Science.gov

Sample records for international kupffer cell

  1. Pathogenesis of Kupffer Cells in Cholestatic Liver Injury.

    PubMed

    Sato, Keisaku; Hall, Chad; Glaser, Shannon; Francis, Heather; Meng, Fanyin; Alpini, Gianfranco

    2016-09-01

    Kupffer cells are the resident macrophages in the liver. They are located in hepatic sinusoid, which allows them to remove foreign materials, pathogens, and apoptotic cells efficiently. Activated Kupffer cells secrete various mediators, including cytokines and chemokines, to initiate immune responses, inflammation, or recruitment of other liver cells. Bile duct ligation (BDL) surgery in rodents is often studied as an animal model of cholestatic liver disease, characterized by obstruction of bile flow. BDL mice show altered functional activities of Kupffer cells compared with sham-operated mice, including elevated cytokine secretion and impaired bacterial clearance. Various mediators produced by other liver cells can regulate Kupffer cell activation, which suggest that Kupffer cells orchestrate with other liver cells to relay inflammatory signals and to maintain liver homeostasis during BDL-induced liver injury. Blocking or depletion of Kupffer cells, an approach for the treatment of liver diseases, has shown controversial implications. Procedures in Kupffer cell research have limitations and may produce various results in Kupffer cell research. It is important, however, to reveal underlying mechanisms of activation and functions of Kupffer cells, followed by hepatic inflammation and fibrosis. This review summarizes present Kupffer cell studies in cholestatic liver injury. PMID:27452297

  2. High-affinity binding of fibronectin to cultured Kupffer cells

    SciTech Connect

    Cardarelli, P.M.; Blumenstock, F.A.; McKeown-Longo, P.J.; Saba, T.M.; Mazurkiewicz, J.E.; Dias, J.A. )

    1990-11-01

    Hepatic Kupffer cells are a major component of the reticuloendothelial or macrophage system. They were the first phagocytic cell type whose phagocytosis was shown to be influenced by plasma fibronectin, a dimeric opsonic glycoprotein. In the current study, the binding of soluble radioiodinated fibronectin purified from rat serum to isolated rat hepatic Kupffer cells was investigated using a cultured Kupffer cell monolayer technique. Binding was specific, since unlabeled purified fibronectin competed in a dose-dependent manner with the 125I-fibronectin for binding to the Kupffer cells. Addition of gelatin enhanced the binding of 125I-fibronectin to Kupffer cells. The phagocytosis of gelatinized-coated red cells by Kupffer cells was increased either by preopsonizing the target particles with purified fibronectin or by the addition of purified fibronectin to the culture medium. In contrast, exposure of the Kupffer cells to medium containing purified fibronectin followed by wash-removal of the fibronectin did not increase the uptake of gelatin-coated red blood cells, even though fibronectin was detected on the surface of the Kupffer cells by immunofluorescence. Trypsinized monolayers expressed decreased capacity to bind 125I-fibronectin as well as fibronectin-coated sheep erythrocytes. The binding of 125I-fibronectin-gelatin complexes was inhibited by excess unlabeled fibronectin. We calculated that specific high-affinity (Kd = 7.46 x 10(-9) M) binding sites for fibronectin exist on Kupffer cells. There are approximately 2,800-3,500 binding sites or putative fibronectin receptors per Kupffer cell. These sites appear to mediate the enhanced phagocytosis of gelatin-coated particles opsonized by fibronectin.

  3. Endocytosis of heat-denatured albumin by cultured rat Kupffer cells

    SciTech Connect

    Brouwer, A.; Knook, D.L.

    1982-10-01

    Purified Kupffer cells were obtained by centrifugal elutriation of sinusoidal cells isolated by pronase treatment of the rat liver. The endocytosis of radioactively labeled heat-aggregated colloidal albumin (CA /sup 125/I) was investigated in maintenance cultures of the purified Kupffer cells. The endocytic capacity of the cells was studied during 4 days of culture. Maximum uptake was observed after 24 hr of culture, with a gradual decline during the following days. When the uptake was measured after incubation with increasing concentrations of CA /sup 125/I, a saturation effect was observed. This finding and the observed high rate of uptake are strong indications that receptor sites on the cell membrane are involved in the mechanism of endocytosis. The uptake of CA /sup 125/I by Kupffer cells was inhibited by the metabolic inhibitors fluoride and antimycin A, indicating that endocytosis of CA /sup 125/I is dependent on energy derived from both glycolysis and mitochondrial respiration. The mechanism of internalization may also require the action of microfilaments as well as intact microtubules, since both cytochalasin B and colchicine inhibited the uptake of CA /sup 125/I. The intracellular degradation of CA /sup 125/I by Kupffer cells was strongly inhibited by chloroquine but not by colchicine. The degradation of ingested CA /sup 125/I occurred within the Kupffer cell lysosomes.

  4. Effective delivery of chemotherapeutic nanoparticles by depleting host Kupffer cells.

    PubMed

    Ohara, Yusuke; Oda, Tatsuya; Yamada, Keiichi; Hashimoto, Shinji; Akashi, Yoshimasa; Miyamoto, Ryoichi; Kobayashi, Akihiko; Fukunaga, Kiyoshi; Sasaki, Ryoko; Ohkohchi, Nobuhiro

    2012-11-15

    Although chemotherapeutic nanoparticles would confer various advantages, the majority of administrated nanoparticles are known to be spoiled by the reticuloendothelial system (RES). Intending to more effectively deliver therapeutic nanoparticles to target regions in vivo, host RES, especially Kupffer cells in the liver, have been depleted ahead of drug administration. To demonstrate this hypothesis, clodronate liposomes were preinjected into BALB/c nude mice for depletion of Kupffer cells 2 days before, and pegylated liposomal doxorubicin (Doxil) at the doses of 1.25, 2.5 and 5.0 mg/kg was administered. As a result, doxorubicin accumulation in the liver was decreased from 36 to 26% injected dose/organ by the Kupffer cells depletion, and consequently, the plasma concentration of doxorubicin was significantly enhanced threefold (from 11 to 33 μg/mL) on day 1 at 1.25 mg/kg-dose group. Doxorubicin accumulation in the tumor was increased from 0.78 to 3.0 μg/g-tissue on day 3, and tumor growth inhibition by Doxil was significantly boosted (tumor volumes from 751 to 482 mm(3) on day 24) by the Kupffer cells depletion. In conclusion, Kupffer cells depletion by clodronate liposomes enhanced the plasma concentration and antitumor effects of Doxil, and would be widely applicable for various clinical cancer chemotherapies using nanoparticles. PMID:22362271

  5. Kupffer cell structure in the juvenile Nile crocodile, Crocodylus niloticus.

    PubMed

    van Wilpe, Erna; Groenewald, Hermanus Bernardus

    2014-01-01

    The morphology of Kupffer cells was examined in the liver of the juvenile Nile crocodile using light microscopy and transmission electron microscopy. Pleomorphic Kupffer cells were located in the sinusoids, in the space of Disse, in the hepatic parenchyma and often connected adjacent sinusoids. The cell surfaces were irregular due to the presence of filopodia and lamelliapodia with phagocytosis of white blood cells, red blood cells and thrombocytes being evident. The cells were in close contact with endothelial cells and pit cells in the sinusoidal lumen and with stellate cells in the space of Disse. The cytoplasm contained large phagosomes comprising a combination of ceroid pigment, melanosomes and siderosomes. The nuclei were often indented and eccentrically placed due to the presence of the phagosomes. Conspicuous clusters of membrane-bound tubular organelles with a filamentous or crystalline interior were observed in the cytoplasm. The clusters were sometimes separated into smaller groups around phagosomes. A clear zone existed between the limiting membrane and the interior of these tubular organelles with the electron-dense interior profiles being, respectively, circular, angular or divided. The tubular organelles have not previously been described in Kupffer cells and possibly represent lysosomes with specialized functions. Mitochondria, microtubules, Golgi profiles, granular and smooth endoplasmic reticulum, and a few cytoplasmic lipid droplets were also present. The presence of the tubular organelles and the occurrence of the Kupffer cells in different locations in the liver of the juvenile Nile crocodile are indicative of particularly active and mobile cells. PMID:24142864

  6. Alcoholic hepatitis: The pivotal role of Kupffer cells.

    PubMed

    Suraweera, Duminda B; Weeratunga, Ashley N; Hu, Robert W; Pandol, Stephen J; Hu, Richard

    2015-11-15

    Kupffer cells play a central role in the pathogenesis of alcoholic hepatitis (AH). It is believed that alcohol increases the gut permeability that results in raised levels of serum endotoxins containing lipopolysaccharides (LPS). LPS binds to LPS-binding proteins and presents it to a membrane glycoprotein called CD14, which then activates Kupffer cells via a receptor called toll-like receptor 4. This endotoxin mediated activation of Kupffer cells plays an important role in the inflammatory process resulting in alcoholic hepatitis. There is no effective treatment for AH, although notable progress has been made over the last decade in understanding the underlying mechanism of alcoholic hepatitis. We specifically review the current research on the role of Kupffer cells in the pathogenesis of AH and the treatment strategies. We suggest that the imbalance between the pro-inflammatory and the anti-inflammatory process as well as the increased production of reactive oxygen species eventually lead to hepatocyte injury, the final event of alcoholic hepatitis. PMID:26600966

  7. Alcoholic hepatitis: The pivotal role of Kupffer cells

    PubMed Central

    Suraweera, Duminda B; Weeratunga, Ashley N; Hu, Robert W; Pandol, Stephen J; Hu, Richard

    2015-01-01

    Kupffer cells play a central role in the pathogenesis of alcoholic hepatitis (AH). It is believed that alcohol increases the gut permeability that results in raised levels of serum endotoxins containing lipopolysaccharides (LPS). LPS binds to LPS-binding proteins and presents it to a membrane glycoprotein called CD14, which then activates Kupffer cells via a receptor called toll-like receptor 4. This endotoxin mediated activation of Kupffer cells plays an important role in the inflammatory process resulting in alcoholic hepatitis. There is no effective treatment for AH, although notable progress has been made over the last decade in understanding the underlying mechanism of alcoholic hepatitis. We specifically review the current research on the role of Kupffer cells in the pathogenesis of AH and the treatment strategies. We suggest that the imbalance between the pro-inflammatory and the anti-inflammatory process as well as the increased production of reactive oxygen species eventually lead to hepatocyte injury, the final event of alcoholic hepatitis. PMID:26600966

  8. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques

    PubMed Central

    Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. PMID:24074569

  9. Contribution of programmed cell death receptor (PD)-1 to Kupffer cell dysfunction in murine polymicrobial sepsis.

    PubMed

    Wang, Fei; Huang, Xin; Chung, Chun-Shiang; Chen, Yaping; Hutchins, Noelle A; Ayala, Alfred

    2016-08-01

    Recent studies suggest that coinhibitory receptors appear to be important in contributing sepsis-induced immunosuppression. Our laboratory reported that mice deficient in programmed cell death receptor (PD)-1 have increased bacterial clearance and improved survival in experimental sepsis induced by cecal ligation and puncture (CLP). In response to infection, the liver clears the blood of bacteria and produces cytokines. Kupffer cells, the resident macrophages in the liver, are strategically situated to perform the above functions. However, it is not known if PD-1 expression on Kupffer cells is altered by septic stimuli, let alone if PD-1 ligation contributes to the altered microbial handling seen. Here we report that PD-1 is significantly upregulated on Kupffer cells during sepsis. PD-1-deficient septic mouse Kupffer cells displayed markedly enhanced phagocytosis and restoration of the expression of major histocompatibility complex II and CD86, but reduced CD80 expression compared with septic wild-type (WT) mouse Kupffer cells. In response to ex vivo LPS stimulation, the cytokine productive capacity of Kupffer cells derived from PD-1-/- CLP mice exhibited a marked, albeit partial, restoration of the release of IL-6, IL-12, IL-1β, monocyte chemoattractant protein-1, and IL-10 compared with septic WT mouse Kupffer cells. In addition, PD-1 gene deficiency decreased LPS-induced apoptosis of septic Kupffer cells, as indicated by decreased levels of cleaved caspase-3 and reduced terminal deoxynucleotidyl transferase dUTP nick end-labeling-positive cells. Exploring the signal pathways involved, we found that, after ex vivo LPS stimulation, septic PD-1-/- mouse Kupffer cells exhibited an increased Akt phosphorylation and a reduced p38 phosphorylation compared with septic WT mouse Kupffer cells. Together, these results indicate that PD-1 appears to play an important role in regulating the development of Kupffer cell dysfunction seen in sepsis. PMID:27288425

  10. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques

    SciTech Connect

    Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.

    2013-11-15

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. - Highlights: • Kupffer cells increase in the liver of SIV-infected macaques. • Increased proliferation and apoptosis of Kupffer cells occurs in SIV infection. • Productively infected cells are rarely detected in the liver. • The liver is not a major site for SIV replication.

  11. The Role of IL-1 Family Members and Kupffer Cells in Liver Regeneration

    PubMed Central

    Tan, Quanhui; Hu, Jianjun; Yu, Xiaolan; Guan, Wen; Lu, Huili; Yu, Yan; Yu, Yongsheng; Zang, Guoqiang; Tang, Zhenghao

    2016-01-01

    Interleukin-1 (IL-1) family and Kupffer cells are linked with liver regeneration, but their precise roles remain unclear. IL-1 family members are pleiotropic factors with a range of biological roles in liver diseases, inducing hepatitis, cirrhosis, and hepatocellular carcinoma, as well as liver regeneration. Kupffer cells are the main source of IL-1 and IL-1 receptor antagonist (IL-1Ra), the key members of IL-1 family. This systemic review highlights a close association of IL-1 family members and Kupffer cells with liver regeneration, although their specific roles are inconclusive. Moreover, IL-1 members are proposed to induce effects on liver regeneration through Kupffer cells. PMID:27092311

  12. Biphasic control of polymorphonuclear cell migration by Kupffer cells. Effect of exposure to metabolic products of ethanol

    SciTech Connect

    Fainsilber, Z.; Feinman, L.; Shaw, S.; Lieber, C.S.

    1988-01-01

    In order to investigate the role of the Kupffer cells in the regulation of the inflammatory reaction seen in alcoholic hepatitis, rat liver Kupffer cells were cultured and exposed to products of ethanol metabolism. The resultant supernatants were tested to study their ability to stimulate or inhibit polymorphonuclear cell chemotaxis. Kupffer cells produced increased chemokinetic activity for human polymorphonuclear leukocytes; when incubated with soluble products of microsomal peroxidation, the Kupffer cells engendered more chemokinetic activity than that produced by untreated Kupffer cells. When Kupffer cells were incubated with acetaldehyde, the chemokinetic activity that appeared in the supernatant did not differ from control. Chemotaxis of polymorphonuclear cells was not observed when the Kupffer cell supernatants were tested by checkerboard analysis.

  13. PEGylated IL-10 Activates Kupffer Cells to Control Hypercholesterolemia

    PubMed Central

    Chan, Ivan H.; Van Hoof, Dennis; Abramova, Marina; Bilardello, Melissa; Mar, Elliot; Jorgensen, Brett; McCauley, Scott; Bal, Harminder; Oft, Martin; Van Vlasselaer, Peter

    2016-01-01

    Interleukin-10 (IL-10) is a multifunctional cytokine that exerts potent context specific immunostimulatory and immunosuppressive effects. We have investigated the mechanism by which PEGylated rIL-10 regulates plasma cholesterol in mice and humans. In agreement with previous work on rIL-10, we report that PEGylated rIL-10 harnesses the myeloid immune system to control total plasma cholesterol levels. We have discovered that PEG-rMuIL-10’s dramatic lowering of plasma cholesterol is dependent on phagocytotic cells. In particular, PEG-rHuIL-10 enhances cholesterol uptake by Kupffer cells. In addition, removal of phagocytotic cells dramatically increases plasma cholesterol levels, suggesting for the first time that immunological cells are implicitly involved in regulating total cholesterol levels. These data suggest that treatment with PEG-rIL-10 potentiates endogenous cholesterol regulating cell populations not currently targeted by standard of care therapeutics. Furthermore, we show that IL-10’s increase of Kupffer cell cholesterol phagocytosis is concomitant with decreases in liver cholesterol and triglycerides. This leads to the reversal of early periportal liver fibrosis and facilitates the restoration of liver health. These data recommend PEG-rIL-10 for evaluation in the treatment of fatty liver disease and preventing its progression to non-alcoholic steatohepatitis. In direct confirmation of our in vivo findings in the treatment of hypercholesterolemic mice with PEG-rMuIL-10, we report that treatment of hypercholesterolemic cancer patients with PEG-rHuIL-10 lowers total plasma cholesterol by up to 50%. Taken together these data suggest that PEG-rIL-10’s cholesterol regulating biology is consistent between mice and humans. PMID:27299860

  14. Hepatic Tumor Metastases Cause Enhanced PEGylated Liposome Uptake by Kupffer Cells.

    PubMed

    Ukawa, Masami; Fujiwara, Yukako; Ando, Hidenori; Shimizu, Taro; Ishida, Tatsuhiro

    2016-01-01

    Kupffer cells in livers bearing tumor metastases were found to have promoted tumor invasion and exacerbated the metastasis. This implies that the function of Kupffer cells might differ between animals bearing hepatic metastases and those that are healthy. Kupffer cells are considered responsible for the accumulation of liposomes in the liver. In this study, we hypothesized that the alteration in the function of Kupffer cells by hepatic metastasis would also affect the biodistribution of liposomes following intravenous administration. The hepatic accumulation and the blood concentration of PEGylated liposomes were compared between healthy mice and tumor-bearing mice. We noted that hepatic accumulation and elimination from the blood were significantly accelerated in tumor-bearing mice, indicating that our hypothesis was correct. In the tumor-bearing mice, the proportion of Kupffer cells taking up liposomes was significantly increased. Intravenous injection of oxaliplatin (l-OHP) containing PEGylated liposomes decreased the fraction of Kupffer cells, but this administration caused no injury to the hepatocytes. These results suggest that PEGylated liposomes containing l-OHP may have the potential to treat metastatic hepatic cancer-not only via the direct killing of the cancer cells but also via a reduction in tumor-supportive Kupffer cells. PMID:26830481

  15. Kupffer cell activation after no-flow ischemia versus hemorrhagic shock.

    PubMed

    Jaeschke, Hartmut; Farhood, Anwar

    2002-07-15

    Kupffer cell-derived oxidant stress is critical for reperfusion injury after no-flow ischemia. However, the importance of Kupffer cells as source of reactive oxygen formation is unclear in a hemorrhagic shock model. Therefore, we evaluated Kupffer cell activation after 60 or 120 min of hemorrhage and 90 min of resuscitation (HS/RS) in pentobarbital-anesthetized male Fischer rats. Plasma glutathione disulfide (GSSG) as indicator for a vascular oxidant stress showed no significant changes after HS/RS. Plasma ALT activities were only moderately increased (100-200 U/L). Kupffer cells isolated from postischemic livers did not generate more superoxide than cells from sham controls. In contrast, the 10-fold increase of plasma GSSG and the 9-fold higher spontaneous superoxide formation of Kupffer cells after 60 min of hepatic no-flow ischemia followed by 90 min of reperfusion demonstrated the activation of Kupffer cells in this experimental model. Plasma ALT activities (1930 +/- 240 U/L) indicated severe liver injury. These results demonstrate a fundamental difference in the degree of Kupffer cell activation between the two models of warm hepatic ischemia. Our findings suggest that different therapeutic strategies are necessary to ameliorate the initial injury after low flow ischemia (hemorrhage) compared to cold (transplantation) or warm (Pringle maneuver) no-flow ischemia. PMID:12106817

  16. Repopulation of murine Kupffer cells after intravenous administration of liposome-encapsulated dichloromethylene diphosphonate.

    PubMed Central

    Yamamoto, T.; Naito, M.; Moriyama, H.; Umezu, H.; Matsuo, H.; Kiwada, H.; Arakawa, M.

    1996-01-01

    Kupffer cells were selectively eliminated in mice by the intravenous administration of liposome-entrapped dichloromethylene diphosphonate. At 5 days, small peroxidase-negative and acid-phosphatase-weakly-positive macrophages appeared, increased in number, and differentiated into peroxidase- and acid-phosphatase-positive Kupffer cells. Repopulating small macrophages actively proliferated, and the number of Kupffer cells returned to the normal level by day 14. The numbers of macrophage precursors in the liver as detected by the monoclonal antibodies ER-MP20 and ER-MP58 increased after liposome-entrapped dichloromethylene diphosphonate injection. ER-MP58-positive cells proliferated and differentiated into ER-MP20-positive cells and eventually into BM8-positive Kupffer cells in the liver. Bone-marrow-derived ER-MP58-positive cells were also detectable in the liver and differentiated into ER-MP20-positive cells, but they did not become BM8-positive macrophages. Macrophage colony-stimulating factor mRNA expression was enhanced in the liver 1 day after injection. The administration of macrophage colony-stimulating factor did not shorten the period of Kupffer cell depletion but increased the number and the proliferative capacity of repopulating Kupffer cells. These findings implied that repopulating Kupffer cells are derived from a macrophage precursor pool in the liver rather than from bone-marrow-derived monocytes. Local production of macrophage colony-stimulating factor in the liver plays a crucial role in the differentiation, maturation, and proliferation of Kupffer cells. Images Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 Figure 9 Figure 11 Figure 13 Figure 12 Figure 18 PMID:8863675

  17. Bimodal role of Kupffer cells during colorectal cancer liver metastasis.

    PubMed

    Wen, Shu Wen; Ager, Eleanor I; Christophi, Christopher

    2013-07-01

    Kupffer cells (KCs) are resident liver macrophages that play a crucial role in liver homeostasis and in the pathogenesis of liver disease. Evidence suggests KCs have both stimulatory and inhibitory functions during tumor development but the extent of these functions remains to be defined. Using KC depletion studies in an orthotopic murine model of colorectal cancer (CRC) liver metastases we demonstrated the bimodal role of KCs in determining tumor growth. KC depletion with gadolinium chloride before tumor induction was associated with an increased tumor burden during the exponential growth phase. In contrast, KC depletion at the late stage of tumor growth (day 18) decreased liver tumor load compared with non-depleted animals. This suggests KCs exhibit an early inhibitory and a later stimulatory effect. These two opposing functions were associated with changes in iNOS and VEGF expression as well as T-cell infiltration. KC depletion at day 18 increased numbers of CD3 (+) T cells and iNOS-expressing infiltrating cells in the tumor, but decreased the number of VEGF-expressing infiltrating cells. These alterations may be responsible for the observed reduction in tumor burden following depletion of pro-tumor KCs at the late stage of metastatic growth. Taken together, our results indicate that the bimodal role of KC activity in liver tumors may provide the key to timing immunomodulatory intervention for the treatment of CRC liver metastases. PMID:23792646

  18. Interactions between macrophage/Kupffer cells and hepatocytes in surgical sepsis

    SciTech Connect

    West, M.A.

    1988-01-01

    Experiments were performed to investigate the role of Kupffer cell/macrophage interactions with hepatocytes in modulating liver function during infections using direct in vitro cocultivation of rat macrophages or Kupffer cells with rat hepatocytes. Protein synthesis was assayed as a sensitive indicator of integrated hepatocellular function by measuring {sup 3}H-leucine incorporation into hepatocyte protein. Septic stimuli such as lipoploysaccharide and killed bacteria were added to cocultures of hepatocytes and macrophages or Kupffer cells and the responses compared to hepatocytes alone. Information about the types of proteins synthesized by hepatocytes under various culture conditions was determined using polyacrylamide gel electrophoresis and autoradiography. These experiments showed that septic stimuli alter the amount and type of protein synthesized by hepatocytes and had no direct effect on hepatocytes in the absence of macrophages or Kupffer cells. The mediator(s) appears to be a heat labile, soluble monokine(s) which is distinct from interleukin-1 or tumor necrosis factor. The important role of Kupffer cells/macrophages in mediating alterations in hepatocellular function in sepsis may ultimately improve patient care.

  19. [Isolation and purification of primary Kupffer cells from mouse liver].

    PubMed

    Sun, Chao; Luo, Qingbo; Lu, Xiuxian; Zheng, Daofeng; He, Diao; Wu, Zhongjun

    2016-08-01

    Objective To isolate and purify Kupffer cells (KCs) from BALB/c mice by an efficient method of low-speed centrifugation and rapid adherence. Methods The mouse liver tissue was perfused in situ and digested with 0.5 g/L collagenase type IV in vitro by water bath. Then, through the low-speed centrifugation, KCs were separated from the mixed hepatocytes, and purified by rapid adherent characteristics. Finally, the production and activity of KCs obtained by this modified method were compared with those isolated by Percoll density gradient centrifugation. We used F4/80 antibody immunofluorescence technique to observe morphological features of KCs, flow cytometry (FCM) to detect the expression of F4/80 antibody and the ink uptake test to observe the phagocytic activity. Moreover, using FCM, we evaluated the expressions of molecules associated with antigen presentation, including major histocompatibility complex class II (MHC II), CD40, CD86 and CD68 on the surface of KCs subjected to hypoxia/reoxygenation (H/R) modeling. And, ELISA was conducted to measure tumor necrosis factor-α (TNF-α) production of the cultured KCs following H/R. Results The yield of KCs was (5.83±0.54)×10(6) per mouse liver and the survival rate of KCs was up to 92% by low-speed centrifugation and rapid adherent method. Compared with Percoll density gradient centrifugation [the yield of KCs was (2.19±0.43)×10(6) per liver], this new method significantly improved the yield of KCs. F4/80 immunofluorescence showed typical morphologic features of KCs such as spindle or polygon shapes and FCM identified nearly 90% F4/80 positive cells. The phagocytic assay showed that lots of ink particles were phagocytosed into the isolated cells. KC H/R models expressed more MHC II, CD40 and CD86 and produced more TNF-α participating in inflammation. Conclusion The efficient method to isolate and purify KCs from BALB /c mice has been successfully established. PMID:27412929

  20. Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice

    PubMed Central

    Zong, Chen; Lai, Fobao; Zhu, Pengxi; Liu, Yu; Jiang, Jinghua; Yang, Yang; Gao, Lu; Ye, Fei; Zhao, Qiudong; Li, Rong; Han, Zhipeng; Wei, Lixin

    2016-01-01

    Mesenchymal stem cells (MSCs) repair tissue injury and may be used to treat immune associated diseases. In carbon tetrachloride (CCl4)-induced liver injury murine model, we administered MSCs. When MSCs were transmitted to young and old mice with liver injury, more MSCs were recruited in old mice. In old mice, inflammation, characterized by TNF-α and IL-6, was increased due to hyper-activation and hyper-function of Kupffer cells. Blocking Kupffer cells decreased MSCs migration in old mice. In vitro, Kupffer cells isolated from old mice secreted more inflammatory cytokines and chemokines. Thus, hyper-activation of Kupffer cells in old mice increased recruitment of MSCs after their therapeutic administration. PMID:26716516

  1. Mammary-carcinoma cells in mouse liver: infiltration of liver tissue and interaction with Kupffer cells.

    PubMed Central

    Roos, E.; Dingemans, K. P.; Van de Pavert, I. V.; Van den Bergh-Weerman, M. A.

    1978-01-01

    Interactions between TA3 mammary-carcinoma cells and liver cells were studied with the electron microscope in mouse livers that had been perfused with a defined medium containing the tumour cells. Infiltration of liver tissue by the TA3 cells proceeded in the following steps. First, numerous small protrusions were extended through endothelial cells and into hepatocytes. Next, some cells had larger processes deeply indenting hepatocytes. Finally a few tumour cells became located outside the blood vessels. Two variant cell lines, TA3/Ha and TA3/St, differing in cell coat and surface charge, did not differ in the extent of infiltration. TA3/Ha cells were often encircled by thin processes of liver macrophages (Kupffer cells). Encircled cells were initially intact, but later some of them degenerated. These observations suggest that TA3/Ha cells were phagocytized by the Kupffer cells. Encirclement appeared to be inhibited after only 30 min, when many cells were still partly surrounded. Encirclement of TA3/St was much less frequent. After injection of tumour cells intra-portally in vivo, similar results were obtained, which demonstrated the validity of the perfused liver model. TA3/Ha cells formed much fewer tumour nodules in the liver than TA3/St cells. Images Fig. 7 Fig. 8 Fig. 9 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 11 Fig. 12 Fig. 13 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:687522

  2. Cross-Activating Invariant NKT Cells and Kupffer Cells Suppress Cholestatic Liver Injury in a Mouse Model of Biliary Obstruction

    PubMed Central

    Duwaerts, Caroline C.; Sun, Eric P.; Cheng, Chao-Wen; van Rooijen, Nico; Gregory, Stephen H.

    2013-01-01

    Both Kupffer cells and invariant natural killer T (iNKT) cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL) in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry), mRNA expression (qtPCR), nitric oxide (NO.) production (Griess reaction), and protein secretion (cytometric bead-array or ELISAs) were determined. To address the potential role of NO. in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS) inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA)-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO., and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury. PMID:24260285

  3. Cross-activating invariant NKT cells and kupffer cells suppress cholestatic liver injury in a mouse model of biliary obstruction.

    PubMed

    Duwaerts, Caroline C; Sun, Eric P; Cheng, Chao-Wen; van Rooijen, Nico; Gregory, Stephen H

    2013-01-01

    Both Kupffer cells and invariant natural killer T (iNKT) cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL) in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry), mRNA expression (qtPCR), nitric oxide (NO (.) ) production (Griess reaction), and protein secretion (cytometric bead-array or ELISAs) were determined. To address the potential role of NO (.) in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS) inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA)-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO (.) , and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury. PMID:24260285

  4. Colloidal carbon stimulation of Kupffer cells triggers Nrf2 activation in the isolated perfused rat liver.

    PubMed

    Núñez, Bárbara; Vargas, Romina; Castillo, Iván; Videla, Luis A

    2012-06-01

    Activation of transcription factor Nrf2 was investigated in the isolated perfused rat liver infused with 0.5 mg of colloidal carbon (CC)/ml for 5-15 min to stimulated Kupffer cell function. Infusion of CC enhanced liver O(2) consumption over basal levels, with a time-dependent increase in CC-induced O(2) uptake, at constant rates of CC phagocytosis by Kupffer cells, as assessed histologically, and adequate viability conditions of the livers, as shown by the marginal (0.34 %) total sinusoidal lactate dehydrogenase (LDH) efflux over intrahepatic LDH activity. Under these conditions, cytosolic protein levels of Nrf2 (Western blot) and inhibitor of Nrf2 Keap1 progressively declined by CC infusion, those of nuclear Nrf2 increased, leading to enhancement in the nuclear/cytosolic Nrf2 ratios. It is concluded that the respiratory burst of CC-stimulated Kupffer cells triggers Nrf2 activation in the perfused liver, a response that may afford cellular protection under pro-oxidant conditions underlying Kupffer cell stimulation. PMID:22461194

  5. Effect of allyl alcohol on hepatic transporter expression: Zonal patterns of expression and role of Kupffer cell function

    PubMed Central

    Campion, Sarah N.; Tatis-Rios, Cristina; Augustine, Lisa M.; Goedken, Michael J.; van Rooijen, Nico; Cherrington, Nathan J.; Manautou, José E.

    2015-01-01

    During APAP toxicity, activation of Kupffer cells is critical for protection from hepatotoxicity and up-regulation of multidrug resistance-associated protein 4 (Mrp4) in centrilobular hepatocytes. The present study was performed to determine the expression profile of uptake and efflux transporters in mouse liver following treatment with allyl alcohol (AlOH), a periportal hepatotoxicant. This study also investigated the role of Kupffer cells in AlOH hepatotoxicity, and whether changes in transport protein expression by AlOH are dependent on the presence of Kupffer cells. C57BL/6J mice received 0.1 ml clodronate liposomes to deplete Kupffer cells or empty liposomes 48 h prior to dosing with 60 mg/kg AlOH, i.p. Hepatotoxicity was assessed by plasma ALT and histopathology. Hepatic transporter mRNA and protein expression were determined by branched DNA signal amplification assay and Western blotting, respectively. Depletion of Kupffer cells by liposomal clodronate treatment resulted in heightened susceptibility to AlOH toxicity. Exposure to AlOH increased mRNA levels of several Mrp genes, while decreasing organic anion transporting polypeptides (Oatps) mRNA expression. Protein analysis mirrored many of these mRNA changes. The presence of Kupffer cells was not required for the observed changes in uptake and efflux transporters induced by AlOH. Immunofluorescent analysis revealed enhanced Mrp4 staining exclusively in centrilobular hepatocytes of AlOH treated mice. These findings demonstrate that Kupffer cells are protective from AlOH toxicity and that induction of Mrp4 occurs in liver regions away from areas of AlOH damage independent of Kupffer cell function. These results suggest that Kupffer cell mediators do not play a role in mediating centrilobular Mrp4 induction in response to periportal damage by AlOH. PMID:19371622

  6. Effect of allyl alcohol on hepatic transporter expression: Zonal patterns of expression and role of Kupffer cell function

    SciTech Connect

    Campion, Sarah N.; Tatis-Rios, Cristina; Augustine, Lisa M.; Goedken, Michael J.; Rooijen, Nico van; Cherrington, Nathan J.; Manautou, Jose E.

    2009-04-01

    During APAP toxicity, activation of Kupffer cells is critical for protection from hepatotoxicity and up-regulation of multidrug resistance-associated protein 4 (Mrp4) in centrilobular hepatocytes. The present study was performed to determine the expression profile of uptake and efflux transporters in mouse liver following treatment with allyl alcohol (AlOH), a periportal hepatotoxicant. This study also investigated the role of Kupffer cells in AlOH hepatotoxicity, and whether changes in transport protein expression by AlOH are dependent on the presence of Kupffer cells. C57BL/6J mice received 0.1 ml clodronate liposomes to deplete Kupffer cells or empty liposomes 48 h prior to dosing with 60 mg/kg AlOH, i.p. Hepatotoxicity was assessed by plasma ALT and histopathology. Hepatic transporter mRNA and protein expression were determined by branched DNA signal amplification assay and Western blotting, respectively. Depletion of Kupffer cells by liposomal clodronate treatment resulted in heightened susceptibility to AlOH toxicity. Exposure to AlOH increased mRNA levels of several Mrp genes, while decreasing organic anion transporting polypeptides (Oatps) mRNA expression. Protein analysis mirrored many of these mRNA changes. The presence of Kupffer cells was not required for the observed changes in uptake and efflux transporters induced by AlOH. Immunofluorescent analysis revealed enhanced Mrp4 staining exclusively in centrilobular hepatocytes of AlOH treated mice. These findings demonstrate that Kupffer cells are protective from AlOH toxicity and that induction of Mrp4 occurs in liver regions away from areas of AlOH damage independent of Kupffer cell function. These results suggest that Kupffer cell mediators do not play a role in mediating centrilobular Mrp4 induction in response to periportal damage by AlOH.

  7. Effects of glycine on phagocytosis and secretion by Kupffer cells in vitro

    PubMed Central

    Wu, Hui-Wen; Yun, Ke-Ming; Han, De-Wu; Xu, Rui-Ling; Zhao, Yuan-Chang

    2012-01-01

    AIM: To investigate the effects and mechanisms of action of glycine on phagocytosis and tumor necrosis factor (TNF)-α secretion by Kupffer cells in vitro. METHODS: Kupffer cells were isolated from normal rats by collagenase digestion and Percoll density gradient differential centrifugation. After culture for 24 h, Kupffer cells were incubated in fresh Dulbecco's Modification of Eagle’s Medium containing glycine (G1: 1 mmol/L, G2: 10 mmol/L, G3: 100 mmol/L and G4: 300 mmol/L) for 3 h, then used to measure phagocytosis by a bead test, TNF-α secretion after lipopolysaccharide stimulation by radioactive immunoassay, and microfilament and microtubule expression by staining with phalloidin-fluorescein isothiocyanate (FITC) or a monoclonal anti-α tubulin-FITC antibody, respectively, and evaluated under a ultraviolet fluorescence microscope. RESULTS: Glycine decreased the phagocytosis of Kupffer cells at both 30 min and 60 min (P < 0.01, P < 0.05). The numbers of beads phagocytosed by Kupffer cells in 30 min were 16.9 ± 4.0 (control), 9.6 ± 4.1 (G1), 12.1 ± 5.7 (G2), 8.1 ± 3.2 (G3) and 7.5 ± 2.0 (G4), and were 22.5 ± 7.9 (control), 20.1 ± 5.8 (G1), 19.3 ± 4.8 (G2), 13.5 ± 4.7 (G3) and 9.2 ± 3.1 (G4) after 60 min. TNF-α secretion by Kupffer cells in G1 (0.19 ± 0.03), G2 (0.16 ± 0.04), G3 (0.14 ± 0.03) and G4 (0.13 ± 0.05) was significantly less than that in controls (0.26 ± 0.03, P < 0.01), and the decrease in secretion was dose-dependent (P < 0.05). Microfilaments of Kupffer cells in G2, G3 and G4 groups were arranged in a disorderly manner. The fluorescence densities of microtubules in G1 (53.4 ± 10.5), G2 (54.1 ± 14.6), G3 (64.9 ± 12.1) and G4 (52.1 ± 14.2) were all lower than those in the controls (102.2 ± 23.7, P < 0.01), but the decrease in microtubule fluorescence density was not dose-dependant. CONCLUSION: Glycine can decrease the phagocytosis and secretion by Kupffer cells in vitro, which may be related to the changes in the expression of

  8. Radioprotective effect of kupffer cell depletion on hepatic sinusoidal endothelial cells.

    PubMed

    Chen, Yi-Xing; Zeng, Zhao-Chong; Sun, Jing; Zhang, Zhen-Yu; Zeng, Hai-Ying; Hu, Wei-Xu

    2015-05-01

    Radiation-induced liver injury remains a clinical problem and data suggest that sinusoidal endothelial cells (SECs) are an important target. The purpose of this study was to determine whether the inhibition of Kupffer cells before exposure would protect SECs from radiation-induced injury. Sprague-Dawley rats were intravenously injected 24 h before irradiation with Kupffer cell inhibitor gadolinium chloride (GdCl3) (10 mg/kg body weight). Three groups of animals were treated: 1. control group (saline and sham irradiation); 2. GdCl3 + 30 Gy radiation group and 3. 30 Gy radiation only group. Specimens were collected at 2, 6, 12, 24 and 48 h after completion of each treatment. Liver tissue was assessed for inflammatory cytokine expression and radiation-induced SEC injury based on serum hyaluronic acid (HA) level, apoptosis and ultrastructural and histological analyses. The results showed that radiation exposure caused apoptosis of SECs, but not hepatocytes. Inflammatory cytokine expression, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) expression, was significantly attenuated in the GdCl3 + 30 Gy radiation group, compared with the 30 Gy radiation-only group (P < 0.05). The GdCl3 + radiation-treated rats exhibited significantly lower levels of HA and SEC apoptosis than the radiation-treated only rats at early time points, and radiation-induced liver injury was also attenuated. In conclusion, we hypothesize that selective Kupffer cell inhibition by gadolinium chloride was shown to reduce apoptosis in SECs caused by irradiation of the live and protected the liver against radiation-induced injury. PMID:25897555

  9. Effects of zinc oxide nanoparticles on Kupffer cell phagosomal motility, bacterial clearance, and liver function

    PubMed Central

    Watson, Christa Y; Molina, Ramon M; Louzada, Andressa; Murdaugh, Kimberly M; Donaghey, Thomas C; Brain, Joseph D

    2015-01-01

    Background Zinc oxide engineered nanoparticles (ZnO ENPs) have potential as nanomedicines due to their inherent properties. Studies have described their pulmonary impact, but less is known about the consequences of ZnO ENP interactions with the liver. This study was designed to describe the effects of ZnO ENPs on the liver and Kupffer cells after intravenous (IV) administration. Materials and methods First, pharmacokinetic studies were conducted to determine the tissue distribution of neutron-activated 65ZnO ENPs post-IV injection in Wistar Han rats. Then, a noninvasive in vivo method to assess Kupffer cell phagosomal motility was employed using ferromagnetic iron particles and magnetometry. We also examined whether prior IV injection of ZnO ENPs altered Kupffer cell bactericidal activity on circulating Pseudomonas aeruginosa. Serum and liver tissues were collected to assess liver-injury biomarkers and histological changes, respectively. Results We found that the liver was the major site of initial uptake of 65ZnO ENPs. There was a time-dependent decrease in tissue levels of 65Zn in all organs examined, refecting particle dissolution. In vivo magnetometry showed a time-dependent and transient reduction in Kupffer cell phagosomal motility. Animals challenged with P. aeruginosa 24 hours post-ZnO ENP injection showed an initial (30 minutes) delay in vascular bacterial clearance. However, by 4 hours, IV-injected bacteria were cleared from the blood, liver, spleen, lungs, and kidneys. Seven days post-ZnO ENP injection, creatine phosphokinase and aspartate aminotransferase levels in serum were significantly increased. Histological evidence of hepatocyte damage and marginated neutrophils were observed in the liver. Conclusion Administration of ZnO ENPs transiently inhibited Kupffer cell phagosomal motility and later induced hepatocyte injury, but did not alter bacterial clearance from the blood or killing in the liver, spleen, lungs, or kidneys. Our data show that

  10. Diminished organelle motion in murine Kupffer cells during the erythrocytic stage of malaria

    PubMed Central

    Bellows, Charles F.; Molina, Ramon M.; Brain, Joseph D.

    2011-01-01

    Parasitized erythrocytes are ingested by murine hepatic macrophages during malaria infection. We non-invasively monitored how this altered the motion of intracellular phagosomes in Kupffer cells using magnetometry. Submicrometric γFe2O3 particles were injected prior to malaria infection. They were cleared from the blood, primarily by Kupffer cells, and retained within their phagosomes. The mice were periodically magnetized. After removing this external magnet, the aligned iron particles created a remnant magnetic field (RMF) which then decayed (relaxation), reflecting the motion of particle-containing phagosomes. After baseline measurements of relaxation, the mice were injected intravenously with Plasmodium chabaudi-parasitized or normal murine red blood cells (RBCs). During the next 15 days, relaxation measurements, parasitaemia and haematocrit values were monitored. At 6 days post injection with 3 × 107 parasitized RBCs, relaxation rates had decreased. At this time, all mice had parasitaemias greater than 58 per cent and haematocrits less than 20 per cent. At day 7, while the parasitaemias were declining, the rate of relaxation continued to decrease. Throughout the experiment, relaxation remained constant in animals injected with normal RBCs. Electron microscopy revealed Kupffer cells filled with damaged and parasitized erythrocytes, and haemoglobin degradation pigment. We conclude that ingestion and metabolism of parasitized erythrocytes by liver macrophages during malaria infection decreases their organelle motion with likely consequences of compromised host defences. PMID:21068031

  11. Kupffer cell-mediated exacerbation of methimazole-induced acute liver injury in rats.

    PubMed

    Akai, Sho; Uematsu, Yasuaki; Tsuneyama, Koichi; Oda, Shingo; Yokoi, Tsuyoshi

    2016-05-01

    Methimazole (MTZ), an anti-thyroid drug, is known to cause liver injury in humans. It has been demonstrated that MTZ-induced liver injury in Balb/c mice is accompanied by T helper (Th) 2 cytokine-mediated immune responses; however, there is little evidence for immune responses associated with MTZ-induced liver injury in rats. To investigate species differences in MTZ-induced liver injury, we administered MTZ with a glutathione biosynthesis inhibitor, L-buthionine-S,R-sulfoximine (BSO), to F344 rats and subsequently observed an increase in plasma alanine aminotransferase (ALT) and high-mobility group box 1 (HMGB1), which are associated with hepatic lesions. The hepatic mRNA expression of innate immune-related genes significantly increased in BSO- and MTZ-treated rats, but the change in Th2-related genes was not much greater than the change observed in the previous mouse study. Moreover, an increase in Kupffer cells and an induction of the phosphorylation of extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK) proteins were accompanied by an increase in Toll-like receptor 4 (TLR4) expression, indicating that Kupffer cell activation occurs through HMGB1-TLR4 signaling. To elucidate the mechanism of liver injury in rats, gadolinium chloride, which inactivates the function of Kupffer cells, was administered before BSO and MTZ administration. The gadolinium chloride treatment significantly suppressed the increased ALT, which was accompanied by decreased hepatic mRNA expression related to innate immune responses and ERK/JNK phosphorylation. In conclusion, Kupffer cell-mediated immune responses are crucial factors for the exacerbation of MTZ-induced liver injury in rats, indicating apparent species differences in the immune-mediated exacerbation of liver injury between mice and rats. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26177832

  12. Inactivation of Kupffer Cells by Gadolinium Chloride Protects Murine Liver From Radiation-Induced Apoptosis

    SciTech Connect

    Du Shisuo; Qiang Min; Zeng Zhaochong; Ke Aiwu; Ji Yuan; Zhang Zhengyu; Zeng Haiying; Liu Zhongshan

    2010-03-15

    Purpose: To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. Materials and Methods: A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. Results: The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Conclusion: Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage.

  13. Gadolinium chloride, a Kupffer cell inhibitor, attenuates hepatic injury in a rat model of chronic cholestasis.

    PubMed

    Zandieh, Ali; Payabvash, Seyedmehedi; Pasalar, Parvin; Morteza, Afsaneh; Zandieh, Basira; Tavangar, Seyed Mohammad; Dehpour, Ahmad Reza

    2011-11-01

    The aim of the current study was to elucidate the effect of Kupffer cells inhibition on hepatic injury induced by chronic cholestasis. Sprague-Dawley rats underwent bile duct ligation (BDL) or sham operation and were treated with either saline solution or gadolinium chloride (GdCl(3), a specific Kupffer cell inhibitor, 20 mg/kg i.p. daily). Serum and liver samples were collected after 28 days. Direct and total bilirubin concentrations and serum enzyme activities of alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and γ-glutamyl transpeptidase (GGT) increased following BDL (p < 0.01). On the contrary to bilirubin concentrations and AST activity, GdCl(3) partially prevented the elevation in ALP, ALT and GGT enzyme activities (p < 0.05). GdCl(3) alleviated lipid peroxidation (reflected by malondialdehyde [MDA] concentration) and increased the activities of antioxidant enzymes (i.e. catalase and glutathione peroxidase) in liver samples after BDL (p < 0.05). Fibrosis, ductular proliferation and portal inflammation were also scored in liver samples. Among morphological changes appeared following BDL (i.e. marked fibrosis, portal inflammation and ductular proliferation); only ductular proliferation was not alleviated by GdCl(3). Therefore, Kupffer cells inhibition has beneficial effects against the development of hepatic injury induced by chronic cholestasis. PMID:21339256

  14. Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice.

    PubMed

    Louvet, Alexandre; Teixeira-Clerc, Fatima; Chobert, Marie-Noële; Deveaux, Vanessa; Pavoine, Catherine; Zimmer, Andreas; Pecker, Françoise; Mallat, Ariane; Lotersztajn, Sophie

    2011-10-01

    Activation of Kupffer cells plays a central role in the pathogenesis of alcoholic liver disease. Because cannabinoid CB2 receptors (CB2) display potent anti-inflammatory properties, we investigated their role in the pathogenesis of alcoholic liver disease, focusing on the impact of CB2 on Kupffer cell polarization and the consequences on liver steatosis. Wild-type (WT) mice fed an alcohol diet showed an induction of hepatic classical (M1) and alternative (M2) markers. Cotreatment of alcohol-fed mice with the CB2 agonist, JWH-133, decreased hepatic M1 gene expression without affecting the M2 profile. In keeping with this, genetic ablation of CB2 enhanced hepatic induction of M1 gene signature and blunted the induction of M2 markers. CB2 also modulated alcohol-induced fatty liver, as shown by the reduction of hepatocyte steatosis in JWH-133-treated mice and its enhancement in CB2-/- animals. Studies in isolated Kupffer cells and cultured macrophages further demonstrated that CB2 inhibits M1 polarization and favors the transition to an M2 phenotype. In addition, conditioned-medium experiments showed that preventing M1 polarization in CB2-activated macrophages protects from lipid accumulation in hepatocytes. Heme oxygenase-1 (HO-1) mediated the anti-inflammatory effects of CB2 receptors. Indeed, alcohol-fed mice treated with JWH-133 showed increased hepatic expression of macrophage HO-1, as compared to vehicle-treated counterparts. In keeping with this, JWH-133 induced HO-1 expression in cultured macrophages, and the HO-1 inhibitor, zinc protoporphyrin, blunted the inhibitory effect of JWH-133 on lipopolysaccharide-induced nuclear factor-kappa B activation and M1 polarization. Altogether, these findings demonstrate that CB2 receptors display beneficial effects on alcohol-induced inflammation by regulating M1/M2 balance in Kupffer cells, thereby reducing hepatocyte steatosis via paracrine interactions between Kupffer cells and hepatocytes. These data identify CB2

  15. Cell collectivity regulation within migrating cell cluster during Kupffer's vesicle formation in zebrafish

    PubMed Central

    Matsui, Takaaki; Ishikawa, Hiroshi; Bessho, Yasumasa

    2015-01-01

    Although cell adhesion is thought to fasten cells tightly, cells that adhere to each other can migrate directionally. This group behavior, called “collective cell migration,” is observed during normal development, wound healing, and cancer invasion. Loss-of-function of cell adhesion molecules in several model systems of collective cell migration results in delay or inhibition of migration of cell groups but does not lead to dissociation of the cell groups, suggesting that mechanisms of cells staying assembled as a single cell cluster, termed as “cell collectivity,” remain largely unknown. During the formation of Kupffer's vesicle (KV, an organ of laterality in zebrafish), KV progenitors form a cluster and migrate together toward the vegetal pole. Importantly, in this model system of collective cell migration, knockdown of cell adhesion molecules or signal components leads to failure of cell collectivity. In this review, we summarize recent findings in cell collectivity regulation during collective migration of KV progenitor cells and describe our current understanding of how cell collectivity is regulated during collective cell migration. PMID:26000276

  16. Toll Like Receptor 4 Dependent Kupffer Cell Activation and Liver Injury in a Novel Mouse Model of Parenteral Nutrition

    PubMed Central

    El Kasmi, Karim C.; Anderson, Aimee L.; Devereaux, Michael W.; Fillon, Sophie A.; Harris, J. Kirk; Lovell, Mark A.; Finegold, Milton J.; Sokol, Ronald J.

    2011-01-01

    Infants with intestinal failure who are parenteral nutrition (PN)-dependent may develop cholestatic liver injury and cirrhosis (PN-associated liver injury: PNALI). The pathogenesis of PNALI remains incompletely understood. We hypothesized that intestinal injury with increased intestinal permeability combined with administration of PN promotes LPS-TLR4 signaling dependent Kupffer cell activation as an early event in the pathogenesis of PNALI. We developed a mouse model in which intestinal injury and increased permeability were induced by oral treatment for 4 days with dextran sulphate sodium (DSS) followed by continuous infusion of soy lipid-based PN solution through a central venous catheter for 7 (PN/DSS7d) and 28 (PN/DSS28d) days. Liver injury and cholestasis were evaluated by serum AST, ALT, bile acids, total bilirubin, and by histology. Purified Kupffer cells were probed for transcription of pro-inflammatory cytokines. PN/DSS7d mice showed elevated portal vein LPS levels, evidence of hepatocyte injury and cholestasis, and increased Kupffer cell expression of IL6, TNFα, and TGFβ. Serological markers of liver injury remained elevated in PN/DSS28d mice associated with focal inflammation, hepatocyte apoptosis, peliosis, and Kupffer cell hypertrophy and hyperplasia. PN infusion without DSS pre-treatment or DSS pre-treatment alone did not result in liver injury or Kupffer cell activation. Suppression of the intestinal microbiota with broad spectrum antibiotics or ablation of TLR4 signaling in TLR4 mutant mice resulted in significantly reduced Kupffer cell activation and markedly attenuated liver injury in PN/DSS7d mice. Conclusion These data suggest that intestinal-derived LPS activates Kupffer cells through TLR4 signaling in early stages of PNALI. PMID:22120983

  17. Kupffer cell proliferation and glucan-induced granuloma formation in mice depleted of blood monocytes by strontium-89

    SciTech Connect

    Yamada, M.; Naito, M.; Takahashi, K. )

    1990-03-01

    In mice with prolonged severe monocytopenia induced by selective irradiation of the bone marrow with the bone-seeking isotope 89Sr, the proliferative capacity of Kupffer cells was studied by immunohistochemistry with an anti-mouse macrophage monoclonal antibody, F4/80, ultrastructural peroxidase (PO) cytochemistry, and tritiated thymidine (3HTdR) autoradiography. The number and 3HTdR uptake of Kupffer cells were significantly increased in the splenectomized mice after severe monocytopenia had continued for more than 4 wk, and almost all the Kupffer cells showed a localization pattern of PO activity similar to that of resident macrophages in the liver of normal mice. In the glucan-induced granuloma formation in similar monocytopenic mice, Kupffer cells proliferated, conglomerated, and transformed into epithelioid cells, which fused together to become multinuclear giant cells. These results suggest that Kupffer cells are a self-renewing population by their own cell division and can participate actively in granulomatous inflammations in severely monocytopenic and intact mice.

  18. Activation of NLRP3 and AIM2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion.

    PubMed

    Kim, Hyo-Yeon; Kim, Seok-Joo; Lee, Sun-Mee

    2015-01-01

    Inflammasome activation by danger signals in ischemia/reperfusion (I/R) injury is responsible for the sterile inflammatory response. Signals triggering formation and activation of the inflammasome involve the generation of oxidative stress. The aim of this study was to examine the molecular mechanisms of inflammasome activation and the involvement of reactive oxygen species in hepatic I/R. I/R induced the formation of nucleotide-binding domain leucine-rich repeat containing family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes and the subsequent serum release of interleukin 1β. Pannexin-1 inhibitor and anti-cathepsin B antibody attenuated I/R-induced inflammasome activation and hepatic injury. The expression of the thioredoxin-interacting protein gene and the interaction between NLRP3 and the thioredoxin-interacting protein increased after I/R. Treatment with the antioxidant N-acetylcysteine significantly attenuated protein conversion of interleukin 1β after hepatic I/R. Moreover, pannexin-1 protein expression and cathepsin B release were strongly attenuated by N-acetylcysteine. The depletion of Kupffer cells with gadolinium chloride markedly decreased NLRP3 and AIM2 inflammasome expression and activation of their signaling pathways, and also reduced the level of caspase-1 protein in F4/80-positive cells. Our findings suggest that reactive-oxygen-species-mediated activation of NLRP3 and AIM2 inflammasomes leads to I/R-induced inflammatory responses in which Kupffer cells play a crucial role. PMID:25327779

  19. Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells.

    PubMed

    Jager, J; Aparicio-Vergara, M; Aouadi, M

    2016-08-01

    Obesity, which affects 600 million adults worldwide, is a major risk factor for type 2 diabetes (T2D) and insulin resistance. Current therapies for these metabolic disorders include weight management by lifestyle intervention or bariatric surgery and pharmacological treatment with the aim of regulating blood glucose. Probably because of their short-term effectiveness, these therapies have not been able to stop the rapidly rising prevalence of T2D over the past decades, highlighting an urgent need to develop new therapeutic strategies. The role of immune cells, such as macrophages, in insulin resistance has been extensively studied. Major advances have been made to elucidate the role of adipose tissue macrophages in these pathogeneses. Recently, anti-inflammatory drugs have been suggested as an alternative treatment for T2D, and clinical trials of these agents are currently ongoing. In addition, results of previous clinical trials using antibodies against inflammatory cytokines, which showed modest effects, are now being rigorously re-evaluated. However, it is still unclear how liver macrophages [termed Kupffer cells (KCs)], which constitute the major source of macrophages in the body, contribute to the development of insulin resistance. In this review, we will discuss the present understanding of the role of liver immune cells in the development of insulin resistance. We will particularly focus on KCs, which could represent an attractive target for the treatment of metabolic diseases. PMID:26864622

  20. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain.

    PubMed

    Kitani, Hiroshi; Sakuma, Chisato; Takenouchi, Takato; Sato, Mitsuru; Yoshioka, Miyako; Yamanaka, Noriko

    2014-01-01

    We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells) in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7-10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5) was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4-5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro. PMID:25379377

  1. Cytochrome P4502E1 inhibitor, chlormethiazole, decreases lipopolysaccharide-induced inflammation in rat Kupffer cells with ethanol treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the role of Cytochrome P4502E1 in sensitizing Kupffer cells to lipopolysaccharide (LPS)-mediated inflammation after ethanol induction. Sprague-Dawley rats were fed a liquid ethanol diet, control diet or ethanol diet supplemented with CYP2E1 inhibitor, chlormethiazole (CMZ), for 4'week...

  2. Oxidative products from alcohol metabolism differentially modulate pro-inflammatory cytokine expression in Kupffer cells and hepatocytes.

    PubMed

    Dong, Daoyin; Zhong, Wei; Sun, Qian; Zhang, Wenliang; Sun, Xinguo; Zhou, Zhanxiang

    2016-09-01

    Pro-inflammatory cytokines play a vital role in the pathogenesis of alcoholic steatohepatitis. The present study was to determine the role of alcohol-induced oxidative stress in modulating cytokine production. A rat model of alcohol consumption was used to determine alcohol-induced hepatic cytokine expression. Chronic alcohol exposure caused lipid accumulation, oxidative stress, and inflammation in the livers of Wistar rats. The role of oxidative stress in regulating cell type-specific cytokine production was further dissected in vitro. Lipopolysaccharide (LPS) dose-dependently upregulated TNF-α, MIP-1α, MCP-1, and CINC-1 in Kupffer cells-SV40, whereas TNF-α dose-dependently induced CINC-1, IP-10, and MIP-2 expression in H4IIEC3 hepatoma cells. An additive effect on cytokine production was observed in both Kupffer cells-SV40 and hepatocytes when combined hydrogen peroxide with LPS or TNF-α, respectively, which was associated with NF-κB activation and histone H3 hyper-acetylation. Unexpectedly, an inhibitory effect of 4-hydroxynonenal on cytokine production was revealed in LPS-treated Kupffer cells-SV40. Mechanistic study showed that 4-hydroxynonenal significantly enhanced mRNA degradation of TNF-α, MCP-1, and MIP-1α, and decreased the protein levels of MCP-1 in LPS-stimulated Kupffer cells-SV40 through reducing the phosphorylation of mRNA binding proteins. This study suggests that Kupffer cells and hepatocytes express distinct pro-inflammatory cytokines/chemokines in response to alcohol intoxication, and oxidative products (4-hydroxynonenal) differentially modulate pro-inflammatory cytokine/chemokine production via NF-κB signaling, histone acetylation, and mRNA stability. PMID:27314544

  3. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells

    PubMed Central

    Scott, Charlotte L.; Zheng, Fang; De Baetselier, Patrick; Martens, Liesbet; Saeys, Yvan; De Prijck, Sofie; Lippens, Saskia; Abels, Chloé; Schoonooghe, Steve; Raes, Geert; Devoogdt, Nick; Lambrecht, Bart N.; Beschin, Alain; Guilliams, Martin

    2016-01-01

    Self-renewing tissue-resident macrophages are thought to be exclusively derived from embryonic progenitors. However, whether circulating monocytes can also give rise to such macrophages has not been formally investigated. Here we use a new model of diphtheria toxin-mediated depletion of liver-resident Kupffer cells to generate niche availability and show that circulating monocytes engraft in the liver, gradually adopt the transcriptional profile of their depleted counterparts and become long-lived self-renewing cells. Underlining the physiological relevance of our findings, circulating monocytes also contribute to the expanding pool of macrophages in the liver shortly after birth, when macrophage niches become available during normal organ growth. Thus, like embryonic precursors, monocytes can and do give rise to self-renewing tissue-resident macrophages if the niche is available to them. PMID:26813785

  4. Arachidonic acid stimulates TNFα production in Kupffer cells via a reactive oxygen species-pERK1/2-Egr1-dependent mechanism.

    PubMed

    Cubero, Francisco Javier; Nieto, Natalia

    2012-07-15

    Kupffer cells are a key source of mediators of alcohol-induced liver damage such as reactive oxygen species, chemokines, growth factors, and eicosanoids. Since diets rich in polyunsaturated fatty acids are a requirement for the development of alcoholic liver disease, we hypothesized that polyunsaturated fatty acids could synergize with ethanol to promote Kupffer cell activation and TNFα production, hence, contributing to liver injury. Primary Kupffer cells from control and from ethanol-fed rats incubated with arachidonic acid showed similar proliferation rates than nontreated cells; however, arachidonic acid induced phenotypic changes, lipid peroxidation, hydroperoxides, and superoxide radical generation. Similar effects occurred in human Kupffer cells. These events were greater in Kupffer cells from ethanol-fed rats, and antioxidants and inhibitors of arachidonic acid metabolism prevented them. Arachidonic acid treatment increased NADPH oxidase activity. Inhibitors of NADPH oxidase and of arachidonic acid metabolism partially prevented the increase in oxidant stress. Upon arachidonic acid stimulation, there was a rapid and sustained increase in TNFα, which was greater in Kupffer cells from ethanol-fed rats than in Kupffer cells from control rats. Arachidonic acid induced ERK1/2 phosphorylation and nuclear translocation of early growth response-1 (Egr1), and ethanol synergized with arachidonic acid to promote this effect. PD98059, a mitogen extracellular kinase 1/2 inhibitor, and curcumin, an Egr1 inhibitor, blocked the arachidonic acid-mediated upregulation of TNFα in Kupffer cells. This study unveils the mechanism whereby arachidonic acid and ethanol increase TNFα production in Kupffer cells, thus contributing to alcoholic liver disease. PMID:22538404

  5. Critical Role of Kupffer Cell CD89 Expression in Experimental IgA Nephropathy

    PubMed Central

    Xu, Lijun; Li, Bingyu; Huang, Mengwen; Xie, Kun; Li, Dong; Li, You; Gu, Hua; Fang, Jianmin

    2016-01-01

    Although IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide, its etiology remains only partly understood. It is clear that the pathogenesis of IgAN involves the formation of macromolecular IgA1 complexes and increased levels of serum IgA1 and IgA1-immune complexes(IC), due to defective IgA1 clearance. Previous studies suggest that the blood and tissue myeloid cell-expressed IgA Fc receptor (FcαR/CD89) mediates IgA-IC clearance and its dysfunction, via decreased activity or excessive levels of soluble FcαR/sCD89 induces IgAN. Such a mechanism requires robust stimulation of IgAN levels via forced expression of CD89. In the absence of unequivocal evidence supporting such a mechanism to date, we attempted to test the extent of CD89-evoked IgAN by generating a transgenic mouse strain expressing human CD89 under the control of murine CD14 promotor. No deposition of IgA-CD89 complexes or glomerulonephritis was detected, however. Further studies showed that elimination of murine IgA was mediated by Kupffer cells. In patients, however, CD89/IgA complexes were detected, and injection of patient IgA induced IgAN-like features in CD89 Tg mice. In transgenic mice, IgAN pathogenesis involves impaired clearance of abnormal IgA via CD89, primarily by the Kupffer cells. Conditional IgAN progression in CD89 transgenic mice thus reveals important aspects of IgAN pathogenesis. PMID:27437939

  6. The activation of Epimedium polysaccharide-propolis flavone liposome on Kupffer cells.

    PubMed

    Fan, Yunpeng; Ren, Meimei; Hou, Weifeng; Guo, Chao; Tong, Dewen; Ma, Lin; Zhang, Weimin; He, Mengmeng; Song, Xiaoping

    2015-11-20

    Epimedium polysaccharide-propolis flavone liposome (EPL), a potent immunological pharmaceutical preparation, was investigated for the immunomodulatory activity on Kupffer cells (KCs) in vitro. The results showed that EPL could significantly induce the secretion of chemokines (RANTES and MCP-1), promote the production of nitric oxide and induced nitric oxide synthase, improve the pinocytic and phagocytic activity of KCs, promote the mRNA expression of TNF-α and IL-1β, and enhance the expression of costimulatory molecules (CD11b and CD68) in KCs compared with Epimedium polysaccharide-propolis flavone (EP) at 30-7.5μg/mL. In addition, the abilities of KCs on stimulating lymphocytes proliferation and antigen presenting were significantly enhanced after stimulated with EPL compared with EP. These results suggested that EPL could activate KCs and possessed the stronger immunomodulatory effect, which provided the theoretical basis for further studying the mechanism of EPL on improving the immune response. PMID:26344320

  7. Targeting Kupffer cells in non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: Why and how?

    PubMed Central

    Lanthier, Nicolas

    2015-01-01

    Mechanisms for non-alcoholic steatohepatitis (NASH) development are under investigation in an era of increased prevalence of obesity and metabolic syndrome. Previous findings have pointed to the role of adipose tissue, adipose tissue macrophages and their secretory products in the development of a chronic inflammatory status inducing insulin resistance and a higher risk of liver steatosis called non-alcoholic fatty liver disease. The activation of resident macrophages [Kupffer cells (KC)] and the recruitment of blood derived monocytes/macrophages into the diseased liver have now been identified as key elements for disease initiation and progression. Those cells could be activated through gut flora modifications and an altered gut barrier function but also through the internalization of toxic lipid compounds in adjacent hepatocytes or in KC themselves. Due to the role of activated KC in insulin resistance, fibrosis development and inflammation amplification, they became a target in clinical trials. A shift towards an anti-inflammatory KC phenotype through peroxisome proliferator activator-receptorδ agonists, an inhibition of macrophage recruitment through anti-C-C chemokine receptor 2 action and a specific blocking of internalization of toxic lipoxidation or glycation compounds into KC by galectin-3 receptor inhibitors are now under investigation in human NASH. PMID:26380042

  8. Rat liver endothelial and Kupffer cell-mediated mutagenicity and polycyclic aromatic hydrocarbons and aflatoxin B sub 1

    SciTech Connect

    Steinberg, P.; Schlemper, B.; Molitor, E.; Platt, K.L.; Seidel, A.; Oesch, F. )

    1990-08-01

    The ability of isolated rat liver endothelial and Kupffer cells to activate benzo(a)pyrene (BP), trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene (DDBP), trans-1,2-dihydroxy-1,2-dihydrochrysene (DDCH), and aflatoxin B{sub 1} (AFB{sub 1}) to mutagenic metabolites was assessed by means of a cell-mediated bacterial mutagenicity assay and compared with the ability of parenchymal cells to activate these compounds. Endothelial and Kupffer cells from untreated rats were able to activate AFB{sub 1} and DDBP; DDBP was activated even in the absence of an NADPH-generating system. Pretreating the animals with Aroclor 1254 strongly enhanced the mutagenicity of the dihydrodiol, whereas the mutagenicity of AFB{sub 1} showed a slight increase. BP and DDCH were only activated by endothelial and Kupffer cells isolated from Aroclor 1254-pretreated rats. Parenchymal cells form untreated animals activated all four carcinogens tested; Aroclor 1254 enhanced the parenchymal cell-mediated mutagenicity of BP and DDCH but did not affect that of DDBP and clearly reduced that of AFB{sub 1}. The reduced mutagenicity of AFB{sub 1} correlates with the decrease in the amount of 2{alpha}-hydroxytestosterone formed when testosterone was incubated with parenchymal cell microsomes from Aroclor 1254-pretreated rats (compared with microsomes from untreated animals): the formation of 2{alpha}-hydroxytestosterone is specifically catalyzed by cytochrome P-450h, a hemoprotein thought to be involved in the activation of AFB{sub 1}. These results show that not only rat liver parenchymal cells, but also endothelial and Kupffer cells, activated several carcinogens to mutagenic metabolites.

