Science.gov

Sample records for interstellar extinction band

  1. Gas Phase Spectroscopy of Cold PAH Ions: Contribution to the Interstellar Extinction and the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Biennier, L.; Salama, F.; Allamandola, L. J.; Scherer, J. J.; OKeefe, A.

    2002-01-01

    Polycyclic Aromatic Hydrocarbon molecules (PAHs) are ubiquitous in the interstellar medium (ISM) and constitute the building blocks of interstellar dust grains. Despite their inferred important role in mediating the energetic and chemical processes in thc ISM, their exact contribution to the interstellar extinction, and in particular to the diffuse interstellar bands (DIBs) remains unclear. The DIBs are spectral absorption features observed in the line of sight of stars that are obscured by diffuse interstellar clouds. More than 200 bands have been reported to date spanning from the near UV to the near IR with bandwidths ranging from 0.4 to 40 Angstroms (Tielens & Snow 1995). The present consensus is that the DIBs arise from free flying, gas-phase, organic molecules and/or ions that are abundant under the typical conditions reigning in the diffuse ISM. PAHs have been proposed as possible carriers (Allamandola et al. 1985; Leger & DHendecourt 1985). The PAH hypothesis is consistent with the cosmic abundance of Carbon and Hydrogen and with the required photostability of the DIB carriers against the strong VUV radiation field in the diffuse interstellar clouds. A significant fraction of PAHs is expected to be ionized in the diffuse ISM.

  2. A TALE OF TWO MYSTERIES IN INTERSTELLAR ASTROPHYSICS: THE 2175 A EXTINCTION BUMP AND DIFFUSE INTERSTELLAR BANDS

    SciTech Connect

    Xiang, F. Y.; Zhong, J. X.; Li Aigen E-mail: lia@missouri.edu

    2011-06-01

    The diffuse interstellar bands (DIBs) are ubiquitous absorption spectral features arising from the tenuous material in the space between stars-the interstellar medium (ISM). Since their first detection nearly nine decades ago, over 400 DIBs have been observed in the visible and near-infrared wavelength range in both the Milky Way and external galaxies, both nearby and distant. However, the identity of the species responsible for these bands remains as one of the most enigmatic mysteries in astrophysics. An equally mysterious interstellar spectral signature is the 2175 A extinction bump, the strongest absorption feature observed in the ISM. Its carrier also remains unclear since its first detection 46 years ago. Polycyclic aromatic hydrocarbon (PAH) molecules have long been proposed as a candidate for DIBs as their electronic transitions occur in the wavelength range where DIBs are often found. In recent years, the 2175 A extinction bump is also often attributed to the {pi}-{pi}* transition in PAHs. If PAHs are indeed responsible for both the 2175 A extinction feature and DIBs, their strengths may correlate. We perform an extensive literature search for lines of sight for which both the 2175 A extinction feature and DIBs have been measured. Unfortunately, we found no correlation between the strength of the 2175 A feature and the equivalent widths of the strongest DIBs. A possible explanation might be that DIBs are produced by small free gas-phase PAH molecules and ions, while the 2175 A bump is mainly from large PAHs or PAH clusters in condensed phase so that there is no tight correlation between DIBs and the 2175 A bump.

  3. A Tale of Two Mysteries in Interstellar Astrophysics: The 2175 Å Extinction Bump and Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Xiang, F. Y.; Li, Aigen; Zhong, J. X.

    2011-06-01

    The diffuse interstellar bands (DIBs) are ubiquitous absorption spectral features arising from the tenuous material in the space between stars—the interstellar medium (ISM). Since their first detection nearly nine decades ago, over 400 DIBs have been observed in the visible and near-infrared wavelength range in both the Milky Way and external galaxies, both nearby and distant. However, the identity of the species responsible for these bands remains as one of the most enigmatic mysteries in astrophysics. An equally mysterious interstellar spectral signature is the 2175 Å extinction bump, the strongest absorption feature observed in the ISM. Its carrier also remains unclear since its first detection 46 years ago. Polycyclic aromatic hydrocarbon (PAH) molecules have long been proposed as a candidate for DIBs as their electronic transitions occur in the wavelength range where DIBs are often found. In recent years, the 2175 Å extinction bump is also often attributed to the π-π* transition in PAHs. If PAHs are indeed responsible for both the 2175 Å extinction feature and DIBs, their strengths may correlate. We perform an extensive literature search for lines of sight for which both the 2175 Å extinction feature and DIBs have been measured. Unfortunately, we found no correlation between the strength of the 2175 Å feature and the equivalent widths of the strongest DIBs. A possible explanation might be that DIBs are produced by small free gas-phase PAH molecules and ions, while the 2175 Å bump is mainly from large PAHs or PAH clusters in condensed phase so that there is no tight correlation between DIBs and the 2175 Å bump.

  4. Neutral and ionized polycyclic aromatic hydrocarbons, diffuse interstellar bands and the ultraviolet extinction curve

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Allamandola, Louis John

    1993-01-01

    Neutral naphthalene C10H8, phenanthrene C14H10 and pyrene C16H10 absorb strongly in the ultraviolet region and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these polycyclic aromatic hydrocarbons (PAHs) absorb in the visible C10H8(+) has 13 discrete absorption bands which fall between 6800 and 4500 A. The strongest band at 6741 A falls close to the weak 6742 A diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8(+) is responsible for some of the DIBs can be tested by searching for new DIBs at 6520 and 6151 A, other strong naphthalene cation band positions. If C10H8(+) is indeed responsible for the 6742 A feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10(+) is dominated by a strong band at 4435 A in an Ar matrix and 4395 A in Ne, wavelengths which fall very close to the strongest DIB at 4430 A. If C16H10(+) or a closely related pyrene-like ion, is indeed responsible for the 4430 A feature, it accounts for 0.2% of the cosmic carbon. An intense, very broad UV-to-visible continuum is reported which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR radiation.

  5. The Interstellar Extinction Law toward the Galactic Center. II. V, J, H, and Ks Bands

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo; Nagata, Tetsuya; Tamura, Motohide; Kandori, Ryo; Hatano, Hirofumi; Sato, Shuji; Sugitani, Koji

    2008-06-01

    We have determined the ratios of total to selective extinction directly from observations in the optical V band and near-infrared J band toward the Galactic center. The OGLE (Optical Gravitational Lensing Experiment) Galactic bulge fields have been observed with the SIRIUS camera on the Infrared Survey Facility telescope, and we obtain AV/EV-J = 1.251 ± 0.014 and AJ/EV-J = 0.225 ± 0.007. From these ratios, we derive AJ/AV = 0.188 ± 0.005; combining this with the near-infrared extinction ratios obtained in Paper I for more reddened fields near the Galactic center, we obtain AV:AJ:AH:AKs = 1:0.188:0.108:0.062, which implies steeply declining extinction toward longer wavelengths. In particular, it is striking that the Ks-band extinction is ≈1/16 the visual extinction AV, much smaller than the 1/10 usually employed.

  6. The three micron 'ice' band in grain mantles. [and their influence in interstellar extinction and polarization

    NASA Technical Reports Server (NTRS)

    Hagen, W.; Greenberg, J. M.; Tielens, A. G. G. M.

    1983-01-01

    Attention is given to the influence of different mantle constituents on extinction and polarization due to H2O absorption in grain mantles, particularly the 3250/cm band. With respect to BN, the simultaneous reproduction of the extinction and polarization band shapes occurs by normal size particles containing mixtures of H2O with other molecules. As regards the 3-micron absorption in OH 231.8 plus 4.2, the data can be best fitted with pure amorphous H2O grains which have been heated to (or created at) about 80 K. The variation in grain mantle composition between young stellar objects and late-type stars loosing mass is attributed to a fundamental difference in grain formation and evolution.

  7. Interstellar Extinction Law in the J, H, and Ks Bands toward the Galactic Center

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo; Nagata, Tetsuya; Kusakabe, Nobuhiko; Matsunaga, Noriyuki; Naoi, Takahiro; Kato, Daisuke; Nagashima, Chie; Sugitani, Koji; Tamura, Motohide; Tanabé, Toshihiko; Sato, Shuji

    2006-02-01

    We have determined the ratios of total to selective extinction in the near-infrared bands (J,H,Ks) toward the Galactic center from the observations of the region |l|<~2.0d and 0.5d<~|b|<~1.0d with the IRSF telescope and the SIRIUS camera. Using the positions of red clump stars in color-magnitude diagrams as a tracer of the extinction and reddening, we determine the average of the ratios of total to selective extinction to be AKs/EH-Ks=1.44+/-0.01, AKs/EJ-Ks=0.494+/-0.006, and AH/EJ-H=1.42+/-0.02, which are significantly smaller than those obtained in previous studies. From these ratios, we estimate that AJ:AH:AKs=1:0.573+/-0.009:0.331+/-0.004 and EJ-H/EH-Ks=1.72+/-0.04, and we find that the power law Aλ~λ-1.99+/-0.02 is a good approximation over these wavelengths. Moreover, we find a small variation in AKs/EH-Ks across our survey. This suggests that the infrared extinction law changes from one line of sight to another, and the so-called universality does not necessarily hold in the infrared wavelengths.

  8. Interstellar extinction in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Interstellar extinction curves over the region 3600-1100 A for 17 stars are presented. The observations were made by the two Wisconsin spectrometers onboard the OAO-2 with spectral resolutions of 10 A and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region 1800-1350 A, and finally a rapid rise to the far ultraviolet. Large extinction variations from star to star are found, especially in the far ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20.

  9. INTERSTELLAR ANALOGS FROM DEFECTIVE CARBON NANOSTRUCTURES ACCOUNT FOR INTERSTELLAR EXTINCTION

    SciTech Connect

    Tan, Zhenquan; Abe, Hiroya; Sato, Kazuyoshi; Ohara, Satoshi; Chihara, Hiroki; Koike, Chiyoe; Kaneko, Kenji

    2010-11-15

    Because interstellar dust is closely related to the evolution of matter in the galactic environment and many other astrophysical phenomena, the laboratory synthesis of interstellar dust analogs has received significant attention over the past decade. To simulate the ultraviolet (UV) interstellar extinction feature at 217.5 nm originating from carbonaceous interstellar dust, many reports focused on the UV absorption properties of laboratory-synthesized interstellar dust analogs. However, no general relation has been established between UV interstellar extinction and artificial interstellar dust analogs. Here, we show that defective carbon nanostructures prepared by high-energy collisions exhibit a UV absorption feature at 220 nm which we suggest accounts for the UV interstellar extinction at 217.5 nm. The morphology of some carbon nanostructures is similar to that of nanocarbons discovered in the Allende meteorite. The similarity between the absorption feature of the defective carbon nanostructures and UV interstellar extinction indicates a strong correlation between the defective carbon nanostructures and interstellar dust.

  10. Investigation of ultraviolet interstellar extinction

    NASA Technical Reports Server (NTRS)

    Payne, C.; Haramundanis, K. L.

    1973-01-01

    Results concerning interstellar extinction in the ultraviolet are reported. These results were initially obtained by using data from main-sequence stars and were extended to include supergiants and emission stars. The principal finding of the analysis of ultraviolet extinction is not only that it is wavelength dependent, but that if changes with galactic longitude in the U3 passband (lambda sub eff = 1621 A); it does not change significantly in the U2 passband (lambda sub eff = 2308 A). Where data are available in the U4 passband (lambda sub eff = 1537 A), they confirm the rapid rise of extinction in the ultraviolet found by other investigators. However, in all cases, emission stars must be used with great caution. It is important to realize that while extinction continues to rise toward shorter wavelengths in the ultraviolet, including the shortest ultraviolet wavelengths measured (1100 A), it no longer plays an important role in the X-ray region (50 A).

  11. CAN NEUTRAL AND IONIZED POLYCYCLIC AROMATIC HYDROCARBONS BE CARRIERS OF THE ULTRAVIOLET EXTINCTION BUMP AND THE DIFFUSE INTERSTELLAR BANDS?

    SciTech Connect

    Steglich, M.; Huisken, F.; Bouwman, J.; Henning, Th.

    2011-11-20

    Up to now, no laboratory-based study has investigated polycyclic aromatic hydrocarbon (PAH) species as potential carriers of both the diffuse interstellar bands (DIBs) and the 2175 A UV bump. We examined the proposed correlation between these two features by applying experimental and theoretical techniques on two specific medium-sized/large PAHs (dibenzorubicene C{sub 30}H{sub 14} and hexabenzocoronene C{sub 42}H{sub 18}) in their neutral and cationic states. It was already shown that mixtures of sufficiently large, neutral PAHs can partly or even completely account for the UV bump. We investigated how the absorption bands are altered upon ionization of these molecules by interstellar UV photons. The experimental studies presented here were realized by performing matrix isolation spectroscopy with subsequent far-UV irradiation. The main effects were found to be a broadening of the absorption bands in the UV combined with slight redshifts. The position of the complete {pi}-{pi}* absorption structure around 217.5 nm, however, remains more or less unchanged, which could explain the observed position invariance of the interstellar bump for different lines of sight. This favors the assignment of this feature to the interstellar PAH population. As far as the DIBs are concerned, neither our investigations nor the laboratory studies carried out by other research groups support a possible connection with this class of molecules. Instead, there are reasonable arguments that neutral and singly ionized cationic PAHs cannot be held responsible for the DIBs.

