [1, 3] with generation of internal waves. ACKNOWLEDGMENTS This research work was supported by the Region Provence Alpes Côte d'Azur - Modtercom project. The work was also supported by the Russian Foundation for Basic Research (grant 12-01-00128). REFERENCES [1] Chashechkin Yu.D., Mitkin V.V. Experimental study of a fine structure of 2D wakes and mixing past an obstacle in a continuously stratified fluid // Dynamics of Atmosphere and Oceans. 2001. V. 34. P. 165-187. [2] Chashechkin, Yu. D. Hydrodynamics of a sphere in a stratified fluid // Fluid Dyn. 1989. V.24(1) P. 1-7. [3] Mitkin V. V., Chashechkin Yu. D. Transformation of hanging discontinuities into vortex systems in a

  16. Effects of Internal Waves on Sound Propagation in the Shallow Waters of the Continental Shelves

    DTIC Science & Technology

    2016-09-01

    experiment area were largely generated by tidal forcing. Compared to simulations without internal waves , simulations accounting for the effects of...internal waves in the experiment area were largely generated by tidal forcing. Compared to simulations without internal waves , simulations accounting for...IN THE SHALLOW WATERS OF THE CONTINENTAL SHELVES ..................................4  1.  Internal Tides—Internal Waves Generated by Tidal Forcing

  17. Kinematic parameters of second-mode internal waves in the South China Sea

    NASA Astrophysics Data System (ADS)

    Kurkina, Oxana; Talipova, Tatiana; Kurkin, Andrey; Naumov, Alexander; Rybin, Artem

    2017-04-01

    Kinematic parameters of second-mode internal waves (in the framework of weakly nonlinear model of the Gardner equation) are calculated for the region of the South China Sea on a base of GDEM climatology. The prognostic parameters of the model include phase speed of long linear waves, coefficients of dispersion, quadratic and cubic nonlinearity, location (in vertical) of minimum, zero and maximum of the second vertical baroclinic mode and the ratio of its maximal and minimal values. All the parameters are presented in the form of geographical maps for winter (January) and summer (July) seasons. Frequence (in the sense of occurrence) histograms and scatter plots with depth are also given for all the parameters. Special attention is paid to the conditions of normalizing for internal waves of the second mode, as it possesses two extremes. Here some freedom exists, but for correct further modeling of internal waves within the Gardner model one has to fix and keep the same normalization (at maximum or at minimum) for whole a basin. Constructed arrays of prognostic parameters of second-mode internal waves are necessary for the estimations of shape and width (at fixed amplitude) of internal solitary and breather-like waves, limiting amplitudes of internal solitary waves of different families, for assessment of near-bed and near-surface flows induced by such waves, and for evaluation of transport distance for dissolved and suspended matter. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-05-00049.

  18. Wave resource variability: Impacts on wave power supply over regional to international scales

    NASA Astrophysics Data System (ADS)

    Smith, Helen; Fairley, Iain; Robertson, Bryson; Abusara, Mohammad; Masters, Ian

    2017-04-01

    The intermittent, irregular and variable nature of the wave energy resource has implications for the supply of wave-generated electricity into the grid. Intermittency of renewable power may lead to frequency and voltage fluctuations in the transmission and distribution networks. A matching supply of electricity must be planned to meet the predicted demand, leading to a need for gas-fired and back-up generating plants to supplement intermittent supplies, and potentially limiting the integration of intermittent power into the grid. Issues relating to resource intermittency and their mitigation through the development of spatially separated sites have been widely researched in the wind industry, but have received little attention to date in the less mature wave industry. This study analyses the wave resource over three different spatial scales to investigate the potential impacts of the temporal and spatial resource variability on the grid supply. The primary focus is the Southwest UK, a region already home to multiple existing and proposed wave energy test sites. Concurrent wave buoy data from six locations, supported by SWAN wave model hindcast data, are analysed to assess the correlation of the resource across the region and the variation in wave power with direction. Power matrices for theoretical nearshore and offshore devices are used to calculate the maximum step change in generated power across the region as the number of deployment sites is increased. The step change analysis is also applied across national and international spatial scales using output from the European Centre for Medium-range Weather Forecasting (ECMWF) ERA-Interim hindcast model. It is found that the deployment of multiple wave energy sites, whether on a regional, national or international scale, results in both a reduction in step changes in power and reduced times of zero generation, leading to an overall smoothing of the wave-generated electrical power. This has implications for the

  19. Redistribution of energy available for ocean mixing by long-range propagation of internal waves.

    PubMed

    Alford, Matthew H

    2003-05-08

    Ocean mixing, which affects pollutant dispersal, marine productivity and global climate, largely results from the breaking of internal gravity waves--disturbances propagating along the ocean's internal stratification. A global map of internal-wave dissipation would be useful in improving climate models, but would require knowledge of the sources of internal gravity waves and their propagation. Towards this goal, I present here computations of horizontal internal-wave propagation from 60 historical moorings and relate them to the source terms of internal waves as computed previously. Analysis of the two most energetic frequency ranges--near-inertial frequencies and semidiurnal tidal frequencies--reveals that the fluxes in both frequency bands are of the order of 1 kW x m(-1) (that is, 15-50% of the energy input) and are directed away from their respective source regions. However, the energy flux due to near-inertial waves is stronger in winter, whereas the tidal fluxes are uniform throughout the year. Both varieties of internal waves can thus significantly affect the space-time distribution of energy available for global mixing.

  20. Visualizing substructure of Ca2+ waves by total internal reflection fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bai, Yongqiang; Tang, Aihui; Wang, Shiqiang; Zhu, Xing

    2005-02-01

    Total internal reflection fluorescence microscope is a new optical microscopic system based on near-field optical theory. Its character of illumination by evanescent wave, together with the great signal-to-noise ratio and temporal resolution achieved by high quality CCD, allows us to analyze the spatiotemporal details of local Ca2+ dynamics within the nanoscale microdomain surrounding different Ca2+ channels. We have recently constructed a versatile objective TIRFM equipped with a high numerical aperture (NA=1.45) objective. Using fluo-4 as the Ca2+ indicator, we visualized the near-membrane profiles of Ca2+ waves and elementary Ca2+ sparks generated by Ca2+ release channels in rat ventricular myocytes. Different from those detected using conventional and confocal microscopy, Ca2+ waves observed with TIRFM exhibited fine inhomogenous substructures composed of fluctuating Ca2+ sparks. The anfractuous routes of spark recruitment suggested that the propagation of Ca2+ waves is much more complicated than previously imagined. We believe that TIRFM will provide a unique tool for dissecting the microscopic mechanisms of intracellular Ca2+ signaling.

  1. Internal wave observations made with an airborne synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Apel, J. R.

    1976-01-01

    Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.

  2. Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean

    NASA Astrophysics Data System (ADS)

    van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.

    2016-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.

  3. Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies.

    PubMed

    Ormachea, Juvenal; Castaneda, Benjamin; Parker, Kevin J

    2018-05-01

    Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  4. Numerical investigation of wake-collapse internal waves generated by a submerged moving body

    NASA Astrophysics Data System (ADS)

    Liang, Jianjun; Du, Tao; Huang, Weigen; He, Mingxia

    2017-07-01

    The state-of-the-art OpenFOAM technology is used to develop a numerical model that can be devoted to numerically investigating wake-collapse internal waves generated by a submerged moving body. The model incorporates body geometry, propeller forcing, and stratification magnitude of seawater. The generation mechanism and wave properties are discussed based on model results. It was found that the generation of the wave and its properties depend greatly on the body speed. Only when that speed exceeds some critical value, between 1.5 and 4.5 m/s, can the moving body generate wake-collapse internal waves, and with increases of this speed, the time of generation advances and wave amplitude increases. The generated wake-collapse internal waves are confirmed to have characteristics of the second baroclinic mode. As the body speed increases, wave amplitude and length increase and its waveform tends to take on a regular sinusoidal shape. For three linearly temperature-stratified profiles examined, the weaker the stratification, the stronger the wake-collapse internal wave.

  5. Interference of Locally Forced Internal Waves in Non-Uniform Stratifications

    NASA Astrophysics Data System (ADS)

    Supekar, Rohit; Peacock, Thomas

    2017-11-01

    Several studies have investigated the effect of constructive or destructive interference on the transmission of internal waves propagating through non-uniform stratifications. Such studies have been performed for internal waves that are spatiotemporally harmonic. To understand the effect of localization, we perform a theoretical and experimental study of the transmission of two-dimensional internal waves that are generated by a spatiotemporally localized boundary forcing. This is done by considering an idealized problem and applying a weakly viscous semi-analytic linear model. Parametric studies using this model show that localization leads to the disappearance of transmission peaks and troughs that would otherwise be present for a harmonic forcing. Laboratory experiments that we perform provide a clear indication of this physical effect. Based on the group velocity and angle of propagation of the internal waves, a practical criteria that assesses when the transmission peaks or troughs are evident, is obtained. It is found that there is a significant difference in the predicted energy transfer due to a harmonic and non-harmonic forcing which has direct implications to various physical forcings such as a storm over the ocean.

  6. Generation and propagation of nonlinear internal waves in Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.C.; Butman, B.

    2007-01-01

    During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.

  7. Numerical Simulation of Internal Waves in the Andaman Sea

    NASA Astrophysics Data System (ADS)

    Mohanty, Sachiko; Devendra Rao, Ambarukhana

    2017-04-01

    The interactions of barotropic tides with irregular bottom topography generate internal waves with high amplitude known as large-amplitude internal waves (LAIW) in the Andaman Sea. These waves are an important phenomena in the ocean due to their influence on the density structure and energy transfer into the region. These waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing, biogeochemical processes, etc. over the shelf-slope region. In the present study, energetics analysis of M2 internal tides over the Andaman Sea is carried out in detail by using a three-dimensional MIT general circulation ocean model (MITgcm). In-situ observations of temperature, conductivity and currents with high temporal resolution are used to validate the model simulations. From the spectral energy estimate of density, it is found that the peak estimate is associated with the semi-diurnal frequency at all the depths in both observations and model simulations. The baroclinic velocity characteristics, suggests that a multi-mode features of baroclinic tides are present at the buoy location. To understand the generation and propagation of internal tides over this region, energy flux and barotropic-to-baroclinic M2 tidal energy conversion rates are examined. The model simulation suggests that the internal tide is generated at multiple sites and propagate off of their respective generation sources. Most of the energy propagation in the Andaman Sea follows the 1000m isobath. The maximum horizontal kinetic energy follows the energy flux pattern over the domain and the available potential energy is found to be maximum in the north of the Andaman Sea.

  8. Prognostic characteristics of the lowest-mode internal waves in the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Kurkin, Andrey; Kurkina, Oxana; Zaytsev, Andrey; Rybin, Artem; Talipova, Tatiana

    2017-04-01

    The nonlinear dynamics of short-period internal waves on ocean shelves is well described by generalized nonlinear evolutionary models of Korteweg - de Vries type. Parameters of these models such as long wave propagation speed, nonlinear and dispersive coefficients can be calculated using hydrological data (sea water density stratification), and therefore have geographical and seasonal variations. The internal wave parameters for the basin of the Sea of Okhotsk are computed on a base of recent version of hydrological data source GDEM V3.0. Geographical and seasonal variability of internal wave characteristics is investigated. It is shown that annually or seasonally averaged data can be used for linear parameters. The nonlinear parameters are more sensitive to temporal averaging of hydrological data and detailed data are preferable to use. The zones for nonlinear parameters to change their signs (so-called "turning points") are selected. Possible internal waveforms appearing in the process of internal tide transformation including the solitary waves changing polarities are simulated for the hydrological conditions in the Sea of Okhotsk shelf to demonstrate different scenarios of internal wave adjustment, transformation, refraction and cylindrical divergence.

  9. Initial-value problem for the Gardner equation applied to nonlinear internal waves

    NASA Astrophysics Data System (ADS)

    Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim

    2017-04-01

    The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of

  10. Advanced wave field sensing using computational shear interferometry

    NASA Astrophysics Data System (ADS)

    Falldorf, Claas; Agour, Mostafa; Bergmann, Ralf B.

    2014-07-01

    In this publication we give a brief introduction into the field of Computational Shear Interferometry (CoSI), which allows for determining arbitrary wave fields from a set of shear interferograms. We discuss limitations of the method with respect to the coherence of the underlying wave field and present various numerical methods to recover it from its sheared representations. Finally, we show experimental results on Digital Holography of objects with rough surface using a fiber coupled light emitting diode and quantitative phase contrast imaging as well as numerical refocusing in Differential Interference Contrast (DIC) microscopy.

  11. Satellite radio occultation investigations of internal gravity waves in the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) modulate the structure and circulation of the Earth’s atmosphere, producing quasi-periodic variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. In this context, an original method for the determination of IGW parameters from a vertical temperature profile measurement in a planetary atmosphere has been developed [Gubenko et al., 2008, 2011, 2012]. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitudes of the wave field and on the linear IGW saturation theory in which these amplitudes are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability threshold, energy is assumed to be dissipated in such a way that the IGW amplitude is maintained at the instability threshold level as the wave propagates upwards. We have extended the developed technique [Gubenko et al., 2008] in order to reconstruct the complete set of wave characteristics including such important parameters as the wave kinetic and potential energy per unit mass and IGW fluxes of the energy and horizontal momentum [Gubenko et al., 2011]. We propose also an alternative method to estimate the relative amplitudes and to extract IGW parameters from an analysis of perturbations of the Brunt-Vaislala frequency squared [Gubenko et al., 2011]. An application of the developed method to the radio occultation (RO) temperature data has given the possibility to identify the IGWs in the Earth's, Martian and Venusian atmospheres and

  12. Resolving high-frequency internal waves generated at an isolated coral atoll using an unstructured grid ocean model

    NASA Astrophysics Data System (ADS)

    Rayson, Matthew D.; Ivey, Gregory N.; Jones, Nicole L.; Fringer, Oliver B.

    2018-02-01

    We apply the unstructured grid hydrodynamic model SUNTANS to investigate the internal wave dynamics around Scott Reef, Western Australia, an isolated coral reef atoll located on the edge of the continental shelf in water depths of 500,m and more. The atoll is subject to strong semi-diurnal tidal forcing and consists of two relatively shallow lagoons separated by a 500 m deep, 2 km wide and 15 km long channel. We focus on the dynamics in this channel as the internal tide-driven flow and resulting mixing is thought to be a key mechanism controlling heat and nutrient fluxes into the reef lagoons. We use an unstructured grid to discretise the domain and capture both the complex topography and the range of internal wave length scales in the channel flow. The model internal wave field shows super-tidal frequency lee waves generated by the combination of the steep channel topography and strong tidal flow. We evaluate the model performance using observations of velocity and temperature from two through water-column moorings in the channel separating the two reefs. Three different global ocean state estimate datasets (global HYCOM, CSIRO Bluelink, CSIRO climatology atlas) were used to provide the model initial and boundary conditions, and the model outputs from each were evaluated against the field observations. The scenario incorporating the CSIRO Bluelink data performed best in terms of through-water column Murphy skill scores of water temperature and eastward velocity variability in the channel. The model captures the observed vertical structure of the tidal (M2) and super-tidal (M4) frequency temperature and velocity oscillations. The model also predicts the direction and magnitude of the M2 internal tide energy flux. An energy analysis reveals a net convergence of the M2 energy flux and a divergence of the M4 energy flux in the channel, indicating the channel is a region of either energy transfer to higher frequencies or energy loss to dissipation. This conclusion is

  13. Intermittent large amplitude internal waves observed in Port Susan, Puget Sound

    NASA Astrophysics Data System (ADS)

    Harris, J. C.; Decker, L.

    2017-07-01

    A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.

  14. On the interpretation of energy and energy fluxes of nonlinear internal waves: An example from Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.; Butman, B.

    2006-01-01

    A self-consistent formalism to estimate baroclinic energy densities and fluxes resulting from the propagation of internal waves of arbitrary amplitude is derived using the concept of available potential energy. The method can be applied to numerical, laboratory or field data. The total energy flux is shown to be the sum of the linear energy flux ??? u??? p??? dz (primes denote baroclinic quantities), plus contributions from the non-hydrostatic pressure anomaly and the self-advection of kinetic and available potential energy. Using highly resolved observations in Massachusetts Bay, it is shown that due to the presence of nonlinear internal waves periodically propagating in the area, ??? u??? p??? dz accounts for only half of the total flux. The same data show that equipartition of available potential and kinetic energy can be violated, especially when the nonlinear waves begin to interact with the bottom. ?? 2006 Cambridge University Press.

  15. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture

    NASA Astrophysics Data System (ADS)

    Ishihara, Kunihiko; Ohashi, Keishi; Ikari, Tomofumi; Minamide, Hiroaki; Yokoyama, Hiroyuki; Shikata, Jun-ichi; Ito, Hiromasa

    2006-11-01

    We demonstrate the terahertz-wave near-field imaging with subwavelength resolution using a bow-tie shaped aperture surrounded by concentric periodic structures in a metal film. A subwavelength aperture with concentric periodic grooves, which are known as a bull's eye structure, shows extremely large enhanced transmission beyond the diffraction limit caused by the resonant excitation of surface waves. Additionally, a bow-tie aperture exhibits extraordinary field enhancement at the sharp tips of the metal, which enhances the transmission and the subwavelength spatial resolution. We introduced a bow-tie aperture to the bull's eye structure and achieved high spatial resolution (˜λ/17) in the near-field region. The terahertz-wave near-field image of the subwavelength metal pattern (pattern width=20μm) was obtained for the wavelength of 207μm.

  16. Scalar field vacuum expectation value induced by gravitational wave background

    NASA Astrophysics Data System (ADS)

    Jones, Preston; McDougall, Patrick; Ragsdale, Michael; Singleton, Douglas

    2018-06-01

    We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this vacuum expectation value, generated by a gravitational wave, can be connected with particle production from gravitational waves and may have consequences for the early Universe where scalar fields are thought to play an important role.

  17. International Shock-Wave Database: Current Status

    NASA Astrophysics Data System (ADS)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound

  18. Internal waves and rectification in a linearly stratified fluid

    NASA Astrophysics Data System (ADS)

    Pérenne, Nicolas; Renouard, Dominique P.

    Laboratory experiments were performed in a 13-m diameter rotating tank equipped with a continuous shelf break geometry and a central piston-like plunger. The fluid density was linearly stratified. The amplitude and period of the plunger, the rotation rate of the platform and the stratification are the parameters of the problem. The density fluctuations at six stations above and at mid-depth of the slope, along with dye visualization of the flow, were recorded. A limited set of experiments showed that a barotropic periodical forcing generated a first mode baroclinic wave which initially appears at the slope and propagates offshore. The likely presence of internal energy rays either slightly above, or immediately along the slope, is in agreement with previous analytical, laboratory and selected oceanic observations. In the former case, the stratification was such that the slope flow at mid-depth was supercritical while in the latter case, slope flow at mid-depth was critical. Rotation tended to decrease the amplitude of the generated internal wave. Also, non-linear processes were likely to act upon these waves for their normalized amplitude tended to decrease as the forcing increased (for similar forcing period, rotation rate and stratification). After the internal wave reflected from the plunger reaches the slope, there is a complex non-stationary regime with an occurrence of internal wave breaking in the vicinity of the slope. Thus there was an appearance of localized patches of turbulence and mixing. These events appeared both in dye visualization and in density fluctuations records. The subsequent mixing, or else the combined effect of topographical rectification and mixing, led to the appearance of a distinct Lagrangian transport, localized in the first few centimeters above the slope and oriented so as to leave the shallow waters on the right of its displacement.

  19. Two-Dimensional Standing Wave Total Internal Reflection Fluorescence Microscopy: Superresolution Imaging of Single Molecular and Biological Specimens

    PubMed Central

    Chung, Euiheon; Kim, Daekeun; Cui, Yan; Kim, Yang-Hyo; So, Peter T. C.

    2007-01-01

    The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The <100 nm penetration depth of evanescence field ensures a thin excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or ∼100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy. PMID:17483188

  20. Optical distortion in the field of a lithotripter shock wave

    NASA Astrophysics Data System (ADS)

    Carnell, M. T.; Emmony, D. C.

    1995-10-01

    The schlieren observation of cavitation phenomena produced in the tail of a lithotripter shock wave has indicated the presence of some interesting features. The images produced appear to indicate that cavitation transients in the field of a shock wave propagate nonsymmetrically; this is not the case. The apparent lack of symmetry exhibited by the primary cavitation transients is due to a complex optical lensing effect, which is brought about by the change in refractive index associated with the pressure profile of the shock wave. Objects seen through or immersed in the shock-wave field of an electromagnetic acoustic transducer, such as cavitation, appear highly distorted because of the strong positive and negative lensing effects of the compression and rarefaction cycles of the shock wave. A modification of the schlieren technique called the scale method has been used to model the distortion introduced by the shock wave and consequently explain the cavitation distortion. The technique has also been used to quantitatively analyze and partially reconstruct the lithotripter shock wave. The combination of schlieren and scale imaging gives more information about the refractive index field and therefore the shock-wave structure itself.

  1. Alfven Wave Reflection Model of Field-Aligned Currents at Mercury

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James

    2010-01-01

    An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.

  2. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    NASA Technical Reports Server (NTRS)

    Bell, T. F.; Ngo, H. D.

    1990-01-01

    This paper presents a theoretical model for electrostatic lower hybrid waves excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and the topside ionosphere, where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. In this model, the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. Results indicate that high-amplitude short-wavelength (5 to 100 m) quasi-electrostatic whistler mode waves can be excited when electromagnetic whistler mode waves scatter from small-scale planar magnetic-field-aligned plasma density irregularities in the topside ionosphere and magnetosphere.

  3. The 14th international workshop on wave hindcasting and forecasting and the 5th coastal hazards symposium

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Alves, Jose Henrique; Greenslade, Diana; Horsburgh, Kevin; Swail, Val

    2017-04-01

    Following the 14th International Workshop on Wave Hindcasting and Forecasting and 5th Coastal Hazards Symposium in November 2014 in Key West, Florida, a topical collection has appeared in recent issues of Ocean Dynamics. Here, we give a brief overview of the 16 papers published in this topical collection as well as an overview of the widening scope of the conference in recent years. A general trend in the field has been towards closer integration between the wave and ocean modelling communities. This is also seen in this topical collection, with several papers exploring the interaction between surface waves and mixed layer dynamics and sea ice.

  4. Parametric instability and wave turbulence driven by tidal excitation of internal waves

    NASA Astrophysics Data System (ADS)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael

    2018-04-01

    We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.

  5. Internal Gravity Waves Forced by an Isolated Mountain

    NASA Astrophysics Data System (ADS)

    Nikitina, L.; Campbell, L.

    2009-12-01

    Density-stratified fluid flow over topography such as mountains, hills and ridges may give rise to internal gravity waves which transport and distribute energy away from their source and have profound effects on the general circulation of the atmosphere and ocean. Much of our knowledge of internal gravity wave dynamics has been acquired from theoretical studies involving mathematical analyses of simplified forms of the governing equations, as well as numerical simulations at varying levels of approximation. In this study, both analytical and numerical methods are used to examine the nonlinear dynamics of gravity waves forced by an isolated mountain. The topography is represented by a lower boundary condition on a two-dimensional rectangular domain and the waves are represented as a perturbation to the background shear flow, thus allowing the use of weakly-nonlinear and multiple-scale asymptotic analyzes. The waves take the form of a packet, localized in the horizontal direction and comprising a continuous spectrum of horizontal wavenumbers centered at zero. For horizontally-localized wave packets, such as those forced by a mountain range with multiple peaks, there are generally two horizontal scales, the fast (short) scale which is defined by the oscillations within the packet and the slow (large) scale which is defined by the horizontal extent of the packet. In the case of an isolated mountain that we examine here, the multiple-scaling procedure is simplified by the absence of a fast spatial scale. The problem is governed by two small parameters that define the height and width of the mountain and approximate solutions are derived in terms of these parameters. Numerical solutions are also carried out to simulate nonlinear critical-level interactions such as the transfer of energy to the background flow by the wave packet, wave reflection and static instability and, eventually, wave breaking leading to turbulence. It is found that for waves forced by an isolated

  6. GENERAL P, TYPE-I S, AND TYPE-II S WAVES IN ANELASTIC SOLIDS; INHOMOGENEOUS WAVE FIELDS IN LOW-LOSS SOLIDS.

    USGS Publications Warehouse

    Borcherdt, Roger D.; Wennerberg, Leif

    1985-01-01

    The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.

  7. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  8. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    NASA Astrophysics Data System (ADS)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  9. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    PubMed

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  10. The generation of gravitational waves. 1. Weak-field sources: A plug-in-and-grind formalism

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Kovacs, S. J.

    1974-01-01

    A plug-in-and-grind formalism is derived for calculating the gravitational waves emitted by any system with weak internal gravitational fields. If the internal fields have negligible influence on the system's motions, then the formalism reduces to standard linearized theory. Whether or not gravity affects the motions, if the motions are slow and internal stresses are weak, then the new formalism reduces to the standard quadrupole-moment formalism. In the general case the new formalism expresses the radiation in terms of a retarded Green's function for slightly curved spacetime, and then breaks the Green's-function integral into five easily understood pieces: direct radiation, produced directly by the motions of the sources; whump radiation, produced by the the gravitational stresses of the source; transition radiation, produced by a time-changing time delay (Shapiro effect) in the propagation of the nonradiative, 1/r field of the source; focussing radiation produced when one portion of the source focusses, in a time-dependent way, the nonradiative field of another portion of the source, and tail radiation, produced by backscatter of the nonradiative field in regions of focussing.

  11. Internal gravity waves in the upper atmosphere, generated by tropospheric jet streams

    NASA Technical Reports Server (NTRS)

    Chunchuzov, Y. P.; Torgashin, Y. M.

    1979-01-01

    A mechanism of internal gravity wave generation by jet streams in the troposphere is considered. Evaluations of the energy and pulse of internal gravity waves emitted into the upper atmosphere are given. The obtained values of flows can influence the thermal and dynamic regime of these layers.

  12. APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, T.; Yokoyama, T.; Goossens, M.

    2015-10-20

    In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation acrossmore » the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.« less

  13. Wave field and evanescent waves produced by a sound beam incident on a simulated sediment

    NASA Astrophysics Data System (ADS)

    Osterhoudt, Curtis F.; Marston, Philip L.; Morse, Scot F.

    2005-09-01

    When a sound beam in water is incident on a sediment at a sufficiently small grazing angle, the resulting wave field in the sediment is complicated, even for the case of flat, fluidlike sediments. The wave field in the sediment for a sound beam from a simple, unshaded, finite transducer has an evanescent component and diffractive components. These components can interfere to produce a series of nulls outside the spatial region dominated by the evanescent wave field. This situation has been experimentally simulated by using a combination of previously described immiscible liquids [Osterhoudt et al., J. Acoust. Soc. Am. 117, 2483 (2005)]. The spacing between the observed nulls is similar to that seen in a wave-number-integration-based synthesis (using OASES) for a related problem. An analysis of a dephasing distance for evanescent and algebraically decaying components [T .J. Matula and P. L. Marston, J. Acoust. Soc. Am. 97, 1389-1398 (1995)] explains the spacing of the nulls. [Work supported by ONR.

  14. The Consequences of Internal Waves for Phytoplankton Focusing on the Distribution and Production of Planktothrix rubescens

    PubMed Central

    Hingsamer, Peter; Peeters, Frank; Hofmann, Hilmar

    2014-01-01

    Consequences of internal wave motion for phytoplankton and in particular for the distribution and production of the harmful and buoyant cyanobacterium Planktothrix rubescens were investigated based on data from two field campaigns conducted in Lake Ammer during summer 2009 and 2011. In both years, P. rubescens dominated the phytoplankton community and formed a deep chlorophyll maximum (DCM) in the metalimnion. Internal wave motions caused vertical displacement of P. rubescens of up to 6 m and 10 m, respectively. Vertical displacements of isotherms and of iso-concentration lines of P. rubescens from the same depth range coincided, suggesting that P. rubescens did not or could not regulate its buoyancy to prevent wave-induced vertical displacements. Diatoms dominated the phytoplankton community in the epilimnion and were vertically separated from P. rubescens. The thickness of the diatom layer, but not the diatom concentrations within the layer, changed in phase with the changes in the thickness of the epilimnion caused by internal wave motions. Seiche induced vertical displacements of P. rubescens caused fluctuations in the light intensity available at the depth of the P. rubescens layer. The interplay between seiche induced vertical displacements of the P. rubescens layer and the daily cycle of incident light lead to differences in the daily mean available light intensity between lake ends by up to a factor of ∼3. As a consequence, the daily mean specific oxygen production rate of P. rubescens differed by up to a factor of ∼7 between lake ends. The horizontal differences in the specific oxygen production rate of P. rubescens were persistent over several days suggesting that the associated production of P. rubescens biomass may lead to phytoplankton patchiness. The effect of internal seiches on the spatial heterogeneity and the persistence of horizontal differences in production, however, depend on the timing and the synchronization between internal wave motion

  15. Alpha channeling with high-field launch of lower hybrid waves

    DOE PAGES

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    2015-11-04

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and densitymore » regime consistent with a hot-ion-mode fusion reactor. As a result, these simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.« less

  16. Nonlinear viscous higher harmonics generation due to incident and reflecting internal wave beam collision

    NASA Astrophysics Data System (ADS)

    Aksu, Anil A.

    2017-09-01

    In this paper, we have considered the non-linear effects arising due to the collision of incident and reflected internal wave beams. It has already been shown analytically [Tabaei et al., "Nonlinear effects in reflecting and colliding internal wave beams," J. Fluid Mech. 526, 217-243 (2005)] and numerically [Rodenborn et al., "Harmonic generation by reflecting internal waves," Phys. Fluids 23, 026601 (2011)] that the internal wave beam collision generates the higher harmonics and mean flow in a linear stratification. In this paper, similar to previous analytical work, small amplitude wave theory is employed; however, it is formulated from energetics perspective which allows considering internal wave beams as the product of slowly varying amplitude and fast complex exponential. As a result, the mean energy propagation equation for the second harmonic wave is obtained. Finally, a similar dependence on the angle of incidence is obtained for the non-linear energy transfer to the second harmonic with previous analyses. A possible physical mechanism for this angle dependence on the second harmonic generation is also discussed here. In addition to previous studies, the viscous effects are also included in the mean energy propagation equation for the incident, the reflecting, and the second harmonic waves. Moreover, even though the mean flow obtained here is only confined to the interaction region, it is also affected by viscosity via the decay in the incident and the reflecting internal wave beams. Furthermore, a framework for the non-linear harmonic generation in non-linear stratification is also proposed here.

  17. Sharp-front wave of strong magnetic field diffusion in solid metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Bo; Gu, Zhuo-wei; Kan, Ming-xian

    When a strong magnetic field diffuses into a solid metal, if the metal's resistance possesses an abrupt rise at some critical temperature and the magnetic field strength is above some critical value, the magnetic field will diffuse into the metal in the form of a sharp-front wave. Formulas for the critical conditions under which a sharp-front magnetic diffusion wave emerges and a formula for the wave-front velocity are derived in this work.

  18. Observations of High-frequency Internal Wave Energy Offshore of Point Loma, California

    NASA Astrophysics Data System (ADS)

    Rhee, K.; Crosby, S. C.; Fiedler, J. W.

    2016-12-01

    As coastally directed internal wave energy shoals in shallow water, the resulting bores can transport cold, dense, nutrient-rich waters shoreward, influencing local fauna and ultimately dissipating tidal energy into heat. Understanding the mechanisms, propagation, and resultant transport is crucial for determining the physical-biological interactions along our coasts. We observed significant internal wave energy offshore of Point Loma, San Diego using a thermistor chain moored in 22m depth. Temperature observations spaced 1.5m apart from 0 to 18m were sampled at 2Hz and recorded for a period of ten days during July 2016. Temperature, salinity, oxygen, and nutrient profiles were obtained at 3 stations further offshore during deployment and recovery cruises. At the time of mooring deployment, thermocline depth was 10 to 20m. During recovery we observed a significant decrease of thermocline depth, which was likely caused by surface mixing during a strong wind event. During the 10-day deployment we observed many high frequency (5 to 10 minute periods) internal waves events. In addition, we noticed rapid temperature changes (4oC in less than a minute) suggestive of internal bores; however, other events appeared to be linear, possibly indicating unbroken internal waves. Here, we examine the critical slope for linear mode-1 propagation, the correlation of these events with tidal ebb and flow, and infer how a deeper mixed layer effects internal wave propagation.

  19. SAR Imaging of Wave Tails: Recognition of Second Mode Internal Wave Patterns and Some Mechanisms of their Formation

    NASA Astrophysics Data System (ADS)

    da Silva, Jose C. B.; Magalhaes, J. M.; Buijsman, M. C.; Garcia, C. A. E.

    2016-08-01

    Mode-2 internal waves are usually not as energetic as larger mode-1 Internal Solitary Waves (ISWs), but they have attracted a great deal of attention in recent years because they have been identified as playing a significant role in mixing shelf waters [1]. This mixing is particularly effective for mode-2 ISWs because the location of these waves in the middle of the pycnocline plays an important role in eroding the barrier between the base of the surface mixed layer and the stratified deep layer below. An urgent problem in physical oceanography is therefore to account for the magnitude and distribution of ISW-driven mixing, including mode-2 ISWs. Several generation mechanisms of mode-2 ISWs have been identified. These include: (1) mode-1 ISWs propagating onshore (shoaling) and entering the breaking instability stage, or propagating over a steep sill; (2) a mode-1 ISW propagating offshore (antishoaling) over steep slopes of the shelf break, and undergoing modal transformation; (3) intrusion of the whole head of a gravity current into a three-layer fluid; (4) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (5) nonlinear disintegration of internal tide modes; (6) lee wave mechanism. In this paper we provide methods to identify internal wave features denominated "Wave Tails" in SAR images of the ocean surface, which are many times associated with second mode internal waves. The SAR case studies that are presented portray evidence of the aforementioned generation mechanisms, and we further discuss possible methods to discriminate between the various types of mode-2 ISWs in SAR images, that emerge from these physical mechanisms. Some of the SAR images correspond to numerical simulations with the MITgcm in fully nonlinear and nonhydrostatic mode and in a 2D configuration with realistic stratification, bathymetry and other environmental conditions.Results of a global survey with some of these observations are presented

  20. Influence of internal waves on the dispersion and transport of inclined gravity currents

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Pietrasz, V. B.; Ouellette, N. T.; Koseff, J. R.

    2016-02-01

    Brine discharge from desalination facilities presents environmental risks, particularly to benthic organisms. High concentrations of salt and chemical additives, which can be toxic to local ecosystems, are typically mitigated by dilution close to the source. Our laboratory experiments investigate how breaking internal tides can help to dilute gravity currents caused by desalination effluents and direct them away from the benthic layer. In laboratory experiments, internal waves at the pycnocline of an ambient stratification were directed towards a sloping shelf, down which ran a gravity current. The breaking internal waves were seen to increase the proportion of the fluid from the gravity current diverted away from the slope into an intrusion along the pycnocline. In a parametric study, increasing the amplitude of the internal wave was seen to increase the amount of dense fluid in the pycnocline intrusion. The amplitude required to divert the gravity current into the intrusion compares well with an analytical theory that equates the incident energy in the internal wave to the potential energy required to dilute the gravity current. These experimental results suggest that sites of breaking internal waves may be good sites for effluent disposal. Effluent diverted into the intrusion avoids the ecologically sensitive benthic layer.

  1. Surface waves on floating liquids induced by ultrasound field

    NASA Astrophysics Data System (ADS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2013-01-01

    We demonstrate a kind of wave pattern on the surface of floating liquids in a modulated ultrasound field. The waves are related to the liquid/solid phase transformation process. The nucleation sites of the eutectics locate at the center of these waves, and the eutectic growth direction is parallel to the propagation direction of the waves. It is revealed that such wave phenomenon can be ascribed to the interaction between ultrasound and eutectic growth at the liquid/solid interface. This result may provide a potential method for fabricating wave patterned surfaces on eutectic alloys.

  2. Nonlinear Internal Waves on the Inner Shelf: Observations Using a Distributed Temperature Sensing (DTS) System.

    NASA Astrophysics Data System (ADS)

    Davis, K. A.; Reid, E. C.; Cohen, A. L.

    2016-02-01

    Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.

  3. Plasma control by modification of helicon wave propagation in low magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, T.; Charles, C.; Boswell, R. W.