  9. Graptopetalum Paraguayense Ameliorates Chemical-Induced Rat Hepatic Fibrosis In Vivo and Inactivates Stellate Cells and Kupffer Cells In Vitro

    PubMed Central

    Su, Li-Jen; Chang, Chia-Chuan; Yang, Chih-Hsueh; Hsieh, Shur-Jong; Wu, Yi-Chin; Lai, Jin-Mei; Tseng, Tzu-Ling; Huang, Chi-Ying F.; Hsu, Shih-Lan

    2013-01-01

    Background Graptopetalum paraguayense (GP) is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN)- and carbon tetrachloride (CCl4)-induced liver injury rats. Methods Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP) by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs) and Kupffer cells, respectively, were evaluated. Results Oral administration of MGP significantly alleviated DMN- or CCl4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA) expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. Conclusions The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis. PMID:23335984

  10. LXRα represses LPS-induced inflammatory responses by competing with IRF3 for GRIP1 in Kupffer cells.

    PubMed

    Miao, Chun-Mu; He, Kun; Li, Pei-Zhi; Liu, Zuo-Jin; Zhu, Xi-Wen; Ou, Zhi-Bing; Ruan, Xiong-Zhong; Gong, Jian-Ping; Liu, Chang-An

    2016-06-01

    Liver X receptors (LXRs) in the nucleus play important roles in lipid metabolism and inflammation. The mechanism of LXR regulation of the LPS-induced Toll-like receptor 4 (TLR4) inflammatory signaling pathway remains to be elucidated. C57/BL6 mice were randomly divided into four groups: control, T0901317 (a LXRs agonist), LPS and T0901317+LPS. Additionally, Kupffer cells isolated from male C57/BL6 mice were divided into the same four groups. A decreased amount of inflammatory cells infiltrated the portal areas and the hepatic sinusoids in the livers of mice in the T0901317+LPS group than in those of mice in the LPS group. In the T0901317+LPS group, the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and tumor necrosis factor alpha (TNF-α) were lower, while the serum level of interleukin-10 (IL-10) was higher. In vitro, Kupffer cells pretreated with T0901317 for 24h presented reduced TNF-α, interferon-beta (IFN-β) and interleukin-1 beta (IL-1β) levels, while the IL-10 level increased; however, the mRNA and protein expression levels of interferon regulatory factor 3 (IRF3) and glucocorticoid receptor-interacting protein 1 (GRIP1) were not significantly reduced. The co-IP data illustrated that LXRα bound to GRIP1 specifically in the T0901317+LPS group, while less IRF3 was bound to GRIP1 in the T0901317+LPS group than in the LPS group. Furthermore, the DNA-binding activity of NF-κB was decreased by pretreating Kupffer cells with T0901317 for 24h. These results suggest that activated LXRα competes with IRF3 for GRIP1 binding, thus repressing IRF3 and NF-κB transcriptional activity and inhibiting the inflammatory response initiated by LPS in Kupffer cells. PMID:27085678

  11. Kupffer Cells Protect Liver Sinusoidal Endothelial Cells from Fas-Dependent Apoptosis in Sepsis by Down-Regulating gp130

    PubMed Central

    Hutchins, Noelle A.; Chung, Chun-Shiang; Borgerding, Joshua N.; Ayala, Carol A.; Ayala, Alfred

    2014-01-01

    Endothelial cell (EC) dysfunction is a key feature of multiple organ injury, the primary cause of fatality seen in critically ill patients. Although the development of EC dysfunction in the heart and lung is well studied in sepsis, it remains unclear in the liver. Herein, we report that liver sinusoidal ECs (LSECs; defined as CD146+CD45−) exhibit increased intercellular adhesion molecule-1 (CD54) and Fas in response to sepsis induced by cecal ligation and puncture (CLP). By using magnetically enriched LSEC (CD146+) populations, we show evidence of marked apoptosis, with a twofold decline in viable LSECs in CLP animals compared with sham controls. These changes and increased serum alanine aminotransferase levels were all mitigated in septic Fas−/− and Fas ligand−/− animals. Although we previously reported increased numbers of Fas ligand expressing CD8+ T lymphocytes in the septic liver, CD8+ T-cell deficiency did not reverse the onset of LSEC apoptosis/damage. However, Kupffer cell depletion with clodronate liposomes resulted in greater apoptosis and Fas expression after CLP and a decrease in glycoprotein 130 expression on LSECs, suggesting that STAT3 activation may protect these cells from injury. Our results document a critical role for death receptor–mediated LSEC injury and show the first evidence that Kupffer cells are essential to the viability of LSECs, which appears to be mediated through glycoprotein 130 expression in sepsis. PMID:23306157

  12. Iron- and inflammation-induced hepcidin gene expression in mice is not mediated by Kupffer cells in vivo.

    PubMed

    Lou, Dan-Qing; Lesbordes, Jeanne-Claire; Nicolas, Gaël; Viatte, Lydie; Bennoun, Myriam; Van Rooijen, Nico; Kahn, Axel; Renia, Laurent; Vaulont, Sophie

    2005-05-01

    Hepcidin, a recently discovered iron regulatory peptide, is believed to inhibit the release of iron from absorptive enterocytes and macrophages. Liver hepcidin synthesis is induced in vivo by iron stores and inflammation. The molecular basis of the regulation of hepcidin gene expression by these effectors in hepatocytes is currently unknown, although there is strong evidence that indirect mechanisms are involved. The aims of this study were to gain insight into these mechanisms and to determine to what extent other liver cell types are responsible for transducing the signal by which hepcidin expression is regulated in mouse hepatocytes. For this, we depleted Kupffer cells by injection of liposome-encapsulated clodronate and then studied iron- and inflammation-induced hepcidin gene expression. In addition, we directly evaluated the role of the inflammatory cytokine interleukin 6 (IL-6) by using IL-6-deficient mice. Our results show that iron is able to induce hepcidin gene expression independently of Kupffer cells in the liver and circulating IL-6. In contrast, we show that hepcidin gene induction by inflammation is also independent of Kupffer cells, but involves, at least partly, IL-6. In conclusion, these results show that two independent regulatory pathways control hepcidin gene expression and suggest that hepatocytes play a key role in the regulation of hepcidin gene expression by sensing iron and inflammatory signals. PMID:15793843

  13. Characterization of the Inflammasome in Human Kupffer Cells in Response to Synthetic Agonists and Pathogens.

    PubMed

    Zannetti, Claudia; Roblot, Guillaume; Charrier, Emily; Ainouze, Michelle; Tout, Issam; Briat, François; Isorce, Nathalie; Faure-Dupuy, Suzanne; Michelet, Maud; Marotel, Marie; Kati, Semra; Schulz, Thomas F; Rivoire, Michel; Traverse-Glehen, Alexandra; Luangsay, Souphalone; Alatiff, Omran; Henry, Thomas; Walzer, Thierry; Durantel, David; Hasan, Uzma

    2016-07-01

    The liver is the largest gland in the human body and functions as an innate immune organ. Liver macrophages called Kupffer cells (KC) constitute the largest group of macrophages in the human body. Innate immune responses involving KC represent the first line of defense against pathogens in the liver. Human monocyte-derived macrophages have been used to characterize inflammasome responses that lead to the release of the proinflammatory cytokines IL-1β and IL-18, but it has not yet been determined whether human KC contain functional inflammasomes. We show, to our knowledge for the first time, that KC express genes and proteins that make up several different inflammasome complexes. Moreover, activation of KC in response to the absent in melanoma 2 (AIM2) inflammasome led to the production of IL-1β and IL-18, which activated IL-8 transcription and hepatic NK cell activity, respectively. Other inflammasome responses were also activated in response to selected bacteria and viruses. However, hepatitis B virus inhibited the AIM2 inflammasome by reducing the mRNA stability of IFN regulatory factor 7, which regulated AIM2 transcription. These data demonstrate the production of IL-1β and IL-18 in KC, suggesting that KC contain functional inflammasomes that could be important players in the innate immune response following certain infections of the liver. We think our findings could potentially aid therapeutic approaches against chronic liver diseases that activate the inflammasome. PMID:27226092

  14. Gliotoxin causes apoptosis and necrosis of rat Kupffer cells in vitro and in vivo in the absence of oxidative stress: Exacerbation by caspase and serine protease inhibition

    PubMed Central

    Anselmi, Kristin; Stolz, Donna B.; Nalesnik, Michael; Watkins, Simon C.; Kamath, Ravindra; Gandhi, Chandrashekhar R.

    2009-01-01

    Background/Aims A potential application of gliotoxin therapy for liver fibrosis was suggested by its apoptotic effect on fibrogenic activated stellate cells. We investigated if gliotoxin exerts similar effects on hepatic macrophages Kupffer cells. Methods Effects of gliotoxin on Kupffer cells isolated from the normal liver and in vivo following its administration to CCl4–induced cirrhotic rats were studied. Results Gliotoxin caused apoptosis of cultured Kupffer cells, the effect being apparent at 0.3 μM concentration within 1 hour; longer incubation caused necrosis. This effect was associated with mitochondroial cytochrome c release, caspase-3 activation and ATP depletion. Interestingly, inhibition of caspase-3 and serine proteases accelerated and augmented gliotoxin-induced cell death via necrosis. Gliotoxin stimulated nuclear translocation of NFκB, and phosphorylation of p38, ERK1/2 and JNK MAP kinases, but these signaling molecules were not involved in gliotoxin-induced death of Kupffer cells. In vivo administration of gliotoxin to cirrhotic rats caused apoptosis of Kupffer cells, stellate cells and hepatocytes. In control rats, the effect was minimal on the nonparenchymal cells and not apparent on hepatocytes. Conclusions In the fibrotic liver, gliotoxin nonspecifically causes death of hepatic cell types. Modification of gliotoxin molecule may be necessary for selective targeting and elimination of activated stellate cells. PMID:17466404

  15. Kupffer cells and activation of endothelial TLR4 coordinate neutrophil adhesion within liver sinusoids during endotoxemia.

    PubMed

    McDonald, Braedon; Jenne, Craig N; Zhuo, Lisheng; Kimata, Koji; Kubes, Paul

    2013-12-01

    A key pathological feature of the systemic inflammatory response of sepsis/endotoxemia is the accumulation of neutrophils within the microvasculature of organs such as the liver, where they cause tissue damage and vascular dysfunction. There is emerging evidence that the vascular endothelium is critical to the orchestration of inflammatory responses to blood-borne microbes and microbial products in sepsis/endotoxemia. In this study, we aimed to understand the role of endothelium, and specifically endothelial TLR4 activation, in the regulation of neutrophil recruitment to the liver during endotoxemia. Intravital microscopy of bone marrow chimeric mice revealed that TLR4 expression by non-bone marrow-derived cells was required for neutrophil recruitment to the liver during endotoxemia. Furthermore, LPS-induced neutrophil adhesion in liver sinusoids was equivalent between wild-type mice and transgenic mice that express TLR4 only on endothelium (tlr4(-/-)Tie2(tlr4)), revealing that activation of endothelial TLR4 alone was sufficient to initiate neutrophil adhesion. Neutrophil arrest within sinusoids of endotoxemic mice requires adhesive interactions between neutrophil CD44 and endothelial hyaluronan. Intravital immunofluorescence imaging demonstrated that stimulation of endothelial TLR4 alone was sufficient to induce the deposition of serum-derived hyaluronan-associated protein (SHAP) within sinusoids, which was required for CD44/hyaluronan-dependent neutrophil adhesion. In addition to endothelial TLR4 activation, Kupffer cells contribute to neutrophil recruitment via a distinct CD44/HA/SHAP-independent mechanism. This study sheds new light on the control of innate immune activation within the liver vasculature during endotoxemia, revealing a key role for endothelial cells as sentinels in the detection of intravascular infections and coordination of neutrophil recruitment to the liver. PMID:24113769

  16. Histones activate the NLRP3 Inflammasome in Kupffer Cells during Sterile Inflammatory Liver Injury

    PubMed Central

    Huang, Hai; Chen, Hui-Wei; Evankovich, John; Yan, Wei; Rosborough, Brian R.; Nace, Gary W.; Ding, Qing; Loughran, Patricia; Beer-Stolz, Donna; Billiar, Timothy R.; Esmon, Charles T.; Tsung, Allan

    2013-01-01

    Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests it also plays a role in inflammation driven by endogenous danger-associate molecular pattern (DAMP) molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. Here we report that both NLRP3 and its downstream target Caspase-1 are activated I/R and are essential for hepatic I/R injury as both NLRP3 and Caspase-1 KO mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on Caspase-1 expression in liver non-parenchymal cells. While upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through Toll-like Receptor-9 (TLR9). This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and activation of innate immunity during sterile inflammation. PMID:23904166

  17. TREM2 governs Kupffer cell activation and explains belr1 genetic resistance to malaria liver stage infection

    PubMed Central

    Gonçalves, Lígia Antunes; Rodrigues-Duarte, Lurdes; Rodo, Joana; Vieira de Moraes, Luciana; Marques, Isabel; Penha-Gonçalves, Carlos

    2013-01-01

    Plasmodium liver stage infection is a target of interest for the treatment of and vaccination against malaria. Here we used forward genetics to search for mechanisms underlying natural host resistance to infection and identified triggering receptor expressed on myeloid cells 2 (TREM2) and MHC class II molecules as determinants of Plasmodium berghei liver stage infection in mice. Locus belr1 confers resistance to malaria liver stage infection. The use of newly derived subcongenic mouse lines allowed to map belr1 to a 4-Mb interval on mouse chromosome 17 that contains the Trem2 gene. We show that Trem2 expression in the nonparenchymal liver cells closely correlates with resistance to liver stage infection, implicating TREM2 as a mediator of the belr1 genetic effect. Trem2-deficient mice are more susceptible to liver stage infection than their WT counterparts. We found that Kupffer cells are the principle cells expressing TREM2 in the liver, and that Trem2−/− Kupffer cells display altered functional activation on exposure to P. berghei sporozoites. TREM2 expression in Kupffer cells contributes to the limitation of parasite expansion in isolated hepatocytes in vitro, potentially explaining the increased susceptibility of Trem2−/− mice to liver stage infection. The MHC locus was also found to control liver parasite burden, possibly owing to the expression of MHC class II molecules in hepatocytes. Our findings implicate unexpected Kupffer–hepatocyte cross-talk in the control Plasmodium liver stage infection and demonstrate that TREM2 is involved in host responses against the malaria parasite. PMID:24218563

  18. The renin angiotensin system regulates Kupffer cells in colorectal liver metastases.

    PubMed

    Wen, Shu Wen; Ager, Eleanor I; Neo, Jaclyn; Christophi, Christopher

    2013-08-01

    Blockade of the renin angiotensin system (RAS) can inhibit tumor growth and this may be mediated via undefined immunomodulatory actions. This study investigated the effects of RAS blockade on liver macrophages (Kupffer cells; KCs) in an orthotopic murine model of colorectal cancer (CRC) liver metastases. Here we showed that pharmacological targeting of the RAS [ANG II (31.25 µg/kg/h i.p.), ANG-(1-7) (24 µg/kg/h i.p.) or the ACE inhibitor; captopril (750 mg/kg/d i.p.)] altered endogenous KC numbers in the tumor-bearing liver throughout metastatic growth. Captopril, and to a lesser extent ANG-(1-7), increased KC numbers in the liver but not tumor. KCs were found to express the key RAS components: ACE and AT1R. Treatment with captopril and ANG II increased the number of AT1R-expressing KCs, although total KC numbers were not affected by ANG II. Captopril (0.1 µM) also increased macrophage invasion in vitro. Additionally, captopril was administered with KC depletion before tumor induction (day 0) or at established metastatic growth (day 18) using gadolinium chloride (GdCl 3; 20 mg/kg). Livers were collected at day 21 and quantitative stereology used as a measure of tumor burden. Captopril reduced growth of CRC liver metastases. However, when captopril was combined with early KC depletion (day 0) tumor growth was significantly increased compared with captopril alone. In contrast, late KC depletion (day 18) failed to influence the anti-tumor effects of captopril. The result of these studies suggests that manipulation of the RAS can alter KC numbers and may subsequently influence progression of CRC liver metastases. PMID:23792575

  19. Kupffer cells modulate hepatic fatty acid oxidation during infection with PR8 influenza.

    PubMed

    Tarasenko, Tatyana N; Singh, Larry N; Chatterji-Len, Milani; Zerfas, Patricia M; Cusmano-Ozog, Kristina; McGuire, Peter J

    2015-11-01

    In response to infection, patients with inborn errors of metabolism may develop a functional deterioration termed metabolic decompensation. The biochemical hallmarks of this disruption of metabolic homeostasis are disease specific and may include acidosis, hyperammonemia or hypoglycemia. In a model system previously published by our group, we noted that during influenza infection, mice displayed a depression in hepatic mitochondrial enzymes involved in nitrogen metabolism. Based on these findings, we hypothesized that this normal adaptation may extend to other metabolic pathways, and as such, may impact various inborn errors of metabolism. Since the liver is a critical organ in inborn errors of metabolism, we carried out untargeted metabolomic profiling of livers using mass spectrometry in C57Bl/6 mice infected with influenza to characterize metabolic adaptation. Pathway analysis of metabolomic data revealed reductions in CoA synthesis, and long chain fatty acyl CoA and carnitine species. These metabolic adaptations coincided with a depression in hepatic long chain β-oxidation mRNA and protein. To our surprise, the metabolic changes observed occurred in conjunction with a hepatic innate immune response, as demonstrated by transcriptional profiling and flow cytometry. By employing an immunomodulation strategy to deplete Kupffer cells, we were able to improve the expression of multiple genes involved in β-oxidation. Based on these findings, we are the first to suggest that the role of the liver as an immunologic organ is central in the pathophysiology of hepatic metabolic decompensation in inborn errors of metabolism due to respiratory viral infection. PMID:26319418

  20. Vanillin suppresses Kupffer cell-related colloidal carbon-induced respiratory burst activity in isolated perfused rat liver: anti-inflammatory implications.

    PubMed

    Galgani, José E; Núñez, Bárbara; Videla, Luis A

    2012-12-01

    The inhibition of NADPH oxidase has become a potential therapeutic target for oxidative stress-related diseases. We investigated whether vanillin modifies hepatic O(2) consumption associated with Kupffer cell functioning. The influence of vanillin on Kupffer cell functioning was studied in isolated perfused rat liver by colloidal carbon (CC) infusion (0.5 mg ml(-1)), concomitantly with sinusoidal efflux of lactate dehydrogenase (LDH) as an organ viability parameter. CC infusion increased the rate of O(2) consumption of the liver above basal values, an effect that represents the respiratory burst activity of Kupffer cells. However, CC-dependent respiratory burst activity was suppressed by previous infusion of 2 mM vanillin. Vanillin did not affect the liver CC uptake rate and liver sinusoidal efflux of LDH efflux. These findings, elicited by vanillin, were reproduced by the well-established NADPH oxidase inhibitor apocynin. In conclusion, vanillin suppresses the respiratory burst activity of Kupffer cells as assessed in intact liver, which may be associated with the inhibition of macrophage NADPH oxidase activity. Such a finding may have relevance in conditions underlying Kupffer cell-dependent up-regulation of the expression and release of pro-inflammatory mediators by redox-dependent mechanisms. PMID:23007174

  1. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice

    PubMed Central

    Ferrere, Gladys; Leroux, Anne; Wrzosek, Laura; Puchois, Virginie; Gaudin, Françoise; Ciocan, Dragos; Renoud, Marie-Laure; Naveau, Sylvie; Perlemuter, Gabriel; Cassard, Anne-Marie

    2016-01-01

    The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD). To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different. PMID:26731543

  2. Kupffer Cell Activation by Ambient Air Particulate Matter Exposure May Exacerbate Non-alcoholic Fatty Liver Disease

    PubMed Central

    Tan, Hui-Hui; Fiel, M. Isabel; Sun, Qinghua; Guo, Jinsheng; Gordon, Ronald E.; Chen, Lung-Chi; Friedman, Scott L.; Odin, Joseph A.; Allina, Jorge

    2009-01-01

    Due to increased obesity, non-alcoholic fatty liver disease (NAFLD) is now the most prevalent liver disease in the United States. NAFLD is considered a component of metabolic syndrome, a cluster of disorders that also includes diabetes mellitus, dyslipidemia, arteriosclerosis, and hypertension. Exposure to ambient air particulate matter with aerodynamic diameters < 2.5 µm (PM2.5) is a risk factor for arteriosclerosis as well as lung disease, but its effect on NAFLD is unknown. PM2.5 induces pulmonary dysfunction via toll-like receptor activation on alveolar macrophages. Toll-like receptor activation of Kupffer cells, resident hepatic macrophages, and subsequent pro-inflammatory cytokine production have been shown to play a key role in NAFLD progression. We hypothesized that PM2.5 exposure is a significant risk factor for progression of NAFLD. Thus, following exposure of male C57BL/6 mice fed high fat chow to concentrated air particulate matter (CAPs) or filtered air for 6 wk, progression of NAFLD was evaluated by standardized histological assessment of hepatic inflammation and fibrosis. In mice fed high fat chow, the hepatic inflammatory grade (3.00 ± 0.00 vs. 1.50 ± 0.71, p < 0.001) and fibrosis stage (1.00 ± 0.00 vs. 0.60 ± 0.52, p = 0.023) were both significantly higher in mice exposed to CAPs versus filtered air, respectively. Increased numbers of Kupffer cells contained PM in CAPs-exposed mice (2.00 ± 0.94 vs. 0.20 ± 0.42, respectively, p < 0.001). PM exposure increased IL-6 secretion up to seven fold in a dose-dependent manner by isolated wild-type but not TLR4−/− Kupffer cells (p < 0.050). Conclusion: Ambient PM2.5 exposure may be a significant risk factor for NAFLD progression. PMID:19908945

  3. Thyroid hormone-induced cytosol-to-nuclear translocation of rat liver Nrf2 is dependent on Kupffer cell functioning.

    PubMed

    Videla, Luis A; Cornejo, Pamela; Romanque, Pamela; Santibáñez, Catherine; Castillo, Iván; Vargas, Romina

    2012-01-01

    L-3,3',5-triiodothyronine (T(3)) administration upregulates nuclear factor-E2-related factor 2 (Nrf2) in rat liver, which is redox-sensitive transcription factor mediating cytoprotection. In this work, we studied the role of Kupffer cell respiratory burst activity, a process related to reactive oxygen species generation and liver homeostasis, in Nrf2 activation using the macrophage inactivator gadolinium chloride (GdCl(3); 10 mg/kg i.v. 72 h before T(3) [0.1 mg/kg i.p.]) or NADPH oxidase inhibitor apocynin (1.5 mmol/L added to the drinking water for 7 days before T(3)), and determinations were performed 2 h after T(3). T(3) increased nuclear/cytosolic Nrf2 content ratio and levels of heme oxygenase 1 (HO-1), catalytic subunit of glutamate cysteine ligase, and thioredoxin (Western blot) over control values, proteins whose gene transcription is induced by Nrf2. These changes were suppressed by GdCl(3) treatment prior to T(3), an agent-eliciting Kupffer-cell depletion, inhibition of colloidal carbon phagocytosis, and the associated respiratory burst activity, with enhancement in nuclear inhibitor of Nrf2 kelch-like ECH-associated protein 1 (Keap1)/Nrf2 content ratios suggesting Nrf2 degradation. Under these conditions, T(3)-induced tumor necrosis factor-α (TNF-α) response was eliminated by previous GdCl(3) administration. Similar to GdCl(3), apocynin given before T(3) significantly reduced liver Nrf2 activation and HO-1 expression, a NADPH oxidase inhibitor eliciting abolishment of colloidal carbon-induced respiratory burst activity without altering carbon phagocytosis. It is concluded that Kupffer cell functioning is essential for upregulation of liver Nrf2-signaling pathway by T(3). This contention is supported by suppression of the respiratory burst activity of Kupffer cells and the associated reactive oxygen species production by GdCl(3) or apocynin given prior to T(3), thus hindering Nrf2 activation. PMID:22649286

  4. SR-A and SREC-I Are Kupffer and Endothelial Cell Receptors for Helper-dependent Adenoviral Vectors

    PubMed Central

    Piccolo, Pasquale; Vetrini, Francesco; Mithbaokar, Pratibha; Grove, Nathan C; Bertin, Terry; Palmer, Donna; Ng, Philip; Brunetti-Pierri, Nicola

    2013-01-01

    Helper-dependent adenoviral (HDAd) vectors can mediate long-term, high-level transgene expression from transduced hepatocytes with no chronic toxicity. However, a toxic acute response with potentially lethal consequences has hindered their clinical applications. Liver sinusoidal endothelial cells (LSECs) and Kupffer cells are major barriers to efficient hepatocyte transduction. Understanding the mechanisms of adenoviral vector uptake by non-parenchymal cells may allow the development of strategies aimed at overcoming these important barriers and to achieve preferential hepatocyte gene transfer with reduced toxicity. Scavenger receptors on Kupffer cells bind adenoviral particles and remove them from the circulation, thus preventing hepatocyte transduction. In the present study, we show that HDAd particles interact in vitro and in vivo with scavenger receptor-A (SR-A) and with scavenger receptor expressed on endothelial cells-I (SREC-I) and we exploited this knowledge to increase the efficiency of hepatocyte transduction by HDAd vectors in vivo through blocking of SR-A and SREC-I with specific fragments antigen-binding (Fabs). PMID:23358188

  5. The role of Kupffer cells in glucan-induced granuloma formation in the liver of mice depleted of blood monocytes by administration of strontium-89

    SciTech Connect

    Naito, M.; Takahashi, K. )

    1991-05-01

    In order to elucidate the role of Kupffer cells in granuloma formation in the liver of mice under a condition of severe monocytopenia induced by administration of strontium-89, granulomas were produced by particulate glucan injection and examined histopathologically, immunohistochemically, by ({sup 3}H)thymidine autoradiography, and in culture experiments. Hepatic granulomas were smaller, less numerous, and more irregularly shaped in the monocytopenic mice than in the control mice. The granulomas were composed of multinuclear giant cells, epithelioid cells, Kupffer cells, and T lymphocytes, but not monocytes or granulocytes. Kupffer cells were heavily labeled with ({sup 3}H)thymidine in the monocytopenic mice, particularly just before the stage of granuloma formation, and then clustered in the liver sinusoids. At 8 days, they formed granulomas, transformed into epithelioid cells, and transformed further into multinuclear giant cells. Although the culture of liver cell suspensions prepared from the livers of monocytopenic mice sustained diffuse proliferation of macrophages on a monolayer of mouse stromal cell line (ST2), no monocyte/macrophage colonies were formed. From these results, it is reasonable to conclude that Kupffer cells alone are activated in a condition without a supply of monocytes from peripheral blood; proliferate and cluster in the hepatic sinusoids; transform into peroxidase-negative macrophages, epithelioid cells, and multinuclear giant cells; and participate in granuloma formation in loco together with T lymphocytes.

  6. A standardized aqueous extract of Anoectochilus formosanus ameliorated thioacetamide-induced liver fibrosis in mice: the role of Kupffer cells.

    PubMed

    Wu, Jin-Bin; Chuang, Hin-Ru; Yang, Li-Chan; Lin, Wen-Chuan

    2010-01-01

    Anoectochilus formosanus is used in traditional folk medicine as an hepatoprotective agent. The purpose of this study was to investigate the effects of a standardized aqueous extract of A. formosanus (SAEAF) on thioacetamide (TAA)-induced liver fibrosis. An in vitro study showed that the inhibitive effect of kinsenoside, a major component of SAEAF, on tumor necrosis factor alpha (TNF-alpha) secretion from Kupffer cells might be derived at least partly from downregulation of LPS-receptor Toll-like receptor 4 (TLR4) signaling. Hepatic fibrosis was produced by TAA (200 mg/kg, i.p.) 3 times per week for 12 weeks. Mice in the three TAA groups were treated daily with distilled water and SAEAF (1.0, 0.2 g/kg) via gastrogavage throughout the experimental period. The mice that received the SAEAF treatment had significantly reduced plasma alanine aminotransferase activity, relative liver weights, and hepatic hydroxyproline contents. A histological examination also confirmed that SAEAF reduced the degree of fibrosis caused by TAA treatment. RT-PCR analysis showed that SAEAF treatment reduced mRNA expression of collagen (alpha1)(I), lipopolysaccharide-binding protein, CD14, TLR4, and TNF receptor 1. An immunohistochemical examination also indicated that SAEAF reduced the number of CD68-positive cells (macrophages). In conclusion, oral administration of SAEAF significantly reduced TAA-induced hepatic fibrosis in mice, probably through inhibition of hepatic Kupffer cell activation. PMID:20378990

  7. Kupffer Cells Undergo Fundamental Changes during the Development of Experimental NASH and Are Critical in Initiating Liver Damage and Inflammation.

    PubMed

    Reid, D T; Reyes, J L; McDonald, B A; Vo, T; Reimer, R A; Eksteen, B

    2016-01-01

    Non-alcoholic fatty liver disease has become the leading liver disease in North America and is associated with the progressive inflammatory liver disease non-alcoholic steatohepatitis (NASH). Considerable effort has been made to understand the role of resident and recruited macrophage populations in NASH however numerous questions remain. Our goal was to characterize the dynamic changes in liver macrophages during the initiation of NASH in a murine model. Using the methionine-choline deficient diet we found that liver-resident macrophages, Kupffer cells were lost early in disease onset followed by a robust infiltration of Ly-6C+ monocyte-derived macrophages that retained a dynamic phenotype. Genetic profiling revealed distinct patterns of inflammatory gene expression between macrophage subsets. Only early depletion of liver macrophages using liposomal clodronate prevented the development of NASH in mice suggesting that Kupffer cells are critical for the orchestration of inflammation during experimental NASH. Increased understanding of these dynamics may allow us to target potentially harmful populations whilst promoting anti-inflammatory or restorative populations to ultimately guide the development of effective treatment strategies. PMID:27454866

  8. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.

    PubMed

    Kimura, Kumi; Tanida, Mamoru; Nagata, Naoto; Inaba, Yuka; Watanabe, Hitoshi; Nagashimada, Mayumi; Ota, Tsuguhito; Asahara, Shun-ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Toshinai, Koji; Nakazato, Masamitsu; Shibamoto, Toshishige; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2016-03-15

    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity. PMID:26947072

  9. Kupffer Cells Undergo Fundamental Changes during the Development of Experimental NASH and Are Critical in Initiating Liver Damage and Inflammation

    PubMed Central

    Reid, D. T.; Reyes, J. L.; McDonald, B. A.; Vo, T.; Reimer, R. A.; Eksteen, B.

    2016-01-01

    Non-alcoholic fatty liver disease has become the leading liver disease in North America and is associated with the progressive inflammatory liver disease non-alcoholic steatohepatitis (NASH). Considerable effort has been made to understand the role of resident and recruited macrophage populations in NASH however numerous questions remain. Our goal was to characterize the dynamic changes in liver macrophages during the initiation of NASH in a murine model. Using the methionine-choline deficient diet we found that liver-resident macrophages, Kupffer cells were lost early in disease onset followed by a robust infiltration of Ly-6C+ monocyte-derived macrophages that retained a dynamic phenotype. Genetic profiling revealed distinct patterns of inflammatory gene expression between macrophage subsets. Only early depletion of liver macrophages using liposomal clodronate prevented the development of NASH in mice suggesting that Kupffer cells are critical for the orchestration of inflammation during experimental NASH. Increased understanding of these dynamics may allow us to target potentially harmful populations whilst promoting anti-inflammatory or restorative populations to ultimately guide the development of effective treatment strategies. PMID:27454866

  10. TNFα-Mediated Liver Destruction by Kupffer Cells and Ly6Chi Monocytes during Entamoeba histolytica Infection

    PubMed Central

    Ernst, Thomas; Ittrich, Harald; Jacobs, Thomas; Heeren, Joerg; Tacke, Frank; Tannich, Egbert; Lotter, Hannelore

    2013-01-01

    Amebic liver abscess (ALA) is a focal destruction of liver tissue due to infection by the protozoan parasite Entamoeba histolytica (E. histolytica). Host tissue damage is attributed mainly to parasite pathogenicity factors, but massive early accumulation of mononuclear cells, including neutrophils, inflammatory monocytes and macrophages, at the site of infection raises the question of whether these cells also contribute to tissue damage. Using highly selective depletion strategies and cell-specific knockout mice, the relative contribution of innate immune cell populations to liver destruction during amebic infection was investigated. Neutrophils were not required for amebic infection nor did they appear to be substantially involved in tissue damage. In contrast, Kupffer cells and inflammatory monocytes contributed substantially to liver destruction during ALA, and tissue damage was mediated primarily by TNFα. These data indicate that besides direct antiparasitic drugs, modulating innate immune responses may potentially be beneficial in limiting ALA pathogenesis. PMID:23300453

  11. Kupffer Cell Transplantation in Mice for Elucidating Monocyte/Macrophage Biology and for Potential in Cell or Gene Therapy.

    PubMed

    Merlin, Simone; Bhargava, Kuldeep K; Ranaldo, Gabriella; Zanolini, Diego; Palestro, Christopher J; Santambrogio, Laura; Prat, Maria; Follenzi, Antonia; Gupta, Sanjeev

    2016-03-01

    Kupffer cells (KC) play major roles in immunity and tissue injury or repair. Because recapitulation of KC biology and function within liver will allow superior insights into their functional repertoire, we studied the efficacy of the cell transplantation approach for this purpose. Mouse KC were isolated from donor livers, characterized, and transplanted into syngeneic recipients. To promote cell engraftment through impairments in native KC, recipients were preconditioned with gadolinium chloride. The targeting, fate, and functionality of transplanted cells were evaluated. The findings indicated that transplanted KC engrafted and survived in recipient livers throughout the study period of 3 months. Transplanted KC expressed macrophage functions, including phagocytosis and cytokine expression, with or without genetic modifications using lentiviral vectors. This permitted studies of whether transplanted KC could affect outcomes in the context of acetaminophen hepatotoxicity or hepatic ischemia-reperfusion injury. Transplanted KC exerted beneficial effects in these injury settings. The benefits resulted from cytoprotective factors including vascular endothelial growth factor. In conclusion, transplanted adult KC were successfully targeted and engrafted in the liver with retention of innate immune and tissue repair functions over the long term. This will provide excellent opportunities to address critical aspects in the biogenesis, fate, and function of KC within their native liver microenvironment and to develop the cell and gene therapy potential of KC transplantation. PMID:26773351

  12. Purinergic signaling via P2X7 receptor mediates IL-1β production in Kupffer cells exposed to silica nanoparticle.

    PubMed

    Kojima, Shuji; Negishi, Yusuke; Tsukimoto, Mitsutoshi; Takenouchi, Takato; Kitani, Hiroshi; Takeda, Ken

    2014-07-01

    There is extensive evidence that nanoparticles (NPs) cause adverse effects in multiple organs, including liver, though the mechanisms involved remain to be fully established. Kupffer cells are macrophages resident in the liver, and play important roles in liver inflammation induced by various toxic agents, including lipopolysaccharide (LPS). Interleukin-1 (IL-1) family members IL-1α,β are released from LPS-primed macrophages exposed to NPs, including silica NPs (SNPs), via activation of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasomes. Here, we investigated the mechanism of production of IL-1β via activation of inflammasomes in mouse Kupffer cell line KUP5, focusing on the role of purinergic signaling via P2X7 receptor. IL-1β production by LPS-primed KUP5 cells exposed to SNPs was increased dose-dependently, and was greatest in response to SNPs with a diameter of 30 nm (SNP30), as compared with 70-nm and 300-nm SNPs (SNP70 and SNP300). ATP release was also highest in cells exposed to SNP30. Treatment of LPS-primed KUP5 cells with ATP also induced a high level of IL-1β production, similar to that induced by SNP30. IL-1β production was significantly inhibited by apyrase (an ecto-nucleotidase) and A438079 (a P2X7 antagonist/ATP-release inhibitor). Production of reactive oxygen species (ROS) was confirmed in cells exposed to SNP30. In conclusion, ATP released from P2X7 receptor in response to stimulation of KUP5 cells with SNP30 induces ROS production via cell-membrane NADPH oxidase. The ROS causes activation of inflammasomes, leading to caspase-1-dependent processing of IL-1β. PMID:24685903

  13. Dietary omega-3 fatty acids decrease mortality and Kupffer cell prostaglandin E2 production in a rat model of chronic sepsis.

    PubMed

    Barton, R G; Wells, C L; Carlson, A; Singh, R; Sullivan, J J; Cerra, F B

    1991-06-01

    We tested the hypothesis that substitution of omega-3 fat for dietary omega-6 fat would reduce mortality and decrease Kupffer cell prostaglandin E2 (PGE2) production in a rat model of chronic sepsis. Rats were fed via gastrostomy for 12 days with isonitrogenous, isocaloric diets containing 15% of calories as either safflower oil (omega-6) or a 10:1 mixture of menhaden oil (omega-3) and safflower oil. After five days of feeding, animals received an intra-abdominal abscess of defined bacterial content. Survivors were killed on post-laparotomy day 6 in conjunction with liver perfusion and protease liver digestion for Kupffer cell isolation. Kupffer cell PGE2 production was measured by radioimmunoassay after 18 hours of cell culture and again after stimulation with 0 LPS, 10 ng/ml LPS, and 10 micrograms/LPS. Mortality was decreased in menhaden oil-fed animals compared with safflower oil-fed animals (16% vs. 35%). Kupffer cell PGE2 production was decreased in menhaden oil-fed animals at 18 hours (354 +/- 54 vs. 570 +/- 95 pg/0.1 ml; p = 0.09) and after stimulation with 10 micrograms/ml LPS (140 +/- 41 vs. 288 +/- 45 pg/0.1 ml; p = 0.03) compared with safflower oil-fed animals. PMID:2056540

  14. Non-Canonical Wnt Predominates in Activated Rat Hepatic Stellate Cells, Influencing HSC Survival and Paracrine Stimulation of Kupffer Cells

    PubMed Central

    Corbett, Laura; Mann, Jelena; Mann, Derek A.

    2015-01-01

    The Wnt system is highly complex and is comprised of canonical and non-canonical pathways leading to the activation of gene expression. Our aim was to examine changes in the expression of Wnt ligands and regulators during hepatic stellate cell (HSC) transdifferentiation and assess the relative contributions of the canonical and non-canonical Wnt pathways in fibrogenic activated HSC. The expression profile of Wnt ligands and regulators in HSC was not supportive for a major role for β-catenin-dependent canonical Wnt signalling, this verified by inability to induce Topflash reporter activity in HSC even when expressing a constitutive active β-catenin. We detected expression of Wnt5a in activated HSC which can signal via non-canonical mechanisms and showed evidence for non-canonical signalling in these cells involving phosphorylation of Dvl2 and pJNK. Stimulation of HSC or Kupffer cells with Wnt5a regulated HSC apoptosis and expression of TGF-β1 and MCP1 respectively. We were unable to confirm a role for β-catenin-dependent canonical Wnt in HSC and instead propose autocrine and paracrine functions for Wnts expressed by activated HSC via non-canonical pathways. The data warrant detailed investigation of Wnt5a in liver fibrosis. PMID:26566235

  15. Failure to demonstrate a major role for Kupffer cells and radiosensitive leukocytes in immunoglobulin-mediated elimination of Trypanosoma musculi

    SciTech Connect

    Kongshavn, P.A.; Shaw, K.; Ghadirian, E.; Ulczak, O. )

    1990-06-01

    Previous studies have indicated that elimination of parasitemia in Trypanosoma musculi infection is brought about by immunoglobulin G2a antibodies, C3, and an effector cell. Experiments were designed to identify the putative effector cell by using several approaches. Infected C5-deficient or C5-sufficient mice treated with silica particles or given 900 rads of radiation 3 days earlier effectively eliminated trypanosomes following administration of immune plasma (IP). Silica-treated, noninfected mice given T. musculi preincubated with IP also cleared the parasites. Radiolabeling studies revealed that uptake of the cleared trypanosomes by the liver in normal mice was relatively low and fell only slightly (19%) in silica-treated mice. In contrast, uptake of radiolabeled sheep erythrocytes by the liver was normally much higher and fell drastically (7%) in silica-treated mice. Mice were then immunocompromised by 900 rads of radiation, silica particles, and anti-platelet serum combined before IP-sensitized trypanosomes were given. Leukocyte and platelet counts were both reduced by 95% and sheep erythrocyte uptake by the liver fell from 77 to 5%; however, greater than 99% of the injected trypanosomes were cleared in these mice and uptake of radiolabeled trypanosomes by the liver was similar to that of normal mice. Lastly, in anesthetized mice in which Kupffer cells were excluded surgically from the circulation, greater than 99% of the IP-sensitized trypanosomes disappeared rapidly from the blood. Only 7% of the radiolabel was found in the liver versus 60% in sham-operated mice. The results are interpreted as showing that hepatic Kupffer cells play a minor role in the immune elimination of T. musculi. Likewise, radiosensitive leukocytes and platelets are unlikely to be sole candidates for the putative effector cell that mediates a cure of murine trypanosomiasis.

  16. Suppression of Kupffer cell function prevents cadmium induced hepatocellular necrosis in the male Sprague-Dawley rat.

    PubMed

    Sauer, J M; Waalkes, M P; Hooser, S B; Kuester, R K; McQueen, C A; Sipes, I G

    1997-08-15

    Exposure of humans to toxic metals and metalloids is a major environmental problem. Many metals, such as cadmium, can be hepatotoxic. However, the mechanisms by which metals cause acute hepatic injury are in many cases unknown. Previous reports suggest a major role for inflammation in acute cadmium induced hepatotoxicity. In initial experiments we found that a non-hepatotoxic dose of cadmium chloride (CdCl2; 2.0 mg/kg, i.v.) markedly increased the clearance rate of colloidal carbon from the blood, which is indicative of enhanced phagocytic activity by Kupffer cells (resident hepatic macrophages). Thus. the objective these studies was to determine the involvement of Kupffer cells in cadmium induced liver injury by inhibiting their function with gadolinium chloride (GdCl3). Male Sprague-Dawley rats were administered GdCl3 (10 mg/kg, i.v.) followed 24 h later by a single dose of CdCl2 (3.0 and 4.0 mg/kg, i.v.). Twenty four hours after CdCl2 administration animals were killed and the degree of liver toxicity was assessed using plasma alanine aminotransferase (ALT), as well as light microscopy. Cadmium chloride administration produced multifocal hepatocellular necrosis and increased plasma ALT activity. Pretreatment with GdCl3 significantly reduced both the morphological changes and hepatic ALT release caused by CdCl2. However, the protection was specific to the liver, and did not alter CdCl2 induced testicular injury, as determined by histopathological damage. In many cases, the inducible cadmium-binding protein, metallothionein (MT) is often an essential aspect of the acquisition of cadmium tolerance in the liver. Although cadmium caused a dramatic induction of hepatic MT (32-fold), GdCl3 caused only a minor increase (2-fold). Combined CdCl2 and GdCl3 treatment did not induce levels to an extent greater than CdCl2 alone. As expected, GdCl3 also caused a slight increase in the amount of cadmium associated with the liver. In cultured hepatocytes isolated from GdCl3

  17. Nucleation of platelets with bloodborne pathogens on Kupffer cell precedes other innate immunity and contributes to bacterial clearance

    PubMed Central

    Wong, Connie H. Y.; Jenne, Craig N.; Petri, Björn; Chrobok, Navina L.; Kubes, Paul

    2016-01-01

    Using intravital imaging of the liver, we unveil a collaborative role for platelets with Kupffer cells (KCs) in eradicating bloodborne bacterial infections. Under basal conditions, platelets via glycoprotein Ib (GPIb) formed transient “touch-and-go” interactions with von Willebrand factor (vWF) constitutively expressed on KCs. Bacteria, such as Bacillus cereus and Methicillin-resistant Staphylococcus aureus (MRSA), were rapidly caught by KCs and triggered platelets to switch from “touch-and-go” to sustained GPIIb-mediated adhesion on the KC surface to encase the bacterium. Infected GpIbα−/− mice demonstrated increased endothelial and KC damage, leading to increased fluid leakage, significant polycythemia and rapid mortality. This study identifies a novel surveillance mechanism of intravascular macrophage by platelets that rapidly converts to a critical host response against bloodborne bacteria. PMID:23770641

  18. SiO2 nanoparticle-induced impairment of mitochondrial energy metabolism in hepatocytes directly and through a Kupffer cell-mediated pathway in vitro

    PubMed Central

    Xue, Yang; Chen, Qingqing; Ding, Tingting; Sun, Jiao

    2014-01-01

    The liver has been shown to be a primary target organ for SiO2 nanoparticles in vivo, and may be highly susceptible to damage by these nanoparticles. However, until now, research focusing on the potential toxic effects of SiO2 nanoparticles on mitochondria-associated energy metabolism in hepatocytes has been lacking. In this work, SiO2 nanoparticles 20 nm in diameter were evaluated for their ability to induce dysfunction of mitochondrial energy metabolism. First, a buffalo rat liver (BRL) cell line was directly exposed to SiO2 nanoparticles, which induced cytotoxicity and mitochondrial damage accompanied by decreases in mitochondrial dehydrogenase activity, mitochondrial membrane potential, enzymatic expression in the Krebs cycle, and activity of the mitochondrial respiratory chain complexes I, III and IV. Second, the role of rat-derived Kupffer cells was evaluated. The supernatants from Kupffer cells treated with SiO2 nanoparticles were transferred to stimulate BRL cells. We observed that SiO2 nanoparticles had the ability to activate Kupffer cells, leading to release of tumor necrosis factor-α, nitric oxide, and reactive oxygen species from these cells and subsequently to inhibition of mitochondrial respiratory chain complex I activity in BRL cells. PMID:24959077

  19. Effect of CD16a, the surface receptor of Kupffer cells, on the growth of hepatocellular carcinoma cells

    PubMed Central

    LI, XIU-YUN; WU, LUN; LI, SHENG-WEI; ZHOU, WEN-BO; WANG, MENG-YUAN; ZUO, GUO-QING; LIU, CHANG-AN; DING, XIONG

    2016-01-01

    FcγRIIIa (CD16) is a low-affinity Fc receptor of IgG. As the idio-binding receptor of IgG Fc, it plays an important role in the antibody-dependent cellular cytotoxicity of natural killer cells. The aim of the present study was to investigate the distribution of Kupffer cells (KCs) and the expression of their surface receptor FcγRIIIa in hepatocellular carcinoma. Furthermore, we also aimed to observe the functional mechanism of FcγRIIIa. Immunohistochemical analysis was employed to study KCs and FcγRIIIa. In order to explore the role of FcγRIIIa in the growth of cancer cells, KCs and H22 tumor cells were co-cultured in different serum. The mRNA expression levels of tumor necrosis factor (TNF)-α and FcγRIIIa were analyzed by RT-qPCR; the TNF-α and FcγRIIIa protein expression levels were examined by enzyme-linked immunosorbent assay and western blot analysis, respectively. Our results showed that the number of Kuppfer cells in cancerous tissues (21.6±7.8) was lower than those in para-cancerous (68.8±9.1) tissues and adjacent normal hepatic tissues (62.0±1.9) (P<0.01); this decreased with the reduction in the differentiation degree of cancer (P<0.05). FcγRIIIa-positive cells were similar in morphology to KCs, and their distributive tendency was coincident (P<0.05). The increase in CD16a mRNA levels in the group treated with immune serum was 3.9-, 4.9- and 3.9-fold greater than that in the ordinary serum group at different time points, and CD16a protein expression also markedly increased (P<0.05). However, these effects were inhibited by the addition of anti-IgG Fc serum (P<0.05). The results of the present study suggested that FcγRIIIa resided in KCs, and it contributed to the inhibition of the growth of liver tumor cells. PMID:27082928

  20. P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice.

    PubMed

    Chatterjee, Saurabh; Rana, Ritu; Corbett, Jean; Kadiiska, Maria B; Goldstein, Joyce; Mason, Ronald P

    2012-05-01

    While some studies show that carbon tetrachloride-mediated metabolic oxidative stress exacerbates steatohepatitic-like lesions in obese mice, the redox mechanisms that trigger the innate immune system and accentuate the inflammatory cascade remain unclear. Here we have explored the role of the purinergic receptor P2X7-NADPH oxidase axis as a primary event in recognizing the heightened release of extracellular ATP from CCl(4)-treated hepatocytes and generating redox-mediated Kupffer cell activation in obese mice. We found that an underlying condition of obesity led to the formation of protein radicals and posttranslational nitration, primarily in Kupffer cells, at 24h post-CCl(4) administration. The free radical-mediated oxidation of cellular macromolecules, which was NADPH oxidase and P2X7 receptor-dependent, correlated well with the release of TNF-α and MCP-2 from Kupffer cells. The Kupffer cells in CCl(4)-treated mice exhibited increased expression of MHC Class II proteins and showed an activated phenotype. Increased expression of MHC Class II was inhibited by the NADPH oxidase inhibitor apocynin , P2X7 receptor antagonist A438709 hydrochloride, and genetic deletions of the NADPH oxidase p47 phox subunit or the P2X7 receptor. The P2X7 receptor acted upstream of NADPH oxidase activation by up-regulating the expression of the p47 phox subunit and p47 phox binding to the membrane subunit, gp91 phox. We conclude that the P2X7 receptor is a primary mediator of oxidative stress-induced exacerbation of inflammatory liver injury in obese mice via NADPH oxidase-dependent mechanisms. PMID:22343416

  1. Re-evaluation of thin layer chromatography as an alternative method for the quantification of prostaglandins from rat Kupffer cells.

    PubMed

    Pestel, Sabine; Jungermann, Kurt; Schieferdecker, Henrike L

    2005-01-01

    In contrast to conventionally used immunoassays, thin layer chromatography (TLC)--by prelabeling of cells with radioactive arachidonic acid (AA)--allows to differentiate between cellularly built and added prostanoids and thus to investigate feedback effects of prostanoids on their own release. PGD2, TXB2 and PGE2 released from zymosan-stimulated Kupffer cells were separated with distinct RF-values, corresponding to those of the pure substances. Quantification of PGD2 and PGE2 gave comparable results with TLC and immunoassays, but measurement in the presence of added prostanoids was only possible with TLC. Moreover TLC was superior to immunoassays in having a longer linear range while being comparably sensitive. Cellularly built TXB2 in its radioactively labeled form was not detectable by TLC. Inhibition of TXB2 release by externally added AA or technical artifacts were excluded, suggesting that the cellular AA-pools used for prostaglandin and thromboxane synthesis differ in their accessibility for added AA. Thus, TLC is a simple, sensitive and precise method for the quantification of cellularly built prostaglandins but not of thromboxane even in the presence of added prostanoids. PMID:15789620

  2. Erythrophagocytosis by Liver Macrophages (Kupffer Cells) Promotes Oxidative Stress, Inflammation, and Fibrosis in a Rabbit Model of Steatohepatitis

    PubMed Central

    Otogawa, Kohji; Kinoshita, Kohji; Fujii, Hideki; Sakabe, Masahide; Shiga, Ryoko; Nakatani, Kazuki; Ikeda, Kazuo; Nakajima, Yuji; Ikura, Yoshihiro; Ueda, Makiko; Arakawa, Tetsuo; Hato, Fumihiko; Kawada, Norifumi

    2007-01-01

    Nonalcoholic steatohepatitis (NASH) is a progressive fibrotic disease, the pathogenesis of which has not been fully elucidated. Here, we report a molecular aspect of this disease elucidated using rabbits fed a cholesterol-rich high-fat diet and exhibiting insulin resistance. The liver in this model showed steatohepatitis with fibrosis and high mRNA expression for some cytokines, heme oxygenase-1, transforming growth factor-β1, and collagen α1(I). Erythrocytes isolated from the model showed marked fragility and the externalization of phosphatidylserine (PS) on the outer leaflet of the membrane and were frequently engulfed by Kupffer cells/macrophages in the hepatic sinusoids. Expression of milk fat globule-epidermal growth factor (EGF)-factor 8, a PS-binding protein, was augmented in the liver. In culture, RAW 264.7 cells engulfed erythrocytes oxidized by tert-butyl hydroperoxide, a process that was inhibited by anti-milk fat globule-EGF-factor 8 antibody. In addition, PS-positive erythrocytes appeared entrapped in the model liver in ex vivo perfusion experiments. Finally, in specimens from NASH patients, the aggregation of erythrocytes in inflammatory hepatic sinusoids was notable. These results indicate that the engulfment of PS-externalized, apoptotic signal-positive, erythrocytes by hepatic macrophages may lead to the deposition of iron derived from hemoglobin in the liver and be involved in the pathogenesis of steatohepatitis. PMID:17322381

  3. Kupffer cells suppress perfluorononanoic acid-induced hepatic peroxisome proliferator-activated receptor α expression by releasing cytokines.

    PubMed

    Fang, Xuemei; Zou, Shanshan; Zhao, Yuanyuan; Cui, Ruina; Zhang, Wei; Hu, Jiayue; Dai, Jiayin

    2012-10-01

    Kupffer cells (KCs) have been demonstrated to play a role in the regulation of intra-hepatic lipid metabolism through the synthesis and secretion of biologically active products. The involvement of KCs in the disturbance of lipid metabolism that induced by perfluorononanoic acid (PFNA), a known agonist of the peroxisome proliferator-activated receptor alpha (PPARα), was investigated in this study. Rats were exposed to PFNA or PFNA combined with gadolinium chloride, an inhibitor of KCs, for 14 days. PFNA exposure dose-dependently increased absolute and relative liver weights, induced triglyceride accumulation, up-regulated the expression of both SERBP-1c and PPARα, and stimulated the release of TNFα and IL-1β. Inactivation of KCs markedly lowered TNFα and IL-1β level, enhanced PFNA-induced expression of PPARα and its target genes, and reduced liver triglyceride levels. In vitro, PFNA-induced expression of PPARα in primary cultured hepatocytes was suppressed by recombinant rat TNFα and IL-1β. However, inhibition of the NF-κB pathway prevented this. Transient transfection and promoter analysis further revealed that these two cytokines and NF-κB were coordinately involved in the suppression of PPARα promoter activity. Our data demonstrate that TNFα and IL-1β released from KCs following PFNA exposure can suppress the expression of PPARα via NF-κB pathway, which partially contribute to the evident accumulation of triglycerides in rat liver. PMID:22648072

  4. Biofilm-Forming Methicillin-Resistant Staphylococcus aureus Survive in Kupffer Cells and Exhibit High Virulence in Mice.

    PubMed

    Oyama, Takuto; Miyazaki, Motoyasu; Yoshimura, Michinobu; Takata, Tohru; Ohjimi, Hiroyuki; Jimi, Shiro

    2016-01-01

    Although Staphylococcus aureus is part of the normal body flora, heavy usage of antibiotics has resulted in the emergence of methicillin-resistant strains (MRSA). MRSA can form biofilms and cause indwelling foreign body infections, bacteremia, soft tissue infections, endocarditis, and osteomyelitis. Using an in vitro assay, we screened 173 clinical blood isolates of MRSA and selected 20 high-biofilm formers (H-BF) and low-biofilm formers (L-BF). These were intravenously administered to mice and the general condition of mice, the distribution of bacteria, and biofilm in the liver, lung, spleen, and kidney were investigated. MRSA count was the highest in the liver, especially within Kupffer cells, which were positive for acid polysaccharides that are associated with intracellular biofilm. After 24 h, the general condition of the mice worsened significantly in the H-BF group. In the liver, bacterial deposition and aggregation and the biofilm-forming spot number were all significantly greater for H-BF group than for L-BF. CFU analysis revealed that bacteria in the H-BF group survived for long periods in the liver. These results indicate that the biofilm-forming ability of MRSA is a crucial factor for intracellular persistence, which could lead to chronic infections. PMID:27376326

  5. Biofilm-Forming Methicillin-Resistant Staphylococcus aureus Survive in Kupffer Cells and Exhibit High Virulence in Mice

    PubMed Central

    Oyama, Takuto; Miyazaki, Motoyasu; Yoshimura, Michinobu; Takata, Tohru; Ohjimi, Hiroyuki; Jimi, Shiro

    2016-01-01

    Although Staphylococcus aureus is part of the normal body flora, heavy usage of antibiotics has resulted in the emergence of methicillin-resistant strains (MRSA). MRSA can form biofilms and cause indwelling foreign body infections, bacteremia, soft tissue infections, endocarditis, and osteomyelitis. Using an in vitro assay, we screened 173 clinical blood isolates of MRSA and selected 20 high-biofilm formers (H-BF) and low-biofilm formers (L-BF). These were intravenously administered to mice and the general condition of mice, the distribution of bacteria, and biofilm in the liver, lung, spleen, and kidney were investigated. MRSA count was the highest in the liver, especially within Kupffer cells, which were positive for acid polysaccharides that are associated with intracellular biofilm. After 24 h, the general condition of the mice worsened significantly in the H-BF group. In the liver, bacterial deposition and aggregation and the biofilm-forming spot number were all significantly greater for H-BF group than for L-BF. CFU analysis revealed that bacteria in the H-BF group survived for long periods in the liver. These results indicate that the biofilm-forming ability of MRSA is a crucial factor for intracellular persistence, which could lead to chronic infections. PMID:27376326

  6. Mainstream cigarette smoke accelerates the progression of nonalcoholic steatohepatitis by modulating Kupffer cell-mediated hepatocellular apoptosis in adolescent mice.

    PubMed

    Park, Surim; Kim, Jong Won; Yun, Hyejin; Choi, Seong-Jin; Lee, Sang-Hyub; Choi, Kyung-Chul; Lim, Chae Woong; Lee, Kyuhong; Kim, Bumseok

    2016-08-10

    Cigarette smoking in adolescents is considered to be a major cause of preventable morbidity and mortality. The purpose of this study is to investigate the role of mainstream cigarette smoke (MSCS) on the progression of nonalcoholic steatohepatitis in adolescents. Three-week-old C57BL/6 mice were fed either a methionine and choline-deficient plus high fat (MCDHF) diet for 6 weeks. Each group was exposed to MSCS (300, 600 ug/L) or fresh air for 2h per day during the first 3 weeks of MCDHF diet feeding. MSCS increased MCDHF diet-induced NASH by increasing serum ALT/AST levels, steatosis, inflammation, and fibrosis. Furthermore, MSCS was associated with the degree of oxidative stress and hepatocellular apoptosis in NASH mice, but not prominent in controls. In vitro, cigarette smoke extract (CSE) activated Kupffer cells (KCs) to release inflammatory cytokines and oxidative stress, which induced hepatocellular apoptosis. In conclusion, MSCS exposure accelerates the progression and severity of NASH by modulating KC-mediated hepatocellular apoptosis. Our results support the regulation of CS in adolescents with steatohepatitis. PMID:27180087

  7. Amphiphilic core–shell nanoparticles containing dense polyethyleneimine shells for efficient delivery of microRNA to Kupffer cells

    PubMed Central

    Liu, Zuojin; Niu, Dechao; Zhang, Junyong; Zhang, Wenfeng; Yao, Yuan; Li, Pei; Gong, Jianping

    2016-01-01

    Efficient and targeted delivery approach to transfer exogenous genes into macrophages is still a great challenge. Current gene delivery methods often result in low cellular uptake efficiency in vivo in some types of cells, especially for the Kupffer cells (KCs). In this article, we demonstrate that amphiphilic core–shell nanoparticles (NPs) consisting of well-defined hydrophobic poly(methyl methacrylate) (PMMA) cores and branched polyethyleneimine (PEI) shells (denoted as PEI@PMMA NPs) are efficient nanocarriers to deliver microRNA (miRNA)-loaded plasmid to the KCs. Average hydrodynamic diameter of PEI@ PMMA NPs was 279 nm with a narrow size distribution. The NPs also possessed positive surface charges up to +30 mV in water, thus enabling effective condensation of negatively charged plasmid DNA. Gel electrophoresis assay showed that the resultant PEI@PMMA NPs were able to completely condense miRNA plasmid at a weight ratio of 25:1 (N/P ratio equal to 45:1). The Cell Counting Kit-8 assay and flow cytometry results showed that the PEI@PMMA/miRNA NPs displayed low cytotoxicity and cell apoptosis activity against the KCs. The maximum cell transfection efficiency reached 34.7% after 48 hours, which is much higher than that obtained by using the commercial Lipofectamine™ 2000 (1.7%). Bio-transmission electron microscope observation revealed that the PEI@PMMA NPs were mainly distributed in the cytoplasm of the KCs. Furthermore, when compared to the control groups, the protein expression of target nuclear factor κB P65 was considerably inhibited (P<0.05) both in vitro and in vivo. These results demonstrate that the PEI@PMMA NPs with a unique amphiphilic core–shell nanostructure are promising nanocarriers for delivering miRNA plasmid to KCs. PMID:27366061

  8. Large-pore mesoporous silica nanospheres as vehicles for delivering TRAF3-shRNA plasmids to Kupffer cells.

    PubMed

    Zhang, Junyong; Guo, Shipeng; Zhang, Wenfeng; Niu, Dechao; Gong, Jianping

    2016-01-01

    The currently available techniques for transferring exogenous genes into macrophages, especially the targeted import of exogenous genes into Kupffer cells (KCs) in vivo, are inefficient and achieve only low targeting. Novel Large-Pore Mesoporous Silica Nanospheres (LPMSNs) may be a promising gene transfection agent for KCs because of their superior biodegradation and hypotoxic characteristics, as well as their ability to retain the biological function of KCs and the high loading-rate of exogenous plasmid. LPMSNs were able to completely adsorb shRNA-TRAF3 (tumor necrosis factor receptor-associated factor-3) plasmid at a mass ratio as low as 30:1, and exhibited a low cytotoxicity for KCs. LPMSNs were detected in KC cytoplasm in vitro, and transmission electron microscopy (TEM) revealed that they were present only in KCs in liver tissue in vivo. The max KC transfection efficiency with LPMSNs was 34.8± 0.07%, as evaluated using flow cytometry, and the protein and mRNA levels of TRAF3 were significantly inhibited (P < 0.05) by shRNA-TRAF3 plasmid transfection after 24 h in vitro and 48 h in vivo. In conclusion, KC targeted transfection was achieved successfully by LPMSNs carrying shRNA-TRAF3 plasmids in vitro and vivo. The protein and mRNA levels of TRAF3 were suppressed significantly. These results suggest that LPMSNs are a promising vehicle for delivering exogenous genes into KCs in vitro and vivo. PMID:26631959

  9. Altered Endothelin-1 Signaling in Production of Thromboxane A2 in Kupffer Cells from Bile Duct Ligated Rats

    PubMed Central

    Miller, Andrew M; Zhang, Jian X

    2009-01-01

    Kupffer cells (KCs), the liver resident macrophages accounting for 80–90% of the total population of fixed tissue macrophages in the body, not only play a key role in host defense via removing particulate materials from the portal circulation, but may also contribute to the pathogenesis of various liver diseases. We have previously demonstrated that KCs play an important role in controlling portal hypertension and hepatocellular injury via releasing thromboxane A2 (TXA2) in early fibrosis induced by one-week bile duct ligation (BDL). Production of TXA2 is controlled by cytosolic phospholipase A2 (cPLA2) that is activated by the interaction of entothelin-1 (ET-1) with its G-protein coupled ET receptor B (ETBR). However, the signaling pathways that contribute to the ET-1-induced activation of cPLA2 and production of TXA2 in KCs in the normal healthy or injured livers are not yet clear, which are investigated in the present study using isolated KCs from one-week BDL or sham rats. The pharmacological inhibition of cPLA2 or chelation of intracellular calcium abrogated the ET-1 induction of TXA2 from KCs. Compared to those from sham rats, KCs from BDL animals displayed a significantly enhanced responsiveness of p38 MAPK to ET-1, increased ETBR and Gαi subunit but decreased Gαq and Gα11 expression. Inhibition of ERK1/2 or Gq signaling abrogated significantly the ET-1 induction of TXA2 in sham KCs but only slightly in BDL KCs. In contrast, inhibition of p38 MAPK and Gi signaling markedly attenuated the ET-1 induction of TXA2 in BDL KCs but had no effect in sham KCs. Lastly, inhibition of PLC or PKC abrogated ET-1 induction of TXA2 in KCs from both sham and BDL groups. The hepatic stress (such as BDL) induces significant modifications in the receptor and intermediates of ET-1 signaling in KC and subsequently alters ET-1 signaling mechanisms, particularly a shift from Gq induced signaling to Gi induced signaling, in the activation of cPLA2 and production of TXA2 in

  10. Curative Effects of Thiacremonone against Acetaminophen-Induced Acute Hepatic Failure via Inhibition of Proinflammatory Cytokines Production and Infiltration of Cytotoxic Immune Cells and Kupffer Cells

    PubMed Central

    Kim, Yu Ri; Ban, Jung Ok; Yoo, Hwan Soo; Lee, Yong Moon; Yoon, Yeo Pyo; Eum, So Young; Jeong, Heon Sang; Yoon, Do-young; Han, Sang Bae; Hong, Jin Tae

    2013-01-01

    High doses of acetaminophen (APAP; N-acetyl-p-aminophenol) cause severe hepatotoxicity after metabolic activation by cytochrome P450 2E1. This study was undertaken to examine the preventive effects of thiacremonone, a compound extracted from garlic, on APAP-induced acute hepatic failure in male C57BL/6J. Mice received with 500 mg/kg APAP after a 7-day pretreatment with thiacremonone (10–50 mg/kg). Thiacremonone inhibited the APAP-induced serum ALT and AST levels in a dose-dependent manner, and markedly reduced the restricted area of necrosis and inflammation by administration of APAP. Thiacremonone also inhibited the APAP-induced depletion of intracellular GSH, induction of nitric oxide, and lipid peroxidation as well as expression of P450 2E1. After APAP injection, the numbers of Kupffer cells, natural killer cells, and cytotoxic T cells were elevated, but the elevated cell numbers in the liver were reduced in thiacremonone pretreated mice. The expression levels of I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-7, and IL-17 were increased by APAP treatment, which were inhibited in thiacremonone pretreated mice. These data indicate that thiacremonone could be a useful agent for the treatment of drug-induced hepatic failure and that the reduction of cytotoxic immune cells as well as proinflammatory cytokine production may be critical for the prevention of APAP-induced acute liver toxicity. PMID:23935693

  11. Kupffer Cells Support Hepatitis B Virus-Mediated CD8+ T Cell Exhaustion via Hepatitis B Core Antigen-TLR2 Interactions in Mice.

    PubMed

    Li, Min; Sun, Rui; Xu, Long; Yin, Wenwei; Chen, Yongyan; Zheng, Xiaodong; Lian, Zhexiong; Wei, Haiming; Tian, Zhigang

    2015-10-01

    Hepatitis B virus (HBV) persistence is a fundamental process in chronic HBV infection and a key factor in all related liver diseases; however, the mechanisms have yet to be elucidated. We studied the role of TLR2 in HBV persistence using a well-established HBV-carrier mouse model generated by hydrodynamically injecting a phospho-adeno-associated virus/HBV1.2 plasmid into mice. We found that a genetic deficiency in TLR2 improves HBV elimination, whereas activating TLR2 led to more stable HBV persistence, suggesting that TLR2 activation is critical in HBV persistence. Furthermore, we noted that TLR2 activation could inhibit CD8(+) T cell function, causing the exhaustion phenotype in HBV-carrier mice, because TLR2 deficiency might rescue CD8(+) T cell function in a cellular adoptive experiment. TLR2 expression on Kupffer cells (KCs) was upregulated in HBV-carrier mice, which accounts for HBV persistence, because the difference in anti-HBV immunity between HBV-carrier wild-type and Tlr2(-/-) mice did not exist after KC depletion. In addition, similar to TLR2 deficiency, after KC depletion, CD8(+) T cells were more efficiently activated in HBV-carrier mice, leading to rapid HBV elimination. KCs produced more IL-10 upon TLR2 activation in response to direct hepatitis B core Ag stimulation, and the elevated IL-10 inhibited CD8(+) T cell function in HBV-carrier mice, because IL-10 deficiency or anti-IL-10R treatment resulted in CD8(+) T cells with stronger antiviral function. In conclusion, KCs support liver tolerance by inducing anti-HBV CD8(+) T cell exhaustion via IL-10 production after TLR2 activation by hepatitis B core Ag stimulation. PMID:26304988

  12. Stereological assessment of sexual dimorphism in the rat liver reveals differences in hepatocytes and Kupffer cells but not hepatic stellate cells.

    PubMed

    Marcos, Ricardo; Lopes, Célia; Malhão, Fernanda; Correia-Gomes, Carla; Fonseca, Sónia; Lima, Margarida; Gebhardt, Rolf; Rocha, Eduardo

    2016-06-01

    There is long-standing evidence that male and female rat livers differ in enzyme activity. More recently, differences in gene expression profiling have also been found to exist; however, it is still unclear whether there is morphological expression of male/female differences in the normal liver. Such differences could help to explain features seen at the pathological level, such as the greater regenerative potential generally attributed to the female liver. In this paper, hepatocytes (HEP), Kupffer cells (KC) and hepatic stellate cells (HSC) of male and female rats were examined to investigate hypothesised differences in number, volume and spatial co-localisation of these cell types. Immunohistochemistry and design-based stereology were used to estimate total numbers, numbers per gram and mean cell volumes. The position of HSC within lobules (periportal vs. centrilobular) and their spatial proximity to KC was also assessed. In addition, flow cytometry was used to investigate the liver ploidy. In the case of HEP and KC, differences in the measured cell parameters were observed between male and female specimens; however, no such differences were detected for HSC. Female samples contained a higher number of HEP per gram, with more binucleate cells. The HEP nuclei were smaller in females, which was coincident with more abundant diploid particles in these animals. The female liver also had a greater number of KC per gram, with a lower percentage of KC in the vicinity of HSC compared with males. In this study, we document hitherto unknown morphological sexual dimorphism in the rat liver, namely in HEP and KC. These differences may account for the higher regenerative potential of the female liver and lend weight to the argument for considering the rat liver as a sexually dimorphic organ. PMID:26892301

  13. Kupffer cells potentiate liver sinusoidal endothelial cell injury in sepsis by ligating programmed cell death ligand-1

    PubMed Central

    Hutchins, Noelle A.; Wang, Fei; Wang, Yvonne; Chung, Chun-Shiang; Ayala, Alfred

    2013-01-01

    PD-1 and PD-L1 have been reported to provide peripheral tolerance by inhibiting TCR-mediated activation. We have reported that PD-L1−/− animals are protected from sepsis-induced mortality and immune suppression. Whereas studies indicate that LSECs normally express PD-L1, which is also thought to maintain local immune liver tolerance by ligating the receptor PD-1 on T lymphocytes, the role of PD-L1 in the septic liver remains unknown. Thus, we hypothesized initially that PD-L1 expression on LSECs protects them from sepsis-induced injury. We noted that the increased vascular permeability and pSTAT3 protein expression in whole liver from septic animals were attenuated in the absence of PD-L1. Isolated LSECs taken from septic animals, which exhibited increased cell death, declining cell numbers, reduced cellular proliferation, and VEGFR2 expression (an angiogenesis marker), also showed improved cell numbers, proliferation, and percent VEGFR2+ levels in the absence of PD-L1. We also observed that sepsis induced an increase of liver F4/80+PD-1+-expressing KCs and increased PD-L1 expression on LSECs. Interestingly, PD-L1 expression levels on LSECs decreased when PD-1+-expressing KCs were depleted with clodronate liposomes. Contrary to our original hypothesis, we document here that increased interactions between PD-1+ KCs and PD-L1+ LSECs appear to lead to the decline of normal endothelial function—essential to sustain vascular integrity and prevent ALF. Importantly, we uncover an underappreciated pathological aspect of PD-1:PD-L1 ligation during inflammation that is independent of its normal, immune-suppressive activity. PMID:23766529

  14. Time course investigation of PPAR{alpha}- and Kupffer cell-dependent effects of WY-14,643 in mouse liver using microarray gene expression

    SciTech Connect

    Woods, Courtney G.; Kosyk, Oksana; Bradford, Blair U.; Ross, Pamela K.; Burns, Amanda M.; Cunningham, Michael L.; Qu Pingping; Ibrahim, Joseph G.; Rusyn, Ivan

    2007-12-15

    Administration of peroxisome proliferators to rodents causes proliferation of peroxisomes, induction of {beta}-oxidation enzymes, hepatocellular hypertrophy and hyperplasia, with chronic exposure ultimately leading to hepatocellular carcinomas. Many responses associated with peroxisome proliferators are nuclear receptor-mediated events involving peroxisome proliferators-activated receptor alpha (PPAR{alpha}). A role for nuclear receptor-independent events has also been shown, with evidence of Kupffer cell-mediated free radical production, presumably through NAPDH oxidase, induction of redox-sensitive transcription factors involved in cytokine production and cytokine-mediated cell replication following acute treatment with peroxisome proliferators in rodents. Recent studies have demonstrated, by using p47{sup phox}-null mice which are deficient in NADPH oxidase, that this enzyme is not related to the phenotypic events caused by prolonged administration of peroxisome proliferators. In an effort to determine the timing of the transition from Kupffer cell-to PPAR{alpha}-dependent modulation of peroxisome proliferator effects, gene expression was assessed in liver from Ppar{alpha}-null, p47{sup phox}-null and corresponding wild-type mice following treatment with 4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid (WY-14,643) for 8 h, 24 h, 72 h, 1 week or 4 weeks. WY-14,643-induced gene expression in p47{sup phox}-null mouse liver differed substantially from wild-type mice at acute doses and striking differences in baseline expression of immune related genes were evident. Pathway mapping of genes that respond to WY-14,643 in a time- and dose-dependent manner demonstrates suppression of immune response, cell death and signal transduction and promotion of lipid metabolism, cell cycle and DNA repair. Furthermore, these pathways were largely dependent on PPAR{alpha}, not NADPH oxidase demonstrating a temporal shift in response to peroxisome proliferators. Overall, this

  15. Subtoxic Concentrations of Hepatotoxic Drugs Lead to Kupffer Cell Activation in a Human In Vitro Liver Model: An Approach to Study DILI

    PubMed Central

    Kegel, Victoria; Pfeiffer, Elisa; Burkhardt, Britta; Liu, Jia L.; Zeilinger, Katrin; Nüssler, Andreas K.; Seehofer, Daniel; Damm, Georg

    2015-01-01

    Drug induced liver injury (DILI) is an idiosyncratic adverse drug reaction leading to severe liver damage. Kupffer cells (KC) sense hepatic tissue stress/damage and therefore could be a tool for the estimation of consequent effects associated with DILI. Aim of the present study was to establish a human in vitro liver model for the investigation of immune-mediated signaling in the pathogenesis of DILI. Hepatocytes and KC were isolated from human liver specimens. The isolated KC yield was 1.2 ± 0.9 × 106 cells/g liver tissue with a purity of >80%. KC activation was investigated by the measurement of reactive oxygen intermediates (ROI, DCF assay) and cell activity (XTT assay). The initial KC activation levels showed broad donor variability. Additional activation of KC using supernatants of hepatocytes treated with hepatotoxic drugs increased KC activity and led to donor-dependent changes in the formation of ROI compared to KC incubated with supernatants from untreated hepatocytes. Additionally, a compound- and donor-dependent increase in proinflammatory cytokines or in anti-inflammatory cytokines was detected. In conclusion, KC related immune signaling in hepatotoxicity was successfully determined in a newly established in vitro liver model. KC were able to detect hepatocyte stress/damage and to transmit a donor- and compound-dependent immune response via cytokine production. PMID:26491234

  16. Subtoxic Concentrations of Hepatotoxic Drugs Lead to Kupffer Cell Activation in a Human In Vitro Liver Model: An Approach to Study DILI.