  12. The Diffuse Interstellar Bands: Contributed papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor)

    1994-01-01

    Drawing a coherent picture of the observational characteristics of the Diffuse Interstellar Bands (DIB's) and the physical and chemical properties of its proposed carriers was the focus of this NASA sponsored conference. Information relating to absoption spectra, diffuse radiation carriers, carbon compounds, stellar composition, and interstellar extinction involving T-Tauri stars, Reflection Nebulae, Red Giants, and accretion discs are discussed from those papers presented at the conference, which are included in this analytic.

  13. Interstellar fullerene compounds and diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Omont, Alain

    2016-05-01

    Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed and new findings suggest that these fullerenes may possibly form from polycyclic aromatic hydrocarbons (PAHs) in the ISM. Moreover, the first confirmed identification of two strong diffuse interstellar bands (DIBs) with the fullerene, C60+, connects the long standing suggestion that various fullerenes could be DIB carriers. These new discoveries justify reassessing the overall importance of interstellar fullerene compounds, including fullerenes of various sizes with endohedral or exohedral inclusions and heterofullerenes (EEHFs). The phenomenology of fullerene compounds is complex. In addition to fullerene formation in grain shattering, fullerene formation from fully dehydrogenated PAHs in diffuse interstellar clouds could perhaps transform a significant percentage of the tail of low-mass PAH distribution into fullerenes including EEHFs. But many uncertain processes make it extremely difficult to assess their expected abundance, composition and size distribution, except for the substantial abundance measured for C60+. EEHFs share many properties with pure fullerenes, such as C60, as regards stability, formation/destruction and chemical processes, as well as many basic spectral features. Because DIBs are ubiquitous in all lines of sight in the ISM, we address several questions about the interstellar importance of various EEHFs, especially as possible carriers of diffuse interstellar bands. Specifically, we discuss basic interstellar properties and the likely contributions of fullerenes of various sizes and their charged counterparts such as C60+, and then in turn: 1) metallofullerenes; 2) heterofullerenes; 3) fulleranes; 4) fullerene-PAH compounds; 5) H2@C60. From this reassessment of the literature and from combining it with known DIB line identifications, we conclude that the general landscape of interstellar fullerene compounds is probably much richer than heretofore realized

  14. Interstellar Extinction Toward Young Stars

    NASA Astrophysics Data System (ADS)

    McJunkin, Matthew; France, Kevin

    2015-01-01

    We present work on a molecular hydrogen (H2) fluorescence model to characterize the ultraviolet (UV) extinction curve along the line of sight towards young stars with circumstellar disks. Stellar UV radiation plays a strong role in heating the disk gas and driving chemical reactions, so it is important to measure the UV extinction curve in order to reconstruct the intrinsic stellar UV flux impacting the disk. To measure the extinction, we compare modeled H2 fluorescence spectra to observed H2 lines. Lyman-alpha radiation from the stars pumps electronic transitions of H2 in the disk, and we model the flux that is re-emitted through the subsequent fluorescent cascade. We then extract the extinction along the line-of-sight over the 1100-1700 Angstrom wavelength region from the difference between the modeled H2 fluorescence and the HST-COS data. The shape of the extinction curve allows us to characterize the dust grain distribution in the intervening material as well as to recover the intrinsic spectral energy distribution of the stars over a wide wavelength range.

  15. Correlation between molecular lines and diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Szczerba, Richard; Krelowski, J.; Walker, G. A. H.; Kennelly, E. T.; Sneden, C.; Volk, Kevin; Hill, G.

    1994-01-01

    Observations are presented of the Diffuse Interstellar Bands (DIB's) at 4726, 4763, and 4789 A and at 5780 and 5797 A together with the ultraviolet lines of CH and CN molecules for stars with different shapes of UV extinction curve. The new results concerning the relationship between different characteristics of the interstellar clouds; molecular lines, blue and yellow DIB's, and UV extinction curves are discussed.

  16. Limited diversity of the interstellar extinction law

    NASA Astrophysics Data System (ADS)

    Krełowski, J.; Strobel, A.

    2012-01-01

    We have applied the method of investigating extinction curves using statistically meaningful samples that was proposed by us 25 years ago. The extensive data sets of the ANS (Astronomical Netherlands Satellite) and 2MASS (Two Micron All Sky Survey) were used, together with U BV photometry to create average extinction curves for samples of OB stars. Our results demonstrate that in the vast majority of cases the extinction curves are very close to the mean galactic extinction curve. Only a few objects were found to be obviously discrepant from the average. The latter phenomenon may be related to nitrogen chemistry in translucent interstellar clouds. Data from ANS and 2MASS Tables A4-A6 are available at the CDS via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/AN/333/60

  17. VUV spectroscopy of carbon dust analogs: contribution to interstellar extinction

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Alata, I.; Le, K. C.; Pino, T.; Giuliani, A.; Dartois, E.

    2016-02-01

    Context. A full spectral characterization of carbonaceous dust analogs is necessary to understand their potential as carriers of observed astronomical spectral signatures such as the ubiquitous UV bump at 217.5 nm and the far-ultraviolet (FUV) rise common to interstellar extinction curves. Aims: Our goal is to study the spectral properties of carbonaceous dust analogs from the FUV to the mid-infrared (MIR) domain. We seek in particular to understand the spectra of these materials in the FUV range, for which laboratory studies are scarce. Methods: We produced analogs to carbonaceous interstellar dust encountered in various phases of the interstellar medium: amorphous hydrogenated carbons (a-C:H), for carbonaceous dust observed in the diffuse interstellar medium, and soot particles, for the polyaromatic component. Analogs to a-C:H dust were produced using a radio-frequency plasma reactor at low pressures, and soot nanoparticles films were produced in an ethylene (C2H4) flame. We measured transmission spectra of these thin films (thickness <100 nm) in the far-ultraviolet (190-250 nm) and in the vacuum-ultraviolet (VUV; 50-190 nm) regions using the APEX chamber at the DISCO beam line of the SOLEIL synchrotron radiation facility. These were also characterized through infrared microscopy at the SMIS beam line. Results: We successfully measured the transmission spectra of these analogs from λ = 1 μm to 50 nm. From these, we extracted the laboratory optical constants via Kramers-Kronig inversion. We used these constants for comparison to existing interstellar extinction curves. Conclusions: We extend the spectral measurements of these types of carbonaceous analogs into the VUV and link the spectral features in this range to the 3.4 μm band. We suggest that these two materials might contribute to different classes of interstellar extinction curves.

  18. The ultraviolet and visible spectrum of the polycyclic aromatic hydrocarbon C10H8(+) - Possible contributions to the diffuse interstellar bands and to the ultraviolet-visible extinction

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1992-01-01

    The properties of the cation of the PAH naphthalene (C10H8(+)) isolated in inert gas matrices under conditions relevant to astrophysical environments are described. The band at 6741 A is the strongest and falls close to the weak 6742 A diffuse interstellar bands (DIBs). Five other weaker bands also fall remarkably close to the positions of known DIBs. A very intense and broad continuum extended from the UV to the visible, which seems to be associated with the ion, is reported. The molar absorption coefficient at the peak of the continuum is 2.0 x 10 exp 6 cu dm/mol cm. If a continuum is a general property of PAH cations, this characteristic will have a strong impact on the understanding of how PAHs convert interstellar UV and visible radiation into IR radiation.

  19. Stellar ultraviolet colors and interstellar extinction

    NASA Technical Reports Server (NTRS)

    Peytremann, E.; Davis, R. J.

    1972-01-01

    A sample of celescope results is studied. Most of the sample stars belong to the Orion and Vela regions. Stars with visual excess E(B-V) less than 0.05 are selected in order to derive relationships of intrinsic color index versus spectral type. The resulting intrinsic color-color relations are compared with existing blanketed and unblanketed model calculations. Finally, the preceding intrinsic relations are utilized to derive some results on interstellar extinction. Owing to the rather large scatter in the celescope data, the Vela stars give the more significant results because their visible excess E(B-V) is, in general, larger than that for the Orion stars.

  20. Environment Dependence of Interstellar Extinction Curves

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Greenberg, J. M.

    1993-07-01

    The IUE interstellar extinction curves published by Aiello et al. (1988) are decomposed into a bump, linear rise and FUV non-linear rise, in the parameterization scheme of Fitzpatrick & Massa (1990). The parameters of the 115 extinction curves are given. The lines of sight are characterized from the IRAS Skyflux and Point Source Catalogue data. Mean extinction curves for each of the environments are given. The following environment specific behaviour has been found. We confirm that the linear rise is systematically less in dense media, corresponding to an accretion of their carriers on big grains in such environments. The bump is not weakened in dense media, but is sensitive to the presence of strong UV radiation fields. In HII regions we note abnormal behaviour of the bump width and a correlation of bump position and bump width. This argues against a removal of the bump carrier in HII regions by sticking to big grains. No environment specific behaviour for the FUV non-linear rise was noted except for a weak dependence on E(B-V)/d, notably in HII regions.

  1. Diffuse Interstellar Bands: Families and Correlations

    NASA Astrophysics Data System (ADS)

    Krełowski, J.

    2014-02-01

    The term ``families of diffuse bands'' (DIBs) appeared in 1986/87 when my collaborators: Gordon A.H. Walker, Bengt E. Westerlund and I found that the strength ratio of the major DIBs 5780 and 5797 is heavily variable. We proved that at the same E(B-V) the DIB intensities may vary by as much as a factor of three or more. A similar result was published by Karl Josafatsson and Ted Snow soon after. A decade later, we proved (with Chris Sneden) that certain DIB strength ratios seem to be related to intensities of the known features of simple molecular species; this led to the introduction of the so called σ and ζ type interstellar clouds. The former are characterized by very weak molecular features (but broad DIBs - very strong) while the latter by rather strong bands of simple radicals and weak broad DIBs. Currently we face a bunch of questions: are the DIB intensities related to those of certain molecular species, e.g. C2 as suggested by Lew Hobbs' and Ted Snow's group? Do the DIB profiles, found to be complex by Peter Sarre, depend on e.g. the rotational temperatures of simple, linear carbon species? Do the DIB profiles depend on the irradiation of interstellar clouds by nearby stars? The relative DIB strengths as well as those of the simple radicals seem to be related to the shapes of interstellar extinction curves. We thus face three players in the interstellar translucent clouds: dust particles, simple radicals and the DIB carriers. Apparently, their mutual relations depend on local physical parameters of intervening clouds; these relations are not clear yet.

  2. Ultraviolet photometry from the Orbiting Astronomical Observatory. II Interstellar extinction.

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Evaluation of interstellar extinction curves over the region from 3600 to 1100 A for 17 stars. The observations were made by the two Wisconsin spectrometers on board the Orbiting Astronomical Observatory 2, with spectral resolutions of 10 and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region from 1800 to 1350 A, and finally a rapid rise to the far-ultraviolet. Large extinction variations from star to star are found, especially in the far-ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20. The observations appear to require a multicomponent model of the interstellar dust.

  3. Diffuse Interstellar Bands in NGC 1448

    NASA Astrophysics Data System (ADS)

    Sollerman, J.; Cox, N.; Mattila, S.; Ehrenfreund, P.; Kaper, L.; Leibundgut, B.; Lundqvist, P.

    2005-01-01

    We present spectroscopic VLT/UVES observations of two emerging supernovae, the Type Ia SN 2001el and the Type II SN 2003hn, in the spiral galaxy NGC 1448. Our high resolution and high signal-to-noise spectra display atomic lines of Ca II, Na I, Ti II and K I in the host galaxy. In the line of sight towards SN 2001el, we also detect over a dozen diffuse interstellar bands (DIBs) within NGC 1448. These DIBs have strengths comparable to low reddening galactic lines of sight, albeit with some variations. In particular, a good match is found with the line of sight towards the σ type diffuse cloud (HD 144217). The DIBs towards SN 2003hn are significantly weaker, and this line of sight has also lower sodium column density. The DIB central velocities show that the DIBs towards SN 2001el are closely related to the strongest interstellar Ca II and Na I components, indicating that the DIBs are preferentially produced in the same cloud. The ratio of the λ 5797 and λ 5780 DIB strengths (r ˜ 0.14) suggests a rather strong UV field in the DIB environment towards SN 2001el. We also note that the extinction estimates obtained from the sodium lines using multiple line fitting agree with reddening estimates based on the colors of the Type Ia SN 2001el. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Programmes 67.D-0227 and 71.D-0033). Table \\ref{tb:ISfit} and Figs. \\ref{fig:IS_MW} and \\ref{fig:6284} are only available in electronic form at http://www.edpsciences.org

  4. Diffuse interstellar bands in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Fischer, O.; Henning, Thomas; Pfau, Werner; Stognienko, R.

    1994-01-01

    A Monte Carlo code for radiation transport calculations is used to compare the profiles of the lambda lambda 5780 and 6613 Angstrom diffuse interstellar bands in the transmitted and the reflected light of a star embedded within an optically thin dust cloud. In addition, the behavior of polarization across the bands were calculated. The wavelength dependent complex indices of refraction across the bands were derived from the embedded cavity model. In view of the existence of different families of diffuse interstellar bands the question of other parameters of influence is addressed in short.