    2010-07-15

    By making use of nonuniform magnetic fields, it is shown experimentally that control of helicon wave propagation can be achieved in a low pressure (0.08 Pa) expanding plasma. The m=1 helicon waves are formed during a direct capacitive to wave mode transition that occurs in a low diverging magnetic field (B{sub 0}<3 mT). In this initial configuration, waves are prevented from reaching the downstream region, but slight modifications to the magnetic field allows the axial distance over which waves can propagate to be controlled. By changing the effective propagation distance in this way, significant modification of the density and plasmamore » potential profiles can be achieved, showing that the rf power deposition can be spatially controlled as well. Critical to the modification of the wave propagation behavior is the magnetic field strength (and geometry) near the exit of the plasma source region, which gives electron cyclotron frequencies close to the wave frequency of 13.56 MHz.« less

  4. Identification of wind fields for wave modeling near Qatar

    NASA Astrophysics Data System (ADS)

    Nayak, Sashikant; Balan Sobhana, Sandeepan; Panchang, Vijay

    2016-04-01

    Due to the development of coastal and offshore infrastructure in and around the Arabian Gulf, a large semi-enclosed sea, knowledge of met-ocean factors like prevailing wind systems, wind generated waves, and currents etc. are of great importance. Primarily it is important to identify the wind fields that are used as forcing functions for wave and circulation models for hindcasting and forecasting purposes. The present study investigates the effects of using two sources of wind-fields on the modeling of wind-waves in the Arabian Gulf, in particular near the coastal regions of Qatar. Two wind sources are considered here, those obtained from ECMWF and those generated by us using the WRF model. The wave model SWAN was first forced with the 6 hourly ERA Interim daily winds (from ECMWF) having spatial resolution of 0.125°. For the second option, wind fields were generated by us using the mesoscale wind model (WRF) with a high spatial resolution (0.1°) at every 30 minute intervals. The simulations were carried out for a period of two months (7th October-7th December, 2015) during which measurements were available from two moored buoys (deployed and operated by the Qatar Meteorological Department), one in the north of Qatar ("Qatar North", in water depth of 58.7 m) and other in the south ("Shiraouh Island", in water depth of 16.64 m). This period included a high-sea event on 11-12th of October, recorded by the two buoys where the significant wave heights (Hs) reached as high as 2.9 m (i.e. max wave height H ~ 5.22 m) and 1.9 (max wave height H ~ 3.4 m) respectively. Model results were compared with the data for this period. The scatter index (SI) of the Hs simulated using the WRF wind fields and the observed Hs was found to be about 30% and 32% for the two buoys (total period). The observed Hs were generally reproduced but there was consistent underestimation. (Maximum 27% for the high-sea event). For the Hs obtained with ERA interim wind fields, the underestimation was

  5. Kinematic parameters of internal waves of the second mode in the South China Sea

    NASA Astrophysics Data System (ADS)

    Kurkina, Oxana; Talipova, Tatyana; Soomere, Tarmo; Giniyatullin, Ayrat; Kurkin, Andrey

    2017-10-01

    Spatial distributions of the main properties of the mode function and kinematic and non-linear parameters of internal waves of the second mode are derived for the South China Sea for typical summer conditions in July. The calculations are based on the Generalized Digital Environmental Model (GDEM) climatology of hydrological variables, from which the local stratification is evaluated. The focus is on the phase speed of long internal waves and the coefficients at the dispersive, quadratic and cubic terms of the weakly non-linear Gardner model. Spatial distributions of these parameters, except for the coefficient at the cubic term, are qualitatively similar for waves of both modes. The dispersive term of Gardner's equation and phase speed for internal waves of the second mode are about a quarter and half, respectively, of those for waves of the first mode. Similarly to the waves of the first mode, the coefficients at the quadratic and cubic terms of Gardner's equation are practically independent of water depth. In contrast to the waves of the first mode, for waves of the second mode the quadratic term is mostly negative. The results can serve as a basis for expressing estimates of the expected parameters of internal waves for the South China Sea.

  6. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields.

    PubMed

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  7. Internal wave deposits in Jurassic Kermanshah pelagic carbonates and radiolarites (Kermanshah area, West Iran)

    NASA Astrophysics Data System (ADS)

    Abdi, Asad; Gharaie, Mohamad Hosein Mahmudy; Bádenas, Beatriz

    2014-12-01

    We report eventites generated by turbulence events triggered by breaking internal waves in Jurassic pelagic muds deposited in a graben area located between the Arabian and Bisotoun carbonate platforms, at the Kermanshah basin (West Iran). The 43 m-thick studied Pliensbachian-Aalenian succession at Kermanshah includes sponge spicule-radiolarian limestones and cherts with cm- to dm-thick intercalations of pyroclastic beds and coarse-grained deposits formed by neritic-derived grains and reworked pelagic material. Breaking of internal waves in localized areas reworked the available sediment on sea floor, including the erosion of cohesive pelagic muds and the resuspension of neritic-derived grains, which were resedimented from the Bisotoun platform most probably by storms or turbidity currents. The generated internal wave deposits include: flat- and round pebble limestone conglomerates, formed by deposition of pelagic clasts and neritic-derived grains near the breaker zone; laminated packstone-grainstones deposited by high-energy, upslope (swash) and downslope (backswash) flows; cm-thick packstone-grainstones with asymmetrical starved ripples and hummocy crossstratification, generated downdip by waning of backwash flows and internal wave oscillatory flows. These internal wave deposits predominate in the Pliensbachian-early Toarcian, and were related to internal waves developed along a thermocline linked to climate warming and excited by submarine volcanic eruptions, storms or tectonic shaking.

  8. Damping of quasi-two-dimensional internal wave attractors by rigid-wall friction

    NASA Astrophysics Data System (ADS)

    Beckebanze, F.; Brouzet, C.; Sibgatullin, I. N.; Maas, L. R. M.

    2018-04-01

    The reflection of internal gravity waves at sloping boundaries leads to focusing or defocusing. In closed domains, focusing typically dominates and projects the wave energy onto 'wave attractors'. For small-amplitude internal waves, the projection of energy onto higher wave numbers by geometric focusing can be balanced by viscous dissipation at high wave numbers. Contrary to what was previously suggested, viscous dissipation in interior shear layers may not be sufficient to explain the experiments on wave attractors in the classical quasi-2D trapezoidal laboratory set-ups. Applying standard boundary layer theory, we provide an elaborate description of the viscous dissipation in the interior shear layer, as well as at the rigid boundaries. Our analysis shows that even if the thin lateral Stokes boundary layers consist of no more than 1% of the wall-to-wall distance, dissipation by lateral walls dominates at intermediate wave numbers. Our extended model for the spectrum of 3D wave attractors in equilibrium closes the gap between observations and theory by Hazewinkel et al. (2008).

  9. Spatial distribution of the wave field of the surface modes sustaining filamentary discharges

    NASA Astrophysics Data System (ADS)

    Lishev, St.; Shivarova, A.; Tarnev, Kh.

    2008-01-01

    The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density of the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all—six—field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament—both radially inhomogeneous—are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows

  10. Spatial distribution of the wave field of the surface modes sustaining filamentary discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lishev, St.; Shivarova, A.; Tarnev, Kh.

    2008-01-01

    The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density ofmore » the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all--six--field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament--both radially inhomogeneous--are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure

  11. A snapshot of internal waves and hydrodynamic instabilities in the southern Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Lozovatsky, Iossif; Wijesekera, Hemantha; Jarosz, Ewa; Lilover, Madis-Jaak; Pirro, Annunziata; Silver, Zachariah; Centurioni, Luca; Fernando, H. J. S.

    2016-08-01

    Measurements conducted in the southern Bay of Bengal (BoB) as a part of the ASIRI-EBoB Program portray the characteristics of high-frequency internal waves in the upper pycnocline as well as the velocity structure with episodic events of shear instability. A 20 h time series of CTD, ADCP, and acoustic backscatter profiles down to 150 m as well as temporal CTD measurements in the pycnocline at z = 54 m were taken to the east of Sri Lanka. Internal waves of periods ˜10-40 min were recorded at all depths below a shallow (˜20-30 m) surface mixed layer in the background of an 8 m amplitude internal tide. The absolute values of vertical displacements associated with high-frequency waves followed the Nakagami distribution with a median value of 2.1 m and a 95% quintile 6.5 m. The internal wave amplitudes are normally distributed. The tails of the distribution deviate from normality due to episodic high-amplitude displacements. The sporadic appearance of internal waves with amplitudes exceeding ˜5 m usually coincided with patches of low Richardson numbers, pointing to local shear instability as a possible mechanism of internal-wave-induced turbulence. The probability of shear instability in the summer BoB pycnocline based on an exponential distribution of the inverse Richardson number, however, appears to be relatively low, not exceeding 4% for Ri < 0.25 and about 10% for Ri < 0.36 (K-H billows). The probability of the generation of asymmetric breaking internal waves and Holmboe instabilities is above ˜25%.

  12. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.

  13. Nonlinear internal waves in the Gulf of Guinea: observations and modeling

    NASA Astrophysics Data System (ADS)

    Baquet, Emeric; Pichon, Annick; Raynaud, Stephane; Carton, Xavier

    2017-04-01

    Nonlinear internal waves are known hazards to offshore operations. They have been observed at different locations around the world and have been studied for a long time in Southeast Asia. However in West Africa, they are less documented. This research presents original data of currentmeters in northeastern part of the Gulf of Guinea, in the vicinity of offshore oil platforms. Nonlinear internal waves were observed. Their characteristics were determined under the assumptions of the weakly nonlinear and non-hydrostatic Korteweg-de Vries equation. Their directions of propagation were studied to determine generation zones. The monthly distribution was shown to assess seasonal variability. Their main generation mechanism was the barotropic tides over the shelf break, but other processes were at work too. The seasonal variability due to the monsoon, river discharges also played a part in the nonlinear internal wave dynamics. Since several processes, of different time and space scales, are at work, interactions between them must be investigated. Thus, a two-layered numerical model was used to reproduce nonlinear internal waves. Sensitivity experiments were made, in order to investigate the balance between nonlinearities, Coriolis and non-hydrostatic dispersions. The impact of non-uniform bathymetry and the presence of another flow in addition to the tides were also tested.

  14. Seismic Oceanography in the Tyrrhenian Sea: Thermohaline Staircases, Eddies, and Internal Waves

    NASA Astrophysics Data System (ADS)

    Buffett, G. G.; Krahmann, G.; Klaeschen, D.; Schroeder, K.; Sallarès, V.; Papenberg, C.; Ranero, C. R.; Zitellini, N.

    2017-11-01

    We use seismic oceanography to document and analyze oceanic thermohaline fine structure across the Tyrrhenian Sea. Multichannel seismic (MCS) reflection data were acquired during the MEDiterranean OCcidental survey in April-May 2010. We deployed along-track expendable bathythermograph probes simultaneous with MCS acquisition. At nearby locations we gathered conductivity-temperature-depth data. An autonomous glider survey added in situ measurements of oceanic properties. The seismic reflectivity clearly delineates thermohaline fine structure in the upper 2,000 m of the water column, indicating the interfaces between Atlantic Water/Winter Intermediate Water, Levantine Intermediate Water, and Tyrrhenian Deep Water. We observe the Northern Tyrrhenian Anticyclone, a near-surface mesoscale eddy, plus laterally and vertically extensive thermohaline staircases. Using MCS, we are able to fully image the anticyclone to a depth of 800 m and to confirm the horizontal continuity of the thermohaline staircases of more than 200 km. The staircases show the clearest step-like gradients in the center of the basin while they become more diffuse toward the periphery and bottom, where impedance gradients become too small to be detected by MCS. We quantify the internal wave field and find it to be weak in the region of the eddy and in the center of the staircases, while it is stronger near the coastlines. Our results indicate this is because of the influence of the boundary currents, which disrupt the formation of staircases by preventing diffusive convection. In the interior of the basin, the staircases are clearer and the internal wave field weaker, suggesting that other mixing processes such as double diffusion prevail.

  15. Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.

    NASA Astrophysics Data System (ADS)

    Bozeman, Steven Paul

    The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in

  16. High Resolution Measurements of Nonlinear Internal Waves and Mixing on the Washington Continental Shelf

    DTIC Science & Technology

    2015-09-30

    hour tidally -resolving transects showing the generation conditions leading to wave formation 6. Nine synthetic aperture images collected during...High resolution measurements of nonlinear internal waves and mixing on the Washington continental...email: jmickett@apl.washington.edu Grant Number: N00014-13-1-0390 LONG-TERM GOALS We are interested in the general problems of internal waves and

  17. Numerical analysis of internal solitary wave generation around a Island in Kuroshio Current using MITgcm.

    NASA Astrophysics Data System (ADS)

    Kodaira, Tsubasa; Waseda, Takuji

    2013-04-01

    We have conducted ADCP and CTD measurements from 31/8/2010 to 2/9/2010 at the Miyake Island, located approximately 180 km south of Tokyo. The Kuroshio Current approached the island in this period, and the PALSAR image showed parabolic bright line upstream of the island. This bright line may be a surface signature of large amplitude internal solitary wave. Although our measurements did not explicitly show evidence of the internal solitary wave, critical condition might have been satisfied because of the Kuroshio Current and strong seasonal thermocline. To discover the generation mechanism of the large amplitude internal solitary wave at the Miyake Island, we have conducted non-hydrostatic numerical simulation with the MITgcm. A simple box domain, with open boundaries at all sides, is used. The island is simplified to circular cylinder or Gaussian Bell whose radius is 3km at ocean surface level. The size of the domain is 40kmx40kmx500m for circular cylinder cases and 80kmx80kmx500m for Gaussian bell cases. By looking at our CTD data, we have chosen for initial and boundary conditions a tanh function for vertical temperature profile. Salinity was kept constant for simplicity. Vertical density profile is also described by tanh function because we adopt linear type of equation of state. Vertical velocity profile is constant or linearly changed with depth; the vertical mean speed corresponds to the linear phase speed of the first baroclinic mode obtained by solving the eigen-value problem. With these configurations, we have conducted two series of simulations: shear flow through cylinder and uniform flow going through Gaussian Bell topography. Internal solitary waves were generated in front of the cylinder for the first series of simulations with shear flow. The generated internal waves almost purely consisted of 1st baroclinic component. Their intensities were linearly related with upstream vertical shear strength. As the internal solitary wave became larger, its width

  18. Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies

    NASA Astrophysics Data System (ADS)

    Savage, Anna C.; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Alford, Matthew H.; Buijsman, Maarten C.; Thomas Farrar, J.; Sharma, Hari; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis

    2017-03-01

    High horizontal-resolution (1/12.5° and 1/25°) 41-layer global simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea surface height (SSH) variability. The HYCOM output is separated into steric and nonsteric and into subtidal, diurnal, semidiurnal, and supertidal frequency bands. The model SSH output is compared to two data sets that offer some geographical coverage and that also cover a wide range of frequencies—a set of 351 tide gauges that measure full SSH and a set of 14 in situ vertical profilers from which steric SSH can be calculated. Three of the global maps are of interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) two-dimensional swath altimeter mission: (1) maps of the total and (2) nonstationary internal tidal signal (the latter calculated after removing the stationary internal tidal signal via harmonic analysis), with an average variance of 1.05 and 0.43 cm2, respectively, for the semidiurnal band, and (3) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum, with an average variance of 0.15 cm2. Stationary internal tides (which are predictable), nonstationary internal tides (which will be harder to predict), and nontidal internal gravity waves (which will be very difficult to predict) may all be important sources of high-frequency "noise" that could mask lower frequency phenomena in SSH measurements made by the SWOT mission.

  19. Rotation-induced nonlinear wavepackets in internal waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets.more » It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.« less

  20. The supersonic triplet - A new aerodynamic panel singularity with directional properties. [internal wave elimination

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.; Landrum, E. J.

    1979-01-01

    A new supersonic triplet singularity has been developed which eliminates internal waves generated by panels having supersonic edges. The triplet is a linear combination of source and vortex distributions which provides the desired directional properties in the flow field surrounding the panel. The theoretical development of the triplet is described, together with its application to the calculation of surface pressure on arbitrary body shapes. Examples are presented comparing the results of the new method with other supersonic panel methods and with experimental data.

  1. Mixing and Formation of Layers by Internal Wave Forcing

    NASA Astrophysics Data System (ADS)

    Dossmann, Yvan; Pollet, Florence; Odier, Philippe; Dauxois, Thierry

    2017-12-01

    The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are not fully described. In the ocean interior, the triadic resonant instability is an intrinsic destabilization process that may enhance the energy cascade away from topographies. The present study focuses on the integrated impact of mixing processes induced by a propagative normal mode-1 over long-term experiments in an idealized setup. The internal wave dynamics and the evolution of the density profile are followed using the light attenuation technique. Diagnostics of the turbulent diffusivity KT and background potential energy BPE are provided. Mixing effects result in a partially mixed layer colocated with the region of maximum shear induced by the forcing normal mode. The maximum measured turbulent diffusivity is 250 times larger than the molecular value, showing that diapycnal mixing is largely enhanced by small-scale turbulent processes. Intermittency and reversible energy transfers are discussed to bridge the gap between the present diagnostic and the larger values measured in Dossmann et al. (). The mixing efficiency η is assessed by relating the BPE growth to the linearized KE input. One finds a value of Γ=12-19%, larger than the mixing efficiency in the case of breaking interfacial wave. After several hours of forcing, the development of staircases in the density profile is observed. This mechanism has been previously observed in experiments with weak homogeneous turbulence and explained by Phillips (1972) argument. The present experiments suggest that internal wave forcing could also induce the formation of density interfaces in the ocean.

  2. Internal split field generator

    DOEpatents

    Thundat,; George, Thomas [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  3. Kink Waves in Non-isothermal Stratified Solar Waveguides: Effect of the External Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopin, I.; Nagorny, I., E-mail: lopin78@mail.ru

    We study the effect of an external magnetic field on the properties of kink waves, propagating along a thin non-isothermal stratified and diverging magnetic flux tube. A wave equation, governing the propagation of kink waves under the adopted model is derived. It is shown that the vertical gradient of temperature introduces a spatially local cut-off frequency ω {sub c}. The vertical distribution of the cut-off frequency is calculated for the reference VAL-C model of the solar atmosphere and for different values of a ratio of external to internal magnetic fields. The results show that the cut-off frequency is negative belowmore » the temperature minimum due to the negative temperature gradient. In the chromosphere the cut-off frequency at a given height is smaller for a stronger external magnetic field. For the appropriate range of a ratio B{sub e} / B{sub i}  ≈ 0–0.8, the cutoff lies in the range ω{sub c}  ≈ 0.003–0.010 s{sup −1} (periods 600 < P{sub c} < 2000 s). The estimate of the cut-off frequency in the transition region is provided as well. In the propagating wave regime, the effective wave energy flux in the non-isothermal diverging flux tubes is the same as in the straight and homogeneous cylindrical waveguides. The obtained wave equation in the limit β  = 0 is used to study the kink oscillations of non-isothermal coronal loops. It is found that the gradient of temperature along the coronal loops reduces the frequency ratio of the first overtone to the fundamental mode, i.e., ω{sub 2}/ ω{sub 1} < 2. This reduction grows for a larger ratio of temperature at the loop top to the temperature at the footpoints. Moreover, the effect of reduction is most pronounced for the steeper temperature profiles.« less

  4. The effect of stratification and topography on high-frequency internal waves in a continental shelf sea

    NASA Astrophysics Data System (ADS)

    Domina, Anastasiia; Palmer, Matthew; Vlasenko, Vasil; Sharples, Jonathan; Green, Mattias; Stashchuk, Nataliya

    2017-04-01

    Internal gravity waves (IWs) have been recognised as one of the main drivers of climate controlling circulation, sustaining fisheries in shelf seas and CO2-pump system. High frequency IWs are particularly important to internal mixing in the shelf seas, where they contain an enhanced fraction of the available baroclinic energy. The origin, generation mechanism, propagation and spatial distribution of these waves are unfortunately still poorly understood since they are difficult to measure and simulate, and are therefore not represented in the vast majority of ocean and climate models. In this study we aim to increase our understanding of high frequency IWs dynamics in shelf seas through a combination of observational (from moorings and ocean gliders) and modelling methods (MITgcm), and test the hypothesis that "Solitary waves are responsible for driving a large fraction of the vertical diffusivity at the shelf edge and adjacent shelf region". A new high-resolution (50m horizontal) MITgcm configuration is employed to identify the generation and propagation of IWs in a regional shelf sea and subsequently identify internal wave generation hotspots by using calculated Froude number and body force maps. We assess the likely impact of changing seasonal and climate forcing on IWs with a range of different density structures. Our model suggests that under increasing stratification, the IW field becomes more energetic at all frequencies, however the increase in energy is not evenly distributed. While energy in the dominant low frequency IWs increase by 20-40%, energy associated with high frequency waves increases by as much as 90%. These model results are compared to varying stratification scenarios from observations made during 2012 and 2013 to interpret the impact on continental shelf sea IW generation and propagation. We use the results from a turbulence enabled ocean glider to assess the impact that this varying wavefield has on internal mixing, and discuss the

  5. Torsional Alfvén Waves in a Dipolar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Nataf, H. C.; Tigrine, Z.; Cardin, P.; Schaeffer, N.

    2017-12-01

    The discovery of torsional Alfvén waves in the Earth's core (Gillet et al, 2010) is a strong motivation for investigating the properties of these waves. Here, we report on the first experimental study of such waves. Alfvén waves are difficult to excite and observe in liquid metals because of their high magnetic diffusivity. Nevertheless, we obtained clear signatures of such diffusive waves in our DTS experiment. In this setup, some 40 liters of liquid sodium are contained between a ro = 210 mm-radius stainless steel outer shell, and a ri = 74 mm-radius copper inner sphere. Both spherical boundaries can rotate independently around a common vertical axis. The inner sphere shells a strong permanent magnet, which produces a nearly dipolar magnetic field whose intensity falls from 175 mT at ri to 8 mT at ro in the equatorial plane. We excite Alfvén waves in the liquid sodium by applying a sudden jerk of the inner sphere. To study the effect of global rotation, which leads to the formation of geostrophic torsional Alfvén waves, we spin the experiment at rotation rates fo = fi up to 15 Hz. The Alfvén wave produces a clear azimuthal magnetic signal on magnetometers installed in a sleeve inside the fluid. We also probe the associated azimuthal velocity field using ultrasound Doppler velocimetry. Electric potentials at the surface of the outer sphere turn out to be very revealing as well. In parallel, we use the XSHELLS magnetohydrodynamics spherical code to model torsional Alfvén waves in the experimental conditions, and beyond. We explore both linear and non-linear regimes. We observe a strong excitation of inertial waves in the equatorial plane, where the wave transits from a region of strong magnetic field to a region dominated by rotation (see figure of meridian map of azimuthal velocity). These novel observations should help deciphering the dynamics of Alfvén waves in planetary cores.

  6. Field-induced spin density wave and spiral phases in a layered antiferromagnet

    DOE PAGES

    Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; ...

    2015-07-28

    Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba 3Mn 2O 8 using single crystal neutron diffraction. We find that for magnetic fields between μ 0H=8.80 T and 10.56 T applied along themore » $$1\\bar{1}0$$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ 0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.« less

  7. Preliminary study of internal wave effects to chlorophyll distribution in the Lombok Strait and adjacent areas

    NASA Astrophysics Data System (ADS)

    Arvelyna, Yessy; Oshima, Masaki

    2005-01-01

    This paper studies the effect of internal wave in the Lombok Strait to chlorophyll distribution in the surrounded areas using ERS SAR, ASTER, SeaWiFS and AVHRR-NOAA images data during 1996-2004 periods. The observation results shows that the internal waves were propagated to the south and the north of strait and mostly occurred during transitional season from dry to wet and wet season (rainy season) between September to December when the layers are strongly stratified. Wavelet transform of image using Meyer wavelet analysis is applied for internal wave detection in ERS SAR and ASTER images, for symmetric extension of data at the image boundaries, to prevent discontinuities by a periodic wrapping of data in fast algorithm and space-saving code. Internal wave created elongated pattern in detail and approximation of image from level 2 to 5 and retained value between 2-4.59 times compared to sea surface, provided accuracy in classification over than 80%. In segmentation process, the Canny edge detector is applied on the approximation image at level two to derive internal wave signature in image. The proposed method can extract the internal wave signature, maintain the continuity of crest line while reduce small strikes from noise. The segmentation result, i.e. the length between crest and trough, is used to compute the internal wave induced current using Korteweg-de Vries (KdV) equation. On ERS SAR data contains surface signature of internal wave (2001/8/20), we calculated that internal wave propagation speed was 1.2 m/s and internal wave induced current was 0.56 m/s, respectively. From the observation of ERS SAR and SeaWiFS images data, we found out that the distribution of maximum chlorophyll area at southern coastline off Bali Island when strong internal wave induced current occurred in south of the Lombok Strait was distributed further to westward, i.e. from 9.25°-10.25°LS, 115°-116.25°SE to 8.8°-10.7°LS, 114.5°-116°SE, and surface chlorophyll concentration

  8. Advancing internal erosion monitoring using seismic methods in field and laboratory studies

    NASA Astrophysics Data System (ADS)

    Parekh, Minal L.

    This dissertation presents research involving laboratory and field investigation of passive and active methods for monitoring and assessing earthen embankment infrastructure such as dams and levees. Internal erosion occurs as soil particles in an earthen structure migrate to an exit point under seepage forces. This process is a primary failure mode for dams and levees. Current dam and levee monitoring practices are not able to identify early stages of internal erosion, and often the result is loss of structure utility and costly repairs. This research contributes to innovations for detection and monitoring by studying internal erosion and monitoring through field experiments, laboratory experiments, and social and political framing. The field research in this dissertation included two studies (2009 and 2012) of a full-scale earthen embankment at the IJkdijk in the Netherlands. In both of these tests, internal erosion occurred as evidenced by seepage followed by sand traces and boils, and in 2009, eventual failure. With the benefit of arrays of closely spaced piezometers, pore pressure trends indicated internal erosion near the initiation time. Temporally and spatially dense pore water pressure measurements detected two pore water pressure transitions characteristic to the development of internal erosion, even in piezometers located away from the backward erosion activity. At the first transition, the backward erosion caused anomalous pressure decrease in piezometers, even under constant or increasing upstream water level. At the second transition, measurements stabilized as backward erosion extended further upstream of the piezometers, as shown in the 2009 test. The transitions provide an indication of the temporal development and the spatial extent of backward erosion. The 2012 IJkdijk test also included passive acoustic emissions (AE) monitoring. This study analyzed AE activity over the course of the 7-day test using a grid of geophones installed on the

  9. ISS-Lobster: A Proposed Wide-Field X-Ray Telescope on the International Space Station

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2012-01-01

    The Lobster wide-field imaging telescope combines simultaneous high FOV, high sensitivity and good position resolution. These characteristics can open the field of X-Ray time domain astronomy, which will study many interesting transient sources, including tidal disruptions of stars, supernova shock breakouts, and high redshift gamma-ray bursts. Also important will be its use for the X-ray follow-up of gravitational wave detections. I will describe our present effort to propose the Lobster concept for deployment on the International Space Station through a NASA Mission of Opportunity this fall.

  10. Nonlinear wave chaos: statistics of second harmonic fields.

    PubMed

    Zhou, Min; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M

    2017-10-01

    Concepts from the field of wave chaos have been shown to successfully predict the statistical properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling Model (RCM) describes these properties by incorporating both universal features described by Random Matrix Theory and the system-specific features of particular system realizations. In an effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical properties of the resulting second harmonic fields. We develop an RCM-based model of this system as two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field strengths are predicted to be the product of two statistical quantities and the nonlinearity characteristics. Statistical results from measurement-based calculation, RCM-based simulation, and direct experimental measurements are compared and show good agreement over many decades of power.

  11. Streamlines behind curved shock waves in axisymmetric flow fields

    NASA Astrophysics Data System (ADS)

    Filippi, A. A.; Skews, B. W.

    2018-07-01

    Streamlines behind axisymmetric curved shock waves were used to predict the internal surfaces that produced them. Axisymmetric ring wedge models with varying internal radii of curvature and leading-edge angles were used to produce numerical results. Said numerical simulations were validated using experimental shadowgraph results for a series of ring wedge test pieces. The streamlines behind curved shock waves for lower leading-edge angles are examined at Mach 3.4, whereas the highest leading-edge angle cases are explored at Mach 2.8 and 3.4. Numerical and theoretical streamlines are compared for the highest leading-edge angle cases at Mach 3.6. It was found that wall-bounding theoretical streamlines did not match the internal curved surface. This was due to extreme streamline curvature curving the streamlines when the shock angle approached the Mach angle at lower leading-edge angles. Increased Mach number and internal radius of curvature produced more reasonable results. Very good agreement was found between the theoretical and numerical streamlines at lower curvatures before the influence of the trailing edge expansion fan.

  12. Superresolution near-field imaging with surface waves

    NASA Astrophysics Data System (ADS)

    Fu, Lei; Liu, Zhaolun; Schuster, Gerard

    2018-02-01

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulae and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green's functions for migration, and only costs O(N4) algebraic operations for post-stack migration compared to O(N6) operations for natural pre-stack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.

  13. Internal waves and Equatorial dynamics: an observational study in the West Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Rabitti, Anna; Maas, Leo R. M.; van Haren, Hans; Gerkema, Theo

    2013-04-01

    Internal waves present several fascinating aspects of great relevance for geo- and astro-physical fluid dynamics. These waves are supported by all kinds of stratified and rotating fluids, such as, for example, our ocean, atmosphere, a planet fluid core or a star. In a non linear regime, because of their oblique propagation, they are thought to play a key role in diapycnal mixing, as well as in angular momentum mixing. Unfortunately, a complete analytical description of internal waves in arbitrarily shaped enclosed domains is still an ongoing challenge. On the other hand, internal wave energy is observed travelling along rays, whose behaviour can be traced and whose reflections off the container's boundaries appears crucial in producing phenomena such as focussing of wave energy onto specific trajectories (attractors), and in triggering localized instabilities. Ray tracing studies have shown that equatorial regions of stratified and/or rotating spherical shells are likely affected by these features, being the place where the simplest shaped and most energetic attractors occur. In this study we aim to investigate the possible presence and role of internal wave attractors in determining the equatorial ocean dynamics. Internal wave attractors, observed in laboratory and numerical experiments, have not been observed in Nature, yet. A unique set of observations, collected in the deep Equatorial West Atlantic Ocean, will be used here in order to explore this possibility, the dataset consisting of 1.5 year long time series of current measured acoustically and with current meters moored between 0°and 2°N, at 37°W, off the Brazilian coast. In particular, angular momentum mixing due to internal wave focussing, is explored as a possible mechanism for maintaining the Equatorial Deep Jets. These jets are stacked alternating zonal currents that are ubiquitously observed in all the oceans and whose nature is still largely unknown. Remarkably, jet like structures are also

  14. An Investigation of the Effects of Internal Waves on Sound Propagation in a Stratified Medium with a Sloping Bed

    NASA Astrophysics Data System (ADS)

    Deldar, H.; Bidokhti, A. A.; Chegini, V.

    2018-01-01

    Internal waves usually cause temporal and spatial changes of density and consequently affect the acoustic wave propagation in the ocean. The purpose of this study is a laboratory investigation of the effects of internal waves generated by oscillation of a cylinder in a large stratified glass tank with a sloping bed on the sound waves propagation. Results showed that sound waves are affected by internal waves that depend on the slope angle to the direction of internal wave propagation angle ratio. When the ratio is subcritical or supercritical, the acoustic signal is much reduced as compared to the case with no sloped bottom. This can be explained in terms of the internal waves energy reaching the sloped bed and their reflections.

  15. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.

    PubMed

    Colosi, John A

    2008-09-01

    While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.

  16. Prediction and near-field observation of skull-guided acoustic waves

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  17. Prediction and near-field observation of skull-guided acoustic waves.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-21

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  18. Spacecraft Observations of a ULF Wave Injected Onto Field Lines by SPEAR

    NASA Astrophysics Data System (ADS)

    Badman, S. V.; Wright, D. M.; Yeoman, T. K.; Clausen, L. B.; Fear, R. C.; Fazakerley, A. N.; Lucek, E. A.

    2008-12-01

    SPEAR (Space Exploration by Active Radar) is an ionospheric heating facility situated on Svalbard which is capable of exciting ULF waves on local magnetic field lines. Field-guided ULF waves can interact with the ionospheric Alfvén resonator (IAR) and produce parallel electric fields, which then accelerate electrons along the field line. Detection and study of these waves thus provides information on the properties of the IAR and auroral acceleration processes. We examine an interval from 1 February 2006 when SPEAR was transmitting with a 5 min on-off cycle. During this interval the Cluster spacecraft passed over the heater site. We discuss signatures of the SPEAR-generated wave identified in the Cluster field and electron measurements. One feature of interest is the periodic enhancement of electron fluxes in two broad energy bands (~10-100 eV and ~100-1000 eV) which occur out of phase with each other in the two different energy bands.

  19. Observations of Nonlinear Internal Wave Runup into the Surfzone

    NASA Astrophysics Data System (ADS)

    Sinnett, G.; Feddersen, F.; Pawlak, G. R.; Lucas, A.; Terrill, E. J.

    2016-12-01

    Nonlinear internal waves (NLIW) have been observed in the shallow inner­shelf environment, sometimes transporting cold nutrient rich water upslope. Inner-­shelf water properties have been linked to the internal wave field, but the eventual fate and potential impact of NLIWs in water shallower than 15 m has rarely been observed. Here, we detail some of the first shallow water observations of NLIW events made using an array of 75 thermistors and 5 ADCPs, spanning water from 18 m depth all the way to the coast. A total of 31 significant NLIW events (defined as a temperature decrease of at least 1 oC at a rate greater than 0.07 oC/min in 7 m depth) were observed between October 7th and November 19th, 2014. The dense thermistor array tracked the arrival of surges of cold water associated with NLIW events. These events propagated onshore through a variety of background conditions at a range of phase speeds (0.008 to ­ 0.1 m/s) and angles (­63O to 33O ), sometimes extending all the way to the surfzone. Occasionally, a NLIW event left a residual signature in the surfzone and shallow inner­shelf, changing the mean temperature by as much as 1 oC in 1 m water depth. Enhanced NLIW activity was observed over multi­day periods, consisting of temperature oscillations on semi­diurnal, 6-­hour and 10­-minute time scales. Here, we analyze the phase speed, propagation angle and runup extent under a variety of different background conditions. We report on the evolution and characteristics of these coupled inner­shelf / surfzone NLIW events as they propagate upslope into very shallow waters, and potential impacts to the sensitive nearshore region.

  20. Identification of the Radiative and Nonradiative Parts of a Wave Field

    NASA Astrophysics Data System (ADS)

    Hoenders, B. J.; Ferwerda, H. A.

    2001-08-01

    We present a method for decomposing a wave field, described by a second-order ordinary differential equation, into a radiative component and a nonradiative one, using a biorthonormal system related to the problem under consideration. We show that it is possible to select a special system such that the wave field is purely radiating. We discuss the differences and analogies with approaches which, unlike our approach, start from the corresponding sources of the field.

  1. Longitudinal wave function control in single quantum dots with an applied magnetic field

    PubMed Central

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  2. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    PubMed

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-27

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.

  3. Influence of bias electric field on elastic waves propagation in piezoelectric layered structures.

    PubMed

    Burkov, S I; Zolotova, O P; Sorokin, B P

    2013-08-01

    Theoretical and computer investigations of acoustic wave propagation in piezoelectric layered structures, subjected to the dc electric field influence have been fulfilled. Analysis of the dispersive parameters of elastic waves propagation in the BGO/fused silica and fused silica/LiNbO3 piezoelectric layered structures for a number of variants of dc electric field application has been executed. Transformation of bulk acoustic wave into SAW type mode under the dc electric field influence has been found. Possibility to control the permission or prohibition of the wave propagation by the dc electric field application and the appropriate choice of the layer and substrate materials has been discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Classification of regimes of internal solitary waves transformation over a shelf-slope topography

    NASA Astrophysics Data System (ADS)

    Terletska, Kateryna; Maderich, Vladimir; Talipova, Tatiana; Brovchenko, Igor; Jung, Kyung Tae

    2015-04-01

    The internal waves shoal and dissipate as they cross abrupt changes of the topography in the coastal ocean, estuaries and in the enclosed water bodies. They can form near the coast internal bores propagating into the shallows and re-suspend seabed pollutants that may have serious ecological consequences. Internal solitary waves (ISW) with trapped core can transport masses of water and marine organisms for some distance. The transport of cold, low-oxygen waters results in nutrient pumping. These facts require development of classification of regimes of the ISWs transformation over a shelf-slope topography to recognize 'hot spots' of wave energy dissipation on the continental shelf. A new classification of regimes of internal solitary wave interaction with the shelf-slope topography in the framework of two-layer fluid is proposed. We introduce a new three-dimensional diagram based on parameters α ,β , γ. Here α is the nondimensional wave amplitude normalized on the thermocline thickness α = ain/h1 (α > 0), β is the blocking parameter introduced in (Talipova et al., 2013) that is the ratio of the height of the bottom layer on the the shelf step h2+ to the incident wave amplitude ain, β = h2+/ain (β > -3), and γ is the parameter inverse to the slope inclination (γ > 0.01). Two mechanisms are important during wave shoaling: (i) wave breaking resulting in mixing and (ii) changing of the polarity of the initial wave of depression on the slope. Range of the parameters at which wave breaking occurs can be defined using the criteria, obtained empirically (Vlasenko and Hutter, 2002). In the three-dimensional diagram this criteria is represented by the surface f1(β,γ) = 0 that separates the region of parameters where breaking takes place from the region without breaking. The polarity change surface f2(α,β) = 0 is obtained from the condition of equality of the depth of upper layer h1 to the depth of the lower layer h2. In the two-layer stratification waves of

  5. Discontinuity-free edge-diffraction model for characterization of focused wave fields.

    PubMed

    Sedukhin, Andrey G

    2010-03-01

    A model of discontinuity-free edge diffraction is proposed that is valid in the framework of the scalar Debye approximation and describes the formation process and approximate structure of the stationary diffracted field of a monochromatic converging spherical wave of limited angular opening throughout the whole space about the focus. The field is represented semianalytically in terms of the sum of a direct quasi-spherical wave and two edge quasi-conical waves of the zeroth and first order. The angular spectrum amplitudes of all these waves have smooth continuous variations of the real and imaginary parts in polar angle and radius, the separable nonanalytic functions defining the polar-angle variations of the amplitudes being found by optimization techniques.

  6. Electromagnetic plasma wave propagation along a magnetic field. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Olson, C. L.

    1970-01-01

    The linearized response of a Vlasov plasma to the steady-state excitation of transverse plasma waves along an external magnetic field is examined. Assuming a delta-function excitation mechanism, and performing a detailed Vlasov-Maxwell equation analysis using Fourier-Laplace transforms, the plasma response is found to consist of three terms: a branch-cut term, a free-streaming term, and a dielectric-pole term. Also considered is the phenomenon of plasma wave echoes. The case of longitudinal electrostatic waves is extended to the case of transverse plasma waves that propagate along an external magnetic field. It is shown that a transverse echo results in lowest order only when one excitation is transverse and the other is longitudinal.

  7. Homogeneous internal wave turbulence driven by tidal flows

    NASA Astrophysics Data System (ADS)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team

    2017-11-01

    We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).

  8. Modification of wave propagation and wave travel-time by the presence of magnetic fields in the solar network atmosphere

    NASA Astrophysics Data System (ADS)

    Nutto, C.; Steiner, O.; Schaffenberger, W.; Roth, M.