    PubMed

    Kegel, Victoria; Pfeiffer, Elisa; Burkhardt, Britta; Liu, Jia L; Zeilinger, Katrin; Nüssler, Andreas K; Seehofer, Daniel; Damm, Georg

    2015-01-01

    Drug induced liver injury (DILI) is an idiosyncratic adverse drug reaction leading to severe liver damage. Kupffer cells (KC) sense hepatic tissue stress/damage and therefore could be a tool for the estimation of consequent effects associated with DILI. Aim of the present study was to establish a human in vitro liver model for the investigation of immune-mediated signaling in the pathogenesis of DILI. Hepatocytes and KC were isolated from human liver specimens. The isolated KC yield was 1.2 ± 0.9 × 10(6) cells/g liver tissue with a purity of >80%. KC activation was investigated by the measurement of reactive oxygen intermediates (ROI, DCF assay) and cell activity (XTT assay). The initial KC activation levels showed broad donor variability. Additional activation of KC using supernatants of hepatocytes treated with hepatotoxic drugs increased KC activity and led to donor-dependent changes in the formation of ROI compared to KC incubated with supernatants from untreated hepatocytes. Additionally, a compound- and donor-dependent increase in proinflammatory cytokines or in anti-inflammatory cytokines was detected. In conclusion, KC related immune signaling in hepatotoxicity was successfully determined in a newly established in vitro liver model. KC were able to detect hepatocyte stress/damage and to transmit a donor- and compound-dependent immune response via cytokine production. PMID:26491234

  17. Kupffer cell inactivation by carbon monoxide bound to red blood cells preserves hepatic cytochrome P450 via anti-oxidant and anti-inflammatory effects exerted through the HMGB1/TLR-4 pathway during resuscitation from hemorrhagic shock.

    PubMed

    Ogaki, Shigeru; Taguchi, Kazuaki; Maeda, Hitoshi; Watanabe, Hiroshi; Ishima, Yu; Otagiri, Masaki; Maruyama, Toru

    2015-10-01

    Red blood cell (RBC) transfusions for controlling hemorrhaging induce systemic ischemia reperfusion, resulting in a decrease in hepatic cytochrome P450 (CYP) levels. Carbon monoxide (CO), when bound to red blood cells (CO-RBC) has the potential to protect the hepatic CYP protein to produce a resuscitative effect in a hemorrhagic shock rat model. The aim of this study was to investigate the mechanism by which CO-RBC resuscitation from a massive hemorrhage protects against a decrease in hepatic CYP. In the early phase (∼1h) after a hemorrhage and RBC resuscitation, hepatic CYP protein levels were significantly decreased with increasing hepatic free heme levels, but were maintained by a pre-treatment of gadolinium chloride (GdCl3), a Kupffer cell inhibitor, and Trolox, an anti-oxidant agent, as well as CO-RBC resuscitation. Under these conditions, the production of reactive oxygen species (ROS) derived from activated Kupffer cells was increased, but this increase was suppressed by CO-RBC resuscitation. At a late phase (6∼24h), CYP mRNA levels decreased after hemorrhage and RBC resuscitation, but not in the case of CO-RBC resuscitation. The increases in plasma IL-6 and TNF-α levels were decreased by CO-RBC resuscitation via the suppression of the toll-like receptor-4 (TLR-4) and the expression of the high mobility group box-1 (HMGB-1). Hepatic CYP protection after a hemorrhage and CO-RBC resuscitation can be attributed to the inactivation of Kupffer cells, resulting in the suppression of ROS production in the early phase and the suppression of inflammatory cytokine production via the TLR-4/HMGB-1signal pathway in the late phase. PMID:26232728

  18. Kupffer cell depletion attenuates leptin-mediated methoxamine-stimulated portal perfusion pressure and thromboxane A2 release in a rodent model of NASH-cirrhosis.

    PubMed

    Yang, Ying-Ying; Huang, Yi-Tsau; Tsai, Tung-Hu; Hou, Ming-Chih; Lee, Fa-Yauh; Lee, Shou-Dong; Lin, Han-Chieh

    2012-12-01

    Cirrhotic portal hypertension is characterized by increased hepatic oxidative stress, AA (arachidonic acid)-derived TXA(2) (thromboxane A(2)) release and exaggerated hepatic response to the α-adrenergic agonist MTX (methoxamine). Besides promoting hepatic fibrosis, the role of hyperleptinaemia in the modulation of vascular response in NASH (non-alcoholic steatohepatitis) rat livers remains unknown. The aim of the present study was to explore the possible links between hyperleptinaemia and the disarrangement in the hepatic microcirculation. NASH-cirrhosis with hyperleptinaemia was induced in lean rats by feeding with an HF/MCD (high-fat/methionine-choline-deficient) diet. Portal haemodynamics, various substances, protein and mRNA expression and PUFA (polyunsaturated fatty acid) composition were measured. Finally, the effects of leptin pre-infusion on TXA(2) release and concentration-PPP (portal perfusion pressure) curves in response to MTX were evaluated by simultaneously pre-treatment with the Kupffer cell inactivators GdCl(3) (gadolinium chloride) or EC (encapsulated clodronate), the TXS (TXA(2) synthase) inhibitor furegrelate, the TP receptor (TXA(2) receptor) antagonist SQ29548 and the dual TXS/TP receptor antagonist BM567. In HF/MCD+leptin-lean rats, cirrhosis-induced PPP and MTX hyper-responsiveness were associated with increased hepatic TXA(2) production, TBARS (thiobarbituric acid-reacting substances) levels and the AA (arachidonic acid)/n-3 PUFA ratio, and up-regulation of hepatic leptin, FAS (fatty acid synthase), NADPH oxidase subunits, TXS, TP receptor, TGFβ(1) (transforming growth factor β(1)) proteins and mRNAs. Pre-infusion of leptin significantly enhanced MTX-stimulated PPP elevation and TXA(2) release, which were attenuated by GdCl(3) and EC pre-treatment. Concomitantly pre-incubation with BM567, but not furegrelate or SQ29548, significantly abolished the leptin-enhanced MTX-stimulated increase in PPP in NASH-cirrhotic rats. Hyperleptinaemia

  19. Subanesthetic Isoflurane Reduces Zymosan-Induced Inflammation in Murine Kupffer Cells by Inhibiting ROS-Activated p38 MAPK/NF-κB Signaling

    PubMed Central

    Wang, Hui; Wang, Lei; Li, Nan-lin; Li, Jun-tang; Yu, Feng; Zhao, Ya-li; Wang, Ling; Yi, Jun; Wang, Ling; Bian, Jie-fang; Chen, Jiang-hao; Yuan, Shi-fang; Wang, Ting; Lv, Yong-gang; Liu, Ning-ning; Zhu, Xiao-shan; Ling, Rui; Yun, Jun

    2014-01-01

    Volatile anesthetic isoflurane (ISO) has immunomodulatory effects. The fungal component zymosan (ZY) induces inflammation through toll-like receptor 2 or dectin-1 signaling. We investigated the molecular actions of subanesthetic (0.7%) ISO against ZY-induced inflammatory activation in murine Kupffer cells (KCs), which are known as the resident macrophages within the liver. We observed that ISO reduced ZY-induced cyclooxygenase 2 upregulation and prostaglandin E2 release, as determined by western blot and radioimmunoassay, respectively. ISO also reduced the production of tumor necrosis factor-α, interleukin-1β, IL-6, high-mobility group box-1, macrophage inflammatory protein-1α, macrophage inflammatory protein-2, and monocyte chemoattractant protein-1 as assessed by enzyme-linked immunosorbent assays. ISO blocked the ZY-induced nuclear translocation and DNA-binding activity of nuclear factor- (NF)-κB p65. Moreover, ISO attenuated ZY-induced p38 mitogen-activated protein kinase (MAPK) activation partly by scavenging reactive oxygen species (ROS); the interregulation that ROS activated p38 MAPK followed by NF-κB activation was crucial for the ZY-induced inflammatory responses in KCs. An in vivo study by peritoneal injection of ZY into BALB/C mice confirmed the anti-inflammatory properties of 0.7% ISO against ZY in KCs. These results suggest that ISO ameliorates ZY-induced inflammatory responses in murine KCs by inhibiting the interconnected ROS/p38 MAPK/NF-κB signaling pathways. PMID:25147596

  20. Chronic Ethanol Feeding Modulates Inflammatory Mediators, Activation of Nuclear Factor-κB, and Responsiveness to Endotoxin in Murine Kupffer Cells and Circulating Leukocytes

    PubMed Central

    Oppermann, Elsie; Jobin, Christian; Schleucher, Elke; Marzi, Ingo

    2014-01-01

    Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κBEGFP reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner. PMID:24623963

  1. Effects of the in vitro administered ethanol and lipopolysaccharide toxin on membrane properties, intracellular free calcium and phagocytic function of isolated rat kupffer cells

    SciTech Connect

    Victorov, A.; Smith, T.; Abril, E.; Hamlin, E.; Earnest, D. )

    1991-03-11

    Low concentrations of ethanol slightly stimulated phagocytosis of cultured Kupffer cells (KC), producing practically no effect on membrane microviscosity and cytosolic free (Ca{sup 2+}){sub i}. On the contrary, high concentrations of ethanol significantly suppressed phagocytic function, increased fluidity of membrane lipids and caused a sustained rise in (Ca{sup 2}){sub i}; above the resting level of 41-85 nM. Treatment of KC with colchicine and cytochalasin B dramatically destructurized the plasma membrane lipids. Short term preincubation of KC with high doses of alcohol stimulated the disordering effects of both drugs, suggesting direct interaction of ethanol with microtubule and microfilament structures. The authors hypothesize that ethanol impairs phagocytosis of KC by concerted actions on membrane lipid fluidity, cytosolic free Ca{sup 2+} and functioning of cytoskeleton. On the other hand, incubation of KC with low concentrations of lipopolysaccharide (LPS) produced no changes in (Ca{sup 2+}){sub i}; or plasma membrane fluidity but reduced by several fold the fluidizing effect of subsequently added ethanol. They suggested that low doses of LPS, by activating second messengers other than Ca{sup 2+}, alter the functioning of the cytoskeleton and cause reorganization of the plasma membrane thus making KC membranes more resistent to the fluidizing action of ethanol and partially restoring the phagocytic function.

  2. Chronic ethanol feeding modulates inflammatory mediators, activation of nuclear factor-κB, and responsiveness to endotoxin in murine Kupffer cells and circulating leukocytes.

    PubMed

    Maraslioglu, Miriam; Oppermann, Elsie; Blattner, Carolin; Weber, Roxane; Henrich, Dirk; Jobin, Christian; Schleucher, Elke; Marzi, Ingo; Lehnert, Mark

    2014-01-01

    Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κB(EGFP) reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1 β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner. PMID:24623963

  3. Mercury-Selenium Relationships in Liver of Guiana Dolphin: The Possible Role of Kupffer Cells in the Detoxification Process by Tiemannite Formation

    PubMed Central

    Lailson-Brito, José; Dorneles, Paulo Renato; Andrade, Leonardo; Azevedo, Alexandre de Freitas; Fragoso, Ana Bernadete; Vidal, Lara Gama; Costa, Marianna Badini; Bisi, Tatiana Lemos; Almeida, Ronaldo; Carvalho, Dario Pires; Bastos, Wanderley Rodrigues; Malm, Olaf

    2012-01-01

    Top marine predators present high mercury concentrations in their tissues as consequence of biomagnification of the most toxic form of this metal, methylmercury (MeHg). The present study concerns mercury accumulation by Guiana dolphins (Sotalia guianensis), highlighting the selenium-mediated methylmercury detoxification process. Liver samples from 19 dolphins incidentally captured within Guanabara Bay (Rio de Janeiro State, Brazil) from 1994 to 2006 were analyzed for total mercury (THg), methylmercury (MeHg), total organic mercury (TOrgHg) and selenium (Se). X-ray microanalyses were also performed. The specimens, including from fetuses to 30-year-old dolphins, comprising 8 females and 11 males, presented high THg (0.53–132 µg/g wet wt.) and Se concentrations (0.17–74.8 µg/g wet wt.). Correlations between THg, MeHg, TOrgHg and Se were verified with age (p<0.05), as well as a high and positive correlation was observed between molar concentrations of Hg and Se (p<0.05). Negative correlations were observed between THg and the percentage of MeHg contribution to THg (p<0.05), which represents a consequence of the selenium-mediated methylmercury detoxification process. Accumulation of Se-Hg amorphous crystals in Kupffer Cells was demonstrated through ultra-structural analysis, which shows that Guiana dolphin is capable of carrying out the demethylation process via mercury selenide formation. PMID:22860072

  4. Mercury-selenium relationships in liver of Guiana dolphin: the possible role of Kupffer cells in the detoxification process by tiemannite formation.

    PubMed

    Lailson-Brito, José; Cruz, Renato; Dorneles, Paulo Renato; Andrade, Leonardo; Azevedo, Alexandre de Freitas; Fragoso, Ana Bernadete; Vidal, Lara Gama; Costa, Marianna Badini; Bisi, Tatiana Lemos; Almeida, Ronaldo; Carvalho, Dario Pires; Bastos, Wanderley Rodrigues; Malm, Olaf

    2012-01-01

    Top marine predators present high mercury concentrations in their tissues as consequence of biomagnification of the most toxic form of this metal, methylmercury (MeHg). The present study concerns mercury accumulation by Guiana dolphins (Sotalia guianensis), highlighting the selenium-mediated methylmercury detoxification process. Liver samples from 19 dolphins incidentally captured within Guanabara Bay (Rio de Janeiro State, Brazil) from 1994 to 2006 were analyzed for total mercury (THg), methylmercury (MeHg), total organic mercury (TOrgHg) and selenium (Se). X-ray microanalyses were also performed. The specimens, including from fetuses to 30-year-old dolphins, comprising 8 females and 11 males, presented high THg (0.53-132 µg/g wet wt.) and Se concentrations (0.17-74.8 µg/g wet wt.). Correlations between THg, MeHg, TOrgHg and Se were verified with age (p<0.05), as well as a high and positive correlation was observed between molar concentrations of Hg and Se (p<0.05). Negative correlations were observed between THg and the percentage of MeHg contribution to THg (p<0.05), which represents a consequence of the selenium-mediated methylmercury detoxification process. Accumulation of Se-Hg amorphous crystals in Kupffer Cells was demonstrated through ultra-structural analysis, which shows that Guiana dolphin is capable of carrying out the demethylation process via mercury selenide formation. PMID:22860072

  5. C5a anaphylatoxin as a product of complement activation up-regulates the complement inhibitory factor H in rat Kupffer cells.

    PubMed

    Schlaf, Gerald; Nitzki, Frauke; Heine, Ines; Hardeland, Rüdiger; Schieferdecker, Henrike L; Götze, Otto

    2004-11-01

    The 155-kDa complement regulator factor H (FH) is the predominant soluble regulatory protein of the complement system. It acts as a cofactor for the factor I-mediated conversion of the component C3b to iC3b, competes with factor B for a binding site on C3b and C3(H2O) and promotes the dissociation of the C3bBb complex. The primary site of synthesis is the liver, i.e. FH-specific mRNA and protein were identified in both hepatocytes (HC) and Kupffer cells (KC). Previous studies in rat primary HC and KC had shown that the proinflammatory cytokine IFN-gamma influences the balance between activation and inhibition of the complement system through up-regulation of the inhibitory FH. In this study we show that C5a, as a product of complement activation, stimulates the expression of FH-specific mRNA and protein in KC and thus induces a negative feedback. Quantitative-competitive RT-PCR showed an approximate threefold C5a-induced up-regulation of FH. ELISA analyses revealed a corresponding increase in FH protein in the supernatants of KC. The up-regulation of FH was completely inhibited by the C5a-blocking monoclonal antibody 6-9F. Furthermore, an involvement of LPS and IFN-gamma was excluded, which strongly indicates a direct effect of C5a on the expression of FH in KC. PMID:15376195

  6. Kupffer-cell-expressed transmembrane TNF-α is a major contributor to lipopolysaccharide and D-galactosamine-induced liver injury.

    PubMed

    Yang, Peng; Zhou, Wenjing; Li, Chenxi; Zhang, Meng; Jiang, Yaping; Jiang, Rui; Ba, Hongping; Li, Cheng; Wang, Jing; Yin, Bingjiao; Gong, Feili; Li, Zhuoya

    2016-02-01

    Tumor necrosis factor (TNF)-α exists in two bioactive forms, a 26-kDa transmembrane form (tmTNF-α) and a 17-kDa soluble form (sTNF-α). sTNF-α has been recognized as a key regulator of hepatitis; however, serum sTNF-α disappears in mice during the development of severe liver injury, and high levels of serum sTNF-α do not necessarily result in liver damage. Interestingly, in a mouse model of acute hepatitis, we have found that tmTNF-α expression on Kupffer cells (KCs) significantly increases when mice develop severe liver injury caused by lipopolysaccharide (LPS)/D-galactosamine (D-gal), and the level of tmTNF-α expression is positively related to the activity of serum transaminases. Therefore, we hypothesized that KC-expressed tmTNF-α constitutes a pathomechanism in hepatitis and have explored the role of tmTNF-α in this disease model. Here, we have compared the impact of KCs(tmTNFlow) and KCs(tmTNFhigh) on acute hepatitis in vivo and ex vivo and have further demonstrated that KCs(tmTNFhigh), rather than KCs(tmTNFlow), not only exhibit an imbalance in secretion of pro- and anti-inflammatory cytokines, favoring inflammatory response and exacerbating liver injury, but also induce hepatocellular apoptosis via tmTNF-α and the expression of another pro-apoptotic factor, Fas ligand. Our data suggest that KC(tmTNFhigh) is a major contributor to liver injury in LPS/D-gal-induced hepatitis. PMID:26267221

  7. Autoregulation by eicosanoids of human Kupffer cell secretory products. A study of interleukin-1, interleukin-6, tumor necrosis factor-alpha, transforming growth factor-beta, and nitric oxide.

    PubMed Central

    Roland, C R; Goss, J A; Mangino, M J; Hafenrichter, D; Flye, M W

    1994-01-01

    OBJECTIVE: Methods employed previously to analyze the secretory behavior of rodent Kupffer cells (KC) were used to examine the human KC's secretory response to lipopolysaccharide (LPS). SUMMARY BACKGROUND DATA: As the resident hepatic macrophage, the KC resides at the interface between the portal and systemic circulations. Consequently, this cell may play an integral role in the immune response to antigens and bacteria in the sinusoid. Study of cytokine production by the KC has relied predominantly on the rat as the source of these cells. Whether human KCs respond similarly to rat KCs after LPS stimulation has been a matter of speculation. METHODS: Kupffer cells obtained from seven human livers were tested under conditions identical to those used to study rat KCs. Kupffer cells rested for 12 hours after isolation were stimulated with LPS (2.5 micrograms/mL). Arginine concentration in the culture medium varied from 0.01 to 1.2 mM. To examine the role of eicosanoids, parallel culture wells received indomethacin (10 microM). Culture supernatants were assayed for interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta (TGF-beta), prostaglandin E2 (PGE2), and nitric oxide. RESULTS: Similar to the rat KC, LPS-stimulated human KCs released IL-1, IL-6, TNF-alpha, TGF-beta, and PGE2. However, unlike rat KCs, nitric oxide could not be detected, regardless of whether the human KCs were exposed to LPS, interferon-gamma (INF-gamma), or LPS + IFN-gamma. Similar to rat KCs, indomethacin prevented PGE2 release while significantly upregulating TNF-alpha, IL-1, and IL-6, but not TGF-beta, consistent with an autoregulatory control of eicosanoids over proinflammatory cytokines. As has been shown in the rat, physiologic levels of L-arginine (0.01 mM) significantly enhanced LPS-induced PGE2 secretion relative to the response in medium containing standard L-arginine concentration (1.2 mM); however, unlike the rat KC, the human

  8. [THE EXCESS OF PALMITIC FATTY ACID IN FOOD AS MAIN CAUSE OF LIPOIDOSIS OF INSULIN-DEPENDENT CELLS: SKELETAL MYOCYTES, CARDIO-MYOCYTES, PERIPORTAL HEPATOCYTES, KUPFFER MACROPHAGES AND B-CELLS OF PANCREAS].

    PubMed

    Titov, V N

    2016-02-01

    In phylogenesis, becoming of biologicalfunctions and biological reactions proceeds with the purpose ofpermanent increasing of "kinetic perfection ". The main role belongs to factors ofphysical, chemical and biological kinetics, their evaluation using systemic approach technique under permanent effect of natural selection. The late-in-phylogenesis insulin, proceeded with, in development of biological function of locomotion, specialization of insulin-dependent cells: skeletal myocytes, syncytium of cardiomyocytes, subcutaneous adipocytes, periportal hepatocytes, Kupffer's macrophages and β-cells of islets of pancreas. The insulin initiated formation of new, late in phylogenesis, large pool of fatty cells-subcutaneous adipocytes that increased kinetic parameters of biological function of locomotion. In realization of biological function of locomotion only adipocytes absorb exogenous mono unsaturated and saturated fatty acids in the form of triglycerides in composition of oleic and palmitic lipoproteins of very low density using apoE/B-100 endocytosis. The rest of insulin-dependent cells absorb fatty acids in the form of unesterified fatty acids from associates with albumin and under effect of CD36 of translocase offatty acids. The insulin in all insulin-depended cells inhibits biological reaction of lipolysis enhancing contributing into development of lipoidosis. The insulin expresses transfer offatty acids in the form of unsaturated fatty acids from adipocytes into matrix of mitochondria. The insulin supplies insulin-dependent cells with substrates for acquiring energy subject to that in pool of unsaturated fatty acids in adipocytes prevails hydrophobic palmitic unsaturated fatiy acid that slowly passes into matrix through external membrane ofmitochondria; oxidases of mitochondria so slowly implement its β-oxidation that content of exogenous palmitic unsaturatedfatty acid can't be higher than phylogenetic, physiological level - 15% of all amount offatty acids

  9. Three-dimensional flow in Kupffer's Vesicle.

    PubMed

    Montenegro-Johnson, T D; Baker, D I; Smith, D J; Lopes, S S

    2016-09-01

    Whilst many vertebrates appear externally left-right symmetric, the arrangement of internal organs is asymmetric. In zebrafish, the breaking of left-right symmetry is organised by Kupffer's Vesicle (KV): an approximately spherical, fluid-filled structure that begins to form in the embryo 10 hours post fertilisation. A crucial component of zebrafish symmetry breaking is the establishment of a cilia-driven fluid flow within KV. However, it is still unclear (a) how dorsal, ventral and equatorial cilia contribute to the global vortical flow, and (b) if this flow breaks left-right symmetry through mechanical transduction or morphogen transport. Fully answering these questions requires knowledge of the three-dimensional flow patterns within KV, which have not been quantified in previous work. In this study, we calculate and analyse the three-dimensional flow in KV. We consider flow from both individual and groups of cilia, and (a) find anticlockwise flow can arise purely from excess of cilia on the dorsal roof over the ventral floor, showing how this vortical flow is stabilised by dorsal tilt of equatorial cilia, and (b) show that anterior clustering of dorsal cilia leads to around 40 % faster flow in the anterior over the posterior corner. We argue that these flow features are supportive of symmetry breaking through mechano-sensory cilia, and suggest a novel experiment to test this hypothesis. From our new understanding of the flow, we propose a further experiment to reverse the flow within KV to potentially induce situs inversus. PMID:26825450

  10. Exploring Kupffer's Vescicle Through Self Propelled Particle Simulations

    NASA Astrophysics Data System (ADS)

    Lundy, Kassidy; Dasgupta, Agnik; Amack, Jeff; Manning, M. Lisa

    Early development is an important stage in the formation of functional, relatively healthy organisms. In zebrafish embryos, a transient organ in the tailbud called Kupffer's Vescicle (KV) is responsible for the initial left-right (L-R) asymmetry that results in asymmetric organ and tissue placement in the adult zebrafish. Originating as a collection of symmetrically organized monociliated cells, the KV experiences a shift in cell shapes over time that leaves more cells on the anterior or top side of the KV. This arrangement helps to generate a stronger counter-clockwise fluid flow across the anterior side of the organ, which is required for L-R asymmetry. In seeking to understand the source of the shape changes occurring within the KV, we simulate a Self Propelled Particle (SPP) model that includes parameters for cell polarization and speed. We model the KV as a large particle moving in a straight line with constant velocity to mimic the physical forces of the notochord acting on this organ, and we model the surrounding tailbud cells as smaller, slower active particles with an orientation that changes over time due to rotational noise. Our goal is to calculate the forces exerted on the KV by the surrounding tissue, to see if they are sufficient to explain the shape changes we observe in the KV that lead to L-R asymmetry.

  11. Development of PEM fuel cell technology at international fuel cells

    SciTech Connect

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  12. Organized chaos in Kupffer's vesicle: how a heterogeneous structure achieves consistent left-right patterning.

    PubMed

    Smith, D J; Montenegro-Johnson, T D; Lopes, S S

    2014-01-01

    Successful establishment of left-right asymmetry is crucial to healthy vertebrate development. In many species this process is initiated in a ciliated, enclosed cavity, for example Kupffer's vesicle (KV) in zebrafish. The microarchitecture of KV is more complex than that present in the left-right organizer of many other species. While swirling flow in KV is recognized as essential for left-right patterning, its generation, nature and conversion to asymmetric gene expression are only beginning to be fully understood. We recently [Sampaio, P et al. Dev Cell 29:716-728] combined imaging, genetics and fluid dynamics simulation to characterize normal and perturbed ciliary activity, and their correlation to asymmetric charon expression and embryonic organ fate. Randomness in cilia number and length have major implications for robust flow generation; even a modest change in mean cilia length has a major effect on flow speed to due to nonlinear scaling arising from fluid mechanics. Wildtype, and mutant embryos with normal liver laterality, exhibit stronger flow on the left prior to asymmetric inhibition of charon. Our discovery of immotile cilia, taken with data on morphant embryos with very few cilia, further support the role of mechanosensing in initiating and/or enhancing flow conversion into gene expression. PMID:25454897

  13. Organized chaos in Kupffer's vesicle: How a heterogeneous structure achieves consistent left-right patterning

    PubMed Central

    Smith, DJ; Montenegro-Johnson, TD; Lopes, SS

    2014-01-01

    Successful establishment of left-right asymmetry is crucial to healthy vertebrate development. In many species this process is initiated in a ciliated, enclosed cavity, for example Kupffer's vesicle (KV) in zebrafish. The microarchitecture of KV is more complex than that present in the left-right organizer of many other species. While swirling flow in KV is recognized as essential for left-right patterning, its generation, nature and conversion to asymmetric gene expression are only beginning to be fully understood. We recently [Sampaio, P et al. Dev Cell 29:716–728] combined imaging, genetics and fluid dynamics simulation to characterize normal and perturbed ciliary activity, and their correlation to asymmetric charon expression and embryonic organ fate. Randomness in cilia number and length have major implications for robust flow generation; even a modest change in mean cilia length has a major effect on flow speed to due to nonlinear scaling arising from fluid mechanics. Wildtype, and mutant embryos with normal liver laterality, exhibit stronger flow on the left prior to asymmetric inhibition of charon. Our discovery of immotile cilia, taken with data on morphant embryos with very few cilia, further support the role of mechanosensing in initiating and/or enhancing flow conversion into gene expression. PMID:25454897

  14. Galactosylated LDL nanoparticles: a novel targeting delivery system to deliver antigen to macrophages and enhance antigen specific T cell responses.

    PubMed

    Wu, Fang; Wuensch, Sherry A; Azadniv, Mitra; Ebrahimkhani, Mohammad R; Crispe, I Nicholas

    2009-01-01

    We aim to define the role of Kupffer cells in intrahepatic antigen presentation, using the selective delivery of antigen to Kupffer cells rather than other populations of liver antigen-presenting cells. To achieve this we developed a novel antigen delivery system that can target antigens to macrophages, based on a galactosylated low-density lipoprotein nanoscale platform. Antigen was delivered via the galactose particle receptor (GPr), internalized, degraded and presented to T cells. The conjugation of fluoresceinated ovalbumin (FLUO-OVA) and lactobionic acid with LDL resulted in a substantially increased uptake of FLUO-OVA by murine macrophage-like ANA1 cells in preference to NIH3T3 cells, and by primary peritoneal macrophages in preference to primary hepatic stellate cells. Such preferential uptake led to enhanced proliferation of OVA specific T cells, showing that the galactosylated LDL nanoscale platform is a successful antigen carrier, targeting antigen to macrophages but not to all categories of antigen presenting cells. This system will allow targeted delivery of antigen to macrophages in the liver and elsewhere, addressing the question of the role of Kupffer cells in liver immunology. It may also be an effective way of delivering drugs or vaccines directly at macrophages. PMID:19637876

  15. Cell morphology and focal adhesion location alters internal cell stress.

    PubMed

    Mullen, C A; Vaughan, T J; Voisin, M C; Brennan, M A; Layrolle, P; McNamara, L M

    2014-12-01

    Extracellular mechanical cues have been shown to have a profound effect on osteogenic cell behaviour. However, it is not known precisely how these cues alter intracellular mechanics to initiate changes in cell behaviour. In this study, a combination of in vitro culture of MC3T3-E1 cells and finite-element modelling was used to investigate the effects of passive differences in substrate stiffness on intracellular mechanics. Cells on collagen-based substrates were classified based on the presence of cell processes and the dimensions of various cellular features were quantified. Focal adhesion (FA) density was quantified from immunohistochemical staining, while cell and substrate stiffnesses were measured using a live-cell atomic force microscope. Computational models of cell morphologies were developed using an applied contraction of the cell body to simulate active cell contraction. The results showed that FA density is directly related to cell morphology, while the effect of substrate stiffness on internal cell tension was modulated by both cell morphology and FA density, as investigated by varying the number of adhesion sites present in each morphological model. We propose that the cells desire to achieve a homeostatic stress state may play a role in osteogenic cell differentiation in response to extracellular mechanical cues. PMID:25297316

  16. Cell morphology and focal adhesion location alters internal cell stress

    PubMed Central

    Mullen, C. A.; Vaughan, T. J.; Voisin, M. C.; Brennan, M. A.; Layrolle, P.; McNamara, L. M.

    2014-01-01

    Extracellular mechanical cues have been shown to have a profound effect on osteogenic cell behaviour. However, it is not known precisely how these cues alter intracellular mechanics to initiate changes in cell behaviour. In this study, a combination of in vitro culture of MC3T3-E1 cells and finite-element modelling was used to investigate the effects of passive differences in substrate stiffness on intracellular mechanics. Cells on collagen-based substrates were classified based on the presence of cell processes and the dimensions of various cellular features were quantified. Focal adhesion (FA) density was quantified from immunohistochemical staining, while cell and substrate stiffnesses were measured using a live-cell atomic force microscope. Computational models of cell morphologies were developed using an applied contraction of the cell body to simulate active cell contraction. The results showed that FA density is directly related to cell morphology, while the effect of substrate stiffness on internal cell tension was modulated by both cell morphology and FA density, as investigated by varying the number of adhesion sites present in each morphological model. We propose that the cells desire to achieve a homeostatic stress state may play a role in osteogenic cell differentiation in response to extracellular mechanical cues. PMID:25297316

  17. On-Demand Cell Internal Short Circuit Device

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Keyser, Matthew

    2014-01-01

    A device implantable in Li-ion cells that can generate a hard internal short circuit on-demand by exposing the cell to 60?C has been demonstrated to be valuable for expanding our understanding of cell responses. The device provides a negligible impact to cell performance and enables the instigation of the 4 general categories of cell internal shorts to determine relative severity and cell design susceptibility. Tests with a 18650 cell design indicates that the anode active material short to the aluminum cathode current collector tends to be more catastrophic than the 3 other types of internal shorts. Advanced safety features (such as shutdown separators) to prevent or mitigate the severity of cell internal shorts can be verified with this device. The hard short success rate achieved to date in 18650 cells is about 80%, which is sufficient for using these cells in battery assemblies for field-failure-relevant, cell-cell thermal runaway propagation verification tests

  18. Particle compositions with a pre-selected cell internalization mode

    NASA Technical Reports Server (NTRS)

    Decuzzi, Paolo (Inventor); Ferrari, Mauro (Inventor)

    2012-01-01

    A method of formulating a particle composition having a pre-selected cell internalization mode involves selecting a target cell having surface receptors and obtaining particles that have i) surface moieties, that have an affinity for or are capable of binding to the surface receptors of the cell and ii) a preselected shape, where a surface distribution of the surface moieties on the particles and the shape of the particles are effective for the pre-selected cell internalization mode.

  19. Fuel cell with internal flow control

    DOEpatents

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  20. Development of large scale internal reforming molten carbonate fuel cell

    SciTech Connect

    Sasaki, A.; Shinoki, T.; Matsumura, M.

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  1. International Society for Stem Cell Research

    MedlinePlus

    ... Industry Committee Session RUCDR Humanity in a Dish Stem Cell Engineering Junior Investigator Events Career Panel Meet the ... Scientific Program Confirmed Speakers Support/Exhibit Meeting Supporters Stem Cell Engineering 2014 Program Committee Featured Speakers Deepak Srivastava ...

  2. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  3. Experimental study of the microbial fuel cell internal resistance

    NASA Astrophysics Data System (ADS)

    Zhang, Pei-Yuan; Liu, Zhong-Liang

    The internal resistance, including activation loss internal resistance (AIR), ohmic loss internal resistance (OIR) and concentration loss internal resistance (CIR), is an important parameter that determines the performance of microbial fuel cells (MFCs). The experimental investigations were completed to estimate the contributions of these three components to the internal resistance. The internal resistance is found to vary with electric current, although it is almost a constant for the current is within a certain region. The largest component of the internal resistance is CIR except for small currents. The AIR decreases quickly for small current and reduces its decreasing rate as the current increases and approaches to a constant. The OIR is constant over the whole current range. The experiments also disclose that increasing the limiting current and reducing the concentration loss are both important for improving the MFC performance.

  4. Rapid internalization of the insulin receptor in rat hepatoma cells

    SciTech Connect

    Backer, J.M.; White, M.F.; Kahn, C.R.

    1987-05-01

    The authors have studied the internalization of the insulin receptor (IR) in rat hepatoma cells (Fao). The cells were surface-iodinated at 4C, stimulated with insulin at 37C, and then cooled rapidly, trypsinized at 4C and solubilized. The IR was immunoprecipitated with a specific antibody, and internalization of the IR was assessed by the appearance of trypsin-resistant bands on SDS-PAGE. Insulin induced the internalization of surface receptors with a t 1/2 of 9-10 mins; cells not exposed to insulin internalized less than 20% of the IR during 1 h at 37C. Further experiments demonstrated that the accumulation of trypsin-resistant IR paralleled a loss of receptor from the cell surface. Insulin-stimulated cells were chilled and iodinated at 4C, followed by solubilization, immunoprecipitation and SDS-PAGE; alternatively, insulin-stimulated cells were chilled, surface-bound ligand removed by washing the cells at pH 4.2, and specific ( SVI)insulin binding measured at 4C. Both techniques confirmed the disappearance of IR from the cell surface at rates comparable to the insulin-stimulated internalization described above. The total amount of phosphotyrosine-containing IR, as assessed by immunoprecipitation with an anti-phosphotyrosine antibody, remained constant during this time interval, suggesting that active kinase is translocated into the cell. In summary, the authors data indicate that insulin binding increases the rate of IR internalization of Fao cells. This relocation may facilitate the interaction of the activated tyrosine kinase in the IR with intracellular substrates, thus transmitting the insulin signal to metabolic pathways.

  5. Electrochemical cell having internal short inhibitor

    SciTech Connect

    Hooke, J.W.

    1984-04-24

    An electrochemical cell comprises a spirally wound assembly, the assembly including a negative plate; a porous polyester layer disposed on each major surface of the negative plate; a porous, electrically non-conductive separator disposed on each of the polyester layers; and a positive plate disposed on one of the separators. The cell further includes a housing for enclosing the assembly and an electrolyte such that the electrolyte comes in contact with the plates, polyester layers and separators. The housing includes a pair of external terminals each of which being connected to one of the plates.

  6. Internal pigment cells respond to external UV radiation in frogs.

    PubMed

    Franco-Belussi, Lilian; Nilsson Sköld, Helen; de Oliveira, Classius

    2016-05-01

    Fish and amphibians have pigment cells that generate colorful skins important for signaling, camouflage, thermoregulation and protection against ultraviolet radiation (UVR). However, many animals also have pigment cells inside their bodies, on their internal organs and membranes. In contrast to external pigmentation, internal pigmentation is remarkably little studied and its function is not well known. Here, we tested genotoxic effects of UVR and its effects on internal pigmentation in a neotropical frog, Physalaemus nattereri We found increases in body darkness and internal melanin pigmentation in testes and heart surfaces and in the mesenterium and lumbar region after just a few hours of UVR exposure. The melanin dispersion in melanomacrophages in the liver and melanocytes in testes increased after UV exposure. In addition, the amount of melanin inside melanomacrophages cells also increased. Although mast cells were quickly activated by UVR, only longer UVR exposure resulted in genotoxic effects inside frogs, by increasing the frequency of micronuclei in red blood cells. This is the first study to describe systemic responses of external UVR on internal melanin pigmentation, melanomacrophages and melanocytes in frogs and thus provides a functional explanation to the presence of internal pigmentation. PMID:26944494

  7. Cell-Internalization SELEX: Method for Identifying Cell-Internalizing RNA Aptamers for Delivering siRNAs to Target Cells

    PubMed Central

    Thiel, William H.; Thiel, Kristina W.; Flenker, Katie S.; Bair, Tom; Dupuy, Adam J.; McNamara, James O.; Miller, Francis J.; Giangrande, Paloma H.

    2015-01-01

    After a decade of work to address cellular uptake, the principal obstacle to RNAi-based therapeutics, there is now well-deserved, renewed optimism about RNAi-based drugs. Phase I and II studies have shown safe, strong, and durable-gene knockdown (80–90 %, lasting for a month after a single injection) and/or clinical benefit in treating several liver pathologies. Although promising, these studies have also highlighted the need for robust delivery techniques to develop RNAi therapeutics for treating other organ systems and diseases. Conjugation of siRNAs to cell-specific, synthetic RNA ligands (aptamers) is being proposed as a viable solution to this problem. While encouraging, the extended use of RNA aptamers as a delivery tool for siRNAs awaits the identification of RNA aptamer sequences capable of targeting and entering the cytoplasm of many different cell types. We describe a cell-based selection process for the rapid identification and characterization of RNA aptamers suited for delivering siRNA drugs into the cytoplasm of target cells. This process, termed “cell-internalization SELEX (Systematic Evolution of Ligands by Exponential Enrichment),” entails the combination of multiple sophisticated technologies, including cell culture-based SELEX procedures, next-generation sequencing (NGS), and novel bioinformatics tools. PMID:25319652

  8. Internal reforming fuel cell assembly with simplified fuel feed

    DOEpatents

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  9. Translocation and Endocytosis for Cell-penetrating Peptide Internalization

    PubMed Central

    Jiao, Chen-Yu; Delaroche, Diane; Burlina, Fabienne; Alves, Isabel D.; Chassaing, Gérard; Sagan, Sandrine

    2009-01-01

    Cell-penetrating peptides (CPPs) share the property of cellular internalization. The question of how these peptides reach the cytoplasm of cells is still widely debated. Herein, we have used a mass spectrometry-based method that enables quantification of internalized and membrane-bound peptides. Internalization of the most used CPP was studied at 37 °C (endocytosis and translocation) and 4 °C (translocation) in wild type and proteoglycan-deficient Chinese hamster ovary cells. Both translocation and endocytosis are internalization pathways used by CPP. The choice of one pathway versus the other depends on the peptide sequence (not the number of positive changes), the extracellular peptide concentration, and the membrane components. There is no relationship between the high affinity of these peptides for the cell membrane and their internalization efficacy. Translocation occurs at low extracellular peptide concentration, whereas endocytosis, a saturable and cooperative phenomenon, is activated at higher concentrations. Translocation operates in a narrow time window, which implies a specific lipid/peptide co-import in cells. PMID:19833724

  10. Filamin A Regulates Caveolae Internalization and Trafficking in Endothelial Cells

    PubMed Central

    Sverdlov, Maria; Shinin, Vasily; Place, Aaron T.; Castellon, Maricela

    2009-01-01

    Transcytosis via caveolae is critical for maintaining vascular homeostasis by regulating the tissue delivery of macromolecules, hormones, and lipids. In the present study, we test the hypothesis that interactions between F-actin cross-linking protein filamin A and caveolin-1 facilitate the internalization and trafficking of caveolae. Small interfering RNA-mediated knockdown of filamin A, but not filamin B, reduced the uptake and transcytosis of albumin by ∼35 and 60%, respectively, without altering the actin cytoskeletal structure or cell–cell adherens junctions. Mobility of both intracellular caveolin-1–green fluorescent protein (GFP)-labeled vesicles measured by fluorescence recovery after photobleaching and membrane-associated vesicles measured by total internal reflection-fluorescence microscopy was decreased in cells with reduced filamin A expression. In addition, in melanoma cells that lack filamin A (M2 cells), the majority of caveolin-1-GFP was localized on the plasma membrane, whereas in cells in which filamin A expression was reconstituted (A7 cells and M2 cells transfected with filamin A-RFP), caveolin-1-GFP was concentrated in intracellular vesicles. Filamin A association with caveolin-1 in endothelial cells was confirmed by cofractionation of these proteins in density gradients, as well as by coimmunoprecipitation. Moreover, this interaction was enhanced by Src activation, associated with increased caveolin-1 phosphorylation, and blocked by Src inhibition. Taken together, these data suggest that filamin A association with caveolin-1 promotes caveolae-mediated transport by regulating vesicle internalization, clustering, and trafficking. PMID:19759182

  11. Internal quantum efficiency analysis of solar cell by genetic algorithm

    SciTech Connect

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Zhou, Taofei; Wang, Rongxin; Qiu, Kai; Dong, Jianrong; Jiang, Desheng

    2010-11-15

    To investigate factors limiting the performance of a GaAs solar cell, genetic algorithm is employed to fit the experimentally measured internal quantum efficiency (IQE) in the full spectra range. The device parameters such as diffusion lengths and surface recombination velocities are extracted. Electron beam induced current (EBIC) is performed in the base region of the cell with obtained diffusion length agreeing with the fit result. The advantage of genetic algorithm is illustrated. (author)

  12. Fragments of Target Cells are Internalized into Retroviral Envelope Protein-Expressing Cells during Cell-Cell Fusion by Endocytosis

    PubMed Central

    Izumida, Mai; Kamiyama, Haruka; Suematsu, Takashi; Honda, Eri; Koizumi, Yosuke; Yasui, Kiyoshi; Hayashi, Hideki; Ariyoshi, Koya; Kubo, Yoshinao

    2016-01-01

    Retroviruses enter into host cells by fusion between viral and host cell membranes. Retroviral envelope glycoprotein (Env) induces the membrane fusion, and also mediates cell-cell fusion. There are two types of cell-cell fusions induced by the Env protein. Fusion-from-within is induced by fusion between viral fusogenic Env protein-expressing cells and susceptible cells, and virions induce fusion-from-without by fusion between adjacent cells. Although entry of ecotropic murine leukemia virus (E-MLV) requires host cell endocytosis, the involvement of endocytosis in cell fusion is unclear. By fluorescent microscopic analysis of the fusion-from-within, we found that fragments of target cells are internalized into Env-expressing cells. Treatment of the Env-expressing cells with an endocytosis inhibitor more significantly inhibited the cell fusion than that of the target cells, indicating that endocytosis in Env-expressing cells is required for the cell fusion. The endocytosis inhibitor also attenuated the fusion-from-without. Electron microscopic analysis suggested that the membrane fusion resulting in fusion-from-within initiates in endocytic membrane dents. This study shows that two types of the viral cell fusion both require endocytosis, and provides the cascade of fusion-from-within. PMID:26834711

  13. Mitotic internalization of planar cell polarity proteins preserves tissue polarity.

    PubMed

    Devenport, Danelle; Oristian, Daniel; Heller, Evan; Fuchs, Elaine

    2011-08-01

    Planar cell polarity (PCP) is the collective polarization of cells along the epithelial plane, a process best understood in the terminally differentiated Drosophila wing. Proliferative tissues such as mammalian skin also show PCP, but the mechanisms that preserve tissue polarity during proliferation are not understood. During mitosis, asymmetrically distributed PCP components risk mislocalization or unequal inheritance, which could have profound consequences for the long-range propagation of polarity. Here, we show that when mouse epidermal basal progenitors divide PCP components are selectively internalized into endosomes, which are inherited equally by daughter cells. Following mitosis, PCP proteins are recycled to the cell surface, where asymmetry is re-established by a process reliant on neighbouring PCP. A cytoplasmic dileucine motif governs mitotic internalization of atypical cadherin Celsr1, which recruits Vang2 and Fzd6 to endosomes. Moreover, embryos transgenic for a Celsr1 that cannot mitotically internalize exhibit perturbed hair-follicle angling, a hallmark of defective PCP. This underscores the physiological relevance and importance of this mechanism for regulating polarity during cell division. PMID:21743464

  14. Intersectin Regulates Fission and Internalization of Caveolae in Endothelial Cells

    PubMed Central

    Predescu, Sanda A.; Predescu, Dan N.; Timblin, Barbara K.; Stan, Radu V.; Malik, Asrar B.

    2003-01-01

    Intersectin, a multiple Eps15 homology and Src homology 3 (SH3) domain–containing protein, is a component of the endocytic machinery in neurons and nonneuronal cells. However, its role in endocytosis via caveolae in endothelial cells (ECs) is unclear. We demonstrate herein by coimmunoprecipitation, velocity sedimentation on glycerol gradients, and cross-linking that intersectin is present in ECs in a membrane-associated protein complex containing dynamin and SNAP-23. Electron microscopy (EM) immunogold labeling studies indicated that intersectin associated preferentially with the caveolar necks, and it remained associated with caveolae after their fission from the plasmalemma. A cell-free system depleted of intersectin failed to support caveolae fission from the plasma membrane. A biotin assay used to quantify caveolae internalization and extensive EM morphological analysis of ECs overexpressing wt-intersectin indicated a wide range of morphological changes (i.e., large caveolae clusters marginated at cell periphery and pleiomorphic caveolar necks) as well as impaired caveolae internalization. Biochemical evaluation of caveolae-mediated uptake by ELISA showed a 68.4% inhibition by reference to control. We also showed that intersectin interaction with dynamin was important in regulating the fission and internalization of caveolae. Taken together, the results indicate the crucial role of intersectin in the mechanism of caveolae fission in endothelial cells. PMID:12960435

  15. Lipopolysaccharide-induced multinuclear cells: Increased internalization of polystyrene beads and possible signals for cell fusion

    SciTech Connect

    Nakanishi-Matsui, Mayumi Yano, Shio; Futai, Masamitsu

    2013-11-01

    Highlights: •LPS induces multinuclear cells from murine macrophage-derived RAW264.7 cells. •Large beads are internalized by cells actively fusing to become multinuclear. •The multinuclear cell formation is inhibited by anti-inflammatory cytokine, IL10. •Signal transduction for cell fusion is different from that for inflammation. -- Abstract: A murine macrophage-derived line, RAW264.7, becomes multinuclear on stimulation with lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria. These multinuclear cells internalized more polystyrene beads than mononuclear cells or osteoclasts (Nakanishi-Matsui, M., Yano, S., Matsumoto, N., and Futai, M., 2012). In this study, we analyzed the time courses of cell fusion in the presence of large beads. They were internalized into cells actively fusing to become multinuclear. However, the multinuclear cells once formed showed only low phagocytosis activity. These results suggest that formation of the multinuclear cells and bead internalization took place simultaneously. The formation of multinuclear cells was blocked by inhibitors for phosphoinositide 3-kinase, phospholipase C, calcineurin, and c-Jun N-terminal kinase. In addition, interleukin 6 and 10 also exhibited inhibitory effects. These signaling molecules and cytokines may play a crucial role in the LPS-induced multinuclear cell formation.

  16. Internal Short Circuits in Lithium-Ion Cells for PHEVs

    SciTech Connect

    Sriramulu, Suresh; Stringfellow, Richard

    2013-05-25

    Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

  17. External and internal triggers of cell death in yeast.

    PubMed

    Falcone, Claudio; Mazzoni, Cristina

    2016-06-01

    In recent years, yeast was confirmed as a useful eukaryotic model system to decipher the complex mechanisms and networks occurring in higher eukaryotes, particularly in mammalian cells, in physiological as well in pathological conditions. This article focuses attention on the contribution of yeast in the study of a very complex scenario, because of the number and interconnection of pathways, represented by cell death. Yeast, although it is a unicellular organism, possesses the basal machinery of different kinds of cell death occurring in higher eukaryotes, i.e., apoptosis, regulated necrosis and autophagy. Here we report the current knowledge concerning the yeast orthologs of main mammalian cell death regulators and executors, the role of organelles and compartments, and the cellular phenotypes observed in the different forms of cell death in response to external and internal triggers. Thanks to the ease of genetic manipulation of this microorganism, yeast strains expressing human genes that promote or counteract cell death, onset of tumors and neurodegenerative diseases have been constructed. The effects on yeast cells of some of these genes are also presented. PMID:27048816

  18. Internalization of Proteinase 3 Is Concomitant with Endothelial Cell Apoptosis and Internalization of Myeloperoxidase with Generation of Intracellular Oxidants

    PubMed Central

    Yang, Jia Jin; Preston, Gloria A.; Pendergraft, William F.; Segelmark, Mårten; Heeringa, Peter; Hogan, Susan L.; Jennette, J. Charles; Falk, Ronald J.

    2001-01-01

    The important issue addressed by the studies presented here is the mechanism of neutrophil-mediated damage to endothelial and epithelial cells during inflammation. Binding of neutrophil-released granule proteins to endothelial cells may be involved in vascular damage in patients with inflammatory vascular diseases. We have determined whether granule proteins proteinase 3(PR3) and/or myeloperoxidase (MPO) are internalized into endothelial cells, as examined by UV light, confocal, and electron microscopy. Coincident induction of apoptosis and/or the generation of intracellular oxidants were monitored. The results indicate that human endothelial cells (human umbilical vein endothelial cells, human umbilical arterial endothelial cells, human lung microvascular endothelial cells) internalize both PR3 and MPO, which are detected on the cell surface, in the cytoplasm, and possibly nuclear. Epithelial cells (small airway epithelial cells) internalized MPO but not PR3, implying that the mechanism of PR3 internalization may be cell-type specific and different from that of MPO. Internalization of PR3, but not MPO, correlated with activation of apoptosis. Internalization of MPO correlated with an increase in intracellular oxidant radicals. The requirement for the proteolytic activity of PR3 for the induction of apoptosis was examined by generating PR3-truncated fragments that did not contain the components of the catalytic triad. An apoptotic function was localized to the C-terminal portion of PR3. These studies reveal novel mechanisms by which the neutrophil granule proteins PR3 and MPO contribute to tissue injury at sites of inflammation. PMID:11159195

  19. Nonprofessional Phagocytic Cell Receptors Involved in Staphylococcus aureus Internalization

    PubMed Central

    Alva-Murillo, Nayeli; López-Meza, Joel Edmundo

    2014-01-01

    Staphylococcus aureus is a successful human and animal pathogen. The majority of infections caused by this pathogen are life threatening, primarily because S. aureus has developed multiple evasion strategies, possesses intracellular persistence for long periods, and targets the skin and soft tissues. Therefore, it is very important to understand the mechanisms employed by S. aureus to colonize and proliferate in these cells. The aim of this review is to describe the recent discoveries concerning the host receptors of nonprofessional phagocytes involved in S. aureus internalization. Most of the knowledge related to the interaction of S. aureus with its host cells has been described in professional phagocytic cells such as macrophages. Here, we showed that in nonprofessional phagocytes the α5β1 integrin host receptor, chaperons, and the scavenger receptor CD36 are the main receptors employed during S. aureus internalization. The characterization and identification of new bacterial effectors and the host cell receptors involved will undoubtedly lead to new discoveries with beneficial purposes. PMID:24826382

  20. Proceedings: International Regulatory Considerations on Development Pathways for Cell Therapies

    PubMed Central

    Tsokas, Katherine; Viswanathan, Sowmya; Zhang, Jiwen; Priest, Catherine; Pearce, Jonathan; Mount, Natalie

    2014-01-01

    Regenerative medicine is a rapidly evolving field that faces novel scientific and regulatory challenges. In September 2013, the International Workshop on Regulatory Pathways for Cell Therapies was convened to discuss the nature of these challenges and potential solutions and to highlight opportunities for potential convergence between different regulatory bodies that might assist the field’s development. The workshop discussions generated potentially actionable steps in five main areas that could mitigate cell therapy development pathway risk and accelerate moving promising therapies to patients. These included the need for convergence of regulatory guidelines on donor eligibility and suitability of lines for use in clinical trials and subsequent commercialization for cell therapies to move forward on a global basis; the need to challenge and encourage investigators in the regenerative medicine field to share information and provide examples of comparability studies related to master cell banks; the need for convergence of guidelines across regulatory jurisdictions on requirements for tumorigenicity studies, based on particular cell types and on biodistribution studies; the need to increase transparency in sharing clinical trial information more broadly and disseminating results more rapidly; and the need to establish a forum for sharing the experiences of various approaches being developed to expedite regulatory approvals and access for patients to innovative cell and regenerative therapies in the different regulatory jurisdictions and to assess their potential strengths and weaknesses. PMID:25038248

  1. Internalized Chitosan Nanoparticles Persist for Long Time in Cultured Cells

    PubMed Central

    Malatesta, M.; Grecchi, S.; Chiesa, E.; Cisterna, B.; Costanzo, M.; Zancanaro, C.

    2015-01-01

    Chitosan-based nanoparticles (chiNPs) are considered to be potentially good carriers for the sustained intracellular delivery of specific molecules. However, scarce attention has been paid to the long-lasting permanence of these NPs in the intracellular milieu, as well as to their intracellular fate (i.e., distribution, interaction with cell organelles, and degradation) in the long term. In the present study, the presence and subcellular location of FITC-labelled chiNPs were monitored in HeLa cells up to 14 days post-administration using multicolorfluorescence confocal microscopy and diaminobenzidine photo-oxidation at transmission electron microscopy. The main result of the present study is the demonstration that internalized chiNPs persist inside the cell up to two weeks, occurring in both the cytoplasm and nucleus; accordingly, chiNPs are able to pass from mother to daughter cells through several mitotic cycles. The cells did not show increased mortality or structural damage up to 14 days after chiNP exposure. PMID:25820565

  2. Kuppfer Cells Trigger Nonalcoholic Steatohepatitis Development in Diet-induced Mouse Model through Tumor Necrosis Factor-α Production*

    PubMed Central

    Tosello-Trampont, Annie-Carole; Landes, Susan G.; Nguyen, Virginia; Novobrantseva, Tatiana I.; Hahn, Young S.

    2012-01-01

    Nonalcoholic steatohepatitis (NASH), characterized by lipid deposits within hepatocytes (steatosis), is associated with hepatic injury and inflammation and leads to the development of fibrosis, cirrhosis, and hepatocarcinoma. However, the pathogenic mechanism of NASH is not well understood. To determine the role of distinct innate myeloid subsets in the development of NASH, we examined the contribution of liver resident macrophages (i.e. Kupffer cells) and blood-derived monocytes in triggering liver inflammation and hepatic damage. Employing a murine model of NASH, we discovered a previously unappreciated role for TNFα and Kupffer cells in the initiation and progression of NASH. Sequential depletion of Kupffer cells reduced the incidence of liver injury, steatosis, and proinflammatory monocyte infiltration. Furthermore, our data show a differential contribution of Kupffer cells and blood monocytes during the development of NASH; Kupffer cells increased their production of TNFα, followed by infiltration of CD11bintLy6Chi monocytes, 2 and 10 days, respectively, after starting the methionine/choline-deficient (MCD) diet. Importantly, targeted knockdown of TNFα expression in myeloid cells decreased the incidence of NASH development by decreasing steatosis, liver damage, monocyte infiltration, and the production of inflammatory chemokines. Our findings suggest that the increase of TNFα-producing Kupffer cells in the liver is crucial for the early phase of NASH development by promoting blood monocyte infiltration through the production of IP-10 and MCP-1. PMID:23066023

  3. The zebrafish Kupffer's vesicle as a model system for the molecular mechanisms by which the lack of Polycystin-2 leads to stimulation of CFTR

    PubMed Central

    Roxo-Rosa, Mónica; Jacinto, Raquel; Sampaio, Pedro; Lopes, Susana Santos

    2015-01-01

    ABSTRACT In autosomal dominant polycystic kidney disease (ADPKD), cyst inflation and continuous enlargement are associated with marked transepithelial ion and fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR). Indeed, the inhibition or degradation of CFTR prevents the fluid accumulation within cysts. The in vivo mechanisms by which the lack of Polycystin-2 leads to CFTR stimulation are an outstanding challenge in ADPKD research and may bring important biomarkers for the disease. However, hampering their study, the available ADPKD in vitro cellular models lack the three-dimensional architecture of renal cysts and the ADPKD mouse models offer limited access for live-imaging experiments in embryonic kidneys. Here, we tested the zebrafish Kupffer's vesicle (KV) as an alternative model-organ. KV is a fluid-filled vesicular organ, lined by epithelial cells that express both CFTR and Polycystin-2 endogenously, being each of them easily knocked-down. Our data on the intracellular distribution of Polycystin-2 support its involvement in the KV fluid-flow induced Ca2+-signalling. Mirroring kidney cysts, the KV lumen inflation is dependent on CFTR activity and, as we clearly show, the knockdown of Polycystin-2 results in larger KV lumens through overstimulation of CFTR. In conclusion, we propose the zebrafish KV as a model organ to study the renal cyst inflation. Favouring its use, KV volume can be easily determined by in vivo imaging offering a live readout for screening compounds and genes that may prevent cyst enlargement through CFTR inhibition. PMID:26432887

  4. The zebrafish Kupffer's vesicle as a model system for the molecular mechanisms by which the lack of Polycystin-2 leads to stimulation of CFTR.

    PubMed

    Roxo-Rosa, Mónica; Jacinto, Raquel; Sampaio, Pedro; Lopes, Susana Santos

    2015-01-01

    In autosomal dominant polycystic kidney disease (ADPKD), cyst inflation and continuous enlargement are associated with marked transepithelial ion and fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR). Indeed, the inhibition or degradation of CFTR prevents the fluid accumulation within cysts. The in vivo mechanisms by which the lack of Polycystin-2 leads to CFTR stimulation are an outstanding challenge in ADPKD research and may bring important biomarkers for the disease. However, hampering their study, the available ADPKD in vitro cellular models lack the three-dimensional architecture of renal cysts and the ADPKD mouse models offer limited access for live-imaging experiments in embryonic kidneys. Here, we tested the zebrafish Kupffer's vesicle (KV) as an alternative model-organ. KV is a fluid-filled vesicular organ, lined by epithelial cells that express both CFTR and Polycystin-2 endogenously, being each of them easily knocked-down. Our data on the intracellular distribution of Polycystin-2 support its involvement in the KV fluid-flow induced Ca(2+)-signalling. Mirroring kidney cysts, the KV lumen inflation is dependent on CFTR activity and, as we clearly show, the knockdown of Polycystin-2 results in larger KV lumens through overstimulation of CFTR. In conclusion, we propose the zebrafish KV as a model organ to study the renal cyst inflation. Favouring its use, KV volume can be easily determined by in vivo imaging offering a live readout for screening compounds and genes that may prevent cyst enlargement through CFTR inhibition. PMID:26432887

  5. High performance internal reforming unit for high temperature fuel cells

    DOEpatents

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  6. Inference of Internal Stress in a Cell Monolayer.

    PubMed

    Nier, Vincent; Jain, Shreyansh; Lim, Chwee Teck; Ishihara, Shuji; Ladoux, Benoit; Marcq, Philippe

    2016-04-12

    We combine traction force data with Bayesian inversion to obtain an absolute estimate of the internal stress field of a cell monolayer. The method, Bayesian inversion stress microscopy, is validated using numerical simulations performed in a wide range of conditions. It is robust to changes in each ingredient of the underlying statistical model. Importantly, its accuracy does not depend on the rheology of the tissue. We apply Bayesian inversion stress microscopy to experimental traction force data measured in a narrow ring of cohesive epithelial cells, and check that the inferred stress field coincides with that obtained by direct spatial integration of the traction force data in this quasi one-dimensional geometry. PMID:27074687

  7. A common clathrin-mediated machinery coordinates cell-cell adhesion and bacterial internalization

    PubMed Central

    Bonazzi, Matteo; Kühbacher, Andreas; Toledo-Arana, Alejandro; Mallet, Adeline; Vasudevan, Lavanya; Pizarro-Cerdá, Javier; Brodsky, Frances M.; Cossart, Pascale

    2013-01-01

    Invasive bacterial pathogens often target cellular proteins involved in adhesion as a first event during infection. For example, Listeria monocytogenes uses the bacterial protein InlA to interact with E-cadherin, hijack the host adherens junction machinery, and invade non-phagocytic cells by a clathrin-dependent mechanism. Here we investigate a potential role for clathrin in cell-cell adhesion. We observed that the initial steps of adherens junction formation trigger the phosphorylation of clathrin, and its transient localization at forming cell-cell contacts. Furthermore, we show that clathrin serves as a hub for the recruitment of proteins that are necessary for the actin rearrangements that accompany the maturation of adherens junctions. Using an InlA/E-cadherin chimera, we show that adherent cells expressing the chimera form adherens junctions with cells expressing E-cadherin. To model bacterial invasion, we demonstrate that non-adherent cells expressing the InlA chimera can be internalized by E-cadherin-expressing adherent cells. Together these results reveal that a common clathrin-mediated machinery may regulate internalization and cell adhesion and that the relative mobility of one of the interacting partners plays an important role in the commitment to either one of these processes. PMID:22984946

  8. PEM fuel cell applications and their development at International Fuel Cells

    SciTech Connect

    Fuller, T.F.; Gorman, M.E.; Van Dine, L.L.

    1996-12-31

    International Fuel Cells (IFC) is involved with the full spectrum of fuel cell power plants including the development of Proton Exchange Membrane (PEM) fuel cell systems. The extensive background in systems, design, materials and manufacturing technologies has been brought to bear on the development of highly competitive PEM power plants. IFC is aggressively pursuing these opportunities and is developing low-cost designs for a wide variety of PEM fuel cell applications with special emphasis on portable power and transportation. Experimental PEM power plants for each of these applications have been successfully tested.

  9. Fuel cell crimp-resistant cooling device with internal coil

    NASA Technical Reports Server (NTRS)

    Wittel, deceased, Charles F. (Inventor)

    1986-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet. The conduit has an internal coil means which enables it to be bent in small radii without crimping.

  10. International Conference on the Cell and Molecular Biology of Chlamydomonas

    SciTech Connect

    Dr. Stephen Miller

    2010-06-10

    reported in the area of tool development, advances that conference attendees should be able to employ in their own labs to speed the analysis of gene function. In summary, support from DOE award SC0004085 helped to make the 2010 Conference on the Cell and Molecular Biology of Chlamydomonas an unqualified success. Thanks to that support it was possible to attract a new cohort of young investigators to this biennial conference. These young scientists benefited from the opportunity to present their results to, and to interact with, the international Chlamydomonas research community. The Chlamydomonas community benefited by learning about the advances reported by these scientists, and it will continue to benefit from the contributions these investigators will make as their training and careers progress.

  11. Patentability of Parthenogenic Stem Cells: International Stem Cell Corporation v. Comptroller General of Patents.

    PubMed

    Mansnérus, Juli

    2015-06-01

    The European Court of Justice (ECJ) has recently issued a ruling in Case C-364/13 International Stem Cell Corporation v. Comptroller General of Patents Designs and Tademarks (Case) that aims at harmonising the patenting practices regarding interpretation of Article 6.2.c of Directive 98/44/EC (Biotech Patent Directive) in respect of patentability of human parthenogenic stem cells (hpSCs). The Case alters the patenting regime for human embryonic stem cell (hESC) applications, by stating that moral restrictions against hESC-patents are only applicable to such cells derived from embryos that had the potential to develop into a human being. Consequently, hpSC-based inventions may be patentable in Europe. This Case represents a leap forward to striking a balance between protecting human dignity and integrity whilst granting patent incentives for biomedical research. PMID:26399046

  12. Methods for Evaluating Cell-Specific, Cell-Internalizing RNA Aptamers

    PubMed Central

    Hernandez, Luiza I.; Flenker, Katie S.; Hernandez, Frank J.; Klingelhutz, Aloysius J.; II, James O. McNamara; Giangrande, Paloma H.

    2013-01-01

    Recent clinical trials of small interfering RNAs (siRNAs) highlight the need for robust delivery technologies that will facilitate the successful application of these therapeutics to humans. Arguably, cell targeting by conjugation to cell-specific ligands provides a viable solution to this problem. Synthetic RNA ligands (aptamers) represent an emerging class of pharmaceuticals with great potential for targeted therapeutic applications. For targeted delivery of siRNAs with aptamers, the aptamer-siRNA conjugate must be taken up by cells and reach the cytoplasm. To this end, we have developed cell-based selection approaches to isolate aptamers that internalize upon binding to their cognate receptor on the cell surface. Here we describe methods to monitor for cellular uptake of aptamers. These include: (1) antibody amplification microscopy, (2) microplate-based fluorescence assay, (3) a quantitative and ultrasensitive internalization method (“QUSIM”) and (4) a way to monitor for cytoplasmic delivery using the ribosome inactivating protein-based (RNA-RIP) assay. Collectively, these methods provide a toolset that can expedite the development of aptamer ligands to target and deliver therapeutic siRNAs in vivo. PMID:23894227

  13. Bisphosphonates in Langerhans Cell Histiocytosis: An International Retrospective Case Series

    PubMed Central

    Chellapandian, Deepak; Makras, Polyzois; Kaltsas, Gregory; van den Bos, Cor; Naccache, Lamia; Rampal, Raajit; Carret, Anne-Sophie; Weitzman, Sheila; Egeler, R. Maarten; Abla, Oussama

    2016-01-01

    Background Bone is the most common organ of involvement in patients with Langerhans cell histiocytosis (LCH), which is often painful and associated with significant morbidity from pathological fractures. Current first-line treatments include chemotherapy and steroids that are effective but often associated with adverse effects, whereas the disease may reactivate despite an initial response to first-line agents. Bisphosphonates are osteoclast inhibitors that have shown to be helpful in treating bone lesions of LCH. To date, there are no large international studies to describe their role in treating bone lesions of LCH. Method We conducted a multicenter retrospective review of 13 patients with histologically proven LCH, who had received bisphosphonates either at diagnosis or at disease reactivation. Results Ten patients (77%) had a single system bone disease, and 3 (23%) had bone lesions as part of multisystem disease. Median follow-up time post-bisphosphonate therapy was 4.6 years (range, 0.8 to 8.2 years). Treatment with bisphosphonates was associated with significant pain relief in almost all patients. Twelve (92%) achieved resolution of active bone lesions, and 10 out of them had no active disease for a median of 3.5 years (range, 0.8 to 5 years). One patient did not respond. No major adverse effects were reported in this series. Conclusion Bisphosphonates are well-tolerated drugs that can significantly improve bone pain and induce remission in active bone LCH. Future prospective studies evaluating the role of bisphosphonates in LCH are warranted. PMID:27413525

  14. Internal reforming development for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, A. L.

    1987-02-01

    Internal reforming of natural gas within a solid oxide fuel cell (SOFC) should simplify the overall system design and make the SOFC an attractive means for producing electrical power. This program was undertaken to investigate the catalytic properties of nickel cermets, which are prime candidates for SOFC anodes. The initial task in this program was an extensive literature search for information on steam reforming of light hydrocarbons. The second task was to modify and calibrate the reactor systems that were used in the experimental kinetic studies. Two systems were used in this investigation; a continuously stirred tank reactor system (CSTR) and a plug flow reactor system (PFR). In the third task, 16 nickel-zirconia cermets were prepared using four procedures, tape casting, Westinghouse slurry, incorporation of performers, and granulation. The catalytic behavior of three cermets was determined in the fourth task. The reaction was first order with respect to methane and -1.25 for steam. Ethane and propane in the feed did not affect the methane conversion rate. The cermet has a higher initial tolerance for sulfur than standard nickel reforming catalysts. The final task was a mechanistic study of the steam reforming reaction on nickel and nickel-zirconia catalysts.

  15. Cell internalization and traffic pathway of Clostridium botulinum type C neurotoxin in HT-29 cells.

    PubMed

    Uotsu, Nobuo; Nishikawa, Atsushi; Watanabe, Toshihiro; Ohyama, Tohru; Tonozuka, Takashi; Sakano, Yoshiyuki; Oguma, Keiji

    2006-01-01

    The bacterium Clostridium botulinum type C produces a progenitor toxin (C16S toxin) that binds to O-linked sugar chains terminating with sialic acid on the surface of HT-29 cells prior to internalization [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, Biochem. Biophys. Res. Commun. 319 (2004) 327-333] [21]. Based on this, it was hypothesized that the C16S toxin is internalized via clathrin-coated pits. To examine this possibility, the internalized toxin was observed with a fluorescent antibody using confocal laser-scanning microscopy. The confocal images clearly indicated that the C16S toxin was internalized mainly via clathrin-coated pits and localized in early endosomes. The toxin was colocalized with caveolin-1 which is one of the components of caveolae, however, implying the toxin was also internalized via caveolae. The confocal images also showed that the neurotoxin transported to the endosome was transferred to the Golgi apparatus. However, the non-toxic components were not merged with the Golgi marker protein, TGN38, implying the neurotoxin was dissociated from progenitor toxin in endosomes. These results suggested that the C16S toxin was separated to the neurotoxin and other proteins in endosome and the neurotoxin was further transferred to the Golgi apparatus which is the center for protein sorting. PMID:16413070

  16. Global gyrokinetic particle-in-cell simulations of internal kink instabilities

    SciTech Connect

    Mishchenko, Alexey; Zocco, Alessandro

    2012-12-15

    Internal kink instabilities have been studied in straight tokamak geometry employing an electromagnetic gyrokinetic particle-in-cell (PIC) code. The ideal-MHD internal kink mode and the collisionless m=1 tearing mode have been successfully simulated with the PIC code. Diamagnetic effects on the internal kink modes have also been investigated.

  17. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  18. International review of cytology. Volume 109: A survey of cell biology

    SciTech Connect

    Bourne, G.; Jeon, K.W.; Friedlander, M.