  5. Interstellar medium. Pseudo-three-dimensional maps of the diffuse interstellar band at 862 nm.

    PubMed

    Kos, Janez; Zwitter, Tomaž; Wyse, Rosemary; Bienaymé, Olivier; Binney, James; Bland-Hawthorn, Joss; Freeman, Kenneth; Gibson, Brad K; Gilmore, Gerry; Grebel, Eva K; Helmi, Amina; Kordopatis, Georges; Munari, Ulisse; Navarro, Julio; Parker, Quentin; Reid, Warren A; Seabroke, George; Sharma, Sanjib; Siebert, Arnaud; Siviero, Alessandro; Steinmetz, Matthias; Watson, Fred G; Williams, Mary E K

    2014-08-15

    The diffuse interstellar bands (DIBs) are absorption lines observed in visual and near-infrared spectra of stars. Understanding their origin in the interstellar medium is one of the oldest problems in astronomical spectroscopy, as DIBs have been known since 1922. In a completely new approach to understanding DIBs, we combined information from nearly 500,000 stellar spectra obtained by the massive spectroscopic survey RAVE (Radial Velocity Experiment) to produce the first pseudo-three-dimensional map of the strength of the DIB at 8620 angstroms covering the nearest 3 kiloparsecs from the Sun, and show that it follows our independently constructed spatial distribution of extinction by interstellar dust along the Galactic plane. Despite having a similar distribution in the Galactic plane, the DIB 8620 carrier has a significantly larger vertical scale height than the dust. Even if one DIB may not represent the general DIB population, our observations outline the future direction of DIB research. PMID:25124434

  6. Interstellar Extinction in the Vicinity of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Cotera, A. S.; Simpson, J. P.; Erickson, E. F.; Colgan, S. W. J.; Burton, M. G.

    1995-12-01

    Observations have been made at the Anglo-Australian Observatory using the facility Infrared Imaging Spectrometer (IRIS) of the regions surrounding the Arched and Straight Filaments, and the compact radio emission regions northeast of Sgr A, H1-H8 and A-D. Broad band J, H and K(') images were obtained in good conditions with seeing ~ 1''. The sensitivity for the images is limited by confusion at K(' ~ ) 14.5 mag, H ~ 16, and J ~ 17.5, increasing by ~ 3 mag the sensitivity of previous extinction studies (Catchpole, Whitelock & Glass 1990, M.N.R.A.S., 247, 479). Localized variations in the extinction are examined by means of color--magnitude diagrams and statistical variation with position of stellar densities and colors. Preliminary results of the average H-K(') values in regions of ~ 2.4 pc(2) show considerable variations, ranging between 1.5 and 3.0, with little correlation to the position of the radio emission features. In addition, observations were made of the thermal radio emission regions located within the broad band images. Observing in spectral mode using a 70''x2.0'' slit (resolution R ~ 250) at fixed right ascension while the telescope drifted in declination, data cubes (with axes alpha , delta and lambda ) are obtained from which images in Brgamma (2.166 mu m) are extracted. Brgamma images were obtained of G0.15-0.05 (the `Pistol\\rq), G0.18-0.04 (the `Sickle\\rq), G0.10+0.02, the compact radio emission regions A-D near Sgr A East, and H1, H2, H5-H8 north of Sgr A. Recombination theory is used to predict the expected Brgamma emission from the measured radio emission. By comparing the predicted and the measured Brgamma emission we have a second measure of the extinction in these regions. Taken together, these measurements allow us to determine the extent of any small scale variations in the interstellar extinction of these complex regions.

  7. Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

    NASA Technical Reports Server (NTRS)

    Zubko, Viktor; Dwek, Eli; Arendt, Richard G.

    2004-01-01

    We present new interstellar dust models which have been derived by simultaneously fitting the far ultraviolet to near infrared extinction, the diffuse infrared emission, and, unlike previous models, the elemental abundances in dust for the diffuse interstellar medium. We found that dust models consisting of a mixture of spherical graphite and silicate grains, polycyclic aromatic hydrocarbon (PAH) molecules, in addition to porous composite particles containing silicate, organic refractory, and water ice, provide an improved .t to the UV-to-infrared extinction and infrared emission measurements, while consuming the amounts of elements well within the uncertainties of adopted interstellar abundances, including B star abundances. These models are a signi.cant improvement over the recent Li & Draine (2001, ApJ, 554, 778) model which requires an excessive amount of silicon to be locked up in dust: 48 ppm (atoms per million of H atoms), considerably more than the solar abundance of 34 ppm or the B star abundance of 19 ppm.

  8. Diffuse Interstellar Bands: Past and Present

    NASA Astrophysics Data System (ADS)

    Snow, T. P.

    2014-02-01

    The diffuse interstellar bands (DIBs) have come to the fore as an important mystery. This paper presents the history of DIB discovery and research; their importance; a summary of their properties; constraints on proposed identifications; a survey of DIB papers (including graduate student's theses); and a web site that lists DIBs paper from 1922 to 2011 (to be extended to the present).

  9. Visible and ultraviolet /800-130 nm/ extinction of vapor-condensed silicate, carbon, and silicon carbide smokes and the interstellar extinction curve

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1980-01-01

    The extinction curves from 800 to 130 nm (1.25-7.7/micron) of amorphous silicate smokes nominally of olivine and pyroxene composition, carbon smokes, and crystalline SiC smokes are presented. The SiC smoke occurred in the low-temperature (beta) cubic structural form. The SiC smoke showed an absorption edge which occurred at significantly longer wavelengths than the calculated extinction profile of the hexagonal SiC form previously used to calculate the interstellar extinction profile. Neither SiC nor amorphous silicates show an extinction band similar to the observed 6.6/micron astronomical extinction band. The infrared absorption peaks for the silicate and SiC samples near 10 microns and 11-13 microns, respectively, were also measured. The ultraviolet to infrared extinction ratio for the amorphous silicate samples is similar to the observed astronomical extinction ratio. The measured extinction ratios for SiC smokes are significantly below the interstellar extinction ratio. The extinction peak of the carbon smokes occurred at 4.0 and 4.25/micron, for samples of mean radii 13 and 6 nm, respectively. The extinction profile is distinctly different from that predicted for graphite grains of the same size, and is similar to that predicted for glassy carbon grains.

  10. Interstellar gas, dust and diffuse bands in the SMC

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.; Cordiner, M. A.; Ehrenfreund, P.; Kaper, L.; Sarre, P. J.; Foing, B. H.; Spaans, M.; Cami, J.; Sofia, U. J.; Clayton, G. C.; Gordon, K. D.; Salama, F.

    2007-08-01

    Aims:In order to gain new insight into the unidentified identity of the diffuse interstellar band (DIB) carriers, this paper describes research into possible links between the shape of the interstellar extinction curve (including the 2175 Å bump and far-UV rise), the presence or absence of DIBs, and physical and chemical conditions of the diffuse interstellar medium (gas and dust) in the Small Magellanic Cloud (SMC). Methods: We searched for DIB absorption features in VLT/UVES spectra of early-type stars in the SMC whose reddened lines-of-sight probe the diffuse interstellar medium of the SMC. Apparent column density profiles of interstellar atomic species (Na i, K i, Ca ii and Ti ii) are constructed to provide information on the distribution and conditions of the interstellar gas. Results: The characteristics of eight DIBs detected toward the SMC wing target AzV 456 are studied and upper limits are derived for the DIB equivalent widths toward the SMC stars AzV 398, AzV 214, AzV 18, AzV 65 and Sk 191. The amount of reddening is derived for these SMC sightlines, and, using RV and the H i column density, converted into a gas-to-dust ratio. From the atomic column density ratios we infer an indication of the strength of the interstellar radiation field, the titanium depletion level and a relative measure of turbulence/quiescence. The presence or absence of DIBs appears to be related to the shape of the extinction curve, in particular with respect to the presence or absence of the 2175 Å feature. Our measurements indicate that the DIB characteristics depend on the local physical conditions and chemical composition of the interstellar medium of the SMC, which apparently determine the rate of formation (and/or) destruction of the DIB carriers. The UV radiation field (via photoionisation and photo-destruction) and the metallicity (i.e. carbon abundance) are important factors in determining diffuse band strengths which can differ greatly both between and within galaxies

  11. Probing the diffuse interstellar medium with diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Bailey, Mandy; Farhang, Amin; Javadi, Atefeh; Khosroshahi, Habib

    2015-08-01

    For a century already, a large number of absorption bands have been known at optical wavelengths, called the diffuse interstellar bands (DIBs). While their carriers remain unidentified, the relative strengths of these bands in various environments make them interesting new probes of the diffuse interstellar medium (ISM). We present the results from two large, dedicated campaigns to map the ISM using DIBs measured in the high signal-to-noise spectra of hundreds of early-type stars: [1] in and around the Local Bubble using ESO's New Technology Telescope and the Isaac Newton Telescope, and [2] across both Magellanic Clouds using the Very Large Telescope and the Anglo-Australian Telescope. We discuss the implications for the structure and dynamics of the ISM, as well as the constraints these maps place on the nature of the carriers of the DIBs. Partial results have appeared in the recent literature (van Loon et al. 2013; Farhang et al. 2015a,b; Bailey, PhD thesis 2014) with the remainder being prepared for publication now.

  12. The Diffuse Interstellar Bands: an Elderly Astro-Puzzle Rejuvenated

    NASA Astrophysics Data System (ADS)

    Cox, Nick L. J.

    2011-12-01

    The interstellar medium constitutes a physically and chemically complex component of galaxies and is important in the cycle of matter and the evolution of stars. From various spectroscopic clues we now know that the interstellar medium is rich in organic compounds. However, identifying the exact nature of all these components remains a challenge. In particular the identification of the so-called diffuse band carriers has been alluding astronomers for almost a century. In recent decades, observational, experimental and theoretical advances have rapidly lead to renewed interest in the diffuse interstellar bands (DIBs). This has been instigated partly by their perceived relation to the infrared aromatic emission bands, the UV extinction bump and far-UV rise, and the growing number of (small) organic molecules identified in space. This chapter gives an overview of the observational properties and behaviour of the DIBs, and their presence throughout the Universe. I will highlight recent progress in identifying their carriers and discuss their potential as tracers and probes of (extra)-Galactic ISM conditions.

  13. On variations in the galactic interstellar extinction law

    NASA Technical Reports Server (NTRS)

    Koornneef, J.

    1978-01-01

    Ultraviolet data obtained by the TD1 satellite are rediscussed, and we conclude that they indicate that the interstellar extinction law is not constant throughout the galaxy. This result disagrees with the findings of Nandy et al. (1976) as based on the same observational material. Without violating the integrity of the data it is possible to explain all variations in terms of a varying 2200 A feature. It is stressed that this explanation is by no means unique.

  14. Interstellar extinction curve variations towards the inner Milky Way: a challenge to observational cosmology

    NASA Astrophysics Data System (ADS)

    Nataf, David M.; Gonzalez, Oscar A.; Casagrande, Luca; Zasowski, Gail; Wegg, Christopher; Wolf, Christian; Kunder, Andrea; Alonso-Garcia, Javier; Minniti, Dante; Rejkuba, Marina; Saito, Roberto K.; Valenti, Elena; Zoccali, Manuela; Poleski, Radosław; Pietrzyński, Grzegorz; Skowron, Jan; Soszyński, Igor; Szymański, Michał K.; Udalski, Andrzej; Ulaczyk, Krzysztof; Wyrzykowski, Łukasz

    2016-03-01

    We investigate interstellar extinction curve variations towards ˜4 deg2 of the inner Milky Way in VIJKs photometry from the OGLE-III (third phase of the Optical Gravitational Lensing Experiment) and VVV (VISTA Variables in the Via Lactea) surveys, with supporting evidence from diffuse interstellar bands and F435W, F625W photometry. We obtain independent measurements towards ˜2000 sightlines of AI, E(V - I), E(I - J) and E(J - Ks), with median precision and accuracy of 2 per cent. We find that the variations in the extinction ratios AI/E(V - I), E(I - J)/E(V - I) and E(J - Ks)/E(V - I) are large (exceeding 20 per cent), significant and positively correlated, as expected. However, both the mean values and the trends in these extinction ratios are drastically shifted from the predictions of Cardelli and Fitzpatrick, regardless of how RV is varied. Furthermore, we demonstrate that variations in the shape of the extinction curve have at least two degrees of freedom, and not one (e.g. RV), which we confirm with a principal component analysis. We derive a median value of = 13.44, which is ˜60 per cent higher than the `standard' value. We show that the Wesenheit magnitude WI = I - 1.61(I - J) is relatively impervious to extinction curve variations. Given that these extinction curves are linchpins of observational cosmology, and that it is generally assumed that RV variations correctly capture variations in the extinction curve, we argue that systematic errors in the distance ladder from studies of Type Ia supernovae and Cepheids may have been underestimated. Moreover, the reddening maps from the Planck experiment are shown to systematically overestimate dust extinction by ˜100 per cent and lack sensitivity to extinction curve variations.

  15. The diffuse interstellar bands - a brief review

    NASA Astrophysics Data System (ADS)

    Geballe, T. R.

    2016-07-01

    The diffuse interstellar bands, or DIBs, are a large set of absorption features, mostly at optical and near infrared wavelengths, that are found in the spectra of reddened stars and other objects. They arise in interstellar gas and are observed toward numerous objects in our galaxy as well as in other galaxies. Although long thought to be associated with carbon-bearing molecules, none of them had been conclusively identified until last year, when several nearinfrared DIBs were matched to the laboratory spectrum of singly ionized buckminsterfullerene (C60 +). This development appears to have begun to solve what is perhaps the greatest unsolved mystery in astronomical spectroscopy. Also recently, new DIBs have been discovered at infrared wavelengths and are the longest wavelength DIBs ever found. I present the general characteristics of the DIBs and their history, emphasizing recent developments.