    2012-02-01

    Context. Observations of waves at frequencies above the acoustic cut-off frequency have revealed vanishing wave travel-times in the vicinity of strong magnetic fields. This detection of apparently evanescent waves, instead of the expected propagating waves, has remained a riddle. Aims: We investigate the influence of a strong magnetic field on the propagation of magneto-acoustic waves in the atmosphere of the solar network. We test whether mode conversion effects can account for the shortening in wave travel-times between different heights in the solar atmosphere. Methods: We carry out numerical simulations of the complex magneto-atmosphere representing the solar magnetic network. In the simulation domain, we artificially excite high frequency waves whose wave travel-times between different height levels we then analyze. Results: The simulations demonstrate that the wave travel-time in the solar magneto-atmosphere is strongly influenced by mode conversion. In a layer enclosing the surface sheet defined by the set of points where the Alfvén speed and the sound speed are equal, called the equipartition level, energy is partially transferred from the fast acoustic mode to the fast magnetic mode. Above the equipartition level, the fast magnetic mode is refracted due to the large gradient of the Alfvén speed. The refractive wave path and the increasing phase speed of the fast mode inside the magnetic canopy significantly reduce the wave travel-time, provided that both observing levels are above the equipartition level. Conclusions: Mode conversion and the resulting excitation and propagation of fast magneto-acoustic waves is responsible for the observation of vanishing wave travel-times in the vicinity of strong magnetic fields. In particular, the wave propagation behavior of the fast mode above the equipartition level may mimic evanescent behavior. The present wave propagation experiments provide an explanation of vanishing wave travel-times as observed with multi

  9. Surface‐wave Green’s tensors in the near field

    USGS Publications Warehouse

    Haney, Matt; Nakahara, Hisashi

    2014-01-01

    We demonstrate the connection between theoretical expressions for the correlation of ambient noise Rayleigh and Love waves and the exact surface‐wave Green’s tensors for a point force. The surface‐wave Green’s tensors are well known in the far‐field limit. On the other hand, the imaginary part of the exact Green’s tensors, including near‐field effects, arises in correlation techniques such as the spatial autocorrelation (SPAC) method. Using the imaginary part of the exact Green’s tensors from the SPAC method, we find the associated real part using the Kramers–Kronig relations. The application of the Kramers–Kronig relations is not straightforward, however, because the causality properties of the different tensor components vary. In addition to the Green’s tensors for a point force, we also derive expressions for a general point moment tensor source.

  10. Stimulated Brillouin scattering in the field of a two-dimensionally localized pumping wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solikhov, D. K., E-mail: davlat56@mail.ru; Dvinin, S. A., E-mail: dvinin@phys.msu.ru

    2016-06-15

    Stimulated Brillouin scattering of electromagnetic waves in the field of a two-dimensionally localized pump wave at arbitrary scattering angles in the regime of forward scattering is analyzed. Spatial variations in the amplitudes of interacting waves are studied for different values of the pump field and different dimensions of the pump wave localization region. The intensity of scattered radiation is determined as a function of the scattering angle and the dimensions of the pump wave localization region. It is shown that the intensity increases with increasing scattering angle.

  11. Standing Helicon Wave Induced by a Rapidly Bent Magnetic Field in Plasmas.

    PubMed

    Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira

    2016-04-01

    An electron energy probability function and a rf magnetic field are measured in a rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of a spatially localized change of a refractive index.

  12. Standing Helicon Wave Induced by a Rapidly Bent Magnetic Field in Plasmas

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira

    2016-04-01

    An electron energy probability function and a rf magnetic field are measured in a rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of a spatially localized change of a refractive index.

  13. Wave field restoration using three-dimensional Fourier filtering method.

    PubMed

    Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R

    2001-11-01

    A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.

  14. Stable solitary waves in super dense plasmas at external magnetic fields

    NASA Astrophysics Data System (ADS)

    Ghaani, Azam; Javidan, Kurosh; Sarbishaei, Mohsen

    2015-07-01

    Propagation of localized waves in a Fermi-Dirac distributed super dense matter at the presence of strong external magnetic fields is studied using the reductive perturbation method. We have shown that stable solitons can be created in such non-relativistic fluids in the presence of an external magnetic field. Such solitary waves are governed by the Zakharov-Kuznetsov (ZK) equation. Properties of solitonic solutions are studied in media with different values of background mass density and strength of magnetic field.

  15. Internal gravity-shear waves in the atmospheric boundary layer from acoustic remote sensing data

    NASA Astrophysics Data System (ADS)

    Lyulyukin, V. S.; Kallistratova, M. A.; Kouznetsov, R. D.; Kuznetsov, D. D.; Chunchuzov, I. P.; Chirokova, G. Yu.

    2015-03-01

    The year-round continuous remote sounding of the atmospheric boundary layer (ABL) by means of the Doppler acoustic radar (sodar) LATAN-3 has been performed at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, since 2008. A visual analysis of sodar echograms for four years revealed a large number of wavelike patterns in the intensity field of a scattered sound signal. Similar patterns were occasionally identified before in sodar, radar, and lidar sounding data. These patterns in the form of quasi-periodic inclined stripes, or cat's eyes, arise under stable stratification and significant vertical wind shears and result from the loss of the dynamic stability of the flow. In the foreign literature, these patterns, which we call internal gravity-shear waves, are often associated with Kelvin-Helmholtz waves. In the present paper, sodar echograms are classified according to the presence or absence of wavelike patterns, and a statistical analysis of the frequency of their occurrence by the year and season was performed. A relationship between the occurrence of the patterns and wind shear and between the wave length and amplitude was investigated. The criteria for the identification of gravity-shear waves, meteorological conditions of their excitation, and issues related to their observations were discussed.

  16. On the generation and evolution of internal solitary waves in the southern Red Sea

    NASA Astrophysics Data System (ADS)

    Guo, Daquan; Zhan, Peng; Kartadikaria, Aditya; Akylas, Triantaphyllos; Hoteit, Ibrahim

    2015-04-01

    Satellite observations recently revealed the existence of trains of internal solitary waves in the southern Red Sea between 16.0°N and 16.5°N, propagating from the centre of the domain toward the continental shelf [Da silva et al., 2012]. Given the relatively weak tidal velocity in this area and their generation in the central of the domain, Da Silva suggested three possible mechanisms behind the generation of the waves, namely Resonance and disintegration of interfacial tides, Generation of interfacial tides by impinging, remotely generated internal tidal beams and for geometrically focused and amplified internal tidal beams. Tide analysis based on tide stations data and barotropic tide model in the Red Sea shows that tide is indeed very weak in the centre part of the Red Sea, but it is relatively strong in the northern and southern parts (reaching up to 66 cm/s). Together with extreme steep slopes along the deep trench, it provides favourable conditions for the generation of internal solitary in the southern Red Sea. To investigate the generation mechanisms and study the evolution of the internal waves in the off-shelf region of the southern Red Sea we have implemented a 2-D, high-resolution and non-hydrostatic configuration of the MIT general circulation model (MITgcm). Our simulations reproduce well that the generation process of the internal solitary waves. Analysis of the model's output suggests that the interaction between the topography and tidal flow with the nonlinear effect is the main mechanism behind the generation of the internal solitary waves. Sensitivity experiments suggest that neither tidal beam nor the resonance effect of the topography is important factor in this process.

  17. Wave field synthesis of moving virtual sound sources with complex radiation properties.

    PubMed

    Ahrens, Jens; Spors, Sascha

    2011-11-01

    An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.

  18. Terahertz near-field imaging of surface plasmon waves in graphene structures

    DOE PAGES

    Mitrofanov, O.; Yu, W.; Thompson, R. J.; ...

    2015-09-08

    In this study, we introduce a near-field scanning probe terahertz (THz) microscopy technique for probing surface plasmon waves on graphene. Based on THz time-domain spectroscopy method, this near-field imaging approach is well suited for studying the excitation and evolution of THz plasmon waves on graphene as well as for mapping of graphene properties at THz frequencies on the sub-wavelength scale.

  19. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  20. Coherence Volume of an Optical Wave Field with Broad Frequency and Angular Spectra

    NASA Astrophysics Data System (ADS)

    Lyakin, D. V.; Mysina, N. Yu.; Ryabukho, V. P.

    2018-03-01

    We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.

  1. Wave propagation downstream of a high power helicon in a dipolelike magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prager, James; Winglee, Robert; Roberson, B. Race

    2010-01-15

    The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.

  2. Layered semi-convection and tides in giant planet interiors. I. Propagation of internal waves

    NASA Astrophysics Data System (ADS)

    André, Q.; Barker, A. J.; Mathis, S.

    2017-09-01

    Context. Layered semi-convection is a possible candidate to explain Saturn's luminosity excess and the abnormally large radius of some hot Jupiters. In giant planet interiors, it could lead to the creation of density staircases, which are convective layers separated by thin stably stratified interfaces. These are also observed on Earth in some lakes and in the Arctic Ocean. Aims: We aim to study the propagation of internal waves in a region of layered semi-convection, with the aim to predict energy transport by internal waves incident upon a density staircase. The goal is then to understand the resulting tidal dissipation when these waves are excited by other bodies such as moons in giant planets systems. Methods: We used a local Cartesian analytical model, taking into account the complete Coriolis acceleration at any latitude, thus generalising previous works. We used a model in which stably stratified interfaces are infinitesimally thin, before relaxing this assumption with a second model that assumes a piecewise linear stratification. Results: We find transmission of incident internal waves to be strongly affected by the presence of a density staircase, even if these waves are initially pure inertial waves (which are restored by the Coriolis acceleration). In particular, low-frequency waves of all wavelengths are perfectly transmitted near the critical latitude, defined by θc = sin-1(ω/ 2Ω), where ω is the wave's frequency and Ω is the rotation rate of the planet. Otherwise, short-wavelength waves are only efficiently transmitted if they are resonant with a free mode (interfacial gravity wave or short-wavelength inertial mode) of the staircase. In all other cases, waves are primarily reflected unless their wavelengths are longer than the vertical extent of the entire staircase (not just a single step). Conclusions: We expect incident internal waves to be strongly affected by the presence of a density staircase in a frequency-, latitude- and wavelength

  3. Self-consistent Model of Magnetospheric Electric Field, RC and EMIC Waves

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.

    2007-01-01

    Electromagnetic ion cyclotron (EMIC) waves are an important magnetospheric emission, which is excited near the magnetic equator with frequencies below the proton gyro-frequency. The source of bee energy for wave growth is provided by temperature anisotropy of ring current (RC) ions, which develops naturally during inward convection from the plasma sheet These waves strongly affect the dynamic s of resonant RC ions, thermal electrons and ions, and the outer radiation belt relativistic electrons, leading to non-adiabatic particle heating and/or pitch-angle scattering and loss to the atmosphere. The rate of ion and electron scattering/heating is strongly controlled by the Wave power spectral and spatial distributions, but unfortunately, the currently available observational information regarding EMIC wave power spectral density is poor. So combinations of reliable data and theoretical models should be utilized in order to obtain the power spectral density of EMIC waves over the entire magnetosphere throughout the different storm phases. In this study, we present the simulation results, which are based on two coupled RC models that our group has developed. The first model deals with the large-scale magnetosphere-ionosphere electrodynamic coupling, and provides a self-consistent description of RC ions/electrons and the magnetospheric electric field. The second model is based on a coupled system of two kinetic equations, one equation describes the RC ion dynamics and another equation describes the power spectral density evolution of EMIC waves, and self-consistently treats a micro-scale electrodynamic coupling of RC and EMIC waves. So far, these two models have been applied independently. However, the large-scale magnetosphere-ionosphere electrodynamics controls the convective patterns of both the RC ions and plasmasphere altering conditions for EMIC wave-particle interaction. In turn, the wave induced RC precipitation Changes the local field-aligned current

  4. Full-wave effects on shear wave splitting

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Pin; Zhao, Li; Hung, Shu-Huei

    2014-02-01

    Seismic anisotropy in the mantle plays an important role in our understanding of the Earth's internal dynamics, and shear wave splitting has always been a key observable in the investigation of seismic anisotropy. To date the interpretation of shear wave splitting in terms of anisotropy has been largely based on ray-theoretical modeling of a single vertically incident plane SKS or SKKS wave. In this study, we use sensitivity kernels of shear wave splitting to anisotropic parameters calculated by the normal-mode theory to demonstrate that the interference of SKS with other phases of similar arrival times, near-field effect, and multiple reflections in the crust lead to significant variations of SKS splitting with epicentral distance. The full-wave kernels not only widen the possibilities in the source-receiver geometry in making shear wave splitting measurements but also provide the capability for tomographic inversion to resolve vertical and lateral variations in the anisotropic structures.

  5. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    NASA Astrophysics Data System (ADS)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high

  6. Grating-patterned FeCo coated surface acoustic wave device for sensing magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Jia, Yana; Xue, Xufeng; Liang, Yong; Du, Zhaofu

    2018-01-01

    This study addresses the theoretical and experimental investigations of grating-patterned magnetostrictive FeCo coated surface acoustic wave (SAW) device for sensing magnetic field. The proposed sensor is composed of a configuration of differential dual-delay-line oscillators, and a magnetostrictive FeCo grating array deposited along the SAW propagation path of the sensing device, which suppresses effectively the hysteresis effect by releasing the internal binding force in FeCo. The magnetostrictive strain and ΔE effect from the FeCo coating modulates the SAW propagation characteristic, and the corresponding shift in differential oscillation frequency was utilized to evaluate the measurant. A theoretical model is performed to investigate the wave propagation in layered structure of FeCo/LiNbO3 in the effect of magnetostrictive, and allowing determining the optimal structure. The experimental results indicate that higher sensitivity, excellent linearity, and lower hysteresis error over the typical FeCo thin-film coated sensor were achieved from the grating-patterned FeCo coated sensor successfully.

  7. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    NASA Astrophysics Data System (ADS)

    Baddour, Natalie

    2018-02-01

    Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  8. Electroencephalographic field influence on calcium momentum waves.

    PubMed

    Ingber, Lester; Pappalepore, Marco; Stesiak, Ronald R

    2014-02-21

    Macroscopic electroencephalographic (EEG) fields can be an explicit top-down neocortical mechanism that directly drives bottom-up processes that describe memory, attention, and other neuronal processes. The top-down mechanism considered is macrocolumnar EEG firings in neocortex, as described by a statistical mechanics of neocortical interactions (SMNI), developed as a magnetic vector potential A. The bottom-up process considered is Ca(2+) waves prominent in synaptic and extracellular processes that are considered to greatly influence neuronal firings. Here, the complimentary effects are considered, i.e., the influence of A on Ca(2+) momentum, p. The canonical momentum of a charged particle in an electromagnetic field, Π=p+qA (SI units), is calculated, where the charge of Ca(2+) is q=-2e, e is the magnitude of the charge of an electron. Calculations demonstrate that macroscopic EEG A can be quite influential on the momentum p of Ca(2+) ions, in both classical and quantum mechanics. Molecular scales of Ca(2+) wave dynamics are coupled with A fields developed at macroscopic regional scales measured by coherent neuronal firing activity measured by scalp EEG. The project has three main aspects: fitting A models to EEG data as reported here, building tripartite models to develop A models, and studying long coherence times of Ca(2+) waves in the presence of A due to coherent neuronal firings measured by scalp EEG. The SMNI model supports a mechanism wherein the p+qA interaction at tripartite synapses, via a dynamic centering mechanism (DCM) to control background synaptic activity, acts to maintain short-term memory (STM) during states of selective attention. © 2013 Published by Elsevier Ltd. All rights reserved.

  9. Electric field strength determination in filamentary DBDs by CARS-based four-wave mixing

    NASA Astrophysics Data System (ADS)

    Boehm, Patrick; Kettlitz, Manfred; Brandenburg, Ronny; Hoeft, Hans; Czarnetzki, Uwe

    2016-09-01

    The electric field strength is a basic parameter of non-thermal plasmas. Therefore, a profound knowledge of the electric field distribution is crucial. In this contribution a four wave mixing technique based on Coherent Anti-Stokes Raman spectroscopy (CARS) is used to measure electric field strengths in filamentary dielectric barrier discharges (DBDs). The discharges are operated with a pulsed voltage in nitrogen at atmospheric pressure. Small amounts hydrogen (10 vol%) are admixed as tracer gas to evaluate the electric field strength in the 1 mm discharge gap. Absolute values of the electric field strength are determined by calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. Alteration of the electric field strength has been observed during the internal polarity reversal and the breakdown process. In this case the major advantage over emission based methods is that this technique can be used independently from emission, e.g. in the pre-phase and in between two consecutive, opposite discharge pulses where no emission occurs at all. This work was supported by the Deutsche Forschungsgemeinschaft, Forschergruppe FOR 1123 and Sonderforschungsbereich TRR 24 ``Fundamentals of complex plasmas''.

  10. Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chia -Chen; Rubenstein, Brenda M.; Morales, Miguel A.

    2016-12-19

    Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wavemore » function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Lastly, our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.« less

  11. A study of the mechanism of internal gravity wave generation by quasigeostrophic meteorological motions

    NASA Technical Reports Server (NTRS)

    Medvedev, A. S.

    1987-01-01

    Numerous experiments on the detection of atmospheric waves in the frequency range from acoustic to planetary at meteor heights have revealed that important wave sources are meteorological processes in the troposphere (cyclones, atmospheric fronts, jet streams, etc.). A dynamical theory based on the others work include describing the adaptation of meteorological fields to the geostropic equilibrium state. According to this theory, wave motions appear as a result of constant competition between the maladjustment of the wind and pressure fields due to nonlinear effects and the tendency of the atmosphere to establish a quasi-geostrophic equilibrium of these fields. These meteorological fields are discussed.

  12. A study of the mechanism of internal gravity wave generation by quasigeostrophic meteorological motions

    NASA Astrophysics Data System (ADS)

    Medvedev, A. S.

    1987-08-01

    Numerous experiments on the detection of atmospheric waves in the frequency range from acoustic to planetary at meteor heights have revealed that important wave sources are meteorological processes in the troposphere (cyclones, atmospheric fronts, jet streams, etc.). A dynamical theory based on the others work include describing the adaptation of meteorological fields to the geostropic equilibrium state. According to this theory, wave motions appear as a result of constant competition between the maladjustment of the wind and pressure fields due to nonlinear effects and the tendency of the atmosphere to establish a quasi-geostrophic equilibrium of these fields. These meteorological fields are discussed.

  13. On the pressure field of nonlinear standing water waves

    NASA Technical Reports Server (NTRS)

    Schwartz, L. W.

    1980-01-01

    The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.

  14. Internal wave energy flux from density perturbations in nonlinear stratifications

    NASA Astrophysics Data System (ADS)

    Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.

    2017-11-01

    Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.

  15. Modeling Plankton Aggregation and Transport by Nonlinear Internal Waves Propagating Onshore.

    NASA Astrophysics Data System (ADS)

    Garwood, J. C.; Musgrave, R. C.; Franks, P. J. S.

    2016-02-01

    Many coastal benthic species have planktonic larval forms. These larvae must return to suitable adult habitat to allow recruitment to the breeding population. To a large extent these larvae are at the mercy of the ambient currents. However, simple vertical swimming behaviors may significantly enhance onshore or offshore transport of these organisms in certain coastal flows. Here we use models to investigate the interaction of nonlinear internal waves (NLIW) and swimming behaviors in determining plankton aggregation and cross-shelf transport. In a 2D, non-hydrostatic MITgcm with particle tracking, NLIW are generated and propagate onshore into a region of sloping bottom topography. Lagrangian and swimming particles representing plankton are introduced in the flow field to quantify transport and dispersion. Characteristics of the environment (bottom slope and stratification), as well as of the particles (source, depth, and swimming vs. passive) were varied to identify scenarios that would maximize transport or accumulation. Our results will be used to design experiments using swarms of autonomous buoyancy-controlled drifters to quantify transport and accumulation in the field.

  16. Internal Wave Spectrum of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Tsimitri, C.; Schmid, M.; Wuest, A.

    2013-05-01

    Lake Baikal is the most voluminous and deepest (over 1.6 Km) fresh water body on earth holding 80% of the world's fresh water supplies. The lake supports a remarkable biodiversity with a major deep-water fauna composed almost entirely of endemic species. Due to the lake's great depth only the top 250 m are experiencing the direct effects of the wind. The deeper part of the lake is barely stratified and has a constant temperature all year round. A distinct peak is observed in the temperature Fourier spectrum around the inertial frequency almost at all times and at all depths. Here we investigate the particularities of the internal wave spectrum using the wavelet transform. We focus on the inertial frequency band and study the propagation through time and depth. Our goal is to evaluate the importance of the internal oscillations to the mixing and to correlate them to external forcing.

  17. Lagrangian clustering detection of internal wave boluses

    NASA Astrophysics Data System (ADS)

    Allshouse, M.; Salvador Vieira, G.; Swinney, H. L.

    2016-02-01

    The shoaling of internal waves on a continental slope or shelf produces boluses that travel up the slope with the wave. The boluses are regions of trapped fluid that are transported along with the wave, unlike fluid in the bulk that is temporarily pertubed by a passing wave. Boluses have been observed to transport oxygen-depleted water and induce rapid changes in temperature (Walter et al, JGR, 2012), both of which have potential ramifications for marine biology. Several previous studies have investigated boluses in systems with two layers of different density (e.g., Helfrich, JFM, 1992, and Sutherland et al., JGR, 2013). We conduct laboratory and computational studies of bolus generation and material transport in continuously stratified fluids with a pycnocline, as in the oceans. Our laboratory experiments in a 4 m long tank are complemented by 2-dimensional direct numerical simulations of the Navier-Stokes equations. Efforts have been made to identify boluses with Eularian measures in the past, but a Lagrangian perspective is necessary to objectively identify the bolus over its lifespan. Here we use a Lagrangian based coherent structure method relying on trajectory clustering using the fuzzy c-means approach (Froyland and Padberg-Gehle, Chaos, 2015). The objective detection of a bolus enables examination of the volume, distance traveled, and increased available potential energy of a bolus, as a function of the stratification, wave properties, and the angle of the sloping topography. The decay of a bolus through turbulent mixing is investigated by locating where the Richardson number drops below ¼, where velocity shear overcomes the tendency of a stratified fluid to remain stratified. (supported by ONR MURI grant N000141110701)

  18. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  19. Comparison of internal wave properties calculated by Boussinesq equations with/without rigid-lid assumption

    NASA Astrophysics Data System (ADS)

    Liu, C. M.

    2017-12-01

    Wave properties predicted by the rigid-lid and the free-surface Boussinesq equations for a two-fluid system are theoretically calculated and compared in this study. Boussinesq model is generally applied to numerically simulate surface waves in coastal regions to provide credible information for disaster prevention and breaker design. As for internal waves, Liu et al. (2008) and Liu (2016) respectively derived a free-surface model and a rigid-lid Boussinesq models for a two-fluid system. The former and the latter models respectively contain four and three key variables which may result in different results and efficiency while simulating. Therefore, present study shows the results theoretically measured by these two models to provide more detailed observation and useful information for motions of internal waves.

  20. Spatio-temporal variability of internal waves in the northern Gulf of Mexico studied with the Navy Coastal Ocean Model, NCOM

    NASA Astrophysics Data System (ADS)

    Cambazoglu, M. K.; Jacobs, G. A.; Howden, S. D.; Book, J. W.; Arnone, R.; Soto Ramos, I. M.; Vandermeulen, R. A.; Greer, A. T.; Miles, T. N.

    2016-02-01

    Internal waves enhance mixing in the upper ocean, transport nutrients and plankton over the water column and across the shelf from deeper waters to shallower coastal areas, and could also transport pollutants such as hydrocarbons onshore during an oil spill event. This study aims to characterize internal waves in the northern Gulf of Mexico (nGoM) and investigate the possible generation and dissipation mechanisms using a high-resolution (1-km) application of the Navy Coastal Ocean Model (NCOM). Three dimensional model products are used to detect the propagation patterns of internal waves. The vertical structure of internal waves is studied and the role of stratification is analyzed by looking at the temperature, salinity and velocity variations along the water column. The model predictions suggest the generation of internal waves on the continental shelf, therefore the role of ocean bottom topography interacting with tides and general circulation features such as the Loop Current Eddy front, on the internal wave generation will be discussed. The time periods of internal wave occurrences are identified from model predictions and compared to satellite ocean color imagery. Further data analysis, e.g. Fourier analysis, is implemented to determine internal wavelengths and frequencies and to determine if the response of internal waves are at tidal periods or at different frequencies. The atmospheric forcing provided to NCOM and meteorological data records are analyzed to define the interaction between wind forcing and internal wave generation. Wavelet analysis characterizes the ocean response to atmospheric events with periodic frequencies. Ocean color satellite imagery was used to visualize the location of the Mississippi river plume (and other oceanic features) and compared to the model predictions because the enhanced stratification from freshwater plumes which propagate across the Mississippi Bight can provide favorable conditions in coastal waters for internal wave

  1. Effect of gravity waves on the North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Eden, Carsten

    2017-04-01

    The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.

  2. A simplified method of evaluating the stress wave environment of internal equipment

    NASA Technical Reports Server (NTRS)

    Colton, J. D.; Desmond, T. P.

    1979-01-01

    A simplified method called the transfer function technique (TFT) was devised for evaluating the stress wave environment in a structure containing internal equipment. The TFT consists of following the initial in-plane stress wave that propagates through a structure subjected to a dynamic load and characterizing how the wave is altered as it is transmitted through intersections of structural members. As a basis for evaluating the TFT, impact experiments and detailed stress wave analyses were performed for structures with two or three, or more members. Transfer functions that relate the wave transmitted through an intersection to the incident wave were deduced from the predicted wave response. By sequentially applying these transfer functions to a structure with several intersections, it was found that the environment produced by the initial stress wave propagating through the structure can be approximated well. The TFT can be used as a design tool or as an analytical tool to determine whether a more detailed wave analysis is warranted.

  3. INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; Lin, D. N. C.; McElwaine, J. N.

    2013-07-20

    We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation, and consequent angular momentum transport by such waves. We find that these waves are generated efficiently and transport angular momentum on short timescales over large distances. We show that, as in Earth's atmosphere, IGW drive equatorial flows which change magnitude and direction on short timescales. These results have profound consequences for the observational inferences of massive stars, as well as their long term angular momentum evolution. We suggest IGW angular momentum transport may explainmore » many observational mysteries, such as: the misalignment of hot Jupiters around hot stars, the Be class of stars, Ni enrichment anomalies in massive stars, and the non-synchronous orbits of interacting binaries.« less

  4. On the Chemical Mixing Induced by Internal Gravity Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; McElwaine, J. N.

    Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity,more » but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.« less

  5. Propagating Waves Transverse to the Magnetic Field in a Solar Prominence

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Kucera, T. A.; Knizhnik, K.; Luna, M.; Lopez-Ariste, A.; Toot, D.

    2013-11-01

    We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Hα lines), Sac Peak (in Hα, Hβ, and Na-D lines), and THEMIS ("Télescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires") with the MTR (MulTi-Raies) spectropolarimeter (in He D3 line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km s-1, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.

  6. Interaction of excitable waves emitted from two defects by pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Zhang, Han; Qiao, Li-Yan; Liang, Hong; Sun, Wei-Gang

    2018-01-01

    In response to a pulsed electric field, spatial distributed heterogeneities in excitable media can serve as nucleation sites for the generation of intramural electrical waves, a phenomenon called as ;wave emission from heterogeneities; (WEH effect). Heterogeneities in cardiac tissue strongly influence each other in the WEH effect. We study the WEH effect in a medium possessing two defects. The role of two defects and their interaction by pulsed DC electric fields (DEF) and rotating electric fields (REF) are investigated. The direction of the applied electric field plays a major role not only in the minimum electrical field necessary to originate wave propagation, but also in the degree of influences of nearby defects. The distance between two defects, i.e. the density of defects, also play an important role in the WEH effect. Generally, the REF is better than the DEF when pulsed electric fields are applied. These results may contribute to the improved application of WEH, especially in older patients with fibrosis and scarring, which are accompanied by a higher incidence of conductivity discontinuities.

  7. A field-emission based vacuum device for the generation of THz waves

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Chieh

    2005-03-01

    Terahertz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials during the past decade. More and more applications in imaging science and technology call for the well development of THz wave sources. Amplification and generation of a high frequency electromagnetic wave are a common interest of field emission based devices. In the present work, we propose a vacuum electronic device based on field emission mechanism for the generation of THz waves. To verify our thinking and designs, the cold tests and the hot tests have been studied via the simulation tools, SUPERFISH and MAGIC. In the hot tests, two types of electron emission mechanisms are considered. One is the field emission and the other is the explosive emission. The preliminary design of the device is carried out and tested by the numerical simulations. The simulation results show that an electronic efficiency up to 4% can be achieved without employing any magnetic circuits.

  8. Airborne synthetic aperture radar tracking of internal waves in the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Richez, Claude

    As part of the International “Gibraltar Experiment”, we realized, on June 22 and 24, 1986, two surveys of the Strait of Gibraltar, on board an aircraft equipped with a Synthetic Aperture Radar. Our objective was to observe, at Spring tides, and during two twelve-hour tidal cycles, at 24 h interval, the generation of internal wave trains, linked to the hydraulic jump formed west of the sill during the westward phase of the tidal current, and their eastward propagation in the Strait. The speed of propagation of these waves and the effect of the diurnal component of the tide on their generation and propagation could then be determined. Our results suggest that two solitary waves of equal amplitude propagated eastwards in the strait on June 22 (the tidal coefficient being equal to 92), with a speed, relative to the ground, of 2.1 to 2.6 m s -1. 24 h later, during the second survey, on June 24 (tidal coefficient 90), we observed the propagation of a train of non-linear waves, the speed of the leading wave of which being about 1.9 ms -1. Our data show that other waves pass over the Camarinal Sill after the release of the bore, and “secondary” internal wave trains are shown to propagate eastwards from there. Although our SAR data show the appearance of waves west of the northern sill at about 4 h after High Water (HW), the mechanism leading to their generation is not clear. These waves could propagate eastwards, all along the strait, and/or northwestwards along the western Spanish coast. They could be responsible for the solitary-type events observed at the eastern entrance of the strait, at about 7 h after HW, by ZIEGENBEIN (1969, 1970). These events are noticeable in the hydrological parameters time series of ARMI and FARMER (1988) and in the high rate current data (2-min apart) from their April 1986 cruise. Besides these alongstrait waves, our SAR data show the existence of cross-strait waves, and give an idea of their wavelength and speed of propagation. Their

  9. Wave-current interaction: Effect on the wave field in a semi-enclosed basin

    NASA Astrophysics Data System (ADS)

    Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A.

    2013-10-01

    The effect on waves of the Wave-Current Interaction (WCI) process in the semi-enclosed Gulf of Venice (northern region of the Adriatic Sea) was investigated using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. COAWST relies on the ocean model ROMS (Regional Ocean Modeling System), the wave model SWAN (Simulating WAves Nearshore), and the CSTMS (Community Sediment Transport Modeling System) routines. The two-way data transfer between circulation and wave models was synchronous via MCT (Model Coupling Toolkit), with ROMS providing: current field, free surface elevation, and bathymetry to SWAN. For coupling, the 3-D current profiles were averaged using a formulation which integrated the near-surface velocity over a depth controlled by the spectral mean wavenumber. COAWST system was implemented on a parent grid (with horizontal resolution of 2.0 km) covering the whole Adriatic Sea with one-way nesting to a child grid resolving the northern area (Gulf of Venice) at a resolution of 0.5 km. The meteorological forcings provided by the operational meteorological model COSMO-I7 (a mesoscale model developed in the framework of the COSMO Consortium) were used to drive the modeling system in the period bracketing September 2010-August 2011. The adopted winds and the simulated waves were compared with observations at the CNR-ISMAR Acqua Alta oceanographic tower, located off the Venice littoral. Wave heights and sea surface winds were also compared with satellite-derived data. The analysis of WCI was performed on the child grid over the winter season (January-March 2011) with particular focus on the waves generated by prevailing and dominant winds blowing on the Adriatic Sea: Bora and Sirocco. Due to the variable wind direction with respect to the ocean current direction different effects on WCI were depicted, showing that within the northern Adriatic Sea the ocean-wave interactions are strongly dependent on the wind forcing direction. Further

  10. Internal Tide Generation by Steep Topography

    DTIC Science & Technology

    2007-09-01

    acting on the barotropic tide ( Foda and Hill 1998) was incomplete. Kunze will put this work in the context of recent internal tide research and...Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320-327. Foda , M.A., and D.F. Hill, 1998: Nonlinear energy...Bispectral analysis of energy transfer within the two-dimensional ocean internal wave field. . Phys. Oceanogr., 35, 2104-2109. Garrett, C., and E

  11. Numerical simulation of large-scale field-aligned current generation from finite-amplitude magnetosonic waves

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.

    1994-01-01

    A two-dimensional numerical simulation of finite-amplitude magnetohydrodynamic (MHD) magnetosonic waves is performed under a finite-velocity background convection condition. Isothermal cases are considered for simplicity. External dissipation is introduced by assuming that the field-aligned currents are generated in proportion to the accumulated charges. The simulation results are as follows: Paired field-aligned currents are found from the simulated waves. The flow directions of these field-aligned currents depend on the angle between the background convection and the wave normal, and hence two pairs of field-aligned currents are found from a bowed wave if we look at the overall structure. The majority of these field-aligned currents are closed within each pair rather than between two wings. These features are not observed under slow background convection. The result could be applied to the cusp current system and the substorm current system.

  12. The effects of tropical cyclone characteristics on the surface wave fields in Australia's North West region

    NASA Astrophysics Data System (ADS)

    Drost, Edwin J. F.; Lowe, Ryan J.; Ivey, Greg N.; Jones, Nicole L.; Péquignet, Christine A.

    2017-05-01

    The numerical wave model SWAN (Simulating WAves Nearshore) and historical wave buoy observations were used to investigate the response of surface wave fields to tropical cyclone (TC) wind forcing on the Australian North West Shelf (NWS). Analysis of historical wave data during TC events at a key location on the NWS showed that an average of 1.7 large TCs impacted the region each year, albeit with high variability in TC track, intensity and size, and also in the surface wave field response. An accurately modeled TC wind field resulted in a good prediction of the observed extreme wave conditions by SWAN. Results showed that the presence of strong background winds during a TC and a long TC lifetime (with large variations in translation speed) can provide additional energy input. This potentially enhances the generated swell waves and increases the spatial extent of the TC generated surface wave fields. For the TC translation speeds in this study, a positive relationship between TC translation speed and the resulting maximum significant wave height and wave field asymmetry was observed. Bottom friction across the wide NWS limited the amount of wave energy reaching the coastal region; consistently reducing wave energy in depths below 50 m, and in the case of the most extreme conditions, in depths up to 100 m that comprise much of the shelf. Nevertheless, whitecapping was still the dominant dissipation mechanism on the broader shelf region. Shelf-scale refraction had little effect on the amount of wave energy reaching the nearshore zone; however, refraction locally enhanced or reduced wave energy depending on the orientation of the isobaths with respect to the dominant wave direction during the TC.

  13. Analysis of nonlinear internal waves observed by Landsat thematic mapper

    NASA Astrophysics Data System (ADS)

    Artale, V.; Levi, D.; Marullo, S.; Santoleri, R.

    1990-09-01

    In this work we test the compatibility between the theoretical parameters of a nonlinear wave model and the quantitative information that one can deduce from satellite-derived data. The theoretical parameters are obtained by applying an inverse problem to the solution of the Cauchy problem for the Korteweg-de Vries equation. Our results are applied to the case of internal wave patterns elaborated from two different satellite sensors at the south of Messina (the thematic mapper) and at the north of Messina (the synthetic aperture radar).

  14. Field experiments to determine wave propagation principles and mechanical properties of snow

    NASA Astrophysics Data System (ADS)

    Simioni, Stephan; Gebhard, Felix; Dual, Jürg; Schweizer, Jürg

    2017-04-01

    To understand the release of snow avalanches by explosions one needs to know how acoustic waves travel above and within the snowpack. Hitherto, wave propagation was investigated in the laboratory with small samples or in the field in the shock wave region. We developed a measurement system and layout to derive wave attenuation in snow, wave speeds and elastic moduli on small-scale (1-2 m) field experiments to close the gap between the lab scale (0.1 m) and the scale of artificial release (10-100 m). We used solid explosives and hammer blows to create the load and accelerometers to measure the resulting wave within the snowpack. The strong attenuation we observed indicates that we measured the second longitudinal wave which propagates through the pore space. The wave speeds, however, corresponded to the speeds of the first longitudinal wave within the ice skeleton. The elastic moduli were high on the order of several tens of MPa for lower densities (150 kg m-3) and agreed well with earlier lab studies, in particular for the higher densities 250-400 kg m-3). However, the scatter was rather large as expected for in-situ experiments in the layered snow cover. In addition, we measured accelerations during propagation saw test experiments. The propagation of cracks during this type of snow instability test has mainly been studied by analysing the bending of the slab (due to the saw cut) using particle tracking velocimetry. We used the accelerometers to measure crack propagation speeds. The wave speeds were slightly higher for most experiments than reported previously. Furthermore, in some experiments, we encountered to different wave types with one propagating at a higher speed. This finding may be interpreted as the actual crack propagation and the settling of the weak layer (collapse wave). Our results show that field measurements of propagation properties are feasible and that crack propagation as observed during propagation saw tests may involve different processes

  15. Solar coronal loop heating by cross-field wave transport

    NASA Technical Reports Server (NTRS)

    Amendt, Peter; Benford, Gregory

    1989-01-01

    Solar coronal arches heated by turbulent ion-cyclotron waves may suffer significant cross-field transport by these waves. Nonlinear processes fix the wave-propagation speed at about a tenth of the ion thermal velocity, which seems sufficient to spread heat from a central core into a large cool surrounding cocoon. Waves heat cocoon ions both through classical ion-electron collisions and by turbulent stochastic ion motions. Plausible cocoon sizes set by wave damping are in roughly kilometers, although the wave-emitting core may be only 100 m wide. Detailed study of nonlinear stabilization and energy-deposition rates predicts that nearby regions can heat to values intermediate between the roughly electron volt foot-point temperatures and the about 100 eV core, which is heated by anomalous Ohmic losses. A volume of 100 times the core volume may be affected. This qualitative result may solve a persistent problem with current-driven coronal heating; that it affects only small volumes and provides no way to produce the extended warm structures perceptible to existing instruments.

  16. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    PubMed

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.