    1987-01-01

    This book's contents are: Local Regulation of Testicular Function;Microtubules and DNA Replication;Differentiation of Spermatogenic Cells from Vertebrates in Vitro;The Developmental Program of Spermiogenesis in Drosophila: A Genetic Analysis;Cell Motility and Ionic Relations in Characean Cells as Revealed by Internal Perfusion and Other Cell Models;and The Culture of Oral Epithelium. Each chapter includes references.

  19. Cell Internalization Studies of Gadofullerene-(ZME-018) Immunoconjugates into A375m Melanoma Cells12

    PubMed Central

    Berger, Christopher Scott; Marks, John W; Bolskar, Robert D; Rosenblum, Michael G; Wilson, Lon J

    2011-01-01

    Fullerene (C60)-monoclonal antibody (mAb) immunoconjugates have been determined to internalize into target cells using water-soluble Gd3+ ion-filled metallofullerenes (Gd@C60[OH]x). Two separate conjugations of Gd@C60(OH)x with the antibody ZME-018 and a murine antibody mixture (MuIgG) were performed in a 1:5 mAb/Gd@C60 ratio. Characterization of the immunoconjugates was established using inductively coupled plasma mass spectrometry (ICP-MS) for Gd3+ and UV-Vis spectrometry (for Gd@C60 + C60). Once conjugated, enzyme-linked immunosorbent assays showed little change in the specific binding of ZME-018. Each immunoconjugate was exposed to two cancer cell lines, A375m (antigen positive), and T24, bladder carcinoma (antigen negative). Internalization levels of the immunoconjugate were determined at various time points during 24 hours by harvesting and digesting the cells with 70% HNO3 for Gd3+ ion analysis by ICP-MS. These results are the first to demonstrate the practicality of a targeted cancer therapy based on fullerene immunotherapy. PMID:22190999

  20. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    SciTech Connect

    Polf, Jerimy C.; Gillin, Michael; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata

    2011-05-09

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%-20% for those cells containing internalized gold nanoparticles.

  1. Adjuvant therapy of Dukes' C colon cancer by intra-arterial P-32 colloid for internal radiation therapy of the liver

    SciTech Connect

    Grady, E.D.

    1984-09-01

    To prevent probable occult metastatic liver cancer from progressing to clinical disease, the author used internal radiation therapy as an effective adjuvant to surgical excision of primary Dukes' C colonic cancer. A calculated radiation dose of 5000 rads was delivered to the liver by injecting radioactive 32-P chromic phosphate colloid through the superior mesenteric and celiac arteries. When this was done, the colloid passed through the intestines and was mixed thoroughly with the blood and delivered to the liver by the portal vein. The Kupffer cells in the liver trapped the colloid, and a minimum amount passed through the liver and got into the general circulation. This kept the amount of colloid deposited in the bone marrow to a minimum. In a phase-I pilot study in which nine patients were treated, no serious side effects were noted. In eight patients, the liver has remained free of cancer for more than 1 year.

  2. Relationships between Membrane Binding, Affinity and Cell Internalization Efficacy of a Cell-Penetrating Peptide: Penetratin as a Case Study

    PubMed Central

    Alves, Isabel D.; Bechara, Cherine; Walrant, Astrid; Zaltsman, Yefim; Jiao, Chen-Yu; Sagan, Sandrine

    2011-01-01

    Background Penetratin is a positively charged cell-penetrating peptide (CPP) that has the ability to bind negatively charged membrane components, such as glycosaminoglycans and anionic lipids. Whether this primary interaction of penetratin with these cell surface components implies that the peptide will be further internalized is not clear. Methodology Using mass spectrometry, the amount of internalized and membrane bound penetratin remaining after washings, were quantified in three different cell lines: wild type (WT), glycosaminoglycans- (GAGneg) and sialic acid-deficient (SAneg) cells. Additionally, the affinity and kinetics of the interaction of penetratin to membrane models composed of pure lipids and membrane fragments from the referred cell lines was investigated, as well as the thermodynamics of such interactions using plasmon resonance and calorimetry. Principal Findings Penetratin internalized with the same efficacy in the three cell lines at 1 µM, but was better internalized at 10 µM in SAneg>WT>GAGneg. The heat released by the interaction of penetratin with these cells followed the ranking order of internalization efficiency. Penetratin had an affinity of 10 nM for WT cells and µM for SAneg and GAGneg cells and model membrane of phospholipids. The remaining membrane-bound penetratin after cells washings was similar in WT and GAGneg cells, which suggested that these binding sites relied on membrane phospholipids. The interaction of penetratin with carbohydrates was more superficial and reversible while it was stronger with phospholipids, likely because the peptide can intercalate between the fatty acid chains. Conclusion/Significance These results show that accumulation and high-affinity binding of penetratin at the cell-surface do not reflect the internalization efficacy of the peptide. Altogether, these data further support translocation (membrane phospholipids interaction) as being the internalization pathway used by penetratin at low

  3. Roles of regulated internalization in the polarization of cell surface receptors

    PubMed Central

    Tian, Wei; Cao, Youfang; Ismael, Amber; Stone, David

    2016-01-01

    Cell polarization, the generation of cellular asymmetries, is a fundamental biological process. Polarity of different molecules can arise through several mechanisms. Among these, internalization has been shown to play an important role in the polarization of cell surface receptors. The internalization of cell surface receptors can be upregulated upon ligand binding. Additional regulatory mechanism can downregulate the internalization process. Here we describe a general model, which incorporates these two opposing processes, to study the role of internalization in the establishment of cell polarity. We find that the competition between these two processes is sufficient to induce receptor polarization. Our results show that regulated internalization provides additional regulation on polarization as well. In addition, we discuss applications of our model to the yeast system, which shows the capability and potential of the model. PMID:25570171

  4. Internal and ancestral controls of cell-generation times

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1969-01-01

    Lateral and longitudinal correlations between related cells reveal associations between the generation times of cells for an intermediate period /three generations in bacteral cultures/. Generation times of progeny are influenced by nongenetic factors transmitted from their ancestors.

  5. Measuring Attachment and Internalization of Influenza A Virus in A549 Cells by Flow Cytometry.

    PubMed

    Pohl, Marie O; Stertz, Silke

    2015-01-01

    Attachment to target cells followed by internalization are the very first steps of the life cycle of influenza A virus (IAV). We provide here a detailed protocol for measuring relative changes in the amount of viral particles that attach to A549 cells, a human lung epithelial cell line, as well as in the amount of particles that are internalized into the cell. We use biotinylated virus which can be easily detected following staining with Cy3-labeled streptavidin (STV-Cy3). We describe the growth, purification and biotinylation of A/WSN/33, a widely used IAV laboratory strain. Cold-bound biotinylated IAV particles on A549 cells are stained with STV-Cy3 and measured using flow cytometry. To investigate uptake of viral particles, cold-bound virus is allowed to internalize at 37 °C. In order to differentiate between external and internalized viral particles, a blocking step is applied: Free binding spots on the biotin of attached virus on the cell surface are bound by unlabeled streptavidin (STV). Subsequent cell permeabilization and staining with STV-Cy3 then enables detection of internalized viral particles. We present a calculation to determine the relative amount of internalized virus. This assay is suitable to measure effects of drug-treatments or other manipulations on attachment or internalization of IAV. PMID:26575457

  6. Far infrared multiple-path cell without internal mirrors

    NASA Astrophysics Data System (ADS)

    Marteau, Ph.; Obriot, J.

    1990-11-01

    A mirrorless multiple path cell which can be efficiently used in the FIR is described. The device is based on the White cell and light pipe methods, and requires no setup even after cooling. It is shown how the system can be efficiently operated if certain geometrical conditions are maintained which ensure a uniform light energy distribution inside the cell. The optimization of some physical parameters is discussed, and it is shown that an effective absorption pathlength as long as 4 or 5 m can be obtained with a simple absorption cell which is 10 cm long. The FIR spectrum of CH4 obtained using the cell is presented.

  7. Cell Internal Treatable Microplasma Jets in Cancer Therapies

    NASA Astrophysics Data System (ADS)

    Kim, Jae Young; Wei, Yanzhang; Li, Jinhua; Kim, Sung-O.

    2011-10-01

    We developed a 15- μm-sized, single-cellular-level, and cell-manipulatable microplasma jet device with a microcapillary glass tip and described its potential in physical cancer therapies. The microcapillary tip is a funnel shaped glass tube and its nozzle has an inner diameter of 15 μm and an outer diameter of 20 μm with 20 capillary angle. The electrical and optical properties of this plasma jet and apoptosis results of cultured murine B16F0 melanoma tumor cells and CL.7 fibroblast cells treated with the plasma jets were described. In spite of the small inner diameter and the low gas flow rate of the microplasma jet device, the generated plasma jets are stable enough to treat tumor cells. The microplasma jet was observed inducing apoptosis in cultured murine melanoma tumor cells in a dose-dependent manner. Furthermore, the percentage of apoptotic cells of murine melanoma tumor cells induced by this plasma device was approximately 2.5 times bigger than that of murine fibroblast cells as indicated by an Annex V-FITC method. This highly precise plasma medicine, which enables new directed cancer therapies, can be combined with current cell manipulation and cell culturing technologies without much difficulty.

  8. Internalization and cellular processing of cholecystokinin in rat pancreatic acinar cells

    SciTech Connect

    Izzo, R.S.; Pellecchia, C.; Praissman, M. )

    1988-12-01

    To evaluate the internalization of cholecystokinin, monoiodinated imidoester of cholecystokinin octapeptide ({sup 125}I-(IE)-CCK-8) was bound to dispersed pancreatic acinar cells, and surface-bound and internalized radioligand were differentiated by treating with an acidified glycine buffer. The amount of internalized radioligand was four- and sevenfold greater at 24 and 37{degree}C than at 4{degree}C between 5 and 60 min of association. Specific binding of radioligand to cell surface receptors was not significantly different at these temperatures. Chloroquine, a lysosomotropic agent that blocks intracellular proteolysis, significantly increased the amount of CCK-8 internalized by 18 and 16% at 30 and 60 min of binding, respectively, compared with control. Dithiothreitol (DTT), a sulfhydryl reducing agent, also augmented the amount of CCK-8 radioligand internalized by 25 and 29% at 30 and 60 min, respectively. The effect of chloroquine and DTT on the processing of internalized radioligand was also considered after an initial 60 min of binding of radioligand to acinar cells. After 180 min of processing, the amount of radioligand internalized was significantly greater in the presence of chloroquine compared with controls, whereas the amount of radioligand declined in acinar cells treated with DTT. Internalized and released radioactivity from acinar cells was rebound to pancreatic membrane homogenates to determine the amount of intact radioligand during intracellular processing. Chloroquine significantly increased the amount of intact {sup 125}I-(IE)-CCK-8 radioligand in released and internalized radioactivity while DTT increased the amount of intact radioligand only in internalized samples. This study shows that pancreatic acinar cells rapidly internalize large amounts of CCK-8 and that chloroquine and DTT inhibit intracellular degradation.

  9. From Banking to International Governance: Fostering Innovation in Stem Cell Research

    PubMed Central

    Isasi, Rosario; Knoppers, Bartha M.

    2011-01-01

    Stem cell banks are increasingly recognized as an essential resource of biological materials for both basic and translational stem cell research. By providing transnational access to quality controlled and ethically sourced stem cell lines, stem cell banks seek to foster international collaboration and innovation. However, given that national stem cell banks operate under different policy, regulatory and commercial frameworks, the transnational sharing of stem cell materials and data can be complicating. This paper will provide an overview of the most pressing challenges regarding the governance of stem cell banks, and the difficulties in designing regulatory and commercial frameworks that foster stem cell research. Moreover, the paper will shed light on the numerous international initiatives that have arisen to help harmonize and standardize stem cell banking and research processes to overcome such challenges. PMID:21904557

  10. The effect of internal stresses on solar cell efficiency

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.

    1987-01-01

    Diffusion induced stresses in silicon are shown to result in large localized changes in the minority carrier mobility which in turn have a significant effect on cell output. Evidence is given that both compressive and tensile stresses can be generated in either the emitter or the base region. Tensile stresses appear to be much more effective in altering cell performance. While most stress related effects appear to degrade cell efficiency, this is not always the case. Evidence is presented showing that arsenic induced stresses can result in emitter characteristics comparable to those found in the MINP cell without requiring a high degree of surface passivation.

  11. Pretreatment of Epithelial Cells with Rifaximin Alters Bacterial Attachment and Internalization Profiles▿

    PubMed Central

    Brown, Eric L.; Xue, Qiong; Jiang, Zhi-Dong; Xu, Yi; DuPont, Herbert L.

    2010-01-01

    Rifaximin is a poorly absorbed semisynthetic antibiotic derivative of rifampin licensed for use in the treatment of traveler's diarrhea. Rifaximin reduces the symptoms of enteric infection, often without pathogen eradication and with limited effects on intestinal flora. Epithelial cells (HEp-2 [laryngeal], HCT-8 [ileocecal], A549 [lung], and HeLa [cervical]) were pretreated with rifaximin (or control antibiotics) prior to the addition of enteroaggregative Escherichia coli (EAEC). EAEC adherence was significantly reduced following rifaximin pretreatment compared to pretreatment with rifampin or doxycycline for three of the four cell lines tested. The rifaximin-mediated changes to epithelial cells were explored further by testing the attachment and internalization of either Bacillus anthracis or Shigella sonnei into A549 or HeLa cells, respectively. The attachment and internalization of B. anthracis were significantly reduced following rifaximin pretreatment. In contrast, neither the attachment nor the internalization of S. sonnei was affected by rifaximin pretreatment of HeLa cells, suggesting that rifaximin-mediated modulation of host cell physiology affected bacteria utilizing distinct attachment/internalization mechanisms differently. In addition, rifaximin pretreatment of HEp-2 cells led to reduced concentrations of inflammatory cytokines from uninfected cells. The study provides evidence that rifaximin-mediated changes in epithelial cell physiology are associated with changes in bacterial attachment/internalization and reduced inflammatory cytokine release. PMID:19858255

  12. An improved method for differentiating cell-bound from internalized particles by imaging flow cytometry

    PubMed Central

    Smirnov, Asya; Solga, Michael D; Lannigan, Joanne; Criss, Alison K

    2015-01-01

    Recognition, binding, internalization, and elimination of pathogens and cell debris are important functions of professional as well as non-professional phagocytes. However, high-throughput methods for quantifying cell-associated particles and discriminating bound from internalized particles have been lacking. Here we describe a protocol for using imaging flow cytometry to quantify the attached and phagocytosed particles that are associated with a population of cells. Cells were exposed to fluorescent particles, fixed, and exposed to an antibody of a different fluorophore that recognizes the particles. The antibody is added without cell permeabilization, such that the antibody only binds extracellular particles. Cells with and without associated particles were identified by imaging flow cytometry. For each cell with associated particles, a spot count algorithm was employed to quantify the number of extracellular (double fluorescent) and intracellular (single fluorescent) particles per cell, from which the percent particle internalization was determined. The spot count algorithm was empirically validated by examining the fluorescence and phase contrast images acquired by the flow cytometer. We used this protocol to measure binding and internalization of the bacterium Neisseria gonorrhoeae by primary human neutrophils, using different bacterial variants and under different cellular conditions. The results acquired using imaging flow cytometry agreed with findings that were previously obtained using conventional immunofluorescence microscopy. This protocol provides a rapid, powerful method for measuring the association and internalization of any particle by any cell type. PMID:25967947

  13. Development of internal reforming carbonate fuel cell stack technology

    SciTech Connect

    Farooque, M.

    1990-10-01

    Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

  14. Body Management: Mesenchymal Stem Cells Control the Internal Regenerator

    PubMed Central

    Hariri, Robert

    2015-01-01

    Summary It has been assumed that adult tissues cannot regenerate themselves. With the current understanding that every adult tissue has its own intrinsic progenitor or stem cell, it is now clear that almost all tissues have regenerative potential partially related to their innate turnover dynamics. Moreover, it appears that a separate class of local cells originating as perivascular cells appears to provide regulatory oversight for localized tissue regeneration. The management of this regeneration oversight has a profound influence on the use of specific cells for cell therapies as a health care delivery tool set. The multipotent mesenchymal stem cell (MSC), now renamed the medicinal signaling cell, predominantly arises from pericytes released from broken and inflamed blood vessels and appears to function as both an immunomodulatory and a regeneration mediator. MSCs are being tested for their management capabilities to produce therapeutic outcomes in more than 480 clinical trials for a wide range of clinical conditions. Local MSCs function by managing the body’s primary repair and regeneration activities. Supplemental MSCs can be provided from either endogenous or exogenous sources of either allogeneic or autologous origin. This MSC-based therapy has the potential to change how health care is delivered. These medicinal cells are capable of sensing their surroundings. Also, by using its complex signaling circuitry, these cells organize site-specific regenerative responses as if these therapeutic cells were well-programmed modern computers. Given these facts, it appears that we are entering a new age of cellular medicine. Significance This report is a perspective from an active scientist and an active entrepreneur and commercial leader. It is neither a comprehensive review nor a narrowly focused treatise. The broad themes and the analogy to the working component of a computer and that of a cell are meant to draw several important scientific principles and health

  15. Neonatal Fc Receptor Mediates Internalization of Fc in Transfected Human Endothelial Cells

    PubMed Central

    Goebl, Nancy A.; Babbey, Clifford M.; Datta-Mannan, Amita; Witcher, Derrick R.; Wroblewski, Victor J.

    2008-01-01

    The neonatal Fc receptor, FcRn mediates an endocytic salvage pathway that prevents degradation of IgG, thus contributing to the homeostasis of circulating IgG. Based on the low affinity of IgG for FcRn at neutral pH, internalization of IgG by endothelial cells is generally believed to occur via fluid-phase endocytosis. To investigate the role of FcRn in IgG internalization, we used quantitative confocal microscopy to characterize internalization of fluorescent Fc molecules by HULEC-5A lung microvascular endothelia transfected with GFP fusion proteins of human or mouse FcRn. In these studies, cells transfected with FcRn accumulated significantly more intracellular Fc than untransfected cells. Internalization of FcRn-binding forms of Fc was proportional to FcRn expression level, was enriched relative to dextran internalization in proportion to FcRn expression level, and was blocked by incubation with excess unlabeled Fc. Because we were unable to detect either surface expression of FcRn or surface binding of Fc, these results suggest that FcRn-dependent internalization of Fc may occur through sequestration of Fc by FcRn in early endosomes. These studies indicate that FcRn-dependent internalization of IgG may be important not only in cells taking up IgG from an extracellular acidic space, but also in endothelial cells participating in homeostatic regulation of circulating IgG levels. PMID:18843053

  16. [International approaches to the regulation of cell therapy products].

    PubMed

    Piatigorskaia, N V; Tulina, M A; Aladysheva, Zh I; Beregovykh, V V

    2013-01-01

    This article is a review of the main methods and approaches used in regulation of cell therapy products in the United States of America, Canada, European Union, Australia, Japan and South Korea. Intensive developments ofscientific and technological aspects in stem cell and tissue engineering have led to the wide use of human cells and tissues for the treatment of various diseases and injuries of organs and tissues. Drug regulatory agencies of different countries are working on implementation of a risk-based legal framework with some common features. In many countries there is a multilevel control system that assures quality and safety of used cell products. Competent authorities establish strict requirements both to safety of the products and to the implemented standards of good laboratory, manufacturing, clinical and tissue practices. PMID:24340637

  17. Fuel cell stack with internal manifolds for reactant gases

    DOEpatents

    Schnacke, Arthur W.

    1985-01-01

    A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.

  18. Fuel cell stack with internal manifolds for reactant gases

    DOEpatents

    Schnacke, A.W.

    1983-10-12

    A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.

  19. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit

    SciTech Connect

    Wang, Hsin; Simunovic, Srdjan; Maleki, Hosein; Howard, Jason N.; Hallmark, Jerald A.

    2016-01-01

    The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subjected a series of prismatic Li-ion cells to lateral pinching using 0.25", 0.5", 1", 2" and 3" diameter steel balls until the onset of internal short. The external aluminum enclosure froze the internal cell configuration at the onset of short and enabled us to cross-section the cells, and take the cross-section images. The images indicate that an internal electric short is preceded by extensive strain partitioning in the cells, fracturing and tearing of the current collectors, and cracking and slipping of the electrode layers with multiple fault lines across multiple layers. These observations are at odds with a common notion of homogeneous deformation across the layers and strain hardening of electrodes that eventually punch through the separator and short the cell. The faults are akin to tectonic movements of multiple layers that are characteristic of granular materials and bonded aggregates. As a result, the short circuits occur after extensive internal faulting, which implies significant stretching and tearing of separators.

  20. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit

    DOE PAGESBeta

    Wang, Hsin; Simunovic, Srdjan; Maleki, Hosein; Howard, Jason N.; Hallmark, Jerald A.

    2016-01-01

    The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subjected a series of prismatic Li-ion cells to lateral pinching using 0.25", 0.5", 1", 2" and 3" diameter steel balls until the onset of internal short. The external aluminum enclosure froze the internal cell configuration at the onset of short and enabled us to cross-section the cells, and take the cross-section images. The images indicatemore » that an internal electric short is preceded by extensive strain partitioning in the cells, fracturing and tearing of the current collectors, and cracking and slipping of the electrode layers with multiple fault lines across multiple layers. These observations are at odds with a common notion of homogeneous deformation across the layers and strain hardening of electrodes that eventually punch through the separator and short the cell. The faults are akin to tectonic movements of multiple layers that are characteristic of granular materials and bonded aggregates. As a result, the short circuits occur after extensive internal faulting, which implies significant stretching and tearing of separators.« less

  1. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Simunovic, Srdjan; Maleki, Hossien; Howard, Jason N.; Hallmark, Jerald A.

    2016-02-01

    The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subjected a series of prismatic Li-ion cells to lateral pinching using 0.25″, 0.5″, 1″, 2″ and 3″ diameter steel balls until the onset of internal short. The external aluminum enclosure froze the internal cell configuration at the onset of short and enabled us to cross-section the cells, and take the cross-section images. The images indicate that an internal electric short is preceded by extensive strain partitioning in the cells, fracturing and tearing of the current collectors, and cracking and slipping of the electrode layers with multiple fault lines across multiple layers. These observations are at odds with a common notion of homogeneous deformation across the layers and strain hardening of electrodes that eventually punch through the separator and short the cell. The faults are akin to tectonic movements of multiple layers that are characteristic of granular materials and bonded aggregates. The short circuits occur after extensive internal faulting, which implies significant stretching and tearing of separators.

  2. Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins.

    PubMed Central

    Borman, A M; Le Mercier, P; Girard, M; Kean, K M

    1997-01-01

    We recently compared the efficiency of six picornaviral internal ribosome entry segments (IRESes) and the hepatitis C virus (HCV) IRES for their ability to drive internal initiation of translationin vitro. Here we present the results of a similar comparison performed in six different cultured cell lines infected with a recombinant vaccinia virus expressing the T7 polymerase and transfected with dicistronic plasmids. The IRESes could be divided into three groups: (i) the cardiovirus and aphthovirus IRESes (and the HCV element) direct internal initiation efficiently in all cell lines tested; (ii) the enterovirus and rhinovirus IRESes are at least equally efficient in several cell lines, but are extremely inefficient in certain cell types; and (iii) the hepatitis A virus IRES is incapable of directing efficient internal initiation in any of the cell lines used (including human hepatocytes). These are the same three groups found when IRESes were classified according to their activitiesin vitro, or according to sequence homologies. In a mouse neuronal cell line, the poliovirus and other type I IRESes were not functional in an artificial bicistronic context. However, infectious poliovirions were produced efficiently after transfection of these cells with a genomic length RNA. Furthermore, activity of the type I IRESes was dramatically increased upon co-expression of the poliovirus 2A proteinase, demonstrating that while IRES efficiency may vary considerably from one cell type to another, at least in some cases viral proteins are capable of overcoming cell-specific translational defects. PMID:9023100

  3. Quantification of surface tension and internal pressure generated by single mitotic cells.

    PubMed

    Fischer-Friedrich, Elisabeth; Hyman, Anthony A; Jülicher, Frank; Müller, Daniel J; Helenius, Jonne

    2014-01-01

    During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ≈ 40 Pa and 0.2 mNm(-1) during interphase to ≈ 400 Pa and 1.6 mNm(-1) during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems. PMID:25169063

  4. Quantification of surface tension and internal pressure generated by single mitotic cells

    PubMed Central

    Fischer-Friedrich, Elisabeth; Hyman, Anthony A.; Jülicher, Frank; Müller, Daniel J.; Helenius, Jonne

    2014-01-01

    During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ≈ 40 Pa and 0.2 mNm−1 during interphase to ≈ 400 Pa and 1.6 mNm−1 during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems. PMID:25169063

  5. Quantification of surface tension and internal pressure generated by single mitotic cells

    NASA Astrophysics Data System (ADS)

    Fischer-Friedrich, Elisabeth; Hyman, Anthony A.; Jülicher, Frank; Müller, Daniel J.; Helenius, Jonne

    2014-08-01

    During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ~ 40 Pa and 0.2 mNm-1 during interphase to ~ 400 Pa and 1.6 mNm-1 during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems.

  6. Internal binding sites for MSH: Analyses in wild-type and variant Cloudman melanoma cells

    SciTech Connect

    Orlow, S.J.; Hotchkiss, S.; Pawelek, J.M. )

    1990-01-01

    Cloudman S91 mouse melanoma cells express both external (plasma membrane) and internal binding sites for MSH. Using 125I-beta melanotropin (beta-MSH) as a probe, we report here an extensive series of studies on the biological relevance of these internal sites. Cells were swollen in a hypotonic buffer and lysed, and a particulate fraction was prepared by high-speed centrifugation. This fraction was incubated with 125I-beta-MSH with or without excess nonradioactive beta-MSH in the cold for 2 hours. The material was then layered onto a step-wise sucrose gradient and centrifuged; fractions were collected and counted in a gamma counter or assayed for various enzymatic activities. The following points were established: (1) Specific binding sites for MSH were observed sedimenting at an average density of 50% sucrose in amelanotic cells and at higher densities in melanotic cells. (2) These sites were similar in density to those observed when intact cells were labeled externally with 125I-beta-MSH and then warmed to promote internalization of the hormone. (3) Most of the internal binding sites were not as dense as fully melanized melanosomes. (4) In control experiments, the MSH binding sites were not found in cultured hepatoma cells. (5) Variant melanoma cells, which differed from the wild-type in their responses to MSH, had reduced expression of internal binding sites even though their ability to bind MSH to the outer cell surface appeared normal. (MSH-induced responses included changes in tyrosinase, dopa oxidase, and dopachrome conversion factor activities, melanization, proliferation, and morphology.) (6) Isobutylmethylxanthine, which enhanced cellular responsiveness to MSH, also enhanced expression of internal binding sites. The results indicate that expression of internal binding sites for MSH is an important criterion for cellular responsiveness to the hormone.

  7. Deciphering the internal complexity of living cells with quantitative phase microscopy: a multiscale approach

    NASA Astrophysics Data System (ADS)

    Martinez-Torres, Cristina; Laperrousaz, Bastien; Berguiga, Lotfi; Boyer-Provera, Elise; Elezgaray, Juan; Nicolini, Franck E.; Maguer-Satta, Veronique; Arneodo, Alain; Argoul, Françoise

    2015-09-01

    The distribution of refractive indices (RIs) of a living cell contributes in a nonintuitive manner to its optical phase image and quite rarely can be inverted to recover its internal structure. The interpretation of the quantitative phase images of living cells remains a difficult task because (1) we still have very little knowledge on the impact of its internal macromolecular complexes on the local RI and (2) phase changes produced by light propagation through the sample are mixed with diffraction effects by the internal cell bodies. We propose to implement a two-dimensional wavelet-based contour chain detection method to distinguish internal boundaries based on their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are the morphological indicators suited for comparing cells of different origins and/or to follow their transformation in pathologic situations. We use this method to compare nonadherent blood cells from primary and laboratory culture origins and to assess the internal transformation of hematopoietic stem cells by the transduction of the BCR-ABL oncogene responsible for the chronic myelogenous leukemia.

  8. Detailed Multi‐dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells

    PubMed Central

    Tseronis, K.; Fragkopoulos, I.S.; Bonis, I.

    2016-01-01

    Abstract Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan‐Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty‐Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically‐active anode catalyst layer, although not always substantially, due to the counter‐balancing behavior of the activation and ohmic overpotentials. PMID:27570502

  9. Hypoxia Decreases Invasin-Mediated Yersinia enterocolitica Internalization into Caco-2 Cells

    PubMed Central

    Zeitouni, Nathalie E.; Dersch, Petra; Naim, Hassan Y.; von Köckritz-Blickwede, Maren

    2016-01-01

    Yersinia enterocolitica is a major cause of human yersiniosis, with enterocolitis being a typical manifestation. These bacteria can cross the intestinal mucosa, and invade eukaryotic cells by binding to host β1 integrins, a process mediated by the bacterial effector protein invasin. This study examines the role of hypoxia on the internalization of Y. enterocolitica into intestinal epithelial cells, since the gastrointestinal tract has been shown to be physiologically deficient in oxygen levels (hypoxic), especially in cases of infection and inflammation. We show that hypoxic pre-incubation of Caco-2 cells resulted in significantly decreased bacterial internalization compared to cells grown under normoxia. This phenotype was absent after functionally blocking host β1 integrins as well as upon infection with an invasin-deficient Y. enterocolitica strain. Furthermore, downstream phosphorylation of the focal adhesion kinase was also reduced under hypoxia after infection. In good correlation to these data, cells grown under hypoxia showed decreased protein levels of β1 integrins at the apical cell surface whereas the total protein level of the hypoxia inducible factor (HIF-1) alpha was elevated. Furthermore, treatment of cells with the HIF-1 α stabilizer dimethyloxalylglycine (DMOG) also reduced invasion and decreased β1 integrin protein levels compared to control cells, indicating a potential role for HIF-1α in this process. These results suggest that hypoxia decreases invasin-integrin-mediated internalization of Y. enterocolitica into intestinal epithelial cells by reducing cell surface localization of host β1 integrins. PMID:26731748

  10. Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells

    PubMed Central

    Schweiger, Hans-Georg; Obeidi, Ossama; Komesker, Oliver; Raschke, André; Schiemann, Michael; Zehner, Christian; Gehnen, Markus; Keller, Michael; Birke, Peter

    2010-01-01

    The internal resistance is the key parameter for determining power, energy efficiency and lost heat of a lithium ion cell. Precise knowledge of this value is vital for designing battery systems for automotive applications. Internal resistance of a cell was determined by current step methods, AC (alternating current) methods, electrochemical impedance spectroscopy and thermal loss methods. The outcomes of these measurements have been compared with each other. If charge or discharge of the cell is limited, current step methods provide the same results as energy loss methods. PMID:22219678

  11. [The micro-particles of blood plasma, micro-vesicles, exosomes, apoptotic bodies and Kupffer macrophage in liver: late in phylogenesis system of realization of biological function of endoecology].

    PubMed

    Titov, V N

    2014-07-01

    Probably, at early stages of phylogenesis and on the stage of first contacts of single cells in environment the mode of intercommunication was developed via formation of micro-vesicles. It is quite possible that this so complicated way was used during billions of years to develop the very early cenosises of functionally different cells. Later on, diffusion of humoral mediators within the framework of group of cells but without vesicles resulted in formation of very early regulated cenosises of various cells. In billions years, these paracrin regulated cenosises became structural and functional units of every organ. It is difficult to imagine that mode of early in phylogenesis humoral intercommunication of cells could preserve its significance in present conditions. At the same time, according to methodological approach of biological continuity in becoming of biological functions and biological reactions, micro-vesicles continue to function but with somehow different purposes. It is surmised that microparticles of blood plasma consist a heterogeneous population of micro-vesicles initially formed by cells, exosomes and apoptotic bodies. This population is a foundation of spontaneous, physical chemical formation of complexes in blood plasma on principles of absorption, hydrophobicity and ionic interaction of structural cells'components insoluble in water medium. It is assumed that presently formation of micro-particles in blood is functionally a kind of realization of phylogenetically late variant of biological function of endoecology, in inter-cellular medium, in local pool of intravascular blood plasma. This variant includes: a) microparticles, micro-vesicles, exosomes and apoptotic bodies as elements of biological reaction of support of "purity" of inter-cellular medium; b) in many respects highly specialized variant of phagocytosis of micro-particles by Kupffer macrophages in liver In the aggregate, this is a phylogenetically late medium of realization of

  12. Experimental simulation of internal short circuit in Li-ion and Li-ion-polymer cells

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Wang, Hsin; Maleki, Hossein; Howard, Jason; Lara-Curzio, Edgar

    A multi-parameter controlled pinch test was developed to study the occurrence of internal short circuits in Li-ion and Li-ion-polymer cells. By tuning the control parameters (i.e., cell voltage as well as pinching area, load, and speed), the pinch test can reproducibly create an internal short between a cell jelly-roll's inner layer electrodes as small as 1-mm wide. This recreates conditions similar to those that may occur during service. In this paper we demonstrate the use of the pinch test as a means to assess design and manufacturing changes in Li-ion-polymer cells on their thermal stability and to identify features or characteristics that lower risk of potential thermal events created by internal short circuits.

  13. International analysis of the frequency and outcomes of NK/T-cell lymphomas.

    PubMed

    William, Basem M; Armitage, James O

    2013-03-01

    Peripheral T-cell and NK-cell lymphomas are uncommon disorders accounting for 10-15% of all non-Hodgkin lymphomas (NHL). The NHL classification project represents the first attempt to systematically study the distribution of NHL subtypes based on a collaborative international effort and it confirmed the wide geographic variation in the frequency of different subtypes of PTCL. Subsequently, the International T-cell Lymphoma Project (ITLP), the largest collaborative international effort to date, reported prevalence and outcomes of 1314 cases of PTCL from 22 institutions worldwide with central pathology review. The ITLP consortium launched a prospective study, the T-cell project, in September 2006 aimed at collecting an exhaustive clinical and biologic data set on 1000 patients with PTCL for better definition of prognostic factors that would influence outcomes of these patients. This review aims to describe the difference in frequency and outcomes for various subtypes of PTCL based on these studies. PMID:23768638

  14. Internalization of Vectored Liposomes in a Culture of Poorly Differentiated Tumor Cells.

    PubMed

    Mel'nikov, P A; Baklaushev, V P; Gabashvili, A N; Nukolova, N V; Levinsky, A B; Chehonin, V P

    2016-08-01

    Internalization of liposomal nanocontainers conjugated with monoclonal antibodies to VEGF, VEGFR2 (KDR), and proteins overproduced in the tumor tissue was studied in vitro on cultures of poorly differentiated tumor cells. Comparative analysis of accumulation of vectored liposomes in the tumor cells was performed by evaluating co-localization of labeled containers and cell organelles by laser scanning confocal microscopy. We observed nearly 2 times more active penetration and accumulation of liposomes vectored with antibodies in the tumor cells in comparison with non-vectored liposomes. Selective clathrin-dependent penetration of vectored liposomes into tumor cells was demonstrated by using pharmacological agents inhibiting endocytosis. PMID:27590766

  15. AFBI assay – Aptamer Fluorescence Binding and Internalization assay for cultured adherent cells

    PubMed Central

    Thiel, William H.; Giangrande, Paloma H.

    2016-01-01

    The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process allows for the enrichment of DNA or RNA aptamers from a complex nucleic acid library that are specific for a target molecule. The SELEX process has been adapted from identifying aptamers in vitro using recombinant target protein to cell-based methodologies (Cell-SELEX), where the targets are expressed on the surface of cells. One major advantage of Cell-SELEX is that the target molecules are maintained in a native confirmation. Additionally, Cell-SELEX may be used to discover novel therapeutic biomarkers by performing selections on diseased versus healthy cells. However, a caveat to Cell-SELEX is that testing of single aptamers identified in the selection is laborious, time-consuming, and expensive. The most frequently used methods to screen for aptamer binding and internalization on cells are flow cytometry and quantitative PCR (qPCR). While flow cytometry can directly assess binding of a fluorescently-labeled aptamer to a target, it requires significant starting material and is not easily scalable. qPCR-based approaches are highly sensitive but have non-negligible experiment-to-experiment variability due to the number of sample processing steps. Herein we describe a cell-based aptamer fluorescence binding and internalization (AFBI) assay. This assay requires minimal reagents and has few experimental steps/manipulations, thereby allowing for rapid screening of many aptamers and conditions simultaneously and direct quantitation of aptamer binding and internalization. PMID:26972784

  16. AFBI assay - Aptamer Fluorescence Binding and Internalization assay for cultured adherent cells.

    PubMed

    Thiel, William H; Giangrande, Paloma H

    2016-07-01

    The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process allows for the enrichment of DNA or RNA aptamers from a complex nucleic acid library that are specific for a target molecule. The SELEX process has been adapted from identifying aptamers in vitro using recombinant target protein to cell-based methodologies (Cell-SELEX), where the targets are expressed on the surface of cells. One major advantage of Cell-SELEX is that the target molecules are maintained in a native confirmation. Additionally, Cell-SELEX may be used to discover novel therapeutic biomarkers by performing selections on diseased versus healthy cells. However, a caveat to Cell-SELEX is that testing of single aptamers identified in the selection is laborious, time-consuming, and expensive. The most frequently used methods to screen for aptamer binding and internalization on cells are flow cytometry and quantitative PCR (qPCR). While flow cytometry can directly assess binding of a fluorescently-labeled aptamer to a target, it requires significant starting material and is not easily scalable. qPCR-based approaches are highly sensitive but have non-negligible experiment-to-experiment variability due to the number of sample processing steps. Herein we describe a cell-based aptamer fluorescence binding and internalization (AFBI) assay. This assay requires minimal reagents and has few experimental steps/manipulations, thereby allowing for rapid screening of many aptamers and conditions simultaneously and direct quantitation of aptamer binding and internalization. PMID:26972784

  17. What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins.

    PubMed

    Vanderven, Hillary A; Ana-Sosa-Batiz, Fernanda; Jegaskanda, Sinthujan; Rockman, Steven; Laurie, Karen; Barr, Ian; Chen, Weisan; Wines, Bruce; Hogarth, P Mark; Lambe, Teresa; Gilbert, Sarah C; Parsons, Matthew S; Kent, Stephen J

    2016-06-01

    The conserved internal influenza proteins nucleoprotein (NP) and matrix 1 (M1) are well characterised for T cell immunity, but whether they also elicit functional antibodies capable of activating natural killer (NK) cells has not been explored. We studied NP and M1-specific ADCC activity using biochemical, NK cell activation and killing assays with plasma from healthy and influenza-infected subjects. Healthy adults had antibodies to M1 and NP capable of binding dimeric FcγRIIIa and activating NK cells. Natural symptomatic and experimental influenza infections resulted in a rise in antibody dependent NK cell activation post-infection to the hemagglutinin of the infecting strain, but changes in NK cell activation to M1 and NP were variable. Although antibody dependent killing of target cells infected with vaccinia viruses expressing internal influenza proteins was not detected, opsonising antibodies to NP and M1 likely contribute to an antiviral microenvironment by stimulating innate immune cells to secrete cytokines early in infection. We conclude that effector cell activating antibodies to conserved internal influenza proteins are common in healthy and influenza-infected adults. Given the significance of such antibodies in animal models of heterologous influenza infection, the definition of their importance and mechanism of action in human immunity to influenza is essential. PMID:27428437

  18. Caveolae internalization repairs wounded cells and muscle fibers

    PubMed Central

    Corrotte, Matthias; Almeida, Patricia E; Tam, Christina; Castro-Gomes, Thiago; Fernandes, Maria Cecilia; Millis, Bryan A; Cortez, Mauro; Miller, Heather; Song, Wenxia; Maugel, Timothy K; Andrews, Norma W

    2013-01-01

    Rapid repair of plasma membrane wounds is critical for cellular survival. Muscle fibers are particularly susceptible to injury, and defective sarcolemma resealing causes muscular dystrophy. Caveolae accumulate in dystrophic muscle fibers and caveolin and cavin mutations cause muscle pathology, but the underlying mechanism is unknown. Here we show that muscle fibers and other cell types repair membrane wounds by a mechanism involving Ca2+-triggered exocytosis of lysosomes, release of acid sphingomyelinase, and rapid lesion removal by caveolar endocytosis. Wounding or exposure to sphingomyelinase triggered endocytosis and intracellular accumulation of caveolar vesicles, which gradually merged into larger compartments. The pore-forming toxin SLO was directly visualized entering cells within caveolar vesicles, and depletion of caveolin inhibited plasma membrane resealing. Our findings directly link lesion removal by caveolar endocytosis to the maintenance of plasma membrane and muscle fiber integrity, providing a mechanistic explanation for the muscle pathology associated with mutations in caveolae proteins. DOI: http://dx.doi.org/10.7554/eLife.00926.001 PMID:24052812

  19. Identification of internalizing human single chain antibodies targeting brain tumor sphere cells

    PubMed Central

    Zhu, Xiaodong; Bidlingmaier, Scott; Hashizume, Rintaro; James, C. David; Berger, Mitchel S.; Liu, Bin

    2010-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain tumor and there is no curative treatment to date. Resistance to conventional therapies and tumor recurrence pose major challenges to treatment and management of this disease, and therefore new therapeutic strategies need to be developed. Previous studies by other investigators have shown that a subpopulation of GBM cells can grow as neurosphere-like cells when cultured in restrictive media, and exhibit enhanced tumor initiating ability and resistance to therapy. We report here the identification of internalizing human single chain antibodies (scFvs) targeting GBM tumor sphere cells. We selected a large naive phage antibody display library on the glycosylation-dependent CD133 epitope-positive subpopulation of GBM cells grown as tumor spheres and identified internalizing scFvs that target tumor sphere cells broadly, as well as scFvs that target the CD133 positive subpopulation. These scFvs were found to be efficiently internalized by GBM tumor sphere cells. One scFv GC4 inhibited self-renewal of GBM tumor sphere cells in vitro. We have further developed a full-length human IgG1 based on this scFv and found that it potently inhibits proliferation of GBM tumor sphere cells and GBM cells grown in regular non-selective media. Taken together, these results show that internalizing human scFvs targeting brain tumor sphere cells can be readily identified from a phage antibody display library, which could be useful for further development of novel therapies that target subpopulations of GBM cells to combat recurrence and resistance to treatment. PMID:20587664

  20. Internalization and degradation of human chorionic gonadotropin in ovine luteal cells: Kinetic studies

    SciTech Connect

    Ahmed, C.E.; Sawyer, H.R.; Niswender, G.D.

    1981-11-01

    Ovine luteal cells grown in suspensions and/or monolayer culture were used to study the rates of internalization and degradation of (/sup 125/I)hCG. At specified times after a 5- to 7-min exposure to (/sup 125/I)hCG, cells were treated with acidic buffer (pH 3.9) to elute membrane-bound hormone, which left the internalized radioactivity associated with the cell pellet. Radioactivity released into the medium during the incubation periods was subjected to 20% trichloroacetic acid and/or thin layer chromatography to monitor the extent of degradation of the radioactive hormone. Secretion of progesterone into the medium and exclusion of trypan blue were used to monitor the viability of the cells in each experiment. Radioactivity was lost from the plasma membrane with a tsub1/2 of 9.6 h, with approximately 85% of the radioactivity being lost within 24 h. Cell-associated radioactivity increased linearly with time to a plateau at 4 h, remained stable until 12 h, and then decreased between 12-24 h. The plateau between 4-12 h reflected an equilibrium between the (/sup 125/I)hCG which was internalized and degraded and the (/sup 125/I)hCG which was released into the medium. The degraded (/sup 125/I)hCG increased essentially linearly up to 24 h. These data suggest that the majority of (/sup 125/I)hCG bound to receptors in luteal cells is internalized and degraded. Less than 20% of the radioactivity bound initially to cells dissociated into the incubation medium and was trichloroacetic acid precipitable within 24 h. The internalization and degradation of (/sup 125/I)hCG was temperature dependent, with essentially no hCG internalized and/or degraded at 4C.

  1. An E-cadherin-mediated hitchhiking mechanism for C. elegans germ cell internalization during gastrulation

    PubMed Central

    Chihara, Daisuke; Nance, Jeremy

    2012-01-01

    Gastrulation movements place endodermal precursors, mesodermal precursors and primordial germ cells (PGCs) into the interior of the embryo. Somatic cell gastrulation movements are regulated by transcription factors that also control cell fate, coupling cell identity and position. By contrast, PGCs in many species are transcriptionally quiescent, suggesting that they might use alternative gastrulation strategies. Here, we show that C. elegans PGCs internalize by attaching to internal endodermal cells, which undergo morphogenetic movements that pull the PGCs into the embryo. We show that PGCs enrich HMR-1/E-cadherin at their surfaces to stick to endoderm. HMR-1 expression in PGCs is necessary and sufficient to ensure internalization, suggesting that HMR-1 can promote PGC-endoderm adhesion through a mechanism other than homotypic trans interactions between the two cell groups. Finally, we demonstrate that the hmr-1 3′ untranslated region promotes increased HMR-1 translation in PGCs. Our findings reveal that quiescent PGCs employ a post-transcriptionally regulated hitchhiking mechanism to internalize during gastrulation, and demonstrate a morphogenetic role for the conserved association of PGCs with the endoderm. PMID:22675206

  2. Dvr1 transfers left-right asymmetric signals from Kupffer's vesicle to lateral plate mesoderm in zebrafish.

    PubMed

    Peterson, Annita G; Wang, Xinghao; Yost, H Joseph

    2013-10-01

    An early step in establishing left-right (LR) symmetry in zebrafish is the generation of asymmetric fluid flow by Kupffer's vesicle (KV). As a result of fluid flow, a signal is generated and propagated from the KV to the left lateral plate mesoderm, activating a transcriptional response of Nodal expression in the left lateral plate mesoderm (LPM). The mechanisms and molecules that aid in this transfer of information from the KV to the left LPM are still not clear. Here we provide several lines of evidence demonstrating a role for a member of the TGFβ family member, Dvr1, a zebrafish Vg1 ortholog. Dvr1 is expressed bilaterally between the KV and the LPM. Knockdown of Dvr1 by morpholino causes dramatically reduced or absent expression of southpaw (spaw, a Nodal homolog), in LPM, and corresponding loss of downstream Lefty (lft1 and lft) expression, and aberrant brain and heart LR patterning. Dvr1 morphant embryos have normal KV morphology and function, normal expression of southpaw (spaw) and charon (cha) in the peri-KV region and normal expression of a variety of LPM markers in LPM. Additionally, Dvr1 knockdown does not alter the capability of LPM to respond to signals that initiate and propagate spaw expression. Co-injection experiments in Xenopus and zebrafish indicate that Dvr1 and Spaw can enhance each other's ability to activate the Nodal response pathway and co-immunoprecipitation experiments reveal differential relationships among activators and inhibitors in this pathway. These results indicate that Dvr1 is responsible for enabling the transfer of a left-right signal from KV to the LPM. PMID:23791819

  3. Cytoprotective effects of graphene oxide for mammalian cells against internalization of exogenous materials

    NASA Astrophysics Data System (ADS)

    Na, Hee-Kyung; Kim, Mi-Hee; Lee, Jieon; Kim, Young-Kwan; Jang, Hongje; Lee, Kyung Eun; Park, Hyerim; Do Heo, Won; Jeon, Hyesung; Choi, Insung S.; Lee, Younghoon; Min, Dal-Hee

    2013-01-01

    To date, graphene oxide (GO), an oxidized version of graphene, has been utilized in many research areas including bioapplications such as drug delivery and bioanalysis. Unlike other spherical or polygonal nanomaterials, GO exhibits a sheet-like structure, which in itself suggests interesting applications based on its shape. Here we show that GO can protect cells from internalization of toxic hydrophobic molecules, nanoparticles, and nucleic acids such as siRNA and plasmid DNA by interacting with cell surface lipid bilayers without noticeably reducing cell viability. Furthermore, the cytoprotective effect of GO against the internalization of extracellular materials enabled spatial control over gene transfection through region-selective gene delivery only into GO-untreated cells, and not into the GO-treated cells.To date, graphene oxide (GO), an oxidized version of graphene, has been utilized in many research areas including bioapplications such as drug delivery and bioanalysis. Unlike other spherical or polygonal nanomaterials, GO exhibits a sheet-like structure, which in itself suggests interesting applications based on its shape. Here we show that GO can protect cells from internalization of toxic hydrophobic molecules, nanoparticles, and nucleic acids such as siRNA and plasmid DNA by interacting with cell surface lipid bilayers without noticeably reducing cell viability. Furthermore, the cytoprotective effect of GO against the internalization of extracellular materials enabled spatial control over gene transfection through region-selective gene delivery only into GO-untreated cells, and not into the GO-treated cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33800a

  4. Stem cell course in the Middle East: science diplomacy and international collaborations during the Arab spring.

    PubMed

    Sarkadi, Balazs; Schatten, Gerald

    2012-03-01

    In April 2011, an international advanced course and workshop entitled "Frontiers in Human Pluripotent Stem Cells" and an International Congress on Fertility and Genetics ( http://www.fertigen.com.jo/ConferenceDetails.aspx ) was held in Amman Jordan hosted by the Jordanian Society of Fertility and Genetics under the auspices of the International Cell Research Organization (ICRO), a UNESCO associated NGO. The Congress President Dr. Zaid Kilani, with Dr. Abdel Latif Abu Khadra, President of the Jordanian society for Fertility and Genetics, Dr. Rana Dajani of the Hashemite University of Jordan, and their Organizing Committee proved to be an excellent organizers and dedicated physician-scientists and, focusing on fertility, genetics and stem cells in a wide range of advanced therapeutic applications. Brilliant course participants included trainees, scientists and clinicians from the Greater Middle East. The lectures and practical sessions, presented by internationally acknowledged scientists, included overviews of recent achievements in pluripotent stem cell research, emphasizing the role of both the embryonic (ES) and induced pluripotent stem (iPS) cells. A major emphasis was placed on the clinical achievements in germ cell and umbilical cord stem cell transplantation issues, and on the potential of fast and successful prenatal and pre-implantation molecular genetics diagnostics. The organization of the stem cell course in the Holy Land especially emphasized that issues of "eternal life" and "rejuvenation" are already at hand--at least in the pluripotent stem cell research field. In the lively atmosphere of the course about 60 participants had heated discussions on the possibility and ethics of advanced prenatal diagnostics, and on regulatory issues reflecting the need of separation of clinically effective versus unapproved, unwarranted stem cell treatments. An open discussion of many ethical issues, reflecting profound differences in religion and medical tradition in

  5. Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes.

    PubMed

    Chaiyarit, Sakdithep; Singhto, Nilubon; Thongboonkerd, Visith

    2016-02-25

    Interaction between calcium oxalate crystals and renal tubular cells has been recognized as one of the key mechanisms for kidney stone formation. While crystal adhesion and internalization have been extensively investigated, subsequent phenomena (i.e. crystal degradation and dissolution) remained poorly understood. To explore these mechanisms, we used fluorescein isothiocyanate (FITC)-labelled calcium oxalate monohydrate (COM) crystals (1000 μg/ml of crystals/culture medium) to confirm crystal internalization into MDCK (Type II) renal tubular cells after exposure to the crystals for 1 h and to trace the internalized crystals. Crystal size, intracellular and extracellular fluorescence levels were measured using a spectrofluorometer for up to 48 h after crystal internalization. Moreover, markers for early endosome (Rab5), late endosome (Rab7) and lysosome (LAMP-2) were examined by laser-scanning confocal microscopy. Fluorescence imaging and flow cytometry confirmed that FITC-labelled COM crystals were internalized into MDCK cells (14.83 ± 0.85%). The data also revealed a reduction of crystal size in a time-dependent manner. In concordance, intracellular and extracellular fluorescence levels were decreased and increased, respectively, indicating crystal degradation/dissolution inside the cells and the degraded products were eliminated extracellularly. Moreover, Rab5 and Rab7 were both up-regulated and were also associated with the up-regulated LAMP-2 to form large endolysosomes in the COM-treated cells at 16-h after crystal internalization. We demonstrate herein, for the first time, that COM crystals could be degraded/dissolved by endolysosomes inside renal tubular cells. These findings will be helpful to better understand the crystal fate and protective mechanism against kidney stone formation. PMID:26748311

  6. Internalization and re-expression of antigens of human melanoma cells following exposure to monoclonal antibody

    SciTech Connect

    Wang, B.S.; Lumanglas, A.L.; Silva, J.; Ruszala-Mallon, V.; Durr, F.E.

    1987-04-15

    Modulation of the surface membrane of human Sk-Mel-28 melanoma cells by monoclonal antibody (MoAb) 96.5 recognizing p97 determinants was examined using direct radioimmunoassay and indirect fluorescent antibody-staining techniques. It was determined that the majority of /sup 111/In-labeled antibody that remained associated with cells after a 24-hr incubation at 37 degrees C had been internalized because MoAb 96.5 was no longer visible on the cell surface. A second treatment of these cells with the same antibody 24 hr later not only increased the cell-associated radioactivity, reflecting an increase of total antibody bound, but also rendered these cells membrane immunofluorescent again, indicating the re-expression of surface antigens. Autoradiographs of the electrophoretically analyzed membrane components of Sk-Mel-28 cells further demonstrated the appearance of newly synthesized 97-kDa proteins that were immunoprecipitable with MoAb 96.5. Taken together, the present findings suggest that p97 antigens undergo endocytosis in Sk-Mel-28 cells following exposure to MoAb 96.5. However, the same antigens were regenerated and expressed on the cell surface within a period of 24 hr. The re-expression of tumor cell surface antigen following initial internalization of the MoAb-antigen complex may have implications for diagnosis and therapy.

  7. Binding, internalization, and degradation of basic fibroblast growth factor in human microvascular endothelial cells

    SciTech Connect

    Bikfalvi, A.; Dupuy, E.; Inyang, A.L.; Tobelem, G. ); Fayein, N.; Courtois, Y. ); Leseche, G. )

    1989-03-01

    The binding, internalization, and degradation of basic fibroblast growth factor (bFGF) in human omental microvascular endothelial cells (HOME cells) were investigated. Binding studies of bFGF in human endothelial cells have not yet been reported. Basic FGF bound to HOME cells. The number of low-affinity binding sites was found to be variable. Washing the cells with 2 M phosphate-buffered saline removed completely {sup 125}I-bFGF bound to low-affinity binding sites but decreased also the high-affinity binding. The majority of the surface-bound {sup 125}I-bFGF was removed by washing the cells with acetic acid buffer at pH 3. At this temperature, degradation of the internalized ligand was followed after 1 hour by the appearance of three major bands of 15,000 10,000, and 8,000 Da and was inhibited by chloroquine. These results demonstrated two classes of binding sites for bFGF in HOME cells; the number of high-affinity binding sites being larger than the number reported for bovine capillary endothelial cells. The intracellular processing of bFGF in HOME cells seems to be different from that of heparin binding growth factor-1 in murine lung capillary endothelial cells and of eye-derived growth factor-1 in Chinese hamster fibroblasts.

  8. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2014-01-01

    On-orbit measurements of new photovoltaic (PV) technologies for space power are an essential step in the development and qualification of advanced solar cells. NASA Glenn Research Center will fly and measure several solar cells attached to NASA Goddards Robotic Refueling Mission (RRM), expected to be launched in 2014. Industry and government partners have provided advanced PV devices for evaluation of performance and environmental durability. The experiment is completely self-contained, providing its own power and internal data storage. Several new cell technologies including Inverted Metamorphic Multi-junction and four-junction cells will be tested.

  9. Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules

    PubMed Central

    Brunello, Cecilia A.; Yan, Xu; Huttunen, Henri J.

    2016-01-01

    Stress granules are membrane-less RNA- and RNA-binding protein-containing complexes that are transiently assembled in stressful conditions to promote cell survival. Several stress granule-associated RNA-binding proteins have been associated with neurodegenerative diseases. In addition, a close link was recently identified between the stress granule core-nucleating protein TIA-1 and Tau. Tau is a central pathological protein in Alzheimer’s disease and other tauopathies, and misfolded, aggregated Tau is capable of propagating pathology via cell-to-cell transmission. Here we show that following internalization hyperphosphorylated extracellular Tau associates with stress granules in a TIA-1 dependent manner. Cytosolic Tau normally only weakly interacts with TIA-1 but mutations mimicking abnormal phosphorylation promote this interaction. We show that internalized Tau significantly delays normal clearance of stress granules in the recipient cells sensitizing them to secondary stress. These results suggest that secreted Tau species may have properties, likely related to its hyperphosphorylation and oligomerization, which promote pathological association of internalized Tau with stress granules altering their dynamics and reducing cell viability. We suggest that stress granules and TIA-1 play a central role in the cell-to-cell transmission of Tau pathology. PMID:27460788

  10. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.

    PubMed

    Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; Silva, R C; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M

    2016-01-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies. PMID:27021687

  11. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells

    PubMed Central

    Ribeiro, A. R.; Gemini-Piperni, S.; Travassos, R.; Lemgruber, L.; C. Silva, R.; Rossi, A. L.; Farina, M.; Anselme, K.; Shokuhfar, T.; Shahbazian-Yassar, R.; Borojevic, R.; Rocha, L. A.; Werckmann, J.; Granjeiro, J. M.

    2016-01-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies. PMID:27021687

  12. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. R.; Gemini-Piperni, S.; Travassos, R.; Lemgruber, L.; C. Silva, R.; Rossi, A. L.; Farina, M.; Anselme, K.; Shokuhfar, T.; Shahbazian-Yassar, R.; Borojevic, R.; Rocha, L. A.; Werckmann, J.; Granjeiro, J. M.

    2016-03-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  13. Structural Features Facilitating Tumor Cell Targeting and Internalization by Bleomycin and Its Disaccharide

    PubMed Central

    2016-01-01

    We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide–cytotoxin conjugates. PMID:25905565

  14. Numerical analysis of molten carbonate fuel cell stack performance: diagnosis of internal conditions using cell voltage profiles

    NASA Astrophysics Data System (ADS)

    Yoshiba, F.; Abe, T.; Watanabe, T.

    A numerical model to diagnose the internal conditions of a molten carbonate fuel cell (MCFC) has been developed to calculate both the temperature and performance of stacks. The performance of the stack is evaluated by applying a `formula for MCFC performance' which has been derived from tests on single small cells with the same active components as the stack. Concerning the separator temperature and the cell performance, calculated results are compared with experimental data acquired during the operation of a 100-kW class stack. Good agreement is obtained. The applied numerical electric circuit model is modified to analyse the voltage distribution within each individual cell. The purpose of the model is to identify the cause of unexpected voltage differences within each cell during operation of a 100-kW class stack. Two causes are identified, namely, increase in the partial internal resistance (IR) and insufficient supply of fuel gas to the cell. The calculated cell voltage distribution and the observed voltage difference for a given cell exhibit similar behaviour.

  15. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin.

    PubMed

    Palchaudhuri, Rahul; Saez, Borja; Hoggatt, Jonathan; Schajnovitz, Amir; Sykes, David B; Tate, Tiffany A; Czechowicz, Agnieszka; Kfoury, Youmna; Ruchika, Fnu; Rossi, Derrick J; Verdine, Gregory L; Mansour, Michael K; Scadden, David T

    2016-07-01

    Hematopoietic stem cell transplantation (HSCT) offers curative therapy for patients with hemoglobinopathies, congenital immunodeficiencies, and other conditions, possibly including AIDS. Autologous HSCT using genetically corrected cells would avoid the risk of graft-versus-host disease (GVHD), but the genotoxicity of conditioning remains a substantial barrier to the development of this approach. Here we report an internalizing immunotoxin targeting the hematopoietic-cell-restricted CD45 receptor that effectively conditions immunocompetent mice. A single dose of the immunotoxin, CD45-saporin (SAP), enabled efficient (>90%) engraftment of donor cells and full correction of a sickle-cell anemia model. In contrast to irradiation, CD45-SAP completely avoided neutropenia and anemia, spared bone marrow and thymic niches, enabling rapid recovery of T and B cells, preserved anti-fungal immunity, and had minimal overall toxicity. This non-genotoxic conditioning method may provide an attractive alternative to current conditioning regimens for HSCT in the treatment of non-malignant blood diseases. PMID:27272386

  16. Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle

    SciTech Connect

    Zhu, Lin Kim, Changsu; Yoshita, Masahiro; Chen, Shaoqiang; Sato, Shintaroh; Mochizuki, Toshimitsu; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2014-01-20

    To develop a realistic design principle, we calculated the maximum conversion efficiency η{sub sc} and optimized sub-cell band-gap energies E{sub g} in double-junction tandem solar cells via a detailed-balance theory, paying particular attention to their dependence on internal luminescence quantum yields y{sub int} of the top and bottom sub-cell materials. A strong drop in the maximum η{sub sc} occurs when y{sub int} slightly drops from 1 to 0.9, where the drop in y{sub int} of the bottom cell causes a stronger effect than that of the top cell. For low values of y{sub int}, the maximum η{sub sc} has a simple logarithmic dependence on the geometric mean of the two sub-cells'y{sub int}.

  17. Internal dynamics of a living cell nucleus investigated by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Suissa, M.; Place, C.; Goillot, E.; Freyssingeas, E.

    2008-08-01

    Recent progresses in cellular biology have shown that the nucleus of a living cell is a structured integration of many functional domains with a complex spatial organization. This organization, as well as molecular and biochemical processes, is time regulated. In the past years many investigations have been performed using fluorescent microscopy techniques to study the internal dynamics of the nucleus of a living cell. These investigations, however, have never focussed on the global internal dynamics of the nucleus, which is still unknown. In this article we present an original light scattering experimental device that we built to investigate this dynamics during biological processes. By means of this experimental set-up, we investigated the global dynamics of the nucleus of a living cell treated with a DNA replication inhibitor. This dynamics presents different and independent kinds of relaxation well separated in time that vary as a function of the cell cycle phases.

  18. Internalization of Escherichia Coli O157:H7 by Bovine Rectal Epithelial Cells

    PubMed Central

    Sheng, Haiqing; Wang, Jing; Lim, Ji Youn; Davitt, Christine; Minnich, Scott A.; Hovde, Carolyn J.

    2011-01-01

    Escherichia coli O157:H7 (O157) causes human diarrheal disease and healthy cattle are its primary reservoir. O157 colonize the bovine epithelial mucosa at the recto-anal junction (RAJ). Previous studies show that O157 at this site are not eliminated by aggressive interventions including applications of O157-specific lytic bacteriophages and other bactericidal agents. We hypothesize that some O157 at the RAJ mucosa are protected from these killing agents by host cell internalization. To test this hypothesis, rectal biopsies from O157 culture positive and negative cattle were analyzed by fluorescent microscopy and subjected to gentamicin protection assays. GFP-labeled bacteria were found located deep within the tissue crypts and a small number of O157 were recovered from rectal biopsies after gentamicin treatment. Primary bovine rectal epithelial (PBRE) cell cultures were incubated with O157 and subjected to gentamicin protection assays. Strains ATCC 43895, 43894, Sakai, and WSU180 entered the PBRE cells with different levels of efficiency ranging from 0.18 to 19.38% of the inocula. Intracellular bacteria were confirmed to be within membrane-bounded vacuoles by electron microscopy. Cytochalasin D curtailed internalization of O157 indicating internalization was dependent on eukaryotic microfilament assembly. Strain ATCC 43895 exhibited the highest efficiency of internalization and survived for at least 24 h within PBRE cells. Deletion mutation of intimin or its receptor in ATCC 43895 did not reduce bacterial internalization. This strain produced more biofilm than the others tested. Retrospective analysis of cattle challenged with two O157 strains, showed ATCC 43895, the most efficient at host cell internalization, was most persistent. PMID:21687423

  19. Detection of internal structure by scattered light intensity: Application to kidney cell sorting

    NASA Technical Reports Server (NTRS)

    Goolsby, C. L.; Kunze, M. E.

    1985-01-01

    Scattered light measurements in flow cytometry were sucessfully used to distinguish cells on the basis of differing morphology and internal structure. Differences in scattered light patterns due to changes in internal structure would be expected to occur at large scattering angles. Practically, the results of these calculations suggest that in experimental situations an array of detectors would be useful. Although in general the detection of the scattered light intensity at several intervals within the 10 to 60 region would be sufficient, there are many examples where increased sensitivity could be acheived at other angles. The ability to measure at many different angular intervals would allow the experimenter to empirically select the optimum intervals for the varying conditions of cell size, N/C ratio, granule size and internal structure from sample to sample. The feasibility of making scattered light measurements at many different intervals in flow cytometry was demonstrated. The implementation of simplified versions of these techniques in conjunction with independant measurements of cell size could potentially improve the usefulness of flow cytometry in the study of the internal structure of cells.

  20. On the mechanism of cell internalization of chrysotile fibers: An immunocytochemical and ultrastructural study

    SciTech Connect

    Malorni, W.; Iosi, F.; Falchi, M.; Donelli, G. )

    1990-08-01

    Human breast carcinoma cells (CG5) and human laryngeal carcinoma cells (HEp-2) were exposed to 10 and 50 {mu}ml (about 5 {mu}m) chrysotile asbestos fibers. Morphological and ultrastructural changes were evaluated by means of immunocytochemistry and by scanning and transmission electron microscopy. The authors attention was focused on the mechanisms of cell internalization and on transport of chrysotile fibers. The fibers appeared to penetrate the cell cytoplasm and to be translocated in proximity of the nucleus. Small chrysotile fibers could also be found inside the nucleus of interphase cells. Involvement of the main cytoskeletal components, i.e., microfilaments, intermediate filaments, and microtubules, in the cytotoxicity of chrysotile fibers was also evaluated. Their findings suggest that after fiber penetration, a rearrangement of the cytoskeletal apparatus occurs. It has also been observed that small fibers remain associated with the cytoskeletal framework, which can thus play a role in asbestos intracytoplasmic translocation in epithelial cells. Furthermore, after the cell has completely recovered its morphology, fiber internalization ultimately seems to lead to the formation of giant multinucleated cells. These data could be indicative of an interaction occurring between asbestos fibers and the normal mitotic process.

  1. Antitumor effects of calgranulin B internalized in human colon cancer cells

    PubMed Central

    Yoo, Byong Chul; Ku, Ja-Lok; Shin, Young-Kyoung; Cho, Jae Youl; Kim, Minjae; Kwon, Myung-Hee; Goh, Sung Ho; Chang, Hee Jin; Oh, Jae Hwan

    2016-01-01

    Calgranulin B is a small, calcium-binding protein expressed in neutrophils that is secreted into the tumor microenvironment in cancer cases. We previously showed that calgranulin B levels are increased in the stools of colorectal cancer patients. In patient tumor tissues, calgranulin B protein levels correlated with the presence of stromal inflammatory cells surrounding tumor cells, and calgranulin B promoter methylation was observed in both paired human tissues and colon cancer cell lines. Cell lines did not express calgranulin B, but in vitro studies showed that colon cancer cells internalized extracellular calgranulin B, while other types of cancer cells did not. Calgranulin B internalization led to reduced cell proliferation and increased apoptotic cell death. AKT and ERK signals were also increased after calgranulin B treatment, as were p53, β-catenin, E-cadherin and cleaved caspase-3 levels. Additionally, a human protein microarray identified aurora A kinase as a calgranulin B binding partner, and binding inhibited aurora A kinase activity in a dose-dependent manner. Our findings demonstrate the antitumor effects of calgranulin B in the inflammatory microenvironment and suggest that calgranulin B could be potentially efficacious in the treatment of colon cancer. PMID:26933915

  2. Effect of initial salt concentrations on cell performance and distribution of internal resistance in microbial desalination cells.

    PubMed

    Yang, Euntae; Choi, Mi-Jin; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Kim, In S

    2015-01-01

    Microbial desalination cells (MDCs) are modified microbial fuel cells (MFCs) that concurrently produce electricity and desalinate seawater, but adding a desalination compartment and an ion-exchange membrane may increase the internal resistance (Ri), which can limit the cell performance. However, the effects of a desalination chamber and initial NaCl concentrations on the internal resistances and the cell performances (i.e. Coulombic efficiency (CE), current and power density) of MDCs have yet to be thoroughly explored; thus, the cell performance and Ri distributions of MDCs having different initial concentrations and an MFC having no desalination chamber were compared. In the MDCs, the current and power density generation increased from 2.82 mA and 158.2 mW/m2 to 3.17 mA and 204.5 mW/m2 when the initial NaCl concentrations were increased from 5 to 30 g/L, as a consequence of the internal resistances decreasing from 2432.0 to 2328.4 Ω. And even though the MFC has a lower Ri than the MDCs, lower cell performances (current: 2.59 mA; power density: 141.6 mW/m2 and CE: 62.1%) were observed; there was no effect of improved junction potential in the MFC. Thus, in the MDCs, the higher internal resistances due to the addition of a desalination compartment can be offset by reducing the electrolyte resistance and improving the junction potential at higher NaCl concentrations. PMID:25212471

  3. Envelope Glycoprotein Internalization Protects Human and Simian Immunodeficiency Virus-Infected Cells from Antibody-Dependent Cell-Mediated Cytotoxicity

    PubMed Central

    von Bredow, Benjamin; Arias, Juan F.; Heyer, Lisa N.; Gardner, Matthew R.; Farzan, Michael; Rakasz, Eva G.

    2015-01-01

    ABSTRACT The cytoplasmic tails of human and simian immunodeficiency virus (HIV and SIV, respectively) envelope glycoproteins contain a highly conserved, membrane-proximal endocytosis motif that prevents the accumulation of Env on the surface of infected cells prior to virus assembly. Using an assay designed to measure the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC), we show that substitutions in this motif increase the susceptibility of HIV-1- and SIV-infected cells to ADCC in a manner that directly correlates with elevated Env levels on the surface of virus-infected cells. In the case of HIV-1, this effect is additive with a deletion in vpu recently shown to enhance the susceptibility of HIV-1-infected cells to ADCC as a result of tetherin-mediated retention of budding virions on the cell surface. These results reveal a previously unappreciated role for the membrane-proximal endocytosis motif of gp41 in protecting HIV-1- and SIV-infected cells from antibody responses by regulating the amount of Env present on the cell surface. IMPORTANCE This study reveals an unappreciated role for the membrane-proximal endocytosis motif of gp41 in protecting HIV-1- and SIV-infected cells from elimination by Env-specific antibodies. Thus, strategies designed to interfere with this mechanism of Env internalization may improve the efficacy of antibody-based vaccines and antiretroviral therapies designed to enhance the immunological control of HIV-1 replication in chronically infected individuals. PMID:26269175

  4. Characterization of Ehrlichia risticii binding, internalization, and proliferation in host cells by flow cytometry.

    PubMed Central

    Messick, J B; Rikihisa, Y

    1993-01-01

    The binding, internalization, and proliferation of Ehrlichia risticii in P388D1 cells and equine polymorphonuclear (PMN) leukocytes were studied by immunofluorescent staining and flow cytometric analysis. The binding of ehrlichiae to P388D1 cells at 4 degrees C was dose dependent, and the antigens of bound organisms were susceptible to pronase treatment. Additionally, the binding of ehrlichiae to P388D1 cells was diminished when either P388D1 cells or ehrlichiae were treated with 1% paraformaldehyde for 30 min or 0.25% trypsin for 15 min. These results indicate that the ehrlichial ligand and host cell receptor are likely surface proteins. Following incubation at 37 degrees C, bound E. risticii and/or its antigens were removed with pronase and indirect immunofluorescent staining in the presence of saponin was used to examine intracellular ehrlichiae. Our results indicate that E. risticii was internalized into P388D1 cells within 3 h and proliferated by 48 h of incubation. The microfilament-disrupting agent cytochalasin D and the transglutaminase inhibitor monodansylcadaverine were used to differentiate between phagocytosis (sensitive to cytochalasin) and receptor-mediated endocytosis (sensitive to monodansylcadaverine) of E. risticii by P388D1 cells. In concentrations that produced distinctive morphological changes and inhibited phagocytosis of polystyrene latex beads, cytochalasin D did not suppress the infectivity of E. risticii. Binding, internalization, or proliferation of E. risticii was not affected by cytochalasin D. However, monodansylcadaverine inhibited infection of E. risticii in a dose-dependent manner. The agent did not affect the attachment of ehrlichiae to host cells, but it did suppress internalization and proliferation. These results suggest that E. risticii is internalized by receptor-mediated endocytosis and that productive infection by E. risticii does not depend on phagocytosis by the P388D1 cells. Although E. risticii did not bind to the

  5. Cellular Internalization of Quantum Dots Noncovalently Conjugated with Arginine-Rich Cell-Penetrating Peptides

    PubMed Central

    Liu, Betty R.; Li, Jheng-Fong; Lu, Shu-Wan; Lee, Han-Jung; Huang, Yue-Wern; Shannon, Katie B.; Aronstam, Robert S.