  16. Estimating interstellar extinction towards elliptical galaxies and star clusters.

    NASA Astrophysics Data System (ADS)

    de Amôres, E. B.; Lépine, J. R. D.

    The ability to estimate interstellar extinction is essential for color corrections and distance calculations of all sorts of astronomical objects being fundamental for galactic structure studies. We performed comparisons of interstellar extinction models by Amores & Lépine (2005) that are available at: http://www.astro.iag.usp.br/\\symbol{126}amores. These models are based on the hypothesis that gas and dust are homogeneously mixed, and make use of the dust-to gas ratio. The gas density distribution used in the models is obtained from the gas large scale surveys: Berkeley and Parkes HI surveys and from the Columbia University CO survey. In the present work, we compared these models with extinction predictions of elliptical galaxies (gE) and star clusters. We used the similar sample of gE galaxies proposed by Burstein for the comparison between the extinction calculation methods of Burstein & Heiles (1978, 1982) and of Schlegel et al. (1998) extending the comparison to our models. We found rms differences equal to 0.0179 and 0.0189 mag respectively, in the comparison of the predictions of our "model A" with the two methods mentioned. The comparison takes into account the "zero points" introduced by Burstein. The correlation coefficient obtained in the comparison is around 0.85. These results bring to light that our models can be safely used for the estimation of extinction in our Galaxy for extragalactic work, as an alternative method to the BH and SFD predictions. In the comparison with the globular clusters we found rms differences equal to 0.32 and 0.30 for our models A and S, respectively. For the open clusters we made comparisons using different samples and the rms differences were around 0.25.

  17. Extragalactic interstellar extinction curves: Indicators of local physical conditions

    SciTech Connect

    Cecchi-Pestellini, Cesare; Viti, Serena; Williams, David A. E-mail: sv@star.ucl.ac.uk

    2014-06-20

    Normalized interstellar extinction curves (ISECs) in the Milky Way and other galaxies show a variety of shapes. This variety is attributed to differences along different sight lines in the abundances of the several dust and gas components contributing to extinction. In this paper we propose that these abundance differences are not arbitrary but are a specific consequence of the physical conditions on those sight lines. If this proposal is correct, then it implies that ISECs contain information about physical conditions in the regions generating extinction. This may be particularly important for high redshift galaxies where information on the conditions may be difficult to obtain. We adopt a model of extinction carriers in which the solid and gaseous components are not immutable but respond time-dependently to the local physics. We validate this model by fitting extinction curves measured on sight lines in the Magellanic Clouds and obtained for the gamma-ray burst afterglow GRB 080605. We present results for this model as follows: (1) we show that computed ISECs are controlled by a small number of physical parameters, (2) we demonstrate the sensitivity of computed ISECs to these parameters, (3) we compute as examples ISECs for particular galaxy types, and (4) we note that different galaxy types have different shapes of ISEC.

  18. Interstellar Extinction Law Toward the Galactic Center III: J, H, KS Bands in the 2MASS and the MKO Systems, and 3.6, 4.5, 5.8, 8.0 μm in the Spitzer/IRAC System

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo; Tamura, Motohide; Hatano, Hirofumi; Kato, Daisuke; Tanabé, Toshihiko; Sugitani, Koji; Nagata, Tetsuya

    2009-05-01

    We have determined interstellar extinction law toward the Galactic center (GC) at the wavelength from 1.2 to 8.0 μm, using point sources detected in the IRSF/SIRIUS near-infrared (NIR) survey and those in the Two Micron All Sky Survey (2MASS) and Spitzer/IRAC/GLIMPSE II catalogs. The central region midl mid lsim3fdg0 and midb mid lsim1fdg0 has been surveyed in the J, H, and KS bands with the IRSF telescope and the SIRIUS camera whose filters are similar to the Mauna Kea Observatories (MKO) NIR photometric system. Combined with the GLIMPSE II point source catalog, we made KS versus KS - λ color-magnitude diagrams (CMDs) where λ=3.6, 4.5, 5.8, and 8.0 μm. The KS magnitudes of bulge red clump stars and the KS - λ colors of red giant branches are used as a tracer of the reddening vector in the CMDs. From these magnitudes and colors, we have obtained the ratios of total-to-selective extinction A_{K_S}/E_{K_S-λ} for the four IRAC bands. Combined with A_{λ}/A_{K_S} for the J and H bands derived by Nishiyama et al., we obtain AJ :AH :A_{K_S}:A [3.6]:A [4.5]:A [5.8]:A [8.0] = 3.02:1.73:1:0.50:0.39:0.36:0.43 for the line of sight toward the GC. This confirms the flattening of the extinction curve at λ gsim 3 μm from a simple extrapolation of the power-law extinction at shorter wavelengths, in accordance with recent studies. The extinction law in the 2MASS J, H, and KS bands has also been calculated, and good agreement with that in the MKO system is found. Thus, it is established that the extinction in the wavelength range of J, H, and KS is well fitted by a power law of steep decrease A λ vprop λ-2.0 toward the GC. In nearby molecular clouds and diffuse interstellar medium, the lack of reliable measurements of the total-to-selective extinction ratios hampers unambiguous determination of the extinction law; however, observational results toward these lines of sight cannot be reconciled with a single extinction law.

  19. Diffuse Interstellar Bands: The Way Forward

    NASA Astrophysics Data System (ADS)

    Tielens, A. G. G. M.

    2014-02-01

    Rather than a summary of the conference, I present here an overview of the status of the field and our progress over the last two decades from the points of view of astronomy, molecular physics, spectroscopy, and astrochemistry. While at first sight, progress may seem slow, actually, we have made an important stride forward. We have recognized now that the problem is very complex and identifying the carriers of the Diffuse Interstellar Bands will require a concerted effort of astronomers, molecular physicists, spectroscopists, and astrochemists. While this is a daunting prospect, we have identified the tools that we need to make this happen.

  20. New Interstellar Dust Models Consistent with Interstellar Extinction, Emission and Abundances Constraints

    NASA Technical Reports Server (NTRS)

    Zubko, V.; Dwek, E.; Arendt, R. G.; Oegerle, William (Technical Monitor)

    2001-01-01

    We present new interstellar dust models that are consistent with both, the FUV to near-IR extinction and infrared (IR) emission measurements from the diffuse interstellar medium. The models are characterized by different dust compositions and abundances. The problem we solve consists of determining the size distribution of the various dust components of the model. This problem is a typical ill-posed inversion problem which we solve using the regularization approach. We reproduce the Li Draine (2001, ApJ, 554, 778) results, however their model requires an excessive amount of interstellar silicon (48 ppM of hydrogen compared to the 36 ppM available for an ISM of solar composition) to be locked up in dust. We found that dust models consisting of PAHs, amorphous silicate, graphite, and composite grains made up from silicates, organic refractory, and water ice, provide an improved fit to the extinction and IR emission measurements, while still requiring a subsolar amount of silicon to be in the dust. This research was supported by NASA Astrophysical Theory Program NRA 99-OSS-01.

  1. Position Displacement of Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Galazutdinov, G.; Krełowski, J.; Beletsky, Y.; Valyavin, G.

    2015-04-01

    We reconsider the already published phenomenon of the blue shift of diffuse interstellar bands, observed in spectra of HD34078 (AE Aur) and members of the Sco OB1 association, in particular HD152233. We have analyzed 29 diffuse bands. Some of them, already proven as blue-shifted in our earlier study, are now confirmed using another instrument: the 6.5 m Clay telescope equipped with the MIKE spectrograph. The high signal-to-noise ratio (over 600) of our spectra allowed us to reveal even small small-scale displacements of positions (both blue and redshifts) of diffuse bands along the considered lines of sight. In some cases, the magnitude of deviation exceeds 10 km s-1. Also, we prove that profiles of many diffuse bands in spectra of HD34078 suffer significant broadening. The origin of the observed phenomena is discussed. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory (Chile).

  2. New Ultraviolet Extinction Curves for Interstellar Dust in M31

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey C.; Gordon, Karl D.; Bianchi, Luciana C.; Massa, Derck L.; Fitzpatrick, Edward L.; Bohlin, R. C.; Wolff, Michael J.

    2015-12-01

    New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with the Hubble Space Telescope/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructed for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher signal-to-noise ratio than previous studies. Direct measurements of N(H i) were made using the Lyα absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5-14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from solar to 1.5 solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program, finding that the extinction curves can be produced with the available carbon and silicon abundances if the metallicity is super-solar. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute, and from the data archive at STScI. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  3. A Precise Determination of the Mid-infrared Interstellar Extinction Law Based on the APOGEE Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Xue, Mengyao; Jiang, B. W.; Gao, Jian; Liu, Jiaming; Wang, Shu; Li, Aigen

    2016-06-01

    A precise measure of the mid-infrared interstellar extinction law is crucial for investigating the properties of interstellar dust, especially larger-sized grains. Based on the stellar parameters derived from the SDSS-III/Apache Point Observatory Galaxy Evolution Experiment (APOGEE) spectroscopic survey, we select a large sample of G-type and K-type giants as the tracers of the Galactic mid-infrared extinction. We calculate the intrinsic stellar color excesses from the stellar effective temperatures and use them to determine the mid-infrared extinction for a given line of sight. For the entire sky of the Milky Way surveyed by APOGEE, we derive the extinctions (relative to {A}{{{K}}{{S}}}, the K S-band extinction at wavelength λ = 2.16 μm) for the four Wide-field Infrared Survey Explorer (WISE) bands at 3.4, 4.6, 12, and 22 μm, the four Spitzer/Infrared Array Camera bands at 3.6, 4.5, 5.8, and 8 μm, the Spitzer/MIPS24 band at 23.7 μm, and, for the first time, the AKARI/S9W band at 8.23 μm. Our results agree with previous works in that the extinction curve is flat in the ∼3–8 μm wavelength range and is generally consistent with the {R}V = 5.5 model curve, except our determination exceeds the model prediction in the WISE/W4 band. Although some previous works found that the mid-IR extinction law appears to vary with the extinction depth {A}{{{K}}{{S}}}, no noticeable variation has been found in this work. The uncertainties are analyzed in terms of the bootstrap resampling method and Monte-Carlo simulation and are found to be rather small.

  4. MAPPING THE INTERSTELLAR MEDIUM WITH NEAR-INFRARED DIFFUSE INTERSTELLAR BANDS

    SciTech Connect

    Zasowski, G.; Ménard, B.; Bizyaev, D.; García-Hernández, D. A.; Pérez, A. E. García; Majewski, S. R.; Hayden, M. R.; Holtzman, J.; Kinemuchi, K.; Johnson, J. A.; Wilson, J. C.; Nidever, D. L.; Shetrone, M.

    2015-01-01

    We map the distribution and properties of the Milky Way's interstellar medium as traced by diffuse interstellar bands (DIBs) detected in near-infrared stellar spectra from the SDSS-III/APOGEE survey. Focusing exclusively on the strongest DIB in the H band, at λ ∼ 1.527 μm, we present a projected map of the DIB absorption field in the Galactic plane, using a set of about 60,000 sightlines that reach up to 15 kpc from the Sun and probe up to 30 mag of visual extinction. The strength of this DIB is linearly correlated with dust reddening over three orders of magnitude in both DIB equivalent width (W {sub DIB}) and extinction, with a power law index of 1.01 ± 0.01, a mean relationship of W {sub DIB}/A{sub V} = 0.1 Å mag{sup –1} and a dispersion of ∼0.05 Å mag{sup –1} at extinctions characteristic of the Galactic midplane. These properties establish this DIB as a powerful, independent probe of dust extinction over a wide range of A{sub V} values. The subset of about 14,000 robustly detected DIB features have a W {sub DIB} distribution that follows an exponential trend. We empirically determine the intrinsic rest wavelength of this transition to be λ{sub 0} = 15 272.42 Å  and use it to calculate absolute radial velocities of the carrier, which display the kinematical signature of the rotating Galactic disk. We probe the DIB carrier distribution in three dimensions and show that it can be characterized by an exponential disk model with a scale height of about 100 pc and a scale length of about 5 kpc. Finally, we show that the DIB distribution also traces large-scale Galactic structures, including the Galactic long bar and the warp of the outer disk.

  5. Identification of More Interstellar C60+ Bands

    NASA Astrophysics Data System (ADS)

    Walker, G. A. H.; Bohlender, D. A.; Maier, J. P.; Campbell, E. K.

    2015-10-01

    Based on gas-phase laboratory spectra at 6 K, Campbell et al. confirmed that the diffuse interstellar bands (DIBs) at 9632.7 and 9577.5 Å are due to absorption by the fullerene ion {{{C}}}60+. They also reported the detection of two other, weaker bands at 9428.5 and 9365.9 Å. These lie in spectral regions heavily contaminated by telluric water vapor lines. We acquired CFHT ESPaDOnS spectra of HD 183143 close to the zenith and chopped with a nearby standard to correct for the telluric line absorption which enabled us to detect a DIB at 9365.9 Å of relative width and strength comparable to the laboratory absorption. There is a DIB of similar strength and FWHM at 9362.5 Å. A stellar emission feature at 9429 Å prevented detection of the 9428.5 Å band. However, a CFHT archival spectrum of HD 169454, where emission is absent at 9429 Å, clearly shows the 9428.5 Å DIB with the expected strength and width. These results further confirm {{{C}}}60+ as a DIB carrier. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  6. A Study of Interstellar Ultraviolet Extinction in OB Associations and Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Aiello, S.; Barsella, B.; Chlewicki, G.; Greenberg, J. M.; Patriarchi, P.; Perinotto, M.