  17. The role of internal waves in larval fish interactions with potential predators and prey

    NASA Astrophysics Data System (ADS)

    Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.; Tang, Dorothy

    2014-09-01

    Tidally driven internal wave packets in coastal environments have the potential to influence patchiness of larval fishes, prey, and gelatinous predators. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to synoptically sample larval fishes, copepods, and planktonic predators (ctenophores, hydromedusae, chaetognaths, and polychaetes) across these predictable features in the summer near Stellwagen Bank, Massachusetts, USA. Full water column profiles and fixed depth transects (∼10 m depth) were used to quantify vertical and horizontal components of the fish and invertebrate distributions during stable and vertically mixed conditions associated with tidally generated internal waves. Larval fishes, consisting mostly of Urophycis spp., Merluccius bilinearis, and Labridae, were concentrated near the surface, with larger sizes generally occupying greater depths. During stable water column conditions, copepods formed a near surface thin layer several meters above the chlorophyll-a maximum that was absent when internal waves were propagating. In contrast, ctenophores and other predators were much more abundant at depth, but concentrations near 10 m increased immediately after the internal hydraulic jump mixed the water column. During the propagation of internal waves, the fine-scale abundance of larval fishes was more correlated with the abundance of gelatinous predators and less correlated with copepods compared to the stable conditions. Vertical oscillations caused by the internal hydraulic jump can disperse patches of zooplankton and force surface dwelling larval fishes into deeper water where probability of predator contact is increased, creating conditions potentially less favorable for larval fish growth and survival on short time scales.

  18. Monitoring internal organ motion with continuous wave radar in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods:more » The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the

  19. Monitoring internal organ motion with continuous wave radar in CT.

    PubMed

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-09-01

    To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT. The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements. Concerning the measurements of the test persons

  20. Projector Augmented-Wave formulation of response to strain and electric field perturbation within the density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Martin, Alexandre; Torrent, Marc; Caracas, Razvan

    2015-03-01

    A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).

  1. Internal wave scattering in continental slope canyons, part 1: Theory and development of a ray tracing algorithm

    NASA Astrophysics Data System (ADS)

    Nazarian, Robert H.; Legg, Sonya

    2017-10-01

    When internal waves interact with topography, such as continental slopes, they can transfer wave energy to local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent of global continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations of canyon mixing processes are currently missing from large-scale ocean models. As a first step in the development of such parameterizations, we conduct a parameter space study of M2 tidal-frequency, low-mode internal waves interacting with idealized V-shaped canyon topographies. Specifically, we examine the effects of varying the canyon mouth width, shape and slope of the thalweg (line of lowest elevation). This effort is divided into two parts. In the first part, presented here, we extend the theory of 3-dimensional internal wave reflection to a rotated coordinate system aligned with our idealized V-shaped canyons. Based on the updated linear internal wave reflection solution that we derive, we construct a ray tracing algorithm which traces a large number of rays (the discrete analog of a continuous wave) into the canyon region where they can scatter off topography. Although a ray tracing approach has been employed in other studies, we have, for the first time, used ray tracing to calculate changes in wavenumber and ray density which, in turn, can be used to calculate the Froude number (a measure of the likelihood of instability). We show that for canyons of intermediate aspect ratio, large spatial envelopes of instability can form in the presence of supercritical sidewalls. Additionally, the canyon height and length can modulate the Froude number. The second part of this study, a diagnosis of internal wave scattering in continental slope canyons using both numerical simulations and this ray tracing algorithm, as well as a test of robustness of the ray tracing, is presented in the companion article.

  2. Measurement study on stratospheric turbulence generation by wave-wave interaction

    NASA Astrophysics Data System (ADS)

    Söder, Jens; Gerding, Michael; Schneider, Andreas; Wagner, Johannes; Lübken, Franz-Josef

    2017-04-01

    During a joint campaign of the research programmes METROSI and GW-LCYCLE 2 (Northern Scandinavia, January 2016), an extraordinary case of turbulence generation by wave-wave interaction has been observed. To describe this turbulence, we will focus on the energy dissipation rate. The most feasible way to measure dissipation is to resolve the inner scale of turbulence. This is done by our balloon-borne instrument LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) that combines a precise turbulence measurement method with the capability of being launched from every radiosonde station. For the flight in discussion further information on the meteorological background is obtained by a radiosonde. Due to the fact that the balloon drifts horizontally during ascent, measurements of vertical and horizontal wave parameters are ambiguous. Hence further understanding of the wave field is aided by 3d-simulations using WRF and ECMWF. Concentrating on one out of six LITOS launches during that campaign, we see some turbulent activity across the whole flightpath as on most other LITOS measurements. Nevertheless, we find pronounced maxima in the middle stratosphere (24 - 32 km). They coincide with a distinct phase of a mountain wave. As seen from WRF and ECMWF wind fields, this mountain wave interacts with another larger scale gravity wave. That is, the second wave influences the propagation of the smaller scale mountain wave. With LITOS we see the strongest dissipation rates in areas where the phase direction of the smaller wave changes due to wave-wave interaction. Therefore, these measurements provide an opportunity for further investigation into breakdown processes of internal gravity waves.

  3. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    PubMed

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  4. Observations of internal waves in the Gulf of California by SEASAT SAR

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Holt, B.

    1983-01-01

    Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.

  5. Observations of internal waves in the Gulf of California by SEASAT SAR

    NASA Astrophysics Data System (ADS)

    Fu, L. L.; Holt, B.

    1983-07-01

    Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.

  6. Propagating Waves Transverse to the Magnetic Field in a Solar Prominence

    NASA Astrophysics Data System (ADS)

    Kucera, Therese A.; Knizhnik, K.; Lopez Ariste, A.; Luna Bennasar, M.; Schmieder, B.; Toot, D.

    2013-07-01

    We have observed a quiescent prominence with the Hinode Solar Optical Telescope (SOT, in Ca II and H-alpha lines), Sacramento Peak Observatory (in H-alpha, H-beta and Sodium-D lines), and THEMIS/MTR (Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires/MulTi Raies, providing vector magnetograms), and SDO/AIA (Solar Dynamics Observatory Atmospheric Imaging Assembly, in EUV) over a 4 hour period on 2012 October 10. The small fields of view of SOT, Sac Peak and THEMIS are centered on a large pillar-like prominence footpoint extending towards the surface. This feature appears in the larger field of view of the 304 Å band, as a large, quasi-vertical column with material flowing horizontally on each side. The THEMIS/MTR data indicate that the magnetic field in the pillar is essentially horizontal and the observations in the optical wavelengths show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data show what appear to be moving wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along quasi-vertical columns. The pulses have a velocity of propagation of about 10 km/s, a period about 260 sec, and a wavelength around 2000 km. We interpret these waves in terms of fast magneto-sonic waves and discuss possible wave drivers.

  7. Compressional ULF waves in the outer magnetosphere. 2: A case study of Pc 5 type wave activity

    NASA Technical Reports Server (NTRS)

    Zhu, Xiaoming; Kivelson, Margaret G.

    1994-01-01

    In previously published work (Zhu and Kivelson, 1991) the spatial distribution of compressional magnetic pulsations of period 2 - 20 min in the outer magnetosphere was described. In this companion paper, we study some specific compressional events within our data set, seeking to determine the structure of the waves and identifying the wave generation mechanism. We use both the magnetic field and three-dimensional plasma data observed by the International Sun-Earth Explorer (ISEE) 1 and/or 2 spacecraft to characterize eight compressional ultra low frequency (ULF) wave events with frequencies below 8 mHz in the outer magnetosphere. High time resolution plasma data for the event of July 24, 1978, made possible a detailed analysis of the waves. Wave properties specific to the event of July 24, 1978, can be summarized as follows: (1) Partial plasma pressures in the different energy ranges responded to the magnetic field pressure differently. In the low-energy range they oscillated in phase with the magnetic pressure, while oscillations in higher-energy ranges were out-of-phase; (2) Perpendicular wavelengths for the event were determined to be 60,000 and 30,000 km in the radial and azimuthal directions, respectively. Wave properties common to all events can be summarized as follows: (1) Compressional Pc 5 wave activity is correlated with Beta, the ratio of the plasma pressure to the magnetic pressure; the absolute magnitude of the plasma pressure plays a minor role for the wave activity; (2) The magnetic equator is a node of the compressional perturbation of the magnetic field; (3) The criterion for the mirror mode instability is often satisfied near the equator in the outer magnetosphere when the compressional waves are present. We believe these waves are generated by internal magnetohydrodynamic (MHD) instabilities.

  8. Detection of acoustic waves by NMR using a radiofrequency field gradient.

    PubMed

    Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J; Franconi, Jean Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D

    2003-03-01

    A B(1) field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 13;31; RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.

  9. PROPAGATING WAVES TRANSVERSE TO THE MAGNETIC FIELD IN A SOLAR PROMINENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmieder, B.; Kucera, T. A.; Knizhnik, K.

    2013-11-10

    We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Hα lines), Sac Peak (in Hα, Hβ, and Na-D lines), and THEMIS ({sup T}élescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires{sup )} with themore » MTR (MulTi-Raies) spectropolarimeter (in He D{sub 3} line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km s{sup –1}, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.« less

  10. Characteristics of vibrational wave propagation and attenuation in submarine fluid-filled pipelines

    NASA Astrophysics Data System (ADS)

    Yan, Jin; Zhang, Juan

    2015-04-01

    As an important part of lifeline engineering in the development and utilization of marine resources, the submarine fluid-filled pipeline is a complex coupling system which is subjected to both internal and external flow fields. By utilizing Kennard's shell equations and combining with Helmholtz equations of flow field, the coupling equations of submarine fluid-filled pipeline for n=0 axisymmetrical wave motion are set up. Analytical expressions of wave speed are obtained for both s=1 and s=2 waves, which correspond to a fluid-dominated wave and an axial shell wave, respectively. The numerical results for wave speed and wave attenuation are obtained and discussed subsequently. It shows that the frequency depends on phase velocity, and the attenuation of this mode depends strongly on material parameters of the pipe and the internal and the external fluid fields. The characteristics of PVC pipe are studied for a comparison. The effects of shell thickness/radius ratio and density of the contained fluid on the model are also discussed. The study provides a theoretical basis and helps to accurately predict the situation of submarine pipelines, which also has practical application prospect in the field of pipeline leakage detection.

  11. Manipulating Traveling Brain Waves with Electric Fields: From Theory to Experiment.

    NASA Astrophysics Data System (ADS)

    Gluckman, Bruce J.

    2004-03-01

    Activity waves in disinhibited neocortical slices have been used as a biological model for epileptic seizure propagation [1]. Such waves have been mathematically modeled with integro-differential equations [2] representing non-local reaction diffusion dynamics of an excitable medium with an excitability threshold. Stability and propagation speed of traveling pulse solutions depend strongly on the threshold in the following manner: propagation speed should decrease with increased threshold over a finite range, beyond which the waves become unstable. Because populations of neurons can be polarized with an applied electric field that effectively shifts their threshold for action potential initiation [3], we predicted, and have experimentally verified, that electric fields could be used globally or locally to speed up, slow down and even block wave propagation. [1] Telfeian and Conners, Epilepsia, 40, 1499-1506, 1999. [2] Pinto and Ermentrout, SIAM J. App. Math, 62, 206-225, 2001. [3] Gluckman, et. al. J Neurophysiol. 76, 4202-5, 1996.

  12. Reflection of hierarchical medium structures of different scales in the space time data of wave fields distribution.

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Andrey

    2015-04-01

    The last decades are characterized by active development of Earth's sciences. The modern research methods and technologies give the opportunity to obtain new data about the Earth's structure and processes, which occur in its interior. The conception development about the nonlinear geodynamics practically coincides with research of nonlinear processes in different parts of physics. In geology soliton and auto wave conceptions are developed, principles of synergetic and self organization become be used, in geodynamics the macro quantum behavior of large mass matter, which are in critical state, in geophysics the auto wave nature of geophysical fields is researched in a frame of a new structural model with hierarchical inclusions. It is very significant to define the time of reaction lagging, in spite of the influence on the massif can be assumed as elastic. The unique model which can explain that effect is a model of the massif with a hierarchic structure. We developed a mathematical algorithm using integral and integral-differential equations for 2-D model for two problems in a frequency domain: diffraction a sound wave and linear polarized transverse wave through a arbitrary hierarchy rank inclusion plunged in an N-layered medium. That algorithm differs from the fractal model approach by a freer selecting of heterogeneities position of each rank. And the second, the problem is solved in the dynamical approach. The higher the amount of the hierarchic ranks the more is the degree of nonlinearity of the massive response and the longer can be the time of massive reaction lag of the influence. For research of hierarchic medium we had developed an iterative algorithm for electromagnetic and seismic fields in the problem setting similar to analyze higher for layered-block models with homogeneous inclusions. We had developed an iterative algorithm of inverse problem solution for the same models, using the approach of three stage interpretation. For that we had developed a

  13. Analysis and Simulation of Near-Field Wave Motion Data from the Source Physics Experiment Explosions

    DTIC Science & Technology

    2011-09-01

    understanding and ability to model explosively generated seismic waves, particularly S-waves. The first SPE explosion (SPE1) consisted of a 100 kg shot at a...depth of 60 meters in granite (Climax Stock). The shot was well- recorded by an array of over 150 instruments, including both near-field wave motion...measurements as well as far- field seismic measurements. This paper focuses on measurements and modeling of the near-field data. A complimentary

  14. Wide Band Low Noise Love Wave Magnetic Field Sensor System.

    PubMed

    Kittmann, Anne; Durdaut, Phillip; Zabel, Sebastian; Reermann, Jens; Schmalz, Julius; Spetzler, Benjamin; Meyners, Dirk; Sun, Nian X; McCord, Jeffrey; Gerken, Martina; Schmidt, Gerhard; Höft, Michael; Knöchel, Reinhard; Faupel, Franz; Quandt, Eckhard

    2018-01-10

    We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/[Formula: see text], a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.

  15. The electric field induced by a gravitational wave in a superconductor - A principle for a new gravitational wave antenna

    NASA Technical Reports Server (NTRS)

    Peng, Huei; Torr, Douglas G.

    1990-01-01

    This paper investigates the effect of gravitational waves on a superconductor. It is found that the key properties of a superconductor, namely zero resistance and perfect diamagnetism, give rise to an important new effect, the presence of an induced electric field E in the interior of the superconductor. The E field reacts with the ions and superelectrons. It is argued that the induced E field might provide a significantly more sensitive means of detecting gravitational waves. It appears likely that existing resonant-mass superconducting antennas with L about 3m, Q about 10 to the 8th could be readily modified to detect E fields induced by GWs of dimensionless amplitude h about 10 to the -24th.

  16. Near Field Ocean Surface Waves Acoustic Radiation Observation and Modeling

    NASA Astrophysics Data System (ADS)

    Ardhuin, F.; Peureux, C.; Royer, J. Y.

    2016-12-01

    The acoustic noise generation by nonlinearly interacting surface gravity waves has been studied for a long time both theoretically and experimentally [Longuet-Higgins 1951]. The associated far field noise is continuously measured by a vast network of seismometers at the ocean bottom and on the continents. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean.The pressure field at depths less than an acoustic wave length to the surface is made of evanescent modes which vanish away from their sources (near field) [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, where pressure measurements are performed at the ocean bottom (ca. 100 m) and at 300 m water depth respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modeling framework help assessing its performances and can be used to help future model improvements.References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.

  17. Numerical investigations of internal stresses on carbon steel based on ultrasonic LCR waves

    NASA Astrophysics Data System (ADS)

    Ramasamy, R.; Ibrahim, Z.; Chai, H. K.

    2017-10-01

    Internal stresses or residual stresses in the structural elements are very crucial in carrying out in-service evaluations and fitness-for-purpose assessments. The generation of these internal stresses can occur as result of the fabrication of the steel members, installation sequence or other ad-hoc events such as accidents or impact. The accurate prediction of the internal stresses will contribute towards estimating the integrity state of the structural elements, with respect to their material allowable stresses. This paper investigates the explicit FE based numerical modelling of the ultrasonic based non-destructive technique, utilising the measurable longitudinal critical refracted wave (LCR) and relating these to the internal stresses within the structural elements by the evaluation of the material dependent acoustoelastic factors. The subsurface travel path of the LCR wave inside the structural elements makes it a sub-surface stress measurement technique and the linearised relationship with corresponding internal stresses can be systematically applied repeatedly. The numerical results are compared against laboratory tests data to correlate the findings and to establish modelling feasibility for future proof-of-concepts. It can be concluded from this numerical investigation, that the subsurface ultrasonic LCR wave has great potential to be implemented for in-situ structural residual stress measurements, as compared to other available surface measurements such as strain gauges or x-ray diffraction.

  18. Near-field tsunami edge waves and complex earthquake rupture

    USGS Publications Warehouse

    Geist, Eric L.

    2013-01-01

    The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.

  19. The internal caustic structure of illuminated liquid droplets

    NASA Technical Reports Server (NTRS)

    Lock, James A.; Hovenac, Edward A.

    1991-01-01

    The internal electric field of an illuminated liquid droplet is studied in detail using both wave theory and ray theory. The internal field obtains its maximum values on the caustics within the droplet. Ray theory is used to determine the equations of these caustics and the density of rays on them. The Debye series expansion of the interior field Mie amplitudes is used to calculate the wave theory version of these caustics. The physical interpretation of the sources of stimulated Raman scattering and fluorescence emission within a liquid droplet is then given.

  20. Modeling internal wave generation by seamounts in oceans

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Buijsman, M. C.; Comino, E. L.; Swinney, H.

    2017-12-01

    Recent global bathymetric data at 30 arc-sec resolution has revealed that there are 33,452 seamounts and 138,412 knolls in the oceans. To develop an estimate for the energy converted from tidal flow to internal gravity waves, we have conducted numerical simulations using the Massachusetts Institute of Technology circulation model (MITgcm) to compute the energy conversion by randomly distributed Gaussian-shaped seamounts. We find that for an isolated axisymmetric seamount of height 1100 m and radius 1600 m, which corresponds to the Wessel height-to-radius ratio 0.69, the conversion rate is 100 kW, assuming a tidal speed amplitude 1 cm/s, buoyancy frequency 1e-3 rad/s, and circularly polarized tidal motion, and taking into account the earth's rotation. The 100 kW estimate is about 60% less than the 3-D linear theory prediction because fluid goes around a seamount instead of over it. Our estimate accounts the suppression of energy conversion due to wave interference at the generation site of closely spaced seamounts. We conclude that for randomly distributed Gaussian seamounts of varying widths and separations, separated on average by 18 km as in the oceans, wave interference reduces the energy conversion by seamounts by only about 16%. This result complements previous studies of wave interference for 2-D ridges.

  1. International Volcanological Field School: Introduction to Geohazard Research and Monitoring

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Kravchunovskaya, E. A.; Eichelberger, J. C.; Gordeev, E.; Novik, Y. O.; Chebrov, V. N.

    2012-12-01

    The Kurile-Kamchatka-Aleutian- Alaska portion of the Pacific Rim of Fire spans nearly 5,400 km. It is home for more than 110 active volcanoes, which produce 4-6 significant explosive eruptions per year. It is also the source of some of the largest tsunami-generating earthquakes in the history of mankind. Volcanic ash clouds and tsunami waves generated in this area travel for thousands of kilometers defying political boundaries, thus making the international cooperation crucial for mitigating geohazards in the Northern Pacifica. In 2003, the University of Alaska Fairbanks, the Institute of Volcanology and Seismology, the Vitus Bering Kamchatka State University, with strong support from the Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences, have established the International Volcanological Field School. This field camp serves as an introduction to volcanology and covers fundamental aspects of geohazard research and monitoring. Offered at both sides of the Russia-US border, the School attracts students from various disciplines and cultures, providing a direct access to the best examples of explosive volcanism at Katmai National Park in Alaska and at Mutnovsky & Gorely volcanoes in Kamchatka. It complements our efforts to build a strong geoscience community in the Northern Pacifica and serves as an important tool to attract brightest young scientists to geohazard research and monitoring.

  2. Wave-field decay rate estimate from the wavenumber-frequency spectra

    NASA Astrophysics Data System (ADS)

    Comisel, H.; Narita, Y.; Voros, Z.

    2017-12-01

    Observational data for wave or turbulent fields are conveniently analyzed and interpreted in the Fourier domain spanning the frequencies and the wavenumbers. If a wave field has not only oscillatory components (characterized by real parts of frequency) but also temporally decaying components (characterized by imaginary parts of frequency), the energy spectrum shows a frequency broadening around the peak due to the imaginary parts of frequency (or the decay rate). The mechanism of the frequency broadening is the same as that of the Breit-Wigner spectrum in nuclear resonance phenomena. We show that the decay rate can observationally and directly be estimated once multi-point data are available, and apply the method to Cluster four-point magnetometer data in the solar wind on a spatial scale of about 1000 km. The estimated decay rate is larger than the eddy turnover time, indicating that the decay profile of solar wind turbulence is more plasma physical such as excitation of whistler waves and other modes rather than hydrodynamic turbulence behavior.

  3. Study of internal gravity waves in the meteor zone

    NASA Technical Reports Server (NTRS)

    Gavrilov, N. M.

    1987-01-01

    An important component of the dynamical regime of the atmosphere at heights near 100 km are internal gravity waves (IGW) with periods from about 5 min to about 17.5 hrs which propagate from the lower atmospheric layers and are generated in the uppermost region of the atmosphere. As IGW propagate upwards, their amplitudes increase and they have a considerable effect on upper atmospheric processes: (1) they provide heat flux divergences comparable with solar heating; (2) they influence the gaseous composition and produce wave variations of the concentrations of gaseous components and emissions of the upper atmosphere; and (3) they cause considerable acceleration of the mean stream. It was concluded that the periods, wavelengths, amplitudes and velocities of IGW propagation in the meteor zone are now measured quite reliably. However, for estimating the influence of IGW on the thermal regime and the circulation of the upper atmosphere these parameters are not as important as the values of wave fluxes of energy, heat, moment and mass.

  4. Detection of acoustic waves by NMR using a radiofrequency field gradient

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J.; Franconi, Jean-Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D.

    2003-03-01

    A B1 field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 1 3¯3 1¯ RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.

  5. Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less

  6. Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines

    DOE PAGES

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    2016-11-10

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less

  7. Irregular wave functions of a hydrogen atom in a uniform magnetic field

    NASA Technical Reports Server (NTRS)

    Wintgen, D.; Hoenig, A.

    1989-01-01

    The highly excited irregular wave functions of a hydrogen atom in a uniform magnetic field are investigated analytically, with wave function scarring by periodic orbits considered quantitatively. The results obtained confirm that the contributions of closed classical orbits to the spatial wave functions vanish in the semiclassical limit. Their disappearance, however, is slow. This discussion is illustrated by numerical examples.

  8. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  9. Influence of hurricane wind field in the structure of directional wave spectra.

    NASA Astrophysics Data System (ADS)

    Esquivel-Trava, Bernardo; García-Nava, Hector; Osuna, Pedro; Ocampo-Torres, Francisco J.

    2017-04-01

    Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. One particular objective is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. Additionally the same experiments were carried out using the Wave Watch III model with the source terms formulation proposed by Ardhuin et al., 2010, with the aim of making comparisons between the physical processes that represent each formulation, and the latest results will be addressed. References Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., et al. (2010). Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. Journal of Physical Oceanography, 40(9), 1917-1941. doi:10.1175/2010JPO4324.1 Van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast. Eng., 54(2), 151-170. doi:10.1016/j.coastaleng.2006.08.006

  10. Control of wave propagation in a biological excitable medium by an external electric field.

    PubMed

    Sebestikova, Lenka; Slamova, Elena; Sevcikova, Hana

    2005-03-01

    We present an experimental evidence of effects of external electric fields (EFs) on the velocity of pulse waves propagating in a biological excitable medium. The excitable medium used is formed by a layer of starving cells of Dictyostelium discoideum through which the waves of increased concentration of cAMP propagate by reaction-diffusion mechanism. External dc EFs of low intensities (up to 5 V/cm) are shown to speed up the propagation of cAMP waves towards the positive electrode and slow it down towards the negative electrode. Electric fields were also found to support an emergence of new centers, emitting cAMP waves, in front of cAMP waves propagating towards the negative electrode.

  11. Effects of initial amplitude and pycnocline thickness on the evolution of mode-2 internal solitary waves

    NASA Astrophysics Data System (ADS)

    Cheng, Ming-Hung; Hsieh, Chih-Min; Hwang, Robert R.; Hsu, John R.-C.

    2018-04-01

    Numerical simulations are performed to investigate the effects of the initial amplitude and pycnocline thickness on the evolutions of convex mode-2 internal solitary waves propagating on the flat bottom. A finite volume method based on a Cartesian grid system is adopted to solve the Navier-Stokes equations using the improved delayed detached eddy simulation turbulent closure model. Mode-2 internal solitary waves (ISWs) are found to become stable at t = 15 s after lifting a vertical sluice gate by a gravity collapse mechanism. Numerical results from three cases of pycnocline thickness reveal the following: (1) the occurrence of a smooth mode-2 ISW when the wave amplitude is small; (2) the PacMan phenomenon for large amplitude waves; and (3) pseudo vortex shedding in the case of very large amplitudes. In general, basic wave properties (wave amplitude, wave speed, vorticity, and wave energy) increase as the wave amplitude increases for a specific value of the pycnocline thickness. Moreover, the pycnocline thickness chiefly determines the core size of a convex mode-2 ISW, while the step depth (that generates an initial wave amplitude) and offset in pycnocline govern the waveform type during its propagation on the flat bottom.

  12. Model for predicting mountain wave field uncertainties

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal

    2017-04-01

    Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of

  13. Observations of internal bores and waves of elevation on the New England inner continental shelf during summer 2001

    NASA Astrophysics Data System (ADS)

    Pritchard, Mark; Weller, Robert A.

    2005-03-01

    During July-August 2001, oceanographic variability on the New England inner continental shelf was investigated with an emphasis on temporal scales shorter than tidal periods. Mooring and ship survey data showed that subtidal variation of inner shelf stratification was in response to regional Ekman upwelling and downwelling wind driven dynamics. High-frequency variability in the vertical structure of the water column at an offshore mooring site was linked to the baroclinic internal tide and the onshore propagation of nonlinear solitary waves of depression. Temperature, salinity, and velocity data measured at an inshore mooring detected a bottom bore that formed on the flood phase of the tide. During the ebb tide, a second bottom discontinuity and series of nonlinear internal waves of elevation (IWOE) formed when the water column became for a time under hydraulic control. A surface manifestation of these internal wave crests was also observed in aircraft remote sensing imagery. The coupling of IWOE formation to the offshore solitary waves packets was investigated through internal wave breaking criterion derived in earlier laboratory studies. Results suggested that the offshore solitons shoaled on the sloping shelf, and transformed from waves of depression to waves of elevation. The coupling of inshore bore formation to the offshore solitary waves and the possible impact of these periodic features on mixing on the inner shelf region are discussed.

  14. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qi, E-mail: q.zhou@damtp.cam.ac.uk; Diamessis, Peter J.

    In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes driftmore » cancels each other out completely at the second order in wave steepness A, i.e., O(A{sup 2}), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A{sup 2}) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A{sup 2}) and thus particle dispersion on O(A{sup 4}). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.« less

  15. ERRATUM: Propagating Waves Transverse to the Magnetic Field in a Solar Prominence

    NASA Technical Reports Server (NTRS)

    Schmieder, B.; Kucera, T. A.; Knizhnik, K.; Luna, M.; Lopez-Ariste, A.; Toot, D.

    2014-01-01

    We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Halpha lines), Sac Peak (in Ha, Hß, and Na-D lines), and THEMIS ("Télescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires") with the MTR (MulTi-Raies) spectropolarimeter (in He D3 line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km/s, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.

  16. Plasma waves downstream of weak collisionless shocks

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Greenstadt, E. W.; Moses, S. L.; Smith, E. J.; Tsurutani, B. T.

    1993-01-01

    In September 1983 the International Sun Earth Explorer 3 (ISEE 3) International Cometary Explorer (ICE) spacecraft made a long traversal of the distant dawnside flank region of the Earth's magnetosphere and had many encounters with the low Mach number bow shock. These weak shocks excite plasma wave electric field turbulence with amplitudes comparable to those detected in the much stronger bow shock near the nose region. Downstream of quasi-perpendicular (quasi-parallel) shocks, the E field spectra exhibit a strong peak (plateau) at midfrequencies (1 - 3 kHz); the plateau shape is produced by a low-frequency (100 - 300 Hz) emission which is more intense behind downstream of two quasi-perpendicular shocks show that the low frequency signals are polarized parallel to the magnetic field, whereas the midfrequency emissions are unpolarized or only weakly polarized. A new high frequency (10 - 30 kHz) emission which is above the maximum Doppler shift exhibit a distinct peak at high frequencies; this peak is often blurred by the large amplitude fluctuations of the midfrequency waves. The high-frequency component is strongly polarized along the magnetic field and varies independently of the lower-frequency waves.

  17. Investigating Alfvénic wave propagation in coronal open-field regions

    PubMed Central

    Morton, R. J.; Tomczyk, S.; Pinto, R.

    2015-01-01

    The physical mechanisms behind accelerating solar and stellar winds are a long-standing astrophysical mystery, although recent breakthroughs have come from models invoking the turbulent dissipation of Alfvén waves. The existence of Alfvén waves far from the Sun has been known since the 1970s, and recently the presence of ubiquitous Alfvénic waves throughout the solar atmosphere has been confirmed. However, the presence of atmospheric Alfvénic waves does not, alone, provide sufficient support for wave-based models; the existence of counter-propagating Alfvénic waves is crucial for the development of turbulence. Here, we demonstrate that counter-propagating Alfvénic waves exist in open coronal magnetic fields and reveal key observational insights into the details of their generation, reflection in the upper atmosphere and outward propagation into the solar wind. The results enhance our knowledge of Alfvénic wave propagation in the solar atmosphere, providing support and constraints for some of the recent Alfvén wave turbulence models. PMID:26213234

  18. FOREWORD: Workshop on Large Amplitude Waves and Fields in Plasmas, sponsored by the Commission of the European Communities

    NASA Astrophysics Data System (ADS)

    Bingham, R.; De Angelis, U.; Shukla, P. K.; Stenflo, L.

    1990-01-01

    During the last decade considerable progress has been made in the area of nonlinear plasma wave phenomena and their applications. In order to exhibit the present state-of-art in this field, a one-week (22-26 May) workshop on Large Amplitude Waves and Fields was organized at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, during the bi-yearly activity of the Spring College on Plasma Physics (15 May-9 June, 1989). Most of the invited lectures are published in this Topical Issue of Physica Scripta so that scientists working, or who want to enter the field of nonlinear plasma wave theory, can find out what has been achieved and what are the current research trends in this area. The material included here consists of general plasma wave theory, results of computer simulations, and experimental verifications. Without going into any detail, we shall just highlight the topics and the general features of the lectures contained in these proceedings. Various aspects of the excitation, propagation and interaction of nonlinear waves in plasmas are reviewed. Their relevance to plasma-based beat wave accelerators, short pulse laser and particle beam wake-field accelerators, plasma lenses, laser fusion and ionospheric modification experiments is discussed. Some introductory lectures present the general physics of nonlinear plasma waves including the saturation mechanisms and wave breaking conditions for both non-relativistic and relativistic nonlinearities. Three wave and four wave processes which include stimulated Raman, Brillouin and Compton scattering, modulational instabilities, self-focusing and collapse of the waves are discussed, emphasizing the important effects due to the relativistic electron mass variation and ponderomotive force. Detailed numerical studies of the interaction of high frequency plasma waves with low frequency density fluctuations described by the Zakharov equations show the localization of the high frequency field in density

  19. Huygens' optical vector wave field synthesis via in-plane electric dipole metasurface.

    PubMed

    Park, Hyeonsoo; Yun, Hansik; Choi, Chulsoo; Hong, Jongwoo; Kim, Hwi; Lee, Byoungho

    2018-04-16

    We investigate Huygens' optical vector wave field synthesis scheme for electric dipole metasurfaces with the capability of modulating in-plane polarization and complex amplitude and discuss the practical issues involved in realizing multi-modulation metasurfaces. The proposed Huygens' vector wave field synthesis scheme identifies the vector Airy disk as a synthetic unit element and creates a designed vector optical field by integrating polarization-controlled and complex-modulated Airy disks. The metasurface structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise ratio of the synthesized field distribution. The design of practical metasurface structures with true vector modulation capability is possible through the analysis of the light field modulation characteristics of various complex modulated geometric phase metasurfaces. It is shown that the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, given that it is essential for a wide range of optical field synthetic applications, including holographic displays, microscopy, and optical lithography.

  20. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuroyanagi, Sachiko; Hiramatsu, Takashi; Yokoyama, Jun'ichi, E-mail: skuro@nagoya-u.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    2016-02-01

    We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reactsmore » to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.« less

  1. Shoaling of nonlinear internal waves in Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.C.; Butman, B.; Pineda, J.

    2008-01-01

    The shoaling of the nonlinear internal tide in Massachusetts Bay is studied with a fully nonlinear and nonhydrostatic model. The results are compared with current and temperature observations obtained during the August 1998 Massachusetts Bay Internal Wave Experiment and observations from a shorter experiment which took place in September 2001. The model shows how the approaching nonlinear undular bore interacts strongly with a shoaling bottom, offshore of where KdV theory predicts polarity switching should occur. It is shown that the shoaling process is dominated by nonlinearity, and the model results are interpreted with the aid of a two-layer nonlinear but hydrostatic model. After interacting with the shoaling bottom, the undular bore emerges on the shallow shelf inshore of the 30-m isobath as a nonlinear internal tide with a range of possible shapes, all of which are found in the available observational record. Copyright 2008 by the American Geophysical Union.

  2. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    NASA Technical Reports Server (NTRS)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  3. The effects of noise on binocular rivalry waves: a stochastic neural field model

    NASA Astrophysics Data System (ADS)

    Webber, Matthew A.; Bressloff, Paul C.

    2013-03-01

    We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave.

  4. A case study of the energy dissipation of the gravity wave field based on satellite altimeter measurements

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.

    1983-01-01

    Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.

  5. A region of intense plasma wave turbulence on auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1976-01-01

    This report presents a detailed study of the plasma wave turbulence observed by HAWKEYE-1 and IMP-6 on high latitude auroral field lines and investigates the relationship of this turbulence to magnetic field and plasma measurements obtained in the same region.

  6. Localizing high-lying Rydberg wave packets with two-color laser fields

    NASA Astrophysics Data System (ADS)

    Larimian, Seyedreza; Lemell, Christoph; Stummer, Vinzenz; Geng, Ji-Wei; Roither, Stefan; Kartashov, Daniil; Zhang, Li; Wang, Mu-Xue; Gong, Qihuang; Peng, Liang-You; Yoshida, Shuhei; Burgdörfer, Joachim; Baltuška, Andrius; Kitzler, Markus; Xie, Xinhua

    2017-08-01

    We demonstrate control over the localization of high-lying Rydberg wave packets in argon atoms with phase-locked orthogonally polarized two-color laser fields. With a reaction microscope, we measure ionization signals of high-lying Rydberg states induced by a weak dc field and blackbody radiation as a function of the relative phase between the two-color fields. We find that the dc-field-ionization yield of high-lying Rydberg argon atoms oscillates with the relative two-color phase with a period of 2 π while the photoionization signal by blackbody radiation shows a period of π . Accompanying simulations show that these observations are a clear signature of the asymmetric localization of electrons recaptured into very elongated (low angular momentum) high-lying Rydberg states after conclusion of the laser pulse. Our findings thus open an effective pathway to control the localization of high-lying Rydberg wave packets.

  7. Mapping the sources of the seismic wave field at Kilauea volcano, Hawaii, using data recorded on multiple seismic Antennas

    USGS Publications Warehouse

    Almendros, J.; Chouet, B.; Dawson, P.; Huber, Caleb G.

    2002-01-01

    Seismic antennas constitute a powerful tool for the analysis of complex wave fields. Well-designed antennas can identify and separate components of a complex wave field based on their distinct propagation properties. The combination of several antennas provides the basis for a more complete understanding of volcanic wave fields, including an estimate of the location of each individual wave-field component identified simultaneously by at least two antennas. We used frequency-slowness analyses of data from three antennas to identify and locate the different components contributing to the wave fields recorded at Kilauea volcano, Hawaii, in February 1997. The wave-field components identified are (1) a sustained background volcanic tremor in the form of body waves generated in a shallow hydrothermal system located below the northeastern edge of the Halemaumau pit crater; (2) surface waves generated along the path between this hydrothermal source and the antennas; (3) back-scattered surface wave energy from a shallow reflector located near the southeastern rim of Kilauea caldera; (4) evidence for diffracted wave components originating at the southeastern edge of Halemaumau; and (5) body waves reflecting the activation of a deeper tremor source between 02 hr 00 min and 16 hr 00 min Hawaii Standard Time on 11 February.

  8. Probing the internal composition of neutron stars with gravitational waves

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil; Yunes, Nicolás

    2015-11-01

    Gravitational waves from neutron star binary inspirals contain information about the as yet unknown equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure inside a neutron star as function of its density have been constructed by nuclear physicists. These models differ not only in the approximations and techniques they employ to solve the many-body Schrödinger equation, but also in the internal neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals up to contact will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties and behavior of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both normal and quark matter are typically harder to distinguish from normal matter stars. A gravitational wave detection with a signal-to-noise ratio of 20 and masses around 1.4 M⊙ would provide indications of the existence or absence of strange quark stars, while a signal-to-noise ratio 30 detection could either detect or rule out strange quark stars with a 20 to 1 confidence. The presence of kaon condensates or hyperons in neutron star inner cores cannot be easily confirmed. For example, for the equations of state studied in this paper, even a gravitational wave signal with a signal-to-noise ratio as high as 60 would not allow us to claim a detection of kaon condensates or hyperons with confidence greater than 5 to 1. On the other hand, if kaon condensates and hyperons do not form in neutron stars, a gravitational wave signal with similar signal-to-noise ratio would be able to

  9. Asymmetric Shock Wave Generation in a Microwave Rocket Using a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki

    2017-10-01

    A plasma pattern is reproduced by coupling simulations between a particle-in- cell with Monte Carlo collisions model and a finite-difference time-domain simulation for an electromagnetic wave propagation when an external magnetic field is applied to the breakdown volume inside a microwave-rocket nozzle. The propagation speed and energy-absorption rate of the plasma are estimated based on the breakdown simulation, and these are utilized to reproduce shock wave propagation, which provides impulsive thrust for the microwave rocket. The shock wave propagation is numerically reproduced by solving the compressible Euler equation with an energy source of the microwave heating. The shock wave is asymmetrically generated inside the nozzle when the electron cyclotron resonance region has a lateral offset, which generates lateral and angular impulses for postural control of the vehicle. It is possible to develop an integrated device to maintain beaming ight of the microwave rocket, achieving both axial thrust improvement and postural control, by controlling the spatial distribution of the external magnetic field.