    2010-01-01

    Protein transduction domains comprised of basic amino acid-rich peptides, can efficiently deliver covalently fused macromolecules into cells. Quantum dots (QDs) are luminescent semiconductor nanocrystals that are finding increasing application in biological imaging. Previous studies showed that protein transduction domains mediate the internalization of covalently attached QDs. In this study, we demonstrate that arginine-rich intracellular delivery peptides (cell-penetrating peptides; CPPs), analogs of naturally-occuring protein transduction domains, deliver noncovalently associated QDs into living cells; CPPs dramatically increase the rate and efficiency of cellular uptake of QD probes. The optimal molecular ratio between arginine-rich CPPs and QD cargoes for cellular internalization is approximately 60:1. Upon entry into cells, the QDs are concentrated in the perinuclear region. There is no cytotoxicity following transport of QDs present at concentrations up to 200 nM. The mechanism for arginine-rich CPP/QD complexes to traverse cell membrane appears to involve a combination of internalization pathways. These results provide insight into the mechanism of arginine-rich CPP delivery of noncovalently attached cargoes, and may provide a powerful tool for imaging in vivo. PMID:21137758

  6. SERS and integrative imaging upon internalization of quantum dots into human oral epithelial cells.

    PubMed

    Cepeda-Pérez, Elisa; López-Luke, Tzarara; Plascencia-Villa, Germán; Perez-Mayen, Leonardo; Ceja-Fdez, Andrea; Ponce, Arturo; Vivero-Escoto, Juan; de la Rosa, Elder

    2016-07-01

    CdTe quantum dots (QDs) are widely used in bio-applications due to their size and highly efficient optical properties. However internalization mechanisms thereof for the variety of freshly extracted, not cultivated human cells and their specific molecular interactions remains an open topic for discussion. In this study, we assess the internalization mechanism of CdTe quantum dots (3.3 nm) capped with thioglycolic acid using non cultivated oral epithelial cells obtained from healthy donors. Naked gold nanoparticles (40 nm) were successfully used as nanosensors for surface-enhanced Raman spectroscopy to efficiently identify characteristic Raman peaks, providing new evidence indicating that the first interactions of these QDs with epithelial cells occurred preferentially with aromatic rings and amine groups of amino acid residues and glycans from trans-membrane proteins and cytoskeleton. Using an integrative combination of advanced imaging techniques, including ultra-high resolution SEM, high resolution STEM coupled with EDX spectroscopy together with the results obtained by Raman spectroscopy, it was determined that thioglycolic acid capped CdTe QDs are efficiently internalized into freshly extracted oral epithelial cells only by facilitated diffusion, distributed into cytoplasm and even within the cell nucleus in three minutes. PMID:27120043

  7. PTH-induced internalization of a type IIa Na/Pi cotransporter in OK-cells.

    PubMed

    Jankowski, M; Biber, J; Murer, H

    1999-10-01

    Regulatory phenomena in brush border membrane sodium/phosphate (Na/Pi) cotransport are directly related to the type IIa Na/Pi-cotransporter and can be analyzed in opossum kidney cells (OK-cells). Parathyroid hormone (PTH) leads to a decreased expression of the type IIa Na/Pi-cotransporter protein at the apical cell surface. To provide evidence for PTH-induced membrane retrieval of the cotransporter protein we labeled OK-cell surface membrane protein NH2-groups with N-hydroxysuccinimide bound via a disulfide bond to biotin (NHS-SS-biotin) prior to or after treatment with PTH. Biotinylated transporters can be detected by streptavidin precipitation and Western blotting using type IIa Na/Pi-cotransporter specific antibodies. To detect only internalized biotinylated transporters biotin located at the cell surface was removed ("stripped") by disulfide bond splitting reagents under reducing conditions. Neither biotinylation per se, nor "stripping" interfered with PTH-induced inhibition of Na/Pi-cotransport activity. The internalization of the transporter was highly increased in response to PTH treatment. The data document that the first step in PTH regulation is internalization of the type IIa Na/Pi-cotransporter protein from the apical membrane. PMID:10555567

  8. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOEpatents

    Geisbrecht, Rodney A; Williams, Mark C

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  9. Pressure and flow distribution in internal gas manifolds of a fuel-cell stack

    NASA Astrophysics Data System (ADS)

    Koh, Joon-Ho; Seo, Hai-Kyung; Lee, Choong Gon; Yoo, Young-Sung; Lim, Hee Chun

    Gas-flow dynamics in internal gas manifolds of a fuel-cell stack are analyzed to investigate overall pressure variation and flow distribution. Different gas-flow patterns are considered in this analysis. Gas-flow through gas channels of each cell is modeled by means of Darcy's law where permeability should be determined on an experimental basis. Gas-flow in manifolds is modeled from the macroscopic mechanical energy balance with pressure-loss by wall friction and geometrical effects. A systematic algorithm to solve the proposed flow model is suggested to calculate pressure and flow distribution in fuel-cell stacks. Calculation is done for a 100-cell molten carbonate fuel-cell stack with internal manifolds. The results show that the pressure-loss by wall friction is negligible compared with the pressure recovery in inlet manifolds or loss in outlet manifolds due to mass dividing or combining flow at manifold-cell junctions. A more significant effect on manifold pressure possibly arises from the geometrical manifold structure which depends on the manifold size and shape. The geometrical effect is approximated from pressure-loss coefficients of several types of fittings and valves. The overall pressure and flow distribution is significantly affected by the value of the geometrical pressure-loss coefficient. It is also found that the flow in manifolds is mostly turbulent in the 100-cell stack and this way result in an uneven flow distribution when the stack manifold is incorrectly, designed.

  10. Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion

    NASA Astrophysics Data System (ADS)

    Schmieg, John; Yang, Guangli; Franck, Richard W.; van Rooijen, Nico; Tsuji, Moriya

    2005-01-01

    It has been shown that dendritic cells (DCs) are able to present glycolipids to natural killer (NK) T cells in vivo. However, the essential role of DCs, as well as the role of other cells in glycolipid presentation, is unknown. Here, we show that DCs are the crucial antigen-presenting cells (APCs) for splenic NK T cells, whereas Kupffer cells are the key APCs for hepatic NK T cells. Both cell types stimulate cytokine production by NK T cells within 2 h of glycolipid administration, but only DCs are involved in the systemic, downstream responses to glycolipid administration. More specifically, CD8+ DCs produce IL-12 in response to glycolipid presentation, which stimulates secondary IFN- production by NK cells in different organs. Different APCs participate in glycolipid presentation to NK T cells in vivo but differ in their involvement in the overall glycolipid response. dendritic cell | Kupffer cell

  11. Effects of Operating Conditions on Internal Resistances in Enzyme Fuel Cells Studied via Electrochemical Impedance Spectroscopy

    SciTech Connect

    Aaron, D; Borole, Abhijeet P; Yiacoumi, Sotira; Tsouris, Costas

    2012-01-01

    Enzyme fuel cells (EFCs) offer some advantages over traditional precious-metal-catalyzed fuel cells, such as polymer electrolyte membrane fuel cells (PEMFCs). However, EFCs exhibit far less power output than PEMFCs and have relatively short life spans before materials must be replaced. In this work, electrochemical impedance spectroscopy (EIS) is used to analyze the internal resistances throughout the EFC at a variety of operating conditions. EIS analysis is focused primarily on the resistances of the anode, solution/membrane, and cathode. Increased enzyme loading results in improved power output and reductions in internal resistance. Conditions are identified for which enzyme loading does not limit the EFC performance. EIS experiments are also reported for EFCs operated continuously for 2 days; power output declines sharply over time, while all internal resistances increase. Drying of the cathode and enzyme/mediator degradation are believed to have contributed to this behavior. Finally, experiments are performed at varying air-humidification temperatures. Little effect on internal resistances or power output is observed. However, it is anticipated that increased air humidification can improve longevity by delivering more water to the cathode. Improvements to the enzymatic cathode are needed for EFC development. These improvements need to focus on improving transport rather than increasing enzyme loading.

  12. Development of a Novel Test Method for On-Demand Internal Short Circuit in a Li-Ion Cell (Presentation)

    SciTech Connect

    Keyser, M.; Long, D.; Jung, Y. S.; Pesaran, A.; Darcy, E.; McCarthy, B.; Patrick, L.; Kruger, C.

    2011-01-01

    This presentation describes a cell-level test method that simulates an emergent internal short circuit, produces consistent and reproducible test results, can establish the locations and temperatures/power/SOC conditions where an internal short circuit will result in thermal runaway, and provides relevant data to validate internal short circuit models.

  13. Carbon nanotubes enhance the internalization of drugs by cancer cells and decrease their chemoresistance to cytostatics

    NASA Astrophysics Data System (ADS)

    Mahmood, M.; Xu, Y.; Dantuluri, V.; Mustafa, T.; Zhang, Y.; Karmakar, A.; Casciano, D.; Ali, S.; Biris, A.

    2013-02-01

    Etoposide is a semisynthetic, chemotherapeutic drug widely recommended to treat an extensive range of human cancers. Our studies indicate that, while etoposide is capable of killing human cancer cells, exposure to single-walled carbon nanotubes (SWCNTs) and etoposide results in enhanced cell death that appears to be synergistic and not merely additive. In this study, we used high pressure liquid chromatography and mass spectrometry to quantify the internal effective dose of etoposide when the human pancreatic cancer cell (PANC-1) was exposed to the combination of these agents. Our results unequivocally indicate that SWCNTs improve etoposide uptake and increase its capacity to kill cancer cells. We suggest that a combination of SWCNTs and etoposide may prove to be a more efficient chemotherapeutic protocol, especially because of the potential to lower toxic drug doses to levels that may be useful in decreasing adverse side effects, as well as in lowering the probability of inducing chemoresistance in exposed cancer cells.

  14. g-force induced giant efficiency of nanoparticles internalization into living cells.

    PubMed

    Ocampo, Sandra M; Rodriguez, Vanessa; de la Cueva, Leonor; Salas, Gorka; Carrascosa, Jose L; Rodríguez, María Josefa; García-Romero, Noemí; Cuñado, Jose Luis F; Camarero, Julio; Miranda, Rodolfo; Belda-Iniesta, Cristobal; Ayuso-Sacido, Angel

    2015-01-01

    Nanotechnology plays an increasingly important role in the biomedical arena. Iron oxide nanoparticles (IONPs)-labelled cells is one of the most promising approaches for a fast and reliable evaluation of grafted cells in both preclinical studies and clinical trials. Current procedures to label living cells with IONPs are based on direct incubation or physical approaches based on magnetic or electrical fields, which always display very low cellular uptake efficiencies. Here we show that centrifugation-mediated internalization (CMI) promotes a high uptake of IONPs in glioblastoma tumour cells, just in a few minutes, and via clathrin-independent endocytosis pathway. CMI results in controllable cellular uptake efficiencies at least three orders of magnitude larger than current procedures. Similar trends are found in human mesenchymal stem cells, thereby demonstrating the general feasibility of the methodology, which is easily transferable to any laboratory with great potential for the development of improved biomedical applications. PMID:26477718

  15. g-force induced giant efficiency of nanoparticles internalization into living cells

    PubMed Central

    Ocampo, Sandra M.; Rodriguez, Vanessa; de la Cueva, Leonor; Salas, Gorka; Carrascosa, Jose. L.; Josefa Rodríguez, María; García-Romero, Noemí; Luis, Jose; Cuñado, F.; Camarero, Julio; Miranda, Rodolfo; Belda-Iniesta, Cristobal; Ayuso-Sacido, Angel

    2015-01-01

    Nanotechnology plays an increasingly important role in the biomedical arena. Iron oxide nanoparticles (IONPs)-labelled cells is one of the most promising approaches for a fast and reliable evaluation of grafted cells in both preclinical studies and clinical trials. Current procedures to label living cells with IONPs are based on direct incubation or physical approaches based on magnetic or electrical fields, which always display very low cellular uptake efficiencies. Here we show that centrifugation-mediated internalization (CMI) promotes a high uptake of IONPs in glioblastoma tumour cells, just in a few minutes, and via clathrin-independent endocytosis pathway. CMI results in controllable cellular uptake efficiencies at least three orders of magnitude larger than current procedures. Similar trends are found in human mesenchymal stem cells, thereby demonstrating the general feasibility of the methodology, which is easily transferable to any laboratory with great potential for the development of improved biomedical applications. PMID:26477718

  16. g-force induced giant efficiency of nanoparticles internalization into living cells

    NASA Astrophysics Data System (ADS)

    Ocampo, Sandra M.; Rodriguez, Vanessa; de La Cueva, Leonor; Salas, Gorka; Carrascosa, Jose. L.; Josefa Rodríguez, María; García-Romero, Noemí; Luis, Jose; Cuñado, F.; Camarero, Julio; Miranda, Rodolfo; Belda-Iniesta, Cristobal; Ayuso-Sacido, Angel

    2015-10-01

    Nanotechnology plays an increasingly important role in the biomedical arena. Iron oxide nanoparticles (IONPs)-labelled cells is one of the most promising approaches for a fast and reliable evaluation of grafted cells in both preclinical studies and clinical trials. Current procedures to label living cells with IONPs are based on direct incubation or physical approaches based on magnetic or electrical fields, which always display very low cellular uptake efficiencies. Here we show that centrifugation-mediated internalization (CMI) promotes a high uptake of IONPs in glioblastoma tumour cells, just in a few minutes, and via clathrin-independent endocytosis pathway. CMI results in controllable cellular uptake efficiencies at least three orders of magnitude larger than current procedures. Similar trends are found in human mesenchymal stem cells, thereby demonstrating the general feasibility of the methodology, which is easily transferable to any laboratory with great potential for the development of improved biomedical applications.

  17. Internalization and synaptogenic effect of GH in retinal ganglion cells (RGCs).

    PubMed

    Fleming, Thomas; Martínez-Moreno, Carlos G; Mora, Janeth; Aizouki, Miray; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    In the chicken embryo, GH gene expression occurs in the neural retina and retinal GH promotes cell survival and induces axonal growth of retinal ganglion cells. Neuroretinal GH is therefore of functional importance before the appearance of somatotrophs and the onset of pituitary GH secretion to the peripheral plasma (at ED15-17). Endocrine actions of pituitary GH in the development and function of the chicken embryo eye are, however, unknown. This possibility has therefore been investigated in ED15 embryos and using the quail neuroretinal derived cell line (QNR/D). During this research, we studied for the first time, the coexistence of exogenous (endocrine) and local GH (autocrine/paracrine) in retinal ganglion cells (RGCs). In ovo systemic injections of Cy3-labeled GH demonstrated that GH in the embryo bloodstream was translocated into the neural retina and internalized into RGC's. Pituitary GH may therefore be functionally involved in retinal development during late embryogenesis. Cy3-labelled GH was similarly internalized into QNR/D cells after its addition into incubation media. The uptake of exogenous GH was by a receptor-mediated mechanism and maximal after 30-60min. The exogenous (endocrine) GH induced STAT5 phosphorylation and increased growth associated protein 43 (GAP43) and SNAP-25 immunoreactivity. Ex ovo intravitreal injections of Cy3-GH in ED12 embryos resulted in GH internalization and STAT5 activation. Interestingly, the CY3-labeled GH accumulated in perinuclear regions of the QNR/D cells, but was not found in the cytoplasm of neurite outgrowths, in which endogenous retinal GH is located. This suggests that exogenous (endocrine) and local (autocrine/paracrine) GH are both involved in retinal function in late embryogenesis but they co-exist in separate intracellular compartments within retinal ganglion cells. PMID:27036926

  18. Plasmid-encoded toxin of enteroaggregative Escherichia coli is internalized by epithelial cells.

    PubMed

    Navarro-García, F; Canizalez-Roman, A; Luna, J; Sears, C; Nataro, J P

    2001-02-01

    We have previously described a 104-kDa protein termed Pet (for plasmid-encoded toxin) secreted by some strains of enteroaggregative Escherichia coli (EAEC). Through an unknown mechanism, this toxin (i) raises transepithelial short-circuit current (Isc) and decreases the electrical resistance of rat jejunum mounted in the Ussing chamber, (ii) causes cytoskeletal alterations in HEp-2 cells and HT29/C1 cells, and (iii) is required for histopathologic effects of EAEC on human intestinal mucosa. Pet is a member of the autotransporter class of secreted proteins and together with Tsh, EspP, EspC, ShMu, and SepA proteins comprises the SPATE subfamily. Here, we show that Pet is internalized by HEp-2 cells and that internalization appears to be required for the induction of cytopathic effects. Evidence supporting Pet internalization includes the facts that (i) the effects of Pet on epithelial cells were inhibited by brefeldin A, which interferes with various steps of intracellular vesicular transport; (ii) immunoblots using anti-Pet antibodies detected Pet in the cytoplasmic fraction of intoxicated HEp-2 cells; (iii) Pet was detected inside HEp-2 cells by confocal microscopy; and (iv) a mutant in the passenger domain cleavage site, which prevents Pet release from the bacterial outer membrane, did not produce cytopathic effects on epithelial cells, whereas the release of mutant Pet from the outer membrane with trypsin yielded active toxin. We have also shown that the Pet serine protease motif is required to produce cytopathic effects but not for Pet secretion. Our results suggest an intracellular mode of action for the Pet protease and are consistent with we our recent report suggesting an intracellular mode of action for Pet. PMID:11160002

  19. The activation of the sodium pump in pig red blood cells by internal and external cations.

    PubMed

    Brand, S C; Whittam, R

    1985-05-30

    A study has been made with pig red blood cells of the activation of the sodium pump by internal and external cations. Cell Na and K concentrations were altered using a PCMBS cation loading procedure. The procedure was characterised for resultant ionic conditions, maintenance of ATP levels and fragility. The activation of the sodium pump by external K was measured in cells suspended in choline (Na-free) solutions. External Cs was used as a substitute for K and elicited lower rates of pump activity. Both the Vmax and apparent Km for 42K influx and 134Cs influx increased as internal Na concentration was raised (within the non-saturating range). Vmax/apparent Km ratios for cation influx were constant. Raising external Cs concentration exerted a similar influence on pump activation by internal Na: both the maximum pump velocity and the apparent Na-site dissociation constant (K'Na) increased. The results provide evidence for a transmembrane connection between cation binding sites on opposite faces of the membrane and are consistent with a consecutive model for the sodium pump in pig red blood cells. PMID:2581622

  20. Cell-surface nucleolin is involved in lipopolysaccharide internalization and signalling in alveolar macrophages.

    PubMed

    Wang, Yi; Mao, Mei; Xu, Jian-cheng

    2011-07-01

    C23 (nucleolin) shuttling between the nucleus, cytoplasm and cell surface has been implicated in controlling regulatory processes and may play a role in pathogen infection and autoimmune diseases. It has been reported that cell surface-expressed C23 on THP-1 monocytes is involved in the inflammatory response induced by LPS (lipopolysaccharide). This study investigates whether C23 is a membrane receptor for LPS during LPS-induced AMs (alveolar macrophages) activation. First, using immunofluorescence and microscopy, we detected the expression of C23 on the surface of AMs. Second, using LPS affinity columns, we demonstrated that C23 directly binds to LPS. Third, we found that LPS colocalized with C23 on both the cell surface and in the cytoplasm. Finally, knockdown of C23 expression on the cell surface using siRNA (small interfering RNA) led to significant reductions in the internalization of LPS, in LPS-induced NF-κB (nuclear factor κB)-DNA binding and in the protein expression of TNF (tumour necrosis factor)-α and IL-6 (interleukin-6). These findings provide evidence that cell-surface C23 on AMs may serve as a receptor for LPS and are essential for internalization and transport of LPS. Furthermore, C23 participates in the regulation of LPS-induced inflammation of AMs, which indicates that cell-surface C23 is a new and promising therapeutic target for the treatment of bacterial infections. PMID:21309751

  1. Somites in zebrafish doubly mutant for knypek and trilobite form without internal mesenchymal cells or compaction.

    PubMed

    Henry, C A; Hall, L A; Burr Hille, M; Solnica-Krezel, L; Cooper, M S

    2000-09-01

    In vertebrates, paraxial mesoderm is partitioned into repeating units called somites. It is thought that the mechanical forces arising from compaction of the presumptive internal cells of prospective somites cause them to detach from the unsegmented presomitic mesoderm [1-3]. To determine how prospective somites physically segregate from each other, we used time-lapse microscopy to analyze the mechanics underlying early somitogenesis in wild-type zebrafish and in the mutants trilobite(m209) (tri), knypek(m119) (kny), and kny;tri, which are defective in convergent extension during gastrulation. Formation of somite boundaries in all of these embryos involved segregation, local alignment, and cell-shape changes of presumptive epitheloid border cells along nascent intersomitic boundaries. Although kny;tri somites formed without convergence of the presomitic mesoderm and were composed of only two cells in their anteroposterior (AP) dimension, they still exhibited AP intrasegmental polarity. Furthermore, morphogenesis of somite boundaries in these embryos proceeded in a manner similar to that in wild-type embryos. Thus, intersomitic boundary formation in zebrafish involves short-range movements of presumptive border cells that do not require mechanical forces generated by internal cells or compaction of the presomitic mesoderm. PMID:10996075

  2. Role of the Tet38 Efflux Pump in Staphylococcus aureus Internalization and Survival in Epithelial Cells

    PubMed Central

    Truong-Bolduc, Q. C.; Bolduc, G. R.; Medeiros, H.; Vyas, J. M.; Wang, Y.

    2015-01-01

    We previously identified the protein Tet38 as a chromosomally encoded efflux pump of Staphylococcus aureus that confers resistance to tetracycline and certain unsaturated fatty acids. Tet38 also contributes to mouse skin colonization. In this study, we discovered a novel regulator of tet38, named tetracycline regulator 21 (TetR21), that bound specifically to the tet38 promoter and repressed pump expression. A ΔtetR21 mutant showed a 5-fold increase in tet38 transcripts and an 8-fold increase in resistance to tetracycline and fatty acids. The global regulator MgrA bound to the tetR21 promoter and indirectly repressed the expression of tet38. To further assess the full role of Tet38 in S. aureus adaptability, we tested its effect on host cell invasion using A549 (lung) and HMEC-1 (heart) cell lines. We used S. aureus RN6390, its Δtet38, ΔtetR21, and ΔmgrA mutants, and a Δtet38 ΔtetR21 double mutant. After 2 h of contact, the Δtet38 mutant was internalized in 6-fold-lower numbers than RN6390 in A549 and HMEC-1 cells, and the ΔtetR21 mutant was internalized in 2-fold-higher numbers than RN6390. A slight increase of 1.5-fold in internalization was found for the ΔmgrA mutant. The growth patterns of RN6390 and the ΔmgrA and ΔtetR21 mutants within A549 cells were similar, while no growth was observed for the Δtet38 mutant. These data indicate that the Tet38 efflux pump is regulated by TetR21 and contributes to the ability of S. aureus to internalize and replicate within epithelial cells. PMID:26324534

  3. Binding and internalization of nerve growth factor by PC12 cells

    SciTech Connect

    Kasaian, M.T.

    1987-01-01

    The interaction of nerve growth factor (NGF) with its cell surface receptors has been studied using both fluorescent- and radio-labelled NGF. The fluorescence studies were done by flow cytometry, and gave information about the concentration dependence and time course of NGF binding to rat pheochromocytoma cells (PC12) and human melanoma cells (A875). /sup 125/I-NGF was used to study the fate of NGF in PC12 cells following its association with cell surface receptors. Variations of the PC12 binding assay were used to distinguish ligand bound to fast and slowly dissociating receptors at the cell surface, internalized ligand, and cytoskeletally-associated NGF. Ligand uptake into each of these pools was followed in untreated cells, as well as in cells exposed to colchicine and/or cytochalasin B to disrupt the cytoskeleton. NGF degradation was also followed in these cells, and chloroquine was used to inhibit this process. In a separate project, NGF activity was assayed in samples of human amniotic fluid and cerebrospinal fluid (CSF). A range of activities was found in these samples, with the CSF samples containing somewhat more activity than the amniotic fluid samples.

  4. On the importance of modelling the internal spatial dynamics of biological cells.

    PubMed

    Sayyid, Faiz; Kalvala, Sara

    2016-07-01

    Spatial effects such as cell shape have very often been considered negligible in models of cellular pathways, and many existing simulation infrastructures do not take such effects into consideration. Recent experimental results are reversing this judgement by showing that very small spatial variations can make a big difference in the fate of a cell. This is particularly the case when considering eukaryotic cells, which have a complex physical structure and many subtle control mechanisms, but bacteria are also interesting for the huge variation in shape both between species and in different phases of their lifecycle. In this work we perform simulations that measure the effect of three common bacterial shapes on the behaviour of model cellular pathways. To perform these experiments we develop ReDi-Cell, a highly scalable GPGPU cell simulation infrastructure for the modelling of cellular pathways in spatially detailed environments. ReDi-Cell is validated against known-good simulations, prior to its use in new work. We then use ReDi-Cell to conduct novel experiments that demonstrate the effect that three common bacterial shapes (Cocci, Bacilli and Spirilli) have on the behaviour of model cellular pathways. Pathway wavefront shape, pathway concentration gradients, and chemical species distribution are measured in the three different shapes. We also quantify the impact of internal cellular clutter on the same pathways. Through this work we show that variations in the shape or configuration of these common cell shapes alter model cell behaviour. PMID:27262415

  5. A homogeneous fluorescence-based method to measure antibody internalization in tumor cells.

    PubMed

    Gong, Haibiao; Urlacher, Teresa

    2015-01-15

    We have developed a simple fluorescence-based method to monitor antibody internalization. Panitumumab was dual-labeled with the fluorophore IRDye 800CW and quencher IRDye QC-1 to yield the biomolecular probe Pan800QC. The fluorescence of IRDye 800CW is quenched by IRDye QC-1 on the same intact antibody. After incubation with epidermal growth factor receptor (EGFR)-expressing cells, internalization of Pan800QC was detected by an increase in fluorescence signal due to enzymatic digestion of the antibody and separation of IRDye 800CW and IRDye QC-1. By optimizing reaction conditions, a signal-to-background ratio of 8.5 was obtained. This homogeneous assay can be applied in the characterization and screening of internalizing antibodies. PMID:25245185

  6. [Change in phospholipid content in platelets, immunocompetent cells and myometrial tissue in patients with internal endometriosis].

    PubMed

    Damirov, M M; Kulakov, V I; Sliusra', N N; Bakuleva, L P; Kargapolov, A V

    1994-01-01

    A method of flow horizontal chromatography has been developed permitting investigation of blood and tissue cellular phospholipids ruling out lipid peroxidation effects on cellular membranes. Phospholipid levels of blood and myometrial tissue cells were measured by this method in 67 patients with histologically verified internal endometriosis. Phospholipid and phosphatidyl inosite levels in platelets and immunocompetent cells of these patients reliably differed from those in healthy women. Phosphatidyl inosite levels of heterotopic endometrial tissue was increased by 1.4 times vs. the norm on an average. In parallel with this, a reliable change of phosphatidyl cholines and inosites levels in endometriosis foci were detected as against their levels in intact tissue. The authors suggest a method for the diagnosis of internal endometriosis by phosphatidyl inosite levels in blood lymphocytes. PMID:8209956

  7. General overview of the Sixth International Symposium on Stem Cell Therapy and Cardiovascular Innovations.

    PubMed

    Vázquez-Alvarez, Ma Eugenia; Sanz-Ruiz, Ricardo; Gutiérrez, Enrique; Villa, Adolfo; Fernández, Ma Eugenia; Vázquez, Sandra; José Lorenzo, Ma; Fernández, Lucía; Pascual, Isaac; Sánchez, Pedro L; Fernández-Avilés, Francisco

    2010-02-01

    Being one of the main stem cell therapy meetings of the year, the Sixth International Symposium on Stem Cell Therapy and Cardiovascular Innovations was held on April 23rd-24th, 2009, at the Auditorium of the High Council of Scientific Research of Spain (CSIC) in Madrid. Gathering the most prestigious basic researchers and clinical experts in the field of cardiovascular regenerative medicine, the aim of the meeting was to discuss the available evidence and the recent contributions from preclinical investigators, cardiologists, and cardiac surgeons in a participative translational fashion. The role of young "clinician scientists" was reinforced with a special poster session and three awards. The main conclusions of the symposium were (1) that standardization, larger clinical trials, and true translational research are needed, and (2) that new-allogeneic-stem cell products, biotechnological devices, and cell-based bioartificial organs are potentially exciting options for the future. PMID:20560031

  8. Imaging with total internal reflection fluorescence microscopy for the cell biologist.

    PubMed

    Mattheyses, Alexa L; Simon, Sanford M; Rappoport, Joshua Z

    2010-11-01

    Total internal reflection fluorescence (TIRF) microscopy can be used in a wide range of cell biological applications, and is particularly well suited to analysis of the localization and dynamics of molecules and events near the plasma membrane. The TIRF excitation field decreases exponentially with distance from the cover slip on which cells are grown. This means that fluorophores close to the cover slip (e.g. within ~100 nm) are selectively illuminated, highlighting events that occur within this region. The advantages of using TIRF include the ability to obtain high-contrast images of fluorophores near the plasma membrane, very low background from the bulk of the cell, reduced cellular photodamage and rapid exposure times. In this Commentary, we discuss the applications of TIRF to the study of cell biology, the physical basis of TIRF, experimental setup and troubleshooting. PMID:20971701

  9. Imaging with total internal reflection fluorescence microscopy for the cell biologist

    PubMed Central

    Mattheyses, Alexa L.; Simon, Sanford M.; Rappoport, Joshua Z.

    2010-01-01

    Total internal reflection fluorescence (TIRF) microscopy can be used in a wide range of cell biological applications, and is particularly well suited to analysis of the localization and dynamics of molecules and events near the plasma membrane. The TIRF excitation field decreases exponentially with distance from the cover slip on which cells are grown. This means that fluorophores close to the cover slip (e.g. within ~100 nm) are selectively illuminated, highlighting events that occur within this region. The advantages of using TIRF include the ability to obtain high-contrast images of fluorophores near the plasma membrane, very low background from the bulk of the cell, reduced cellular photodamage and rapid exposure times. In this Commentary, we discuss the applications of TIRF to the study of cell biology, the physical basis of TIRF, experimental setup and troubleshooting. PMID:20971701

  10. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  11. Binding of Host Factors Influences Internalization and Intracellular Trafficking of Streptococcus uberis in Bovine Mammary Epithelial Cells

    PubMed Central

    Almeida, Raul A.; Dunlap, John R.; Oliver, Stephen P.

    2010-01-01

    We showed that internalization of Streptococcus uberis into bovine mammary epithelial cells occurred through receptor- (RME) and caveolae-mediated endocytosis (CME). We reported also that treatment of S. uberis with host proteins including lactoferrin (LF) enhanced its internalization into host cells. Since the underlying mechanism(s) involved in such enhancement was unknown we investigated if preincubation of S. uberis with host proteins drives internalization of this pathogen into host cells through CME. Thus, experiments involving coculture of collagen-, fibronectin-, and LF-pretreated S. uberis with bovine mammary epithelial cells treated with RME and CME inhibitors were conducted. Results showed that internalization of host proteins-pretreated S. uberis into mammary epithelial cells treated with RME inhibitors was higher than that of untreated controls. These results suggest that pretreatment with selected host proteins commits S. uberis to CME, thus avoiding intracellular bactericidal mechanisms and allowing its persistence into bovine mammary epithelial cells. PMID:20614000

  12. Comparing national home-keeping and the regulation of translational stem cell applications: An international perspective.

    PubMed

    Sleeboom-Faulkner, Margaret; Chekar, Choon Key; Faulkner, Alex; Heitmeyer, Carolyn; Marouda, Marina; Rosemann, Achim; Chaisinthop, Nattaka; Chang, Hung-Chieh Jessica; Ely, Adrian; Kato, Masae; Patra, Prasanna K; Su, Yeyang; Sui, Suli; Suzuki, Wakana; Zhang, Xinqing

    2016-03-01

    A very large grey area exists between translational stem cell research and applications that comply with the ideals of randomised control trials and good laboratory and clinical practice and what is often referred to as snake-oil trade. We identify a discrepancy between international research and ethics regulation and the ways in which regulatory instruments in the stem cell field are developed in practice. We examine this discrepancy using the notion of 'national home-keeping', referring to the way governments articulate international standards and regulation with conflicting demands on local players at home. Identifying particular dimensions of regulatory tools - authority, permissions, space and acceleration - as crucial to national home-keeping in Asia, Europe and the USA, we show how local regulation works to enable development of the field, notwithstanding international (i.e. principally 'western') regulation. Triangulating regulation with empirical data and archival research between 2012 and 2015 has helped us to shed light on how countries and organisations adapt and resist internationally dominant regulation through the manipulation of regulatory tools (contingent upon country size, the state's ability to accumulate resources, healthcare demands, established traditions of scientific governance, and economic and scientific ambitions). PMID:26921839

  13. International Society for Cell and Gene Therapy of Cancer 2009 Annual Meeting held in Cork, Ireland.

    PubMed

    Guinn, Barbara; Casey, Garrett; Möller, Mecker G; Kasahara, Noriyuki; O'Sullivan, Gerald C; Peng, Kah-Whye; Tangney, Mark

    2010-01-01

    The International Society for Cell and Gene Therapy (ISCGT) of Cancer annual meeting was held from September 2 through September 4, 2009, in Cork, Ireland ( www.iscgt2009.com ). The conference was held in conjunction with the Irish Society for Gene and Cell Therapy third annual meeting, and brought together scientists and clinicians from around the world in a country developing its knowledge economy. Next year's ISCGT meeting will be held in Doha, the capital of Qatar ( www.iscgt.net ), from September 27 through September 29, 2010. PMID:20017714

  14. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells

    NASA Astrophysics Data System (ADS)

    Yang, Linxiao; Shang, Li; Nienhaus, G. Ulrich

    2013-01-01

    We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ~700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded from the nucleus even after 24 h.We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ~700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded

  15. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling

    NASA Astrophysics Data System (ADS)

    Slooff, L. H.; Veenstra, S. C.; Kroon, J. M.; Moet, D. J. D.; Sweelssen, J.; Koetse, M. M.

    2007-04-01

    A power conversion efficiency of 4.2% (AM1.5, 1000W/m2) is measured for an organic solar cell based on an active layer of an alternating copolymer, containing a fluorene and a benzothiadiazole unit with two neighboring thiophene rings, and a fullerene derivative. Using optical modeling, the absorption profile in the active layer of the solar cell is calculated and used to calculate the maximum short circuit current. The calculated currents are compared with measured currents from current-voltage measurements for various film thicknesses. From this the internal quantum efficiency is estimated to be 75% at the maximum for the best device.

  16. Internal voltage control of hydrogen-oxygen fuel cells: Feasibility study

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.

    1975-01-01

    An experimental study was conducted to assess the feasibility of internal voltage regulation of fuel cell systems. Two methods were tested. In one, reactant partial pressure was used as the voltage control parameter and in the other reactant total pressure was used for control. Both techniques were breadboarded and tested on a single alkaline-electrolyte fuel cell. Both methods were found to be possible forms of regulation, however, of the two the total pressure technique would be more efficient, simpler to apply and would provide better transient characteristics.

  17. Meeting report of the first conference of the International Placenta Stem Cell Society (IPLASS).

    PubMed

    Parolini, O; Alviano, F; Betz, A G; Bianchi, D W; Götherström, C; Manuelpillai, U; Mellor, A L; Ofir, R; Ponsaerts, P; Scherjon, S A; Weiss, M L; Wolbank, S; Wood, K J; Borlongan, C V

    2011-10-01

    The International Placenta Stem Cell Society (IPLASS) was founded in June 2010. Its goal is to serve as a network for advancing research and clinical applications of stem/progenitor cells isolated from human term placental tissues, including the amnio-chorionic fetal membranes and Wharton's jelly. The commitment of the Society to champion placenta as a stem cell source was realized with the inaugural meeting of IPLASS held in Brescia, Italy, in October 2010. Officially designated as an EMBO-endorsed scientific activity, international experts in the field gathered for a 3-day meeting, which commenced with "Meet with the experts" sessions, IPLASS member and board meetings, and welcome remarks by Dr. Ornella Parolini, President of IPLASS. The evening's highlight was a keynote plenary lecture by Dr. Diana Bianchi. The subsequent scientific program consisted of morning and afternoon oral and poster presentations, followed by social events. Both provided many opportunities for intellectual exchange among the 120 multi-national participants. This allowed a methodical and deliberate evaluation of the status of placental cells in research in regenerative and reparative medicine. The meeting concluded with Dr. Parolini summarizing the meeting's highlights. This further prepared the fertile ground on which to build the promising potential of placental cell research. The second IPLASS meeting will take place in September 2012 in Vienna, Austria. This meeting report summarizes the thought-provoking lectures delivered at the first meeting of IPLASS. PMID:21575989

  18. Effect of ultrasound irradiation on bacterial internalization and bacteria-mediated gene transfer to cancer cells.

    PubMed

    Ninomiya, Kazuaki; Yamada, Ryuji; Meisaku, Hitomi; Shimizu, Nobuaki

    2014-05-01

    The present study demonstrates that ultrasound irradiation can facilitate bacteria-mediated gene delivery (bactofection). Escherichia coli modified with avidin were employed as a vehicle for delivery of the green fluorescent protein (GFP) gene, a model heterologous gene, into the breast cancer cell line MCF-7. Avidin-mediated binding of E. coli to MCF-7 cells enhanced the internalization of E. coli by approximately 17%, irrespective of the use of ultrasound irradiation. Furthermore, the use of ultrasound irradiation increased the internalization by approximately 5%, irrespective of the presence of avidin on the E. coli cell surface. The percentages of GFP-expressing MCF-7 cells at 24h after bactofection were below 0.5% and 2% for the case with only avidin-modification of E. coli cell surface and only ultrasound irradiation, respectively. However, combining avidin modification with the ultrasound treatment increased this value to 8%. Thus, the use of avidin-modified bacteria in conjunction with ultrasound irradiation has potential as an effective strategy for tumor-targeted bactofection. PMID:24373691

  19. Effects of the properties of short peptides conjugated with cell-penetrating peptides on their internalization into cells.

    PubMed

    Matsumoto, Ryo; Okochi, Mina; Shimizu, Kazunori; Kanie, Kei; Kato, Ryuji; Honda, Hiroyuki

    2015-01-01

    Peptides, especially intracellular functional peptides that can play a particular role inside a cell, have attracted attention as promising materials to control cell fate. However, hydrophilic materials like peptides are difficult for cells to internalize. Therefore, the screening and design of intracellular functional peptides are more difficult than that of extracellular ones. An effective high-throughput screening system for intracellular functional peptides has not been reported. Here, we demonstrate a novel peptide array system for screening intracellular functional peptides, in which both cell-penetrating peptide (CPP) domain and photo-cleavable linkers are used. By using this screening system, we determined how the cellular uptake properties of CPP-conjugated peptides varied depending on the properties of the conjugated peptides. We found that the internalization ability of CPP-conjugated peptides varied greatly depending on the property of the conjugated peptides, and anionic peptides drastically decreased the uptake ability. We summarized our data in a scatter diagram that plots hydrophobicity versus isoelectric point (pI) of conjugated peptides. These results define a peptide library suitable for screening of intracellular functional peptides. Thus, our system, including the diagram, is a promising tool for searching biological active molecules such as peptide-based drugs. PMID:26256261

  20. Effects of the properties of short peptides conjugated with cell-penetrating peptides on their internalization into cells

    PubMed Central

    Matsumoto, Ryo; Okochi, Mina; Shimizu, Kazunori; Kanie, Kei; Kato, Ryuji; Honda, Hiroyuki

    2015-01-01

    Peptides, especially intracellular functional peptides that can play a particular role inside a cell, have attracted attention as promising materials to control cell fate. However, hydrophilic materials like peptides are difficult for cells to internalize. Therefore, the screening and design of intracellular functional peptides are more difficult than that of extracellular ones. An effective high-throughput screening system for intracellular functional peptides has not been reported. Here, we demonstrate a novel peptide array system for screening intracellular functional peptides, in which both cell-penetrating peptide (CPP) domain and photo-cleavable linkers are used. By using this screening system, we determined how the cellular uptake properties of CPP-conjugated peptides varied depending on the properties of the conjugated peptides. We found that the internalization ability of CPP-conjugated peptides varied greatly depending on the property of the conjugated peptides, and anionic peptides drastically decreased the uptake ability. We summarized our data in a scatter diagram that plots hydrophobicity versus isoelectric point (pI) of conjugated peptides. These results define a peptide library suitable for screening of intracellular functional peptides. Thus, our system, including the diagram, is a promising tool for searching biological active molecules such as peptide-based drugs. PMID:26256261

  1. Selective internalization of self-assembled artificial oil bodies by HER2/neu-positive cells

    NASA Astrophysics Data System (ADS)

    Chiang, Chung-Jen; Lin, Li-Jen; Lin, Che-Chin; Chang, Chih-Hsiang; Chao, Yun-Peng

    2011-01-01

    A novel delivery carrier was developed using artificial oil bodies (AOBs). Plant seed oil bodies (OBs) consist of a triacylglycerol matrix surrounded by a monolayer of phospholipids embedded with the storage protein oleosin (Ole). Ole consists of a central hydrophobic domain with two amphiphatic arms that extrude from the surface of OBs. In this study, a bivalent anti-HER2/neu affibody domain (ZH2) was fused with Ole at the C terminus. After overproduction in Escherichia coli, the fusion protein (Ole-ZH2) was recovered to assemble AOBs. The size of self-assembled AOBs was tailored by varying the oil/Ole-ZH2 ratio and pH to reach a nanoscale. Upon co-incubation with tumor cells, the nanoscale AOBs encapsulated with a hydrophobic fluorescence dye were selectively internalized by HER2/neu-overexpressing cells and displayed biocompatibility with the cells. In addition, the ZH2-mediated endosomal entry of AOBs occurred in a time- and AOB dose-dependent manner. The internalization efficiency was as high as 90%. The internalized AOBs disintegrated at the non-permissive pH (e.g. in acidic endosomes) and the cargo dye was released. Results of in vitro study revealed a sustained and prolonged release profile. Taken together, our findings indicate the potential of AOBs as a delivery carrier.

  2. Internalization-dependent recognition of Mycobacterium avium ssp. paratuberculosis by intestinal epithelial cells.

    PubMed

    Pott, Johanna; Basler, Tina; Duerr, Claudia U; Rohde, Manfred; Goethe, Ralph; Hornef, Mathias W

    2009-12-01

    Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of Johne's disease, a highly prevalent chronic intestinal infection in domestic and wildlife ruminants. The microbial pathogenesis of MAP infection has attracted additional attention due to an association with the human enteric inflammatory Crohn's disease. MAP is acquired by the faecal-oral route prompting us to study the interaction with differentiated intestinal epithelial cells. MAP was rapidly internalized and accumulated in a late endosomal compartment. In contrast to other opportunistic mycobacteria or M. bovis, MAP induced significant epithelial activation as indicated by a NF-kappaB-independent but Erk-dependent chemokine secretion. Surprisingly, MAP-induced chemokine production was completely internalization-dependent as inhibition of Rac-dependent bacterial uptake abolished epithelial activation. In accordance, innate immune recognition of MAP by differentiated intestinal epithelial cells occurred through the intracellularly localized pattern recognition receptors toll-like receptor 9 and NOD1 with signal transduction via the adaptor molecules MyD88 and RIP2. The internalization-dependent innate immune activation of intestinal epithelial cells is in contrast to the stimulation of professional phagocytes by extracellular bacterial constituents and might significantly contribute to the histopathological changes observed during enteric MAP infection. PMID:19681906

  3. Internal reforming for natural gas fueled molten carbonate fuel cells. Final report 1 May 80-30 Jun 81

    SciTech Connect

    Baker, B.; Burns, D.; Lee, C.; Maru, H.; Patel, P.

    1981-12-01

    A natural gas fueled molten carbonate fuel cell (MCFC) is an attractive system for efficient electricity generation. The system yields maximum efficiency while operating on internal reforming mode. Among the various configurations evaluated for internal reforming MCFC, direct internal reforming appears to be most promising. Compared to the conventional baseline external reformer system, it can save as much as 20% natural gas at reduced capital and operating costs. The feasibility of internal reforming in MCFC has been verified through laboratory-scale (10 sq cm) cell tests followed by a successful scale-up to bench-scale (300 sq cm) cell. Bench-scale cells have been operated with direct methane feed up to 2000 hours. The results of system analysis and experimental work show that a successful development of the internal reforming MCFC will result in significant savings of natural gas and a cost effective electricity generation.

  4. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo

    PubMed Central

    Paris-Robidas, Sarah; Brouard, Danny; Emond, Vincent; Parent, Martin

    2015-01-01

    Receptors located on brain capillary endothelial cells forming the blood–brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery. PMID:26661181

  5. Glucose is a key driver for GLUT1-mediated nanoparticles internalization in breast cancer cells

    PubMed Central

    Venturelli, Leonardo; Nappini, Silvia; Bulfoni, Michela; Gianfranceschi, Giuseppe; Dal Zilio, Simone; Coceano, Giovanna; Del Ben, Fabio; Turetta, Matteo; Scoles, Giacinto; Vaccari, Lisa; Cesselli, Daniela; Cojoc, Dan

    2016-01-01

    The mesenchymal state in cancer is usually associated with poor prognosis due to the metastatic predisposition and the hyper-activated metabolism. Exploiting cell glucose metabolism we propose a new method to detect mesenchymal-like cancer cells. We demonstrate that the uptake of glucose-coated magnetic nanoparticles (MNPs) by mesenchymal-like cells remains constant when the glucose in the medium is increased from low (5.5 mM) to high (25 mM) concentration, while the MNPs uptake by epithelial-like cells is significantly reduced. These findings reveal that the glucose-shell of MNPs plays a major role in recognition of cells with high-metabolic activity. By selectively blocking the glucose transporter 1 channels we showed its involvement in the internalization process of glucose-coated MNPs. Our results suggest that glucose-coated MNPs can be used for metabolic-based assays aimed at detecting cancer cells and that can be used to selectively target cancer cells taking advantage, for instance, of the magnetic-thermotherapy. PMID:26899926

  6. Glucose is a key driver for GLUT1-mediated nanoparticles internalization in breast cancer cells.

    PubMed

    Venturelli, Leonardo; Nappini, Silvia; Bulfoni, Michela; Gianfranceschi, Giuseppe; Dal Zilio, Simone; Coceano, Giovanna; Del Ben, Fabio; Turetta, Matteo; Scoles, Giacinto; Vaccari, Lisa; Cesselli, Daniela; Cojoc, Dan

    2016-01-01

    The mesenchymal state in cancer is usually associated with poor prognosis due to the metastatic predisposition and the hyper-activated metabolism. Exploiting cell glucose metabolism we propose a new method to detect mesenchymal-like cancer cells. We demonstrate that the uptake of glucose-coated magnetic nanoparticles (MNPs) by mesenchymal-like cells remains constant when the glucose in the medium is increased from low (5.5 mM) to high (25 mM) concentration, while the MNPs uptake by epithelial-like cells is significantly reduced. These findings reveal that the glucose-shell of MNPs plays a major role in recognition of cells with high-metabolic activity. By selectively blocking the glucose transporter 1 channels we showed its involvement in the internalization process of glucose-coated MNPs. Our results suggest that glucose-coated MNPs can be used for metabolic-based assays aimed at detecting cancer cells and that can be used to selectively target cancer cells taking advantage, for instance, of the magnetic-thermotherapy. PMID:26899926

  7. Heparan Sulfate Proteoglycans Promote Telomerase Internalization and MHC Class II Presentation on Dendritic Cells.

    PubMed

    Galaine, Jeanne; Kellermann, Guillaume; Guillaume, Yves; Boidot, Romain; Picard, Emilie; Loyon, Romain; Queiroz, Lise; Boullerot, Laura; Beziaud, Laurent; Jary, Marine; Mansi, Laura; André, Claire; Lethier, Lydie; Ségal-Bendirdjian, Evelyne; Borg, Christophe; Godet, Yann; Adotévi, Olivier

    2016-09-01

    Telomerase is a prototype-shared tumor Ag and represents an attractive target for anticancer immunotherapy. We have previously described promiscuous and immunogenic HLA-DR-restricted peptides derived from human telomerase reverse transcriptase (hTERT) and referred as universal cancer peptide (UCP). In nonsmall cell lung cancer, the presence of spontaneous UCP-specific CD4 T cell responses increases the survival of chemotherapy-responding patients. However, the precise mechanisms of hTERT's uptake, processing, and presentation on MHC-II molecules to stimulate CD4 T cells are poorly understood. In this work, by using well-characterized UCP-specific CD4 T cell clones, we showed that hTERT processing and presentation on MHC-II involve both classical endolysosomal and nonclassical cytosolic pathways. Furthermore, to our knowledge, we demonstrated for the first time that hTERT's internalization by dendritic cells requires its interaction with surface heparan sulfate proteoglycans. Altogether, our findings provide a novel mechanism of tumor-specific CD4 T cell activation and will be useful for the development of novel cancer immunotherapies that harness CD4 T cells. PMID:27481844

  8. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo.

    PubMed

    Paris-Robidas, Sarah; Brouard, Danny; Emond, Vincent; Parent, Martin; Calon, Frédéric

    2016-04-01

    Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery. PMID:26661181

  9. Internalization of Sambucus nigra agglutinins I and II in insect midgut CF-203 cells.

    PubMed

    Shahidi-Noghabi, Shahnaz; Van Damme, Els J M; De Vos, Winnok H; Smagghe, Guy

    2011-04-01

    In this project, the uptake mechanisms and localization of two lectins from Sambucus nigra, further referred to as S. nigra agglutinin (SNA)-I and SNA-II, into insect midgut CF-203 cells were studied. SNA-I is a chimeric lectin belonging to the class of ribosome-inactivating proteins, whereas SNA-II is a hololectin devoid of enzymatic activity. Internalization of the fluorescein isothiocyanate-labeled lectin was investigated using confocal microscopy. Both lectins were internalized into the cytoplasm of CF-203 cells at similar rates. Preexposure of the insect midgut cells to specific inhibitors of clathrin- and caveolae-mediated endocytosis resulted in an inhibition of lectin uptake in CF-203 cells and caspase-induced cytotoxicity caused by SNA-I and SNA-II, confirming the involvement of both endocytosis pathways. Further studies demonstrated that the uptake mechanism(s) for both lectins required phosphoinositide 3-kinases, but did not depend on the actin cytoskeleton. Since the hololectin SNA-II apparently uses a similar endocytosis pathway as the chimerolectin SNA-I, it can be concluded that the endocytosis process mainly relies on the carbohydrate-binding activity of the lectins under investigation. © 2011 Wiley Periodicals, Inc. PMID:21254203

  10. Robust patterning of gene expression based on internal coordinate system of cells.

    PubMed

    Ogawa, Ken-ichiro; Miyake, Yoshihiro

    2015-06-01

    Cell-to-cell communication in multicellular organisms is established through the transmission of various kinds of chemical substances such as proteins. It is well known that gene expression triggered by a chemical substance in individuals has stable spatial patterns despite the individual differences in concentration patterns of the chemical substance. This fact reveals an important property of multicellular organisms called "robustness", which allows the organisms to generate their forms while maintaining proportion. Robustness has been conventionally accounted for by the stability of solutions of dynamical equations that represent a specific interaction network of chemical substances. However, any biological system is composed of autonomous elements. In general, an autonomous element does not merely accept information on the chemical substance from the environment; instead, it accepts the information based on its own criteria for reaction. Therefore, this phenomenon needs to be considered from the viewpoint of cells. Such a viewpoint is expected to allow the consideration of the autonomy of cells in multicellular organisms. This study aims to explain theoretically the robust patterning of gene expression from the viewpoint of cells. For this purpose, we introduced a new operator for transforming a state variable of a chemical substance from an external coordinate system to an internal coordinate system of each cell, which describes the observation of the chemical substance by cells. We then applied this operator to the simplest reaction-diffusion model of the chemical substance to investigate observation effects by cells. Our mathematical analysis of this extended model indicates that the robust patterning of gene expression against individual differences in concentration pattern of the chemical substance can be explained from the viewpoint of cells if there is a regulation field that compensates for the difference between cells seen in the observation results

  11. Internalization and cellular pools of never growth factor in pheochromocytoma (PC12) cells

    SciTech Connect

    Neet, K.E.; Kasaian, M.

    1987-05-01

    Nerve Growth Factor (NGF) binds to a cell surface receptor on responsive neuronal cells to initiate cell maintenance and/or differentiation regimes. The purpose of these studies was to define quantitatively the fate of NGF in PC12 cells with respect to various cellular compartments in a single series of biochemical experiments. Different binding methodologies were evaluated in suspension and on plates. 50 pM SVI-NGF was bound to rat PC12 cells in suspension for 30 min at 37, followed by various methods and combinations of methods to remove subsets of bound ligand. Distinction could be made between NGF bound to fast vs. slow cell surface receptors, NGF bound to slow receptors at the cell surface vs. cell interior, and detergent-soluble vs. cytoskeletally-attached NGF. These treatments defined the relative size of five pools, including the fast receptor (65%), two intracellular compartments (12% and 3%) susceptible to nonionic detergent, and a detergent-stable intracellular pool of ligand (16%). At 37 the cold chase stable and the acid stable pools were about the same size because of rapid internalization, but the slow receptor was measurable at 4. Inhibitors were used to define the route of NGF through the cell from the plasma membrane to degradation. Chloroquine caused accumulation of NGF only in pools that were not associated with the cytoskeleton, implicating this compartment in supplying ligand to the lysosome. Results with cytochalasin B and colchicine and suggested both microfilament and microtubule pathways in NGF degradation. A model for the movement of NGF through the cell was developed based on these observations.

  12. Altered synthetic response of Campylobacter jejuni to cocultivation with human epithelial cells is associated with enhanced internalization.

    PubMed Central

    Konkel, M E; Cieplak, W

    1992-01-01

    Campylobacter jejuni has been shown to bind to and enter epithelial cells in culture. The interaction of C. jejuni with INT 407 epithelial cells was examined to determine whether bacterial protein synthesis is required for either binding or internalization. Chloramphenicol, a selective inhibitor of bacterial protein synthesis, significantly reduced the internalization, but not binding, of C. jejuni compared with untreated controls as determined by protection from gentamicin. Electrophoretic analysis of metabolically labeled proteins revealed that C. jejuni cultured with INT 407 cells synthesized 14 proteins that were not detected in organisms cultured in medium alone. The inhibitory effect of chloramphenicol on internalization was reduced by preincubation of C. jejuni with INT 407 cells. The results indicate that C. jejuni, like some other enteric pathogens, engages in a directed response to cocultivation with epithelial cells by synthesizing one or more proteins that facilitate internalization and suggest that this phenomenon is relevant to the pathogenesis of enteritis caused by C. jejuni. Images PMID:1399005

  13. Characteristics of functionalized nano-hydroxyapatite and internalization by human epithelial cell

    PubMed Central

    2011-01-01

    Hydroxyapatite is the main inorganic component of biological bone and tooth enamel, and synthetic hydroxyapatite has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of arginine-functionalized and europium-doped hydroxyapatite nanoparticles (Arg-Eu-HAP). The synthesized nanoparticles characterized by transmission electron microscopy, X-ray diffractometry, Fourier transform infrared, and Zeta potential analyzer. Its biological properties with DNA binding, cell toxicity, cell binding and intracellular distribution were tested by agarose gel electrophoresis assay, flow cytometry, and fluorescence microscope and laser scanning confocal microscope. The synthesized Arg-Eu-HAP could effectively bind DNA without any cytotoxicity and be internalized into the cytoplasm and perinuclear of human lung epithelial cells. PMID:22108000

  14. Distribution of gas flow in internally manifolded solid oxide fuel-cell stacks

    NASA Astrophysics Data System (ADS)

    Boersma, R. J.; Sammes, N. M.

    In internally manifolded fuel-cell stacks, there is a non-uniform gas flow distribution along the height of the system. To gain an insight into this distribution an analytical model has been developed. In the model, the stack is viewed as a network of hydraulic resistances. Some of these resistances are constant, while some depend upon the gas velocity and can be determined from the literature. The model consists of equations for the network with counter-current flow in the manifold channels. Only the most important resistances are included, i.e., the resistances due to splitting and combining the flows in the manifold channels, and the resistance in the gas channels of the active cell area. The ratio between the average flow and the flow in the upper cell can be solved from the model. In this manner, a very useful tool for separatorplate design is obtained.

  15. Characteristics of functionalized nano-hydroxyapatite and internalization by human epithelial cell

    NASA Astrophysics Data System (ADS)

    Yan-Zhong, Zhao; Yan-Yan, Huang; Jun, Zhu; Shai-Hong, Zhu; Zhi-You, Li; Ke-Chao, Zhou

    2011-11-01

    Hydroxyapatite is the main inorganic component of biological bone and tooth enamel, and synthetic hydroxyapatite has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of arginine-functionalized and europium-doped hydroxyapatite nanoparticles (Arg-Eu-HAP). The synthesized nanoparticles characterized by transmission electron microscopy, X-ray diffractometry, Fourier transform infrared, and Zeta potential analyzer. Its biological properties with DNA binding, cell toxicity, cell binding and intracellular distribution were tested by agarose gel electrophoresis assay, flow cytometry, and fluorescence microscope and laser scanning confocal microscope. The synthesized Arg-Eu-HAP could effectively bind DNA without any cytotoxicity and be internalized into the cytoplasm and perinuclear of human lung epithelial cells.

  16. A planar anode-supported Solid Oxide Fuel Cell model with internal reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Chinda, P.; Chanchaona, S.; Brault, P.; Wechsatol, W.

    2011-05-01

    Solid Oxide Fuel Cells (SOFCs) are of great interest due to their high energy efficiency, low emission level, and multiple fuel utilization. SOFC can operate with various kinds of fuels such as natural gas, carbon monoxide, methanol, ethanol, and hydrocarbon compounds, and they are becoming one of the main competitors among environmentally friendly energy sources for the future. In this study, a mathematical model of a co-flow planar anode-supported solid oxide fuel cell with internal reforming of natural gas has been developed. The model simultaneously solves mass, energy transport equations, and chemical as well as electrochemical reactions. The model can effectively predict the compound species distributions as well as the cell performance under specific operating conditions. The main result is a rather small temperature gradient obtained at 800 °C with S/C = 1 in classical operating conditions. The cell performance is reported for several operating temperatures and pressures. The cell performance is specified in terms of cell voltage and power density at any specific current density. The influence of electrode microstructure on cell performance was investigated. The simulation results show that the steady state performance is almost insensitive to microstructure of cells such as porosity and tortuosity unlike the operating pressure and temperature. However, for SOFC power output enhancement, the power output could be maximized by adjusting the pore size to an optimal value, similarly to porosity and tortuosity. At standard operating pressure (1 atm) and 800 °C with 48% fuel utilization, when an output cell voltage was 0.73 V, a current density of 0.38 A cm-2 with a power density of 0.28 W cm-2 was predicted. The accuracy of the model was validated by comparing with existing experimental results from the available literature.

  17. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal

  18. Internalization and cytotoxicity effects of carbon-encapsulated iron nanoparticles in murine endothelial cells: Studies on internal dosages due to loaded mass agglomerates.

    PubMed

    Cywinska, Monika A; Bystrzejewski, Michal; Poplawska, Magdalena; Kosmider, Anita; Zdanowski, Robert; Lewicki, Slawomir; Fijalek, Zbigniew; Ostrowska, Agnieszka; Bamburowicz, Magdalena; Cieszanowski, Andrzej; Grudzinski, Ireneusz P

    2016-08-01

    Carbon-encapsulated iron nanoparticles (CEINs) qualified as metal-inorganic hybrid nanomaterials offer a potential scope for an increasing number of biomedical applications. In this study, we have focused on the investigation of cellular fate and resulting cytotoxic effects of CEINs synthesized using a carbon arc route and studied in murine endothelial (HECa-10) cells. The CEIN samples were characterized as pristine (the mean diameter between 47 and 56nm) and hydrodynamic (the mean diameter between 270 and 460nm) forms and tested using a battery of methods to determine the cell internalization extent and cytotoxicity effects upon to the exposures (0.0001-100μg/ml) in HECa-10 cells. Our studies evidenced that the incubation with CEINs for 24h is accompanied with substantial changes of Zeta potential in cells which can be considered as a key factor for affecting the membrane transport, cellular distribution and cytotoxicity of these nanoparticles. The results demonstrate that CEINs have entered the endothelial cell through the endocytic pathway rather than by passive diffusion and they were mainly loaded as agglomerates on the cell membrane and throughout the cytoplasm, mitochondria and nucleus. The studies show that CEINs induce the mitochondrial and cell membrane cytotoxicities in a dose-dependent manner resulting from the internal dosages due to CEIN agglomerates. Our results highlight the importance of the physicochemical characterization of CEINs in studying the magnetic nanoparticle-endothelial cell interactions because the CEIN mass agglomerates can sediment more or less rapidly in culture models. PMID:27107485

  19. Internalization of nucleoside phosphates into live cells by complex formation with different CPPs and JBS-nucleoducin.

    PubMed

    Mussbach, Franziska; Pietrucha, Regina; Schaefer, Buerk; Reissmann, Siegmund

    2011-01-01

    Nucleoside phosphates can bind to many functional proteins like G-proteins or other GTP-binding proteins in signal transduction or translation processes. Till now internalization of nucleoside phosphates into live cells remains a challenge. We study the internalization of a fluorescent-labelled deoxyuridine triphosphate into HeLa cells and other adhesion and suspension cells. We use different cell-penetrating peptides and a cocktail suitable for formation of non-covalent complexes with the nucleotide. Internalization is observed by fluorescence microscopy, and the uptake efficiency is quantitatively estimated by fluorescence spectroscopy. The applied concentrations of CPPs and the cocktail were checked on cell viability (MTT test) and membrane integrity (bioluminescence test with peptidyl-luciferin), indicating that the CPPs and the complexes with the nucleotide are cytotoxic above certain concentrations. These concentrations depend on CPP and cell type and are the limiting factors for the cargo uptake. PMID:21053144

  20. Results from an International Measurement Round Robin of III-V Triple Junction Solar Cells under Air Mass Zero

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, Chris; Goodbody, Chris; Baur, Carsten; Sharps, Paul; Imaizumi, Mitsuru; Yoo, Henry; Sahlstrom, Ted; Walters, Robert; Lorentzen, Justin; Nocerino, John; Khan, Osman; Cravens, Robert; Valles, Juan; Toporow, Chantal; Gomez, Trinidad,; Bazan, Loreto Pazos; Bailey, Sheila

    2006-01-01

    This paper reports the results of an international measurement round robin of monolithic, triple-junction, GaInP/GaAs/Ge space solar cells. Eight laboratories representing national labs, solar cell vendors and space solar cell consumers, measured cells using in-house reference cells and compared those results to measurements made where each lab used the same set of reference cells. The results show that most of the discrepancy between laboratories is likely due to the quality of the standard cells rather than the measurement system or solar simulator used.

  1. The pluralization of the international: Resistance and alter-standardization in regenerative stem cell medicine

    PubMed Central

    Rosemann, Achim; Chaisinthop, Nattaka

    2016-01-01

    The article explores the formation of an international politics of resistance and ‘alter-standardization’ in regenerative stem cell medicine. The absence of internationally harmonized regulatory frameworks in the clinical stem cell field and the presence of lucrative business opportunities have resulted in the formation of transnational networks adopting alternative research standards and practices. These oppose, as a universal global standard, strict evidence-based medicine clinical research protocols as defined by scientists and regulatory agencies in highly developed countries. The emergence of transnational spaces of alter-standardization is closely linked to scientific advances in rapidly developing countries such as China and India, but calls for more flexible regulatory frameworks, and the legitimization of experimental for-profit applications outside of evidence-based medical care, are emerging increasingly also within more stringently regulated countries, such as the United States and countries in the European Union. We can observe, then, a trend toward the pluralization of the standards, practices, and concepts in the stem cell field. PMID:26983174

  2. Cells Behave Distinctly Within Sponges and Hydrogels Due to Differences of Internal Structure

    PubMed Central

    Zhang, Jingjing; Yang, Zheng; Li, Chao; Dou, Yana; Li, Yijiang; Thote, Tanushree; Wang, Dong-an

    2013-01-01

    Different forms of biomaterials, including microspheres, sponges, hydrogels, and nanofibers, have been broadly used in cartilage regeneration; however, effects of internal structures of the biomaterials on cells and chondrogenesis remain largely unexplored. We hypothesized that different internal structures of sponges and hydrogels led to phenotypic disparity of the cells and may lead to disparate chondrogenesis. In the current study, the chondrocytes in sponges and hydrogels of chitosan were compared with regard to cell distribution, morphology, gene expression, and production of extracellular matrix. The chondrocytes clustered or attached to the materials with spindle morphologies in the sponges, while they distributed evenly with spherical morphologies in the hydrogels. The chondrocytes proliferated faster with elevated gene expression of collagen type I and down-regulated gene expression of aggracan in sponges, when compared with those in the hydrogels. However, there was no significant difference of the expression of collagen type II between these two scaffolds. Excretion of both glycosaminoglycan (GAG) and collagen type II increased with time in vitro, but there was no significant difference between the sponges and the hydrogels. There was no significant difference in secretion of GAG and collagen type II in the two scaffolds, while the levels of collagen type I and collagen type X were much higher in sponges compared with those in hydrogels during an in vivo study. Though the chondrocytes displayed different phenotypes in the sponges and hydrogels, they led to comparable chondrogenesis. An optimized design of the biomaterials could further improve chondrogenesis through enhancing functionalities of the chondrocytes. PMID:23614637

  3. Performance evaluation of a proof-of-concept 70 W internal reforming methanol fuel cell system

    NASA Astrophysics Data System (ADS)

    Avgouropoulos, G.; Schlicker, S.; Schelhaas, K.-P.; Papavasiliou, J.; Papadimitriou, K. D.; Theodorakopoulou, E.; Gourdoupi, N.; Machocki, A.; Ioannides, T.; Kallitsis, J. K.; Kolb, G.; Neophytides, S.

    2016-03-01

    A proof-of-concept 70 W Internal Reforming Methanol Fuel Cell (IRMFC) stack including Balance-of-Plant (BoP) was designed, assembled and tested. Advent TPS® high-temperature, polymer electrolyte membrane electrode assemblies were employed for fuel cell operation at 200 °C. In order to avoid phosphoric acid poisoning of the reformer, the anode electrocatalyst of each cell was indirectly adjoined, via a separation plate, to a highly active CuMnAlOx catalyst coated onto copper foam, which served as methanol reforming layer. The reformer was in-situ converting the methanol/steam feed to the required hydrogen (internal reforming concept) at 200 °C, which was readily oxidized at the anode electrodes. The operation of the IRMFC was supported through a number of BoP components consisting of a start-up subsystem (air blower, evaporator and monolithic burner), a combined afterburner/evaporator device, methanol/water supply and data acquisition units (reactants/products analysis, temperature control, flow control, system load/output control). Depending on the composition of the liquid MeOH/H2O feed streams, current densities up to 0.18 A cm-2 and power output up to 70 W could be obtained with remarkable repeatability. Specific targets for improvement of the efficiency were identified.

  4. The pluralization of the international: Resistance and alter-standardization in regenerative stem cell medicine.

    PubMed

    Rosemann, Achim; Chaisinthop, Nattaka

    2016-02-01

    The article explores the formation of an international politics of resistance and 'alterstandardization' in regenerative stem cell medicine. The absence of internationally harmonized regulatory frameworks in the clinical stem cell field and the presence of lucrative business opportunities have resulted in the formation of transnational networks adopting alternative research standards and practices. These oppose, as a universal global standard, strict evidence-based medicine clinical research protocols as defined by scientists and regulatory agencies in highly developed countries. The emergence of transnational spaces of alter-standardization is closely linked to scientific advances in rapidly developing countries such as China and India, but calls for more flexible regulatory frameworks, and the legitimization of experimental for-profit applications outside of evidence-based medical care, are emerging increasingly also within more stringently regulated countries, such as the United States and countries in the European Union. We can observe, then, a trend toward the pluralization of the standards, practices, and concepts in the stem cell field. PMID:26983174

  5. Toward absolute quantification of iron oxide nanoparticles as well as cell internalized fraction using multiparametric MRI

    PubMed Central

    Girard, O. M.; Ramirez, R.; McCarty, S.; Mattrey, R. F.