    The authors studied the interstellar UV extinction towards 115 stars, selected from the IUE data bank. The complete catalogue, including extinction data for the whole sample as well as the reduction procedure and error analysis, is in preparation (Aiello et al., 1986). Here the authors present the results referring to two regions (Carina and Ophiuchus Complexes) where the interstellar medium is disturbed by the effects of recent and ongoing star formation. For comparison purposes, the extinction towards Cas OB6 is also reported.

  7. Probing interstellar extinction in the Tarantula Nebula with red giant stars

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, N.; Girardi, L.; Sabbi, E.

    2014-01-01

    We have studied the properties of the interstellar extinction in a field of 3‧ × 3‧ located about 6‧ SW of 30 Doradus in the Large Magellanic Cloud (LMC). The observations with with the WFPC 2 camera on board the Hubble Space Telescope in the U, B, V , I and H bands show the presence of patchy extinction in this field. In particular, the colour-magnitude diagram (CMD) reveals an elongated stellar sequence, running almost parallel to the main sequence (MS), which is in reality made up of stars belonging to the red giant clump (RC) and spread across the CMD by the considerable and uneven extinction in this region. This allows us to derive in a quantitative way both the extinction law in the range 3 000-8 000 Å and the values of the absolute extinction towards more than 100 objects, thereby setting statistically significant constraints on the properties of the extinction in this area. We find an extinction curve considerably flatter than the standard Galactic one and than those derived before towards a sample of sight lines in the LMC. The value of RV = 5.6 that we find implies that in this region large grains dominate. Comparing the extinction towards the individual RC stars and a similar number of stars in the upper MS reveals that the latter span a narrower range of E(B - V) values, contrary to what has been found elsewhere in the LMC. We are now extending these studies to 30 Doradus itself and to a large portion of the Tarantula nebula using existing HST observations at ultraviolet, optical and near infrared wavelengths.

  8. Accurate Modeling of X-ray Extinction by Interstellar Grains

    NASA Astrophysics Data System (ADS)

    Hoffman, John; Draine, B. T.

    2016-02-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.

  9. Uncertainties in the interstellar extinction curve and the Cepheid distance to M101

    NASA Astrophysics Data System (ADS)

    Nataf, David M.

    2015-05-01

    I revisit the Cepheid-distance determination to the nearby spiral galaxy M101 (Pinwheel Galaxy) of Shappee & Stanek, in light of several recent investigations questioning the shape of the interstellar extinction curve at λ ≈ 8000 Å (i.e. the I band). I find that the relatively steep extinction ratio AI/E(V - I) = 1.1450 from Fitzpatrick & Massa is slightly favoured relative to AI/E(V - I) = 1.2899 from Fitzpatrick and significantly favoured relative the historically canonical value of AI/E(V - I) = 1.4695, from Cardelli et al. The steeper extinction curves, with lower values of AI/E(V - I), yield fits with reduced scatter, metallicity dependences to the dereddened Cepheid luminosities that are closer to values inferred in the Local Group, and that are less sensitive to the choice of reddening cut imposed in the sample selection. The increase in distance modulus to M101 when using the preferred extinction curve is Δμ ˜ 0.06 mag, resulting in the estimate of the distance modulus to M101 relative to the LMC is ΔμLMC ≈ 10.72 ± 0.03 (stat). The best-fitting metallicity dependence is dMI/d{[O/H]} ≈ (-0.38 ± 0.14 (stat)) mag dex-1.

  10. Optical spectroscopy of IRAS sources with infrared emission bands. 1: IRAS 21282+5050 and the diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Jones, B. F.

    1987-01-01

    Spectroscopy of the starlike optical counterpart to IRAS 21282+5050, a source with the hydrocarbon infrared emission band spectrum, shows an 07(f)-(WC11) planetary nebula nucleus suffering an extinction of 5.7 mag. Emission line widths in the WC spectrum are only approx. 100 km/s, indicating a very slow stellar wind. Optical diffuse interstellar bands (DIBs) are prominent. Five DIBs are strongly enhanced, namely lamda lamda 5797, 6196, 6203, 6283, and 6613. The presence of circumstellar hydrocarbon molecules may explain both the infrared emission bands and the enhanced DIBs.

  11. INTERSTELLAR EXTINCTION LAW TOWARD THE GALACTIC CENTER III: J, H, K{sub S} BANDS IN THE 2MASS AND THE MKO SYSTEMS, AND 3.6, 4.5, 5.8, 8.0 {mu}m IN THE SPITZER/IRAC SYSTEM

    SciTech Connect

    Nishiyama, Shogo; Nagata, Tetsuya; Tamura, Motohide; Hatano, Hirofumi; Kato, Daisuke; Tanabe, Toshihiko; Sugitani, Koji

    2009-05-10

    We have determined interstellar extinction law toward the Galactic center (GC) at the wavelength from 1.2 to 8.0 {mu}m, using point sources detected in the IRSF/SIRIUS near-infrared (NIR) survey and those in the Two Micron All Sky Survey (2MASS) and Spitzer/IRAC/GLIMPSE II catalogs. The central region |l | {approx}<3.{sup 0}0 and |b | {approx}<1.{sup 0}0 has been surveyed in the J, H, and K{sub S} bands with the IRSF telescope and the SIRIUS camera whose filters are similar to the Mauna Kea Observatories (MKO) NIR photometric system. Combined with the GLIMPSE II point source catalog, we made K{sub S} versus K{sub S} - {lambda} color-magnitude diagrams (CMDs) where {lambda}=3.6, 4.5, 5.8, and 8.0 {mu}m. The K{sub S} magnitudes of bulge red clump stars and the K{sub S} - {lambda} colors of red giant branches are used as a tracer of the reddening vector in the CMDs. From these magnitudes and colors, we have obtained the ratios of total-to-selective extinction A{sub K{sub S}}/E{sub K{sub S}}{sub -{lambda}} for the four IRAC bands. Combined with A{sub {lambda}}/A{sub K{sub S}} for the J and H bands derived by Nishiyama et al., we obtain A{sub J} :A{sub H} :A{sub K{sub S}}:A {sub [3.6]}:A {sub [4.5]}:A {sub [5.8]}:A {sub [8.0]} = 3.02:1.73:1:0.50:0.39:0.36:0.43 for the line of sight toward the GC. This confirms the flattening of the extinction curve at {lambda} {approx}> 3 {mu}m from a simple extrapolation of the power-law extinction at shorter wavelengths, in accordance with recent studies. The extinction law in the 2MASS J, H, and K{sub S} bands has also been calculated, and good agreement with that in the MKO system is found. Thus, it is established that the extinction in the wavelength range of J, H, and K{sub S} is well fitted by a power law of steep decrease A {sub {lambda}} {proportional_to} {lambda}{sup -2.0} toward the GC. In nearby molecular clouds and diffuse interstellar medium, the lack of reliable measurements of the total-to-selective extinction ratios

  12. Interstellar extinction law near the Galactic equator along the Camelopardalis, Perseus and Cassiopeia border

    NASA Astrophysics Data System (ADS)

    Zdanavičius, J.; Straižys, V.; Corbally, C. J.

    2002-09-01

    The interstellar reddening law is investigated along the Galactic equator near the Cam, Per and Cas border. We used seven-color photometry of O-B5 stars in the Vilnius photometric system in the optical range, photometry of the ANS orbiting observatory in the ultraviolet range and broad-band color indices V- K in the infrared. In the optical range (345-660 nm) the interstellar reddening law is found to be nearly normal. In the ultraviolet wavelengths shorter than the 330 nm ANS passband, the extinction is found to be slightly larger than the average. Some stars, for example HD 24432, exhibit much stronger ultraviolet extinction which is well seen already in the 345 nm passband of the Vilnius system. However, such stars are rare. The ratio R = A_V/EB-V is found to be 2.9, i.e., it is slightly smaller than the normal. This is confirmed by the study of the wavelength of maximum polarization of reddened stars in the area. Both the ultraviolet anomaly and the smaller R value are in good agreement with the Cardelli et al. (\\cite{carcm88}) prediction. We conclude that in the investigated area it is safe to use normal ratios of color excesses to calculate reddening-free Q-parameters for the classification of stars from photometric data in the optical spectral range.

  13. PAH Clusters and the Interstellar Infrared Emission Bands

    NASA Astrophysics Data System (ADS)

    Ricca, Alessandra; Roser, Joseph

    2016-06-01

    Polycyclic aromatic hydrocarbons (or PAHs) are the leading candidate for the emitters of the interstellar aromatic infrared emission bands. Some aspects of these emission bands indicate a contribution from PAH clusters. To better assess this contribution, we measured infrared absorption spectra of a series of homogeneous and heterogeneous PAH clusters using matrix isolation spectroscopy in solid argon and we performed theoretical calculations. The spectral shifts observed in the absorption spectra as a function of the PAH concentration can be related to preferred cluster structures forming in the argon matrix. Based upon our results, we predict that the large PAHs present in the interstellar medium are likely to have clusters with redshifted absorption bands in the C–H out-of-plane bending region. These clusters could contribute to a well-known red-shading observed in the profile of the interstellar 11.2 micron emission band.

  14. Centrosymmetric molecules as possible carriers of diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, M.; Schmidt, M. R.; Galazutdinov, G. A.; Musaev, F. A.; Betelesky, Y.; Krełowski, J.

    2010-11-01

    In this paper, we present new data with interstellar C2 (Phillips bands A 1 Πu-X1 Σ+g), from observations made with the Ultraviolet-Visual Echelle Spectrograph of the European Southern Observatory. We have determined the interstellar column densities and excitation temperatures of C2 for nine Galactic lines. For seven of these, C2 has never been observed before, so in this case the still small sample of interstellar clouds (26 lines of sight), where a detailed analysis of C2 excitation has been made, has increased significantly. This paper is a continuation of previous works where interstellar molecules (C2 and diffuse interstellar bands) have been analysed. Because the sample of interstellar clouds with C2 has increased, we can show that the width and shape of the profiles of some diffuse interstellar bands (6196 and 5797 Å) apparently depend on the gas kinetic and rotational temperatures of C2; the profiles are broader because of the higher values of the gas kinetic and rotational temperatures of C2. There are also diffuse interstellar bands (4964 and 5850 Å) for which this effect does not exist. Based on observations made with ESO telescopes at the Paranal Observatory under programme IDs 266.D-5655(A), 67.C-0281(A), 71.C-0513(C), 67.D-0439(A) and 082.C-0566(A) and at La Silla under programme IDs 078.C-0403(A), 076.C-0164(A) and 073.C-0337(A). Also based on observations made with the 1.8-m telescope in South Korea and the 2-m telescope at the International Centre for Astronomical and Medico-Ecological Research, Terskol, Russia. E-mail: kazmierczak@astri.uni.torun.pl (MK); schmidt@ncac.torun.pl (MRS); runizag@gmail.com (GAG); ybialets@eso.org (YB); jacek@astri.uni.torun.pl (JK)

  15. Fullerenes, Organics and the Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    2016-07-01

    The status of DIB research has strongly advanced since 20 years [1], as well as the quest for fullerenes, PAHs and large organics in space. In 1994 we reported the discovery of two near IR diffuse bands coincident with C60+, confirmed in subsequent years [2-6] and now by latest laboratory experiments. A number of DIB observational studies have been published, dealing with: DIB surveys [1,7-10]; measurements of DIB families, correlations and environment dependences [11-14]; extragalactic DIBs [15, 16]. Resolved substructures were detected [17,18] and compared to predicted rotational contours by large molecules [19]. Polarisation studies provided upper limits constraints [20, 21]. DIBs carriers have been linked with organic molecules observed in the interstellar medium [22-25] such as IR bands (assigned to PAHs), Extended Red Emission or recently detected Anomalous Microwave Emission (AME, assigned to spinning dust) and with spectroscopic IR emission bands measured with ISO or Spitzer. Fullerenes and PAHs have been proposed to explain some DIBs and specific molecules were searched in DIB spectra [eg 2-6, 26-31]. These could be present in various dehydrogenation and ionisation conditions [32,33]. Experiments in the laboratory and in space [eg 34-36] allow to measure the survival and by-products of these molecules. We review DIB observational results and their interpretation, and discuss the presence of large organics, fullerenes, PAHs, graphenes in space. References [1] Herbig, G. 1995 ARA&A33, 19; [2] Foing, B. & Ehrenfreund, P. 1994 Natur 369, 296; [3] Foing, B. & Ehrenfreund, P. 1997 A&A317, L59; [4] Foing, B. & Ehrenfreund, P. 1995 ASSL202, 65; [5] Ehrenfreund, P., Foing, B. H. 1997 AdSpR19, 1033; [6] Galazutdinov, G. A. et al. 2000 MNRAS317, 750; [7] Jenniskens, P., Desert, F.-X. 1994 A&AS106, 39; [8] Ehrenfreund, P. et al. 1997 A&A318, L28; [9] Tuairisg, S. Ó. et al. 2000 A&AS142, 225; [10] Cox, N. et al. 2005 A&A438, 187; [11] Cami, J. et al. 1997A&A.326, 822

  16. A bibliography of papers on the diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Snow, Theodore P.; Barnes, Susan; Heitzmann, Maribeth

    1994-01-01

    Presented is a compilation of publications on the diffuse interstellar bands, found in the literature dating back to the first known mention of the bands. It has been attempted to make this list complete, but it must be recognized that some papers may be missing. Judgement was required in some cases where the diffuse bands are mentioned, but are not a central theme of a paper; in most instances we kept such papers in a list, rather than omitting them.