  10. Wave-Sediment Interaction in Muddy Environments: Subbottom Field Experiment

    DTIC Science & Technology

    2011-09-30

    instrumentation deployed on nearby oil and gas platforms. WORK COMPLETED Field experiment and data analysis : The “Sub-bottom Field Experiment” project...Berkeley, Doctoral thesis, 149p. Chou, H.-T., M.A. Foda , and J.R. Hunt (1993). Rheological response of cohesive sediments to oscillatory forcing”, In...Wave dissipation by muddy seafloors, Geophys. Res. Lett. 35/7, L07611. Foda , A.M., J.R. Hunt, and H.-T. Chou (1993). A nonlinear model for the

  11. Wave-Sediment Interaction in Muddy Environments: A Field Experiment

    DTIC Science & Technology

    2007-01-01

    in Years 1 and 2 (2007-2008) and a data analysis and modeling effort in Year 3 (2009). 2. “A System for Monitoring Wave-Sediment Interaction in...project was to conduct a pilot field experiment to test instrumentation and data analysis procedures for the major field experiment effort scheduled in...Chou et al., 1993; Foda et al., 1993). With the exception of liquefaction processes, these models assume a single, well- defined mud phase

  12. Field patterns: A new type of wave with infinitely degenerate band structure

    NASA Astrophysics Data System (ADS)

    Mattei, Ornella; Milton, Graeme W.

    2017-12-01

    Field pattern materials (FP-materials) are space-time composites with PT-symmetry in which the one-dimensional-spatial distribution of the constituents changes in time in such a special manner to give rise to a new type of waves, which we call field pattern waves (FP-waves) (MILTON G. W. and MATTEI O., Proc. R. Soc. A, 473 (2017) 20160819; MATTEI O. and MILTON G. W., New J. Phys., 19 (2017) 093022). Specifically, due to the special periodic space-time geometry of these materials, when an instantaneous disturbance propagates through the system, the branching of the characteristic lines at the space-time interfaces between phases does not lead to a chaotic cascade of disturbances but concentrates on an orderly pattern of disturbances: this is the field pattern. In this letter, by applying Bloch-Floquet theory, we show that the dispersion diagrams associated with these FP-materials are infinitely degenerate: associated with each point on the dispersion diagram is an infinite space of Bloch functions. Each generalized function is concentrated on a specific field pattern, each parameterized by a variable that we call the launch parameter. The dynamics separates into independent dynamics on the different field patterns, each with the same dispersion relation.

  13. Measuring International Service Outcomes: Implications for International Social Work Field Placements

    ERIC Educational Resources Information Center

    Lough, Benjamin J.; McBride, Amanda Moore; Sherraden, Margaret S.

    2012-01-01

    International field placements are a unique educational opportunity for social work students to develop the skills they need for social work practice in a globalized world; however, outcomes of international placements have not been rigorously studied. This article reports on the International Volunteer Impacts Survey (IVIS), a 48-item survey…

  14. About the role of the source terms on the spatial structure of the wave field in hurricanes

    NASA Astrophysics Data System (ADS)

    Osuna, P.; Esquivel-Trava, B.; Ocampo-Torres, F. J.

    2012-04-01

    A numerical experiment has been carried out in order to study the structure of the wave field during hurricane conditions. High resolution wind data for a hurricane were obtained by the use of a Holland type asymmetric model. The third generation wind-wave model SWAN has been used in this study. A reference framework for the structure of the wave field in hurricanes is obtained using the NDBC directional buoy database in the Caribbean Sea and the Gulf of Mexico. This observational reference is used to assess the ability of the model to reproduce the complexity of the wave field observed in hurricanes. It is found that the numerical results are in good agreement with the observed wave field in the hurricane: higher waves are in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal. More complex spectral shapes are observed in the rear quadrants of the hurricane, where a tendency of the spectra to become multi-modal is observed. As pointed out by other authors, the wave field in the hurricane is dominated by swell propagating at significant angles to the local wind directions, except on a small region between the first and fourth quadrants. A deeper insight on the role of the physics that controls the evolution of the wave field is assessed by the analysis of the effect of the source terms computed by the wave model in the four quadrants of the hurricane. This is a contribution to the project CB-168173, funded by CONACYT.

  15. Analysis of Wave Fields induced by Offshore Pile Driving

    NASA Astrophysics Data System (ADS)

    Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.

    2015-12-01

    Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.

  16. Simulation the Effect of Internal Wave on the Acoustic Propagation

    NASA Astrophysics Data System (ADS)

    Ko, D. S.

    2005-05-01

    An acoustic radiation transport model with the Monte Carlo solution has been developed and applied to study the effect of internal wave induced random oceanic fluctuations on the deep ocean acoustic propagation. Refraction in the ocean sound channel is performed by means of bi-cubic spline interpolation of discrete deterministic ray paths in the angle(energy)-range-depth coordinates. Scattering by random internal wave fluctuations is accomplished by sampling a power law scattering kernel applying the rejection method. Results from numerical experiments show that the mean positions of acoustic rays are significantly displaced tending toward the sound channel axis due to the asymmetry of the scattering kernel. The spreading of ray depths and angles about the means depends strongly on frequency. The envelope of the ray displacement spreading is found to be proportional to the square root of range which is different from "3/2 law" found in the non-channel case. Suppression of the spreading is due to the anisotropy of fluctuations and especially due to the presence of sound channel itself.

  17. Field-aligned structure of the storm time Pc 5 wave of November 14-15, 1979

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Higbie, P. R.; Fennell, J. F.; Amata, E.

    1988-02-01

    Magnetic field data from the four satellites--SCATHA (P78-2), GOES 2, GOES 3, and GEOS 2--have been analyzed to examine the magnetic-field-aligned structure of a storm time Pc 5 wave which occurred on November 14-15, 1979. The wave had both transverse and compressional components. At a given instance, the compressional and the radial components oscillated in phase or 180 deg out of phase, and the compressional and the azimuthal components oscillated +90 deg or -90 deg out of phase. In addition, each component changed its amplitude with magnetic latitude: the compressional component had a minimum at the magnetic equator, whereas the transverse components had a maximum at the equator and minima several degrees off the equator. At 180 deg relative phase switching among the components occurred across the latitudes of amplitude minima. From these observations, the field-line displacement of the wave is confirmed to have an antisymmetric standing structure about the magnetic equator with a parallel wave length of a few earth radii. We aslo observed other intriguing properties of the wave, such as different parallel wavelengths of different field components and small-amplitude second harmonics near the nodes. A dielectric tensor appropriate for the ring current plasma is found to give an explanation for the relation between the polarization and the propagation of the wave. However, plasma data available from SCATHA do not support either the drift-mirror instability of Hasegawa or tht coupling between a drift mirror wave and a shear Alfven wave, as discussed by Walker et al.

  18. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    PubMed

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  19. From supersonic shear wave imaging to full-field optical coherence shear wave elastography

    NASA Astrophysics Data System (ADS)

    Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.

    2013-12-01

    Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.

  20. What controls the mass transport by mode-2 internal solitary-like waves?

    NASA Astrophysics Data System (ADS)

    Deepwell, David; Stastna, Marek

    2016-04-01

    Horizontally propagating internal waves are a regular occurrence in the coastal ocean. Their most commonly observed vertical structure is mode-1 in which isopycnals rise and fall in concert at all depths. Second mode waves, where isopycnals expand from and contract toward the pycnocline centre, have been found in recent observations to occur more frequently than previously thought. For the more common convex configuration, these waves mix the pycnocline, and under certain conditions form recirculating cores which efficiently transport material. In the laboratory, mode-2 waves are easily formed by releasing a mixed region into an ambient stratification. Using high resolution, three dimensional, direct numerical simulations of a laboratory configuration we describe the mass transport efficiency of mode-2 waves under a variety of different parameter regimes and initializations. We identify pycnocline configurations for which transport is especially efficient, and explore the structure of recirculating cores during their formation, propagation and disintegration and its implications on mass transport.

  1. Simplified derivation of the gravitational wave stress tensor from the linearized Einstein field equations.

    PubMed

    Balbus, Steven A

    2016-10-18

    A conserved stress energy tensor for weak field gravitational waves propagating in vacuum is derived directly from the linearized general relativistic wave equation alone, for an arbitrary gauge. In any harmonic gauge, the form of the tensor leads directly to the classical expression for the outgoing wave energy. The method described here, however, is a much simpler, shorter, and more physically motivated approach than is the customary procedure, which involves a lengthy and cumbersome second-order (in wave-amplitude) calculation starting with the Einstein tensor. Our method has the added advantage of exhibiting the direct coupling between the outgoing wave energy flux and the work done by the gravitational field on the sources. For nonharmonic gauges, the directly derived wave stress tensor has an apparent index asymmetry. This coordinate artifact may be straightforwardly removed, and the symmetrized (still gauge-invariant) tensor then takes on its widely used form. Angular momentum conservation follows immediately. For any harmonic gauge, however, the stress tensor found is manifestly symmetric from the start, and its derivation depends, in its entirety, on the structure of the linearized wave equation.

  2. Equatorial Wave Activity during NOAA's 2016 El Niño Rapid Response Field Campaign

    NASA Astrophysics Data System (ADS)

    Kiladis, G. N.; Dias, J.; Gehne, M.; Mayer, K.

    2016-12-01

    The El Niño Rapid Response (ENRR) field campaign targeted equatorial Pacific atmospheric convective activity during January-March 2016 through enhanced observations using dropsondes from the NOAA G-IV aircraft and radiosonde observations from Kiritimati (Christmas) Island and the NOAA research ship the Ronald H. Brown. This presentation examines the equatorial wave activity observed during ENRR and its relationship to tropical convection, and compares this activity to observations of past large El Niño events. The 2015-16 El Niño had much in common with the events during 1982-83 and 1997-98, with similar amplitude sea surface temperature (SST) anomalies, but also differed in several key aspects. All of these episodes featured enhanced convectively coupled Kelvin wave activity crossing the entire Pacific basin, which is generally absent during the northern winter seasons of near normal or La Niña SSTs. Prior to the ENRR period during December 2015 a large amplitude Madden-Julian Oscillation (MJO) was observed, with a convective signal that propagated unusually far to the east ( 150W). This was associated with an eastward displacement of the North Pacific storm track and heavy precipitation along the west coast of North America, broadly matching the large scale behavior of MJO evolution in statistical composites during El Niño. A second MJO-like event occurred during the latter part of February, 2016, but despite a similar convective heating field, the basic state flow was much different than during December, with a well-developed "westerly duct" which favored the intrusion of extratropical Rossby wave energy into the equatorial eastern Pacific region, as can be seen in E Vector fields. This latter event was accompanied by a distinct lack of an extended storm track and associated precipitation along the west coast of North America. Based on the preliminary results of AMIP simulations using observed SSTs, these differences are difficult to reproduce, and are

  3. High Transparency of Photosphere Plasma for Electromagnetic Waves Polarized Across Strong Magnetic Field on White Dwarfs

    NASA Astrophysics Data System (ADS)

    Koryagin, S. A.

    2015-06-01

    We showed that, in the photosphere of a white dwarf with strong magnetic field, the collisional absorption significantly decreases at the frequencies below the electron cyclotron frequency for the electromagnetic waves linearly polarized across the magnetic field lines (for the so-called extraordinary waves in a magnetized plasma). As a result, the extraordinary waves can escape from the deeper and hotter photosphere layers than the ordinary waves and, in this way, can determine the high linear polarization at the infrared and optical continuum.

  4. Analytical treatment of particle motion in circularly polarized slab-mode wave fields

    NASA Astrophysics Data System (ADS)

    Schreiner, Cedric; Vainio, Rami; Spanier, Felix

    2018-02-01

    Wave-particle interaction is a key process in particle diffusion in collisionless plasmas. We look into the interaction of single plasma waves with individual particles and discuss under which circumstances this is a chaotic process, leading to diffusion. We derive the equations of motion for a particle in the fields of a magnetostatic, circularly polarized, monochromatic wave and show that no chaotic particle motion can arise under such circumstances. A novel and exact analytic solution for the equations is presented. Additional plasma waves lead to a breakdown of the analytic solution and chaotic particle trajectories become possible. We demonstrate this effect by considering a linearly polarized, monochromatic wave, which can be seen as the superposition of two circularly polarized waves. Test particle simulations are provided to illustrate and expand our analytical considerations.

  5. Dynamo generation of a magnetic field by decaying Lehnert waves in a highly conducting plasma

    NASA Astrophysics Data System (ADS)

    Mizerski, Krzysztof A.; Moffatt, H. K.

    2018-03-01

    Random waves in a uniformly rotating plasma in the presence of a locally uniform seed magnetic field and subject to weak kinematic viscosity ? and resistivity ? are considered. These "Lehnert" waves may have either positive or negative helicity, and it is supposed that waves of a single sign of helicity are preferentially excited by a symmetry-breaking mechanism. A mean electromotive force proportional to ? is derived, demonstrating the conflicting effects of the two diffusive processes. Attention is then focussed on the situation ?, relevant to conditions in the universe before and during galaxy formation. An ?-effect, axisymmetric about the rotation vector, is derived, decaying on a time-scale proportional to ?; this amplifies a large-scale seed magnetic field to a level independent of ?, this field being subsequently steady and having the character of a "fossil field". Subsequent evolution of this fossil field is briefly discussed.

  6. Geometrical optics in the near field: local plane-interface approach with evanescent waves.

    PubMed

    Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari

    2015-01-12

    We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.

  7. Detection of sinkholes or anomalies using full seismic wave fields.

    DOT National Transportation Integrated Search

    2013-04-01

    This research presents an application of two-dimensional (2-D) time-domain waveform tomography for detection of embedded sinkholes and anomalies. The measured seismic surface wave fields were inverted using a full waveform inversion (FWI) technique, ...

  8. Internal Gravity Waves: Generation and Breaking Mechanisms by Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico

    2016-04-01

    Internal gravity waves (IGWs), occurring within estuaries and the coastal oceans, are manifest as large amplitude undulations of the pycnocline. IGWs propagating horizontally in a two layer stratified fluid are studied. The breaking of an IGW of depression shoaling upon a uniformly sloping boundary is investigated experimentally. Breaking dynamics beneath the shoaling waves causes both mixing and wave-induced near-bottom vortices suspending and redistributing the bed material. Laboratory experiments are conducted in a Perspex tank through the standard lock-release method, following the technique described in Sutherland et al. (2013). Each experiment is analysed and the instantaneous pycnocline position is measured, in order to obtain both geometric and kinematic features of the IGW: amplitude, wavelength and celerity. IGWs main features depend on the geometrical parameters that define the initial experimental setting: the density difference between the layers, the total depth, the layers depth ratio, the aspect ratio, and the displacement between the pycnoclines. Relations between IGWs geometric and kinematic features and the initial setting parameters are analysed. The approach of the IGWs toward a uniform slope is investigated in the present experiments. Depending on wave and slope characteristics, different breaking and mixing processes are observed. Sediments are sprinkled on the slope to visualize boundary layer separation in order to analyze the suspension e redistribution mechanisms due to the wave breaking.

  9. Resonance localization and poloidal electric field due to cyclo- tron wave heating in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, J.Y.; Chan, V.S.; Harvey, R.W.

    1984-08-06

    The perpendicular heating in cyclotron waves tends to pile up the resonant particles toward the low magnetic field side with their banana tips localized to the resonant surface. A poloidal electric field with an E x B drift comparable to the ion vertical drift in a toroidal magnetic field may result. With the assumption of anomalous electron and neoclassical ion transport, density variations due to wave heating are discussed.

  10. Formulation of the rotational transformation of wave fields and their application to digital holography.

    PubMed

    Matsushima, Kyoji

    2008-07-01

    Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.

  11. The influence of the magnetic field on running penumbral waves in the solar chromosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jess, D. B.; Reznikova, V. E.; Van Doorsselaere, T.

    2013-12-20

    We use images of high spatial and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the role magnetic field inclination angles play in the propagation characteristics of running penumbral waves in the solar chromosphere. Analysis of a near-circular sunspot, close to the center of the solar disk, reveals a smooth rise in oscillatory period as a function of distance from the umbral barycenter. However, in one directional quadrant, corresponding to the north direction, a pronounced kink in the period-distance diagram is found. Utilizing a combination of the inversion of magnetic Stokes vectors and force-free field extrapolations, wemore » attribute this behavior to the cut-off frequency imposed by the magnetic field geometry in this location. A rapid, localized inclination of the magnetic field lines in the north direction results in a faster increase in the dominant periodicity due to an accelerated reduction in the cut-off frequency. For the first time, we reveal how the spatial distribution of dominant wave periods, obtained with one of the highest resolution solar instruments currently available, directly reflects the magnetic geometry of the underlying sunspot, thus opening up a wealth of possibilities in future magnetohydrodynamic seismology studies. In addition, the intrinsic relationships we find between the underlying magnetic field geometries connecting the photosphere to the chromosphere, and the characteristics of running penumbral waves observed in the upper chromosphere, directly supports the interpretation that running penumbral wave phenomena are the chromospheric signature of upwardly propagating magneto-acoustic waves generated in the photosphere.« less

  12. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media

    PubMed Central

    Pan, De-Bei; Gao, Xiang; Feng, Xia; Pan, Jun-Ting; Zhang, Hong

    2016-01-01

    Spirals or scroll waves pinned to heterogeneities in cardiac tissues may cause lethal arrhythmias. To unpin these life-threatening spiral waves, methods of wave emission from heterogeneities (WEH) induced by low-voltage pulsed DC electric fields (PDCEFs) and circularly polarized electric fields (CPEFs) have been used in two-dimensional (2D) cardiac tissues. Nevertheless, the unpinning of scroll waves in three-dimensional (3D) cardiac systems is much more difficult than that of spiral waves in 2D cardiac systems, and there are few reports on the removal of pinned scroll waves in 3D cardiac tissues by electric fields. In this article, we investigate in detail the removal of pinned scroll waves in a generic model of 3D excitable media using PDCEF, AC electric field (ACEF) and CPEF, respectively. We find that spherical waves can be induced from the heterogeneities by these electric fields in initially quiescent excitable media. However, only CPEF can induce spherical waves with frequencies higher than that of the pinned scroll wave. Such higher-frequency spherical waves induced by CPEF can be used to drive the pinned scroll wave out of the cardiac systems. We hope this remarkable ability of CPEF can provide a better alternative to terminate arrhythmias caused by pinned scroll waves. PMID:26905367

  13. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media.

    PubMed

    Pan, De-Bei; Gao, Xiang; Feng, Xia; Pan, Jun-Ting; Zhang, Hong

    2016-02-24

    Spirals or scroll waves pinned to heterogeneities in cardiac tissues may cause lethal arrhythmias. To unpin these life-threatening spiral waves, methods of wave emission from heterogeneities (WEH) induced by low-voltage pulsed DC electric fields (PDCEFs) and circularly polarized electric fields (CPEFs) have been used in two-dimensional (2D) cardiac tissues. Nevertheless, the unpinning of scroll waves in three-dimensional (3D) cardiac systems is much more difficult than that of spiral waves in 2D cardiac systems, and there are few reports on the removal of pinned scroll waves in 3D cardiac tissues by electric fields. In this article, we investigate in detail the removal of pinned scroll waves in a generic model of 3D excitable media using PDCEF, AC electric field (ACEF) and CPEF, respectively. We find that spherical waves can be induced from the heterogeneities by these electric fields in initially quiescent excitable media. However, only CPEF can induce spherical waves with frequencies higher than that of the pinned scroll wave. Such higher-frequency spherical waves induced by CPEF can be used to drive the pinned scroll wave out of the cardiac systems. We hope this remarkable ability of CPEF can provide a better alternative to terminate arrhythmias caused by pinned scroll waves.

  14. Particle scavenging in a cylindrical ultrasonic standing wave field using levitated drops

    NASA Astrophysics Data System (ADS)

    Merrell, Tyler; Saylor, J. R.

    2015-11-01

    A cylindrical ultrasonic standing wave field was generated in a tube containing a flow of particles and fog. Both the particles and fog drops were concentrated in the nodes of the standing wave field where they combined and then grew large enough to fall out of the system. In this way particles were scavenged from the system, cleaning the air. While this approach has been attempted using a standing wave field established between disc-shaped transducers, a cylindrical resonator has not been used for this purpose heretofore. The resonator was constructed by bolting three Langevin transducers to an aluminum tube. The benefit of the cylindrical geometry is that the acoustic energy is focused. Furthermore, the residence time of the particle in the field can be increased by increasing the length of the resonator. An additional benefit of this approach is that tubes located downstream of the resonator were acoustically excited, acting as passive resonators that enhanced the scavenging process. The performance of this system on scavenging particles is presented as a function of particle diameter and volumetric flow rate. It is noted that, when operated without particles, the setup can be used to remove drops and shows promise for liquid aerosol retention from systems where these losses can be financially disadvantageous and/or hazardous.

  15. Improving the analysis of biogeochemical patterns associated with internal waves in the strait of Gibraltar using remote sensing images

    NASA Astrophysics Data System (ADS)

    Navarro, Gabriel; Vicent, Jorge; Caballero, Isabel; Gómez-Enri, Jesús; Morris, Edward P.; Sabater, Neus; Macías, Diego; Bolado-Penagos, Marina; Gomiz, Juan Jesús; Bruno, Miguel; Caldeira, Rui; Vázquez, Águeda

    2018-05-01

    High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the aim of examining the influence of HAIWs on biogeochemical processes. We used hyperspectral images from the Hyperspectral Imager for the Coastal Ocean (HICO) and high spatial resolution (10 m) images from the MultiSpectral Instrument (MSI) onboard the Sentinel-2A satellite. This work represents the first attempt to examine the relation between internal wave generation and the water constituents of the Camarinal Sill using hyperspectral and high spatial resolution remote sensing images. This enhanced spatial and spectral resolution revealed the detailed biogeochemical patterns associated with the internal waves and suggests local enhancements of productivity associated with internal waves trains.

  16. International Geomagnetic Reference Field: the third generation.

    USGS Publications Warehouse

    Peddie, N.W.

    1982-01-01

    In August 1981 the International Association of Geomagnetism and Aeronomy revised the International Geomagnetic Reference Field (IGRF). It is the second revision since the inception of the IGRF in 1968. The revision extends the earlier series of IGRF models from 1980 to 1985, introduces a new series of definitive models for 1965-1976, and defines a provisional reference field for 1975- 1980. The revision consists of: 1) a model of the main geomagnetic field at 1980.0, not continuous with the earlier series of IGRF models together with a forecast model of the secular variation of the main field during 1980-1985; 2) definitive models of the main field at 1965.0, 1970.0, and 1975.0, with linear interpolation of the model coefficients specified for intervening dates; and 3) a provisional reference field for 1975-1980, defined as the linear interpolation of the 1975 and 1980 main-field models.-from Author

  17. Topographically induced internal solitary waves in a pycnocline: Ultrasonic probes and stereo-correlation measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dossmann, Yvan, E-mail: yvan.dossmann@anu.edu.au; CNRM-GAME, UMR3589 METEO-FRANCE and CNRS, 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex 01; Laboratoire d’Aérologie, 14 avenue Edouard Belin, 31400 Toulouse

    Internal solitary waves (ISWs) are large amplitude stable waves propagating in regions of high density gradients such as the ocean pycnocline. Their dynamics has often been investigated in two-dimensional approaches, however, their three-dimensional evolution is still poorly known. Experiments have been conducted in the large stratified water tank of CNRM-GAME to study the generation of ISWs in two academic configurations inspired by oceanic regimes. First, ultrasonic probes are used to measure the interfacial displacement in the two configurations. In the primary generation case for which the two layers are of constant density, the generation of ISWs is investigated in twomore » series of experiments with varying amplitude and forcing frequency. In the secondary generation case for which the lower layer is stratified, the generation of ISWs from the impact of an internal wave beam on the pycnocline and their subsequent dynamics is studied. The dynamics of ISWs in these two regimes accords well with analytical approaches and numerical simulations performed in analogous configurations. Then, recent developments of a stereo correlation technique are used to describe the three-dimensional structure of propagating ISWs. In the primary generation configuration, small transverse effects are observed in the course of the ISW propagation. In the secondary generation configuration, larger transverse structures are observed in the interfacial waves dynamics. The interaction between interfacial troughs and internal waves propagating in the lower stratified layer are a possible cause for the generation of these structures. The magnitude of these transverse structures is quantified with a nondimensional parameter in the two configurations. They are twice as large in the secondary generation case as in the primary generation case.« less

  18. Dynamic ultraslow optical-matter wave analog of an event horizon.

    PubMed

    Zhu, C J; Deng, L; Hagley, E W; Ge, Mo-Lin

    2014-08-29

    We investigate theoretically the effects of a dynamically increasing medium index on optical-wave propagation in a rubidium condensate. A long pulsed pump laser coupling a D2 line transition produces a rapidly growing internally generated field. This results in a significant optical self-focusing effect and creates a dynamically growing medium index anomaly that propagates ultraslowly with the internally generated field. When a fast probe pulse injected after a delay catches up with the dynamically increasing index anomaly, it is forced to slow down and is prohibited from crossing the anomaly, thereby realizing an ultraslow optical-matter wave analog of a dynamic white-hole event horizon.

  19. The latitudinal structure of Pc 5 waves in space - Magnetic and electric field observations

    NASA Technical Reports Server (NTRS)

    Singer, H. J.; Kivelson, M. G.

    1979-01-01

    The occurrence frequency and spatial structure of Pc 5 magnetic pulsations in the dawnside of the plasma trough have been studied using data from the Ogo 5 satellite. The wave magnetic fields were obtained from the University of California, Los Angeles, flux-gate magnetometer measurements, and one component of the wave electric field was inferred from oscillations of the ion flux measured by the Lockheed light ion mass spectrometer. During portions of seven of the 19 passes comprising the survey, Pc 5 oscillations were observed in the ion flux but not in the magnetic field, and in each case the satellite was within 10 deg of the geomagnetic equator. Above 10 deg latitude, transverse magnetic and electric oscillations were both observed. The results are consistent with the model of a standing Alfven wave along a resonant field line with the geomagnetic equator as a node of the magnetic perturbation, that is, an odd mode.

  20. Metachronal wave of artificial cilia array actuated by applied magnetic field

    NASA Astrophysics Data System (ADS)

    Tsumori, Fujio; Marume, Ryuma; Saijou, Akinori; Kudo, Kentaro; Osada, Toshiko; Miura, Hideshi

    2016-06-01

    In this paper, a biomimetic microstructure related to cilia, which are effective fluidic and conveying systems in nature, is described. Authors have already reported that a magnetic elastomer pillar actuated by a rotating magnetic field can work like a natural cilium. In the present work, we show examples of a cilia array with a metachronal wave as the next step. A metachronal wave is a sequential action of a number of cilia. It is theoretically known that a metachronal wave gives a higher fluidic efficiency; however, there has been no report on a metachronal wave by artificial cilia. We prepared magnetic elastomer pillars that contain chainlike clusters of magnetic particles. The orientation of chains was set to be different in each pillar so that each pillar will deform with a different phase.

  1. Evidence of Ubiquitous Large-Amplitude Alfven waves in the Global Field-Aligned Current System

    NASA Astrophysics Data System (ADS)

    Pakhotin, I.; Mann, I.; Lysak, R. L.; Knudsen, D. J.; Burchill, J. K.; Gjerloev, J. W.; Rae, J.; Forsyth, C.; Murphy, K. R.; Miles, D.; Ozeke, L.; Balasis, G.

    2017-12-01

    Large-amplitude non-stationarities have been observed during an analysis of a quiescent field-aligned current system crossing using the multi-satellite Swarm constellation. Using simultaneous electric and magnetic field measurements it has been determined that these non-stationarities, reaching tens to hundreds of nanoteslas, are Alfvenic in nature. Evidence suggests that these large-amplitude Alfven waves are a ubiquitous, fundamentally inherent feature of and exist in a continuum with larger-scale field-aligned currents, and both can be explained using the same physical paradigm of reflected Alfven waves.

  2. Determination of the electric field strength of filamentary DBDs by CARS-based four-wave mixing

    NASA Astrophysics Data System (ADS)

    Böhm, P.; Kettlitz, M.; Brandenburg, R.; Höft, H.; Czarnetzki, U.

    2016-10-01

    It is demonstrated that a four-wave mixing technique based on coherent anti-Stokes Raman spectroscopy (CARS) can determine the electric field strength of a pulsed-driven filamentary dielectric barrier discharge (DBD) of 1 mm gap, using hydrogen as a tracer medium in nitrogen at atmospheric pressure. The measurements are presented for a hydrogen admixture of 10%, but even 5% H2 admixture delivers sufficient infrared signals. The lasers do not affect the discharge by photoionization or by other radiation-induced processes. The absolute values of the electric field strength can be determined by the calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. This procedure also enables the determination of the applied breakdown voltage. The alteration of the electric field is observed during the internal polarity reversal and the breakdown process. One advantage of the CARS technique over emission-based methods is that it can be used independently of emission, e.g. in the pre-phase and in between two consecutive discharges, where no emission occurs at all.

  3. The Generation and Propagation of Internal Solitary Waves in the South China Sea

    DTIC Science & Technology

    2013-12-05

    ISWs) have been frequently observed in the world oceans by satellite remote sensing [e.g., Apel et al., 1975; Osborne and Burch, 1980; Klemas, 2012...Kaartvedt et al., 2012], sedi- ment resuspension [Quaresma et al., 2007; Pomar et al., 2012], acoustic wave propagation [ Williams et al., 2001...073.1. Apel , J. R., H. M. Byrne, J. R. Proni, and R. L. Charnell (1975), Observa- tions of oceanic internal and surface-waves from earth resources

  4. Experimental Characterization of Guided Waves by Their Surface Displacement Vector Field

    NASA Astrophysics Data System (ADS)

    Barth, M.; Köhler, B.; Schubert, L.

    2009-03-01

    The development new nondestructive evaluation (NDE) and structural health monitoring (SHM) methods utilizing guided elastic waves needs a good understanding of wave propagation properties and the interaction of the waves with structures and defects. If the geometrical and stiffness properties of the components are well known, these effects can be studied very efficiently by numerical modeling. But very often there is a lack of precise knowledge of all necessary elastic properties; accurate and non-disturbing measurements are without alternative in these cases. The mapping of wave fields can be done by scanning laser vibrometers as demonstrated in a number of cases. Originally, a laser vibrometer provides only information from one displacement component. To get all three displacement components, the simultaneous measurement with three vibrometers is offered commercially. This is a very expensive approach. The paper describes a method which uses only one vibrometer sequentially for getting all three vector components. It allows determining additional parameters for characterizing wave modes as e.g. the ellipticity. The capability of this approach is demonstrated for the characterization of Lamb waves.

  5. A millimeter wave relativistic backward wave oscillator operating in TM{sub 03} mode with low guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Hu; Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an Shaanxi 710024

    2015-06-15

    A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM{sub 03} mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM{sub 03} mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM{sub 03} mode. In addition, the TM{sub 03} mode dominates over themore » other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM{sub 03} mode than on the TM{sub 01} mode.« less

  6. Magnetic field effects and waves in complex plasmas

    NASA Astrophysics Data System (ADS)

    Kählert, Hanno; Melzer, André; Puttscher, Marian; Ott, Torben; Bonitz, Michael

    2018-05-01

    Magnetic fields can modify the physical properties of a complex plasma in various different ways. Weak magnetic fields in the mT range affect only the electrons while strong fields in the Tesla regime also magnetize the ions. In a rotating dusty plasma, the Coriolis force substitutes the Lorentz force and can be used to create an effective magnetization for the strongly coupled dust particles while leaving electrons and ions unaffected. Here, we present a summary of our recent experimental and theoretical work on magnetized complex plasmas. We discuss the dynamics of dust particles in magnetized discharges, the wave spectra of strongly coupled plasmas, and the excitations in confined plasmas. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  7. The anatomy of floating shock fitting. [shock waves computation for flow field

    NASA Technical Reports Server (NTRS)

    Salas, M. D.

    1975-01-01

    The floating shock fitting technique is examined. Second-order difference formulas are developed for the computation of discontinuities. A procedure is developed to compute mesh points that are crossed by discontinuities. The technique is applied to the calculation of internal two-dimensional flows with arbitrary number of shock waves and contact surfaces. A new procedure, based on the coalescence of characteristics, is developed to detect the formation of shock waves. Results are presented to validate and demonstrate the versatility of the technique.

  8. Sociology of International Education--An Emerging Field of Research

    ERIC Educational Resources Information Center

    Resnik, Julia

    2012-01-01

    This article points to international education in elementary and post-elementary schools as an emerging and promising field of enquiry. It describes the state of art of this new field and sets out the nature of the research. The rapid development of international networks in recent decades; the contribution of international education policies to…

  9. Two-dimensional numerical simulations of shoaling internal solitary waves at the ASIAEX site in the South China Sea

    NASA Astrophysics Data System (ADS)

    Lamb, K. G.; Warn-Varnas, A.

    2015-05-01

    The interaction of barotropic tides with Luzon Strait topography generates some of the world's largest internal solitary waves which eventually shoal and dissipate on the western side of the northern South China Sea. Two-dimensional numerical simulations of the shoaling of a single internal solitary wave at the site of the Asian Seas International Acoustic Experiment (ASIAEX) have been undertaken in order to investigate the sensitivity of the shoaling process to the stratification and the underlying bathymetry and to explore the influence of rotation. The bulk of the simulations are inviscid; however, exploratory simulations using a vertical eddy-viscosity confined to a near bottom layer, along with a no-slip boundary condition, suggest that viscous effects may become important in water shallower than about 200 m. A shoaling solitary wave fissions into several waves. At depths of 200-300 m the front of the leading waves become nearly parallel to the bottom and develop a very steep back as has been observed. The leading waves are followed by waves of elevation (pedestals) that are conjugate to the waves of depression ahead and behind them. Horizontal resolutions of at least 50 m are required to simulate these well. Wave breaking was found to occur behind the second or third of the leading solitary waves, never at the back of the leading wave. Comparisons of the shoaling of waves started at depths of 1000 and 3000 m show significant differences and the shoaling waves can be significantly non-adiabatic even at depths greater than 2000 m. When waves reach a depth of 200 m, their amplitudes can be more than 50% larger than the largest possible solitary wave at that depth. The shoaling behaviour is sensitive to the presence of small-scale features in the bathymetry: a 200 m high bump at 700 m depth can result in the generation of many mode-two waves and of higher mode waves. Sensitivity to the stratification is considered by using three stratifications based on summer

  10. Large-amplitude internal waves benefit corals during thermal stress.

    PubMed

    Wall, M; Putchim, L; Schmidt, G M; Jantzen, C; Khokiattiwong, S; Richter, C

    2015-01-22

    Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Self-organising of wave and beach relief in storm: field experiments

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Olga; Saprykina, Yana; Kuznetsov, Sergey; Stremel, Margarita; Korsinin, Dmitry; Trifonova, Ekaterina; Andreeva, Natalia

    2017-04-01

    This paper presents results of waves and morfodynamics observation carried out in frame of complex field experiments "Shkorpilowtsy-2016" and "Shkorpilowtsy-2007", which were made in order to understand how bottom deformations depend on wave parameters and how wave-bottom self-organisation process runs during storm events. Sediment transport and profile deformations were analysed taking into account the presence of underwater bar (data 2007) and without it (data 2016). Experiments were made on field base of Institute of Oceanology "Fridtjof Nansen" (Bulgarian Academy of Sciences) in Shkorpilowtsy settlement, that is locates on Black Sea coast, 40 km from Varna. The base is equipped with 253 m research pier that provide measuring until 5 m depth on distance 200 m from shore. During filed works synchronous observations on wave parameters and bottom changes were made on average three times a day for one month: 18.09-08.10.2007 and 07.10-02.11.2016. Morphological observations involved cross-shore beach profile deformations measuring along the scientific pier from shore to sea through each 2 m using metal pole in 2007 and metal or rope lot in 2016. Wave measurements included visual observations of breaking and surf zones location, wave type (wind or swell wave) and direction as well as free surface deviation (wave chronogram) registrations using high-frequency capacitive or resistance sensors mounted along the pier. In 2007 registration of free surface elevation was carried out with 7 capacitance and 8 resistant wire gauges, in 2016 - with 18 capacitance wire gauges. Sampling frequency was 5 Hz in 2007 and 20 Hz in 2016, duration of the records varied from 20 min up to one hour in 2007 and between 10 min and one hour in 2016. Wave spectra computed from chronogram allowed to estimate wave spectral (significant wave height, spectral peak and mean periods and complex) and integral parameters (Irribaren and Ursell numbers) to analyse dependence bottom deformations on it

  12. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less

  13. A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. D.; Chang, P. C.; Chiang, W. Y.

    2015-11-15

    The gyro-monotron and gyrotron backward-wave oscillator (gyro-BWO) are the two oscillator versions of gyrotrons. While serving different functions, they are also radically different in the RF field formation mechanisms. The gyro-monotron RF field profile is essentially fixed by the resonant interaction structure, while the gyro-BWO possesses an extra degree of freedom in that the axial RF field profile is self-determined by the beam-wave interaction in a waveguide structure. The present study examines ways to utilize the latter feature for bandwidth broadening with a tapered magnetic field, while also employing a tapered waveguide to enhance the interaction efficiency. We begin withmore » a mode competition analysis, which suggests the theoretical feasibility of broadband frequency tuning in single-mode operation. It is then shown in theory that, by controlling the RF field profile with an up- or down-tapered magnetic field, the gyro-BWO is capable of efficient operation with a much improved tunable bandwidth.« less

  14. Generation and Propagation of Nonlinear Internal Waves in Sheared Currents Over the Washington Continental Shelf

    NASA Astrophysics Data System (ADS)

    Hamann, Madeleine M.; Alford, Matthew H.; Mickett, John B.