    2012-01-01

    Iron oxide nanoparticles (IONPs) are widely used as MR contrast agents because of their strong magnetic properties and broad range of applications. The contrast induced by IONPs typically depends on concentration, water accessibility, particle size, and heterogeneity of IONP distribution within the microenvironment. Although the latter could be a tool to assess local physiological effects at the molecular level, it renders IONP quantification from relaxation measurements challenging. This study aims to quantify IONP concentration using susceptibility measurements. In addition, further analysis of relaxation data is proposed to extract quantitative information about the IONP spatial distribution. Mesenchymal stem cells were labeled with IONPs and the IONP concentration measured by mass spectroscopy. MR relaxation parameters (T1, T2, T2*) as well as magnetic susceptibility of cylindrical samples containing serial dilutions of mixtures of free and cell-internalized IONPs were measured and correlated with IONP concentration. Unlike relaxation data, magnetic susceptibility was independent of whether IONPs were free or internalized, making it an excellent candidate for IONP quantification. Using IONP concentration derived from mass spectroscopy and measured relaxation times, free and internalized IONP fractions were accurately calculated. Magnetic susceptibility was shown to be a robust technique to measure IONP concentration in this preliminary study. Novel imaging based susceptibility mapping techniques could prove to be valuable tools to quantify IONP concentration directly by MRI, for samples of arbitrarily shape. Combined with relaxation time mapping techniques, especially T2 and T2*, this could be an efficient way to measure both IONP concentration and the internalized IONP fraction in vivo using MRI, to gain insight into tissue function and molecular imaging paradigms. PMID:22649047

  6. International Society for the Advancement of Cytometry cell sorter biosafety standards.

    PubMed

    Holmes, Kevin L; Fontes, Benjamin; Hogarth, Philip; Konz, Richard; Monard, Simon; Pletcher, Charles H; Wadley, Robert B; Schmid, Ingrid; Perfetto, Stephen P

    2014-05-01

    Flow cytometric cell sorting of biological specimens has become prevalent in basic and clinical research laboratories. These specimens may contain known or unknown infectious agents, necessitating precautions to protect instrument operators and the environment from biohazards arising from the use of sorters. To this end the International Society of Analytical Cytology (ISAC) was proactive in establishing biosafety guidelines in 1997 (Schmid et al., Cytometry 1997;28:99-117) and subsequently published revised biosafety standards for cell sorting of unfixed samples in 2007 (Schmid et al., Cytometry Part A J Int Soc Anal Cytol 2007;71A:414-437). Since their publication, these documents have become recognized worldwide as the standard of practice and safety precautions for laboratories performing cell sorting experiments. However, the field of cytometry has progressed since 2007, and the document requires an update. The new Standards provides guidance: (1) for laboratory design for cell sorter laboratories; (2) for the creation of laboratory or instrument specific Standard Operating Procedures (SOP); and (3) on procedures for the safe operation of cell sorters, including personal protective equipment (PPE) and validation of aerosol containment. PMID:24634405

  7. A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems

    NASA Astrophysics Data System (ADS)

    Matelli, José Alexandre; Bazzo, Edson

    This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC and SOFC, respectively). Internal steam reforming of the natural gas hydrocarbons is considered for hydrogen production. From inputs as cell potential, cell power, number of cell in the stack, ancillary systems power consumption, reformed natural gas composition and hydrogen utilization factor, the simulation gives the natural gas consumption, anode and cathode stream gases temperature and composition, and thermodynamic, electrochemical and practical efficiencies. Both energetic and exergetic methods are considered for performance analysis. The results obtained from natural gas reforming thermodynamics simulation show that the hydrogen production is maximum around 700 °C, for a steam/carbon ratio equal to 3. As shown in the literature, the found results indicate that the SOFC is more efficient than MCFC.

  8. International Society for the Advancement of Cytometry Cell Sorter Biosafety Standards

    PubMed Central

    Holmes, Kevin L.; Fontes, Benjamin; Hogarth, Philip; Konz, Richard; Monard, Simon; Pletcher, Charles H.; Wadley, Robert B.; Schmid, Ingrid; Perfetto, Stephen P.

    2014-01-01

    Flow cytometric cell sorting of biological specimens has become prevalent in basic and clinical research laboratories. These specimens may contain known or unknown infectious agents, necessitating precautions to protect instrument operators and the environment from biohazards arising from the use of sorters. To this end the International Society of Analytical Cytology (ISAC) was proactive in establishing biosafety guidelines in 1997 (Schmid et al., Cytometry 1997;28:99–117) and subsequently published revised biosafety standards for cell sorting of unfixed samples in 2007 (Schmid et al., Cytometry Part A J Int Soc Anal Cytol 2007;71A:414–437). Since their publication, these documents have become recognized worldwide as the standard of practice and safety precautions for laboratories performing cell sorting experiments. However, the field of cytometry has progressed since 2007, and the document requires an update. The new Standards provides guidance: (1) for laboratory design for cell sorter laboratories; (2) for the creation of laboratory or instrument specific Standard Operating Procedures (SOP); and (3) on procedures for the safe operation of cell sorters, including personal protective equipment (PPE) and validation of aerosol containment. PMID:24634405

  9. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells

    NASA Astrophysics Data System (ADS)

    Villanueva, Angeles; Cañete, Magdalena; Roca, Alejandro G; Calero, Macarena; Veintemillas-Verdaguer, Sabino; Serna, Carlos J; del Puerto Morales, María; Miranda, Rodolfo

    2009-03-01

    The internalization and biocompatibility of iron oxide nanoparticles surface functionalized with four differently charged carbohydrates have been tested in the human cervical carcinoma cell line (HeLa). Neutral, positive, and negative iron oxide nanoparticles were obtained by coating with dextran, aminodextran, heparin, and dimercaptosuccinic acid, resulting in colloidal suspensions stable at pH 7 with similar aggregate size. No intracellular uptake was detected in cells incubated with neutral charged nanoparticles, while negative particles showed different behaviour depending on the nature of the coating. Thus, dimercaptosuccinic-coated nanoparticles showed low cellular uptake with non-toxic effects, while heparin-coated particles showed cellular uptake only at high nanoparticle concentrations and induced abnormal mitotic spindle configurations. Finally, cationic magnetic nanoparticles show excellent properties for possible in vivo biomedical applications such as cell tracking by magnetic resonance imaging (MRI) and cancer treatment by hyperthermia: (i) they enter into cells with high effectiveness, and are localized in endosomes; (ii) they can be easily detected inside cells by optical microscopy, (iii) they are retained for relatively long periods of time, and (iv) they do not induce any cytotoxicity.

  10. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

    NASA Technical Reports Server (NTRS)

    Cisar, Alan J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    1997-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.

  11. Direct ethanol solid oxide fuel cell operating in gradual internal reforming

    NASA Astrophysics Data System (ADS)

    Nobrega, S. D.; Galesco, M. V.; Girona, K.; de Florio, D. Z.; Steil, M. C.; Georges, S.; Fonseca, F. C.

    2012-09-01

    An electrolyte supported solid oxide fuel cell (SOFC) using standard electrodes, doped-lanthanum manganite cathode and Ni-cermet anode, was operated with direct (anhydrous) ethanol for more than 100 h, delivering essentially the same power output as running on hydrogen. A ceria-based layer provides the catalytic activity for the gradual internal reforming, which uses the steam formed by the electrochemical oxidation of hydrogen for the decomposition of ethanol. Such a concept opens up the way for multi-fuel SOFCs using standard components and a catalytic layer.

  12. Development of internal manifold heat exchanger (IMHEX reg sign ) molten carbonate fuel cell stacks

    SciTech Connect

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX{reg sign} concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft{sup 2}) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft{sup 2} stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft{sup 2}) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs.

  13. Lupus risk variants in the PXK locus alter B-cell receptor internalization.

    PubMed

    Vaughn, Samuel E; Foley, Corinne; Lu, Xiaoming; Patel, Zubin H; Zoller, Erin E; Magnusen, Albert F; Williams, Adrienne H; Ziegler, Julie T; Comeau, Mary E; Marion, Miranda C; Glenn, Stuart B; Adler, Adam; Shen, Nan; Nath, Swapan; Stevens, Anne M; Freedman, Barry I; Tsao, Betty P; Jacob, Chaim O; Kamen, Diane L; Brown, Elizabeth E; Gilkeson, Gary S; Alarcón, Graciela S; Reveille, John D; Anaya, Juan-Manuel; James, Judith A; Moser, Kathy L; Criswell, Lindsey A; Vilá, Luis M; Alarcón-Riquelme, Marta E; Petri, Michelle; Scofield, R Hal; Kimberly, Robert P; Ramsey-Goldman, Rosalind; Binjoo, Young; Choi, Jeongim; Bae, Sang-Cheol; Boackle, Susan A; Vyse, Timothy J; Guthridge, Joel M; Namjou, Bahram; Gaffney, Patrick M; Langefeld, Carl D; Kaufman, Kenneth M; Kelly, Jennifer A; Harley, Isaac T W; Harley, John B; Kottyan, Leah C

    2014-01-01

    Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3' UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10(-10), OR 0.81 (0.75-0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity. PMID:25620976

  14. The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Marches, Radu; Mikoryak, Carole; Wang, Ru-Hung; Pantano, Paul; Draper, Rockford K.; Vitetta, Ellen S.

    2011-03-01

    Single-walled carbon nanotubes (CNTs) convert absorbed near infrared (NIR) light into heat. The use of CNTs in the NIR-mediated photothermal ablation of tumor cells is attractive because the penetration of NIR light through normal tissues is optimal and the side effects are minimal. Targeted thermal ablation with minimal collateral damage can be achieved by using CNTs attached to tumor-specific monoclonal antibodies (MAbs). However, the role that the cellular internalization of CNTs plays in the subsequent sensitivity of the target cells to NIR-mediated photothermal ablation remains undefined. To address this issue, we used CNTs covalently coupled to an anti-Her2 or a control MAb and tested their ability to bind, internalize, and photothermally ablate Her2 + but not Her2 - breast cancer cell lines. Using flow cytometry, immunofluorescence, and confocal Raman microscopy, we observed the gradual time-dependent receptor-mediated endocytosis of anti-Her2-CNTs whereas a control MAb-CNT conjugate did not bind to the cells. Most importantly, the Her2 + cells that internalized the MAb-CNTs were more sensitive to NIR-mediated photothermal damage than cells that could bind to, but not internalize the MAb-CNTs. These results suggest that both the targeting and internalization of MAb-CNTs might result in the most effective thermal ablation of tumor cells following their exposure to NIR light.

  15. Propranolol Restricts the Mobility of Single EGF-Receptors on the Cell Surface before Their Internalization

    PubMed Central

    Otero, Carolina; Linke, Max; Sanchez, Paula; González, Alfonso; Schaap, Iwan A. T.

    2013-01-01

    The epidermal growth factor receptor is involved in morphogenesis, proliferation and cell migration. Its up-regulation during tumorigenesis makes this receptor an interesting therapeutic target. In the absence of the ligand, the inhibition of phosphatidic acid phosphohydrolase activity by propranolol treatment leads to internalization of empty/inactive receptors. The molecular events involved in this endocytosis remain unknown. Here, we quantified the effects of propranolol on the mobility of single quantum-dot labelled receptors before the actual internalization took place. The single receptors showed a clear stop-and-go motion; their diffusive tracks were continuously interrupted by sub-second stalling events, presumably caused by transient clustering. In the presence of propranolol we found that: i) the diffusion rate reduced by 22 %, which indicates an increase in drag of the receptor. Atomic force microscopy measurements did not show an increase of the effective membrane tension, such that clustering of the receptor remains the likely mechanism for its reduced mobility. ii) The receptor got frequently stalled for longer periods of multiple seconds, which may signal the first step of the internalization process. PMID:24349439

  16. Endothelial Cells Use a Formin-Dependent Phagocytosis-Like Process to Internalize the Bacterium Listeria monocytogenes.

    PubMed

    Rengarajan, Michelle; Hayer, Arnold; Theriot, Julie A

    2016-05-01

    Vascular endothelial cells act as gatekeepers that protect underlying tissue from blood-borne toxins and pathogens. Nevertheless, endothelial cells are able to internalize large fibrin clots and apoptotic debris from the bloodstream, although the precise mechanism of such phagocytosis-like uptake is unknown. We show that cultured primary human endothelial cells (HUVEC) internalize both pathogenic and non-pathogenic Listeria bacteria comparably, in a phagocytosis-like process. In contrast with previously studied host cell types, including intestinal epithelial cells and hepatocytes, we find that endothelial internalization of Listeria is independent of all known pathogenic bacterial surface proteins. Consequently, we exploited the internalization and intracellular replication of L. monocytogenes to identify distinct host cell factors that regulate phagocytosis-like uptake in HUVEC. Using siRNA screening and subsequent genetic and pharmacologic perturbations, we determined that endothelial infectivity was modulated by cytoskeletal proteins that normally modulate global architectural changes, including phosphoinositide-3-kinase, focal adhesions, and the small GTPase Rho. We found that Rho kinase (ROCK) is acutely necessary for adhesion of Listeria to endothelial cells, whereas the actin-nucleating formins FHOD1 and FMNL3 specifically regulate internalization of bacteria as well as inert beads, demonstrating that formins regulate endothelial phagocytosis-like uptake independent of the specific cargo. Finally, we found that neither ROCK nor formins were required for macrophage phagocytosis of L. monocytogenes, suggesting that endothelial cells have distinct requirements for bacterial internalization from those of classical professional phagocytes. Our results identify a novel pathway for L. monocytogenes uptake by human host cells, indicating that this wily pathogen can invade a variety of tissues by using a surprisingly diverse suite of distinct uptake mechanisms that

  17. Endothelial Cells Use a Formin-Dependent Phagocytosis-Like Process to Internalize the Bacterium Listeria monocytogenes

    PubMed Central

    Rengarajan, Michelle; Hayer, Arnold; Theriot, Julie A.

    2016-01-01

    Vascular endothelial cells act as gatekeepers that protect underlying tissue from blood-borne toxins and pathogens. Nevertheless, endothelial cells are able to internalize large fibrin clots and apoptotic debris from the bloodstream, although the precise mechanism of such phagocytosis-like uptake is unknown. We show that cultured primary human endothelial cells (HUVEC) internalize both pathogenic and non-pathogenic Listeria bacteria comparably, in a phagocytosis-like process. In contrast with previously studied host cell types, including intestinal epithelial cells and hepatocytes, we find that endothelial internalization of Listeria is independent of all known pathogenic bacterial surface proteins. Consequently, we exploited the internalization and intracellular replication of L. monocytogenes to identify distinct host cell factors that regulate phagocytosis-like uptake in HUVEC. Using siRNA screening and subsequent genetic and pharmacologic perturbations, we determined that endothelial infectivity was modulated by cytoskeletal proteins that normally modulate global architectural changes, including phosphoinositide-3-kinase, focal adhesions, and the small GTPase Rho. We found that Rho kinase (ROCK) is acutely necessary for adhesion of Listeria to endothelial cells, whereas the actin-nucleating formins FHOD1 and FMNL3 specifically regulate internalization of bacteria as well as inert beads, demonstrating that formins regulate endothelial phagocytosis-like uptake independent of the specific cargo. Finally, we found that neither ROCK nor formins were required for macrophage phagocytosis of L. monocytogenes, suggesting that endothelial cells have distinct requirements for bacterial internalization from those of classical professional phagocytes. Our results identify a novel pathway for L. monocytogenes uptake by human host cells, indicating that this wily pathogen can invade a variety of tissues by using a surprisingly diverse suite of distinct uptake mechanisms that

  18. Ephrinb1 and Ephrinb2 Are Associated with Interleukin-7 Receptor α and Retard Its Internalization from the Cell Surface*

    PubMed Central

    Luo, Hongyu; Wu, Zenghui; Qi, Shijie; Jin, Wei; Han, Bing; Wu, Jiangping

    2011-01-01

    IL-7 plays vital roles in thymocyte development, T cell homeostasis, and the survival of these cells. IL-7 receptor α (IL-7Rα) on thymocytes and T cells is rapidly internalized upon IL-7 ligation. Ephrins (Efns) are cell surface molecules and ligands of the largest receptor kinase family, Eph kinases. We discovered that T cell-specific double gene knock-out (dKO) of Efnb1 and Efnb2 in mice led to reduced IL-7Rα expression in thymocytes and T cells, and that IL-7Rα down-regulation was accelerated in dKO CD4 cells upon IL-7 treatment. On the other hand, Efnb1 and Efnb2 overexpression on T cell lymphoma EL4 cells retarded IL-7Rα down-regulation. dKO T cells manifested compromised STAT5 activation and homeostatic proliferation, an IL-7-dependent process. Fluorescence resonance energy transfer and immunoprecipitation demonstrated that Efnb1 and Efnb2 interacted physically with IL-7Rα. Such interaction likely retarded IL-7Rα internalization, as Efnb1 and Efnb2 were not internalized. Therefore, we revealed a novel function of Efnb1 and Efnb2 in stabilizing IL-7Rα expression at the post-translational level, and a previously unknown modus operandi of Efnbs in the regulation of expression of other vital cell surface receptors. PMID:22069310

  19. Internal electrolyte supply system for reliable transport throughout fuel cell stacks

    DOEpatents

    Wright, Maynard K.; Downs, Robert E.; King, Robert B.

    1988-01-01

    An improved internal electrolyte supply system in a fuel cell stack employs a variety of arrangements of grooves and passages in bipolar plates of the multiplicity of repeating fuel cells to route gravity-assisted flowing electrolyte throughout the stack. The grooves route electrolyte flow along series of first paths which extend horizontally through the cells between the plates thereof. The passages route electrolyte flow along series of second paths which extend vertically through the stack so as to supply electrolyte to the first paths in order to expose the electrolyte to the matrices of the cells. Five different embodiments of the supply system are disclosed. Some embodiments employ wicks in the grooves for facilitating transfer of the electrolyte to the matrices as well as providing support for the matrices. Additionally, the passages of some embodiments by-pass certain of the grooves and supply electrolyte directly to other of the grooves. Some embodiments employ single grooves and others have dual grooves. Finally, in some embodiments the passages are connected to the grooves by a step which produces a cascading electrolyte flow.

  20. Internalization of nanopolymeric tracers does not alter characteristics of placental cells.

    PubMed

    Bigini, Paolo; Zanier, Elisa R; Saragozza, Silvia; Maciotta, Simona; Romele, Pietro; Bonassi Signoroni, Patrizia; Silini, Antonietta; Pischiutta, Francesca; Sammali, Eliana; Balducci, Claudia; Violatto, Martina B; Talamini, Laura; Garry, David; Moscatelli, Davide; Ferrari, Raffaele; Salmona, Mario; De Simoni, Maria Grazia; Maggi, Federico; Simoni, Giuseppe; Grati, Francesca Romana; Parolini, Ornella

    2016-06-01

    In the cell therapy scenario, efficient tracing of transplanted cells is essential for investigating cell migration and interactions with host tissues. This is fundamental to provide mechanistic insights which altogether allow for the understanding of the translational potential of placental cell therapy in the clinical setting. Mesenchymal stem/stromal cells (MSC) from human placenta are increasingly being investigated for their potential in treating patients with a variety of diseases. In this study, we investigated the feasibility of using poly (methyl methacrylate) nanoparticles (PMMA-NPs) to trace placental MSC, namely those from the amniotic membrane (hAMSC) and early chorionic villi (hCV-MSC). We report that PMMP-NPs are efficiently internalized and retained in both populations, and do not alter cell morphofunctional parameters. We observed that PMMP-NP incorporation does not alter in vitro immune modulatory capability of placental MSC, a characteristic central to their reparative/therapeutic effects in vitro. We also show that in vitro, PMMP-NP uptake is not affected by hypoxia. Interestingly, after in vivo brain ischaemia and reperfusion injury achieved by transient middle cerebral artery occlusion (tMCAo) in mice, iv hAMSC treatment resulted in significant improvement in cognitive function compared to PBS-treated tMCAo mice. Our study provides evidence that tracing placental MSC with PMMP-NPs does not alter their in vitro and in vivo functions. These observations are grounds for the use of PMMP-NPs as tools to investigate the therapeutic mechanisms of hAMSC and hCV-MSC in preclinical models of inflammatory-driven diseases. PMID:26987908

  1. Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization.

    PubMed

    Surassmo, Suvimol; Saengkrit, Nattika; Ruktanonchai, Uracha Rungsardthong; Suktham, Kunat; Woramongkolchai, Noppawan; Wutikhun, Tuksadon; Puttipipatkhachorn, Satit

    2015-06-01

    Mucoadhesive poly (lactic-co-glycolic acid) (PLGA) nanoparticles having a modified shell-matrix derived from polyvinyl alcohol (PVA) and Carbopol (CP), a biodegradable polymer coating, to improve the adhesion and cell transfection properties were developed. The optimum formulations utilized a CP concentration in the range of 0.05-0.2%w/v, and were formed using modified emulsion-solvent evaporation technique. The resulting CP-PLGA nanoparticles were characterized in terms of their physical and chemical properties. The absorbed CP on the PLGA shell-matrix was found to affect the particle size and surface charge, with 0.05% CP giving rise to smooth spherical particles (0.05CP-PLGA) with the smallest size (285.90 nm), and strong negative surface charge (-25.70 mV). The introduction of CP results in an enhancement of the mucoadhesion between CP-PLGA nanoparticles and mucin particles. In vitro cell internalization studies highlighted the potential of 0.05CP-PLGA nanoparticles for transfection into SiHa cells, with uptake being time dependent. Additionally, cytotoxicity studies of CP-PLGA nanoparticles against SiHa cancer cells indicated that low concentrations of the nanoparticles were non-toxic to cells (cell viability >80%). From the various formulations studied, 0.05CP-PLGA nanoparticles proved to be the optimum model carrier having the required mucoadhesive profile and could be an alternative therapeutic efficacy carrier for targeted mucosal drug delivery systems with biodegradable polymer. PMID:25937384

  2. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  3. Internalization of Red Blood Cell-Mimicking Hydrogel Capsules with pH-Triggered Shape Responses

    PubMed Central

    2015-01-01

    We report on naturally inspired hydrogel capsules with pH-induced transitions from discoids to oblate ellipsoids and their interactions with cells. We integrate characteristics of erythrocytes such as discoidal shape, hollow structure, and elasticity with reversible pH-responsiveness of poly(methacrylic acid) (PMAA) to design a new type of drug delivery carrier to be potentially triggered by chemical stimuli in the tumor lesion. The capsules are fabricated from cross-linked PMAA multilayers using sacrificial discoid silicon templates. The degree of capsule shape transition is controlled by the pH-tuned volume change, which in turn is regulated by the capsule wall composition. The (PMAA)15 capsules undergo a dramatic 24-fold volume change, while a moderate 2.3-fold volume variation is observed for more rigid PMAA–(poly(N-vinylpyrrolidone) (PMAA–PVPON)5 capsules when solution pH is varied between 7.4 and 4. Despite that both types of capsules exhibit discoid-to-oblate ellipsoid transitions, a 3-fold greater swelling in radial dimensions is found for one-component systems due to a greater degree of the circular face bulging. We also show that (PMAA–PVPON)5 discoidal capsules interact differently with J774A.1 macrophages, HMVEC endothelial cells, and 4T1 breast cancer cells. The discoidal capsules show 60% lower internalization as compared to spherical capsules. Finally, hydrogel capsules demonstrate a 2-fold decrease in size upon internalization. These capsules represent a unique example of elastic hydrogel discoids capable of pH-induced drastic and reversible variations in aspect ratios. Considering the RBC-mimicking shape, their dimensions, and their capability to undergo pH-triggered intracellular responses, the hydrogel capsules demonstrate considerable potential as novel carriers in shape-regulated transport and cellular uptake. PMID:24848786

  4. Downregulation of Syndecan-1 induce glomerular endothelial cell dysfunction through modulating internalization of VEGFR-2.

    PubMed

    Jing, Zhou; Wei-Jie, Yuan; Yi-Feng, Zhu-Ge; Jing, Hao

    2016-08-01

    Ischemic acute kidney injury (AKI) remains to have high morbidity and mortality rates. The mechanism of glomerular endothelial cells (GEnC) dysfunction in the development of ischemic AKI is still unclear. Syndecan-1, one kind of heparan sulfate proteoglycan (HSPG), is extensively studied in tumor for its effects in promoting angiogenesis. In this study, we found that, Syndecan-1 was reduced in GEnC both in vivo and in vitro after hypoxia treatment. Besides, down-regulation of Syndecan-1 could lead to dysfunction and apoptosis of GEnC, as indicated by increased cell permeability, decreased cell viability and inhibited tube formation. VEGF-VEGFR-2 signaling is essential in maintaining biology of GEnC, and activation of its downstream effectors, ERK1/2, AKT, and Rac1, were inhibited in GEnC transfected with Syndecan-1 siRNA compared with control siRNA. Moreover, membrane VEGFR-2 expression was reduced significantly in GEnC transfected with Syndecan-1 siRNA. Clathrin-mediated endocytosis of VEGFR-2 is essential in the activation of VEGF-VEGFR-2 signaling. Our further study demonstrated that down-regulation of Syndecan-1 in GEnC inhibit VEGF-VEGFR-2 signaling by recruiting VEGFR-2 to the Caveolin-dependent endocytosis route, there by sequestering it from Clathrin-mediated endocytosis. Moreover, as shown by immunofluorescence and immunoprecipitation analysis, VEGFR-2 co-localizes and interacts with Syndecan-1, indicating Syndecan-1 may act as a co-receptor of VEGFR-2, thus to mediate internalization of VEGFR-2. We speculated that down-regulation of Syndecan-1 could inhibit VEGF-VEGFR-2 signaling through regulating internalization of VEGFR-2, thus leading to dysfunction and apoptosis of GEnC. This indicates a potential target for the therapy of ischemic AKI. PMID:27075925

  5. Using Total Internal Reflection Fluorescence Microscopy To Visualize Rhodopsin-Containing Cells

    PubMed Central

    Keffer, J. L.; Sabanayagam, C. R.; Lee, M. E.; DeLong, E. F.; Hahn, M. W.

    2015-01-01

    Sunlight is captured and converted to chemical energy in illuminated environments. Although (bacterio)chlorophyll-based photosystems have been characterized in detail, retinal-based photosystems, rhodopsins, have only recently been identified as important mediators of light energy capture and conversion. Recent estimates suggest that up to 70% of cells in some environments harbor rhodopsins. However, because rhodopsin autofluorescence is low—comparable to that of carotenoids and significantly less than that of (bacterio)chlorophylls—these estimates are based on metagenomic sequence data, not direct observation. We report here the use of ultrasensitive total internal reflection fluorescence (TIRF) microscopy to distinguish between unpigmented, carotenoid-producing, and rhodopsin-expressing bacteria. Escherichia coli cells were engineered to produce lycopene, β-carotene, or retinal. A gene encoding an uncharacterized rhodopsin, actinorhodopsin, was cloned into retinal-producing E. coli. The production of correctly folded and membrane-incorporated actinorhodopsin was confirmed via development of pink color in E. coli and SDS-PAGE. Cells expressing carotenoids or actinorhodopsin were imaged by TIRF microscopy. The 561-nm excitation laser specifically illuminated rhodopsin-containing cells, allowing them to be differentiated from unpigmented and carotenoid-containing cells. Furthermore, water samples collected from the Delaware River were shown by PCR to have rhodopsin-containing organisms and were examined by TIRF microscopy. Individual microorganisms that fluoresced under illumination from the 561-nm laser were identified. These results verify the sensitivity of the TIRF microscopy method for visualizing and distinguishing between different molecules with low autofluorescence, making it useful for analyzing natural samples. PMID:25769822

  6. Using total internal reflection fluorescence microscopy to visualize rhodopsin-containing cells.

    PubMed

    Keffer, J L; Sabanayagam, C R; Lee, M E; DeLong, E F; Hahn, M W; Maresca, J A

    2015-05-15

    Sunlight is captured and converted to chemical energy in illuminated environments. Although (bacterio)chlorophyll-based photosystems have been characterized in detail, retinal-based photosystems, rhodopsins, have only recently been identified as important mediators of light energy capture and conversion. Recent estimates suggest that up to 70% of cells in some environments harbor rhodopsins. However, because rhodopsin autofluorescence is low-comparable to that of carotenoids and significantly less than that of (bacterio)chlorophylls-these estimates are based on metagenomic sequence data, not direct observation. We report here the use of ultrasensitive total internal reflection fluorescence (TIRF) microscopy to distinguish between unpigmented, carotenoid-producing, and rhodopsin-expressing bacteria. Escherichia coli cells were engineered to produce lycopene, β-carotene, or retinal. A gene encoding an uncharacterized rhodopsin, actinorhodopsin, was cloned into retinal-producing E. coli. The production of correctly folded and membrane-incorporated actinorhodopsin was confirmed via development of pink color in E. coli and SDS-PAGE. Cells expressing carotenoids or actinorhodopsin were imaged by TIRF microscopy. The 561-nm excitation laser specifically illuminated rhodopsin-containing cells, allowing them to be differentiated from unpigmented and carotenoid-containing cells. Furthermore, water samples collected from the Delaware River were shown by PCR to have rhodopsin-containing organisms and were examined by TIRF microscopy. Individual microorganisms that fluoresced under illumination from the 561-nm laser were identified. These results verify the sensitivity of the TIRF microscopy method for visualizing and distinguishing between different molecules with low autofluorescence, making it useful for analyzing natural samples. PMID:25769822

  7. Appropriateness of allogeneic red blood cell transfusion: the international consensus conference on transfusion outcomes.

    PubMed

    Shander, Aryeh; Fink, Arlene; Javidroozi, Mazyar; Erhard, Jochen; Farmer, Shannon L; Corwin, Howard; Goodnough, Lawrence Tim; Hofmann, Axel; Isbister, James; Ozawa, Sherri; Spahn, Donat R

    2011-07-01

    An international multidisciplinary panel of 15 experts reviewed 494 published articles and used the RAND/UCLA Appropriateness Method to determine the appropriateness of allogeneic red blood cell (RBC) transfusion based on its expected impact on outcomes of stable nonbleeding patients in 450 typical inpatient medical, surgical, or trauma scenarios. Panelists rated allogeneic RBC transfusion as appropriate in 53 of the scenarios (11.8%), inappropriate in 267 (59.3%), and uncertain in 130 (28.9%). Red blood cell transfusion was most often rated appropriate (81%) in scenarios featuring patients with hemoglobin (Hb) level 7.9 g/dL or less, associated comorbidities, and age older than 65 years. Red blood cell transfusion was rated inappropriate in all scenarios featuring patients with Hb level 10 g/dL or more and in 71.3% of scenarios featuring patients with Hb level 8 to 9.9 g/dL. Conversely, no scenario with patient's Hb level of 8 g/dL or more was rated as appropriate. Nearly one third of all scenarios were rated uncertain, indicating the need for more research. The observation that allogeneic RBC transfusions were rated as either inappropriate or uncertain in most scenarios in this study supports a more judicious transfusion strategy. In addition, the large number of scenarios in which RBC transfusions were rated as uncertain can serve as a road map to identify areas in need of further investigation. PMID:21498040

  8. Direct internal reforming of hydrocarbon fuels in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongliang

    2005-07-01

    The direct operation of solid oxide fuel cells (SOFCs) on hydrocarbon fuels is desired since it could reduce power plant size, weight and complexity. The primary challenge is to find effective means through which anode-coking could be suppressed or avoided. Throughout the research, conventional Ni-anode supported SOFCs were employed because they provide high power densities and are being actively developed for commercial applications. Various strategies were used to reduce or avoid anode-coking during the SOFC operation. Firstly, air or CO2/H2O was added to hydrocarbon fuels, such that coking was less thermodynamically favorable, and the resulting internal partial oxidation or dry/steam reforming reactions provided H 2 and CO to the fuel cell. For example, for low hydrocarbons like propane, coke-free operation was achieved on 8% yttrium-stabilized zirconia (YSZ) electrolyte SOFCs via internal partial oxidation, yielding stable and high power densities, e.g. 0.7 W·cm-2 at 790°C. Secondly, a novel design for hydrocarbon fueled SOFCs was proposed, i.e. a separate supported catalyst (Ru-CeO2) layer was placed against the anode side. The catalyst layer provided good catalytic activity for the hydrocarbon reforming reactions, while the nickel-based anode was retained to provide excellent electrochemical activity for the oxidation of the hydrogen and carbon monoxide reforming products. For heavy hydrocarbons like iso-octane, the catalyst layer was crucial far allowing stable cell operation without coking. The lack of coking at the Ni-YSZ anode can be explained by reforming at the Ru-Ceria catalyst layer, which eliminated most of the hydrocarbon species before the fuel reached the anode. A key element of this strategy was the choice of a catalyst metal, Ru, that promotes hydrocarbon reforming but does not itself cause coking. Thirdly, reduced-temperature SOFCs with thin samarium-doped Ceria (SDC) electrolytes were developed; these devices have potentially improved

  9. Role of M3 protein in the adherence and internalization of an invasive Streptococcus pyogenes strain by epithelial cells.

    PubMed

    Eyal, Osnat; Jadoun, Jeries; Bitler, Arcady; Skutelski, Ehud; Sela, Shlomo

    2003-10-15

    Streptococcus pyogenes utilizes multiple mechanisms for adherence to and internalization by epithelial cells. One of the molecules suggested of being involved in adherence and internalization is the M protein. Although strains of the M3 serotype form the second largest group isolated from patients with severe invasive diseases and fatal infections, not much information is known regarding the interactions of M3 protein with mammalian cells. In this study we have constructed an emm3 mutant of an invasive M3 serotype (SP268), and demonstrated that the M3 protein is involved in both adherence to and internalization by HEp-2 cells. Fibronectin promoted both adherence and internalization of SP268 in an M3-independent pathway. Utilizing speB and speB/emm3 double mutants, it was found that M3 protein is not essential for the maturation of SpeB, as was reported for the M1 protein. Increased internalization efficiency observed in both the speB and emm3/speB mutants suggested that inhibition of S. pyogenes internalization by SpeB is not related to the presence of an intact M3 protein. Thus, other proteins in SP268, which serve as targets for SpeB activity, have a prominent role in the internalization process. PMID:14522456

  10. NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Long, Dirk; Ireland, John; Pesaran, Ahmad; Darcy, Eric; Shoesmith, Mark; McCarthy, Ben

    2013-11-14

    NREL has developed a device to test one of the most challenging failure mechanisms of lithium-ion (Li-ion) batteries -- a battery internal short circuit. Many members of the technical community believe that this type of failure is caused by a latent flaw that results in a short circuit between electrodes during use. As electric car manufacturers turn to Li-ion batteries for energy storage, solving the short circuit problem becomes more important. To date, no reliable and practical method exists to create on-demand internal shorts in Li-ion cells that produce a response that is relevant to the ones produced by field failures. NREL and NASA have worked to establish an improved ISC cell-level test method that simulates an emergent internal short circuit, is capable of triggering the four types of cell internal shorts, and produces consistent and reproducible results. Internal short circuit device design is small, low-profile and implantable into Li-ion cells, preferably during assembly. The key component is an electrolyte-compatible phase change material (PCM). The ISC is triggered by heating the cell above PCM melting temperature (presently 40 degrees C – 60 degrees C). In laboratory testing, the activated device can handle currents in excess of 300 A to simulate hard shorts (< 2 mohms). Phase change from non-conducting to conducting has been 100% successful during trigger tests.

  11. Intracranial internal carotid artery angioplasthy and stenting in giant cell arteritis.

    PubMed

    Guerrero, Antonio Méndez; Sierra-Hidalgo, Fernando; Calleja, Patricia; Navia, Pedro; Campollo, Jorge; Díaz-Guzmán, Jaime

    2015-01-01

    We report the case of a 59-year-old woman who presented with several episodes of transient ischemic attack (TIA) caused by pathologically confirmed giant cell arteritis. She continued suffering from TIAs during admission despite immunosuppressant and antithrombotic therapy. Sudden neurological deterioration with paraparesis and cognitive impairment developed. A brain magnetic resonance (MR) imaging showed bilateral watershed ischemic lesions. MR angiography demonstrated severe stenosis of both intracranial internal carotid arteries (ICAs). Angioplasty and stenting on the left ICA were performed, with evident clinical improvement occurring within 24 hours. Endovascular therapy may be an alternative option to treat severe GCA with symptomatic intracranial large vessel disease not responsive to intensive conventional medical treatment. PMID:24707958

  12. Internal transmission coefficient in charges carrier generation layer of graphene/Si based solar cell device

    NASA Astrophysics Data System (ADS)

    Rosikhin, Ahmad; Winata, Toto

    2016-04-01

    Internal transmission profile in charges carrier generation layer of graphene/Si based solar cell has been explored theoretically. Photovoltaic device was constructed from graphene/Si heterojunction forming a multilayer stuck with Si as generation layer. The graphene/Si sheet was layered on ITO/glass wafer then coated by Al forming Ohmic contact with Si. Photon incident propagate from glass substrate to metal electrode and assumed that there is no transmission in Al layer. The wavelength range spectra used in this calculation was 200 - 1000 nm. It found that transmission intensity in the generation layer show non-linear behavior and partitioned by few areas which related with excitation process. According to this information, it may to optimize the photons absorption to create more excitation process by inserting appropriate material to enhance optical properties in certain wavelength spectra because of the exciton generation is strongly influenced by photon absorption.

  13. The International Mouse Strain Resource (IMSR): cataloging worldwide mouse and ES cell line resources.

    PubMed

    Eppig, Janan T; Motenko, Howie; Richardson, Joel E; Richards-Smith, Beverly; Smith, Cynthia L

    2015-10-01

    The availability of and access to quality genetically defined, health-status known mouse resources is critical for biomedical research. By ensuring that mice used in research experiments are biologically, genetically, and health-status equivalent, we enable knowledge transfer, hypothesis building based on multiple data streams, and experimental reproducibility based on common mouse resources (reagents). Major repositories for mouse resources have developed over time and each has significant unique resources to offer. Here we (a) describe The International Mouse Strain Resource that offers users a combined catalog of worldwide mouse resources (live, cryopreserved, embryonic stem cells), with direct access to repository sites holding resources of interest and (b) discuss the commitment to nomenclature standards among resources that remain a challenge in unifying mouse resource catalogs. PMID:26373861

  14. High internal quantum efficiency in fullerene solar cells based on crosslinked polymer donor networks

    PubMed Central

    Liu, Bo; Png, Rui-Qi; Zhao, Li-Hong; Chua, Lay-Lay; Friend, Richard H.; Ho, Peter K.H.

    2012-01-01

    The power conversion efficiency of organic photovoltaic cells depends crucially on the morphology of their donor–acceptor heterostructure. Although tremendous progress has been made to develop new materials that better cover the solar spectrum, this heterostructure is still formed by a primitive spontaneous demixing that is rather sensitive to processing and hence difficult to realize consistently over large areas. Here we report that the desired interpenetrating heterostructure with built-in phase contiguity can be fabricated by acceptor doping into a lightly crosslinked polymer donor network. The resultant nanotemplated network is highly reproducible and resilient to phase coarsening. For the regioregular poly(3-hexylthiophene):phenyl-C61-butyrate methyl ester donor–acceptor model system, we obtained 20% improvement in power conversion efficiency over conventional demixed biblend devices. We reached very high internal quantum efficiencies of up to 0.9 electron per photon at zero bias, over an unprecedentedly wide composition space. Detailed analysis of the power conversion, power absorbed and internal quantum efficiency landscapes reveals the separate contributions of optical interference and donor–acceptor morphology effects. PMID:23271655

  15. The molecular mechanism of photochemical internalization of cell penetrating peptide-cargo-photosensitizer conjugates

    PubMed Central

    Ohtsuki, Takashi; Miki, Shunya; Kobayashi, Shouhei; Haraguchi, Tokuko; Nakata, Eiji; Hirakawa, Kazutaka; Sumita, Kensuke; Watanabe, Kazunori; Okazaki, Shigetoshi

    2015-01-01

    In many drug delivery strategies, an inefficient transfer of macromolecules such as proteins and nucleic acids to the cytosol often occurs because of their endosomal entrapment. One of the methods to overcome this problem is photochemical internalization, which is achieved using a photosensitizer and light to facilitate the endosomal escape of the macromolecule. In this study, we examined the molecular mechanism of photochemical internalization of cell penetrating peptide-cargo (macromolecule)-photosensitizer conjugates. We measured the photophysical properties of eight dyes (photosensitizer candidates) and determined the respective endosomal escape efficiencies using these dyes. Correlation plots between these factors indicated that the photogenerated 1O2 molecules from photosensitizers were highly related to the endosomal escape efficiencies. The contribution of 1O2 was confirmed using 1O2 quenchers. In addition, time-lapse fluorescence imaging showed that the photoinduced endosomal escape occurred at a few seconds to a few minutes after irradiation (much longer than 1O2 lifetime), and that the pH increased in the endosome prior to the endosomal escape of the macromolecule. PMID:26686907

  16. Evaluation of hydrogen production and internal resistance in forward osmosis membrane integrated microbial electrolysis cells.

    PubMed

    Lee, Mi-Young; Kim, Kyoung-Yeol; Yang, Euntae; Kim, In S

    2015-01-01

    In order to enhance hydrogen production by facilitated proton transport through a forward osmosis (FO) membrane, the FO membrane was integrated into microbial electrolysis cells (MECs). An improved hydrogen production rate was obtained in the FO-MEC (12.5±1.84×10(-3)m(3)H2/m(3)/d) compared to that of the cation exchange membrane (CEM) - MEC (4.42±0.04×10(-3)m(3)H2/m(3)/d) during batch tests (72h). After an internal resistance analysis, it was confirmed that the enhanced hydrogen production in FO-MEC was attributed to the smaller charge transfer resistance than in the CEM-MEC (90.3Ω and 133.4Ω respectively). The calculation of partial internal resistance concluded that the transport resistance can be substantially reduced by replacing a CEM with a FO membrane; decrease of the resistance from 0.069Ωm(2) to 5.99×10(-4)Ωm(2). PMID:25841189

  17. The Daniell cell, Ohm's law, and the emergence of the International System of Units

    NASA Astrophysics Data System (ADS)

    Jayson, Joel S.

    2014-01-01

    Telegraphy originated in the 1830s and 40 s and flourished in the following decades but with a patchwork of electrical standards. Electromotive force was for the most part measured in units of the predominant Daniell cell, but each telegraphy company had their own resistance standard. In 1862, the British Association for the Advancement of Science formed a committee to address this situation. By 1873, they had given definition to the electromagnetic system of units (emu) and defined the practical units of the ohm as 109 emu units of resistance and the volt as 108 emu units of electromotive force. These recommendations were ratified and expanded upon in a series of international congresses held between 1881 and 1904. A proposal by Giovanni Giorgi in 1901 took advantage of a coincidence between the conversion of the units of energy in the emu system (the erg) and in the practical system (the Joule). As it was, the same conversion factor existed between the cgs based emu system and a theretofore undefined MKS system. By introducing another unit X (where X could be any of the practical electrical units), Giorgi demonstrated that a self-consistent MKSX system was tenable without the need for multiplying factors. Ultimately, the ampere was selected as the fourth unit. It took nearly 60 years, but in 1960, Giorgi's proposal was incorporated as the core of the newly inaugurated International System of Units (SI). This article surveys the physics, physicists, and events that contributed to those developments.

  18. The Dynamic International Prognostic Scoring System for myelofibrosis predicts outcomes after hematopoietic cell transplantation.

    PubMed

    Scott, Bart L; Gooley, Ted A; Sorror, Mohamed L; Rezvani, Andrew R; Linenberger, Michael L; Grim, Jonathan; Sandmaier, Brenda M; Myerson, David; Chauncey, Thomas R; Storb, Rainer; Buxhofer-Ausch, Veronika; Radich, Jerald P; Appelbaum, Frederick R; Deeg, H Joachim

    2012-03-15

    Studies by the International Working Group showed that the prognosis of myelofibrosis patients is predicted by the Dynamic International Prognostic Scoring System (DIPSS) risk categorization, which includes patient age, constitutional symptoms, hemoglobin, leukocyte count, and circulating blasts. We evaluated the prognostic usefulness of the DIPSS in 170 patients with myelofibrosis, 12 to 78 years of age (median, 51.5 years of age), who received hematopoietic cell transplantation (HCT) between 1990 and 2009 from related (n = 86) or unrelated donors (n = 84). By DIPSS, 21 patients had low-risk disease, 48 had intermediate-1, 50 had intermediate-2, and 51 had high-risk disease. Five-year incidence of relapse, relapse-free survival, overall survival, and nonrelapse mortality for all patients were 10%, 57%, 57%, and 34%, respectively. Among patients with DIPSS high-risk disease, the hazard ratio for post-HCT mortality was 4.11 (95% CI, 1.44-11.78; P = .008), and for nonrelapse mortality was 3.41 (95% CI, 1.15-10.09; P = .03) compared with low-risk patients. After a median follow-up of 5.9 years, the median survivals have not been reached for DIPSS risk groups low and intermediate-1, and were 7 and 2.5 years for intermediate-2 and high-risk patients, respectively. Thus, HCT was curative for a large proportion of patients with myelofibrosis, and post-HCT success was dependent on pre-HCT DIPSS classification. PMID:22234678

  19. International seminar on the red blood cells as vehicles for drugs

    PubMed Central

    Godfrin, Yann; Horand, Françoise; Franco, Robert; Dufour, Emmanuelle; Kosenko, Elena; Bax, Bridget E; Banz, Alice; Skorokhod, Olexii A; Lanao, José M; Vitvitsky, Victor; Sinauridze, Elena; Bourgeaux, Vanessa; Gunter, Kurt C

    2012-01-01

    The first human transfusion was performed by the pioneer Dr Jean-Baptiste Denis in France in 1667 and now, three centuries later, around 50 millions blood units are transfused every year, saving millions of lives. Today, there is a new application for red blood cells (RBCs) in cellular therapy: the effective use of erythrocytes as vehicles for chemical or biological drugs. Using this approach, the therapeutic index of RBC-entrapped molecules can be significantly improved with increased efficacy and reduced side effects. This cell-based medicinal product can be manufactured at an industrial scale and is now used in the clinic for different therapeutic applications. A seminar dedicated to this field of research, debating on this inventive formulation for drugs, was held in Lyon (France) on 28 January 2011. Drs KC Gunter and Y Godfrin co-chaired the meeting and international experts working on the encapsulation of drugs within erythrocytes met to exchange knowledge on the topic ‘The Red Blood Cells as Vehicles for Drugs’. The meeting was composed of oral presentations providing the latest knowledge and experience on the preclinical and clinical applications of this technology. This Meeting Highlights article presents the most relevant messages given by the speakers and is a joint effort by international experts who share an interest in studying erythrocyte as a drug delivery vehicle. The aim is to provide an overview of the applications, particularly for clinical use, of this innovative formulation. Indeed, due to the intrinsic properties of erythrocytes, their use as a drug carrier is one of the most promising drug delivery systems investigated in recent decades. Of the different methods developed to encapsulate therapeutic agents into RBCs [1,2,] the most widely used method is the lysis of the RBCs under tightly controlled hypotonic conditions in the presence of the drug to be encapsulated, followed by resealing and annealing under normotonic conditions (Figure

  20. Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures.

    PubMed Central

    Grant, C C; Konkel, M E; Cieplak, W; Tompkins, L S

    1993-01-01

    Previous studies of Campylobacter jejuni have suggested that flagellin is an adhesin for epithelial cells and that motility is a virulence factor of this bacterium. The role of flagella in the interactions of C. jejuni with nonpolarized and polarized epithelial cells was examined with flagellar mutants. Flagellated, nonmotile (flaA flaB+ Mot-) and nonflagellated, nonmotile (flaA flaB Mot-) mutants of C. jejuni were constructed by in vivo homologous recombination and gene replacement techniques. Both classes of mutants were found to adhere to cells of human epithelial origin (INT 407) equally well; however, on the basis of the percentage of the inoculum internalized, internalization of the flaA flaB Mot- mutants was decreased by factors ranging from approximately 30 to 40 compared with the parent. The flaA flaB+ Mot- mutant was internalized by the INT 407 cells at levels six- to sevenfold higher than the flaA flaB Mot- mutants. Both classes of mutants, unlike the parent, were unable to translocate across polarized Caco-2 monolayers. These results indicate that flagella are not involved in C. jejuni adherence to epithelial cells but that they do play a role in internalization. Furthermore, the results suggest that either the motility of C. jejuni or the product of flaA is essential for the bacterium to cross polarized epithelial cell monolayers. Images PMID:8478066

  1. Cytotoxicity and variant cellular internalization behavior of water-soluble sulfonated nanographene sheets in liver cancer cells

    PubMed Central

    2013-01-01

    Highly exfoliated sulfonated graphene sheets (SGSs), an alternative to graphene oxide and graphene derivatives, were synthesized, characterized, and applied to liver cancer cells in vitro. Cytotoxicity profiles were obtained using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, WST-1[2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, and lactate dehydrogenase release colorimetric assays. These particles were found to be non-toxic across the concentration range of 0.1 to 10 μg/ml. Internalization of SGSs was also studied by means of optical and electron microscopy. Although not conclusive, high-resolution transmission and scanning electron microscopy revealed variant internalization behaviors where some of the SGS became folded and compartmentalized into tight bundles within cellular organelles. The ability for liver cancer cells to internalize, fold, and compartmentalize graphene structures is a phenomenon not previously documented for graphene cell biology and should be further investigated. PMID:23639042

  2. Are Soft Short Tests Good Indicators of Internal Li-ion Cell Defects?

    NASA Technical Reports Server (NTRS)

    Jeevarajan, J.; Chung, J.-S.; Jung, K.; Park, J.

    2013-01-01

    The self discharge test at full state of charge, may not be a good one to detect subtle defects since the li-ion chemistry has the highest self discharge at full state of charge. One should characterize self discharge versus storage time for each cell manufacturer/design to differentiate between normal self discharge and that due to a subtle manufacturing defect. The various soft short test methods indicate that if this test is carried out at full discharge (0% SOC) with all capacity removed (by lowering the current load in a stepwise manner to the same end of discharge voltage), then the cells need to be placed in storage for more than 72 hours to get a good analysis on the presence of subtle defects since it takes more than 72 hours to achieve voltage stabilization. If the cells are to be charged up even to a small percentage (ex. 1%), 72 hours are sufficient to determine issues. However, the pass/fail criteria should be based on a valid OCV decline. Less than 10 mV voltage decline is not a good method to detect subtle defects. As mentioned in the first bullet, self discharge is a competing reaction when a charge is introduced and hence a characterization of the self discharge versus storage time is required to fully correlate voltage decline to a failure due to a subtle defect. Soft short test method cannot be relied on for defect detection because cells with and without voltage decline seemed to have similar defects and characteristics. Screening methods such as internal resistance and capacity as well as a 3-sigma range for OCV, mass and dimensions should be used to screen out outliers. A very critical aspect in the understanding of subtle defects is to carry out destructive analysis of cells from every lot to confirm the quality of production and screen all cells and batteries in a stringent manner to have a high quality set of flight cells. Self Discharge Test: Fully charged cells shall be placed in Open circuit stand for 72 hours (OCV measurement twice a

  3. CdSe Quantum-Dot-Sensitized Solar Cell with ~100% Internal Quantum Efficiency

    SciTech Connect

    Fuke, Nobuhiro; Hoch, Laura B.; Koposov, Alexey Y.; Manner, Virginia W.; Werder, Donald J.; Fukui, Atsushi; Koide, Naoki; Katayama, Hiroyuki; Sykora, Milan

    2010-10-20

    We have constructed and studied photoelectrochemical solar cells (PECs) consisting of a photoanode prepared by direct deposition of independently synthesized CdSe nanocrystal quantum dots (NQDs) onto a nanocrystalline TiO2 film (NQD/TiO2), aqueous Na2S or Li2S electrolyte, and a Pt counter electrode. We show that light harvesting efficiency (LHE) of the NQD/TiO2 photoanode is significantly enhanced when the NQD surface passivation is changed from tri-n-octylphosphine oxide (TOPO) to 4-butylamine (BA). In the PEC the use of NQDs with a shorter passivating ligand, BA, leads to a significant enhancement in both the electron injection efficiency at the NQD/TiO2 interface and charge collection efficiency at the NQD/electrolyte interface, with the latter attributed mostly to a more efficient diffusion of the electrolyte through the pores of the photoanode. We show that by utilizing BA-capped NQDs and aqueous Li2S as an electrolyte, it is possible to achieve ~100% internal quantum efficiency of photon-to-electron conversion, matching the performance of dye-sensitized solar cells.

  4. Technique for internal channelling of hydroentangled nonwoven scaffolds to enhance cell penetration

    PubMed Central

    Durham, Elaine R; Ingham, Eileen; Russell, Stephen J

    2013-01-01

    An important requirement in thick, high-porosity scaffolds is to maximise cellular penetration into the interior and avoid necrosis during culture in vitro. Hitherto, reproducible control of the pore structure in nonwoven scaffolds has proved challenging. A new, channelled scaffold manufacturing process is reported based on water jet entanglement of fibres (hydroentangling) around filamentous template to form a coherent scaffold that is subsequently removed. Longitudinally-oriented channels were introduced within the scaffold in controlled proximity using 220 µm diameter cylindrical templates. In this case study, channelled scaffolds composed of poly(l-lactic acid) were manufactured and evaluated in vitro. Environmental scanning electron microscope and µCT (X-ray microtomography) confirmed channel openings in the scaffold cross-section before and after cell culture with human dermal fibroblasts up to 14 weeks. Histology at week 11 indicated that the channels promoted cell penetration and distribution within the scaffold interior. At week 14, cellular matrix deposition was evident in the internal channel walls and the entrances remained unoccluded by cellular matrix suggesting that diffusion conduits for mass transfer of nutrient to the scaffold interior could be maintained. PMID:22532409

  5. Nickel-Hydrogen Battery Cell Life Test Program Update for the International Space Station

    NASA Technical Reports Server (NTRS)

    Miller, Thomas B.

    2000-01-01

    NASA and Boeing North America are responsible for constructing the electrical power system for the International Space Station (ISS), which circles the Earth every 90 minutes in a low Earth orbit (LEO). For approximately 55 minutes of this orbit, the ISS is in sunlight, and for the remaining 35 minutes, the ISS is in the Earth s shadow (eclipse). The electrical power system must not only provide power during the sunlight portion by means of the solar arrays, but also store energy for use during the eclipse. Nickel-hydrogen (Ni/H2) battery cells were selected as the energy storage systems for ISS. Each battery Orbital Replacement Unit (ORU) comprises 38 individual series-connected Ni/H2 battery cells, and there are 48 battery ORU s on the ISS. On the basis of a limited Ni/H2 LEO data base on life and performance characteristics, the NASA Glenn Research Center at Lewis Field commenced testing through two test programs: one in-house and one at the Naval Surface Warfare Center in Crane, Indiana.

  6. Total internal reflection holographic microscopy (TIRHM) for quantitative phase characterization of cell-substrate adhesion

    NASA Astrophysics Data System (ADS)

    Ash, William Mason, III

    Total Internal Reflection Holographic Microscopy (TIRHM) combines near-field microscopy with digital holography to produce a new form of near-field phase microscopy. Using a prism in TIR as a near-field imager, the presence of microscopic organisms, cell-substrate interfaces, and adhesions, causes relative refractive index (RRI) and frustrated TIR (f-TIR) to modulate the object beam's evanescent wave phase front. Quantitative phase images of test specimens such as Amoeba proteus, Dictyostelium Discoideum and cells such as SKOV-3 ovarian cancer and 3T3 fibroblasts are produced without the need to introduce stains or fluorophores. The angular spectrum method of digital holography to compensate for tilt anamorphism due to the inclined TIR plane is also discussed. The results of this work conclusively demonstrate, for the first time, the integration of near-field microscopy with digital holography. The cellular images presented show a correlation between the physical extent of the Amoeba proteus plasma membrane and the adhesions that are quantitatively profiled by phase cross-sectioning of the holographic images obtained by digital holography. With its ability to quantitatively characterise cellular adhesion and motility, it is anticipated that TIRHM can be a tool for characterizing and combating cancer metastasis, as well as improving our understanding of morphogenesis and embryogenesis itself.

  7. Cellular internalization of LiNbO3 nanocrystals for second harmonic imaging and the effects on stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Qiu, Jichuan; Guo, Weibo; Wang, Shu; Ma, Baojin; Mou, Xiaoning; Tanes, Michael; Jiang, Huaidong; Liu, Hong

    2016-03-01

    Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy.Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration

  8. A Cell Internalizing Antibody Targeting Capsid Protein (p24) Inhibits the Replication of HIV-1 in T Cells Lines and PBMCs: A Proof of Concept Study

    PubMed Central

    Ali, Syed A.; Teow, Sin-Yeang; Omar, Tasyriq Che; Khoo, Alan Soo-Beng; Choon, Tan Soo; Yusoff, Narazah Mohd

    2016-01-01

    There remains a need for newer therapeutic approaches to combat HIV/AIDS. Viral capsid protein p24 plays important roles in HIV pathogenesis. Peptides and small molecule inhibitors targeting p24 have shown to inhibit virus replication in treated cell. High specificity and biological stability of monoclonal antibodies (mAbs) make them an attractive contender for in vivo treatments. However, mAbs do not enter into cells, thus are restricted to target surface molecules. This also makes targeting intracellular HIV-1 p24 a challenge. A mAb specific to p24 that can internalize into the HIV-infected cells is hypothesized to inhibit the virus replication. We selected a mAb that has previously shown to inhibit p24 polymerization in an in vitro assay and chemically conjugated it with cell penetrating peptides (CPP) to generate cell internalizing anti-p24 mAbs. Out of 8 CPPs tested, κFGF-MTS -conjugated mAbs internalized T cells most efficiently. At nontoxic concentration, the κFGF-MTS-anti-p24-mAbs reduced the HIV-1 replication up to 73 and 49% in T-lymphocyte and PBMCs respectively. Marked inhibition of HIV-1 replication in relevant cells by κFGF-MTS-anti-p24-mAbs represents a viable strategy to target HIV proteins present inside the cells. PMID:26741963

  9. A Cell Internalizing Antibody Targeting Capsid Protein (p24) Inhibits the Replication of HIV-1 in T Cells Lines and PBMCs: A Proof of Concept Study.

    PubMed

    Ali, Syed A; Teow, Sin-Yeang; Omar, Tasyriq Che; Khoo, Alan Soo-Beng; Choon, Tan Soo; Yusoff, Narazah Mohd

    2016-01-01

    There remains a need for newer therapeutic approaches to combat HIV/AIDS. Viral capsid protein p24 plays important roles in HIV pathogenesis. Peptides and small molecule inhibitors targeting p24 have shown to inhibit virus replication in treated cell. High specificity and biological stability of monoclonal antibodies (mAbs) make them an attractive contender for in vivo treatments. However, mAbs do not enter into cells, thus are restricted to target surface molecules. This also makes targeting intracellular HIV-1 p24 a challenge. A mAb specific to p24 that can internalize into the HIV-infected cells is hypothesized to inhibit the virus replication. We selected a mAb that has previously shown to inhibit p24 polymerization in an in vitro assay and chemically conjugated it with cell penetrating peptides (CPP) to generate cell internalizing anti-p24 mAbs. Out of 8 CPPs tested, κFGF-MTS -conjugated mAbs internalized T cells most efficiently. At nontoxic concentration, the κFGF-MTS-anti-p24-mAbs reduced the HIV-1 replication up to 73 and 49% in T-lymphocyte and PBMCs respectively. Marked inhibition of HIV-1 replication in relevant cells by κFGF-MTS-anti-p24-mAbs represents a viable strategy to target HIV proteins present inside the cells. PMID:26741963

  10. Spectral dependence of the internal quantum efficiency of organic solar cells: effect of charge generation pathways.

    PubMed

    Armin, Ardalan; Kassal, Ivan; Shaw, Paul E; Hambsch, Mike; Stolterfoht, Martin; Lyons, Dani M; Li, Jun; Shi, Zugui; Burn, Paul L; Meredith, Paul

    2014-08-13

    The conventional picture of photocurrent generation in organic solar cells involves photoexcitation of the electron donor, followed by electron transfer to the acceptor via an interfacial charge-transfer state (Channel I). It has been shown that the mirror-image process of acceptor photoexcitation leading to hole transfer to the donor is also an efficient means to generate photocurrent (Channel II). The donor and acceptor components may have overlapping or distinct absorption characteristics. Hence, different excitation wavelengths may preferentially activate one channel or the other, or indeed both. As such, the internal quantum efficiency (IQE) of the solar cell may likewise depend on the excitation wavelength. We show that several model high-efficiency organic solar cell blends, notably PCDTBT:PC70BM and PCPDTBT:PC60/70BM, exhibit flat IQEs across the visible spectrum, suggesting that charge generation is occurring either via a dominant single channel or via both channels but with comparable efficiencies. In contrast, blends of the narrow optical gap copolymer DPP-DTT with PC70BM show two distinct spectrally flat regions in their IQEs, consistent with the two channels operating at different efficiencies. The observed energy dependence of the IQE can be successfully modeled as two parallel photodiodes, each with its own energetics and exciton dynamics but both having the same extraction efficiency. Hence, an excitation-energy dependence of the IQE in this case can be explained as the interplay between two photocurrent-generating channels, without recourse to hot excitons or other exotic processes. PMID:25089640

  11. Further study of the intrinsic safety of internally shorted lithium and lithium-ion cells within methane-air

    PubMed Central

    Dubaniewicz, Thomas H.; DuCarme, Joseph P.

    2015-01-01

    National Institute for Occupational Safety and Health (NIOSH) researchers continue to study the potential for lithium and lithium-ion battery thermal runaway from an internal short circuit in equipment for use in underground coal mines. Researchers conducted cell crush tests using a plastic wedge within a 20-L explosion-containment chamber filled with 6.5% CH4-air to simulate the mining hazard. The present work extends earlier findings to include a study of LiFePO4 cells crushed while under charge, prismatic form factor LiCoO2 cells, primary spiral-wound constructed LiMnO2 cells, and crush speed influence on thermal runaway susceptibility. The plastic wedge crush was a more severe test than the flat plate crush with a prismatic format cell. Test results indicate that prismatic Saft MP 174565 LiCoO2 and primary spiral-wound Saft FRIWO M52EX LiMnO2 cells pose a CH4-air ignition hazard from internal short circuit. Under specified test conditions, A123 systems ANR26650M1A LiFePO4 cylindrical cells produced no chamber ignitions while under a charge of up to 5 A. Common spiral-wound cell separators are too thin to meet intrinsic safety standards provisions for distance through solid insulation, suggesting that a hard internal short circuit within these cells should be considered for intrinsic safety evaluation purposes, even as a non-countable fault. Observed flames from a LiMnO2 spiral-wound cell after a chamber ignition within an inert atmosphere indicate a sustained exothermic reaction within the cell. The influence of crush speed on ignitions under specified test conditions was not statistically significant. PMID:26139958

  12. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    SciTech Connect

    Armstrong, J.; Hamilton, H.; Hyland, B.

    2013-07-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  13. High-efficiency AlGaAs-GaAs solar cells with internal Bragg reflector

    SciTech Connect

    Andreev, V.M.; Komin, V.V.; Kochnev, I.V.; Lantratov, V.M.; Shvarts, M.Z.

    1994-12-31

    The work presents an investigation of solar cells (SCs) based on AlGaAs/GaAs heterostructures with internal Bragg reflectors grown by low-pressure MOCVD on n-GaAs substrates in a horizontal resistively heated reactor. The typical structure consists of: Bragg reflector (BR) having 12 periods, n-GaAs base layer with the thickness of 1,500--2,000 nm, 400--500 nm thick p-GaAs emitter, 70 nm thick p-AlGaAs passivating window and top p-GaAs contact layers. The BR with the reflectance maximum centered at the wavelength of 860 nm consists of twelve pairs of AlAs/GaAs layers. The resulting BR thicknesses is 71.6 nm for A.As and 59 nm for GaAs. In this case the peak of reflectance spectrum is in the area of 830--900 nm where the reflectance is close to unit. This multi-layer quasi-dielectric stack selectively reflect weakly absorbed photons with energies near the GaAs band gap for a second pass through the photoactive region increasing the photocurrent. The employment of the BR allows to increase the external quantum efficiency in the long wavelength range of the spectrum and to fabricate simultaneously a thinner n-GaAs base layer. The use of the internal BR, Ta{sub 2}O{sub 5} for antireflecting coating and prismatic cover allowed them to obtain efficiency of 23.4% (17.7 suns, AM0, 25 C) and 27.2% (23.4 suns, Am 1.5).

  14. Role of NK, NKT cells and macrophages in liver transplantation

    PubMed Central

    Fahrner, René; Dondorf, Felix; Ardelt, Michael; Settmacher, Utz; Rauchfuss, Falk

    2016-01-01

    Liver transplantation has become the treatment of choice for acute or chronic liver disease. Because the liver acts as an innate immunity-dominant organ, there are immunological differences between the liver and other organs. The specific features of hepatic natural killer (NK), NKT and Kupffer cells and their role in the mechanism of liver transplant rejection, tolerance and hepatic ischemia-reperfusion injury are discussed in this review. PMID:27468206

  15. Human Amnion-Derived Mesenchymal Stem Cell Transplantation Ameliorates Liver Fibrosis in Rats

    PubMed Central

    Kubo, Kimitoshi; Ohnishi, Shunsuke; Hosono, Hidetaka; Fukai, Moto; Kameya, Ayano; Higashi, Ryosuke; Yamada, Takahiro; Onishi, Reizo; Yamahara, Kenichi; Takeda, Hiroshi; Sakamoto, Naoya

    2015-01-01

    Background Mesenchymal stem cells (MSCs) are a valuable cell source in regenerative medicine. Recently, several studies have shown that MSCs can be easily isolated from human amnion. In this study, we investigated the therapeutic effect of transplantation of human amnion-derived MSCs (hAMSCs) in rats with liver fibrosis. Methods Liver fibrosis was induced by an intraperitoneal injection of 2 mL/kg of 50% carbon tetrachloride twice a week for 6 weeks. At 3 weeks, hAMSCs (1 × 106 cells) were transplanted intravenously. Rats were sacrificed at 7 weeks, and histological analyses and quantitative reverse-transcription polymerase chain reaction were performed. In vitro experiments were conducted to investigate the effect of hAMSCs on the activation of Kupffer cells. Results Transplantation of hAMSCs significantly reduced the fibrotic area, deposition of type-I collagen, the number of α-smooth muscle actin–positive hepatic stellate cells, and CD68-positive Kupffer cells in the livers. messenger RNA expression of α-smooth muscle actin and tissue inhibitor of metalloproteinase-1 was significantly decreased and the expression of matrix metalloproteinase-9 and hepatocyte growth factor was significantly increased in the liver of hAMSC-treated rats. Transplantation of hAMSCs at 3 weeks plus 5 weeks did not have an additive effect. In vitro experiments demonstrated that Kupffer cell activation induced by lipopolysaccharide was significantly decreased by culturing with conditioned medium obtained from hAMSCs. Conclusions Transplantation of hAMSCs provided significant improvement in a rat model of liver fibrosis, possibly through the inhibition of Kupffer cell and hepatic stellate cell activation. hAMSCs may be a potential new treatment for liver fibrosis.

  16. Langerhans cell histiocytosis in adults. Report from the International Registry of the Histiocyte Society.

    PubMed

    Aricò, M; Girschikofsky, M; Généreau, T; Klersy, C; McClain, K; Grois, N; Emile, J-F; Lukina, E; De Juli, E; Danesino, C

    2003-11-01

    Langerhans cell histiocytosis (LCH), characterised by the infiltration of one or more organs by large mononuclear cells, can develop in persons of any age. Although the features of this disease are well described in children, they remain poorly defined in adults. From January 2000 to June 2001, 274 adults from 13 countries, with biopsy-proven adult LCH, were registered with the International Histiocyte Society Registry. Information was collected about clinical presentation, family history, associated conditions, cigarette smoking and treatment, to assist in future management decisions in patients aged 18 years and older. There were slightly more males than females (143:126), and the mean ages at the onset and diagnosis of disease were 33 years (standard deviation (S.D.) 15 years) and 35 years (S.D. 14 years), respectively. 2 patients had consanguineous parents, and 1 had a family history of LCH; 129 reported smoking (47.1%); 17 (6.2%) had been diagnosed with different types of cancer. Single-system LCH, found in 86 patients (31.4%), included isolated pulmonary involvement in 44 cases; 188 patients (68.6%) had multisystem disease; 81 (29.6%) had diabetes insipidus. Initial treatment consisted of vinblastine administered with or without steroids, to 82 patients (29.9%), including 9 who had received it with etoposide, which was the sole agent given to 19 patients. 236 patients were considered evaluable for survival. At a median follow-up of 28 months from diagnosis, 15 patients (6.4%) had died (death rate, 1.5/100 person years, 95% Confidence Interval (95% CI) 0.9-2.4). The probability of survival at 5 years postdiagnosis was 92.3% (95% CI 85.6-95.9) overall, 100% for patients with single-system disease (n=37), 87.8% (95% CI 54.9-97.2) for isolated pulmonary disease (n=34), and 91.7% (95% CI 83.6-95.9) for multisystem disease (n=163). Survival did not differ significantly among patients with multisystem disease, with or without liver or lung involvement) 5-year

  17. Pluripotency transcription factor Sox2 is strongly adsorbed by heparin but requires a protein transduction domain for cell internalization

    SciTech Connect

    Albayrak, Cem; Yang, William C.; Swartz, James R.

    2013-02-15

    Highlights: ► Both R9Sox2 and Sox2 bind heparin with comparable affinity. ► Both R9Sox2 and Sox2 bind to fibroblasts, but only R9Sox2 is internalized. ► Internalization efficiency of R9Sox2 is 0.3% of the administered protein. ► Heparan sulfate adsorption may be part of a mechanism for managing cell death. -- Abstract: The binding of protein transduction domain (PTD)-conjugated proteins to heparan sulfate is an important step in cellular internalization of macromolecules. Here, we studied the pluripotency transcription factor Sox2, with or without the nonaarginine (R9) PTD. Unexpectedly, we observed that Sox2 is strongly adsorbed by heparin and by the fibroblasts without the R9 PTD. However, only the R9Sox2 fusion protein is internalized by the cells. These results collectively show that binding to heparan sulfate is not sufficient for cellular uptake, thereby supporting a recent hypothesis that other proteins play a role in cell internalization of PTD-conjugated proteins.

  18. Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique

    NASA Astrophysics Data System (ADS)

    Ramadass, Premanand; Fang, Weifeng; Zhang, Zhengming (John)

    2014-02-01

    A new controlled test method has been developed to simulate the occurrence of internal short in Li-ion cells. Two different internal short kinds namely aluminum shorting to anode and cathode shorting to anode has been studied with this test method at several states of charge. Infra-red imaging technique has been adopted to analyze the thermal propagation for both the short kinds. As a comparison, the most commonly adopted nail penetration test was also conducted and analyzed using IR-imaging. The instantaneous rise in temperature referred as temperature spike upon incurring internal short was able to be captured using the IR imaging for the anode-aluminum short kind and the magnitude of such temperature spike was found to be proportional to SOC of the cell.

  19. Estimating Losses of Dry Matter from Wetted Alfalfa-Orchardgrass Mixtures Using Cell Wall Components as Internal Markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods previously used to measure recoveries of dry matter (DM) from forages following natural or simulated rainfall often have relied upon simple gravimetric techniques, which yielded inconclusive estimates of DM recovery. Our objective was to evaluate insoluble cell-wall constituents as internal ...

  20. Cellular internalization of LiNbO3 nanocrystals for second harmonic imaging and the effects on stem cell differentiation.

    PubMed

    Li, Jianhua; Qiu, Jichuan; Guo, Weibo; Wang, Shu; Ma, Baojin; Mou, Xiaoning; Tanes, Michael; Jiang, Huaidong; Liu, Hong

    2016-03-31

    Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy. PMID:27001708

  1. Design Study Conducted of a Stirred and Perfused Specimen Chamber for Culturing Suspended Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Kizito, John P.

    2003-01-01

    A tightly knit numerical/experimental collaboration among the NASA Ames Research Center, NASA Glenn Research Center, and Payload Systems, Inc., was formed to analyze cell culturing systems for the International Space Station. The Cell Culture Unit is a facility scheduled for deployment on the space station by the Cell Culture Unit team at Ames. The facility houses multiple cell specimen chambers (CSCs), all of which have inlets and outlets to allow for replenishment of nutrients and for waste removal. For improved uniformity of nutrient and waste concentrations, each chamber has a pair of counterrotating stir bars as well. Although the CSC can be used to grow a wide variety of organic cells, the current study uses yeast as a model cell. Previous work identified groundbased protocols for perfusion and stirring to achieve yeast growth within the CSC that is comparable to that for yeast cultures grown in a shaken Ehrlenmeyer flask.