  17. The UV interstellar extinction in nearby galaxies: M33

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana

    2001-07-01

    We previously used HST to determine the UV extinction curve in M31. Our result in M31, together with other studies of the Magellanic Clouds and Milky Way, suggests that dust properties vary in different environments and from galaxy to galaxy. Thus average Galactic dust properties cannot be usefully employed to correct for dust effects in different galaxies. We propose to enlarge our sample by studying the UV extinction properties of dust in M33, sampling different galactocentric distances and levels of star formation activity. The extinction curves will be derived by comparing stars with the same spectral type, but different extinction amounts, in M33. This eliminates uncertainties in using standard stars from other galaxies, that may have different intrinsic spectra. For the targets we have U, B, V and UV photometry, and accurate spectral types from ground based spectra. UV extinction gives information on the properties of dust, which is an important tracer of global heavy element abundances. The steepness of the FUV extinction affects the ionisation and molecular chemistry of a galaxy. Knowledge of the extinction curve also allows accurate corrections of observed fluxes: ultimately, relating dust properties to global galaxy parameters will enable better extinction corrections in distant galaxies and AGN. We also request WFPC2 parallel imaging to continue our stellar population studies.

  18. The extinction toward the galactic center from observations of interstellar lines

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Evans, N. J., II

    1981-01-01

    H2CO absorption observations against Sgr A are used to select the molecular material lying in front of the galactic center, and an analysis similar to that of Blitz and Shu (1980) is carried out. The ratio of visual extinction to equivalent width of the 6 cm line of H2CO is found to be similar for several nearby interstellar clouds. By considering only the molecular components in front of the infrared cluster, the estimate for the extinction is decreased to 15-46 mag. These results are consistent with those from infrared observations toward the galactic center. Extinction estimates based on other interstellar species are also considered. Atomic gas is seen as contributing less than 10 mag of extinction.

  19. Catalogue of diffuse interstellar band measurements

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.; York, D. G.; Welty, D. E.

    1976-01-01

    Diffuse-band data have been collected from the literature and reduced statistically to a common measurement system, enabling correlation analyses to be made with a larger quantity of data than previously possible. A full listing of the catalogued data is presented, along with some discussion of the correlations. One important application of such studies is the identification of cases of peculiar diffuse-band behavior, and a table is given showing all cases of band strengths deviating by more than twice the mean dispersion from the best-fit correlations. This table may be useful in planning further observations.

  20. Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey

    NASA Technical Reports Server (NTRS)

    Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.

  1. Interstellar Extinction in the Vicinity of the Galactic Center

    NASA Technical Reports Server (NTRS)

    Cotera, Angela S.; Simpson, Janet P.; Erickson, Edwin F.; Colgan, Sean W. J.

    1998-01-01

    We present J (1.2 microns) H (1-6 microns) K' (2.11 microns) and Br(gamma) (2.166 microns) images from four large regions within the central 40 pc of the Galaxy. Localized variations in the extinction, as determined by observations of the stellar population, are examined using the median H-K' color as a function of position within each region. As the value of the derived extinction from the stars is dependent upon the intrinsic magnitude of the assumed stellar type, the J-H vs. H-K' diagrams are first used to investigate the distribution of stellar types in the four regions. We find that there is a distinct OB population, contrary to earlier assumptions, with the ratio of K and M giants and supergiants to OB stars approximately twice that of the solar neighborhood. Although the on the scale of approx. 1 min. fluctuations in the extinction are on the order of A(sub V) approx. greater than 2, throughout the entire region the extinction varies from A(sub V) approx. greater than 25 to A(sub V) approx. less than 40. We also examine whether there is any variation in the extinction and stellar number density relative to the unusual radio features in these regions and do not find a significant correlation. Spectral imaging in Br(gamma) 2.166 microns emission shows a strong morphological correspondence between the 6 cm radio images and the diffuse Br(gamma) emission. By comparing the theoretical Br(gamma) flux derived from the radio flux using recombination theory, with our measured Br(gamma) flux, we obtain a second, independent, estimate of the extinction. We compare the two data sets and find that the extinction as derived from the stars is consistently greater, sometimes by a factor of two, than the value of the extinction derived from the Br(gamma) images. The derived extinction in various regions, however, is insufficient for any of these regions to be located behind the molecular clouds as previously observed in the Galactic Center, consistent with the theory that

  2. Interstellar Extinction in the Vicinity of the Galactic Center

    NASA Technical Reports Server (NTRS)

    Cotera, Angela S.; Simpson, Janet P.; Erickson, Edwin F.; Colgan, Sean W. J.; Burton, Michael G.; Allen, David A.

    2000-01-01

    We present J (1.2 microns), H (1-6 microns), K' (2.11 microns) and Br(gamma) (2.166 microns) images from four large regions within the central 40 pc of the Galaxy. Localized variations in the extinction, as determined by observations of the stellar population, are examined using the median H-K' color as a function of position within each region. As the value of the derived extinction from the stars is dependent upon the intrinsic magnitude of the assumed stellar type, the J-H vs. H-K' diagrams are first used to investigate the distribution of stellar types in the four regions. We find that there is a distinct OB population, contrary to earlier assumptions, with the ratio of K and M giants and supergiants to OB stars approximately twice that of the solar neighborhood. Although the on the scale of approx. l' fluctuations in the extinction are on the order of A(sub V) approx. 2, throughout the entire region the extinction varies from A(sub V) approx. greater than 25 to A(sub V) approx. less than 40. We also examine whether there is any variation in the extinction and stellar number density relative to the usual radio features in these regions and do not find a significant correlation. Spectral imaging in Br(gamma) 2.166 microns emission shows a strong morphological correspondence between the 6 cm radio images and the diffuse Br(gamma) emission. By comparing the theoretical Br(gamma) flux derived from the radio flux using recombination theory, with our measured Br(gamma) flux, we obtain a second, independent, estimate of the extinction. We compare the two data sets and find that the extinction as derived from the stars is consistently greater, sometimes by a factor of two, than the value of the extinction derived from the Br(gamma) images. The derived extinction in various regions, however, is insufficient for any of these regions-to be located behind the molecular clouds as previously observed in the Galactic Center, consistent with the theory that the observed radio

  3. A high-resolution study of near-infrared diffuse interstellar bands

    SciTech Connect

    Rawlings, M. G.; Adamson, A. J.; Kerr, T. H. E-mail: aadamson@gemini.edu

    2014-11-20

    We present high-resolution echelle spectroscopic observations of the two near-infrared (NIR) diffuse interstellar bands (DIBs) at 13175 Å and 11797.5 Å. The DIBs have been observed in a number of diffuse interstellar medium sightlines that exhibit a wide range of visual extinctions. Band profiles are similar to those seen in narrow DIBs, clearly asymmetric and can be closely fitted in most cases using two simple Gaussian components. Gaussian fits were generally found to be more successful than fits based on a multiple-cloud model using a template DIB profile. For a sample of nine objects in which both bands are observed, the strength of both NIR DIBs generally increases with A(V), and we report a correlation between the two observed bands over a large A(V) range and widely separated lines of sight. The strength of the two bands is also compared against those of two visual DIBs and the diffuse ISM aliphatic dust absorption feature at 3.4 μm previously detected in the same sightlines. We find that the NIR DIBs do not exhibit notable (anti)correlations with either. Implications of these observations on possible DIB carrier species are discussed.

  4. Neutral gas and diffuse interstellar bands in the LMC

    NASA Technical Reports Server (NTRS)

    Danks, Anthony C.; Penprase, Brian

    1994-01-01

    Tracing the dynamics of the neutral gas and observing diffuse interstellar bands in the LMC (Large Magellanic Cloud) was the focus of this study. The S/N values, a Quartz lamp exposure, a T horium Argon Comparision lamp exposure, and spectral plots for each star observed were taken. The stars observed were selected to sample the 30 Dor vicinty. NaI absorption profiles are included.

  5. The diffuse interstellar bands: a tracer for organics in the diffuse interstellar medium?

    NASA Technical Reports Server (NTRS)

    Salama, F.

    1998-01-01

    The diffuse interstellar bands (DIBs) are absorption bands seen in the spectra of stars obscured by interstellar dust. DIBs are recognized as a tracer for free, organic molecules in the diffuse interstellar medium (ISM). The potential molecular carriers for the DIBs are discussed with an emphasis on neutral and ionized polycyclic aromatic hydrocarbons (PAHs) for which the most focused effort has been made to date. From the combined astronomical, laboratory and theoretical study, it is concluded that a distribution of free neutral and ionized complex organics (PAHs, fullerenes, unsaturated hydrocarbons) represents the most promising class of candidates to account for the DIBs. The case for aromatic hydrocarbons appears particularly strong. The implied widespread distribution of complex organics in the diffuse ISM bears profound implications for our understanding of the chemical complexity of the ISM, the evolution of prebiotic molecules and its impact on the origin and the evolution of life on early Earth through the exogenous delivery (cometary encounters and metoritic bombardments) of prebiotic organics.

  6. VizieR Online Data Catalog: Interstellar extinction curves of OB stars (Wegner 2002)

    NASA Astrophysics Data System (ADS)

    Wegner, W.

    2003-02-01

    The paper presents a collection of 436 extinction curves covering the whole available range of wavelengths from satellite UV to near-IR. The data were taken from the ANS photometric catalogue (Cat. ) and from the compilations of IR photometric measurements. The data curves have been obtained with the aid of "artificial standards" Papaj et al. (1993A&A...273..575P) and Wegner (1994MNRAS.270..229W, 1995, Interstellar Absorption Structures in the Direction of Nearby OB stars, Wyd. Uczelniane WSP, Bydgoszcz, p. 1-383). The visual magnitudes and spectral classifications of O and B type stars with EB-V>=0.05 were taken from the SIMBAD database. The curves are given in the form of plots and tables E{lambda}-V/EB-V versus 1/{lambda}. The observed variety of extinction laws among slightly reddened stars is apparently due to the various physical parameters of interstellar clouds. (3 data files).

  7. Direct measurement of interstellar extinction toward young stars using atomic hydrogen Lyα absorption

    SciTech Connect

    McJunkin, Matthew; France, Kevin; Brown, Alexander; Schneider, P. C.; Herczeg, Gregory J.; Hillenbrand, Lynne; Schindhelm, Eric; Edwards, Suzan

    2014-01-10

    Interstellar reddening corrections are necessary to reconstruct the intrinsic spectral energy distributions (SEDs) of accreting protostellar systems. The stellar SED determines the heating and chemical processes that can occur in circumstellar disks. Measurement of neutral hydrogen absorption against broad Lyα emission profiles in young stars can be used to obtain the total H I column density (N(H I)) along the line of sight. We measure N(H I) with new and archival ultraviolet observations from the Hubble Space Telescope (HST) of 31 classical T Tauri and Herbig Ae/Be stars. The H I column densities range from log{sub 10}(N(H I)) ≈19.6-21.1, with corresponding visual extinctions of A{sub V} =0.02-0.72 mag, assuming an R{sub V} of 3.1. We find that the majority of the H I absorption along the line of sight likely comes from interstellar rather than circumstellar material. Extinctions derived from new HST blue-optical spectral analyses, previous IR and optical measurements, and new X-ray column densities on average overestimate the interstellar extinction toward young stars compared to the N(H I) values by ∼0.6 mag. We discuss possible explanations for this discrepancy in the context of a protoplanetary disk geometry.

  8. Dust in the small Magellanic cloud. 1: Interstellar polarization and extinction data

    NASA Technical Reports Server (NTRS)

    Magalhaes, A. M.; Rodrigues, C. V.; Coyne, C. V.; Piirola, V.

    1996-01-01

    The typical extinction curve for the Small Magellanic Cloud (SMC), in contrast to that for the Galaxy, has no bump at 2175 A and has a steeper rise into the far ultraviolet. For the Galaxy the interpretation of the extinction and, therefore, the dust content of the interstellar medium has been greatly assisted by measurements of the wavelength dependence of the polarization. For the SMC no such measurements existed. Therefore, to further elucidate the dust properties in the SMC we have for the first time measured linear polarization with five colors in the optical region of the spectrum for a sample of reddened stars. For two of these stars, for which there were no existing UV spectrophotometric measurements, but for which we measured a relatively large polarization, we have also obtained data from the International Ultraviolet Explorer (IUE) in order to study the extinction. We also attempt to correlate the SMC extinction and polarization data. The main results are: the wavelength of maximum polarization, lambda(sub max), in the SMC is typically smaller than that in the Galaxy; however, AZC 456, which shows the UV extinction bump, has a lambda(sub max) typical of that in the Galaxy, but its polarization curve is narrower and its bump is shifted to shorter wavelengths as compared to the Galaxy; and from an analysis of both the extinction and polarization data it appears that the SMC has typically smaller grains than those in the Galaxy. The absence of the extinction bump in the SMC has generally been thought to imply a lower carbon abundance in the SMC compared to the Galaxy. We interpret our results to mean that te size distribution of the interstellar grains, and not only the carbon abundance, is different in the SMC as compared to the Galaxy. In Paper 2 we present dust model fits to these observations.