    2018-04-01

    The generation, propagation, and dissipation of nonlinear internal waves (NLIW) in sheared background currents is examined using 7 days of shipboard microstructure surveys and two moorings on the continental shelf offshore of Washington state. Surveys near the hypothesized generation region show semi-diurnal (D2) energy flux is onshore and that the ratio of energy flux to group speed times energy (F/cgE) increases sharply at the shelf break, suggesting that the incident D2 internal tide is partially reflected and partially transmitted. NLIW appear at an inshore mooring at the leading edge of the onshore phase of the baroclinic tide, consistent with nonlinear transformation of the shoaling internal tide as their generation mechanism. Of the D2 energy flux observed at the eastern extent of the generation region (133 ± 18 Wm-1), approximately 30% goes into the NLIW observed inshore (36 ± 11 Wm-1). Inshore of the moorings, 7 waves are tracked into shallow (30-40 m) water, where a vertically sheared, southward current becomes strong. As train-like waves propagate onshore, wave amplitudes of 25-30 m and energies of 5 MJ decrease to 12 m and 10 kJ, respectively. The observed direction of propagation rotates from 30° N of E to ˜30° S of E in the strongly sheared region. Linear ray tracing using the Taylor-Goldstein equation to incorporate parallel shear effects accounts for only a small portion of the observed rotation, suggesting that three-dimensionality of the wave crests and the background currents is important here.

  15. Wave properties near the subsolar magnetopause - Pc 3-4 energy coupling for northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Song, P.; Russell, C. T.; Strangeway, R. J.; Wygant, J. R.; Cattell, C. A.; Fitzenreiter, R. J.; Anderson, R. R.

    1993-01-01

    Strong slow mode waves in the Pc 3-4 frequency range are found in the magnetosheath close to the magnetopause. We have studied these waves at one of the ISEE subsolar magnetopause crossings using the magnetic field, electric field, and plasma measurements. We use the pressure balance at the magnetopause to calibrate the Fast Plasma Experiment data versus the magnetometer data. When we perform such a calibration and renormalization, we find that the slow mode structures are not in pressure balance and small scale fluctuations in the total pressure still remain in the Pc 3-4 range. Energy in the total pressure fluctuations can be transmitted through the magnetopause by boundary motions. The Poynting flux calculated from the electric and magnetic field measurements suggests that a net Poynting flux is transmitted into the magnetopause. The two independent measurements show a similar energy transmission coefficient. The transmitted energy flux is about 18 percent of the magnetic energy flux of the waves in the magnetosheath. Part of this transmitted energy is lost in the sheath transition layer before it enters the closed field line region. The waves reaching the boundary layer decay rapidly. Little wave power is transmitted into the magnetosphere.

  16. On generation and evolution of seaward propagating internal solitary waves in the northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Jiexin; Chen, Zhiwu; Xie, Jieshuo; Cai, Shuqun

    2016-03-01

    In this paper, the generation and evolution of seaward propagating internal solitary waves (ISWs) detected by satellite image in the northwestern South China Sea (SCS) are investigated by a fully nonlinear, non-hydrostatic, three-dimensional Massachusetts Institute of Technology general circulation model (MITgcm). The three-dimensional (3D) modeled ISWs agree favorably with those by satellite image, indicating that the observed seaward propagating ISWs may be generated by the interaction of barotropic tidal flow with the arc-like continental slope south of Hainan Island. Though the tidal current is basically in east-west direction, different types of internal waves are generated by tidal currents flowing over the slopes with different shaped shorelines. Over the slope where the shoreline is straight, only weak internal tides are generated; over the slope where the shoreline is seaward concave, large-amplitude internal bores are generated, and since the concave isobaths of the arc-like continental slope tend to focus the baroclinic tidal energy which is conveyed to the internal bores, the internal bores can efficiently disintegrate into a train of rank-ordered ISWs during their propagation away from the slope; while over the slope where the shoreline is seaward convex, no distinct internal tides are generated. It is also implied that the internal waves over the slope are generated due to mixed lee wave mechanism. Furthermore, the effects of 3D model, continental slope curvature, stratification, rotation and tidal forcing on the generation of ISWs are discussed, respectively. It is shown that, the amplitude and phase speed of ISWs derived from a two-dimensional (2D) model are smaller than those from the 3D one, and the 3D model has an advantage over 2D one in simulating the ISWs generated by the interaction between tidal currents and 3D curved continental slope; the reduced continental slope curvature hinders the extension of ISW crestline; both weaker stratification

  17. Do the freak waves exist in soliton gas?

    NASA Astrophysics Data System (ADS)

    Shurgalina, Ekaterina; Pelinovsky, Efim

    2016-04-01

    The possibility of short-lived anomalous large waves (rogue waves) in soliton gas in the frameworks of integrable models like the Korteweg - de Vries - type equations is studied. It is shown that the dynamics of heteropolar soliton gas differs sufficiently from the dynamics of unipolar soliton fields. In particular, in the wave fields consisting of solitons with different polarities the freak wave appearance is possible. It is shown numerically in [Shurgalina and Pelinovsky, 2015]. Freak waves in the framework of the modified Korteweg-de Vries equation have been studied previously in the case of narrowband initial conditions [Grimshaw et al, 2005, 2010; Talipova, 2011]. In this case, the mechanism of freak wave generation was modulation instability of modulated quasi-sinusoidal wave packets. At the same time the modulation instability of modulated cnoidal waves was studied in the mathematical work [Driscoll & O'Neil, 1976]. Since a sequence of solitary waves can be a special case of cnoidal wave, the modulation instability can be a possible mechanism of freak wave appearance in a soliton gas. Thus, we expect that rogue wave phenomenon in soliton gas appears in nonlinear integrable models admitting an existence of modulation instability of periodic waves (like cnoidal waves). References: 1. Shurgalina E.G., Pelinovsky E.N. Dynamics of irregular wave ensembles in the coastal zone, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. - Nizhny Novgorod, 2015, 179 pp. 2. Grimshaw R., Pelinovsky E., Talipova T., Sergeeva A. Rogue internal waves in the ocean: long wave model. European Physical Journal Special Topics, 2010, 185, 195 - 208. 3. Grimshaw R., Pelinovsky E., Talipova T., Ruderman M. Erdelyi R. Short-lived large-amplitude pulses in the nonlinear long-wave model described by the modified Korteweg-de Vries equation. Studied Applied Mathematics, 2005, 114 (2), 189. 4. Talipova T.G. Mechanisms of internal freak waves, Fundamental and Applied Hydrophysics

  18. Experimental and Numerical Investigation of Internal Gravity Waves Excited by Turbulent Penetrative Convection in Water Around Its Density Maximum

    NASA Astrophysics Data System (ADS)

    Perrard, Stéphane; Le Bars, Michaël; Le Gal, Patrice

    This study is devoted to the experimental and numerical analysis of the excitation of gravity waves by turbulent convection. This situation is representative of many geophysical or astrophysical systems such as the convective bottom layer of the atmosphere that radiates internal waves in the stratosphere, or the interaction between the convective and the radiative zones in stars. In our experiments, we use water as a working fluid as it possesses the remarkable property of having a maximum density at 4 °C. Therefore, when establishing on a water layer a temperature gradient between 0 °C at the bottom and room temperature at the top, a turbulent convective region appears spontaneously under a stably stratified zone. In these conditions, gravity waves are excited by the convective fluid motions penetrating the stratified layer. Although this type of flow, called penetrative convection, has already been described, we present here the first velocity field measurement of wave emission and propagation. We show in particular that an intermediate layer that we call the buffer layer emerges between the convective and the stratified zones. In this buffer layer, the angle of propagation of the waves varies with the altitude since it is slaved to the Brunt-Väisälä frequency which evolves rapidly between the convective and the stratified layer. A minimum angle is reached at the end of the buffer layer. Then we observe that an angle of propagation is selected when the waves travel through the stratified layer. We expect this process of wave selection to take place in natural situations.

  19. High field side launch of RF waves: A new approach to reactor actuators

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Baek, S. G.; Bonoli, P. T.; Faust, I. C.; LaBombard, B. L.; Lin, Y.; Mumgaard, R. T.; Parker, R. R.; Shiraiwa, S.; Vieira, R.; Whyte, D. G.; Wukitch, S. J.

    2015-12-01

    Launching radio frequency (RF) waves from the high field side (HFS) of a tokamak offers significant advantages over low field side (LFS) launch with respect to both wave physics and plasma material interactions (PMI). For lower hybrid (LH) waves, the higher magnetic field opens the window between wave accessibility (n∥≡c k∥/ω >√{1 -ωpi 2/ω2+ωpe 2/ωce 2 }+ωp e/|ωc e| ) and the condition for strong electron Landau damping (n∥˜√{30 /Te } with Te in keV), allowing LH waves from the HFS to penetrate into the core of a burning plasma, while waves launched from the LFS are restricted to the periphery of the plasma. The lower n∥ of waves absorbed at higher Te yields a higher current drive efficiency as well. In the ion cyclotron range of frequencies (ICRF), HFS launch allows for direct access to the mode conversion layer where mode converted waves absorb strongly on thermal electrons and ions, thus avoiding the generation of energetic minority ion tails. The absence of turbulent heat and particle fluxes on the HFS, particularly in double null configuration, makes it the ideal location to minimize PMI damage to the antenna structure. The quiescent SOL also eliminates the need to couple LH waves across a long distance to the separatrix, as the antenna can be located close to plasma without risking damage to the structure. Improved impurity screening on the HFS will help eliminate the long-standing issues of high Z impurity accumulation with ICRF. Looking toward a fusion reactor, the HFS is the only possible location for a plasma-facing RF antenna that will survive long-term. By integrating the antenna into the blanket module it is possible to improve the tritium breeding ratio compared with an antenna occupying an equatorial port plug. Blanket modules will require remote handling of numerous cooling pipes and electrical connections, and the addition of transmission lines will not substantially increase the level of complexity. The obvious engineering

  20. Modulation of wave fields by current and wind intensifications off the Catalan coast

    NASA Astrophysics Data System (ADS)

    Pallares Lopez, Elena; Sánchez-Arcilla, Agustin; Espino, Manuel

    2017-04-01

    The coupling between waves, ocean and atmospheric models has been one of the main topics in the physical oceanography community for the last decade. The resulting challenge is more difficult and relevant in coastal areas, where the interaction between wind, waves and currents fields is far from negligible, and therefore some sort of model coupling is required. However, it is important to remark that it is only during energetic "enough" events that the coupling becomes quantitatively significant. The Western Mediterranean sea is an area characterised by calm periods most of the year. However, coastal areas often present highly variable and heterogeneous wind, wave and current conditions, which make the numerical prediction of meteo-oceanographic processes difficult and with large associated local errors. Specifically, the Catalan coast is frequently affected by offshore wind intensifications channel by river valleys and by local current intensifications associated to coastal "bulges" (e.g. deltaic forms) that can reach up to 1 m/s in the surface. In this study we present different coupling strategies applied to both calm periods and energetic events, represented by the wind jets or current intensifications mentioned before, with the objective to quantify the effect of model coupling on the resulting wave fields off the Catalan coast. The SWAN wave model is used to model the wave fields, together with the ROMS oceanic model and the WRF atmospheric model. Two different types of coupling are considered: the first is a one-way coupling consisting in introducing the current field as an input for the SWAN wave model; the second one, consists in running in parallel the ROMS circulation model, the WRF atmospheric model and the SWAN wave model. The second methodology is more complex and should better reproduce the physics involved in the interactions, but requires an important computational capacity, not always available, so a critical comparison between the two

  1. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves.

    PubMed

    Shera, Christopher A; Cooper, Nigel P

    2013-04-01

    At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves.

  2. Characterization of nanosecond pulse electrical field shock waves using imaging techniques

    NASA Astrophysics Data System (ADS)

    Mimun, L. Chris; Ibey, Bennett L.; Roth, Caleb C.; Barnes, Ronald A.; Sardar, Dhiraj K.; Beier, Hope T.

    2015-03-01

    Nanosecond pulsed electric fields (nsPEF) cause the formation of small pores, termed nanopores, in the membrane of cells. Current nanoporation models treat nsPEF exposure as a purely electromagnetic phenomenon, but recent publications showing pressure transients, ROS production, temperature gradients, and pH waves suggest the stimulus may be physically and chemically multifactorial causing elicitation of diverse biological conditions and stressors. Our research group's goal is to quantify the breadth and participation of these stressors generated during nsPEF exposure and determine their relative importance to the observed cellular response. In this paper, we used advanced imaging techniques to identify a possible source of nsPEF-induced acoustic shock waves. nsPEFs were delivered in an aqueous media via a pair of 125 μm tungsten electrodes separated by 100 μm, mirroring our previously published cellular exposure experiments. To visualize any pressure transients emanating from the electrodes or surrounding medium, we used the Schlieren imaging technique. Resulting images and measurements confirmed that mechanical pressure waves and electrode-based stresses are formed during nsPEF, resulting in a clearer understanding of the whole exposure dosimetry. This information will be used to better quantify the impact of nsPEF-induced acoustic shock waves on cells, and has provided further evidence of non-electrical-field induced exposures for elicitation of bioieffects.

  3. Numerical study of interfacial solitary waves propagating under an elastic sheet

    PubMed Central

    Wang, Zhan; Părău, Emilian I.; Milewski, Paul A.; Vanden-Broeck, Jean-Marc

    2014-01-01

    Steady solitary and generalized solitary waves of a two-fluid problem where the upper layer is under a flexible elastic sheet are considered as a model for internal waves under an ice-covered ocean. The fluid consists of two layers of constant densities, separated by an interface. The elastic sheet resists bending forces and is mathematically described by a fully nonlinear thin shell model. Fully localized solitary waves are computed via a boundary integral method. Progression along the various branches of solutions shows that barotropic (i.e. surface modes) wave-packet solitary wave branches end with the free surface approaching the interface. On the other hand, the limiting configurations of long baroclinic (i.e. internal) solitary waves are characterized by an infinite broadening in the horizontal direction. Baroclinic wave-packet modes also exist for a large range of amplitudes and generalized solitary waves are computed in a case of a long internal mode in resonance with surface modes. In contrast to the pure gravity case (i.e without an elastic cover), these generalized solitary waves exhibit new Wilton-ripple-like periodic trains in the far field. PMID:25104909

  4. Body-wave traveltime and amplitude shifts from asymptotic travelling wave coupling

    USGS Publications Warehouse

    Pollitz, F.

    2006-01-01

    We explore the sensitivity of finite-frequency body-wave traveltimes and amplitudes to perturbations in 3-D seismic velocity structure relative to a spherically symmetric model. Using the approach of coupled travelling wave theory, we consider the effect of a structural perturbation on an isolated portion of the seismogram. By convolving the spectrum of the differential seismogram with the spectrum of a narrow window taper, and using a Taylor's series expansion for wavenumber as a function of frequency on a mode dispersion branch, we derive semi-analytic expressions for the sensitivity kernels. Far-field effects of wave interactions with the free surface or internal discontinuities are implicitly included, as are wave conversions upon scattering. The kernels may be computed rapidly for the purpose of structural inversions. We give examples of traveltime sensitivity kernels for regional wave propagation at 1 Hz. For the direct SV wave in a simple crustal velocity model, they are generally complicated because of interfering waves generated by interactions with the free surface and the Mohorovic??ic?? discontinuity. A large part of the interference effects may be eliminated by restricting the travelling wave basis set to those waves within a certain range of horizontal phase velocity. ?? Journal compilation ?? 2006 RAS.

  5. The dynamics of magnetic Rossby waves in spherical dynamo simulations: A signature of strong-field dynamos?

    NASA Astrophysics Data System (ADS)

    Hori, K.; Teed, R. J.; Jones, C. A.

    2018-03-01

    We investigate slow magnetic Rossby waves in convection-driven dynamos in rotating spherical shells. Quasi-geostrophic waves riding on a mean zonal flow may account for some of the geomagnetic westward drifts and have the potential to allow the toroidal field strength within the planetary fluid core to be estimated. We extend the work of Hori et al. (2015) to include a wider range of models, and perform a detailed analysis of the results. We find that a predicted dispersion relation matches well with the longitudinal drifts observed in our strong-field dynamos. We discuss the validity of our linear theory, since we also find that the nonlinear Lorentz terms influence the observed waveforms. These wave motions are excited by convective instability, which determines the preferred azimuthal wavenumbers. Studies of linear rotating magnetoconvection have suggested that slow magnetic Rossby modes emerge in the magnetostrophic regime, in which the Lorentz and Coriolis forces are in balance in the vorticity equation. We confirm this to be predominant balance for the slow waves we have detected in nonlinear dynamo systems. We also show that a completely different wave regime emerges if the magnetic field is not present. Finally we report the corresponding radial magnetic field variations observed at the surface of the shell in our simulations and discuss the detectability of these waves in the geomagnetic secular variation.

  6. Local magnetohydrodynamic instabilities and the wave-driven dynamo in accretion disks

    NASA Technical Reports Server (NTRS)

    Vishniac, Ethan T.; Diamond, Patrick

    1992-01-01

    We consider the consequences of magnetic buoyancy and the magnetic shearing instability (MSI) on the strength and organization of the magnetic field in a thin accretion disk. We discuss a model in which the wave-driven dynamo growth rate is balanced by the dissipative effects of the MSI. As in earlier work, the net helicity is due to small advective motions driven by nonlinear interactions between internal waves. Assuming a simple model of the internal wave spectrum generated from the primary m = 1 internal waves, we find that the magnetic energy density saturates at about (H/r) exp 4/3 times the local pressure (where H is the disk thickness and r is its radius). On very small scales the shearing instability will produce an isotropic fluctuating field. For a stationary disk this is equivalent to a dimensionless 'viscosity' of about (H/r) exp 4/3. The vertical and radial diffusion coefficients will be comparable to each other. Magnetic buoyancy will be largely suppressed by the turbulence due to the MSI. We present a rough estimate of its effects and find that it removes magnetic flux from the disk at a rate comparable to that caused by turbulent diffusion.

  7. The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Bonnell, J. W.; Goetz, K.; Ergun, R. E.; Mozer, F. S.; Bale, S. D.; Ludlam, M.; Turin, P.; Harvey, P. R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malsapina, D. M.; Bolton, M. K.; Hudson, M.; Strangeway, R. J.; Baker, D. N.; Li, X.; Albert, J.; Foster, J. C.; Chaston, C. C.; Mann, I.; Donovan, E.; Cully, C. M.; Cattell, C. A.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A.; Tao, J. B.

    2013-11-01

    The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ˜15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency

  8. Generation of field-aligned currents and Alfven waves by 3D magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Z.W.; Lee, L.C.; Otto, A.

    1995-07-01

    The authors have carried out a three-dimensional compressible MHD simulation to study the generation of field-aligned currents (FAC`s) and Alfven waves by magnetic reconnection for locally antiparallel magnetic fields across the current sheet. Reconnection is triggered by a localized resistivity. The results indicate that both FAC`s and Alfven waves are generated by the three-dimensional reconnection process. Two pairs of FAC`s are generated on each side of current sheet. The polarities of the resulting FAC pair in the leading bulge region are opposite to those of a FAC pair in the trailing quasi-steady region. It is further found that a largemore » portion of the FAC`s ({approximately}40%) is located in the closed field line region. They examine the Walen relation between FAC and parallel vorticity and find that Alfven waves are generated and propagate away from the reconnection site. They discuss the relevance of the results to the observed Region 1 FAC`s at noon. 15 refs., 4 figs.« less

  9. Southern Ocean monthly wave fields for austral winters 1985-1988 by Geosat radar altimeter

    USGS Publications Warehouse

    Josberger, E.G.; Mognard, N.M.

    1996-01-01

    Four years of monthly averaged wave height fields for the austral winters 19851988 derived from the Geosat altimeter data show a spatial variability of the scale of 500-1000 km that varies monthly and annually. This variability is superimposed on the zonal patterns surrounding the Antarctic continent and characteristic of the climatology derived from the U.S. Navy [1992] Marine Climatic Atlas of the World. The location and the intensity of these large-scale features, which are not found in the climatological fields, exhibit strong monthly and yearly variations. A global underestimation of the climatological mean wave heights by more than l m is also found over large regions of the Southern Ocean. The largest monthly averaged significant wave heights are above 5 m and are found during August of every year in the Indian Ocean, south of 40??S. The monthly wave fields show more variability in the Atlantic and Pacific Oceans than in the Indian Ocean. The Seasat data from 1978 and the Geosat data from 1985 and 1988 show an eastward rotation of the largest wave heights. However, this rotation is absent in 1986 and 1987; the former was a year of unusually low sea states, and the latter was a year of unusually high sea states, which suggests a link to the El Nin??o-Southern Oscillation event of 1986. Copyright 1996 by the American Geophysical Union.

  10. Plane-parallel waves as duals of the flat background III: T-duality with torsionless B-field

    NASA Astrophysics Data System (ADS)

    Hlavatý, Ladislav; Petr, Ivo; Petrásek, Filip

    2018-04-01

    By addition of non-zero, but torsionless B-field, we expand the classification of (non-)Abelian T-duals of the flat background in four dimensions with respect to 1, 2, 3 and 4D subgroups of the Poincaré group. We discuss the influence of the additional B-field on the process of dualization, and identify essential parts of the torsionless B-field that cannot in general be eliminated by coordinate or gauge transformation of the dual background. These effects are demonstrated using particular examples. Due to their physical importance, we focus on duals whose metrics represent plane-parallel (pp-)waves. Besides the previously found metrics, we find new pp-waves depending on parameters originating from the torsionless B-field. These pp-waves are brought into their standard forms in Brinkmann and Rosen coordinates.

  11. Source and path effects in the wave fields of tremor and explosions at Stromboli Volcano, Italy

    USGS Publications Warehouse

    Chouet, B.; Saccorotti, G.; Martini, M.; Dawson, P.; De Luca, G.; Milana, G.; Scarpa, R.

    1997-01-01

    The wave fields generated by Strombolian activity are investigated using data from small-aperture seismic arrays deployed on the north flank of Stromboli and data from seismic and pressure transducers set up near the summit crater. Measurements of slowness and azimuth as a function of time clearly indicate that the sources of tremor and explosions are located beneath the summit crater at depths shallower than 200 m with occasional bursts of energy originating from sources extending to a depth of 3 km. Slowness, azimuth, and particle motion measurements reveal a complex composition of body and surface waves associated with topography, structure, and source properties. Body waves originating at depths shallower than 200 m dominate the wave field at frequencies of 0.5-2.5 Hz, and surface waves generated by the surficial part of the source and by scattering sources distributed around the island dominate at frequencies above 2.5 Hz. The records of tremor and explosions are both dominated by SH motion. Far-field records from explosions start with radial motion, and near-field records from those events show dominantly horizontal motion and often start with a low-frequency (1-2 Hz) precursor characterized by elliptical particle motion, followed within a few seconds by a high-frequency radial phase (1-10 Hz) accompanying the eruption of pyroclastics. The dominant component of the near- and far-field particle motions from explosions, and the timing of air and body wave phases observed in the near field, are consistent with a gaspiston mechanism operating on a shallow (<200 m deep), vertical crack-like conduit. Models of a degassing fluid column suggest that noise emissions originating in the collective oscillations of bubbles ascending in the magma conduit may provide an adequate self-excitation mechanism for sustained tremor generation at Stromboli. Copyright 1997 by the American Geophysical Union.

  12. Fast wave power flow along SOL field lines in NSTX

    NASA Astrophysics Data System (ADS)

    Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; Leblanc, B. P.; Kramer, G. J.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; Green, D. L.; McLean, A.; Maingi, R.; Ryan, P. M.; Jaeger, E. F.; Sabbagh, S.

    2012-10-01

    On NSTX, a major loss of high-harmonic fast wave (HHFW) power can occur along open field lines passing in front of the antenna over the width of the scrape-off layer (SOL). Up to 60% of the RF power can be lost and at least partially deposited in bright spirals on the divertor floor and ceiling [1,2]. The flow of HHFW power from the antenna region to the divertor is mostly aligned along the SOL magnetic field [3], which explains the pattern of heat deposition as measured with infrared (IR) cameras. By tracing field lines from the divertor back to the midplane, the IR data can be used to estimate the profile of HHFW power coupled to SOL field lines. We hypothesize that surface waves are being excited in the SOL, and these results should benchmark advanced simulations of the RF power deposition in the SOL (e.g., [4]). Minimizing this loss is critical optimal high-power long-pulse ICRF heating on ITER while guarding against excessive divertor erosion.[4pt] [1] J.C. Hosea et al., AIP Conf Proceedings 1187 (2009) 105. [0pt] [2] G. Taylor et al., Phys. Plasmas 17 (2010) 056114. [0pt] [3] R.J. Perkins et al., to appear in Phys. Rev. Lett. [0pt] [4] D.L. Green et al., Phys. Rev. Lett. 107 (2011) 145001.

  13. Propagation of large-amplitude waves on dielectric liquid sheets in a tangential electric field: exact solutions in three-dimensional geometry.

    PubMed

    Zubarev, Nikolay M; Zubareva, Olga V

    2010-10-01

    Nonlinear waves on sheets of dielectric liquid in the presence of an external tangential electric field are studied theoretically. It is shown that waves of arbitrary shape in three-dimensional geometry can propagate along (or against) the electric field direction without distortion, i.e., the equations of motion admit a wide class of exact traveling wave solutions. This unusual situation occurs for nonconducting ideal liquids with high dielectric constants in the case of a sufficiently strong field strength. Governing equations for evolution of plane symmetric waves on fluid sheets are derived using conformal variables. A dispersion relation for the evolution of small perturbations of the traveling wave solutions is obtained. It follows from this relation that, regardless of the wave shape, the amplitudes of small-scale perturbations do not increase with time and, hence, the traveling waves are stable. We also study the interaction of counterpropagating symmetric waves with small but finite amplitudes. The corresponding solution of the equations of motion describes the nonlinear superposition of the oppositely directed waves. The results obtained are applicable for the description of long waves on fluid sheets in a horizontal magnetic field.

  14. 3-component beamforming analysis of ambient seismic noise field for Love and Rayleigh wave source directions

    NASA Astrophysics Data System (ADS)

    Juretzek, Carina; Hadziioannou, Céline

    2014-05-01

    Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.

  15. Asymptotic behavior of Nambu-Bethe-Salpeter wave functions for multiparticles in quantum field theories

    NASA Astrophysics Data System (ADS)

    Aoki, Sinya; Ishii, Noriyoshi; Doi, Takumi; Ikeda, Yoichi; Inoue, Takashi

    2013-07-01

    We derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than two particles in quantum field theories. To deal with n particles in the center-of-mass frame coherently, we introduce the Jacobi coordinates of n particles and then combine their 3(n-1) coordinates into the one spherical coordinate in D=3(n-1) dimensions. We parametrize the on-shell T matrix for n scalar particles at low energy using the unitarity constraint of the S matrix. We then express asymptotic behaviors of the NBS wave function for n particles at low energy in terms of parameters of the T matrix and show that the NBS wave function carries information of the T matrix such as phase shifts and mixing angles of the n-particle system in its own asymptotic behavior, so that the NBS wave function can be considered as the scattering wave of n particles in quantum mechanics. This property is one of the essential ingredients of the HAL QCD scheme to define “potential” from the NBS wave function in quantum field theories such as QCD. Our results, together with an extension to systems with spin 1/2 particles, justify the HAL QCD’s definition of potentials for three or more nucleons (or baryons) in terms of the NBS wave functions.

  16. Towards the Third Wave of School Effectiveness and Improvement in Hong Kong: Internal, Interface and Future.

    ERIC Educational Resources Information Center

    Cheng, Yin Cheong

    This presentation reports on three waves of reform efforts for school effectiveness and improvement in Hong Kong, and analyzes related challenges and issues with the hope of drawing international implications for ongoing research and reform efforts in different parts of the world. These three waves represent paradigm shifts and different…

  17. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ribó, Marta; Puig, Pere; Muñoz, Araceli; Lo Iacono, Claudio; Masqué, Pere; Palanques, Albert; Acosta, Juan; Guillén, Jorge; Gómez Ballesteros, María

    2016-01-01

    Detailed analysis of recently acquired swath bathymetry, together with high-resolution seismic profiles and bottom sediment samples, revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. As many other deep-water sediment waves, these features were previously attributed to gravitational slope failure, related to creep-like deformation, and are here reinterpreted as sediment wave fields extending from 250 m depth to the continental rise, at 850 m depth. Geometric parameters were computed from the high-resolution multibeam dataset. Sediment wave lengths range between 500 and 1000 m, and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to minimum values of 2 m high. Sediment waves on the lower part of the slope are quasi-stationary vertically accreting, whereas they show an upslope migrating pattern from the mid-slope to the upper part of the continental slope. High-resolution seismic profiles show continuous internal reflectors, with sediment waves merging down-section and sediment wave packages decreasing in thickness downslope. These sediment packages are thicker on the crest of each individual sediment wave and thinner on the downslope flank. 210Pb analyses conducted on sediment cores collected over the sediment wave fields also indicate slightly higher sediment accumulation rates on the wave crests. Sediment wave formation processes have been inferred from contemporary hydrodynamic observations, which reveal the presence of near-inertial internal waves interacting with the Gulf of Valencia continental slope. Internal wave activity is suggested to be the preferential mechanism for the transport and deposition of sediment, and the maintenance of the observed sediment wave fields.

  18. Wiggly tails: A gravitational wave signature of massive fields around black holes

    NASA Astrophysics Data System (ADS)

    Degollado, Juan Carlos; Herdeiro, Carlos A. R.

    2014-09-01

    Massive fields can exist in long-lived configurations around black holes. We examine how the gravitational wave signal of a perturbed black hole is affected by such "dirtiness" within linear theory. As a concrete example, we consider the gravitational radiation emitted by the infall of a massive scalar field into a Schwarzschild black hole. Whereas part of the scalar field is absorbed/scattered by the black hole and triggers gravitational wave emission, another part lingers in long-lived quasibound states. Solving numerically the Teukolsky master equation for gravitational perturbations coupled to the massive Klein-Gordon equation, we find a characteristic gravitational wave signal, composed by a quasinormal ringing followed by a late time tail. In contrast to "clean" black holes, however, the late time tail contains small amplitude wiggles with the frequency of the dominating quasibound state. Additionally, an observer dependent beating pattern may also be seen. These features were already observed in fully nonlinear studies; our analysis shows they are present at linear level, and, since it reduces to a 1+1 dimensional numerical problem, allows for cleaner numerical data. Moreover, we discuss the power law of the tail and that it only becomes universal sufficiently far away from the dirty black hole. The wiggly tails, by constrast, are a generic feature that may be used as a smoking gun for the presence of massive fields around black holes, either as a linear cloud or as fully nonlinear hair.

  19. Educing the emission mechanism of internal gravity waves in the differentially heat rotating annulus

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Hien, Steffen; Achatz, Ulrich; Borchert, Sebastian; Fruman, Mark

    2016-04-01

    geostrophic balance. For the first stage of this investigation, we separated the flow between a balance and an imbalanced part at first order in Rossby number: the balanced pressure field was computed through an inversion of the potential vorticity equation [3]. The balanced horizontal velocity field and buoyancy were then computed using the geostrophic and hydrostatic balance conditions. We first checked that this decomposition gave on the one hand a large scaled balanced flow, comprising mostly of the baroclinic wave, and on the other hand a small scale flow comprising mostly of the gravity wave signal. We then proceeded with the central stage of the validation: we simulated the tangent linear dynamics of the imbalanced part of the flow [4]. The equations are linearised about the balanced part, and any imbalances forces the modeled imbalanced part. The output of this simulation compares very well with the actual imbalanced part, thus confirming that the observed gravity waves are indeed generated through spontaneous imbalance. To our knowledge, this is the first demonstration of emission by this mechanism in a flow which is not idealised: a flow which can be obtained as a result of a numerical simulation of primitive equations or actually observed in a laboratory experiment. References [1] R. Plougonven, F. Zhang, Internal gravity waves from atmospheric jets and fronts, Rev. Geophys. 52, 33-76 (2014). [2] S. Borchert, U. Achatz, M.D. Fruman, Spontaneous Gravity wave emission in the differentially heated annulus, J. Fluid Mech. 758, 287-311 (2014). [3] F. Zhang, S.E . Koch, C. A. Davis, M. L. Kaplan, A Survey of unbalanced flow diagnostics and their application, Adv. Atmo. Sci. 17, 165-183 (2000). [4] S. Wang, F. Zhang, Source of gravity waves within a vortex dipole jet revealed by a linear model, J. Atmo. Sci. 67, 1438-1455 (2010).

  20. The propagation characteristics of electromagnetic waves through plasma in the near-field region of low-frequency loop antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, DongLin, E-mail: donglinliu@stu.xidian.edu.cn; Li, XiaoPing; Xie, Kai

    2015-10-15

    A high-speed vehicle flying through the atmosphere between 100 and 20 km may suffer from a “communication blackout.” In this paper, a low frequency system with an on-board loop antenna to receive signals is presented as a potential blackout mitigation method. Because the plasma sheath is in the near-field region of the loop antenna, the traditional scattering matrix method that is developed for the far-field region may overestimate the electromagnetic (EM) wave's attenuation. To estimate the EM wave's attenuation in the near-field region, EM interference (EMI) shielding theory is introduced. Experiments are conducted, and the results verify the EMI shielding theory'smore » effectiveness. Simulations are also conducted with different plasma parameters, and the results obtained show that the EM wave's attenuation in the near-field region is far below than that in the far-field region. The EM wave's attenuation increases with the increase in electron density and decreases with the increase in collision frequency. The higher the frequency, the larger is the EM wave's attenuation. During the entire re-entry phase of a RAM-C module, the EM wave's attenuations are below 10 dB for EM waves with a frequency of 1 MHz and below 1 dB for EM waves with a frequency of 100 kHz. Therefore, the low frequency systems (e.g., Loran-C) may provide a way to transmit some key information to high-speed vehicles even during the communication “blackout” period.« less

  1. Field-aligned structure of the storm time Pc 5 wave of November 14-15, 1979

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Higbie, P. R.; Fennell, J. F.; Amata, E.

    1987-06-01

    Magnetic field data from the four satellites SCATHA (P78-2), GOES 2, GOES 3, and GOES 2 have been analyzed to examine the magnetic field-aligned structure of a storm time Pc 5 wave that occurred on November 14-15, 1979. The wave had both transverse and compressional components. At a given instance, the compressional and the radial components oscillated in phase or 180 deg out of phase, and the compressional and the azimuthal components oscillated +90 deg or -90 deg out of phase. In addition, each component changed its amplitude with magnetic latitude: the compressional component had a minimum at the magnetic equator, whereas the transverse components had a maximum at the equator and minima several degrees off the equator. A 180 deg relative phase switching among the components occurred across the latitudes of amplitude minima. From these observations, the field line displacement of the wave is confirmed to have an antisymmetric standing structure about the magnetic equator with a parallel wave length of a few earth radii.

  2. Coherent Nuclear Wave Packets in Q States by Ultrafast Internal Conversions in Free Base Tetraphenylporphyrin.

    PubMed

    Kim, So Young; Joo, Taiha

    2015-08-06

    Persistence of vibrational coherence in electronic transition has been noted especially in biochemical systems. Here, we report the dynamics between electronic excited states in free base tetraphenylporphyrin (H2TPP) by time-resolved fluorescence with high time resolution. Following the photoexcitation of the B state, ultrafast internal conversion occurs to the Qx state directly as well as via the Qy state. Unique and distinct coherent nuclear wave packet motions in the Qx and Qy states are observed through the modulation of the fluorescence intensity in time. The instant, serial internal conversions from the B to the Qy and Qx states generate the coherent wave packets. Theory and experiment show that the observed vibrational modes involve the out-of-plane vibrations of the porphyrin ring that are strongly coupled to the internal conversion of H2TPP.

  3. Weak magnetic field, solid-envelope rotation, and wave-induced N-enrichment in the SPB star ζ Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Briquet, M.; Neiner, C.; Petit, P.; Leroy, B.; de Batz, B.

    2016-03-01

    Aims: The main-sequence B-type star ζ Cassiopeiae is known as a N-rich star with a magnetic field discovered with the Musicos spectropolarimeter. We model the magnetic field of the star by means of 82 new spectropolarimetric observations of higher precision to investigate the field strength, topology, and effect. Methods: We gathered data with the Narval spectropolarimeter installed at Télescope Bernard Lyot (TBL; Pic du Midi, France) and applied the least-squares deconvolution technique to measure the circular polarisation of the light emitted from ζ Cas. We used a dipole oblique rotator model to determine the field configuration by fitting the longitudinal field measurements and by synthesizing the measured Stokes V profiles. We also made use of the Zeeman-Doppler imaging technique to map the stellar surface and to deduce the difference in rotation rate between the pole and equator. Results: ζ Cas exhibits a polar field strength Bpol of 100-150 G, which is the weakest polar field observed so far in a massive main-sequence star. Surface differential rotation is ruled out by our observations and the field of ζ Cas is strong enough to enforce rigid internal rotation in the radiative zone according to theory. Thus, the star rotates as a solid body in the envelope. Conclusions: We therefore exclude rotationally induced mixing as the cause of the surface N-enrichment. We discuss that the transport of chemicals from the core to the surface by internal gravity waves is the most plausible explanation for the nitrogen overabundance at the surface of ζ Cas. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique (CNRS) of France.

  4. The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures

    NASA Astrophysics Data System (ADS)

    Wang, Hongmei; Zhang, Yafei; Xu, Huaizhe

    2007-01-01

    The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures, which is significant but has been frequently omitted in previous theoretical methods, has been reported in this paper. The analytical expressions of the longitudinal energies of quasibound levels (LEQBL) and the lifetimes of quasibound levels (LQBL) in symmetrical double-barrier (SDB) structures have been derived as a function of transverse wave vector and longitudinal magnetic fields perpendicular to interfaces. Based on our derived analytical expressions, the LEQBL and LQBL dependence upon transverse wave vector and longitudinal magnetic fields has been explored numerically for a SDB structure. Model calculations show that the LEQBL decrease monotonically and the LQBL shorten with increasing transverse wave vector, and each original LEQBL splits to a series of sub-LEQBL which shift nearly linearly toward the well bottom and the lifetimes of quasibound level series (LQBLS) shorten with increasing Landau-level indices and magnetic fields.

  5. Turbulence and wave particle interactions in solar-terrestrial plasmas

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Goldman, M. V.; Toomre, J.

    1985-01-01

    Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation.