  2. Bee venom phospholipase A2 as a membrane-binding vector for cell surface display or internalization of soluble proteins.

    PubMed

    Babon, Aurélie; Wurceldorf, Thibault; Almunia, Christine; Pichard, Sylvain; Chenal, Alexandre; Buhot, Cécile; Beaumelle, Bruno; Gillet, Daniel

    2016-06-15

    We showed that bee venom phospholipase A2 can be used as a membrane-binding vector to anchor to the surface of cells a soluble protein fused to its C-terminus. ZZ, a two-domain derivative of staphylococcal protein A capable of binding constant regions of antibodies was fused to the C-terminus of the phospholipase or to a mutant devoid of enzymatic activity. The fusion proteins bound to the surface of cells and could themselves bind IgGs. Their fate depended on the cell type to which they bound. On the A431 carcinoma cell line the proteins remained exposed on the cell surface. In contrast, on human dendritic cells the proteins were internalized into early endosomes. PMID:26253725

  3. Intracellular distribution of TM4SF1 and internalization of TM4SF1-antibody complex in vascular endothelial cells

    SciTech Connect

    Sciuto, Tracey E.; Merley, Anne; Lin, Chi-Iou; Richardson, Douglas; Liu, Yu; Li, Dan; Dvorak, Ann M.; Dvorak, Harold F.; Jaminet, Shou-Ching S.

    2015-09-25

    Transmembrane-4 L-six family member-1 (TM4SF1) is a small plasma membrane-associated glycoprotein that is highly and selectively expressed on the plasma membranes of tumor cells, cultured endothelial cells, and, in vivo, on tumor-associated endothelium. Immunofluorescence microscopy also demonstrated TM4SF1 in cytoplasm and, tentatively, within nuclei. With monoclonal antibody 8G4, and the finer resolution afforded by immuno-nanogold transmission electron microscopy, we now demonstrate TM4SF1 in uncoated cytoplasmic vesicles, nuclear pores and nucleoplasm. Because of its prominent surface location on tumor cells and tumor-associated endothelium, TM4SF1 has potential as a dual therapeutic target using an antibody drug conjugate (ADC) approach. For ADC to be successful, antibodies reacting with cell surface antigens must be internalized for delivery of associated toxins to intracellular targets. We now report that 8G4 is efficiently taken up into cultured endothelial cells by uncoated vesicles in a dynamin-dependent, clathrin-independent manner. It is then transported along microtubules through the cytoplasm and passes through nuclear pores into the nucleus. These findings validate TM4SF1 as an attractive candidate for cancer therapy with antibody-bound toxins that have the capacity to react with either cytoplasmic or nuclear targets in tumor cells or tumor-associated vascular endothelium. - Highlights: • Anti-TM4SF1 antibody 8G4 was efficiently taken up by cultured endothelial cells. • TM4SF1–8G4 internalization is dynamin-dependent but clathrin-independent. • TM4SF1–8G4 complexes internalize along microtubules to reach the perinuclear region. • Internalized TM4SF1–8G4 complexes pass through nuclear pores into the nucleus. • TM4SF1 is an attractive candidate for ADC cancer therapy.

  4. International institute for collaborative cell biology and biochemistry--history and memoirs from an international network for biological sciences.

    PubMed

    Cameron, L C

    2013-01-01

    I was invited to write this essay on the occasion of my selection as the recipient of the 2012 Bruce Alberts Award for Excellence in Science Education from the American Society for Cell Biology (ASCB). Receiving this award is an enormous honor. When I read the email announcement for the first time, it was more than a surprise to me, it was unbelievable. I joined ASCB in 1996, when I presented a poster and received a travel award. Since then, I have attended almost every ASCB meeting. I will try to use this essay to share with readers one of the best experiences in my life. Because this is an essay, I take the liberty of mixing some of my thoughts with data in a way that it not usual in scientific writing. I hope that this sacrifice of the format will achieve the goal of conveying what I have learned over the past 20 yr, during which time a group of colleagues and friends created a nexus of knowledge and wisdom. We have worked together to build a network capable of sharing and inspiring science all over the world. PMID:24006381

  5. International Institute for Collaborative Cell Biology and Biochemistry—History and Memoirs from an International Network for Biological Sciences

    PubMed Central

    Cameron, L. C.

    2013-01-01

    I was invited to write this essay on the occasion of my selection as the recipient of the 2012 Bruce Alberts Award for Excellence in Science Education from the American Society for Cell Biology (ASCB). Receiving this award is an enormous honor. When I read the email announcement for the first time, it was more than a surprise to me, it was unbelievable. I joined ASCB in 1996, when I presented a poster and received a travel award. Since then, I have attended almost every ASCB meeting. I will try to use this essay to share with readers one of the best experiences in my life. Because this is an essay, I take the liberty of mixing some of my thoughts with data in a way that it not usual in scientific writing. I hope that this sacrifice of the format will achieve the goal of conveying what I have learned over the past 20 yr, during which time a group of colleagues and friends created a nexus of knowledge and wisdom. We have worked together to build a network capable of sharing and inspiring science all over the world. PMID:24006381

  6. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation: an international multicenter study.

    PubMed

    Aldenhoven, Mieke; Wynn, Robert F; Orchard, Paul J; O'Meara, Anne; Veys, Paul; Fischer, Alain; Valayannopoulos, Vassili; Neven, Benedicte; Rovelli, Attilio; Prasad, Vinod K; Tolar, Jakub; Allewelt, Heather; Jones, Simon A; Parini, Rossella; Renard, Marleen; Bordon, Victoria; Wulffraat, Nico M; de Koning, Tom J; Shapiro, Elsa G; Kurtzberg, Joanne; Boelens, Jaap Jan

    2015-03-26

    Mucopolysaccharidosis type I-Hurler syndrome (MPS-IH) is a lysosomal storage disease characterized by multisystem morbidity and death in early childhood. Although hematopoietic cell transplantation (HCT) has been performed in these patients for more than 30 years, large studies on the long-term outcome of patients with MPS-IH after HCT are lacking. The goal of this international study was to identify predictors of the long-term outcome of patients with MPS-IH after successful HCT. Two hundred seventeen patients with MPS-IH successfully engrafted with a median follow-up age of 9.2 years were included in this retrospective analysis. Primary endpoints were neurodevelopmental outcomes and growth. Secondary endpoints included neurologic, orthopedic, cardiac, respiratory, ophthalmologic, audiologic, and endocrinologic outcomes. Considerable residual disease burden was observed in the majority of the transplanted patients with MPS-IH, with high variability between patients. Preservation of cognitive function at HCT and a younger age at transplantation were major predictors for superior cognitive development posttransplant. A normal α-l-iduronidase enzyme level obtained post-HCT was another highly significant predictor for superior long-term outcome in most organ systems. The long-term prognosis of patients with MPS-IH receiving HCT can be improved by reducing the age at HCT through earlier diagnosis, as well as using exclusively noncarrier donors and achieving complete donor chimerism. PMID:25624320

  7. Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney

    PubMed Central

    Roy, Angshumoy; Kumar, Vijetha; Zorman, Barry; Fang, Erica; Haines, Katherine M.; Doddapaneni, HarshaVardhan; Hampton, Oliver A.; White, Simon; Bavle, Abhishek A.; Patel, Nimesh R.; Eldin, Karen W.; John Hicks, M.; Rakheja, Dinesh; Leavey, Patrick J.; Skapek, Stephen X.; Amatruda, James F.; Nuchtern, Jed G.; Chintagumpala, Murali M.; Wheeler, David A.; Plon, Sharon E.; Sumazin, Pavel; Parsons, D. Williams

    2015-01-01

    The X-linked BCL-6 co-repressor (BCOR) gene encodes a key constituent of a variant polycomb repressive complex (PRC) that is mutated or translocated in human cancers. Here we report on the identification of somatic internal tandem duplications (ITDs) clustering in the C terminus of BCOR in 23 of 27 (85%) pediatric clear cell sarcomas of the kidney (CCSK) from two independent cohorts. We profile CCSK tumours using a combination of whole-exome, transcriptome and targeted sequencing. Identical ITD mutations are found in primary and relapsed tumour pairs but not in adjacent normal kidney or blood. Mutant BCOR transcripts and proteins are markedly upregulated in ITD-positive tumours. Transcriptome analysis of ITD-positive CCSKs reveals enrichment for PRC2-regulated genes and similarity to undifferentiated sarcomas harbouring BCOR–CCNB3 fusions. The discovery of recurrent BCOR ITDs defines a major oncogenic event in this childhood sarcoma with significant implications for diagnostic and therapeutic approaches to this tumour. PMID:26573325

  8. High efficient radiation stable AlGaAs/GaAs solar cells with internal Bragg reflector

    NASA Technical Reports Server (NTRS)

    Andreev, V. M.; Kalinovsky, V. S.; Komin, V. V.; Kochnev, I. V.; Lantratov, V. M.; Shvarts, M. Z.

    1995-01-01

    An investigation of solar cells based on AlGaAs/GaAs heterostructures with an internal Bragg reflector as the back-surface reflector is presented. The Bragg reflector is grown by low pressure metalorganic chemical vapor deposition on n-GaAs substrates in a horizontal resistively heated reactor. The Bragg reflector with its maximum reflectance centered at a wavelength of 860 nm consists of 12 pairs of AlAs/GaAs layers. The resulting Bragg reflector has a thickness of 0.072 micrometers for AlAs and 0.059 micrometers for GaAs. The multi-layered quasi-dielectric stack selectively reflects weakly absorbed photons with energies near to the GaAs band gap for a second pass through the photoactive region, thus increasing the photocurrent. The use of the Bragg reflector allows the external quantum efficiency to be increased in the long wavelength of the spectrum. The use of the Bragg reflector and an antireflective coating and prismatic cover allowed an efficiency of 23.4 percent to be obtained.

  9. Cladribine and cytarabine in refractory multisystem Langerhans cell histiocytosis: results of an international phase 2 study

    PubMed Central

    Bernard, Frederic; van Noesel, Max; Barkaoui, Mohamed; Bardet, Odile; Mura, Rosella; Arico, Maurizio; Piguet, Christophe; Gandemer, Virginie; Armari Alla, Corinne; Clausen, Niels; Jeziorski, Eric; Lambilliote, Anne; Weitzman, Sheila; Henter, Jan Inge; Van Den Bos, Cor

    2015-01-01

    An international phase 2 study combining cladribine and cytarabine (Ara-C) was initiated for patients with refractory, risk-organ–positive Langerhans cell histiocytosis (LCH) in 2005. The protocol, comprising at least two 5-day courses of Ara-C (1 g/m2 per day) plus cladribine (9 mg/m2 per day) followed by maintenance therapy, was administered to 27 patients (median age at diagnosis, 0.7 years; median follow-up, 5.3 years). At inclusion, all patients were refractory after at least 1 course of vinblastine (VBL) plus corticosteroid, all had liver and spleen involvement, and 25 patients had hematologic cytopenia. After 2 courses, disease status was nonactive (n = 2), better (n = 23), or stable (n = 2), with an overall response rate of 92%. Median disease activity scores decreased from 12 at the start of therapy to 3 after 2 courses (P < .0001). During maintenance therapy, 4 patients experienced reactivation in risk organs. There were 4 deaths; 2 were related to therapy toxicity and 2 were related to reactivation. All patients experienced severe toxicity, with World Health Organization grade 4 hematologic toxicity and 6 documented severe infections. The overall 5-year survival rate was 85% (95% confidence interval, 65.2%-94.2%). Thus, the combination of cladribine/Ara-C is effective therapy for refractory multisystem LCH but is associated with high toxicity. PMID:26194764

  10. Decoupling Internalization, Acidification and Phagosmal-Endosomal/Iysosomal Phagocytosis of Internalin A coated Beads in epithelial cells

    SciTech Connect

    Blanchette, C D; Woo, Y; Thomas, C; Shen, N; Sulchek, T A; Hiddessen, A L

    2008-12-22

    Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established, and in several cases, it was treated as a one-step process. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells, such as epithelial cells. Therefore, in this study, we developed a simple and novel method to decouple and accurately measure particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells. Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated internalization. We achieved independent measurements of the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, pH sensitive dyes and endosomal/lysosomal dyes, as follows: the rate of InlA bead internalization was measured via antibody quenching of a pH independent dye (Alexa488) conjugated to InlA-beads, the rate at which phagosomes containing internalized InlA beads became acidified was measured using a pH dependent dye (FITC) conjugated to the beads and the rate of phagosomal-endosomal/lysosomal fusion was measured using a combination of unlabeled InlA-beads and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we also exploited the phagosomal acidification process to demonstrate

  11. Internalization and presentation of myelin antigens by the brain endothelium guides antigen-specific T cell migration

    PubMed Central

    Lopes Pinheiro, Melissa A; Kamermans, Alwin; Garcia-Vallejo, Juan J; van het Hof, Bert; Wierts, Laura; O'Toole, Tom; Boeve, Daniël; Verstege, Marleen; van der Pol, Susanne MA; van Kooyk, Yvette; de Vries, Helga E; Unger, Wendy WJ

    2016-01-01

    Trafficking of myelin-reactive CD4+ T-cells across the brain endothelium, an essential step in the pathogenesis of multiple sclerosis (MS), is suggested to be an antigen-specific process, yet which cells provide this signal is unknown. Here we provide direct evidence that under inflammatory conditions, brain endothelial cells (BECs) stimulate the migration of myelin-reactive CD4+ T-cells by acting as non-professional antigen presenting cells through the processing and presentation of myelin-derived antigens in MHC-II. Inflamed BECs internalized myelin, which was routed to endo-lysosomal compartment for processing in a time-dependent manner. Moreover, myelin/MHC-II complexes on inflamed BECs stimulated the trans-endothelial migration of myelin-reactive Th1 and Th17 2D2 cells, while control antigen loaded BECs did not stimulate T-cell migration. Furthermore, blocking the interaction between myelin/MHC-II complexes and myelin-reactive T-cells prevented T-cell transmigration. These results demonstrate that endothelial cells derived from the brain are capable of enhancing antigen-specific T cell recruitment. DOI: http://dx.doi.org/10.7554/eLife.13149.001 PMID:27336724

  12. Materials on the International Space Station - Forward Technology Solar Cell Experiment

    NASA Technical Reports Server (NTRS)

    Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Lorentzen, J. R.; Bruninga, R.; Jenkins, P. P.; Flatico, J. M.

    2005-01-01

    This paper describes a space solar cell experiment currently being built by the Naval Research Laboratory (NRL) in collaboration with NASA Glenn Research Center (GRC), and the US Naval Academy (USNA). The experiment has been named the Forward Technology Solar Cell Experiment (FTSCE), and the purpose is to rapidly put current and future generation space solar cells on orbit and provide validation data for these technologies. The FTSCE is being fielded in response to recent on-orbit and ground test anomalies associated with space solar arrays that have raised concern over the survivability of new solar technologies in the space environment and the validity of present ground test protocols. The FTSCE is being built as part of the Fifth Materials on the International Space Station (MISSE) Experiment (MISSE-5), which is a NASA program to characterize the performance of new prospective spacecraft materials when subjected to the synergistic effects of the space environment. Telemetry, command, control, and communication (TNC) for the FTSCE will be achieved through the Amateur Satellite Service using the PCSat2 system, which is an Amateur Radio system designed and built by the USNA. In addition to providing an off-the-shelf solution for FTSCE TNC, PCSat2 will provide a communications node for the Amateur Radio satellite system. The FTSCE and PCSat2 will be housed within the passive experiment container (PEC), which is an approximately 2ft x2ft x 4in metal container built by NASA Langley Research Center (NASA LaRC) as part of the MISSE-5 program. NASA LaRC has also supplied a thin film materials experiment that will fly on the exterior of the thermal blanket covering the PCSat2. The PEC is planned to be transported to the ISS on a Shuttle flight. The PEC will be mounted on the exterior of the ISS by an astronaut during an extravehicular activity (EVA). After nominally one year, the PEC will be retrieved and returned to Earth. At the time of writing this paper, the

  13. Fluorescently-Labeled Estradiol Internalization and Membrane Trafficking in Live N-38 Neuronal Cells Visualized with Total Internal Reflection Fluorescence Microscopy.

    PubMed

    Kisler, Kassandra; Chow, Robert H; Dominguez, Reymundo

    2013-04-20

    Estradiol is a steroid hormone that binds and activates estradiol receptors. Activation of these receptors is known to modulate neuronal physiology and provide neuroprotection, but it is not completely understood how estradiol mediates these actions on the nervous system. Activation of a sub-population of estradiol receptor-α (ERα), originally identified as a nuclear protein, localizes to the plasma membrane and appears to be a critical step in neuroprotection against brain injury and disease. Previously we showed that estradiol stimulates the rapid and transient trafficking of plasma membrane ERα in primary hypothalamic neurons, and internalization of membrane-impermeant estradiol (E6BSA-FITC) into cortical neuron endosomes in vitro. These findings support the concept that estradiol activates and down-regulates plasma membrane ERα by triggering endocytosis. Here, we use TIRFM (total internal reflection fluorescence microscopy) to image the trafficking of E6BSA-FITC, and GFP-labeled ERα, in live cells in real time. We show that activation of plasma membrane ERs by E6BSA-FITC result in internalization of the fluorescent ligand in live N-38 neurons, an immortalized hypothalamic cell line. Pretreatment with ER antagonist ICI 182,780 decreased the number of E6BSA-FITC labeled puncta observed. We also observed in live N-38 neurons that E6BSA-FITC co-localized with FM4-64 and LysoTracker fluorescent dyes that label endosomes and lysosomes. Our results provide further evidence that plasma membrane ERα activation results in endocytosis of the receptor. PMID:24353903

  14. Hump-shaped internal collection efficiency of degraded a-Si:H {ital p-i-n} solar cells

    SciTech Connect

    Smole, F.; Topic, M.; Furlan, J.; Kusian, W.

    1997-07-01

    Measured internal collection efficiency (ICE) characteristics of annealed and degraded a-Si:H p-i-n solar cells were used for an analysis of their internal behavior. Using the numerical simulator ASPIN, simulations were performed in order to fit and explain pronounced hump-shaped voltage-dependent ICE characteristics of degraded structures under weak short-wavelength illumination. Agreement with measured ICE characteristics for a degraded cell was obtained only if in addition to the introduction of light-induced dangling bond defect states, their capture cross sections were also increased, in particular the capture cross section for the charged defect states were increased. This caused a change in the occupancy of defect states at the p-i interface and front part of the i layer under forward biases. Consequently, the electric field in the front part of the cell was sustained under higher forward biases, resulting in recovery of the ICE. {copyright} {ital 1997 American Institute of Physics.}

  15. Single-Cell Metabolite Profiling of Stalk and Glandular Cells of Intact Trichomes with Internal Electrode Capillary Pressure Probe Electrospray Ionization Mass Spectrometry.

    PubMed

    Nakashima, Taiken; Wada, Hiroshi; Morita, Satoshi; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi

    2016-03-15

    In this report, we developed the pressure probe electrospray ionization-mass spectrometry with internal electrode capillary (IEC-PPESI-MS) which enables high spatial-resolution cell sampling, precise postsampling manipulation, and high detection sensitivity. Using this technique, a comparative in situ single-cell metabolite profiling of stalk and glandular cells, the two adjacent cell types comprising a trichome unit in tomato plants (Solanum lycopersicum L.), were performed to clarify the extent of metabolic differentiation between two cell types as well as among different types of trichomes. Owing to high sensitivity of the system, less than a picoliter cell sap from a single stalk cell sufficiently yielded a number of peaks of amino acids, organic acids, carbohydrates, and flavonoids. The minimal cell sap removal from a stalk cell without severe disturbance of trichome structure enabled sequential analysis of adjacent glandular cell on the same trichome, which showed the presence of striking differences in metabolite compositions between two adjacent cell types. Comparison among different types of trichome also revealed significant variations in metabolite profiles, particularly in flavonoids and acyl sugars compositions. Some metabolites were found only in specific cell types or particular trichome types. Although extensive metabolomics analysis of glandular cells of tomato trichomes has been previously documented, this is the first report describing cell-to-cell variations in metabolite compositions of stalk and glandular cells as well as in different trichome types. Further application of this technique may provide new insights into distinct metabolism in plant cells displaying variations in shape, size, function and physicochemical properties. PMID:26845634

  16. Internal reforming characteristics of cermet supported solid oxide fuel cell using yttria stabilized zirconia fed with partially reformed methane

    NASA Astrophysics Data System (ADS)

    Momma, Akihiko; Takano, Kiyonami; Tanaka, Yohei; Negishi, Akira; Kato, Ken; Nozaki, Ken; Kato, Tohru; Ichigi, Takenori; Matsuda, Kazuyuki; Ryu, Takashi

    In order to investigate the internal reforming characteristics in a cermet supported solid oxide fuel cell (SOFC) using YSZ as the electrolyte, the concentration profiles of the gaseous species along the gas flow direction in the anode were measured. Partially reformed methane using a pre-reformer kept at a constant temperature is supplied to the center of the cell which is operated with a seal-less structure at the gas outlet. The anode gas is sucked in via silica capillaries to the initially evacuated gas tanks. The process is simultaneously carried out using five sampling ports. The sampled gas is analyzed by a gas chromatograph. Most of the measurements are made at the cell temperature (T cell) of 750 °C and at various temperatures of the pre-reformer (T ref) with various fuel utilizations (U f) of the cell. The composition of the fuel at the inlet of the anode was confirmed to be almost the same as that theoretically calculated assuming equilibrium at the temperature of the pre-reformer. The effect of internal reforming in the anode is clearly observed as a steady decrease in the methane concentration along the flow axis. The effect of the water-gas shift reaction is also observed as a decrease in the CO 2 concentration and an increase of CO concentration around the gas inlet region, as the water-gas shift reaction inversely proceeds when T cell is higher than T ref. The diffusion of nitrogen from the seal-less outermost edge is observed, and the diffusion is confirmed to be more significant as U f decreases. The observations are compared with the results obtained by the SOFC supported by lanthanum gallate electrolyte. With respect to the internal reforming performance, the cell investigated here is found to be more effective when compared to the previously reported electrolyte supported cell.

  17. Hematopoietic cell transplantation for mucopolysaccharidosis patients is safe and effective: results after implementation of international guidelines.

    PubMed

    Aldenhoven, Mieke; Jones, Simon A; Bonney, Denise; Borrill, Roisin E; Coussons, Mary; Mercer, Jean; Bierings, Marc B; Versluys, Birgitta; van Hasselt, Peter M; Wijburg, Frits A; van der Ploeg, Ans T; Wynn, Robert F; Boelens, Jaap Jan

    2015-06-01

    Allogeneic hematopoietic cell transplantation (HCT) is the only treatment able to prevent progressive neurodegenerative disease in a selected group of mucopolysaccharidosis (MPS) disorders. However, its use was historically limited by the high risk of graft failure and transplantation-related morbidity and mortality. Therefore, since 2005 new international HCT guidelines for MPS disorders were proposed. The survival and graft outcomes of MPS patients receiving HCT according to these guidelines in 2 European centers of expertise were evaluated. Two consecutive conditioning regimens were used, busulfan/cyclophosphamide or fludarabine/busulfan-based, both with exposure-targeted i.v. busulfan. A noncarrier matched sibling donor (MSD), matched unrelated cord blood (UCB), or matched unrelated donor (MUD) were considered to be preferred donors. If not available, a mismatched UCB donor was used. Participants were 62 MPS patients (56 MPS type I-Hurler, 2 MPS type II, 2 MPS type III, and 2 MPS type VI) receiving HCT at median age 13.5 months (range, 3 to 44). Forty-one patients received a UCB donor, 17 MSD, and 4 MUD. High overall survival (95.2%) and event-free survival (90.3%) were achieved with only low toxicity: 13.3% acute graft-versus-host disease aGVHD) grades II to IV and 14.8% chronic GVHD (1.9% extensive). A mismatched donor predicted for lower event-free survival (P = .04). A higher age at HCT was a predictor for both aGVHD (P = .001) and chronic GVHD (P = .01). The use of a mismatched donor was a predictor for aGVHD (P = .01). Higher rates of full-donor chimerism were achieved in successfully transplanted UCB recipients compared with MSD/MUD (P = .002). If complying with the international HCT guidelines, HCT in MPS patients results in high safety and efficacy. This allows extension of HCT to more attenuated MPS types. Because a younger age at HCT is associated with reduction of HCT-related toxicity, newborn screening may further increase safety. PMID

  18. Distinct CPT-induced deaths in lung cancer cells caused by clathrin-mediated internalization of CP micelles.

    PubMed

    Liu, Yu-Sheng; Cheng, Ru-You; Lo, Yu-Lun; Hsu, Chin; Chen, Su-Hwei; Chiu, Chien-Chih; Wang, Li-Fang

    2016-02-14

    We previously synthesized a chondroitin sulfate-graft-poly(ε-caprolactone) copolymer (H-CP) with a high content of poly(ε-caprolactone) (18.7 mol%), which self-assembled in water into a rod-like micelle to encapsulate hydrophobic camptothecin (CPT) in the core (micelle/CPT) for tumor-targeted drug delivery. As a result of the recognition of the micelle by CD44, the micelle/CPT entered CRL-5802 cells efficiently and released CPT efficaciously, resulting in higher tumor suppression than commercial CPT-11. In this study, H1299 cells were found to have a higher CD44 expression than CRL-5802 cells. However, the lower CD44-expressing CRL-5802 cells had a higher percentage of cell death and higher cellular uptake of the micelle/CPT than the higher CD44-expressing H1299 cells. Examination of the internalization pathway of the micelle/CPT in the presence of different endocytic chemical inhibitors showed that the CRL-5802 cells involved clathrin-mediated endocytosis, which was not found in the H1299 cells. Analysis of the cell cycle of the two cell lines exposed to the micelle/CPT revealed that the CRL-5802 cells arrested mainly in the S phase and the H1299 cells arrested mainly in the G2-M phase. A consistent result was also found in the evaluation of γ-H2AX expression, which was about three-fold higher in the CRL-5802 cells than in the H1299 cells. A near-infrared dye, IR780, was encapsulated into the micelle to observe the in vivo biodistribution of the micelle/IR780 in tumor-bearing mice. The CRL-5802 tumor showed a higher fluorescence intensity than the H1299 tumor at any tracing time after 1 h. Thus we tentatively concluded that CRL-5802 cells utilized the clathrin-mediated internalization pathway and arrested in the S phase on exposure to the micelle/CPT; all are possible reasons for the better therapeutic outcome in CRL-5802 cells than in H1299 cells. PMID:26796318

  19. Challenges and Opportunities for International Cooperative Studies in Pediatric Hematopoeitic Cell Transplantation: Priorities of the Westhafen Intercontinental Group

    PubMed Central

    Schultz, Rudolph Kirk R.; Baker, Kevin Scott; Boelens, Jaap J.; Bollard, Catherine M.; Egeler, R. Maarten; Cowan, Mort; Ladenstein, Ruth; Lankester, Arjan; Locatelli, Franco; Lawitschka, Anita; Levine, John E.; Loh, Mignon; Nemecek, Eneida; Niemeyer, Charlotte; Prasad, Vinod K.; Rocha, Vanderson; Shenoy, Shalini; Strahm, Brigitte; Veys, Paul; Wall, Donna; Bader, Peter; Grupp, Stephan A.; Pulsipher, Michael A.; Peters, Christina

    2014-01-01

    More than 20% of allogeneic hematopoietic cell transplantations (HCTs) are performed in children and adolescents at a large number of relatively small centers. Unlike adults, at least one-third of HCTs in children are performed for rare, nonmalignant indications. Clinical trials to improve HCT outcomes in children have been limited by small numbers and these pediatric-specific features. The need for a larger number of pediatric HCT centers to participate in trials has led to the involvement of international collaborative groups. Representatives of the Pediatric Blood and Marrow Transplant Consortium, European Group for Blood and Marrow Transplantation’s Pediatric Working Group, International Berlin-Frankfurt-Munster (iBFm) Stem Cell Transplantation Committee, and Children’s Oncology Group’s Hematopoietic Stem Cell Transplantation Discipline Committee met on October 3, 2012, in Frankfurt, Germany to develop a consensus on the highest priorities in pediatric HCT. In addition, it explored the creation of an international consortium to develop studies focused on HCT in children and adolescents. This meeting led to the creation of an international HCT network, dubbed the Westhafen Intercontinental Group, to develop worldwide priorities and strategies to address pediatric HCT issues. This review outlines the priorities of need as identified by this consensus group. PMID:23883618

  20. Structural/functional relationships between internal and external MSH receptors: modulation of expression in Cloudman melanoma cells by UVB radiation

    SciTech Connect

    Chakraborty, A.K.; Orlow, S.J.; Bolognia, J.L.; Pawelek, J.M. )

    1991-04-01

    Expression of internal receptors for MSH is an important criterion for responsiveness to MSH by Cloudman melanoma cells. Here, we show that internal and external receptors for MSH are of identical molecular weights (50-53 kDa) and share common antigenic determinants, indicating a structural relationship between the 2 populations of molecules. The internal receptors co-purified with a sub-cellular fraction highly enriched for small vesicles, many of which were coated. Ultraviolet B light (UVB) acted synergistically with MSH to increase tyrosinase activity and melanin content of cultured Cloudman melanoma cells, consistent with previous findings in the skin of mice and guinea pigs. Preceding the rise in tyrosinase activity in cultured cells, UVB elicited a decrease in internal MSH binding sites and a concomitant increase in external sites. The time frame for the UVB effects on MSH receptors and melanogenesis, 48 hours, was similar to that for a response to solar radiation in humans. Together, the results indicate a key role for MSH receptors in the induction of melanogenesis by UVB and suggest a potential mechanism of action for UVB: redistribution of MSH receptors with a resultant increase in cellular responsiveness to MSH.

  1. RD&D Cooperation for the Development of Fuel Cell, Hybrid and Electric Vehicles within the International Energy Agency: Preprint

    SciTech Connect

    Telias, G.; Day, K.; Dietrich, P.

    2011-01-01

    Annex XIII on 'Fuel Cell Vehicles' of the Implementing Agreement Hybrid and Electric Vehicles of the International Energy Agency has been operating since 2006, complementing the ongoing activities on battery and hybrid electric vehicles within this group. This paper provides an overview of the Annex XIII final report for 2010, compiling an up-to-date, neutral, and comprehensive assessment of current trends in fuel cell vehicle technology and related policy. The technological description includes trends in system configuration as well as a review of the most relevant components including the fuel cell stack, batteries, and hydrogen storage. Results from fuel cell vehicle demonstration projects around the world and an overview of the successful implementation of fuel cells in specific transport niche markets will also be discussed. The final section of this report provides a detailed description of national research, development, and demonstration (RD&D) efforts worldwide.

  2. An internal ribosome entry site (IRES) mutant library for tuning expression level of multiple genes in mammalian cells.

    PubMed

    Koh, Esther Y C; Ho, Steven C L; Mariati; Song, Zhiwei; Bi, Xuezhi; Bardor, Muriel; Yang, Yuansheng

    2013-01-01

    A set of mutated Encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) elements with varying strengths is generated by mutating the translation initiation codons of 10(th), 11(th), and 12(th) AUG to non-AUG triplets. They are able to control the relative expression of multiple genes over a wide range in mammalian cells in both transient and stable transfections. The relative strength of each IRES mutant remains similar in different mammalian cell lines and is not gene specific. The expressed proteins have correct molecular weights. Optimization of light chain over heavy chain expression by these IRES mutants enhances monoclonal antibody expression level and quality in stable transfections. Uses of this set of IRES mutants can be extended to other applications such as synthetic biology, investigating interactions between proteins and its complexes, cell engineering, multi-subunit protein production, gene therapy, and reprogramming of somatic cells into stem cells. PMID:24349195

  3. An Internal Ribosome Entry Site (IRES) Mutant Library for Tuning Expression Level of Multiple Genes in Mammalian Cells

    PubMed Central

    Koh, Esther Y. C.; Ho, Steven C. L.; Mariati; Song, Zhiwei; Bi, Xuezhi; Bardor, Muriel; Yang, Yuansheng

    2013-01-01

    A set of mutated Encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) elements with varying strengths is generated by mutating the translation initiation codons of 10th, 11th, and 12th AUG to non-AUG triplets. They are able to control the relative expression of multiple genes over a wide range in mammalian cells in both transient and stable transfections. The relative strength of each IRES mutant remains similar in different mammalian cell lines and is not gene specific. The expressed proteins have correct molecular weights. Optimization of light chain over heavy chain expression by these IRES mutants enhances monoclonal antibody expression level and quality in stable transfections. Uses of this set of IRES mutants can be extended to other applications such as synthetic biology, investigating interactions between proteins and its complexes, cell engineering, multi-subunit protein production, gene therapy, and reprogramming of somatic cells into stem cells. PMID:24349195

  4. Calcium currents in internally perfused nerve cell bodies of Limnea stagnalis

    PubMed Central

    Byerly, Lou; Hagiwara, Susumu

    1982-01-01

    1. When K+ is removed from both sides of the somal membrane of Limnea neurones, time-dependent, voltage-dependent outward currents are observed at positive potentials. These currents can be carried by Tris+ and tetraethylammonium (TEA+), as well as Cs+, but the Cs currents are several times larger. The Cs currents are not affected by external or internal TEA, but are strongly reduced by 4-aminopyridine (4-AP) and all Ca blockers tried. 2. The presence of these non-specific outward currents and their sensitivity to all treatments that eliminate the Ca currents prevent the complete isolation of Ca currents. The non-specific outward currents are most prominent at large positive potentials and as slow tail currents on stepping back to the holding potential. 3. Ca currents are `washed out' in well perfused cells. Typically the Ca current has decayed to less than one tenth of its original size after ½ h of perfusion. This wash-out is specific for the Ca current; Na and K currents persist for several hours. 4. Once the Ca current has completely decayed, it is possible to study one type of non-specific current without overlapping inward currents. This current activates between 0 and +30 mV and appears to reverse near 0 mV. 5. In spite of the probable presence of slowly activating outward currents, the net inward currents measured show little apparent inactivation. In all the cells studied the inward current evoked at +20 mV has never decayed by more than 50% during a 60 ms pulse. So the true inactivation of these Ca currents must be quite slow, with time constants of the order of 100 ms and larger. 6. The activation of the Ca current agrees with m2 kinetics. The rate of activation is the same for Ba currents as for Ca currents. 7. When the membrane potential is stepped back to the holding level (-50 mV), the Ca current turns off quite rapidly with a time constant of about 100 μs (25 °C). The time constant for turning off the Ca current is not related to the time

  5. Biochemical and microscopic evidence for the internalization and degradation of heparin-containing mast cell granules by bovine endothelial cells

    SciTech Connect

    Atkins, F.M.; Friedman, M.M.; Metcalfe, D.D.

    1985-03-01

    Incubation of (/sup 35/S)heparin-containing mast cell granules with cultured bovine endothelial cells was followed by the appearance of /sup 35/S-granule-associated radioactivity within the endothelial cells and a decrease in radioactivity in the extracellular fluid. These changes occurred during the first 24 hours of incubation and suggested ingestion of the mast cell granules by the endothelial cells. Periodic electron microscopic examination of the monolayers confirmed this hypothesis by demonstrating apposition of the granules to the plasmalemma of endothelial cells, which was followed by the engulfment of the granules by cytoplasmic projections. Under light microscopic examination, mast cell granules within endothelial cells then appeared to undergo degradation. The degradation of (/sup 35/S)heparin in mast cell granules was demonstrated by a decrease in the amount of intracellular (/sup 35/S)heparin proteoglycan after 24 hours and the appearance of free (/sup 35/S)sulfate in the extracellular compartment. Intact endothelial cells were more efficient at degrading (/sup 35/S)heparin than were cell lysates or cell supernatants. These data provide evidence of the ability of endothelial cells to ingest mast cell granules and degrade native heparin that is presented as a part of the mast cell granule.

  6. Adhesion of living cells revealed by variable-angle total internal reflection fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cardoso Dos Santos, Marcelina; Vézy, Cyrille; Jaffiol, Rodolphe

    2016-02-01

    Total Internal Reflection Fluorescence Microscopy (TIRFM) is a widespread technique to study cellular process occurring near the contact region with the glass substrate. In this field, determination of the accurate distance from the surface to the plasma membrane constitutes a crucial issue to investigate the physical basis of cellular adhesion process. However, quantitative interpretation of TIRF pictures regarding the distance z between a labeled membrane and the substrate is not trivial. Indeed, the contrast of TIRF images depends on several parameters more and less well known (local concentration of dyes, absorption cross section, angular emission pattern…). The strategy to get around this problem is to exploit a series of TIRF pictures recorded at different incident angles in evanescent regime. This technique called variable-angle TIRF microscopy (vaTIRFM), allowing to map the membrane-substrate separation distance with a nanometric resolution (10-20 nm). vaTIRFM was developed by Burmeister, Truskey and Reichert in the early 1990s with a prism-based TIRF setup [Journal of Microscopy 173, 39-51 (1994)]. We propose a more convenient prismless setup, which uses only a rotatable mirror to adjust precisely the laser beam on the back focal plane of the oil immersion objective (no azimuthal scanning is needed). The series of TIRF images permit us to calculate accurately membrane-surface distances in each pixel. We demonstrate that vaTIRFM are useful to quantify the adhesion of living cells for specific and unspecific membrane-surface interactions, achieved on various functionalized substrates with polymers (BSA, poly-L-lysin) or extracellular matrix proteins (collagen and fibronectin).

  7. Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs.

    PubMed Central

    Farinas, J; Simanek, V; Verkman, A S

    1995-01-01

    Total internal reflection (TIR) microfluorimetry was established as a method to measure continuously the volume of adherent cells and applied to measure membrane permeabilities in cells transfected with water channel homologs. Cytosol was labeled with the membrane-impermeant fluorophore calcein. Fluorescence was excited by the TIR evanescent field in a thin section of cytosol (approximately 150 nm) adjacent to the cell-substrate interface. Because cytosolic fluorophore number per cell remains constant, the TIR fluorescence signal should be inversely related to cell volume. For small volume changes in Sf-9 and LLC-PK1 cells, relative TIR fluorescence was nearly equal to inverse relative cell volume; deviations from the ideal were modeled theoretically. To measure plasma membrane osmotic water permeability, Pf, the time course of osmotically induced cell volume change was inferred from the TIR fluorescence signal. LLC-PK1 cells expressing the CHIP28 water channel had an HgCl2-sensitive, threefold increase in Pf compared to nontransfected cells (Pf = 0.0043 cm/s at 10 degrees C). Solute permeability was measured from the TIR fluorescence time course in response to solute gradients. Glycerol permeability in Sf-9 cells expressing the water channel homolog GLIP was (1.3 +/- 0.2) x 10(-5) cm/s (22 degrees C), greater than that of (0.36 +/- 0.04) x 10(-5) cm/s (n = 4, p < 0.05) for control cells, indicating functional expression of GLIP. Water and urea permeabilities were similar in GLIP-expressing and control cells. The TIR method should be applicable to the study of water and solute permeabilities and cell volume regulation in cells of arbitrary shape and size. Images FIGURE 4 PMID:7540430

  8. International stem cell tourism and the need for effective regulation. Part I: Stem cell tourism in Russia and India: clinical research, innovative treatment, or unproven hype?

    PubMed

    Cohen, Cynthia B; Cohen, Peter J

    2010-03-01

    Persons with serious and disabling medical conditions have traveled abroad in search of stem cell treatments in recent years. However, weak or nonexistent oversight systems in some countries provide insufficient patient protections against unproven stem cell treatments, raising concerns about exposure to harm and exploitation. The present article, the first of two, describes and analyzes stem cell tourism in Russia and India and addresses several scientific/medical, ethical, and policy issues raised by the provision of unproven stem cell-based treatments within them. The distinction between treatment based on proven clinical research and "innovative treatment" is addressed and the authors conclude that the innovations at issue constitute neither. Regulatory measures need to be developed or strengthened in accord with internationally accepted standards in such countries to protect those seeking stem cell treatments. PMID:20506693

  9. Targeting Prostate Cancer Cells In Vivo Using a Rapidly Internalizing Novel Human Single-Chain Antibody Fragment

    PubMed Central

    He, Jiang; Wang, Yong; Feng, Jinjin; Zhu, Xiaodong; Lan, Xiaoli; Iyer, Arun K.; Zhang, Niu; Seo, Youngho; VanBrocklin, Henry F.; Liu, Bin

    2010-01-01

    Human antibodies targeting prostate cancer cell surface epitopes may be useful for imaging and therapy. The objective of this study was to evaluate the tumor targeting of an internalizing human antibody fragment, a small-size platform, to provide high contrast in a mouse model of human prostate carcinoma. Methods A prostate tumor-targeting single-chain antibody fragment (scFv), UA20, along with a nonbinding control scFv, N3M2, were labeled with 99mTc and evaluated for binding and rapid internalization into human prostate tumor cells in vitro and tumor homing in vivo using xenograft models. For the in vitro studies, the labeled UA20 scFv was incubated at 37°C for 1 h with metastatic prostate cancer cells (DU145) to assess the total cellular uptake versus intracellular uptake. For the animal studies, labeled UA20 and N3M2 scFvs were administered to athymic mice implanted subcutaneously with DU145 cells. Mice were imaged with small-animal SPECT/CT with concomitant biodistribution at 1 and 3 h after injection. Results The UA20 scFv was labeled in 55%–65% yield and remained stable in phosphate buffer within 24 h. The labeled UA20 scFv was taken up specifically by prostate tumor cells. Internalization was rapid, because incubation at 37°C for less than 1 h resulted in 93% internalization of total cell-associated scFvs. In animal studies, SPECT/CT showed significant tumor uptake as early as 1 h after injection. At 3 h after injection, tumor uptake was 4.4 percentage injected dose per gram (%ID/g), significantly greater than all organs or tissues studied (liver, 2.7 %ID/g; other organs or tissues, <1 %ID/g), except the kidneys (81.4 %ID/g), giving tumor-to-blood and tumor-to-muscle ratios of 12:1 and 70:1, respectively. In contrast, the control antibody exhibited a tumor uptake of only 0.26 %ID/g, similar to that of muscle and fat. Tumor-specific targeting was evidenced by reduced tumor uptake of nearly 70% on administration of a 10-fold excess of unlabeled UA20 sc

  10. Distinct CPT-induced deaths in lung cancer cells caused by clathrin-mediated internalization of CP micelles

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Sheng; Cheng, Ru-You; Lo, Yu-Lun; Hsu, Chin; Chen, Su-Hwei; Chiu, Chien-Chih; Wang, Li-Fang

    2016-02-01

    We previously synthesized a chondroitin sulfate-graft-poly(ε-caprolactone) copolymer (H-CP) with a high content of poly(ε-caprolactone) (18.7 mol%), which self-assembled in water into a rod-like micelle to encapsulate hydrophobic camptothecin (CPT) in the core (micelle/CPT) for tumor-targeted drug delivery. As a result of the recognition of the micelle by CD44, the micelle/CPT entered CRL-5802 cells efficiently and released CPT efficaciously, resulting in higher tumor suppression than commercial CPT-11. In this study, H1299 cells were found to have a higher CD44 expression than CRL-5802 cells. However, the lower CD44-expressing CRL-5802 cells had a higher percentage of cell death and higher cellular uptake of the micelle/CPT than the higher CD44-expressing H1299 cells. Examination of the internalization pathway of the micelle/CPT in the presence of different endocytic chemical inhibitors showed that the CRL-5802 cells involved clathrin-mediated endocytosis, which was not found in the H1299 cells. Analysis of the cell cycle of the two cell lines exposed to the micelle/CPT revealed that the CRL-5802 cells arrested mainly in the S phase and the H1299 cells arrested mainly in the G2-M phase. A consistent result was also found in the evaluation of γ-H2AX expression, which was about three-fold higher in the CRL-5802 cells than in the H1299 cells. A near-infrared dye, IR780, was encapsulated into the micelle to observe the in vivo biodistribution of the micelle/IR780 in tumor-bearing mice. The CRL-5802 tumor showed a higher fluorescence intensity than the H1299 tumor at any tracing time after 1 h. Thus we tentatively concluded that CRL-5802 cells utilized the clathrin-mediated internalization pathway and arrested in the S phase on exposure to the micelle/CPT; all are possible reasons for the better therapeutic outcome in CRL-5802 cells than in H1299 cells.We previously synthesized a chondroitin sulfate-graft-poly(ε-caprolactone) copolymer (H-CP) with a high content of

  11. Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells

    SciTech Connect

    Huang, D.-M. Chung, T.-H.; Hung, Y.; Lu, F.; Wu, S.-H.; Mou, C.-Y.; Yao, M.; Chen, Y.-C.

    2008-09-01

    The biocompatibility of nanoparticles is the prerequisite for their applications in biomedicine but can be misleading due to the absence of criteria for evaluating the safety and toxicity of those nanomaterials. Recent studies indicate that mesoporous silica nanoparticles (MSNs) can easily internalize into human mesenchymal stem cells (hMSCs) without apparent deleterious effects on cellular growth or differentiation, and hence are emerging as an ideal stem cell labeling agent. The objective of this study was to thoroughly investigate the effect of MSNs on osteogenesis induction and to examine their biocompatibility in hMSCs. Uptake of MSNs into hMSCs did not affect the cell viability, proliferation and regular osteogenic differentiation of the cells. However, the internalization of MSNs indeed induced actin polymerization and activated the small GTP-bound protein RhoA. The MSN-induced cellular protein responses as believed to cause osteogenesis of hMSCs did not result in promotion of regular osteogenic differentiation as analyzed by cytochemical stain and protein activity assay of alkaline phosphatase (ALP). When the effect of MSNs on ALP gene expression was further examined by reverse transcriptase polymerase chain reaction, MSN-treated hMSCs were shown to have significantly higher mRNA expression than control cells after 1-hour osteogenic induction. The induction of ALP gene expression by MSNs, however, was absent in cells after 1-day incubation with osteogenic differentiation. Together our results show that the internalization of MSNs had a significant effect on the transient protein response and osteogenic signal in hMSCs, thereby suggesting that the effects of nanoparticles on diverse aspects of cellular activities should be carefully evaluated even though the nanoparticles are generally considered as biocompatible at present.

  12. Surface Phosphatidylserine Is Responsible for the Internalization on Microvesicles Derived from Hypoxia-Induced Human Bone Marrow Mesenchymal Stem Cells into Human Endothelial Cells

    PubMed Central

    Liu, Chaozhong; Wang, Lisheng; Xiao, Fengjun; Zhang, Hongchao

    2016-01-01

    Background Previous data have proven that microvesicles derived from hypoxia-induced mesenchymal stem cells (MSC-MVs) can be internalized into endothelial cells, enhancing their proliferation and vessel structure formation and promoting in vivo angiogenesis. However, there is a paucity of information about how the MSC-MVs are up-taken by endothelial cells. Methods MVs were prepared from the supernatants of human bone marrow MSCs that had been exposed to a hypoxic and/or serum-deprivation condition. The incorporation of hypoxia-induced MSC-MVs into human umbilical cord endothelial cells (HUVECs) was observed by flow cytometry and confocal microscopy in the presence or absence of recombinant human Annexin-V (Anx-V) and antibodies against human CD29 and CD44. Further, small interfering RNA (siRNA) targeted at Anx-V and PSR was delivered into HUVECs, or HUVECs were treated with a monoclonal antibody against phosphatidylserine receptor (PSR) and the cellular internalization of MVs was re-assessed. Results The addition of exogenous Anx-V could inhibit the uptake of MVs isolated from hypoxia-induced stem cells by HUVECs in a dose- and time-dependent manner, while the anti-CD29 and CD44 antibodies had no effect on the internalization process. The suppression was neither observed in Anx-V siRNA-transfected HUVECs, however, addition of anti-PSR antibody and PSR siRNA-transfected HUVECs greatly blocked the incorporation of MVs isolated from hypoxia-induced stem cells into HUVECs. Conclusion PS on the MVs isolated from hypoxia-induced stem cells is the critical molecule in the uptake by HUVECs. PMID:26808539

  13. Influence of group A streptococcal acid glycoprotein on expression of major virulence factors and internalization by epithelial cells.

    PubMed

    Marouni, Mehran J; Ziomek, Edmund; Sela, Shlomo

    2003-08-01

    A single transposon insertion upstream to the open-reading-frame identified as the streptococcal acid glycoprotein (sagp) gene rendered a Tn916 isolate of Streptococcus pyogenes with elevated susceptibility to internalization by the epithelial cells. The role of SAGP in S. pyogenes internalization was further studied using isogenic mutant containing an in-frame deletion within the sagp gene. The sagp mutant displayed slower growth-rate and showed 5-fold higher internalization efficiency than the parent strain. Transcription of sagp at the logarithmic phase, but not at the stationary phase of the growth was repressed by csrR, the global regulator gene. At the same time, mutation of the sagp gene partially decreased the transcription of hasA, a gene that is required for capsule synthesis. The mutation had no effect on transcription of the emm3 gene, encoding for the M protein. The most striking effect of the sagp mutation was a down-regulation of the streptococcal pyrogenic exotoxin B (SpeB) at both translational and transcriptional level. Treatment of the SAGP mutant cells with the exogenous mSpeB (mature protease) only partially reduced their susceptibility to internalization. The exogenous mSpeB was more effective in reducing the internalization efficiency of a speB mutant and brought it to the level observed for the parent strain. In overall, results show that CsrR, directly or indirectly, affects the expression of SAGP, and that the SAGP modulates expression of not only SpeB, but also other genes that facilitate S. pyogenes internalization. PMID:12901845

  14. Internalization of the Extracellular Full-Length Tau Inside Neuro2A and Cortical Cells Is Enhanced by Phosphorylation.

    PubMed

    Wauters, Mathilde; Wattiez, Ruddy; Ris, Laurence

    2016-01-01

    Tau protein is mainly intracellular. However, several studies have demonstrated that full-length Tau can be released into the interstitial fluid of the brain. The physiological or pathological function of this extracellular Tau remains unknown. Moreover, as evidence suggests, extracellular Tau aggregates can be internalized by neurons, seeding Tau aggregation. However, much less is known about small species of Tau. In this study, we hypothesized that the status of phosphorylation could alter the internalization of recombinant Tau in Neuro2A and cortical cells. Our preliminary results revealed that the highly phosphorylated form of Tau entered the cells ten times more easily than a low phosphorylated one. This suggests that hyperphosphorylated Tau protein could spread between neurons in pathological conditions such as Alzheimer's disease. PMID:27548242

  15. An analysis of myeloma plasma cell phenotype using antibodies defined at the IIIrd International Workshop on Human Leucocyte Differentiation Antigens.

    PubMed Central

    Jackson, N; Ling, N R; Ball, J; Bromidge, E; Nathan, P D; Franklin, I M

    1988-01-01

    Fresh bone marrow from 43 cases of myeloma and three cases of plasma cell leukaemia has been phenotyped both by indirect immune-rosetting and, on fixed cytospin preparations, by indirect immunofluorescence. Both clustered and unclustered B cell associated antibodies from the IIIrd International Workshop on Human Leucocyte Differentiation Antigens were used. The results confirm the lack of many pan-B antigens on the surface of myeloma plasma cells, i.e. CD19-23, 37, 39, w40. Strong surface reactivity is seen with CD38 antibodies and with one CD24 antibody (HB8). Weak reactions are sometimes obtained with CD9, 10 and 45R. On cytospin preparations CD37, 39 and w40 are sometimes weakly positive, and anti-rough endoplasmic reticulum antibodies are always strongly positive. Specific and surface-reacting antiplasma cell antibodies are still lacking. PMID:3048803

  16. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells

    PubMed Central

    Werner, Melanie; Driftmann, Sabrina; Kleinehr, Kathrin; Kaiser, Gernot M.; Mathé, Zotlan; Treckmann, Juergen-Walter; Paul, Andreas; Skibbe, Kathrin; Timm, Joerg; Canbay, Ali; Gerken, Guido; Schlaak, Joerg F.; Broering, Ruth

    2015-01-01

    Background & Aims Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Methods Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Results Cell preparation yielded the following cell counts per gram of liver tissue: 2.0±0.4×107 hepatocytes, 1.8±0.5×106 Kupffer cells, 4.3±1.9×105 liver sinusoidal endothelial cells, and 3.2±0.5×105 stellate cells. Hepatocytes were identified by albumin (95.5±1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5±1.2%) and exhibited phagocytic activity, as determined with 1μm latex beads. Endothelial cells were CD146+ (97.8±1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1±1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Conclusions Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease. PMID:26407160

  17. Empirical analysis of contributing factors to heating in lithium-ion cells: Anode entropy versus internal resistance

    NASA Astrophysics Data System (ADS)

    Srinivasan, Rengaswamy; Carkhuff, Bliss G.

    2013-11-01

    Charging a battery beyond its maximum capacity can lead both to cell overheating and to the venting of gasses. A fundamental understanding of cell heating could lead to the development of real-time sensors that anticipate and avert catastrophic battery failure. Joule heating (also called ohmic or resistive heating) from cell internal resistance (Rint) dominates the overall thermal energy (ΔQ) generated during charging. Contrary to prior hypotheses, though, Joule heating does not appear to contribute to venting observed during overcharging. In this manuscript, we examine an alternate hypothesis, that heat released by the entropy change in the anode (ΔSanode) and the concomitant increase in the anode temperature (Tanode) triggers the venting. Using our recently developed non-invasive battery internal temperature (BIT) sensor to monitor Tanode, we separated the contributions of ΔSanode, Rint and the anode resistance (Ranode) to ΔQ. These quantities were tracked during constant current charging of a 18650 Lithium-ion cell, from zero state of charge (SoC) to overcharge. The resulting analysis suggests that anode entropy change is more important than resistive heating resulting from Ranode to the overall thermal energy. Anode entropy measurements, enabled by the BIT sensor, might serve as an alternative or adjunct method for anticipating and avoiding cell venting events.

  18. Internalization and desensitization of the oxytocin receptor is inhibited by Dynamin and clathrin mutants in human embryonic kidney 293 cells.

    PubMed

    Smith, M P; Ayad, V J; Mundell, S J; McArdle, C A; Kelly, E; López Bernal, A

    2006-02-01

    Oxytocin (OT) has long been used as an uterotonic during labor management in women, and yet responses to OT infusion remain variable and unpredictable among patients. The investigation of oxytocin receptor (OTR) regulation will benefit labor management, because the clinical practice of continuous iv infusion of OT is not optimal. As with other G protein-coupled receptors, it is likely that the OTR internalizes and/or desensitizes upon continuous agonist exposure. The mechanisms by which this might occur, however, are unclear. Here we explore OTR internalization and desensitization in human embryonic kidney cells by utilizing inhibitors of heterologous second messenger systems and recently available mutant cDNA constructs. We report rapid and extensive internalization and desensitization of the OTR upon agonist exposure. Internalization was unaffected by inhibitors of protein kinase C or Ca(2+) calmodulin-dependant kinase II but was significantly reduced after transfection with dominant-negative mutant cDNAs of G protein-coupled receptor kinase 2, beta-Arrestin2, Dynamin, and Eps15 (a component of clathrin-coated pits). Moreover, desensitization of the OTR, measured by a calcium mobilization assay, was also inhibited by the aforementioned cDNA constructs. Thus, our data demonstrate, for the first time, the importance of the classical clathrin-mediated pathway during agonist-induced OTR internalization and desensitization. PMID:16179383

  19. Reliability Through Life of Internal Protection Devices in Small-Cell ABSL Batteries

    NASA Technical Reports Server (NTRS)

    Neubauer, Jeremy; Ng, Ka Lok; Bennetti, Andrea; Pearson, Chris; Rao, gopal

    2007-01-01

    This viewgraph presentation reviews a reliability analysis of small cell protection batteries. The contents include: 1) The s-p Topology; 2) Cell Level Protection Devices; 3) Battery Level Fault Protection; 4) Large Cell Comparison; and 5) Battery Level Testing and Results.

  20. Report of the international conference on regulatory endeavors towards the sound development of human cell therapy products.

    PubMed

    Hayakawa, Takao; Aoi, Takashi; Bravery, Christopher; Hoogendoorn, Karin; Knezevic, Ivana; Koga, Junichi; Maeda, Daisuke; Matsuyama, Akifumi; McBlane, James; Morio, Tomohiro; Petricciani, John; Rao, Mahendra; Ridgway, Anthony; Sato, Daisaku; Sato, Yoji; Stacey, Glyn; Sakamoto, Norihisa; Trouvin, Jean-Hugues; Umezawa, Akihiro; Yamato, Masayuki; Yano, Kazuo; Yokote, Hiroyuki; Yoshimatsu, Kentaro; Zorzi-Morre, Pierrette

    2015-09-01

    The regulation of human cell therapy products is a key factor in their development and use to treat human diseases. In that regard, there is a recognized need for a global effort to develop a set of common principles that may serve to facilitate a convergence of regulatory approaches to ensure the smooth and efficient evaluation of products. This conference, with experts from regulatory agencies, industry, and academia, contributed to the process of developing such a document. Elements that could form a minimum consensus package of requirements for evaluating human cell therapy products were the overall focus of the conference. The important regulatory considerations that are unique to human cell therapy products were highlighted. Sessions addressed specific points that are different from those of traditional biological/biotechnological protein products. Panel discussions complemented the presentations. The conference concluded that most of the current regulatory framework is appropriate for cell therapy, but there are some areas where the application of the requirements for traditional biologicals is inappropriate. In addition, it was agreed that there is a need for international consensus on core regulatory elements, and that one of the major international organizations should take the lead in formulating such a consensus document. PMID:26315651

  1. Internalization of anti-nucleolin antibody into viable HEp-2 cells.

    PubMed

    Deng, J S; Ballou, B; Hofmeister, J K

    1996-01-01

    Anti-nucleolin antibodies have been detected in patients with systemic connective tissue diseases (SCTD) including systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). In vivo bound autoantibodies to nucleoli of epidermal keratinocytes have been demonstrated in skin from patients with SCTD. In this study, monoclonal antibody to nucleolin (D-3) was used to determine the distribution of nucleolin in different culture cells including HEp-2, HepG2, HRCC, Molt-4 and Wil2 cells. Nucleolin was found to be present on the surface of HEp-2 and HepG2 cells, but not on the surface of HRCC and lymphoblastoid (Molt-4 and Wil2) cells; in contrast, nucleolin was detected in the nucleoli of all permeabilized cells examined. In immunoprecipitation, using extracts from 32P-labeled HEp-2 cells as antigenic source, cell membrane as well as nuclear nucleolins were found to be phosphorylated with a molecular weight of 105 kDa. Viable HEp-2 and HepG2 cells were cocultured with IgG fraction of D-3 in a CO2 incubator for 1 to 24 h, and then permeabilized with acetone followed by immunofluorescence staining with FITC-labeled goat anti-mouse IgG antibodies. Nucleolar staining was observed in cells after 10 h or longer of coculture. These data indicated that D-3 antibody reacted with cell membrane nucleolin and subsequently gain access into cells in a process related to pinocytosis. PMID:9112228

  2. Tyrosine phosphorylation of the insulin receptor is not required for receptor internalization: studies in 2,4-dinitrophenol-treated cells

    SciTech Connect

    Backer, J.M.; Kahn, C.R.; White, M.F.

    1989-05-01

    The relation between insulin-stimulated autophosphorylation of the insulin receptor and internalization of the receptor was studied in Fao rat hepatoma cells. Treatment of Fao cells with 2,4-dinitrophenol for 45 min depleted cellular ATP by 80% and equally inhibited insulin-stimulated receptor autophosphorylation, as determined by immunoprecipitation of surface-iodinated or (/sup 32/P)phosphate-labeled cells with anti-phosphotyrosine antibody. In contrast, internalization of the insulin receptor and internalization and degradation of /sup 125/I-labeled insulin by 2,4-dinitrophenol-treated cells were normal. These data show that autophosphorylation of the insulin receptor is not required for the receptor-mediated internalization of insulin in Fao cells and suggest that insulin receptor recycling is independent of autophosphorylation.

  3. Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2011-01-01

    An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also

  4. Studies of the effects of the reformer in an internal-reforming molten carbonate fuel cell by mathematical modeling

    NASA Astrophysics Data System (ADS)

    Park, Hong-Kyu; Lee, Ye-Ro; Kim, Mi-Hyun; Chung, Gui-Yung; Nam, Suk-Woo; Hong, Seong-Ahn; Lim, Tae-Hoon; Lim, Hee-Chun

    The effects of the reformer in an internal-reforming molten carbonate fuel cell (IR-MCFC) are studied by mathematical modeling. Temperature distributions, conversion of methane and compositions of gases are analyzed through mathematical modeling of the reformer and the cell. In the reformer, the methane-reforming reaction and the water-gas shift reaction occur simultaneously and the conversion of methane to hydrogen, calculated including the thermodynamic equilibrium of the reaction, reaches 99%. Additionally, the endothermic-reforming reaction contributes to a uniform temperature distribution. The voltage and the power of the IR-MCFC are similar to those of an external-reforming molten carbonate fuel cell (ER-MCFC), when the compositions at the inlet of the ER-MCFC are set as those at the outlet of the reformer in IR-MCFC. As the molar ratio of methane to water-gas decreases at a fixed total flow rate, the working voltage decreases.

  5. Internalization of p5314–29 peptide amphiphiles and subsequent endosomal disruption results in SJSA-1 cell death

    PubMed Central

    Missirlis, Dimitris; Krogstad, Daniel V.; Tirrell, Matthew

    2010-01-01

    In vivo peptide inhibition of tumor suppressor p53 binding to the protein MDM2 is hampered by inefficient delivery of the peptide. Our approach to couple a hydrophobic lipid-like tail on the inhibitory peptide p5314–29 allowed its intracellular delivery in vitro, in a panel of different cell lines. The constructed chimeric molecules, termed peptide amphiphiles, further self-assembled into supramolecular structures, identified as elongated worm-like micelles. Internalization of peptides occured following micelle disassembly, partly via clathrin-mediated endocytosis of monomers. Incubation of SJSA-1 cells in hypertonic culture media, aimed to disrupt endocytic vesicles, resulted in peptide amphiphile-mediated cell death. Our results provide the basis for the construction of novel therapeutic supramolecular nanoparticles and suggest hydrophobic modification of peptides as a promising strategy for enhancing delivery of impermeable peptides. PMID:20822110

  6. Internalization and processing of Bacillus anthracis lethal toxin by toxin-sensitive and -resistant cells.

    PubMed

    Singh, Y; Leppla, S H; Bhatnagar, R; Friedlander, A M

    1989-07-01

    Anthrax lethal toxin consists of two separate proteins, protective antigen and lethal factor (LF). Certain macrophages and a mouse macrophage-like cell line, J774A.1, are lysed by low concentrations of lethal toxin. In contrast, another macrophage cell line, IC-21, and all other cell types tested were resistant to this toxin. To discover the basis for this difference, each step in the intoxication process was examined. No differences between sensitive and resistant cells were found in receptor binding or proteolytic activation of protective antigen, steps that are required prior to LF binding. To determine whether resistance results from a defect in translocation to the cytosol, we introduced LF into J774A.1 and IC-21 cells and a nonmacrophage cell line (L6 myoblast) by osmotic lysis of pinocytic vesicles. Only J774A.1 cells were lysed; no effect was observed in IC-21 and L6 cells. These results suggest that resistant cells either lack the intracellular target of LF or fail to process LF to an active form. The relatively low potency of LF introduced into J774A.1 cells by osmotic lysis suggests that protective antigen may also be required at a stage subsequent to endocytosis. PMID:2500434

  7. Internalization: acute apoptosis of breast cancer cells using herceptin-immobilized gold nanoparticles

    PubMed Central

    Rathinaraj, Pierson; Al-Jumaily, Ahmed M; Huh, Do Sung

    2015-01-01

    Herceptin, the monoclonal antibody, was successfully immobilized on gold nanoparticles (GNPs) to improve their precise interactions with breast cancer cells (SK-BR3). The mean size of the GNPs (29 nm), as determined by dynamic light scattering, enlarged to 82 nm after herceptin immobilization. The in vitro cell culture experiment indicated that human skin cells (FB) proliferated well in the presence of herceptin-conjugated GNP (GNP–Her), while most of the breast cancer cells (SK-BR3) had died. To elucidate the mechanism of cell death, the interaction of breast cancer cells with GNP–Her was tracked by confocal laser scanning microscopy. Consequently, GNP–Her was found to be bound precisely to the membrane of the breast cancer cell, which became almost saturated after 6 hours incubation. This shows that the progression signal of SK-BR3 cells is retarded completely by the precise binding of antibody to the human epidermal growth factor receptor 2 receptor of the breast cancer cell membrane, causing cell death. PMID:25709498

  8. Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1

    PubMed Central

    Tang, Xu; Weber, Christopher R.; Shen, Le; Turner, Jerrold R.; Matthews, Jeffrey B.

    2013-01-01

    Colonic chloride secretion is regulated via the neurohormonal and immune systems. Exogenous chemicals (e.g., butyrate, propionate) can affect chloride secretion. Capsaicin, the pungent ingredient of the chili peppers, exerts various effects on gastrointestinal function. Capsaicin is known to activate the transient receptor potential vanilloid type 1 (TRPV1), expressed in the mesenteric nervous system. Recent studies have also demonstrated its presence in epithelial cells but its role remains uncertain. Because capsaicin has been reported to inhibit colonic chloride secretion, we tested whether this effect of capsaicin could occur by direct action on epithelial cells. In mouse colon and model T84 human colonic epithelial cells, we found that capsaicin inhibited forskolin-dependent short-circuit current (FSK-Isc). Using PCR and Western blot, we demonstrated the presence of TRPV1 in colonic epithelial cells. In T84 cells, TRPV1 localized at the basolateral membrane and in vesicular compartments. In permeabilized monolayers, capsaicin activated apical chloride conductance, had no effect on basolateral potassium conductance, but induced NKCC1 internalization demonstrated by immunocytochemistry and basolateral surface biotinylation. AMG-9810, a potent inhibitor of TRPV1, did not prevent the inhibition of the FSK-Isc by capsaicin. Neither resiniferatoxin nor N-oleoyldopamine, two selective agonists of TRPV1, blocked the FSK-Isc. Conversely capsaicin, resiniferatoxin, and N-oleoyldopamine raised intracellular calcium ([Ca2+]i) in T84 cells and AMG-9810 blocked the rise in [Ca2+]i induced by capsaicin and resiniferatoxin suggesting the presence of a functional TRPV1 channel. We conclude that capsaicin inhibits chloride secretion in part by causing NKCC1 internalization, but by a mechanism that appears to be independent of TRPV1. PMID:23139219

  9. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells

    SciTech Connect

    Kunzmann, Andrea; Andersson, Britta; Vogt, Carmen; Feliu, Neus; Ye Fei; Gabrielsson, Susanne; Toprak, Muhammet S.; Buerki-Thurnherr, Tina; Laurent, Sophie; Vahter, Marie; Krug, Harald; Muhammed, Mamoun; Scheynius, Annika; Fadeel, Bengt

    2011-06-01

    Engineered nanoparticles are being considered for a wide range of biomedical applications, from magnetic resonance imaging to 'smart' drug delivery systems. The development of novel nanomaterials for biomedical applications must be accompanied by careful scrutiny of their biocompatibility. In this regard, particular attention should be paid to the possible interactions between nanoparticles and cells of the immune system, our primary defense system against foreign invasion. On the other hand, labeling of immune cells serves as an ideal tool for visualization, diagnosis or treatment of inflammatory processes, which requires the efficient internalization of the nanoparticles into the cells of interest. Here, we compare novel monodispersed silica-coated iron oxide nanoparticles with commercially available dextran-coated iron oxide nanoparticles. The silica-coated iron oxide nanoparticles displayed excellent magnetic properties. Furthermore, they were non-toxic to primary human monocyte-derived macrophages at all doses tested whereas dose-dependent toxicity of the smaller silica-coated nanoparticles (30 nm and 50 nm) was observed for primary monocyte-derived dendritic cells, but not for the similarly small dextran-coated iron oxide nanoparticles. No macrophage or dendritic cell secretion of pro-inflammatory cytokines was observed upon administration of nanoparticles. The silica-coated iron oxide nanoparticles were taken up to a significantly higher degree when compared to the dextran-coated nanoparticles, irrespective of size. Cellular internalization of the silica-coated nanoparticles was through an active, actin cytoskeleton-dependent process. We conclude that these novel silica-coated iron oxide nanoparticles are promising materials for medical imaging, cell tracking and other biomedical applications.

  10. Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1.

    PubMed

    Bouyer, Patrice G; Tang, Xu; Weber, Christopher R; Shen, Le; Turner, Jerrold R; Matthews, Jeffrey B

    2013-01-15

    Colonic chloride secretion is regulated via the neurohormonal and immune systems. Exogenous chemicals (e.g., butyrate, propionate) can affect chloride secretion. Capsaicin, the pungent ingredient of the chili peppers, exerts various effects on gastrointestinal function. Capsaicin is known to activate the transient receptor potential vanilloid type 1 (TRPV1), expressed in the mesenteric nervous system. Recent studies have also demonstrated its presence in epithelial cells but its role remains uncertain. Because capsaicin has been reported to inhibit colonic chloride secretion, we tested whether this effect of capsaicin could occur by direct action on epithelial cells. In mouse colon and model T84 human colonic epithelial cells, we found that capsaicin inhibited forskolin-dependent short-circuit current (FSK-I(sc)). Using PCR and Western blot, we demonstrated the presence of TRPV1 in colonic epithelial cells. In T84 cells, TRPV1 localized at the basolateral membrane and in vesicular compartments. In permeabilized monolayers, capsaicin activated apical chloride conductance, had no effect on basolateral potassium conductance, but induced NKCC1 internalization demonstrated by immunocytochemistry and basolateral surface biotinylation. AMG-9810, a potent inhibitor of TRPV1, did not prevent the inhibition of the FSK-I(sc) by capsaicin. Neither resiniferatoxin nor N-oleoyldopamine, two selective agonists of TRPV1, blocked the FSK-I(sc). Conversely capsaicin, resiniferatoxin, and N-oleoyldopamine raised intracellular calcium ([Ca(2+)](i)) in T84 cells and AMG-9810 blocked the rise in [Ca(2+)](i) induced by capsaicin and resiniferatoxin suggesting the presence of a functional TRPV1 channel. We conclude that capsaicin inhibits chloride secretion in part by causing NKCC1 internalization, but by a mechanism that appears to be independent of TRPV1. PMID:23139219

  11. Intracellular distribution of TM4SF1 and internalization of TM4SF1-antibody complex in vascular endothelial cells.

    PubMed

    Sciuto, Tracey E; Merley, Anne; Lin, Chi-Iou; Richardson, Douglas; Liu, Yu; Li, Dan; Dvorak, Ann M; Dvorak, Harold F; Jaminet, Shou-Ching S

    2015-09-25

    Transmembrane-4 L-six family member-1 (TM4SF1) is a small plasma membrane-associated glycoprotein that is highly and selectively expressed on the plasma membranes of tumor cells, cultured endothelial cells, and, in vivo, on tumor-associated endothelium. Immunofluorescence microscopy also demonstrated TM4SF1 in cytoplasm and, tentatively, within nuclei. With monoclonal antibody 8G4, and the finer resolution afforded by immuno-nanogold transmission electron microscopy, we now demonstrate TM4SF1 in uncoated cytoplasmic vesicles, nuclear pores and nucleoplasm. Because of its prominent surface location on tumor cells and tumor-associated endothelium, TM4SF1 has potential as a dual therapeutic target using an antibody drug conjugate (ADC) approach. For ADC to be successful, antibodies reacting with cell surface antigens must be internalized for delivery of associated toxins to intracellular targets. We now report that 8G4 is efficiently taken up into cultured endothelial cells by uncoated vesicles in a dynamin-dependent, clathrin-independent manner. It is then transported along microtubules through the cytoplasm and passes through nuclear pores into the nucleus. These findings validate TM4SF1 as an attractive candidate for cancer therapy with antibody-bound toxins that have the capacity to react with either cytoplasmic or nuclear targets in tumor cells or tumor-associated vascular endothelium. PMID:26241677

  12. Thymol inhibits Staphylococcus aureus internalization into bovine mammary epithelial cells by inhibiting NF-κB activation.