  9. AN ANALYSIS OF THE SHAPES OF INTERSTELLAR EXTINCTION CURVES. VI. THE NEAR-IR EXTINCTION LAW

    SciTech Connect

    Fitzpatrick, E. L.; Massa, D. E-mail: massa@derckmassa.net

    2009-07-10

    We combine new observations from the Hubble Space Telescope's Advanced Camera of Survey with existing data to investigate the wavelength dependence of near-IR (NIR) extinction. Previous studies suggest a power law form for NIR extinction, with a 'universal' value of the exponent, although some recent observations indicate that significant sight line-to-sight line variability may exist. We show that a power-law model for the NIR extinction provides an excellent fit to most extinction curves, but that the value of the power, {beta}, varies significantly from sight line to sight line. Therefore, it seems that a 'universal NIR extinction law' is not possible. Instead, we find that as {beta} decreases, R(V) {identical_to} A(V)/E(B - V) tends to increase, suggesting that NIR extinction curves which have been considered 'peculiar' may, in fact, be typical for different R(V) values. We show that the power-law parameters can depend on the wavelength interval used to derive them, with the {beta} increasing as longer wavelengths are included. This result implies that extrapolating power-law fits to determine R(V) is unreliable. To avoid this problem, we adopt a different functional form for NIR extinction. This new form mimics a power law whose exponent increases with wavelength, has only two free parameters, can fit all of our curves over a longer wavelength baseline and to higher precision, and produces R(V) values which are consistent with independent estimates and commonly used methods for estimating R(V). Furthermore, unlike the power-law model, it gives R(V)s that are independent of the wavelength interval used to derive them. It also suggests that the relation R(V) = -1.36 E(K-V)/(E(B-V)) - 0.79 can estimate R(V) to {+-}0.12. Finally, we use model extinction curves to show that our extinction curves are in accord with theoretical expectations, and demonstrate how large samples of observational quantities can provide useful constraints on the grain properties.

  10. Into the Darkness: Interstellar Extinction Near the Cepheus OB3 Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Edward L.; Jacklin, S.; Massa, D.

    2014-01-01

    We present the results of a followup investigation to a study performed by Massa and Savage (1984, ApJ, 279, 310) of the properties of UV interstellar extinction in the region of the Cepheus OB3 molecular cloud. That study was performed using UV photometry and spectro-photometry from the ANS and IUE satellites. We have extended this study into the IR, utilizing the uniform database of IR photometry available from the 2MASS project. This is a part of a larger program whose goal is to study the properties of extinction in localized regions, where we hope to find clues to dust grain growth and destruction processes through spatial correlations of extinction with distinct environmental properties. Similarly to Massa and Savage’s UV results, we find that the IR extinction properties on the Cepheus OB3 region vary systematically with the apparent proximity of the target stars to the molecular cloud. We also find that the UV extinction and the IR extinction are crudely correlated. The methodology leading to these results and their implications are discussed.

  11. Dust in the diffuse interstellar medium. Extinction, emission, linear and circular polarisation

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.

    2014-01-01

    We present a model for the diffuse interstellar dust that explains the observed wavelength-dependence of extinction, emission, and the linear and circular polarisation of light. The model is set up with a small number of parameters. It consists of a mixture of amorphous carbon and silicate grains with sizes from the molecular domain of 0.5 up to about 500 nm. Dust grains with radii larger than 6 nm are spheroids. Spheroidal dust particles have a factor 1.5-3 greater absorption cross section in the far-infrared than spherical grains of the same volume do. Mass estimates derived from submillimetre observations that ignore this effect are overestimated by the same amount. In the presence of a magnetic field, spheroids may be partly aligned and polarise light. We find that polarisation spectra help to determine the upper particle radius of the otherwise rather unconstrained dust size distribution. Stochastically heated small grains of graphite, silicates, and polycyclic aromatic hydrocarbons (PAHs) are included. We tabulate parameters for PAH emission bands in various environments. They show a trend with the hardness of the radiation field that can be explained by the ionisation state or hydrogenation coverage of the molecules. For each dust component its relative weight is specified so that absolute element abundances are not direct input parameters. The model is compared to the average properties of the Milky Way, which seem to represent dust in the solar neighbourhood. It is then applied to specific sight lines towards four particular stars, with one of them located in the reflection nebula NGC 2023. For these sight lines, we present ultra-high signal-to-noise linear and circular spectro-polarimetric observations obtained with FORS at the VLT. Using prolate rather than oblate grains gives a better fit to observed spectra; the axial ratio of the spheroids is typically two and aligned silicates are the dominant contributors to the polarisation. Based on ESO: 386.C

  12. Diffuse interstellar bands versus known atomic and molecular species in the interstellar medium of M82 toward SN 2014J

    SciTech Connect

    Welty, Daniel E.; York, Donald G.; Ritchey, Adam M.; Dahlstrom, Julie A.

    2014-09-10

    We discuss the absorption due to various constituents of the interstellar medium (ISM) of M82 seen in moderately high-resolution, high signal-to-noise ratio optical spectra of SN 2014J. Complex absorption from M82 is seen, at velocities 45 ≲ v {sub LSR} ≲ 260 km s{sup –1}, for Na I, K I, Ca I, Ca II, CH, CH{sup +}, and CN; many of the diffuse interstellar bands (DIBs) are also detected. Comparisons of the column densities of the atomic and molecular species and the equivalent widths of the DIBs reveal both similarities and differences in relative abundances, compared to trends seen in the ISM of our Galaxy and the Magellanic Clouds. Of the 10 relatively strong DIBs considered here, 6 (including λ5780.5) have strengths within ±20% of the mean values seen in the local Galactic ISM, for comparable N(K I); 2 are weaker by 20%-45% and 2 (including λ5797.1) are stronger by 25%-40%. Weaker than 'expected' DIBs (relative to N(K I), N(Na I), and E(B – V)) in some Galactic sight lines and toward several other extragalactic supernovae appear to be associated with strong CN absorption and/or significant molecular fractions. While the N(CH)/N(K I) and N(CN)/N(CH) ratios seen toward SN 2014J are similar to those found in the local Galactic ISM, the combination of high N(CH{sup +})/N(CH) and high W(5797.1)/W(5780.5) ratios has not been seen elsewhere. The centroids of many of the M82 DIBs are shifted relative to the envelope of the K I profile—likely due to component-to-component variations in W(DIB)/N(K I) that may reflect the molecular content of the individual components. We compare estimates for the host galaxy reddening E(B – V) and visual extinction A {sub V} derived from the various interstellar species with the values estimated from optical and near-IR photometry of SN 2014J.

  13. The Enigmatic Diffuse Interstellar Bands: A Reservoir of Organic Material

    NASA Astrophysics Data System (ADS)

    McCall, Benjamin

    2008-05-01

    The diffuse interstellar medium of our galaxy contains about 3 billion solar masses of atomic hydrogen, or ˜3x10^66 H atoms. The inventory of identified heavy-atom-containing molecules in diffuse clouds includes CH, CH^+, NH, OH, C2, CN, C2H, and C3H2, and totals to roughly ˜10^59 in number. However, a ubiquitous set of optical absorption lines known as the diffuse interstellar bands (DIBs) belies the likely presence of ˜10^58 large organic molecules that have yet to be identified. The first of the DIBs were observed in 1919, but despite many decades of intensive efforts by laboratory spectroscopists and astronomers the identities of the molecular carriers of the DIBs remain a mystery. After reviewing the history of the DIBs, I will discuss some preliminary results from a large-scale DIBs observing campaign that was conducted on over 119 nights between 1999 and 2003, using the 3.5-meter telescope at the Apache Point Observatory. This survey, undertaken by a collaboration led by Don York at the University of Chicago, has produced high-resolution, high signal-to-noise ratio spectra of over 160 stars, spanning the entire optical region from 3600--10200 å. In particular, I will focus on two ongoing efforts. The first is the generation of a comprehensive spectral atlas of the DIBs based on four heavily reddened sightlines; this atlas will be of great use to spectroscopists who wish to compare their laboratory spectra to interstellar spectra (in hopes of finding a match!). The second is the search for correlations among the different DIBs, and especially the search for sets of DIBs that always have the same relative intensities in different sightlines. Such sets would represent the electronic spectra of individual molecular carriers of the DIBs, and could provide hints about which species should be considered for additional laboratory spectroscopic studies.

  14. Atlas of Interstellar Extinction Curves of OB Stars Covering the Whole Available Wavelength Range

    NASA Astrophysics Data System (ADS)

    Wegner, W.

    The paper presents a collection of 436 extinction curves covering the whole available range of wavelengths from satellite UV to near-IR. The data were taken from the ANS photometric catalogue and from the compilations of IR photometric measurements. The data curves have been obtained with the aid of ``artificial standards": Papaj et al. (1993) and Wegner (1994, 1995). The visual magnitudes and spectral classifications of O and B type stars with EB-V>= 0.05 were taken from the SIMBAD database. The curves are given in the form of plots and tables E{lambda - V} / EB-V versus 1/λ. The observed variety of extinction laws among slightly reddened stars is apparently due to the various physical parameters of interstellar clouds.

  15. The diffuse interstellar bands and the Galactic latitude

    NASA Astrophysics Data System (ADS)

    McIntosh, Alan; Webster, Adrian

    1993-04-01

    Existing measurements of three of the diffuse interstellar bands are presented in a new way, in order to investigate how the relative strengths of different bands depend on the Galactic latitude of the stars in whose light they are seen. It is found that none of the three ratios of bandstrength amongst 4430, 5780, and 5797 A is constant, but all three are correlated with the modulus of the latitude. The abundance of the carrier of 4430 A relative to the others is found to be greatest at low latitude, while that of the carrier of 5797 A is greatest at high latitude. It is supposed that this dependence reflects a more basic dependence on height above and below the Galactic plane, the carrier of 4430 A evidently preferring conditions near the plane where the gas density is high and the carrier of 5797 A preferring the more tenuous gas further out. In terms of a recent theory in which the carriers are different hydrocarbon molecules and ions of the fullerane family, these results imply that, of the bands studied here, the carrier of 4430 A bears the most hydrogen atoms and that of 5797 A bears the fewest.

  16. Analysis of interstellar extinction towards the hypergiant Cyg OB2 No. 12

    NASA Astrophysics Data System (ADS)

    Maryeva, O. V.; Chentsov, E. L.; Goranskij, V. P.; Karpov, S. V.

    The Cyg OB2 stellar association hosts an entire zoo of unique objects, and among them -- an enigmatic star Cyg OB2 No. 12 (Schulte 12, MT 304). MT 304 is enigmatic not only due to its highest luminosity (according to various estimates, it is one of the brightest stars in the Galaxy), but also because its reddening is anomalously large, greater than the mean reddening in the association. To explain the nature of anomalous reddening (AV≃ 10 mag) of MT 304, we carried out spectrophotometric observations of 25 stars located in its vicinity. We mapped interstellar extinction within the 2.5 arcmin radius and found it to increase towards MT 304. According to our results, the two most reddened stars in the association after MT 304 are J203240.35+411420.1 and J203239.90+411436.2, both located about 15 arcsec from it. Interstellar extinction AV towards these stars is about 9 mag. Our results favor the hypothesis of the circumstellar nature of reddening excess. In the second part of the paper we present the results of our modeling of MT 282 (B1 IV) and MT 343 (B1 V), which belong to the older population of the association and have ages greater than 10 Myr.

  17. Diffuse Interstellar Bands: A Combined Laboratory-Astronomical Study

    NASA Astrophysics Data System (ADS)

    Johnson, Fred M.

    2009-05-01

    Diffuse Interstellar Bands: A Combined Laboratory-Astronomical Study Abstract A comprehensive exposition of accumulated experimental laboratory and astronomical spectroscopic DIB data implicates the following molecules: (1) the ultra-thermodynamically stable metal-organic molecule magnesium-tetrabenzoporphyrin (MgTBP) situated within (2) a paraffin matrix (referred to as either grains or dust), and (3) a low concentration of pyridine (also within the grains) whose transmission window at 2175 Å accounts for the ubiquitous UV bump. It is proposed that pyridine coordinates to MgTBP to produce the species responsible for the DIB features. The strongest DIB at 4428.19Å is matched precisely with the most prominent laboratory-measured absorption Soret band of MgTBP at 4428.2Å, including its FWHM value; likewise the next strongest DIB at 6284Å correlates with the MgTBP Q band. Over 27 DIBs are matched with low-temperature laboratory Shploskii data of MgTBP in such matrices, to a precision of 1Å. The most recent DIB catalog using HD204827 is provided by L. M. Hobbs et al. (ApJ 680,1256-1270,2008). This catalog lists weak, narrow DIBs consistent with laboratory Shpolskii spectral data. The DIB-laboratory correlations include minimum linewidths and evidence of crystal electric field effects that act to remove the degeneracy of MgTBP's first and second electronic states resulting in a clear display of vibronic spectral bands whose interpretation is now possible using the published complete vibrational data set of MgTBP (see F. M. Johnson Spectrochimica Acta Part A 65 (2006) 1154-1179.)

  18. Exploring the Limits to Observational Diffuse Interstellar Band Studies

    NASA Astrophysics Data System (ADS)

    Foing, B. H.