  6. Wave functions of symmetry-protected topological phases from conformal field theories

    NASA Astrophysics Data System (ADS)

    Scaffidi, Thomas; Ringel, Zohar

    2016-03-01

    We propose a method for analyzing two-dimensional symmetry-protected topological (SPT) wave functions using a correspondence with conformal field theories (CFTs) and integrable lattice models. This method generalizes the CFT approach for the fractional quantum Hall effect wherein the wave-function amplitude is written as a many-operator correlator in the CFT. Adopting a bottom-up approach, we start from various known microscopic wave functions of SPTs with discrete symmetries and show how the CFT description emerges at large scale, thereby revealing a deep connection between group cocycles and critical, sometimes integrable, models. We show that the CFT describing the bulk wave function is often also the one describing the entanglement spectrum, but not always. Using a plasma analogy, we also prove the existence of hidden quasi-long-range order for a large class of SPTs. Finally, we show how response to symmetry fluxes is easily described in terms of the CFT.

  7. Sound field reconstruction within an entire cavity by plane wave expansions using a spherical microphone array.

    PubMed

    Wang, Yan; Chen, Kean

    2017-10-01

    A spherical microphone array has proved effective in reconstructing an enclosed sound field by a superposition of spherical wave functions in Fourier domain. It allows successful reconstructions surrounding the array, but the accuracy will be degraded at a distance. In order to extend the effective reconstruction to the entire cavity, a plane-wave basis in space domain is used owing to its non-decaying propagating characteristic and compared with the conventional spherical wave function method in a low frequency sound field within a cylindrical cavity. The sensitivity to measurement noise, the effects of the numbers of plane waves, and measurement positions are discussed. Simulations show that under the same measurement conditions, the plane wave function method is superior in terms of reconstruction accuracy and data processing efficiency, that is, the entire sound field imaging can be achieved by only one time calculation instead of translations of local sets of coefficients with respect to every measurement position into a global one. An experiment was conducted inside an aircraft cabin mock-up for validation. Additionally, this method provides an alternative possibility to recover the coefficients of high order spherical wave functions in a global coordinate system without coordinate translations with respect to local origins.

  8. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Alexandra; Haller, Merrick; Walker, David

    This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows:more » Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable

  9. Numerical simulations and observations of surface wave fields under an extreme tropical cyclone

    USGS Publications Warehouse

    Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.

    2009-01-01

    The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.

  10. Fate and Contribution of Internal Wave-Forced Barnacle Settlers to Community Structure in Northern Baja California, a Year after Settlement

    NASA Astrophysics Data System (ADS)

    Lievana, A.; Ladah, L. B.; Lavin, M. F.; Filonov, A. E.; Tapia, F. J.; Leichter, J.; Valencia Gasti, J. A.

    2016-02-01

    Physical transport processes, such as nonlinear internal waves, operating within the coastal ocean of Baja California, Mexico, are diverse, variable and operate on a variety of temporal and spatial scales. Understanding the influence of nonlinear internal waves, in part responsible for the exchange of water properties between coastal and offshore environments, on the structure of intertidal communities is important for the generation of working ecological models. The relationship between the supply of ecological subsidies associated with physical transport processes that operate on relatively short spatial and temporal scales, such as the internal tide, and intertidal community structure must be understood as processes that operate on distinct spatial and temporal scales may be prone to react uniquely as the climate changes. We designed an experiment to quantify recruitment and adult survivorship of Chthamalus sp. whose settlement was associated with internal wave activity in the nearby ocean and found that the number of settlers was a robust predictor of the number of adults observed, indicating that post-settlement processes such as competition and predation are not likely to significantly affect the structure of the intertidal barnacle community resulting from internal-wave forced settlement.

  11. Near field effect on elasticity measurement for cartilage-bone structure using Lamb wave method.

    PubMed

    Xu, Hao; Chen, Shigao; An, Kai-Nan; Luo, Zong-Ping

    2017-10-30

    Cartilage elasticity changes with cartilage degeneration. Hence, cartilage elasticity detection might be an alternative to traditional imaging methods for the early diagnosis of osteoarthritis. Based on the wave propagation measurement, Shear wave elastography (SWE) become an emerging non-invasive elasticity detection method. The wave propagation model, which is affected by tissue shapes, is crucial for elasticity estimating in SWE. However, wave propagation model for cartilage was unclear. This study aimed to establish a wave propagation model for the cartilage-bone structure. We fabricated a cartilage-bone structure, and studied the elasticity measurement and wave propagation by experimental and numerical Lamb wave method (LWM). Results indicated the wave propagation model satisfied the lamb wave theory for two-layered structure. Moreover, a near field region, which affects wave speed measurements and whose occurrence can be prevented if the wave frequency is larger than one critical frequency, was observed. Our findings would provide a theoretical foundation for further application of LWM in elasticity measurement of cartilage in vivo. It can help the application of LWM to the diagnosis of osteoarthritis.

  12. Cavitation Bubble Streaming in Ultrasonic-Standing-Wave Field

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Mukasa, Shinobu; Kuroiwa, Masaya; Okada, Yasuyuki; Murakami, Koichi

    2005-05-01

    The mechanism of cavitation bubble streaming by ultrasonic vibration in a water tank was experimentally investigated. A standard ultrasonic cleaner unit with a resonant frequency of 40 kHz was used as an ultrasonic generator. The behavior of the streaming was visualized by the schlieren method and sonochemical luminescence, and the velocity of the streaming was measured by laser Doppler velocity measurement equipment (LDV). The cavitation bubble streaming has two structures. A cavitation cloud, which consists of many cavitation bubbles, is shaped like a facing pair of bowls with a diameter of approximately 1/3 the wavelength of the standing wave, and moves inside the standing-wave field with a velocity of 30 to 60 mm/s. The cavitation bubbles move intensely in the cloud with a velocity of 5 m/s at an ultrasonic output power of 75 W. The streaming is completely different from conventional acoustic streaming. Also the cavitation bubble is generated neither at the pressure node nor at the antinode.

  13. Wave field synthesis of a virtual source located in proximity to a loudspeaker array.

    PubMed

    Lee, Jung-Min; Choi, Jung-Woo; Kim, Yang-Hann

    2013-09-01

    For the derivation of 2.5-dimensional operator in wave field synthesis, a virtual source is assumed to be positioned far from a loudspeaker array. However, such far-field approximation inevitably results in a reproduction error when the virtual source is placed adjacent to an array. In this paper, a method is proposed to generate a virtual source close to and behind a continuous line array of loudspeakers. A driving function is derived by reducing a surface integral (Rayleigh integral) to a line integral based on the near-field assumption. The solution is then combined with the far-field formula of wave field synthesis by introducing a weighting function that can adjust the near- and far-field contribution of each driving function. This enables production of a virtual source anywhere in relation to the array. Simulations show the proposed method can reduce the reproduction error to below -18 dB, regardless of the virtual source position.

  14. A Feasibility Study on Generation of Acoustic Waves Utilizing Evanescent Light

    NASA Astrophysics Data System (ADS)

    Matsuya, I.; Matozaki, K.; Kosugi, A.; Ihara, I.

    2014-06-01

    A new approach of generating acoustic waves utilizing evanescent light is presented. The evanescent light is a non-propagating electromagnetic wave that exhibits exponential decay with distance from the surface at which the total internal reflection of light is formed. In this research, the evanescent light during total internal reflection at prism surface is utilized for generating acoustic waves in aluminium and the feasibility for ultrasonic measurements is discussed. Pulsed Nd:YAG laser with 0.36 J/cm2 power density is used and the incident angle during the total internal reflection is arranged to be 69.0° for generating the evanescent light. It has been demonstrated that the amplitude of the acoustic waves by means of evanescent light is about 1/14 as large as the one generated by the conventional pulsed laser. This reveals the possibility of using a laser ultrasonic technique with near-field optics.

  15. Stochastic particle instability for electron motion in combined helical wiggler, radiation, and longitudinal wave fields

    NASA Astrophysics Data System (ADS)

    Davidson, Ronald C.; McMullin, Wayne A.

    1982-07-01

    The relativistic motion of an electron is calculated in the combined fields of a transverse helical wiggler field (axial wavelength is λ0=2πk0) and the constant-amplitude, circularly polarized primary electromagnetic wave (δBT,ω,k) propagating in the z direction. For particle velocity near the beat-wave phase velocity ω(k+k0) of the primary wave, it is shown that the presence of a second, moderate-amplitude longitudinal wave (δÊL,ω,k) or transverse electromagnetic wave (δB2,ω2,k2) can lead to stochastic particle instability in which particles trapped near the separatrix of the primary wave undergo a systematic departure from the potential well. The condition for onset of instability is calculated, and the importance of these results for free-electron-laser (FEL) application is discussed. For development of long-pulse or steady-state free-electron lasers, the maintenance of beam integrity for an extended period of time will be of considerable practical importance. The fact that the presence of secondary, moderate-amplitude longitudinal or transverse electromagnetic waves can destroy coherent motion for certain classes of beam particles moving with velocity near ω(k+k0) may lead to a degradation of beam quality and concomitant modification of FEL emission properties.

  16. Survey Field Methods for Expanded Biospecimen and Biomeasure Collection in NSHAP Wave 2

    PubMed Central

    Jaszczak, Angela; Hoffmann, Joscelyn N.; You, Hannah M.; Kern, David W.; Pagel, Kristina; McPhillips, Jane; Schumm, L. Philip; Dale, William; Huang, Elbert S.; McClintock, Martha K.

    2014-01-01

    Objectives. The National Social Life, Health, and Aging Project is a nationally representative, longitudinal survey of older adults. A main component is the collection of biomeasures to objectively assess physiological status relevant to psychosocial variables, aging conditions, and disease. Wave 2 added novel biomeasures, refined those collected in Wave 1, and provides a reference for the collection protocols and strategy common to the biomeasures. The effects of aging, gender, and their interaction are presented in the specific biomeasure papers included in this Special Issue. Method. A transdisciplinary working group expanded the biomeasures collected to include physiological, genetic, anthropometric, functional, neuropsychological, and sensory measures, yielding 37 more than in Wave 1. All were designed for collection in respondents’ homes by nonmedically trained field interviewers. Results. Both repeated and novel biomeasures were successful. Those in Wave 1 were refined to improve quality, and ensure consistency for longitudinal analysis. Four new biospecimens yielded 27 novel measures. During the interview, 19 biomeasures were recorded covering anthropometric, functional, neuropsychological, and sensory measures and actigraphy provided data on activity and sleep. Discussion. Improved field methods included in-home collection, temperature control, establishment of a central survey biomeasure laboratory, and shipping, all of which were crucial for successful collection by the field interviewers and accurate laboratory assay of the biomeasures (92.1% average co-operation rate and 97.3% average assay success rate). Developed for home interviews, these biomeasures are readily applicable to other surveys. PMID:25360025

  17. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  18. Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.

    PubMed

    Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht

    2013-09-21

    The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.

  19. Wide-Field-of-View Millimeter-Wave Telescope Design with Ultra-Low Cross-Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.

    2012-05-01

    As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since most millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degreesmore » of freedom that offer larger fields of view than possible with single-reflector designs. Dragone’s graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone’s geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone’s design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low polarization crosstalk and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.« less

  20. Wide-field-of-view millimeter-wave telescope design with ultra-low cross-polarization

    NASA Astrophysics Data System (ADS)

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David; Hatchell, Brian; Valdez, Patrick; Tedeschi, Jonathan; Hall, Thomas; McMakin, Douglas

    2012-06-01

    As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degrees of freedom that offer larger fields of view than possible with single-reflector designs. Dragone's graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone's geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone's design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low cross-polarization and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.

  1. An extreme internal solitary wave event observed in the northern South China Sea

    PubMed Central

    Huang, Xiaodong; Chen, Zhaohui; Zhao, Wei; Zhang, Zhiwei; Zhou, Chun; Yang, Qingxuan; Tian, Jiwei

    2016-01-01

    With characteristics of large amplitude and strong current, internal solitary wave (ISW) is a major hazard to marine engineering and submarine navigation; it also has significant impacts on marine ecosystems and fishery activity. Among the world oceans, ISWs are particular active in the northern South China Sea (SCS). In this spirit, the SCS Internal Wave Experiment has been conducted since March 2010 using subsurface mooring array. Here, we report an extreme ISW captured on 4 December 2013 with a maximum amplitude of 240 m and a peak westward current velocity of 2.55 m/s. To the authors’ best knowledge, this is the strongest ISW of the world oceans on record. Full-depth measurements also revealed notable impacts of the extreme ISW on deep-ocean currents and thermal structures. Concurrent mooring measurements near Batan Island showed that the powerful semidiurnal internal tide generation in the Luzon Strait was likely responsible for the occurrence of the extreme ISW event. Based on the HYCOM data-assimilation product, we speculate that the strong stratification around Batan Island related to the strengthening Kuroshio may have contributed to the formation of the extreme ISW. PMID:27444063

  2. On resonant coupling of acoustic waves and gravity waves

    NASA Astrophysics Data System (ADS)

    Millet, Christophe

    2017-11-01

    Acoustic propagation in the atmosphere is often modeled using modes that are confined within waveguides causing the sound to propagate through multiple paths to the receiver. On the other hand, direct observations in the lower stratosphere show that the gravity wave field is intermittent, and is often dominated by rather well defined large-amplitude wave packets. In the present work, we use normal modes to describe both the gravity wave field and the acoustic field. The gravity wave spectrum is obtained by launching few monochromatic waves whose properties are chosen stochastically to mimic the intermittency. Owing to the disparity of the gravity and acoustic length scales, the interactions between the gravity wave field and each of the acoustic modes can be described using a multiple-scale analysis. The appropriate amplitude evolution equation for the acoustic field involves certain random terms that can be directly related to the gravity wave sources. We will show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the gravity wave parameterization can create or destroy specific acoustic features.

  3. Numerical analysis for infant's unintentional exposure to 3.5 GHz plane wave radiofrequency electromagnetic fields by field test of fifth generation wireless technologies

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Congsheng; Kang, Yangyang; Zhou, Zhou; Xie, Yi; Wu, Tongning

    2017-09-01

    In this study, the plane wave exposure of an infant to radiofrequency electromagnetic fields of 3.5 GHz was numerically analyzed to investigate the unintentional electromagnetic field (EMF) exposure of fifth generation (5G) signals during field test. The dosimetric influence of age-dependent dielectric properties and the influence of an adult body were evaluated using an infant model of 12 month old and an adult female model. The results demonstrated that the whole body-averaged specific absorption rate (WBASAR) was not significantly affected by age-dependent dielectric properties and the influence of the adult body did not enhance WBASAR. Taking the magnitude of the in situ E field strength into consideration, realistic WBASAR was far below the basic restriction. Age-dependent dielectric properties could significantly change the tissue specified specific absorption rate (TSSAR) of internal organs. However, the variation was not significant because the absolute values were marginal. Among the factors that influenced TSSAR variation, change in dielectric properties demonstrated a close correlation. In general, at 3.5 GHz, the infant did not absorb more power than the case of EMF exposure to third generation (3G) and fourth generation (4G) signals. The work was helpful for network operators and device manufactures to estimate the potential exposure risk during the field test, especially for the infant.

  4. Effect of depth on shear-wave elastography estimated in the internal and external cervical os during pregnancy

    PubMed Central

    Hernandez-Andrade, Edgar; Aurioles-Garibay, Alma; Garcia, Maynor; Korzeniewski, Steven J.; Schwartz, Alyse G.; Ahn, Hyunyoung; Martinez-Varea, Alicia; Yeo, Lami; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.; Romero, Roberto

    2014-01-01

    Aim To investigate the effect of depth on cervical shear-wave elastography. Methods Shear-wave elastography was applied to estimate the velocity of propagation of the acoustic force impulse (shear-wave) in the cervix of 154 pregnant women at 11-36 weeks of gestation. Shear-wave speed (SWS) was evaluated in cross-sectional views of the internal and external cervical os in five regions of interest: anterior, posterior, lateral right, lateral left, and endocervix. Distance from the center of the US transducer to the center of the each region of interest was registered. Results In all regions, SWS decreased significantly with gestational age (p=0.006). In the internal os SWS was similar among the anterior, posterior and lateral regions, and lower in the endocervix. In the external os, the endocervix and anterior regions showed similar SWS values, lower than those from the posterior and lateral regions. In the endocervix, these differences remained significant after adjustment for depth, gestational age and cervical length. SWS estimations in all regions of the internal os were higher than those of the external os, suggesting denser tissue. Conclusion Depth from the ultrasound probe to different regions in the cervix did not significantly affect the SWS estimations. PMID:25029081

  5. On guided circumferential waves in soft electroactive tubes under radially inhomogeneous biasing fields

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Su, Yipin; Chen, Weiqiu; Zhang, Chuanzeng

    2017-02-01

    Soft electroactive (EA) tube actuators and many other cylindrical devices have been proposed recently in literature, which show great advantages over those made from conventional hard solid materials. However, their practical applications may be limited because these soft EA devices are prone to various failure modes. In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ nondestructive evaluation (NDE) or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogden's theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential

  6. Nonlinear mechanism for the generation of electromagnetic fields in a magnetized plasma by the beatings of waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburjania, G. D.; Machabeli, G. Z.; Kharshiladze, O. A.

    2006-07-15

    The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.

  7. Field-induced spin-density wave beyond hidden order in URu2Si2

    NASA Astrophysics Data System (ADS)

    Knafo, W.; Duc, F.; Bourdarot, F.; Kuwahara, K.; Nojiri, H.; Aoki, D.; Billette, J.; Frings, P.; Tonon, X.; Lelièvre-Berna, E.; Flouquet, J.; Regnault, L.-P.

    2016-10-01

    URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state. The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations and the Fermi surface is emphasized, calling for dedicated band-structure calculations.

  8. Non-linear Internal Wave Evolution in the South China Sea: 2005 Field Program

    DTIC Science & Technology

    2009-05-01

    Revelle in SCS05 (right). Soliton sightings from late April ( dark blue), early May (light blue) and mid May (yellow orange) are shown geographically...focus areas was the South China Sea (SCS). At that time, large-scale solitary waves were known to shoal on the western shelves of the SCS. Solitons ...we were gambling that solitons would indeed be traversing the central SCS and that they would already be well formed before reaching our approved

  9. Dispersion and transport of hypersaline gravity currents in the presence of internal waves at a pycnocline

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Pietrasz, V. B.; Ouellette, N. T.; Koseff, J. R.

    2015-12-01

    Desalination of seawater offers a source of potable water in arid regions and during drought. However, hypersaline discharge from desalination facilities presents environmental risks, particularly to benthic organisms. The risks posed by salt levels and chemical additives, which can be toxic to local ecosystems, are typically mitigated by ensuring high levels of dilution close to the source. We report on laboratory flume experiments examining how internal waves at the pycnocline of a layered ambient density stratification influence the transport of hypersaline effluent moving as a gravity current down the slope. We found that some of the hypersaline fluid from the gravity current was diverted away from the slope into an intrusion along the pycnocline. A parametric study investigated how varying the energy of the internal wave altered the amount of dense fluid that was diverted into the pycnocline intrusion. The results are compared to an analytical framework that compares the incident energy in the internal wave to potential energy used in diluting the gravity current. These results are significant for desalination effluents because fluid diverted into the intrusion avoids the ecologically sensitive benthic layer and disperses more quickly than if it had continued to propagate along the bed.

  10. Penetration and screening of perpendicularly launched electromagnetic waves through bounded supercritical plasma confined in multicusp magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Indranuj; Bhattacharjee, Sudeep

    2011-02-15

    The question of electromagnetic wave penetration and screening by a bounded supercritical ({omega}{sub p}>{omega} with {omega}{sub p} and {omega} being the electron-plasma and wave frequencies, respectively) plasma confined in a minimum B multicusp field, for waves launched in the k perpendicular B{sub o} mode, is addressed through experiments and numerical simulations. The scale length of radial plasma nonuniformity (|n{sub e}/({partial_derivative}n{sub e}/{partial_derivative}r)|) and magnetostatic field (B{sub o}) inhomogeneity (|B{sub o}/({partial_derivative}B{sub o}/{partial_derivative}r)|) are much smaller than the free space ({lambda}{sub o}) and guided wavelengths ({lambda}{sub g}). Contrary to predictions of plane wave dispersion theory and the Clemow-Mullaly-Allis (CMA) diagram, for a boundedmore » plasma a finite propagation occurs through the central plasma regions where {alpha}{sub p}{sup 2}={omega}{sub p}{sup 2}/{omega}{sup 2}{>=}1 and {beta}{sub c}{sup 2}={omega}{sub ce}{sup 2}/{omega}{sup 2}<<1({approx}10{sup -4}), with {omega}{sub ce} being the electron cyclotron frequency. Wave screening, as predicted by the plane wave model, does not remain valid due to phase mixing and superposition of reflected waves from the conducting boundary, leading to the formation of electromagnetic standing wave modes. The waves are found to satisfy a modified upper hybrid resonance (UHR) relation in the minimum B field and are damped at the local electron cyclotron resonance (ECR) location.« less

  11. Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-21

    The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode–anode gap by rather dense plasma (∼10{sup 13 }cm{sup −3}) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizingmore » it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.« less

  12. Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M

    2014-01-01

    Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.

  13. Three-wave and four-wave interactions in gravity wave turbulence

    NASA Astrophysics Data System (ADS)

    Aubourg, Quentin; Campagne, Antoine; Peureux, Charles; Ardhuin, Fabrice; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2017-11-01

    Weak-turbulence theory is a statistical framework to describe a large ensemble of nonlinearly interacting waves. The archetypal example of such system is the ocean surface that is made of interacting surface gravity waves. Here we describe a laboratory experiment dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to obtain a measurement of the surface elevation that is resolved in both space and time. Fourier analysis shows that the laboratory spectra are systematically steeper than the theoretical predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al., J. Phys. Oceanogr. 45, 2484 (2015), 10.1175/JPO-D-14-0237.1]. We identify a strong impact of surface dissipation on the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to identify the active nonlinear coupling. These analyses are also performed on the field data by Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized by and shown to involve mostly quasiresonances of waves with second- or higher-order harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the field data. We discuss temporal scale separation to explain our observations.

  14. Quasilinear diffusion operator for wave-particle interactions in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Catto, P. J.; Lee, J.; Ram, A. K.

    2017-10-01

    The Kennel-Engelmann quasilinear diffusion operator for wave-particle interactions is for plasmas in a uniform magnetic field. The operator is not suitable for fusion devices with inhomogeneous magnetic fields. Using drift kinetic and high frequency gyrokinetic equations for the particle distribution function, we have derived a quasilinear operator which includes magnetic drifts. The operator applies to RF waves in any frequency range and is particularly relevant for minority ion heating. In order to obtain a physically meaningful operator, the first order correction to the particle's magnetic moment has to be retained. Consequently, the gyrokinetic change of variables has to be retained to a higher order than usual. We then determine the perturbed distribution function from the gyrokinetic equation using a novel technique that solves the kinetic equation explicitly for certain parts of the function. The final form of the diffusion operator is compact and completely expressed in terms of the drift kinetic variables. It is not transit averaged and retains the full poloidal angle variation without any Fourier decomposition. The quasilinear diffusion operator reduces to the Kennel-Engelmann operator for uniform magnetic fields. Supported by DoE Grant DE-FG02-91ER-54109.

  15. Radial dependence of HF wave field strength in the BPD column. [Beam Plasma Discharge

    NASA Technical Reports Server (NTRS)

    Jost, R. J.; Anderson, H. R.; Bernstein, W.; Kellogg, P. J.

    1982-01-01

    The results of a recent set of RF frequency measurements of the beam plasma discharge (BPD) performed in order to determine a quantitative value for the field strength in the plasma frequency region of the spectrum are presented. The parallel and perpendicular components of the plasma wave electric fields inside the BPD column have comparable field strengths, on the order of 10 volts/m. The radial dependence of the field strength is very strong, decreasing by as much as 40 dB within one meter from the beam center, with the illumination or discharge column approximately one meter in diameter. The field strength inside the column increases as a function of distance along the beam at least for several meters from the gun aperture. The frequency and amplitude of the plasma wave increases with beam current. A particularly rapid increase in these parameters occurs as the beam current approaches the critical current.

  16. International Geomagnetic Reference Field: the 12th generation

    NASA Astrophysics Data System (ADS)

    Thébault, Erwan; Finlay, Christopher C.; Beggan, Ciarán D.; Alken, Patrick; Aubert, Julien; Barrois, Olivier; Bertrand, Francois; Bondar, Tatiana; Boness, Axel; Brocco, Laura; Canet, Elisabeth; Chambodut, Aude; Chulliat, Arnaud; Coïsson, Pierdavide; Civet, François; Du, Aimin; Fournier, Alexandre; Fratter, Isabelle; Gillet, Nicolas; Hamilton, Brian; Hamoudi, Mohamed; Hulot, Gauthier; Jager, Thomas; Korte, Monika; Kuang, Weijia; Lalanne, Xavier; Langlais, Benoit; Léger, Jean-Michel; Lesur, Vincent; Lowes, Frank J.; Macmillan, Susan; Mandea, Mioara; Manoj, Chandrasekharan; Maus, Stefan; Olsen, Nils; Petrov, Valeriy; Ridley, Victoria; Rother, Martin; Sabaka, Terence J.; Saturnino, Diana; Schachtschneider, Reyko; Sirol, Olivier; Tangborn, Andrew; Thomson, Alan; Tøffner-Clausen, Lars; Vigneron, Pierre; Wardinski, Ingo; Zvereva, Tatiana

    2015-05-01

    The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth's magnetic field.

  17. Physical Processes Involved In Yellow Sea Solitary Waves

    NASA Astrophysics Data System (ADS)

    Warn-Varnas, A.; Chin-Bing, S.; King, D.; Lamb, K.; Hawkins, J.; Teixeira, M.

    The study area is located south of the Shandong peninsula. In this area, soliton gener- ation and propagation studies are per formed with the Lamb(1994) model. The model is nonhydrostatic and is formulated in 2 1/2 dimensions for terrain following c oordi- nates. In the area, 20 to 30 m topographic variations over distances of 10 to 20 km are found to occur in the digit al atlas of Choi (1999). The area is shallow with maximum depths ranging from 40 m to 70 m. Along the southern boundary of the region the semi-diurnal tidal strength magnitude varies from .6 m/sec to 1.2 m/sec, Fang(1994). We show that, for sum mer conditions, the existing physical processes associated with the semi-diurnal tidal flow over the topographic variations , in the shelfbreak region, lead to the formation of internal bores in the model simulations. Through acting phys- ical proce sses, the internal bores propagate on and off the shelf. A disintegration process of internal bores into solitary waves occ urs through frequency and ampli- tude dispersion. SAR observations of the area show images containing six events con- sisting of internal bores and solitary waves that travel in a well-defined direction for two and a half days. The origin of the trains appeared to be at a point along a steep topo graphic drop. The SAR observations are used for guiding and tuning the model simulations, by comparing spectra of observed and modeled wavelengths. The tuned model yields wavelengths that are within a factor of 2 of the SAR data. The modeled amp litudes are within a factor of 2 of amplitudes obtained with a two-layer model and the SAR data The signature on the acoustical field of ongoing physical processes through the interaction of the resultant oceanic struct ure with the acoustical field is pursued. Internal bore and solitary wave structures interact with the acoustic field. A re distribution of acoustical energy to higher acoustical modes occurs at some fre- quencies. Mode decomposition of the

  18. Simulations of nonlinear continuous wave pressure fields in FOCUS

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.

    2017-03-01

    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  19. Unpinning of rotating spiral waves in cardiac tissues by circularly polarized electric fields

    PubMed Central

    Feng, Xia; Gao, Xiang; Pan, De-Bei; Li, Bing-Wei; Zhang, Hong

    2014-01-01

    Spiral waves anchored to obstacles in cardiac tissues may cause lethal arrhythmia. To unpin these anchored spirals, comparing to high-voltage side-effect traditional therapies, wave emission from heterogeneities (WEH) induced by the uniform electric field (UEF) has provided a low-voltage alternative. Here we provide a new approach using WEH induced by the circularly polarized electric field (CPEF), which has higher success rate and larger application scope than UEF, even with a lower voltage. And we also study the distribution of the membrane potential near an obstacle induced by CPEF to analyze its mechanism of unpinning. We hope this promising approach may provide a better alternative to terminate arrhythmia. PMID:24777360

  20. [Investigations on the effect of an electrostatic field free of residual waves on the motility of the mouse (author's transl)].

    PubMed

    Fischer, G

    1977-08-01

    Comparative investigations were carried out concerning the influence on the motility of mice of different electrobioclimatic conditions (electrostatic field with a residual wave component of 1% and a field strength of 4.500 V/m; pure residual wave component: 32 Vs/s, field strength 120 V/m/ss; electrostatic field established by batteries: initial voltage 900 V, field strength 4.500 V/m; shielded from ambient atmospheric electrical fields: damping efficiency at 99%). The Faraday condition represented the control as absolutely objective physical magnitude. All experimental chambers were positioned under Faraday shields. Following a 20 day period of acclimatization to the unaccustomed surroundings for the animals (adaptation period), we established the previously described electrophysical conditions in the cages for a further period of 20 days (experimental period). The lowest values measured during the daily readings were found in the Faraday cage, resp. in the pure electrostatic field, the highest in the DC-field with residual wave component resp. in the residual wave component alone. We draw the following conclusion from the findings: the pure DC-field apparently does not possess those bioclimatologically decisive importance that has been and is being postulated from several sides. Many of the stimtng effects observed and attributed to the electrostatic field are most probably due to the residual wave component resulting from the high-voltage generators employed.

  1. Generation of zonal magnetic fields by low-frequency dispersive electromagnetic waves in a nonuniform dusty magnetoplasma.

    PubMed

    Shukla, P K

    2004-04-01

    It is shown that zonal magnetic fields can be parametrically excited by low-frequency dispersive driftlike compressional electromagnetic (DDCEM) modes in a nonuniform dusty magnetoplasma. For this purpose, we derive a pair of coupled equations which exhibits the nonlinear coupling between DDCEM modes and zonal magnetic fields. The coupled mode equations are Fourier analyzed to derive a nonlinear dispersion relation. The latter depicts that zonal magnetic fields are nonlinearly generated at the expense of the low-frequency DDCEM wave energy. The relevance of our investigation to the transfer of energy from short scale DDCEM waves to long scale zonal magnetic field structures in dark molecular clouds is discussed.

  2. Computational Investigation of Helical Traveling Wave Tube Transverse RF Field Forces

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A.

    1998-01-01

    In a previous study using a fully three-dimensional (3D) helical slow-wave circuit cold- test model it was found, contrary to classical helical circuit analyses, that transverse FF electric fields have significant amplitudes compared with the longitudinal component. The RF fields obtained using this helical cold-test model have been scaled to correspond to those of an actual TWT. At the output of the tube, RF field forces reach 61%, 26% and 132% for radial, azimuthal and longitudinal components, respectively, compared to radial space charge forces indicating the importance of considering them in the design of electron beam focusing.

  3. Vertical field-effect transistor based on wave-function extension

    NASA Astrophysics Data System (ADS)

    Sciambi, A.; Pelliccione, M.; Lilly, M. P.; Bank, S. R.; Gossard, A. C.; Pfeiffer, L. N.; West, K. W.; Goldhaber-Gordon, D.

    2011-08-01

    We demonstrate a mechanism for a dual layer, vertical field-effect transistor, in which nearly depleting one layer will extend its wave function to overlap the other layer and increase tunnel current. We characterize this effect in a specially designed GaAs/AlGaAs device, observing a tunnel current increase of two orders of magnitude at cryogenic temperatures, and we suggest extrapolations of the design to other material systems such as graphene.

  4. HB06 : Field Validation of Realtime Predictions of Surfzone Waves and Currents

    NASA Astrophysics Data System (ADS)

    Guza, R. T.; O'Reilly, W. C.; Feddersen, F.

    2006-12-01

    California shorelines can be contaminated by the discharge of polluted streams and rivers onto the beach face or into the surf zone. Management decisions (for example, beach closures) can be assisted by accurate characterization of the waves and currents that transport and mix these pollutants. A real-time, operational waves and alongshore current model, developed for a 5 km alongshore reach at Huntington Beach (http://cdip.ucsd.edu/hb06/), will be tested for a month during Fall 2006 as part of the HB06 field experiment. The model has two components: prediction of incident waves immediately seaward of the surf zone, and the transformation of breaking waves across the surf zone. The California Safe Boating Network Model (O'Reilly et al., California World Ocean Conference, 2006) is used to estimate incident wave properties. This regional wave model accounts for blocking and refraction by offshore islands and shoals, and variation of the shoreline orientation. At Huntington Beach, the network model uses four buoys exposed to the deep ocean to estimate swell, and four nearby buoys to estimate locally generated seas. The model predictions will be compared with directional wave buoy observations in 22 m depth, 1 km from the shore. The computationally fast model for surfzone waves and breaking-wave driven alongshore currents, appropriate for random waves on beaches with simple bathymetry, is based on concepts developed and tested by Ed Thornton and his colleagues over the last 30 years. Modeled alongshore currents at Huntington Beach, with incident waves predicted by the Network model, will be compared with waves and currents observed during HB06 along a transect extending from 4 m depth to the shoreline. Support from the California Coastal Conservancy, NOAA, and ONR is gratefully acknowledged.

  5. Higher-Order Squeezing of Quantum Field and the Generalized Uncertainty Relations in Non-Degenerate Four-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Li, Xi-Zeng; Su, Bao-Xia

    1996-01-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations in this process are also presented.

  6. Dynamic wave field synthesis: enabling the generation of field distributions with a large space-bandwidth product.

    PubMed

    Kamau, Edwin N; Heine, Julian; Falldorf, Claas; Bergmann, Ralf B

    2015-11-02

    We present a novel approach for the design and fabrication of multiplexed computer generated volume holograms (CGVH) which allow for a dynamic synthesis of arbitrary wave field distributions. To achieve this goal, we developed a hybrid system that consists of a CGVH as a static element and an electronically addressed spatial light modulator as the dynamic element. We thereby derived a new model for describing the scattering process within the inhomogeneous dielectric material of the hologram. This model is based on the linearization of the scattering process within the Rytov approximation and incorporates physical constraints that account for voxel based laser-lithography using micro-fabrication of the holograms in a nonlinear optical material. In this article we demonstrate that this system basically facilitates a high angular Bragg selectivity on the order of 1°. Additionally, it allows for a qualitatively low cross-talk dynamic synthesis of predefined wave fields with a much larger space-bandwidth product (SBWP ≥ 8.7 × 10(6)) as compared to the current state of the art in computer generated holography.

  7. Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe

    2014-09-01

    The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations describing the (2+1)-component long-wave-short-wave resonance. For a wide range of asymptotic background fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear optics.

  8. Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction

    NASA Astrophysics Data System (ADS)

    Balynskiy, M.; Chiang, H.; Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Balandin, A. A.; Khitun, A.

    2018-05-01

    This article reports results of the investigation of the effect of the external magnetic field variation on the spin wave interference in a magnetic cross junction. The experiments were performed using a micrometer scale Y3Fe5O12 cross structure with a set of micro-antennas fabricated on the edges of the cross arms. Two of the antennas were used for the spin wave excitation while a third antenna was used for detecting the inductive voltage produced by the interfering spin waves. It was found that a small variation of the bias magnetic field may result in a significant change of the output inductive voltage. The effect is most prominent under the destructive interference condition. The maximum response exceeds 30 dB per 0.1 Oe at room temperature. It takes a relatively small bias magnetic field variation of about 1 Oe to drive the system from the destructive to the constructive interference conditions. The switching is accompanied by a significant, up to 50 dB, change in the output voltage. The obtained results demonstrate a feasibility of the efficient spin wave interference control by an external magnetic field, which may be utilized for engineering novel type of magnetometers and magnonic logic devices.

  9. Wave directional spreading from point field measurements.

    PubMed

    McAllister, M L; Venugopal, V; Borthwick, A G L

    2017-04-01

    Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A 465 , 3361-3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices.

  10. Polarization resolved electric field measurements on plasma bullets in N2 using four-wave mixing

    NASA Astrophysics Data System (ADS)

    van der Schans, Marc; Boehm, Patrick; Nijdam, Sander; Ijzerman, Wilbert; Czarnetzki, Uwe

    2016-09-01

    Atmospheric pressure plasma jets generated by kHz AC or pulsed DC voltages typically consist of discrete guided ionization waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated using the four-wave mixing method. In this diagnostic two laser beams, where one is Stokes shifted from the other, non-linearly interact with the N2 molecules and the bullet's electric field. As a result of the interaction a coherent anti-Stokes Raman scattered (CARS) beam and an infrared beam are generated from which the electric field can be determined. Compared to emission-based methods, this technique has the advantage of being able to also probe the electric field in regions around the plasma bullet where no photons are emitted. The four-wave mixing method and its analysis have been adapted to work with the non-uniform electric field of plasma bullets. In addition, an ex-situ calibration procedure using an electrode geometry different from the discharge geometry has been developed. An experimentally obtained radial profile of the axial electric field component of a plasma bullet in N2 is presented. The position of this profile is related to the location of the propagating bullet from temporally resolved images.

  11. Enhanced spin wave propagation in magnonic rings by bias field modulation

    NASA Astrophysics Data System (ADS)

    Venkat, G.; Venkateswarlu, D.; Joshi, R. S.; Franchin, M.; Fangohr, H.; Anil Kumar, P. S.; Prabhakar, A.

    2018-05-01

    We simulate the spin wave (SW) dynamics in ring structures and obtain the ω - k dispersion relations corresponding to the output waveguide. Different bias field configurations affect the transfer of SW power from one arm of the structure to the other arm. To this end, we show that circular or radial bias fields are more suitable for energy transfer across the ring than the conventional horizontal bias field Hx. The SW dispersion shows that modes excited, when the bias field is along the ring radius, are almost 10 dB higher in power when compared to the modal power in the case of Hx. This is also corroborated by the SW energy density in the receiving stub.

  12. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    NASA Astrophysics Data System (ADS)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  13. Rapid calculation of acoustic fields from arbitrary continuous-wave sources.

    PubMed

    Treeby, Bradley E; Budisky, Jakub; Wise, Elliott S; Jaros, Jiri; Cox, B T

    2018-01-01

    A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.

  14. Maximum gravitational-wave energy emissible in magnetar flares

    NASA Astrophysics Data System (ADS)

    Corsi, Alessandra; Owen, Benjamin J.