    PubMed

    Wei, Zhengkai; Zhou, Ershun; Guo, Changming; Fu, Yunhe; Yu, Yuqiang; Li, Yimeng; Yao, Minjun; Zhang, Naisheng; Yang, Zhengtao

    2014-01-01

    Bovine mastitis is one of the most costly and prevalent diseases in the dairy industry and is characterised by inflammatory and infectious processes. Staphylococcus aureus (S. aureus), a Gram-positive organism, is a frequent cause of subclinical, chronic mastitis. Thymol, a monocyclic monoterpene compound isolated from Thymus vulgaris, has been reported to have antibacterial properties. However, the effect of thymol on S. aureus internalization into bovine mammary epithelial cells (bMEC) has not been investigated. In this study, we evaluated the effect of thymol on S. aureus internalization into bMEC, the expression of tracheal antimicrobial peptide (TAP) and β-defensin (BNBD5), and the inhibition of NF-κB activation in bMEC infected with S. aureus. Our results showed that thymol (16-64 μg/ml) could reduce the internalization of S. aureus into bMEC and down-regulate the mRNA expression of TAP and BNBD5 in bMEC infected with S. aureus. In addition, thymol was found to inhibit S. aureus-induced nitric oxide (NO) production in bMEC and suppress S. aureus-induced NF-κB activation in a dose-dependent manner. In conclusion, these results indicated that thymol inhibits S. aureus internalization into bMEC by inhibiting NF-κB activation. PMID:24583152

  13. The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances

    PubMed Central

    2012-01-01

    Due to a growing world population and increasing welfare, energy demand worldwide is increasing. To meet the increasing energy demand in a sustainable way, new technologies are needed. The Plant-Microbial Fuel Cell (P-MFC) is a technology that could produce sustainable bio-electricity and help meeting the increasing energy demand. Power output of the P-MFC, however, needs to be increased to make it attractive as a renewable and sustainable energy source. To increase power output of the P-MFC internal resistances need to be reduced. With a flat-plate P-MFC design we tried to minimize internal resistances compared to the previously used tubular P-MFC design. With the flat-plate design current and power density per geometric planting area were increased (from 0.15 A/m2 to 1.6 A/m2 and from 0.22 W/m2 to and 0.44 W/m2)as were current and power output per volume (from 7.5 A/m3 to 122 A/m3 and from 1.3 W/m3 to 5.8 W/m3). Internal resistances times volume were decreased, even though internal resistances times membrane surface area were not. Since the membrane in the flat-plate design is placed vertically, membrane surface area per geometric planting area is increased, which allows for lower internal resistances times volume while not decreasing internal resistances times membrane surface area. Anode was split into three different sections on different depths of the system, allowing to calculate internal resistances on different depths. Most electricity was produced where internal resistances were lowest and where most roots were present; in the top section of the system. By measuring electricity production on different depths in the system, electricity production could be linked to root growth. This link offers opportunities for material-reduction in new designs. Concurrent reduction in material use and increase in power output brings the P-MFC a step closer to usable energy density and economic feasibility. PMID:22998846

  14. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel

    PubMed Central

    Angelucci, Emanuele; Matthes-Martin, Susanne; Baronciani, Donatella; Bernaudin, Françoise; Bonanomi, Sonia; Cappellini, Maria Domenica; Dalle, Jean-Hugues; Di Bartolomeo, Paolo; de Heredia, Cristina Díaz; Dickerhoff, Roswitha; Giardini, Claudio; Gluckman, Eliane; Hussein, Ayad Achmed; Kamani, Naynesh; Minkov, Milen; Locatelli, Franco; Rocha, Vanderson; Sedlacek, Petr; Smiers, Frans; Thuret, Isabelle; Yaniv, Isaac; Cavazzana, Marina; Peters, Christina

    2014-01-01

    Thalassemia major and sickle cell disease are the two most widely disseminated hereditary hemoglobinopathies in the world. The outlook for affected individuals has improved in recent years due to advances in medical management in the prevention and treatment of complications. However, hematopoietic stem cell transplantation is still the only available curative option. The use of hematopoietic stem cell transplantation has been increasing, and outcomes today have substantially improved compared with the past three decades. Current experience world-wide is that more than 90% of patients now survive hematopoietic stem cell transplantation and disease-free survival is around 80%. However, only a few controlled trials have been reported, and decisions on patient selection for hematopoietic stem cell transplantation and transplant management remain principally dependent on data from retrospective analyses and on the clinical experience of the transplant centers. This consensus document from the European Blood and Marrow Transplantation Inborn Error Working Party and the Paediatric Diseases Working Party aims to report new data and provide consensus-based recommendations on indications for hematopoietic stem cell transplantation and transplant management. PMID:24790059

  15. In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells.

    PubMed

    Lee, Chi-Yuan; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2010-01-01

    The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage) to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC) that are based on micro-electro-mechanical systems (MEMS). The power density at 0.5 V without a sensor is 450 mW/cm(2), and that with a sensor is 426 mW/cm(2). Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse. PMID:22163556

  16. The luxS Gene of Streptococcus pyogenes Regulates Expression of Genes That Affect Internalization by Epithelial Cells

    PubMed Central

    Marouni, Mehran J.; Sela, Shlomo

    2003-01-01

    The gram-positive pathogen Streptococcus pyogenes was recently reported to possess a homologue of the luxS gene that is responsible for the production of autoinducer 2, which participates in quorum sensing of both gram-positive and gram-negative bacteria. To test the effect of LuxS on streptococcal internalization, a LuxS mutant was constructed in strain SP268, an invasive M3 serotype. Functional analysis of the mutant revealed that it was internalized by HEp-2 cells with higher efficiency than the wild type (wt). Several genes, including hasA (hyaluronic acid synthesis), speB (streptococcal pyrogenic exotoxin B), and csrR (capsule synthesis regulator), a part of a two-component regulatory system, are known to affect the internalization of strain SP268 (J. Jadoun, O. Eyal, and S. Sela, Infect. Immun. 70:462-469, 2002). Therefore, the expression of these genes in the mutant and in the wt was examined. LuxS mutation significantly reduced the mRNA level of speB and increased the mRNA level of emm3. No substantial effect was observed on transcription of hasA and csrR. Yet less hyaluronic acid capsule was expressed in the mutant. Further analysis revealed that luxS is under the regulation of the two-component global regulator CsrR. Our results indicate that LuxS activity in strain SP268 plays an important role in the expression of virulence factors associated with epithelial cell internalization. PMID:14500483

  17. The luxS gene of Streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells.

    PubMed

    Marouni, Mehran J; Sela, Shlomo

    2003-10-01

    The gram-positive pathogen Streptococcus pyogenes was recently reported to possess a homologue of the luxS gene that is responsible for the production of autoinducer 2, which participates in quorum sensing of both gram-positive and gram-negative bacteria. To test the effect of LuxS on streptococcal internalization, a LuxS mutant was constructed in strain SP268, an invasive M3 serotype. Functional analysis of the mutant revealed that it was internalized by HEp-2 cells with higher efficiency than the wild type (wt). Several genes, including hasA (hyaluronic acid synthesis), speB (streptococcal pyrogenic exotoxin B), and csrR (capsule synthesis regulator), a part of a two-component regulatory system, are known to affect the internalization of strain SP268 (J. Jadoun, O. Eyal, and S. Sela, Infect. Immun. 70:462-469, 2002). Therefore, the expression of these genes in the mutant and in the wt was examined. LuxS mutation significantly reduced the mRNA level of speB and increased the mRNA level of emm3. No substantial effect was observed on transcription of hasA and csrR. Yet less hyaluronic acid capsule was expressed in the mutant. Further analysis revealed that luxS is under the regulation of the two-component global regulator CsrR. Our results indicate that LuxS activity in strain SP268 plays an important role in the expression of virulence factors associated with epithelial cell internalization. PMID:14500483

  18. S1PR4 Signaling Attenuates ILT 7 Internalization To Limit IFN-α Production by Human Plasmacytoid Dendritic Cells.

    PubMed

    Dillmann, Christina; Ringel, Christian; Ringleb, Julia; Mora, Javier; Olesch, Catherine; Fink, Annika F; Roberts, Edward; Brüne, Bernhard; Weigert, Andreas

    2016-02-15

    Plasmacytoid dendritic cells (pDCs) produce large amounts of type I IFN in response to TLR7/9 ligands. This conveys antiviral effects, activates other immune cells (NK cells, conventional DCs, B, and T cells), and causes the induction and expansion of a strong inflammatory response. pDCs are key players in various type I IFN-driven autoimmune diseases such as systemic lupus erythematosus or psoriasis, but pDCs are also involved in (anti-)tumor immunity. The sphingolipid sphingosine-1-phosphate (S1P) signals through five G-protein-coupled receptors (S1PR1-5) to regulate, among other activities, immune cell migration and activation. The present study shows that S1P stimulation of human, primary pDCs substantially decreases IFN-α production after TLR7/9 activation with different types of CpG oligodeoxynucleotides or tick-borne encephalitis vaccine, which occurred in an S1PR4-dependent manner. Mechanistically, S1PR4 activation preserves the surface expression of the human pDC-specific inhibitory receptor Ig-like transcript 7. We provide novel information that Ig-like transcript 7 is rapidly internalized upon receptor-mediated endocytosis of TLR7/9 ligands to allow high IFN-α production. This is antagonized by S1PR4 signaling, thus decreasing TLR-induced IFN-α secretion. At a functional level, attenuated IFN-α production failed to alter Ag-driven T cell proliferation in pDC-dependent T cell activation assays, but shifted cytokine production of T cells from a Th1 (IFN-γ) to a regulatory (IL-10) profile. In conclusion, S1PR4 agonists block human pDC activation and may therefore be a promising tool to restrict pathogenic IFN-α production. PMID:26783340

  19. Interaction of Prevotella intermedia Strain 17 Leucine-Rich Repeat Domain Protein AdpF with Eukaryotic Cells Promotes Bacterial Internalization

    PubMed Central

    Sengupta, Dipanwita; Kang, Dae-Joong; Anaya-Bergman, Cecilia; Wyant, Tiana; Ghosh, Arnab K.; Miyazaki, Hiroshi

    2014-01-01

    Prevotella intermedia is an oral bacterium implicated in a variety of oral diseases. Although internalization of this bacterium by nonphagocytic host cells is well established, the molecular players mediating the process are not well known. Here, the properties of a leucine-rich repeat (LRR) domain protein, designated AdpF, are described. This protein contains a leucine-rich region composed of 663 amino acid residues, and molecular modeling shows that it folds into a classical curved solenoid structure. The cell surface localization of recombinant AdpF (rAdpF) was confirmed by electron and confocal microscopy analyses. The recombinant form of this protein bound fibronectin in a dose-dependent manner. Furthermore, the protein was internalized by host cells, with the majority of the process accomplished within 30 min. The internalization of rAdpF was inhibited by nystatin, cytochalasin, latrunculin, nocodazole, and wortmannin, indicating that microtubules, microfilaments, and signal transduction are required for the invasion. It is noteworthy that preincubation of eukaryotic cells with AdpF increased P. intermedia 17 internalization by 5- and 10-fold for HeLa and NIH 3T3 fibroblast cell lines, respectively. The addition of the rAdpF protein was also very effective in inducing bacterial internalization into the oral epithelial cell line HN4, as well as into primary cells, including human oral keratinocytes (HOKs) and human umbilical vein endothelial cells (HUVECs). Finally, cells exposed to P. intermedia 17 internalized the bacteria more readily upon reinfection. Taken together, our data demonstrate that rAdpF plays a role in the internalization of P. intermedia 17 by a variety of host cells. PMID:24711565

  20. Enhanced light absorption in GaAs solar cells with internal Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Tobin, S. P.; Vernon, S. M.; Sanfacon, M. M.; Mastrovito, A.

    The use of epitaxial multilayer dielectric mirrors (Bragg reflectors) as back-surface reflectors in thin-film GaAs solar cells on GaAs and silicon substrates is investigated. Al0.3Ga0.9As/Al0.85Ga0.15As Bragg reflectors were grown by low-pressure MOCVD on GaAs substrates and shown to exhibit near-ideal optical reflectance and structural perfection. Thin GaAs solar cells grown on Bragg reflectors showed increases in short-circuit current (0.5 to 1.0 mA/sq cm) and efficiency (0.7 percentage points) relative to cells without back reflectors. Efficiencies of 24.7 percent at one sun AM1.5 were measured for GaAs cells only 2 microns thick on Bragg reflectors. In addition to the optical enhancements, Bragg reflectors also appear to improve the defect structure of GaAs-on-Si solar cells. This approach should lead to improved efficiency for GaAs-on-Si solar cells and improved radiation resistance on GaAs cells.

  1. Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting

    PubMed Central

    Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J

    2011-01-01

    Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA. PMID:21540837

  2. Measurement of the internal pH of mast cell granules using microvolumetric fluorescence and isotopic techniques

    SciTech Connect

    De Young, M.B.; Nemeth, E.F.; Scarpa, A.

    1987-04-01

    The intragranular pH of isolated mast cell granules was measured. Because of the minute amounts of isolated granules available, two techniques were developed by modifying aminoacridine fluorescence and (/sup 14/C)methylamine accumulation techniques to permit measurements with microliter sample volumes. Granule purity was demonstrated by electron microscopy, ruthenium red exclusion, and biochemical (histamine, mast cell granule protease) analysis. The internal pH was determined to be 5.55 +/- 0.06, indicating that the pH environment within mast cell granules is not significantly different from that of previously studied granule types (i.e., chromaffin, platelet, pancreatic islet, and pituitary granules). Collapse of the pH gradient by NH+4 was demonstrated with both techniques. No evidence of Cl-/OH- or specific cation/H+ transport was found, and major chloride permeability could not be unequivocably demonstrated. Ca/sup 2 +/ and Cl- at concentrations normally present extracellularly destabilized granules in the presence of NH+4, but this phenomenon does not necessarily indicate a role for these ions in the exocytotic release of granule contents from intact cells. The pH measurement techniques developed for investigating the properties of granules in mast cells may be useful for studying other granules that can be obtained only in limited quantities.

  3. Hemagglutinin of influenza A virus binds specifically to cell surface nucleolin and plays a role in virus internalization.

    PubMed

    Chan, Che-Man; Chu, Hin; Zhang, Anna Jinxia; Leung, Lai-Han; Sze, Kong-Hung; Kao, Richard Yi-Tsun; Chik, Kenn Ka-Heng; To, Kelvin Kai-Wang; Chan, Jasper Fuk-Woo; Chen, Honglin; Jin, Dong-Yan; Liu, Liang; Yuen, Kwok-Yung

    2016-07-01

    The hemagglutinin (HA) protein of influenza A virus initiates cell entry by binding to sialic acids on target cells. In the current study, we demonstrated that in addition to sialic acids, influenza A/Puerto Rico/8/34 H1N1 (PR8) virus HA specifically binds to cell surface nucleolin (NCL). The interaction between HA and NCL was initially revealed with virus overlay protein binding assay (VOPBA) and subsequently verified with co-immunoprecipitation. Importantly, inhibiting cell surface NCL with NCL antibody, blocking PR8 viruses with purified NCL protein, or depleting endogenous NCL with siRNA all substantially reduced influenza virus internalization. We further demonstrated that NCL was a conserved cellular factor required for the entry of multiple influenza A viruses, including H1N1, H3N2, H5N1, and H7N9. Overall, our findings identified a novel role of NCL in influenza virus life cycle and established NCL as one of the host cell surface proteins for the entry of influenza A virus. PMID:27085069

  4. Detection of DNA Damage by Space Radiation in Human Fibroblast Cells Flown on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Wong, Michael; Beno, Jonathan; Countryman, Stefanie; Stodieck, Louis; Karouia, Fathi; Zhang, Ye

    2015-01-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the early discovery of the Van Allen Belt, reports on effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation has been difficult due to the low dose and low dose rate nature of the radiation environment, and the difficulty in separating the radiation effects from microgravity and other space environmental factors. In astronauts, only a small number of changes, such as increased chromosome aberrations in lymphocytes and early onset of cataracts, attributed primarily to the exposure to space radiation. In a recent experiment, human fibroblast cells were flown on the International Space Station (ISS). Cells fixed on Days 3 and 14 after reaching orbit were analyzed for phosphorylation of a histone protein H2AX by immunofluorescent staining of cells, which is a widely used marker for DNA double strand breaks. The 3-dimensional gamma-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed a small fraction of foci that were larger and displayed a track pattern in the flight samples in comparison to the ground control. Human fibroblast cells were also exposed to low dose rate gamma rays, as well as to protons and Fe ions. Comparison of the pattern and distribution of the foci after gamma ray and charged particle exposure to our flight results confirmed that the foci found in the flown cells were indeed induced by space radiation.

  5. Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal.

    PubMed

    Krampera, Mauro; Galipeau, Jacques; Shi, Yufang; Tarte, Karin; Sensebe, Luc

    2013-09-01

    Cultured mesenchymal stromal cells (MSCs) possess immune regulatory properties and are already used for clinical purposes, although preclinical data (both in vitro and in vivo in animal models) are not always homogeneous and unequivocal. However, the various MSC-based clinical approaches to treat immunological diseases would be significantly validated and strengthened by using standardized immune assays aimed at obtaining shared, reproducible and consistent data. Thus, the MSC Committee of the International Society for Cellular Therapy has decided to put forward for general discussion a working proposal for a standardized approach based on a critical view of literature data. PMID:23602578

  6. Raman and fluorescence microscopy to study the internalization and dissolution of photosensitizer nanoparticles into living cells

    NASA Astrophysics Data System (ADS)

    Scalfi-Happ, Claudia; Steiner, Rudolf; Wittig, Rainer; Graefe, Susanna; Ryabova, Anastasia; Loschenov, Victor

    2015-07-01

    In this present study we applied Raman and fluorescence microscopy to investigate the internalisation, cellular distribution and effects on cell metabolism of photosensitizer nanoparticles for photodynamic therapy in fibroblasts and macrophages.

  7. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses.

    PubMed

    Rihane, Naima; Nury, Thomas; M'rad, Imen; El Mir, Lassaad; Sakly, Mohsen; Amara, Salem; Lizard, Gérard

    2016-05-01

    Because of their whitening and photocatalytic effects, titanium dioxide nanoparticles (TiO2-NPs) are widely used in daily life. These NPs can be found in paints, plastics, papers, sunscreens, foods, medicines (pills), toothpastes, and cosmetics. However, the biological effect of TiO2-NPs on the human body, especially on the central nervous system, is still unclear. Many studies have demonstrated that the brain is one of the target organs in acute or chronic TiO2-NPs toxicity. The present study aimed to investigate the effect of TiO2-NPs at different concentrations (0.1 to 200 μg/mL) on murine microglial cells (BV-2) to assess their activity on cell growth and viability, as well as their neurotoxicity. Different parameters were measured: cell viability, cell proliferation and DNA content (SubG1 peak), mitochondrial depolarization, overproduction of reactive oxygen species (especially superoxide anions), and ultrastructural changes. Results showed that TiO2-NPs induced some cytotoxic effects with a slight inhibition of cell growth. Thus, at high concentrations, TiO2-NPs were not only able to inhibit cell adhesion but also enhanced cytoplasmic membrane permeability to propidium iodide associated with a loss of mitochondrial transmembrane potential and an overproduction of superoxide anions. No induction of apoptosis based on the presence of a SubG1 peak was detected. The microscopic observations also indicated that small groups of nanosized particles and micron-sized aggregates were engulfed by the BV-2 cells and sequestered as intracytoplasmic aggregates after 24-h exposure to TiO2-NPs. Altogether, our data show that the accumulation TiO2-NPs in microglial BV-2 cells favors mitochondrial dysfunctions and oxidative stress. PMID:26846246

  8. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOEpatents

    Dederer, Jeffrey T.; Hager, Charles A.

    1998-01-01

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

  9. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOEpatents

    Dederer, J.T.; Hager, C.A.

    1998-03-31

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

  10. Near-field penetrating optical microscopy: A live cell nanoscale refractive index measurement technique for quantification of internal macromolecular density

    PubMed Central

    Strasser, Samantha Dale; Shekhawat, Gajendra; Rogers, Jeremy D.; Dravid, Vinayak P.; Taflove, Allen; Backman, Vadim

    2012-01-01

    Quantification of intracellular nanoscale macromolecular density distribution is a fundamental aspect to understanding cellular processes. We report a near-field penetrating optical microscopy (NPOM) technique to directly probe the internal nanoscale macromolecular density of biological cells through quantification of intracellular refractive index (RI). NPOM inserts a tapered optical fiber probe to successive depths into an illuminated sample. A 50 nm diameter probe-tip collects signal that exhibits a linear relationship with the sample RI at a spatial resolution of approximately 50 nm for biologically relevant measurements, one order-of-magnitude finer than the Abbe diffraction limit. Live and fixed cell data illustrate the mechanical ability of a 50 nm probe to penetrate biological samples. PMID:22344088

  11. Near-field penetrating optical microscopy: a live cell nanoscale refractive index measurement technique for quantification of internal macromolecular density.

    PubMed

    Strasser, Samantha Dale; Shekhawat, Gajendra; Rogers, Jeremy D; Dravid, Vinayak P; Taflove, Allen; Backman, Vadim

    2012-02-15

    Quantification of intracellular nanoscale macromolecular density distribution is a fundamental aspect to understanding cellular processes. We report a near-field penetrating optical microscopy (NPOM) technique to directly probe the internal nanoscale macromolecular density of biological cells through quantification of intracellular refractive index (RI). NPOM inserts a tapered optical fiber probe to successive depths into an illuminated sample. A 50 nm diameter probe tip collects signal that exhibits a linear relationship with the sample RI at a spatial resolution of approximately 50 nm for biologically relevant measurements, one order of magnitude finer than the Abbe diffraction limit. Live and fixed cell data illustrate the mechanical ability of a 50 nm probe to penetrate biological samples. PMID:22344088

  12. Photochemical internalization of tamoxifens transported by a "Trojan-horse" nanoconjugate into breast-cancer cell lines.

    PubMed

    Theodossiou, Theodossis A; Gonçalves, A Ricardo; Yannakopoulou, Konstantina; Skarpen, Ellen; Berg, Kristian

    2015-04-13

    Photochemical internalization (PCI) has shown great promise as a therapeutic alternative for targeted drug delivery by light-harnessed activation. However, it has only been applicable to therapeutic macromolecules or medium-sized molecules. Herein we describe the use of an amphiphilic, water-soluble porphyrin-β-cyclodextrin conjugate (mTHPP-βCD) as a "Trojan horse" to facilitate the endocytosis of CD-guest tamoxifens into breast-cancer cells. Upon irradiation, the porphyrin core of mTHPP-βCD expedited endosomal membrane rupture and tamoxifen release into the cytosol, as documented by confocal microscopy. The sustained complexation of mTHPP-βCD with tamoxifen was corroborated by 2D NMR spectroscopy and FRET studies. Following the application of PCI protocols with 4-hydroxytamoxifen (4-OHT), estrogen-receptor β-positive (Erβ+, but not ERβ-) cell groups exhibited extensive cytotoxicity and/or growth suspension even at 72 h after irradiation. PMID:25663536

  13. Super-resolution imaging-based single particle tracking reveals dynamics of nanoparticle internalization by live cells.

    PubMed

    Li, Yiming; Shang, Li; Nienhaus, G Ulrich

    2016-04-14

    By combining super-resolution photoactivation localization microscopy with single particle tracking, we have visualized the endocytic process in the live-cell environment with nanoparticles (NPs) of different size and surface functionalization. This allowed us to analyze the dynamics of NPs interacting with cells with high spatial and temporal resolution. We identified two distinctly different types of pathways by which NPs are internalized via clathrin-coated pits (CCPs). Predominantly, NPs first bind to the membrane and, subsequently, CCPs form at this site. However, there are also instances where a NP diffuses on the membrane and utilizes a preformed CCP. Moreover, we have applied this new method to further explore the effects of size and surface functionalization on the NP dynamics on the plasma membrane and the ensuing endocytosis. PMID:27001905

  14. Effects of Soothing Liver and Invigorating Spleen Recipes on the IKKβ-NF-κB Signaling Pathway in Kupffer Cells of Nonalcoholic Steatohepatitis Rats

    PubMed Central

    Gong, Xiang-Wen; Xu, Yong-Jian; Yang, Qin-He; Liang, Yin-Ji; Zhang, Yu-Pei; Wang, Guan-Long; Li, Yuan-Yuan

    2015-01-01

    This study investigates the effect of soothing liver and invigorating spleen recipes on steatohepatitis examining the IKKβ-NF-κB signaling pathway in KCs of NASH rats. SD male rats were randomly divided into 8 groups, and the NASH model was induced by a high-fat diet (HFD). After 26 weeks, liver tissue was examined in H&E stained sections and liver function was monitored biochemically. KCs were isolated by Seglen's method, with some modifications. The mRNA and protein expression of the IKKβ-NF-κB signaling pathway components was examined by quantitative PCR and Western blotting. The results show that the high-fat diet induced NASH in the rats, and the soothing liver recipe and invigorating spleen recipe decreased the levels of TNF-α, IL-1, and IL-6 in KCs, as well as inhibiting the mRNA and protein expression of the IKKβ-NF-κB signaling pathway components. In conclusion, the experiment indicated the importance of the IKKβ-NF-κB signaling pathway in KCs for the anti-inflammatory effects of the soothing liver and invigorating spleen recipes. PMID:26504479

  15. Super-resolution imaging-based single particle tracking reveals dynamics of nanoparticle internalization by live cells

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Shang, Li; Nienhaus, G. Ulrich

    2016-03-01

    By combining super-resolution photoactivation localization microscopy with single particle tracking, we have visualized the endocytic process in the live-cell environment with nanoparticles (NPs) of different size and surface functionalization. This allowed us to analyze the dynamics of NPs interacting with cells with high spatial and temporal resolution. We identified two distinctly different types of pathways by which NPs are internalized via clathrin-coated pits (CCPs). Predominantly, NPs first bind to the membrane and, subsequently, CCPs form at this site. However, there are also instances where a NP diffuses on the membrane and utilizes a preformed CCP. Moreover, we have applied this new method to further explore the effects of size and surface functionalization on the NP dynamics on the plasma membrane and the ensuing endocytosis.By combining super-resolution photoactivation localization microscopy with single particle tracking, we have visualized the endocytic process in the live-cell environment with nanoparticles (NPs) of different size and surface functionalization. This allowed us to analyze the dynamics of NPs interacting with cells with high spatial and temporal resolution. We identified two distinctly different types of pathways by which NPs are internalized via clathrin-coated pits (CCPs). Predominantly, NPs first bind to the membrane and, subsequently, CCPs form at this site. However, there are also instances where a NP diffuses on the membrane and utilizes a preformed CCP. Moreover, we have applied this new method to further explore the effects of size and surface functionalization on the NP dynamics on the plasma membrane and the ensuing endocytosis. Electronic supplementary information (ESI) available: Experimental section, supporting figures and videos. See DOI: 10.1039/c6nr01495j

  16. Anti-Inflammatory and Antimicrobial Effects of Estradiol in Bovine Mammary Epithelial Cells during Staphylococcus aureus Internalization

    PubMed Central

    Medina-Estrada, Ivan; López-Meza, Joel E.

    2016-01-01

    17β-Estradiol (E2), the predominant sexual hormone in females, is associated with the modulation of the innate immune response (IIR), and changes in its levels at parturition are related to intramammary infections, such as mastitis. In bovine mammary epithelial cells (bMECs), E2 regulates differentiation and proliferation, but its immunomodulatory functions have not been explored. Staphylococcus aureus is the predominant pathogen causing mastitis, which can persist intracellularly in bMECs. The aim of this work was to analyze whether E2 modulates the IIR of bMECs during S. aureus internalization. bMECs treated with E2 (50 pg/mL, 24 h) reduced bacteria internalization (~50%). The host receptors α5β1 and TLR2 do not participate in this reduction. However, E2 activates ERα and modulates the IIR reducing the S. aureus induced-mRNA expression of TNF-α (~50%) and IL-1β (90%). E2 also decreased the secretion of these cytokines as well as IL-6 production; however, in infected bMECs, E2 induced the secretion of IL-1β. Furthermore, E2 upregulates the expression of the antimicrobial peptides DEFB1, BNBD5, and psoriasin S100A7 (~5-, 3-, and 6-fold, resp.). In addition, E2 induced the production of antimicrobial compounds in bMEC culture medium, which, together with the modulation of the IIR, could be related to the reduction of S. aureus internalization. PMID:27034592

  17. Report of the First International Consensus on Standardized Nomenclature of Antinuclear Antibody HEp-2 Cell Patterns 2014–2015

    PubMed Central

    Chan, Edward K. L.; Damoiseaux, Jan; Carballo, Orlando Gabriel; Conrad, Karsten; de Melo Cruvinel, Wilson; Francescantonio, Paulo Luiz Carvalho; Fritzler, Marvin J.; Garcia-De La Torre, Ignacio; Herold, Manfred; Mimori, Tsuneyo; Satoh, Minoru; von Mühlen, Carlos A.; Andrade, Luis E. C.

    2015-01-01

    During the 12th International Workshop on Autoantibodies and Autoimmunity held in Sao Paulo, Brazil, on August 28, 2014, a full day session was devoted to establishing a consensus on the nomenclature of staining patterns observed in the antinuclear antibody (ANA) indirect immunofluorescence test on HEp-2 cells. The current report summarizes the collective agreements with input from the host Brazilian and international communities that represented research, clinical, and diagnostic service laboratories. Patterns are categorized in three major groups (nuclear, cytoplasmic, and mitotic patterns) and each pattern has been defined and described in detail. The consensus nomenclature and representative patterns are made available online at the international consensus on antinuclear antibody pattern (ICAP) website (www.ANApatterns.org). To facilitate continuous improvement and input, specific comments on ICAP are encouraged and these will be discussed in subsequent ICAP meetings. The ultimate goal with the establishment of the ICAP is to promote harmonization and understanding of autoantibody test nomenclature, as well as interpretation guidelines for ANA testing, thereby optimizing usage in patient care. PMID:26347739

  18. Report of the First International Consensus on Standardized Nomenclature of Antinuclear Antibody HEp-2 Cell Patterns 2014-2015.

    PubMed

    Chan, Edward K L; Damoiseaux, Jan; Carballo, Orlando Gabriel; Conrad, Karsten; de Melo Cruvinel, Wilson; Francescantonio, Paulo Luiz Carvalho; Fritzler, Marvin J; Garcia-De La Torre, Ignacio; Herold, Manfred; Mimori, Tsuneyo; Satoh, Minoru; von Mühlen, Carlos A; Andrade, Luis E C

    2015-01-01

    During the 12th International Workshop on Autoantibodies and Autoimmunity held in Sao Paulo, Brazil, on August 28, 2014, a full day session was devoted to establishing a consensus on the nomenclature of staining patterns observed in the antinuclear antibody (ANA) indirect immunofluorescence test on HEp-2 cells. The current report summarizes the collective agreements with input from the host Brazilian and international communities that represented research, clinical, and diagnostic service laboratories. Patterns are categorized in three major groups (nuclear, cytoplasmic, and mitotic patterns) and each pattern has been defined and described in detail. The consensus nomenclature and representative patterns are made available online at the international consensus on antinuclear antibody pattern (ICAP) website (www.ANApatterns.org). To facilitate continuous improvement and input, specific comments on ICAP are encouraged and these will be discussed in subsequent ICAP meetings. The ultimate goal with the establishment of the ICAP is to promote harmonization and understanding of autoantibody test nomenclature, as well as interpretation guidelines for ANA testing, thereby optimizing usage in patient care. PMID:26347739

  19. Relation between muscarinic receptor cationic current and internal calcium in guinea-pig jejunal smooth muscle cells.

    PubMed Central

    Pacaud, P; Bolton, T B

    1991-01-01

    1. The action of carbachol, which activates muscarinic receptors, was studied in single patch-clamped cells where free internal calcium concentration in the cell (Cai2+) was estimated using the emission from the dye Indo-1. Cells were dialysed with potassium-free caesium solution to block any Ca(2+)-activated K(+)-current. 2. Carbachol applied to the cell evoked an initial peak in Cai2+ followed by a smaller sustained rise (plateau) upon which several oscillations in Cai2+ were often superimposed; the changes in inward, cationic current (icarb) followed changes in Cai2+ closely. Calcium entry blocker did not affect these responses. 3. The initial peak in Cai2+ produced by carbachol was due to calcium store release: it was essentially unchanged at +50 mV, and abolished by prior application of caffeine (10 mM) to the cell or by inclusion of heparin (which blocks D-myoinositol 1,4,5-trisphosphate receptors) in the pipette. In contrast, the rise in Cai2+ produced by ATP in rabbit ear artery smooth muscle cells was unaffected by caffeine or heparin as it was due to calcium entry into the cell. 4. The later sustained rise (plateau) in Cai2+ produced by carbachol was due to the entry of calcium into the cell down its electrochemical gradient as it was affected by changing the cell membrane potential or the calcium concentration of the bathing solution. As the sustained rise in Cai2+ produced by caffeine had similar properties, it was suggested that depletion of calcium stores can evoke an increased calcium entry into the cell through some pathway. 5. The cationic current evoked by carbachol was strongly dependent on Cai2+. It was small if any rise in Cai2+ due to calcium store release was prevented by the inclusion of heparin in the pipette solution and increased greatly if calcium entry was provoked through voltage-dependent channels by applying a depolarizing pulse or if calcium was released from stores by caffeine. 6. In the longitudinal muscle of guinea-pig small

  20. Performance of an internal reforming molten carbonate fuel cell supplied with ethanol/water mixture

    SciTech Connect

    Freni, S.; Maggio, G.; Barone, F.

    1996-12-31

    The state of an on the field of molten carbonate fuel cell (MCFC) systems covers many technological aspects related to the use of these systems for the production of electricity. In this respect, extensive research efforts have been made to develop a technology using the methane based on the steam reforming process, and different configurations have been analyzed and their performance determined for several operative cell conditions. However, the operative temperature (T-923 K) of the MCFC. that allows the direct conversion of hydrocarbons or alcohols into H{sub 2} and CO, promotes researches in the field of alternative fuels, more easily transported and reformed compared to methane. In this paper are described the most indicative results obtained by a study that considers the use of water/ethanol mixture as an attractive alternative to the methane for a molten carbonate fuel cell.

  1. The analysis of light trapping and internal quantum efficiency of a solar cell with DBR back reflector

    SciTech Connect

    Yang, Kuo-Hui; Yang, Jaw-Yen

    2009-11-15

    A theoretical analysis of the total internal quantum efficiency (IQE) of a flat-band p-n homo-junction silicon solar cell with back reflector using distributed Bragg reflectors to improve the light trapping is presented and contributions of different regions of the structure to IQEs are simulated. An optical model for the determination of generation profile of the cell is adopted and multiple light passes are considered and compared to previous single light pass approach. It is found that the spatial widths of the cell, the surface recombination velocities, the front surface transmittance and the back reflector have significant impacts on the IQEs. With two light passes and normal incident light, the simulation result shows the IQEs can be increased over the one pass value by 6.34% and with a 60 light reflection angle, the IQEs can be further increased by 9.01% while assuming the reflectance at back structure closed to 100%. The effect on IQEs by back reflectance is more significant than that by front transmittance. Under multiple light passes simulation, up to 51 light trapping passes have been considered at wavelength range 900-1100 nm, the cell IQEs can be enhanced by about 26.98%. (author)

  2. Deformation and internal stress in a red blood cell as it is driven through a slit by an incoming flow.

    PubMed

    Salehyar, Sara; Zhu, Qiang

    2016-04-01

    To understand the deformation and internal stress of a red blood cell when it is pushed through a slit by an incoming flow, we conduct a numerical investigation by combining a fluid-cell interaction model based on boundary-integral equations with a multiscale structural model of the cell membrane that takes into account the detailed molecular architecture of this biological system. Our results confirm the existence of cell 'infolding', during which part of the membrane is inwardly bent to form a concave region. The time histories and distributions of area deformation, shear deformation, and contact pressure during and after the translocation are examined. Most interestingly, it is found that in the recovery phase after the translocation significant dissociation pressure may develop between the cytoskeleton and the lipid bilayer. The magnitude of this pressure is closely related to the locations of the dimple elements during the transit. Large dissociation pressure in certain cases suggests the possibility of mechanically induced structural remodeling and structural damage such as vesiculation. With quantitative knowledge about the stability of intra-protein, inter-protein and protein-to-lipid linkages under dynamic loads, it will be possible to achieve numerical prediction of these processes. PMID:26865054

  3. Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization.

    PubMed

    Sun, Xia; Shi, Junpeng; Zou, Xiaoyan; Wang, Chengcheng; Yang, Yi; Zhang, Hongwu

    2016-11-01

    The toxicological risks of silver nanoparticles (AgNPs) have attracted widespread attention, and many studies have been published that have contributed to understanding AgNPs-induced toxicity. However, little attention has been paid to the low-dose effects of AgNPs and the related toxicological mechanism is still unclear. Here, we show that short-term exposure to AgNPs at low doses induces a substantial increase in human umbilical vein endothelial cells (HUVECs) monolayer permeability, whereas Ag ions at low doses do not induce an observable increase in monolayer permeability. This effect is independent of oxidative stress and apoptosis. Scanning electron microscopy confirms that AgNPs adhere to the cell membrane after 1h exposure. Furthermore, adhesion of AgNPs to the cell membrane can trigger vascular endothelial (VE)-cadherin phosphorylation at Y658 followed by VE-cadherin internalization, which lead to the increase in endothelial monolayer permeability. Our data show that surface interactions of AgNPs with the cell membrane, in other words, the particle effect, is a major factor leading to endothelial dysfunction following low-dose and short-term exposure. Our findings will contribute to understanding the health effects and the toxicological mechanisms of AgNPs. PMID:27344258

  4. Effect of internal electric field on InAs/GaAs quantum dot solar cells

    SciTech Connect

    Kasamatsu, Naofumi; Kada, Tomoyuki; Hasegawa, Aiko; Harada, Yukihiro; Kita, Takashi

    2014-02-28

    We studied time-resolved carrier recombination in InAs/GaAs quantum dot (QD) solar cells. The electric field in a p-i-n diode structure spatially separates photoexcited carriers in QDs, strongly affecting the conversion efficiency of intermediate-band solar cells. The radiative decay lifetime is dramatically reduced in a strong electric field (193 kV/cm) by efficient recombination due to strong carrier localization in each QD and significant tunneling-assisted electron escape. Conversely, an electric field of the order of 10 kV/cm maintains electronic coupling in the stacked QDs and diminishes tunneling-assisted electron escape.

  5. Identification of a Renibacterium salmoninarum DNA fragment associated with bacterial internalization into CHSE-cultured cells.

    PubMed

    Maulén, N P; Morales, P J; Aruti, D; Figueroa, J E; Concha, M I; Krauskopf, M; León, G

    1996-01-01

    We report here the isolation of a Renibacterium salmoninarum DNA sequence capable of transforming a non-invasive Escherichia coli strain into a microorganism able to enter the fish cell line, CHSE-214. Immunofluorescence and electron microscopy techniques were used to assess the acquired invasive phenotype by HB101 E. coli cells, upon transformation with pPMV-189. This plasmid carries a 2282-bp R. salmoninarum DNA segment. The invasive phenotype is conserved upon deletion of approximately 1000 bp at the 3' end of the insert. The remaining segment contains an ORF region encoding a putative protein of about 30 kDa. PMID:8598275

  6. α-Hemolysin enhances Staphylococcus aureus internalization and survival within mast cells by modulating the expression of β1 integrin.

    PubMed

    Goldmann, Oliver; Tuchscherr, Lorena; Rohde, Manfred; Medina, Eva

    2016-06-01

    Mast cells (MCs) are important sentinels of the host defence against invading pathogens. We previously reported that Staphylococcus aureus evaded the extracellular antimicrobial activities of MCs by promoting its internalization within these cells via β1 integrins. Here, we investigated the molecular mechanisms governing this process. We found that S. aureus responded to the antimicrobial mediators released by MCs by up-regulating the expression of α-hemolysin (Hla), fibronectin-binding protein A and several regulatory systems. We also found that S. aureus induced the up-regulation of β1 integrin expression on MCs and that this effect was mediated by Hla-ADAM10 (a disintegrin and metalloproteinase 10) interaction. Thus, deletion of Hla or inhibition of Hla-ADAM10 interaction significantly impaired S. aureus internalization within MCs. Furthermore, purified Hla but not the inactive HlaH35L induced up-regulation of β1 integrin expression in MCs in a dose-dependent manner. Our data support a model in which S. aureus counter-reacts the extracellular microbicidal mechanisms of MCs by increasing expression of fibronectin-binding proteins and by inducing Hla-ADAM10-mediated up-regulation of β1 integrin in MCs. The up-regulation of bacterial fibronectin-binding proteins, concomitantly with the increased expression of its receptor β1 integrin on the MCs, resulted in enhanced S. aureus internalization through the binding of fibronectin-binding proteins to integrin β1 via fibronectin. PMID:26595647

  7. Detection of DNA Damage by Space Radiation in Human Fibroblast Cells Flown on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Zhang, Ye

    2016-01-01

    Although charged particles in space have been detected with radiation detectors on board the spacecraft since the early discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation has been difficult due to the low dose and low dose rate nature of the radiation environment, and the difficulty in separating the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in lymphocytes and early onset of cataracts, attributed primarily to the exposure to space radiation. In a recent experiment, human fibroblast cells were flown on the International Space Station (ISS). Cells were kept at 370 C in space and fixed on Days 3 and 14 after reaching orbit. After returning to the ground, the fixed cells were analyzed for phosphorylation of a histone protein H2AX by immunofluorescent staining of cells, which is a widely used biomarker for DNA double strand breaks. The 3-dimensional gamma-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed a small fraction of foci that were larger and displayed a track pattern in the flight samples in comparison to the ground controls. To confirm that the foci data from the flight study was actually induced from space radiation exposure, human fibroblast cells were exposed to low- and high-LET protons and high-LET Fe ions on the ground. High-LET protons and Fe ions were found to induce foci of the pattern that were observed in the flown cells.

  8. Detection of DNA damage by space radiation in human fibroblast cells flown on the International Space Station

    NASA Astrophysics Data System (ADS)

    Wu, Honglu; Feiveson, Alan; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao; Wong, Michael

    2016-07-01

    Although charged particles in space have been detected with radiation detectors on board the spacecraft since the early discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation has been difficult due to the low dose and low dose rate nature of the radiation environment, and the difficulty in separating the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in lymphocytes and early onset of cataracts, attributed primarily to the exposure to space radiation. In a recent experiment, human fibroblast cells were flown on the International Space Station (ISS). Cells were kept at 370C in space and fixed on Days 3 and 14 after reaching orbit. After returning to the ground, the fixed cells were analyzed for phosphorylation of a histone protein H2AX by immunofluorescent staining of cells, which is a widely used biomarker for DNA double strand breaks. The 3-dimensional γg-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed a small fraction of foci that were larger and displayed a track pattern in the flight samples in comparison to the ground controls. To confirm that the foci data from the flight study was actually induced from space radiation exposure, human fibroblast cells were exposed to low- and high-LET protons and high-LET Fe ions on the ground. High-LET protons and Fe ions were found to induce foci of the pattern that were observed in the flown cells.

  9. External cadmium and internal calcium block of single calcium channels in smooth muscle cells from rabbit mesenteric artery.

    PubMed

    Huang, Y; Quayle, J M; Worley, J F; Standen, N B; Nelson, M T

    1989-11-01

    The patch clamp technique was used to record unitary currents through single calcium channels from smooth muscle cells of rabbit mesenteric arteries. The effects of external cadmium and cobalt and internal calcium, barium, cadmium, and magnesium on single channel currents were investigated with 80 mM barium as the charge carrier and Bay K 8644 to prolong openings. External cadmium shortened the mean open time of single Ca channels. Cadmium blocking and unblocking rate constants of 16.5 mM-1 ms-1 and 0.6 ms-1, respectively, were determined, corresponding to dissociation constant Kd of 36 microM at -20 mV. These results are very similar to those reported for cardiac muscle Ca channels (Lansman, J. B., P. Hess, and R. W. Tsien. 1986. J. Gen. Physiol. 88:321-347). In contrast, Cd2+ (01-10 mM), when applied to the internal surface of Ca channels in inside-out patches, did not affect the mean open time, mean unitary current, or the variance of the open channel current. Internal calcium induced a flickery block, with a Kd of 5.8 mM. Mean blocking and unblocking rate constants for calcium of 0.56 mM-1 ms-1 and 3.22 ms-1, respectively, were determined. Internal barium (8 mM) reduced the mean unitary current by 36%. We conclude that under our experimental conditions, the Ca channel is not symmetrical with respect to inorganic ion block and that intracellular calcium can modulate Ca channel currents via a low-affinity binding site. PMID:2481511

  10. Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells

    SciTech Connect

    Chung, Sun-Ku; Kim, Joo-Young; Kim, In-Beom; Park, Sang-Ick; Paek, Kyung-Hee; Nam, Jae-Hwan . E-mail: jnam66@yahoo.com

    2005-03-01

    Coxsackievirus B3 (CVB3) is nonenveloped and has a single-stranded positive-sense RNA genome. CVB3 induces myocarditis and ultimately dilated cardiomyopathy. Although there are mounting evidences of an interaction between CVB3 particles and the cellular receptors, coxsackievirus and adenovirus receptor (CAR) and decay-accelerating factor (DAF), very little is known about the mechanisms of internalization and trafficking. In the present study, we used the CVB3 H3 strain, which is CAR-dependent but DAF-independent Woodruff variant and found that during entry, CVB3 particles were colocalized in clathrin, after interacting primarily with CAR, which was not recycled to the plasma membrane. We also found that CVB3 internalization was dependent on the function of dynamin, a large GTPase that has an essential role in endocytosis. Heat-shock cognate protein, Hsc70, which acts as a chaperone in the release of coat proteins from clathrin-coated vesicles (CCV), played a role in CVB3 trafficking processes. Moreover, endosomal acidification was crucial for CVB3 endocytosis. Finally, CVB3 was colocalized in early endosome autoantigen 1 (EEA1) molecules, which are involved in endosome-endosome tethering and fusion. In conclusion, these data together indicate that CVB3 uses clathrin-mediated endocytosis and is transcytosed to early endosomes.

  11. Complexes of DNA with cationic peptides: conditions of formation and factors effecting internalization by mammalian cells.

    PubMed

    Dizhe, E B; Ignatovich, I A; Burov, S V; Pohvoscheva, A V; Akifiev, B N; Efremov, A M; Perevozchikov, A P; Orlov, S V

    2006-12-01

    This work was devoted to the study of conditions of the formation of DNA/K8 complex and analysis of factors effecting the entry of DNA/K8 complex into mammalian cells in comparison with DNA complexes with arginine-rich fragment (47-57) of human immunodeficiency virus (type 1) transcription factor Tat (Tat peptide). The stoichiometry of positively charged DNA/K8 complexes has been studied for the first time. Non-cooperative character of DNA-K8 interaction was revealed. It has been shown that along with the positive charge of such complexes, the presence of an excess of free K8 peptide in the culture medium is a necessary condition for maximal efficiency of cell transfection with DNA/K8 complexes. A stimulatory effect of free K8 peptide on the efficiency of mammalian cell transfection by DNA/K8 complexes is likely to be mediated by the interactions of cationic peptide K8 with negatively charged proteoglycans on the cell surface, which leads to protection of DNA/K8 complexes from disruption by cellular heparan sulfates. However, the protective role of free cationic peptides depends not only on their positive charge, but also on the primary structure of the peptide. In contrast with the results obtained for DNA complexes with molecular conjugates based on poly-L-lysine, the aggregation of DNA/K8 complexes leads to a significant increase in the expression of transferred gene. PMID:17223788

  12. Metal-air cells comprising collapsible foam members and means for minimizing internal pressure buildup

    NASA Technical Reports Server (NTRS)

    Woodruff, Glenn (Inventor); Putt, Ronald A. (Inventor)

    1994-01-01

    This invention provides a prismatic zinc-air cell including, in general, a prismatic container having therein an air cathode, a separator and a zinc anode. The container has one or more oxygen access openings, and the air cathode is disposed in the container in gaseous communication with the oxygen access openings so as to allow access of oxygen to the cathode. The separator has a first side in electrolytic communication with the air cathode and a second side in electrolytic communication with the zinc anode. The separator isolates the cathode and the zinc anode from direct electrical contact and allows passage of electrolyte therebetween. An expansion chamber adjacent to the zinc anode is provided which accommodates expansion of the zinc anode during discharge of the cell. A suitable collapsible foam member generally occupies the expansion space, providing sufficient resistance tending to oppose movement of the zinc anode away from the separator while collapsing upon expansion of the zinc anode during discharge of the cell. One or more vent openings disposed in the container are in gaseous communication with the expansion space, functioning to satisfactorily minimize the pressure buildup within the container by venting gasses expelled as the foam collapses during cell discharge.

  13. A Cell-Based Internalization and Degradation Assay with an Activatable Fluorescence–Quencher Probe as a Tool for Functional Antibody Screening

    PubMed Central

    Liu, Peter Corbett; Shen, Yang; Snavely, Marshall D.; Hiraga, Kaori

    2015-01-01

    For the development of therapeutically potent anti-cancer antibody drugs, it is often important to identify antibodies that internalize into cells efficiently, rather than just binding to antigens on the cell surface. Such antibodies can mediate receptor endocytosis, resulting in receptor downregulation on the cell surface and potentially inhibiting receptor function and tumor growth. Also, efficient antibody internalization is a prerequisite for the delivery of cytotoxic drugs into target cells and is critical for the development of antibody–drug conjugates. Here we describe a novel activatable fluorescence–quencher pair to quantify the extent of antibody internalization and degradation in the target cells. In this assay, candidate antibodies were labeled with a fluorescent dye and a quencher. Fluorescence is inhibited outside and on the surface of cells, but activated upon endocytosis and degradation of the antibody. This assay enabled the development of a process for rapid characterization of candidate antibodies potentially in a high-throughput format. By employing an activatable secondary antibody, primary antibodies in purified form or in culture supernatants can be screened for internalization and degradation. Because purification of candidate antibodies is not required, this method represents a direct functional screen to identify antibodies that internalize efficiently early in the discovery process. PMID:26024945

  14. A Cell-Based Internalization and Degradation Assay with an Activatable Fluorescence-Quencher Probe as a Tool for Functional Antibody Screening.

    PubMed

    Li, Yan; Liu, Peter Corbett; Shen, Yang; Snavely, Marshall D; Hiraga, Kaori

    2015-08-01

    For the development of therapeutically potent anti-cancer antibody drugs, it is often important to identify antibodies that internalize into cells efficiently, rather than just binding to antigens on the cell surface. Such antibodies can mediate receptor endocytosis, resulting in receptor downregulation on the cell surface and potentially inhibiting receptor function and tumor growth. Also, efficient antibody internalization is a prerequisite for the delivery of cytotoxic drugs into target cells and is critical for the development of antibody-drug conjugates. Here we describe a novel activatable fluorescence-quencher pair to quantify the extent of antibody internalization and degradation in the target cells. In this assay, candidate antibodies were labeled with a fluorescent dye and a quencher. Fluorescence is inhibited outside and on the surface of cells, but activated upon endocytosis and degradation of the antibody. This assay enabled the development of a process for rapid characterization of candidate antibodies potentially in a high-throughput format. By employing an activatable secondary antibody, primary antibodies in purified form or in culture supernatants can be screened for internalization and degradation. Because purification of candidate antibodies is not required, this method represents a direct functional screen to identify antibodies that internalize efficiently early in the discovery process. PMID:26024945

  15. Space Station Biological Research Project (SSBRP) Cell Culture Unit (CCU) and incubator for International Space Station (ISS) cell culture experiments

    NASA Technical Reports Server (NTRS)

    Vandendriesche, Donald; Parrish, Joseph; Kirven-Brooks, Melissa; Fahlen, Thomas; Larenas, Patricia; Havens, Cindy; Nakamura, Gail; Sun, Liping; Krebs, Chris; de Luis, Javier; Vunjak-Novakovic, Gordana; Searby, Nancy D.

    2004-01-01

    The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.

  16. Enhanced international prognostic index in Japanese patients with diffuse large B-cell lymphoma.

    PubMed

    Nakaya, Aya; Fujita, Shinya; Satake, Atsushi; Nakanishi, Takahisa; Azuma, Yoshiko; Tsubokura, Yukie; Hotta, Masaaki; Yoshimura, Hideaki; Ishii, Kazuyoshi; Ito, Tomoki; Nomura, Shosaku

    2016-01-01

    To evaluate the National Comprehensive Cancer Network (NCCN) International Prognostic Index (IPI), we analyzed 284 patients treated with the combination of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in our institution in Japan. Their 5-year overall survival (OS) by risk level was 80.7%, 74.8%, 55.4% and 67.5% (P=0.005); and their 5-year progression-free survival (PFS) was 76.8%, 78.6%, 63.7% and 58.3% (P=0.0722). The NCCN-IPI is a simple scale that uses conventional clinical factors, but did not reflect survival in our cohort. The NCCN-IPI may require further evaluation for different regions and ethnicities before adopting it for routine clinical use. PMID:27489766

  17. Recent Hadley cell expansion: The role of internal atmospheric variability in reconciling modeled and observed trends

    NASA Astrophysics Data System (ADS)

    Garfinkel, Chaim I.; Waugh, Darryn W.; Polvani, Lorenzo M.

    2015-12-01

    Several studies have reported that global climate models underestimate the observed trend in tropical expansion, with the implication that such models are missing key processes of the climate system. We show here that integrations of a chemistry-climate model forced with observed sea surface temperatures (SSTs), greenhouse gases, and ozone-depleting substances can produce 1980 to 2009 expansion trends comparable to those found in most reanalyses data products. Correct representation of the SSTs changes is important for the Northern Hemisphere, while correct representation of stratospheric ozone changes is important for the Southern Hemisphere. The ensemble mean trend (which captures only the forced response) is nearly always much weaker than trends in reanalyses. This suggests that a large fraction of the recently observed changes may, in fact, be a consequence of internal atmospheric variability and not a response of the climate system to anthropogenic forcings.

  18. Economics of ingot slicing with an internal diameter saw for low-cost solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Liu, J. K.; Fiegl, G.

    1981-01-01

    Slicing of silicon ingots using diamond impregnated internal diameter blade saws has been a standard technology of the semiconductor industry. This paper describes work on improvements to this technology for 10 cm diameter ingot slicing. Ingot rotation, dynamic blade edge control with feedback, mechanized blade dressing and development of thinner blades are the approaches tried. A comparison of the results for wafering with and without ingot rotation is also made. A sensitivity analysis of the major cost elements in wafering is performed for 10 cm diameter ingot and extended to the 15 cm diameter ingot case. Various parameter values such as machine cost, feed rate and consumable materials cost are identified both for single and multiple ingot slicing.

  19. Burkholderia pseudomallei Biofilm Promotes Adhesion, Internalization and Stimulates Proinflammatory Cytokines in Human Epithelial A549 Cells

    PubMed Central

    Kunyanee, Chanikarn; Kamjumphol, Watcharaporn; Taweechaisupapong, Suwimol; Kanthawong, Sakawrat; Wongwajana, Suwin; Wongratanacheewin, Surasak; Hahnvajanawong, Chariya

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses. PMID:27529172

  20. Internalization and lysosomal association of (/sup 125/I)angiotensin II in norepinephrine-containing cells of the rat adrenal medulla

    SciTech Connect

    Bianchi, C.; Gutkowska, J.; Charbonneau, C.; Ballak, M.; Anand-Srivastava, M.B.; De Lean, A.; Genest, J.; Cantin, M.

    1986-10-01

    The morphological localization of (/sup 125/I)angiotensin II (AII) in the rat adrenal medulla (AM) was studied by light- and electron-microscopic radioautography in vivo. With light microscopy the presence of binding sites for AII in both norepinephrine-containing (NE) and epinephrine-containing (E) cells was confirmed. With electron microscopy, it was found that AII binds to the cell surface of NE cells, is progressively internalized, and is associated with lysosomes and Golgi complex within 20 min, whereas in E cells AII seems to be internalized earlier and recycled back to the cell surface within 5 min without any appreciable association with intracellular organelles. These results suggest different intracellular pathways for AII in NE and E cells of the rat AM.

  1. X-rays Reveal the Internal Structure of Keratin Bundles in Whole Cells.

    PubMed

    Hémonnot, Clément Y J; Reinhardt, Juliane; Saldanha, Oliva; Patommel, Jens; Graceffa, Rita; Weinhausen, Britta; Burghammer, Manfred; Schroer, Christian G; Köster, Sarah

    2016-03-22

    In recent years, X-ray imaging of biological cells has emerged as a complementary alternative to fluorescence and electron microscopy. Different techniques were established and successfully applied to macromolecular assemblies and structures in cells. However, while the resolution is reaching the nanometer scale, the dose is increasing. It is essential to develop strategies to overcome or reduce radiation damage. Here we approach this intrinsic problem by combing two different X-ray techniques, namely ptychography and nanodiffraction, in one experiment and on the same sample. We acquire low dose ptychography overview images of whole cells at a resolution of 65 nm. We subsequently record high-resolution nanodiffraction data from regions of interest. By comparing images from the two modalities, we can exclude strong effects of radiation damage on the specimen. From the diffraction data we retrieve quantitative structural information from intracellular bundles of keratin intermediate filaments such as a filament radius of 5 nm, hexagonal geometric arrangement with an interfilament distance of 14 nm and bundle diameters on the order of 70 nm. Thus, we present an appealing combined approach to answer a broad range of questions in soft-matter physics, biophysics and biology. PMID:26905642

  2. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking

    PubMed Central

    Herrera, Cristina; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten

    2016-01-01

    JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin’s enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin’s bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells. PMID:27300140

  3. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking.

    PubMed

    Herrera, Cristina; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten; Mantis, Nicholas J

    2016-01-01

    JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin's enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin's bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells. PMID:27300140

  4. Rhomboid domain-containing protein 3 is a negative regulator of TLR3-triggered natural killer cell activation.

    PubMed

    Liu, Juan; Liu, Shuxun; Xia, Meng; Xu, Sheng; Wang, Chunmei; Bao, Yan; Jiang, Minghong; Wu, Yue; Xu, Tian; Cao, Xuetao

    2013-05-01

    Rhomboid domain-containing protein 3 (Rhbdd3), which belongs to a family of proteins with rhomboid domain, is widely expressed in immune cells; however, the roles of the Rhbdd members, including Rhbdd3, in immunity remain unknown. Natural killer (NK) cells are critical for host immune defense and also can mediate inflammatory diseases such as hepatitis. Although much is known about how NK cells are activated, the detailed mechanisms for negative regulation of NK cell activation remain to be fully understood. Using Rhbdd3-deficient mice, we reveal that Rhbdd3, selectively up-regulated in NK cells upon Toll-like receptor 3 (TLR3) stimulation, negatively regulates TLR3-mediated NK cell activation in a feedback manner. Rhbdd3 inhibits TLR3-triggered IFN-γ and granzyme B expression of NK cells in cell-cell contact dependence of accessory cells such as dendritic cells and Kupffer cells. Rhbdd3 interacts with DNAX activation protein of 12 kDa and promotes its degradation, inhibiting MAPK activation in TLR3-triggered NK cells. Furthermore, Rhbdd3 plays a critical role in attenuating TLR3-triggered acute inflammation by controlling NK cell activation and accumulation in liver and disrupting NK cell-Kupffer cell interaction. Therefore, Rhbdd3 is a feedback inhibitor of TLR3-triggered NK cell activation. Our study outlines a mechanism for the negative regulation of NK cell activation and also provides clues for the function of the rhomboid proteins in immunity. PMID:23610400

  5. Rabies Internalizes into Primary Peripheral Neurons via Clathrin Coated Pits and Requires Fusion at the Cell Body.

    PubMed

    Piccinotti, Silvia; Whelan, Sean P J

    2016-07-01

    The single glycoprotein (G) of rabies virus (RABV) dictates all viral entry steps from receptor engagement to membrane fusion. To study the uptake of RABV into primary neuronal cells in culture, we generated a recombinant vesicular stomatitis virus in which the G protein was replaced with that of the neurotropic RABV CVS-11 strain (rVSV CVS G). Using microfluidic compartmentalized culture, we examined the uptake of single virions into the termini of primary neurons of the dorsal root ganglion and ventral spinal cord. By pharmacologically disrupting endocytosis at the distal neurites, we demonstrate that rVSV CVS G uptake and infection are dependent on dynamin. Imaging of single virion uptake with fluorescent endocytic markers further identifies endocytosis via clathrin-coated pits as the predominant internalization mechanism. Transmission electron micrographs also reveal the presence of viral particles in vesicular structures consistent with incompletely coated clathrin pits. This work extends our previous findings of clathrin-mediated uptake of RABV into epithelial cells to two neuronal subtypes involved in rabies infection in vivo. Chemical perturbation of endosomal acidification in the neurite or somal compartment further shows that establishment of infection requires pH-dependent fusion of virions at the cell body. These findings correlate infectivity to existing single particle evidence of long-range endosomal transport of RABV and clathrin dependent uptake at the plasma membrane. PMID:27463226

  6. Rabies Internalizes into Primary Peripheral Neurons via Clathrin Coated Pits and Requires Fusion at the Cell Body

    PubMed Central

    Piccinotti, Silvia; Whelan, Sean P. J.

    2016-01-01

    The single glycoprotein (G) of rabies virus (RABV) dictates all viral entry steps from receptor engagement to membrane fusion. To study the uptake of RABV into primary neuronal cells in culture, we generated a recombinant vesicular stomatitis virus in which the G protein was replaced with that of the neurotropic RABV CVS-11 strain (rVSV CVS G). Using microfluidic compartmentalized culture, we examined the uptake of single virions into the termini of primary neurons of the dorsal root ganglion and ventral spinal cord. By pharmacologically disrupting endocytosis at the distal neurites, we demonstrate that rVSV CVS G uptake and infection are dependent on dynamin. Imaging of single virion uptake with fluorescent endocytic markers further identifies endocytosis via clathrin-coated pits as the predominant internalization mechanism. Transmission electron micrographs also reveal the presence of viral particles in vesicular structures consistent with incompletely coated clathrin pits. This work extends our previous findings of clathrin-mediated uptake of RABV into epithelial cells to two neuronal subtypes involved in rabies infection in vivo. Chemical perturbation of endosomal acidification in the neurite or somal compartment further shows that establishment of infection requires pH-dependent fusion of virions at the cell body. These findings correlate infectivity to existing single particle evidence of long-range endosomal transport of RABV and clathrin dependent uptake at the plasma membrane. PMID:27463226

  7. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro

    SciTech Connect

    Armstead, Andrea L.; Arena, Christopher B.; Li, Bingyun

    2014-07-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause “hard metal lung disease” but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. - Highlights: • Hard metal (WC-Co) particle toxicity was established in lung epithelial cells. • Nano-WC-Co particles caused greater toxicity than micro-WC-Co particles. • Nano- and micro-WC-Co particles were capable of inducing cellular apoptosis. • Nano-WC-Co particles were internalized by lung epithelial cells. • WC-Co particle internalization was mediated by actin dynamics.

  8. Enhanced cellular internalization of CdTe quantum dots mediated by arginine- and tryptophan-rich cell-penetrating peptides as efficient carriers.

    PubMed

    Farkhani, Samad Mussa; Johari-Ahar, Mohammad; Zakeri-Milani, Parvin; Shahbazi Mojarrad, Javid; Valizadeh, Hadi

    2016-09-01

    Quantum dots (QDs), as a new class of fluorescent tags, have been widely used for biomedical applications. Despite their various advantages, QDs do not efficiently enter cells on their own, and aggregation often occurs following internalization. In the present study, we have designed three QD-cell-penetrating peptide (CPP) complexes to increase the uptake of QD into cells. The results demonstrated that R9 and R5W3R4 form relatively stable noncovalent complexes with QDs, considerably increasing the rate and efficiency of QD uptake by A549 cells. These data suggest that cationic CPPs could efficiently transfer QDs into cells in a non-toxic manner. PMID:25884240

  9. International Lung Cancer Consortium: Pooled Analysis of Sequence Variants in DNA Repair and Cell Cycle Pathways

    PubMed Central

    Hung, Rayjean J.; Christiani, David C.; Risch, Angela; Popanda, Odilia; Haugen, Aage; Zienolddiny, Shan; Benhamou, Simone; Bouchardy, Christine; Lan, Qing; Spitz, Margaret R.; Wichmann, H.-Erich; LeMarchand, Loic; Vineis, Paolo; Matullo, Giuseppe; Kiyohara, Chikako; Zhang, Zuo-Feng; Pezeshki, Benhnaz; Harris, Curtis; Mechanic, Leah; Seow, Adeline; Ng, Daniel P.K.; Szeszenia-Dabrowska, Neonila; Zaridze, David; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Mates, Dana; Foretova, Lenka; Janout, Vladimir; Bencko, Vladimir; Caporaso, Neil; Chen, Chu; Duell, Eric J.; Goodman, Gary; Field, John K.; Houlston, Richard S.; Hong, Yun-Chul; Landi, Maria Teresa; Lazarus, Philip; Muscat, Joshua; McLaughlin, John; Schwartz, Ann G.; Shen, Hongbing; Stucker, Isabelle; Tajima, Kazuo; Matsuo, Keitaro; Thun, Michael; Yang, Ping; Wiencke, John; Andrew, Angeline S.; Monnier, Stephanie; Boffetta, Paolo; Brennan, Paul

    2009-01-01

    Background The International Lung Cancer Consortium was established in 2004. To clarify the role of DNA repair genes in lung cancer susceptibility, we conducted a pooled analysis of genetic variants in DNA repair pathways, whose associations have been investigated by at least 3 individual studies. Methods Data from 14 studies were pooled for 18 sequence variants in 12 DNA repair genes, including APEX1, OGG1, XRCC1, XRCC2, XRCC3, ERCC1, XPD, XPF, XPG, XPA, MGMT, and TP53. The total number of subjects included in the analysis for each variant ranged from 2,073 to 13,955 subjects. Results Four of the variants were found to be weakly associated with lung cancer risk with borderline significance: these were XRCC3 T241M [heterozygote odds ratio (OR), 0.89; 95% confidence interval (95% CI), 0.79–0.99 and homozygote OR, 0.84; 95% CI, 0.71–1.00] based on 3,467 cases and 5,021 controls from 8 studies, XPD K751Q (heterozygote OR, 0.99; 95% CI, 0.89–1.10 and homozygote OR, 1.19; 95% CI, 1.02–1.39) based on 6,463 cases and 6,603 controls from 9 studies, and TP53 R72P (heterozygote OR, 1.14; 95% CI, 1.00–1.29 and homozygote OR, 1.20; 95% CI, 1.02–1.42) based on 3,610 cases and 5,293 controls from 6 studies. OGG1 S326C homozygote was suggested to be associated with lung cancer risk in Caucasians (homozygote OR, 1.34; 95% CI, 1.01–1.79) based on 2,569 cases and 4,178 controls from 4 studies but not in Asians. The other 14 variants did not exhibit main effects on lung cancer risk. Discussion In addition to data pooling, future priorities of International Lung Cancer Consortium include coordinated genotyping and multistage validation for ongoing genome-wide association studies. PMID:18990748

  10. Self-assembly PEGylation assists SLN-paclitaxel delivery inducing cancer cell apoptosis upon internalization.

    PubMed

    Arranja, Alexandra; Gouveia, Luís F; Gener, Petra; Rafael, Diana F; Pereira, Carolina; Schwartz, Simó; Videira, Mafalda A

    2016-03-30

    In past years, a considerable progress has been made in the conversion of conventional chemotherapy into potent and safe nanomedicines. The ultimate goal is to improve the therapeutic window of current chemotherapeutics by reducing systemic toxicities and to deliver higher concentrations of the chemotherapeutic agents to malignant cells. In this work, we report that PEGylation of the nanocarriers increases drug intracellular bioavailability leading therefore to higher therapeutic efficacy. The surface of the already patented solid lipid nanoparticles (SLN) loaded with paclitaxel (SLN-PTX) was coated with a PEG layer (SLN-PTX_PEG) through an innovative process to provide stable and highly effective nanoparticles complying with the predefined pharmaceutical quality target product profile. We observed that PEGylation not only stabilizes the SLN, but also modulates their cellular uptake kinetics. As a consequence, the intracellular concentration of chemotherapeutics delivered by SLN-PTX_PEG increases. This leads to the increase of efficacy and thus it is expected to significantly circumvent cancer cell resistance and increase patient survival and cure. PMID:26853316

  11. Passive safety device and internal short tested method for energy storage cells and systems

    DOEpatents

    Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad

    2015-09-22

    A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.

  12. The Electric Mechanism of Surface Pretreatments for Dye-Sensitized Solar Cells Based on Internal Equivalent Resistance Analysis

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Wei; Hu, Lin-Hua; Luo, Xiang-Dong; Liu, Pei-Sheng; Dai, Song-Yuan

    2012-01-01

    Based on the optimization of dye-sensitized solar cell (DSC) photoelectrodes pretreated with different methods such as electrodeposition, spin-coating and TiCl4 pretreatment, theoretical calculations are carried out to interpret the internal electric mechanism. The numerical values, including the series resistance Rs and the shunt resistance Rsh corresponding to the equivalent circuit model, are well evaluated and confirm that the DSC has good performance with a high Rsh and a low Rs due to good electrical contact and a low charge recombination after the different modifications. The I-V curves are fitted in the case without series resistance, and account for the role of Rs in the output characteristics. It is found that when Rs tends to the infinitesimal, the short-circuit current Isc, the open-circuit voltage Voc and the fill factor can be improved by almost 0.8-1.4, 2.9 and 2.1-6.8%, respectively.

  13. The application of product architecture in determining the concept of mini hydrogen cell for petrol powered internal combustion engine

    NASA Astrophysics Data System (ADS)

    Nidzamuddin, M. Y.; Nadzirah, T. S.; Juffrizal, K.; Zulfattah, Z. M.; Tan, C. F.; Taha, M. M.; Hidayah, I.; Hilwa, M. Z.

    2015-05-01

    Product architecture is a method to translate the physical element of the functional requirement within the product system and describe the connection between these physical elements. Physical element will be interpreted through parts, component or subassemblies. Method of product architecture is an effective way in determined the conceptual design because it