    2011-05-01

    Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (˜1049erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc.MNRAA40035-8711 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 1048-1049erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  15. Magnetic Fields Generated by Internal Ocean Seawater Motion

    DTIC Science & Technology

    1991-12-01

    detection; Internal Waves; Boundary laver turbulence A’• S’N AC’ :Conrinue on re~erse ,f necessary and ,denbly by blo( k nurlbu.r) This thesis models...to a two- dimensional spectrum, and integrated over wavenumber from a minimum, k ~i, to infinity to give B,𔃼(W) . In the other, application of a...order of magnitude as ionospherically generated signals. The first k -dependence method yielded frequency responses that do not follow the 1/f 2

  16. High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Todd, Robert E.

    2017-06-01

    Autonomous underwater gliders are conducting high-resolution surveys within the Gulf Stream along the U.S. East Coast. Glider surveys reveal two mechanisms by which energy is extracted from the Gulf Stream as it flows over the Blake Plateau, a portion of the outer continental shelf between Florida and North Carolina where bottom depths are less than 1000 m. Internal waves with vertical velocities exceeding 0.1 m s-1 and frequencies just below the local buoyancy frequency are routinely found over the Blake Plateau, particularly near the Charleston Bump, a prominent topographic feature. These waves are likely internal lee waves generated by the subinertial Gulf Stream flow over the irregular bathymetry of the outer continental shelf. Bottom mixed layers with O(100) m thickness are also frequently encountered; these thick bottom mixed layers likely form in the lee of topography due to enhanced turbulence generated by O(1) m s-1 near-bottom flows.

  17. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  18. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  19. Development of Electric Field and Plasma Wave Investigations for Future Space Weather Missions: ERG, SCOPE, and beyond

    NASA Astrophysics Data System (ADS)

    Kasaba, Y.; Kumamoto, A.; Ono, T.; Misawa, H.; Kojima, H.; Yagitani, S.; Kasahara, Y.; Ishisaka, K.

    2009-04-01

    The electric field and plasma wave investigation is important for the clarification of global plasma dynamics and energetic processes in the planetary Magnetospheric studies. We have several missions which will contribute those objectives. the small-sized radiation belt mission, ERG (Energization and Radiation in Geospace), the cross-scale formation flight mission, SCOPE, the BepiColombo mission to Mercury, and the small-sized and full-scale Jovian mission in future. Those will prevail the universal plasma mechanism and processes in the space laboratory. The main purposes of electric field and plasma wave observation for those missions are: (1) Examination of the theories of high-energy particle acceleration by plasma waves, (2) identification of the origin of electric fields in the magnetosphere associated with cross-scale coupling processes, (3) diagnosis of plasma density, temperature and composition, and (4) investigation of wave-particle interaction and mode conversion processes. Simultaneous observation of plasma waves and energetic particles with high resolution will enable us to investigate the wave-particle interaction based on quasi-linear theory and non-linear models. In this paper, we will summarize the current plan and efforts for those future activities. In order to achieve those objectives, the instrument including sensitive sensors (the long wire / stem antennae, the search-coil / loop antennae) and integrated receiver systems are now in development, including the direct identification of nonlinear wave-particle interactions associated will be tried by Wave-particle Correlator. And, as applications of those development, we will mention to the space interferometer and the radar sounder technologies.

  20. Wave directional spreading from point field measurements

    PubMed Central

    Venugopal, V.; Borthwick, A. G. L.

    2017-01-01

    Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A 465, 3361–3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices. PMID:28484326

  1. Longitudinal waves in carbon nanotubes in the presence of transverse magnetic field and elastic medium

    NASA Astrophysics Data System (ADS)

    Liu, Hu; Liu, Hua; Yang, Jialing

    2017-09-01

    In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.

  2. Current-induced modulation of backward spin-waves in metallic microstructures

    NASA Astrophysics Data System (ADS)

    Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji

    2017-03-01

    We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m-2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m-2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.

  3. One-dimensional numerical study of charged particle trajectories in turbulent electrostatic wave fields

    NASA Technical Reports Server (NTRS)

    Graham, K. N.; Fejer, J. A.

    1976-01-01

    The paper describes a numerical simulation of electron trajectories in weak random electric fields under conditions that are approximately true for Langmuir waves whose wavelength is much longer than the Debye length. Two types of trajectory calculations were made: (1) the initial particle velocity was made equal to the mean phase velocity of the waves, or (2) it was equal to 0.7419 times the mean velocity of the waves, so that the initial velocity differed substantially from all phase velocities of the wave spectrum. When the autocorrelation time is much greater than the trapping time, the particle motion can change virtually instantaneously from one of three states - high-velocity, low-velocity, or trapped state - to another. The probability of instantaneous transition from a high- or low-velocity state becomes small when the difference between the particle velocity and the mean phase velocity of the waves becomes high in comparison to the trapping velocity. Diffusive motion becomes negligible under these conditions also.

  4. The International Geomagnetic Reference Field, 2005

    USGS Publications Warehouse

    Rukstales, Kenneth S.; Love, Jeffrey J.

    2007-01-01

    This is a set of five world charts showing the declination, inclination, horizontal intensity, vertical component, and total intensity of the Earth's magnetic field at mean sea level at the beginning of 2005. The charts are based on the International Geomagnetic Reference Field (IGRF) main model for 2005 and secular change model for 2005-2010. The IGRF is referenced to the World Geodetic System 1984 ellipsoid. Additional information about the USGS geomagnetism program is available at: http://geomag.usgs.gov/

  5. Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.; Tyler, G. L.

    1983-01-01

    The radio scintillations caused by scattering from small-scale irregularities in Titan's neutral atmosphere during a radio occultation of Voyager 1 by Titan are investigated. Intensity and frequency fluctuations occurred on time scales from about 0.1 to 1.0 sec at 3.6 and 13 cm wavelengths whenever the radio path passed within 90 km of the surface, indicating the presence of variations in refractivity on length scales from a few hundred meters to a few kilometers. Above 25 km, the altitude profile of intensity scintillations closely agrees with the predictions of a simple theory based on the characteristics of internal gravity waves propagating with little or no attenuation through the vertical stratification in Titan's atmosphere. These observations support a hypothesis of stratospheric gravity waves, possibly driven by a cloud-free convective region in the lowest few kilometers of the stratosphere.

  6. A statistical study of variations of internal gravity wave energy characteristics in meteor zone

    NASA Technical Reports Server (NTRS)

    Gavrilov, N. M.; Kalov, E. D.

    1987-01-01

    Internal gravity wave (IGW) parameters obtained by the radiometer method have been considered by many other researchers. The results of the processing of regular radiometeor measurements taken during 1979 to 1980 in Obninsk (55.1 deg N, 36.6 deg E) are presented.

  7. Investigations of the internal wave characteristics and saturation degree in the Earth's atmosphere by using radiosonde measurements of wind and temperature and their applications to the RO wave studies

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) affect the structure and circulation of the Earth’s atmosphere by transporting energy and momentum upward from lower atmosphere. Observations of the temperature and wind velocity fluctuations in the middle atmosphere have shown that wave amplitudes grow with increasing altitude, however, no quickly enough in order to correspond to amplitude growth due to exponential decrease of density in the absence of energy dissipation. The theory of saturated IGWs explains such rate of the wave amplitude growth in the following way: any wave amplitude in excess of the threshold value will lead to instability and the production of turbulence that acts to prevent further growth of the wave amplitude. The mechanisms that contribute most to the dissipation and saturation of the dominant IGW motions in the atmosphere are thought to be the dynamical (shear) and convective instability. For high-frequency waves, the threshold amplitude required to achieve shear instability is virtually identical to that required for convective instability. But for low-frequency IGWs, the shear instability threshold falls well below that necessary for convective instability. The knowledge of actual and threshold wave amplitudes is important when the effect of IGWs on the background atmosphere is to be assessed. The internal wave saturation assumption plays the key role for radio occultation (RO) investigations of IGWs in planetary atmospheres [Gubenko et al., 2008, 2011, 2012], therefore a radiosonde study of wave saturation processes in the Earth’s atmosphere is actual task. The results of determination of the actual and threshold amplitudes, saturation degree and other characteristics for identified IGWs in the Earth’s atmosphere found from high-resolution radiosonde measurements SPARC (http://www.sparc.sunysb.edu/) of horizontal wind and temperature are presented. The usefulness of these observations in conjunction with RO studies of IGWs is discussed. The work was

  8. Observations of field-aligned currents, waves, and electric fields at substorm onset

    NASA Technical Reports Server (NTRS)

    Smits, D. P.; Hughes, W. J.; Cattell, C. A.; Russell, C. T.

    1986-01-01

    Substorm onsets, identified Pi 2 pulsations observed on the Air Force Geophysics Laboratory Magnetometer Network, are studied using magnetometer and electric field data from ISEE 1 as well as magnetometer data from the geosynchronous satellites GOES 2 and 3. The mid-latitude magnetometer data provides the means of both timing and locating the substorm onset so that the spacecraft locations with respect to the substorm current systems are known. During two intervals, each containing several onsets or intensifications, ISEE 1 observed field-aligned current signatures beginning simultaneously with the mid-latitude Pi 2 pulsation. Close to the earth broadband bursts of wave noise were observed in the electric field data whenever field-aligned currents were detected. One onset occurred when ISEE 1 and GOES 2 were on the same field line but in opposite hemispheres. During this onset ISEE 1 and GOES 2 saw magnetic signatures which appear to be due to conjugate field-aligned currents flowing out of the western end of the westward auroral electrojets. The ISEE 1 signature is of a line current moving westward past the spacecraft. During the other interval, ISEE 1 was in the near-tail region near the midnight meridian. Plasma data confirms that the plasma sheet thinned and subsequently expanded at onset. Electric field data shows that the plasma moved in the opposite direction to the plasma sheet boundary as the boundary expanded which implies that there must have been an abundant source of hot plasma present. The plasma motion was towards the center of the plasma sheet and earthwards and consisted of a series of pulses rather than a steady flow.

  9. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    USGS Publications Warehouse

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  10. Effect of higher order nonlinearity, directionality and finite water depth on wave statistics: Comparison of field data and numerical simulations

    NASA Astrophysics Data System (ADS)

    Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro

    2014-05-01

    This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if kh<1.36. In this regard, the aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.

  11. BUOYANCY-DRIVEN MAGNETOHYDRODYNAMIC WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hague, A.; Erdélyi, R.

    2016-09-10

    Turbulent motions close to the visible solar surface may generate low-frequency internal gravity waves (IGWs) that propagate through the lower solar atmosphere. Magnetic activity is ubiquitous throughout the solar atmosphere, so it is expected that the behavior of IGWs is to be affected. In this article we investigate the role of an equilibrium magnetic field on propagating and standing buoyancy oscillations in a gravitationally stratified medium. We assume that this background magnetic field is parallel to the direction of gravitational stratification. It is known that when the equilibrium magnetic field is weak and the background is isothermal, the frequencies ofmore » standing IGWs are sensitive to the presence of magnetism. Here, we generalize this result to the case of a slowly varying temperature. To do this, we make use of the Boussinesq approximation. A comparison between the hydrodynamic and magnetohydrodynamic cases allows us to deduce the effects due to a magnetic field. It is shown that the frequency of IGWs may depart significantly from the Brunt–Väisälä frequency, even for a weak magnetic field. The mathematical techniques applied here give a clearer picture of the wave mode identification, which has previously been misinterpreted. An observational test is urged to validate the theoretical findings.« less

  12. The generation of a zonal-wind oscillation by nonlinear interactions of internal gravity waves

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy

    2003-11-01

    Nonlinear interactions of internal gravity waves give rise to numerous large-scale phenomena that are observed in the atmosphere, for example the quasi-biennial oscillation (QBO). This is an oscillation in zonal wind direction which is observed in the equatorial stratosphere; it is characterized by alternating regimes of easterly and westerly shear that descend with time. In the past few decades, a number of theories have been developed to explain the mechanism by which the QBO is generated. These theories are all based on ``quasi-linear'' representations of wave-mean-flow interactions. In this presentation, a fully nonlinear numerical simulation of the QBO is described. A spectrum of gravity waves over a range of phase speeds is forced at the lower boundary of the computational domain and propagates upwards in a density-stratified shear flow. As a result of the absorption and reflection of the waves at their critical levels, regions of large shear develop in the background flow and propagate downwards with time.

  13. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.

    PubMed

    Arora, M; Junge, L; Ohl, C D

    2005-06-01

    The spatiotemporal dynamics of cavitation bubble growth and collapse in shock-wave lithotripsy in a free field was studied experimentally. The lithotripter was equipped with two independently triggerable layers of piezoceramics. The front and back layers generated positive pressure amplitudes of 30 MPa and 15 MPa, respectively, and -10 MPa negative amplitude. The time interval between the launch of the shock waves was varied from 0 and 0.1 s, covering the regimens of pulse-modification (regimen A, delay 0 to 4 micros), shock wave-cavitation cluster interaction (B, 4 micros to 64 micros) and shock wave-gas bubble interaction (C, 256 micros to 0.1 s). The time-integrated cavitation activity was most strongly influenced in regimen A and, in regimen B, the spatial distribution of bubbles was altered, whereas enhancement of cavitation activity was observed in regimen C. Quantitative measurements of the spatial- and time-integrated void fractions were obtained with a photographic and light-scattering technique. The preconditions for a reproducible experiment are explained, with the existence of two distinct types of cavitation nuclei, small particles suspended in the liquid and residuals of bubbles from prior cavitation clusters.

  14. Seismic detection of a hydraulic fracture from shear-wave VSP data at Lost Hills Field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meadows, M.A.; Winterstein, D.F.

    1994-01-01

    The authors describe the results of a geophysical experiment in which shear waves (S-waves) were used to detect the presence of a hydraulic fracture in a diatomite reservoir at the Lost Hills Field. They show evidence that transient S-waves recorded in a monitor well represent diffracted energy that disappears as the fracture closes. They also show how, using simple models, one can establish limits on fracture lengths and heights by accurately modeling the scattered wavefield. These limits are dependent upon both the recording geometry and the wavelength of the S-waves incident on the fracture. The principles of S-wave recording andmore » processing described here can provide important information about the geometry of induced fractures, which are becoming increasingly important for enhanced recovery. The paper presents background information about the Lost Hills Field and provide other details relevant for mapping induced fractures. The remainder of the paper treats the data processing and modeling of the experiment itself and discusses the implications for future experiments of this type.« less

  15. The International Geomagnetic Reference Field: the twelfth generation

    NASA Astrophysics Data System (ADS)

    Thebault, Erwan; Finlay, Christopher; The IGRF Working Group

    2015-04-01

    The IGRF is an internationally-agreed reference model of the Earth's magnetic field produced under the auspices of the International Association of Geomagnetism and Aeronomy. The IGRF-12 is the latest update of this well-known model which is used each year by many thousands of users for both industrial and scientific purposes. In October 2014, ten institutions worldwide have made contributions to the IGRF. These models were evaluated and the twelfth generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014. In this presentation, we will report on the IGRF activities, briefly describe the candidate models, summarize the evaluation of models performed by different independent teams, show how the IGRF-12 models were calculated and finally discuss some of the main magnetic features of this new model.

  16. On Acceptable Exposures to Short Pulses of Electromagnetic Fields

    DTIC Science & Technology

    2015-09-01

    in the comparisons given in this report, the electric and magnetic field strengths are assumed to be related as for a propagating wave . In the...adequacy of current standards is far from a settled issue. 15. SUBJECT TERMS International Commission on Non- Ionizing Radiation Protection, Institute...a source, the electric and magnetic fields are approximately related to each other in the same way as in a radiating wave far from the source. That

  17. INTERNAL FIELDS AT LOW TEMPERATURES IN CoPd ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagle, D.E.; Craig, P.P.; Barrett, P.

    1962-01-15

    The hyperfine splitting of the 14.4-kev gamma line in Fe/sup 57/ was measured for a series of sources, each containing Co/sup 57/ activity doped into a host lattice of CoPd. Although Pd itself is not ferromagnetic, the alloys with Co are all ferromagnetic, with Curie temperatures ranging from 1404 deg K for pure Co down to 130 deg K for a 3% Co alloy. The internal field associated with the hyperfine splitting is a function of temperature for a given alloy; however, at temperatures small compared to the Curie temperature, each source shows very nearly the same internal field, namelymore » - 308 kgauss. The relationship of this behavior to current theories of the internal field in Fe and to the nature of ferromagnetism in CoPd is discussed. (auth)« less

  18. A New Algorithm with Plane Waves and Wavelets for Random Velocity Fields with Many Spatial Scales

    NASA Astrophysics Data System (ADS)

    Elliott, Frank W.; Majda, Andrew J.

    1995-03-01

    A new Monte Carlo algorithm for constructing and sampling stationary isotropic Gaussian random fields with power-law energy spectrum, infrared divergence, and fractal self-similar scaling is developed here. The theoretical basis for this algorithm involves the fact that such a random field is well approximated by a superposition of random one-dimensional plane waves involving a fixed finite number of directions. In general each one-dimensional plane wave is the sum of a random shear layer and a random acoustical wave. These one-dimensional random plane waves are then simulated by a wavelet Monte Carlo method for a single space variable developed recently by the authors. The computational results reported in this paper demonstrate remarkable low variance and economical representation of such Gaussian random fields through this new algorithm. In particular, the velocity structure function for an imcorepressible isotropic Gaussian random field in two space dimensions with the Kolmogoroff spectrum can be simulated accurately over 12 decades with only 100 realizations of the algorithm with the scaling exponent accurate to 1.1% and the constant prefactor accurate to 6%; in fact, the exponent of the velocity structure function can be computed over 12 decades within 3.3% with only 10 realizations. Furthermore, only 46,592 active computational elements are utilized in each realization to achieve these results for 12 decades of scaling behavior.

  19. Ion acceleration by Alfvén waves on auroral field lines

    NASA Astrophysics Data System (ADS)

    Bingham, Robert; Eliasson, Bengt; Tito Mendonça, José; Stenflo, Lennart

    2013-05-01

    Observations of ion acceleration along auroral field lines at the boundary of the plasma sheet and tail lobe of the Earth show that the energy of the ions increases with decreasing density. The observations can be explained by ion acceleration through Landau resonance with kinetic Alfvén waves (KAWs) such that kA·vi = ωA, where kA is the wave vector, vi is the ion resonance velocity and ωA is the Alfvén wave frequency. The ion resonance velocities are proportional to the Alfvén velocity which increases with decreasing density. This is in agreement with the data if the process is occurring at the plasma sheet tail lobe boundary. A quasi-linear theory of ion acceleration by KAWs is presented. These ions propagate both down towards and away from the Earth. The paths of the Freja and Polar satellites indicate that the acceleration takes place between the two satellites, between 1Re and 5Re. The downward propagating ions develop a horseshoe-type of distribution which has a positive slope in the perpendicular direction. This type of distribution can produce intense lower hybrid wave activity, which is also observed. Finally, the filamentation of shear Alfvén waves is considered. It may be responsible for large-scale density striations. In memory of Padma Kant Shukla, a great scientist and a good friend.

  20. Evolution of wave patterns and temperature field in shock-tube flow

    NASA Astrophysics Data System (ADS)

    Kiverin, A. D.; Yakovenko, I. S.

    2018-05-01

    The paper is devoted to the numerical analysis of wave patterns behind a shock wave propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock wave is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock wave and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting waves. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.

  1. Statistical study of ULF wave occurrence in the dayside magnetosphere

    NASA Technical Reports Server (NTRS)

    Cao, M.; Mcpherron, R. L.; Russell, C. T.

    1994-01-01

    Ultralow-frequency (ULF) waves are observed almost everywhere in the dayside magnetosphere. The mechanism by which these waves are generated and transformed in the dayside magnetosphere is still not understood. Here we report a statistical study of these waves based on magnetic field data from the International Sun-Earth Explorer 1 (ISEE 1) spacecraft. Data from the first traversal of the spacecraft through the entire dayside magnetosphere have been examined to determine the spatial distribution of wave occurrence. Successive 20-min segments of data were transformed to a field-aligned coordinate system. The parallel component was detrended and all three components of the field spectrally analyzed. Wave occurrence was defined by the presence of significant peaks in the power spectra. Wave events were categorized by three wave frequency bands: Pc 3 with T approximately 10-45 s; Pc 4 with T approximately 45-150 s; the short-period part of the Pc 5 wave band with T approximately 150-324 s. Properties of the spectral peaks were then entered into a data base. The data base was next sorted to determine the spatial occurrence pattern for the waves. Our results show that Pc 3 waves most frequently occur just outside synchronous orbit and are approximately centered on local noon. Pc 4 waves have a similar distribution with its peak further out. Pc 5 waves have high occurrence rate at the two flanks of the magnetosphere. Peaks in spectra obtained near the magnetopause are less clearly defined than those deeper in the magnetosphere.

  2. Nonlinear Internal Tide Generation at the Luzon Strait: Integrating Laboratory Data with Numerics and Observations

    DTIC Science & Technology

    2008-09-30

    Nonlinear Internal Tide Generation at the Luzon Strait: Integrating Laboratory Data with Numerics and...laboratory experimental techniques have greatly enhanced the ability to obtained detailed spatiotemporal data for internal waves in challenging regimes...a custom configured wave tank; and to integrate these results with data obtained from numerical simulations, theory and field studies. The principal

  3. Synchronized excitability in a network enables generation of internal neuronal sequences

    PubMed Central

    Wang, Yingxue; Roth, Zachary; Pastalkova, Eva

    2016-01-01

    Hippocampal place field sequences are supported by sensory cues and network internal mechanisms. In contrast, sharp-wave (SPW) sequences, theta sequences, and episode field sequences are internally generated. The relationship of these sequences to memory is unclear. SPW sequences have been shown to support learning and have been assumed to also support episodic memory. Conversely, we demonstrate these SPW sequences were present in trained rats even after episodic memory was impaired and after other internal sequences – episode field and theta sequences – were eliminated. SPW sequences did not support memory despite continuing to ‘replay’ all task-related sequences – place- field and episode field sequences. Sequence replay occurred selectively during synchronous increases of population excitability -- SPWs. Similarly, theta sequences depended on the presence of repeated synchronized waves of excitability – theta oscillations. Thus, we suggest that either intermittent or rhythmic synchronized changes of excitability trigger sequential firing of neurons, which in turn supports learning and/or memory. DOI: http://dx.doi.org/10.7554/eLife.20697.001 PMID:27677848

  4. Fast generation of complex modulation video holograms using temporal redundancy compression and hybrid point-source/wave-field approaches

    NASA Astrophysics Data System (ADS)

    Gilles, Antonin; Gioia, Patrick; Cozot, Rémi; Morin, Luce

    2015-09-01

    The hybrid point-source/wave-field method is a newly proposed approach for Computer-Generated Hologram (CGH) calculation, based on the slicing of the scene into several depth layers parallel to the hologram plane. The complex wave scattered by each depth layer is then computed using either a wave-field or a point-source approach according to a threshold criterion on the number of points within the layer. Finally, the complex waves scattered by all the depth layers are summed up in order to obtain the final CGH. Although outperforming both point-source and wave-field methods without producing any visible artifact, this approach has not yet been used for animated holograms, and the possible exploitation of temporal redundancies has not been studied. In this paper, we propose a fast computation of video holograms by taking into account those redundancies. Our algorithm consists of three steps. First, intensity and depth data of the current 3D video frame are extracted and compared with those of the previous frame in order to remove temporally redundant data. Then the CGH pattern for this compressed frame is generated using the hybrid point-source/wave-field approach. The resulting CGH pattern is finally transmitted to the video output and stored in the previous frame buffer. Experimental results reveal that our proposed method is able to produce video holograms at interactive rates without producing any visible artifact.

  5. Far-Field RF Sheaths due to Shear Alfvén Waves in the LAPD

    NASA Astrophysics Data System (ADS)

    Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Carter, Troy; D'Ippolito, Daniel A.; Myra, James R.

    2013-10-01

    Ion cyclotron resonance heating (ICRH) is an important tool in current fusion experiments and will be an essential heating component in ITER. ICRH could be limited by deleterious effects due to the formation of radio frequency (RF) sheaths in the near-field (at the antenna) and in the far-field (e.g. in the divertor region). Far-field sheaths are thought to be caused by the direct launch of or mode conversion to a shear Alfvén wave with an electric field component parallel to the background magnetic field at the wall. In this experiment a limiter plate was inserted into a cylindrical plasma in the LAPD (ne ~ 1010-11 cm-3, Te ~ 5 eV, B0 = 1.2 kG) and RF sheaths were created by directly launching the shear Alfven wave. Plasma potential measurements were made with an emissive probe. DC plasma potential rectification was observed along field lines connected to the plate, serving as an indirect measure of RF sheath formation. 2-D maps of plasma properties and rectified plasma potential will be presented. This research is part of an ongoing campaign to study the formation and structure of RF sheaths.

  6. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effects of shock waves, ultraviolet light, and electric fields from pulsed discharges in water on inactivation of Escherichia coli.

    PubMed

    Sun, Bing; Xin, Yanbin; Zhu, Xiaomei; Gao, Zhiying; Yan, Zhiyu; Ohshima, Takayuki

    2018-04-01

    In this work, the bacterial inactivation effects of shock waves, ultraviolet (UV) light, and electric field produced by high-voltage pulsed discharge in liquid with needle-plate configurations were studied. The contributions of each effect on the bacterial killing ratio in the discharge process were obtained individually by modifying reactor type and usage of glass, quartz, and black balloons. The results showed that the location from the discharge center axis significantly influenced the effects of shock waves and electric fields, although the effect of UV light was not affected by the location in the reactor. The effects of shock waves and electric fields were improved by decreasing the distance from the discharge center axis. Under this experimental condition, the effects of shock waves, UV light, and electric fields produced by discharges on bacterial inactivation were approximately 36.1%, 30.8%, 12.7%, respectively. Other contributions seemed to be due to activated species. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mathematical theory of cylindrical isothermal blast waves in a magnetic field. [with application to supernova remnant evolution

    NASA Technical Reports Server (NTRS)

    Lerche, I.

    1981-01-01

    An analysis is conducted regarding the properties of cylindrically symmetric self-similar blast waves propagating away from a line source into a medium whose density and magnetic field (with components in both the phi and z directions) both vary as r to the -(omega) power (with omega less than 1) ahead of the blast wave. The main results of the analysis can be divided into two classes, related to a zero azimuthal field and a zero longitudinal field. In the case of the zero longitudinal field it is found that there are no physically acceptable solutions with continuous postshock variations of flow speed and gas density.

  9. Saturn's Internal Magnetic Field Revealed by Cassini Grand Finale

    NASA Astrophysics Data System (ADS)

    Cao, H.; Dougherty, M. K.; Khurana, K. K.; Hunt, G. J.; Provan, G.; Kellock, S.; Burton, M. E.; Burk, T. A.

    2017-12-01

    Saturn's internal magnetic field has been puzzling since the first in-situ measurements during the Pioneer 11 Saturn flyby. Cassini magnetometer measurements prior to the Grand Finale phase established 1) the highly axisymmetric nature of Saturn's internal magnetic field with a dipole tilt smaller than 0.06 degrees, 2) at least an order of magnitude slower secular variation rate compared to that of the current geomagnetic field, and 3) expulsion of magnetic fluxes from the equatorial region towards high latitude. The highly axisymmetric nature of Saturn's intrinsic magnetic field not only challenges dynamo theory but also makes an accurate determination of the interior rotation rate of Saturn extremely difficult. The Cassini spacecraft entered the Grand Finale phase in April 2017, during which time the spacecraft dived through the gap between Saturn's atmosphere and the inner edge of the D-ring 22 times before descending into the deep atmosphere of Saturn. The unprecedented proximity to Saturn (reaching 2500 km above the cloud deck) and the highly inclined nature of the Grand Finale orbits provided an ideal opportunity to decode Saturn's internal magnetic field. The fluxgate magnetometer onboard Cassini made precise vector measurements during the Grand Finale phase. Magnetic signals from the interior of the planet, the magnetospheric ring current, the high-latitude field-aligned current (FAC) modulated by the 10.7 hour planetary period oscillation, and low-latitude FACs were observed during the Grand Finale phase. Here we report the magnetometer measurements during the Cassini Grand Finale phase, new features of Saturn's internal magnetic field revealed by these measurements (e.g., the high degree magnetic moments of Saturn, the level of axisymmetry beyond dipole), and implications for the deep interior of Saturn.

  10. Separating Internal Waves and Vortical Motions: Analysis of LatMix -EM-APEX Float Measurements

    DTIC Science & Technology

    2015-09-30

    vortical motions and internal waves and quantify their effects on horizontal dispersion and diapycnal mixing. WORK COMPLETED...defined as Π = ( + ∇×)⋅∇( − η) (e.g., Kunze and Sanford 1993), where f is the Coriolis frequency, U the velocity vector, z the vertical coordinate

  11. Deformation of compound shells under action of internal shock wave loading

    NASA Astrophysics Data System (ADS)

    Chernobryvko, Marina; Kruszka, Leopold; Avramov, Konstantin

    2015-09-01

    The compound shells under the action of internal shock wave loading are considered. The compound shell consists of a thin cylindrical shell and two thin parabolic shells at the edges. The boundary conditions in the shells joints satisfy the equality of displacements. The internal shock wave loading is modelled as the surplus pressure surface. This pressure is a function of the shell coordinates and time. The strain rate deformation of compound shell takes place in both the elastic and in plastic stages. In the elastic stage the equations of the structure motions are obtained by the assumed-modes method, which uses the kinetic and potential energies of the cylindrical and two parabolic shells. The dynamic behaviour of compound shells is treated. In local plastic zones the 3-D thermo-elastic-plastic model is used. The deformations are described by nonlinear model. The stress tensor elements are determined using dynamic deformation theory. The deformation properties of materials are influenced by the strain rate behaviour, the influence of temperature parameters, and the elastic-plastic properties of materials. The dynamic yield point of materials and Pisarenko-Lebedev's criterion of destruction are used. The modified adaptive finite differences method of numerical analysis is suggested for those simulations. The accuracy of the numerical simulation is verified on each temporal step of calculation and in the case of large deformation gradients.

  12. Near-field refrigeration and tunable heat exchange through four-wave mixing

    NASA Astrophysics Data System (ADS)

    Khandekar, Chinmay; Messina, Riccardo; Rodriguez, Alejandro W.

    2018-05-01

    We modify and extend a recently proposed four-wave mixing scheme [C. Khandekar and A. Rodriguez, Opt. Express 25(19), 23164 (2017)] for achieving near-field thermal upconversion and energy transfer, to demonstrate efficient thermal refrigeration at low intensities ˜ 109W/m2 over a wide range of gap sizes (from tens to hundreds of nanometers) and operational temperatures (from tens to hundreds of Kelvins). We further exploit the scheme to achieve magnitude and directional tunability of near-field heat exchange between bodies held at different temperatures.

  13. Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Chen, L.-J.; Wilder, F. D.; Ahmadi, N.; Eriksson, S.; Usanova, M. E.; Goodrich, K. A.; Holmes, J. C.; Sturner, A. P.; Malaspina, D. M.; Newman, D. L.; Torbert, R. B.; Argall, M. R.; Lindqvist, P.-A.; Burch, J. L.; Webster, J. M.; Drake, J. F.; Price, L.; Cassak, P. A.; Swisdak, M.; Shay, M. A.; Graham, D. B.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Dorelli, J. C.; Gershman, D.; Avanov, L.; Hesse, M.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Goldman, M. V.; Stawarz, J. E.; Schwartz, S. J.; Eastwood, J. P.; Hwang, K.-J.; Nakamura, R.; Wang, S.

    2017-04-01

    Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude ( 100 mV/m) E|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.

  14. Hybrid fluid-particle simulation of whistler-mode waves in a compressed dipole magnetic field: Implications for dayside high-latitude chorus

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Wu, S.; Denton, R. E.; Hudson, M. K.; Millan, R. M.

    2017-01-01

    In this work we present a methodology for simulating whistler-mode waves self-consistently generated by electron temperature anisotropy in the inner magnetosphere. We present simulation results using a hybrid fluid/particle-in-cell code that treats the hot, anisotropic (i.e., ring current) electron population as particles and the background (i.e., the cold and inertialess) electrons as fluid. Since the hot electrons are only a small fraction of the total population, warm (and isotropic) particle electrons are added to the simulation to increase the fraction of particles with mass, providing a more accurate characterization of the wave dispersion relation. Ions are treated as a fixed background of positive charge density. The plasma transport equations are coupled to Maxwell's equations and solved in a meridional plane (a 2-D simulation with 3-D fields). We use a curvilinear coordinate system that follows the topological curvature of Earth's geomagnetic field lines, based on an analytic expression for a compressed dipole magnetic field. Hence, we are able to simulate whistler wave generation at dawn (pure dipole field lines) and dayside (compressed dipole) by simply adjusting one scalar quantity. We demonstrate how, on the dayside, whistler-mode waves can be locally generated at a range of high latitudes, within pockets of minimum magnetic field, and propagate equatorward. The obtained dayside waves (in a compressed dipole field) have similar amplitude and frequency content to their dawn sector counterparts (in a pure dipole field) but tend to propagate more field aligned.

  15. Plasma and field observations of a compressional Pc 5 wave event

    NASA Astrophysics Data System (ADS)

    Baumjohann, W.; Sckopke, N.; LaBelle, J.; Klecker, B.; Lühr, H.; Glassmeier, K. H.

    1987-11-01

    The full complement of data obtained by all the instruments on board the AMPTE/IRM satellite during a Pc 5 wave event on October 24, 1984 is analyzed. Both energetic proton and electron fluxes were anticorrelated with the compressional magnetic field oscillations, indicating that the event belongs to the class of 'in-phase events'. The energetic proton data also exhibited a new feature: flux minima and maxima at low energies were observed somewhat later than those at higher energies. The magnetic and plasma pressure oscillations satisfy the pressure balance equation for the drift mirror mode much better than that for drift compressional Alfven waves. However, the classical criterion for the onset of the mirror instability is not satisfied.

  16. Study on interfacial stability and internal flow of a droplet levitated by ultrasonic wave.

    PubMed

    Abe, Yutaka; Yamamoto, Yuji; Hyuga, Daisuke; Awazu, Shigeru; Aoki, Kazuyoshi

    2009-04-01

    For a microgravity environment, new and high-quality material is expected to be manufactured. However, the effect of surface instability and the internal flow become significant when the droplet becomes large. Elucidation of internal flow and surface instability on a levitated droplet is required for the quality improvement of new material manufacturing in a microgravity environment. The objectives of this study are to clarify the interfacial stability and internal flow of a levitated droplet. Surface instability and internal flow are investigated with a large droplet levitated by the ultrasonic acoustic standing wave. The experiment with a large droplet is conducted both under normal gravity and microgravity environments. In the experiment, at first, the characteristics of the levitated droplet are investigated; that is, the relationships among the levitated droplet diameter, the droplet aspect ratio, the displacement of the antinode of the standing wave, and the sound pressure are experimentally measured. As a result, it is clarified that the levitated droplet tends to be located at an optimal position with an optimal shape and diameter. Second, the border condition between the stable and the unstable levitation of the droplet is evaluated by using the existing stability theory. The experimental results qualitatively agree with the theory. It is suggested that the stability of the droplet can be evaluated with the stability theory. Finally, multidimensional visual measurement is conducted to investigate the internal flow structure in a levitated droplet. It is suggested that complex flow with the vortex is generated in the levitated droplet. Moreover, the effect of physical properties of the test fluid on the internal flow structure of the levitated droplet is investigated. As a result, the internal flow structure of the levitated droplet is affected by the surface tension and viscosity.

  17. Wave Transformation and Attenuation near the Submerged Breakwater and Vegetation: Field investigation and Numerical simulation

    NASA Astrophysics Data System (ADS)

    Shin, S.; Kim, I.; Hur, D.; Lee, W.; Kim, J.; Lee, J. L.; Lee, H. S.; Kim, H. G.

    2016-12-01

    The large scale decreasing of beach width in the Anmok beach had occurred due to the coastal erosion caused by the short-term events, such as unexpected high waves and storms. Hence, the city officials decided the installation of hard construction, and the first submerged breakwater, which is a structure that parallels the beach and support as a wave absorber, was constructed on this beach in September 2014. In order to deduce the correlation equation of the transmitted wave heights (TWH) after the breakwater installed, we have observed the transmitted wave height at four sites nearby the breakwater, two wave gauges were mounted on the front side of the breakwater, and the others were placed in the behind side of it. We found that the TWH using the formula suggested by Takayama et al. (1985) for the submerged breakwaters (crown elevation: D.L. (-)0.5 m, crown width: 18.5 m, bottom width: 22.8 m) was 0.501, whereas the value which was measured by the wave gauge showed 0.547. Therefore, we suggested a formula for estimating the TWH based on the field observation data. 3D numerical model (LES-WASS-3D) was employed to estimate hydrodynamic chracteristics near the submerged breakwater. The results showed that the predicted TWH agreed well with the field field observation data results. In order to consider evironmet-friendly measure, the model also simulated the wave transformation and attenuation phenomina near the area of submerged vegetation. The model was already verified in two-dimensional laboratory experiments. In this study, the numerical model is used to predict the three-dimensional wave transformation and attenucation through the underwater vegetation. The results are compared with those in the case of submerged breakwater. This research was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A2B4015419) and Korean Institute of Marine Science and Technology

  18. Wind Generated Rogue Waves in an Annular Wave Flume.

    PubMed

    Toffoli, A; Proment, D; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M

    2017-04-07

    We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an unlimited-fetch condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.

  19. International Field Experience--What Do Student Teachers Learn?

    ERIC Educational Resources Information Center

    Lee, Jackie Fung King

    2011-01-01

    This inquiry aimed to examine the benefits of having international field experience for a group of Hong Kong postgraduate student teachers who joined a six-week immersion programme in New Zealand. Through participants' reflections, interviews and programme evaluations, the present investigation found that the overseas field experience not only…

  20. Internal structure of laser supported detonation waves by two-wavelength Mach-Zehnder interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimamura, Kohei; Kawamura, Koichi; Fukuda, Akio

    Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density n{sub e} and the electron temperature T{sub e} profiles behind the shock wave were measured using a two-wavelength Mach-Zehnder interferometer along with emission spectroscopy. A TEA CO{sub 2} laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of n{sub e} and T{sub e} were, respectively, about 2 x 10{sup 24} m{sup -3} and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measuredmore » properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer's LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer's model. The measured n{sub e} at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.« less