    2014-02-01

    The status of DIB research (Herbig 1995) has strongly advanced since the DIB conference in Boulder in 1994. In the same year we reported the discovery of two near IR diffuse bands coincident with C60 +, that was confirmed in subsequent years. Since then a number of DIB observational studies have been published such as DIB surveys, measurements of DIB families, correlations and environment dependences as well as DIBs in extra-galactic sources. Resolved substructures were measured and compared to predicted rotational contours of large molecules. Polarisation studies provided constraints on possible carrier molecules and upper limits. DIBs carriers have been linked with several classes of organic molecules observed in the interstellar medium, in particular to the UIR bands (assigned to PAHs), the Extended Red Emission (ERE) or the recently detected Anomalous Microwave Emission (AME, assigned to spinning dust). In particular fullerenes and PAHs have been proposed to explain some DIBs and specific molecules were searched for in DIB spectra. DIB carriers could be present in various dehydrogenation and ionization states. Experiments in the laboratory and in space contribute to our understanding of the photo-stability of possible DIB carriers. In summary, the status of DIB research in the last 20 years has strongly advanced. We review DIB observational results and their interpretation and introduce the relevant plenary discussion.

  19. Rejection of the C-7 Diffuse Interstellar Band Hypothesis

    NASA Astrophysics Data System (ADS)

    McCall, B. J.; Thorburn, J.; Hobbs, L. M.; Oka, T.; York, D. G.

    2001-09-01

    Using the new high-resolution (~8 km s-1) echelle spectrograph on the 3.5 m telescope at the Apache Point Observatory, we have begun a high-sensitivity survey of the diffuse interstellar bands (DIBs) in a large sample of reddened stars. Now that we are 2 years into this long-term survey, our sample includes over 20 reddened stars that show at least one of the DIBs that had been suggested to be caused by C-7, based on the gas-phase measurement of the C-7 spectrum by J. P. Maier's group. The high-quality astronomical data from this larger sample of stars, along with the spectroscopic constants from the new laboratory work recently reported by Maier's group, have enabled us to examine more carefully the agreement between C-7 and the DIBs. We find that none of the C-7 bands match the DIBs in wavelength or expected profile. One of the DIBs (λ5748) attributed to C-7 is actually a stellar line. The two strongest DIBs attributed to C-7 (λ6270 and λ4964) are not correlated in strength, so they cannot share the same carrier. On the whole, we find no evidence supporting the hypothesis that C-7 is a carrier of the DIBs.

  20. The VLT-FLAMES Tarantula Survey. IX. The interstellar medium seen through diffuse interstellar bands and neutral sodium&

    NASA Astrophysics Data System (ADS)

    van Loon, J. Th.; Bailey, M.; Tatton, B. L.; Maíz Apellániz, J.; Crowther, P. A.; de Koter, A.; Evans, C. J.; Hénault-Brunet, V.; Howarth, I. D.; Richter, P.; Sana, H.; Simón-Díaz, S.; Taylor, W.; Walborn, N. R.

    2013-02-01

    Context. The Tarantula Nebula (a.k.a. 30 Dor) is a spectacular star-forming region in the Large Magellanic Cloud (LMC), seen through gas in the Galactic disc and halo. Diffuse interstellar bands (DIBs) offer a unique probe of the diffuse, cool-warm gas in these regions. Aims: The aim is to use DIBs as diagnostics of the local interstellar conditions, whilst at the same time deriving properties of the yet-unknown carriers of these enigmatic spectral features. Methods: Spectra of over 800 early-type stars from the Very Large Telescope Flames Tarantula Survey (VFTS) were analysed. Maps were created, separately, for the Galactic and LMC absorption in the DIBs at 4428 and 6614 Å and - in a smaller region near the central cluster R 136 - neutral sodium (the Na i D doublet); we also measured the DIBs at 5780 and 5797 Å. Results: The maps show strong 4428 and 6614 Å DIBs in the quiescent cloud complex to the south of 30 Dor but weak absorption in the harsher environments to the north (bubbles) and near the OB associations. The Na maps show at least five kinematic components in the LMC and a shell-like structure surrounding R 136, and small-scale structure in the Milky Way. The strengths of the 4428, 5780, 5797 and 6614 Å DIBs are correlated, also with Na absorption and visual extinction. The strong 4428 Å DIB is present already at low Na column density but the 6614, 5780 and 5797 Å DIBs start to be detectable at subsequently larger Na column densities. Conclusions: The carriers of the 4428, 6614, 5780 and 5797 Å DIBs are increasingly prone to removal from irradiated gas. The relative strength of the 5780 and 5797 Å DIBs clearly confirm the Tarantula Nebula as well as Galactic high-latitude gas to represent a harsh radiation environment. The resilience of the 4428 Å DIB suggests its carrier is large, compact and neutral. Structure is detected in the distribution of cool-warm gas on scales between one and >100 pc in the LMC and as little as 0.01 pc in the Sun

  1. Diffuse Interstellar Bands in (Proto-) Fullerene-Rich Environments

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.

    2014-02-01

    The recent infrared detection of fullerenes (C60 and C70) in Planetary Nebulae (PNe) and R Coronae Borealis (RCB) stars offers a beautiful opportunity for studying the diffuse interstellar bands (DIBs) in sources where fullerenes are abundant. Here we present for the first time a detailed inspection of the optical spectra of the hot RCB star DY Cen and two fullerene PNe (Tc 1 and M 1-20), which permits us to directly explore the fullerenes - DIB connection. The DIB spectrum of DY Cen (García-Hernández et al. 2012a) is remarkably different from that in fullerene PNe (García-Hernández & Díaz-Luis 2013). In particular, Tc 1 displays unusually strong 4428 Å and 6309 Å DIBs, which are normal (or not seen) in DY Cen. On the other hand, DY Cen displays an unusually strong 6284 Å DIB that is found to be normal in fullerene PNe. We also report the detection of new broad and unidentified features centered at 4000 Å and 6525 Å in DY Cen and Tc 1, respectively. We suggest that the new 4000 Å band seen in DY Cen may be related to the circumstellar proto-fullerenes seen at infrared wavelengths (García-Hernández et al. 2012a). However, the intense 4428 Å DIB (probably also the 6309 Å DIB and the new 6525 Å band) may be related to the presence of larger fullerenes (e.g., C80, C240, C320, and C540) and buckyonions (multishell fullerenes such as C60@C240 and C60@C240@C540) in the circumstellar envelope of Tc 1 (García-Hernández & Díaz-Luis 2013).

  2. The Interstellar Extinction Towards the Milky Way Bulge with Planetary Nebulae, Red Clump, and RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Nataf, David M.

    2016-06-01

    I review the literature covering the issue of interstellar extinction towards the Milky Way bulge, with emphasis placed on findings from planetary nebulae, RR Lyrae, and red clump stars. I also report on observations from HI gas and globular clusters. I show that there has been substantial progress in this field in recent decades, most particularly from red clump stars. The spatial coverage of extinction maps has increased by a factor ~ 100 × in the past 20 yr, and the total-to-selective extinction ratios reported have shifted by ~ 20-25%, indicative of the improved accuracy and separately, of a steeper-than-standard extinction curve. Problems remain in modelling differential extinction, explaining anomalies involving the planetary nebulae, and understanding the difference between bulge extinction coefficients and `standard' literature values.

  3. A New Atlas of the Diffuse Interstellar Bands: HD 183143

    NASA Astrophysics Data System (ADS)

    Hobbs, Lewis M.; York, Donald G.; Thorburn, Julie A.; Snow, Theodore P.; Bishof, Michael; Friedman, Scott D.; McCall, Benjamin J.; Oka, Takeshi; Rachford, Brian L.; Sonnentrucker, Paule; Welty, Daniel E.

    2010-06-01

    We present our second catalog of the diffuse interstellar bands (DIBs), based on high signal-to-noise ratio echelle spectra of HD 183143 obtained at the Apache Point Observatory. This catalog complements our first catalog, which was based on spectra of HD 204827. Unlike the sightline towards HD 204827, which hosts a high column density of C_2 and C_3, the sightline towards HD 183143 has no detectable amount of carbon chain molecules and therefore samples a somewhat chemically distinct environment. Our catalog of HD 183143 contains 414 DIBs, of which 135 (or 33%) were not reported in four previous modern DIB surveys. When combined with our catalog of HD 204827, the total number of distinct DIBs observed is ˜545. Our collaboration's website at http://dibdata.org contains a complete listing of the properties of the observed DIBs in tabular format, PDF files containing the observed spectra, and an interactive spectral plotting tool that enables users to rescale the spectra. Our hope is that this dataset will facilitate the comparison of laboratory molecular spectra with the astronomical observations, and ultimately the identification of the molecular carriers of the DIBs. L. M. Hobbs et al., Astrophysical Journal 705, 32-45 (2009) L. M. Hobbs et al., Astrophysical Journal 680, 1256-1270 (2008)

  4. Near Infrared Diffuse Interstellar Bands Toward the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    Hamano, Satoshi; Kobayashi, Naoto; Kondo, Sohei; Sameshima, Hiroaki; Nakanishi, Kenshi; Ikeda, Yuji; Yasui, Chikako; Mizumoto, Misaki; Matsunaga, Noriyuki; Fukue, Kei; Yamamoto, Ryo; Izumi, Natsuko; Mito, Hiroyuki; Nakaoka, Tetsuya; Kawanishi, Takafumi; Kitano, Ayaka; Otsubo, Shogo; Kinoshita, Masaomi; Kawakita, Hideyo

    2016-04-01

    We obtained the near-infrared (NIR) high-resolution (R ≡ λ/Δλ ∼ 20,000) spectra of the seven brightest early-type stars in the Cygnus OB2 association for investigating the environmental dependence of diffuse interstellar bands (DIBs). The WINERED spectrograph mounted on the Araki 1.3 m telescope in Japan was used to collect data. All 20 of the known DIBs within the wavelength coverage of WINERED (0.91 < λ < 1.36 μm) were clearly detected along all lines of sight because of their high flux density in the NIR wavelength range and the large extinction. The equivalent widths (EWs) of DIBs were not correlated with the column densities of C2 molecules, which trace the patchy dense component, suggesting that the NIR DIB carriers are distributed mainly in the diffuse component. On the basis of the correlations among the NIR DIBs both for stars in Cyg OB2 and stars observed previously, λλ10780, 10792, 11797, 12623, and 13175 are found to constitute a “family,” in which the DIBs are correlated well over the wide EW range. In contrast, the EW of λ10504 is found to remain almost constant over the stars in Cyg OB2. The extinction estimated from the average EW of λ10504 (AV ∼ 3.6 mag) roughly corresponds to the lower limit of the extinction distribution of OB stars in Cyg OB2. This suggests that λ10504 is absorbed only by the foreground clouds, implying that the carrier of λ10504 is completely destroyed in Cyg OB2, probably by the strong UV radiation field. The different behaviors of the DIBs may be caused by different properties of the DIB carriers.

  5. Probing the Local Bubble with Diffuse Interstellar Bands (DIBs)

    NASA Astrophysics Data System (ADS)

    van Loon, Jacco Th.; Farhang, A.; Javadi, A.; Bailey, M.; Khosroshahi, H. G.

    The Sun lies in the middle of an enormous cavity of a million degree gas, known as the Local Bubble. The Local Bubble is surrounded by a wall of denser neutral and ionized gas. The Local Bubble extends around 100 pc in the plane of Galaxy and hundreds of parsecs vertically, but absorption-line surveys of neutral sodium and singly-ionized calcium have revealed a highly irregular structure and the presence of neutral clouds within an otherwise tenuous and hot gas. We have undertaken an all-sky, European-Iranian survey of the Local Bubble in the absorption of a number of diffuse interstellar bands (DIBs) to offer a novel view of our neighbourhood. Our dedicated campaigns with ESO's New Technology Telescope and the ING's Isaac Newton Telescope comprise high signal-to-noise, medium-resolution spectra, concentrating on the 5780 and 5797 Å bands which trace ionized/irradiated and neutral/shielded environments, respectively; their carriers are unknown but likely to be large carbonaceous molecules. With about 660 sightlines towards early-type stars distributed over distances up to about 200 pc, our data allow us to reconstruct the first ever 3D DIB map of the Local Bubble, which we present here. While we confirm our expectations that the 5780 Å DIB is relatively strong compared to the 5797 Å DIB in hot/irradiated regions such as which prevail within the Local Bubble and its walls, and the opposite is true for cooler/shielded regions beyond the confines of the Local Bubble, we unexpectedly also detect DIB cloudlets inside of the Local Bubble. These results reveal new insight into the structure of the Local Bubble, as well as helping constrain our understanding of the carriers of the DIBs.

  6. Large amounts of extinct Al-26 in interstellar grains from the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Zinner, E.; Amari, S.; Anders, E.; Lewis, R.

    1991-01-01

    It is reported here that interstellar graphite and SiC grains recovered from the Murchison CM2 chondritic meteorite have large abundances of Mg-26 from the decay of extinct Al-26. The deduced initial Al-26/Al-27 ratios range up to 0.06 in graphite and 0.2 in SiC. This is 1200 to 4000 times the maximum values found in refractory inclusions in primitive meteorites. All proposed stellar sources of carbonaceous dust also produced Al-26, but the highest Al-26/Al-27 ratios found in these grains seem to rule out Wolf-Rayet stars and supernovae. The aluminum abundance correlates with that of nitrogen, suggesting that the aluminum condensed as aluminum nitride.

  7. Laboratory investigation of the contribution of complex aromatic/aliphatic polycyclic hybrid molecular structures to interstellar ultraviolet extinction and infrared emission

    NASA Technical Reports Server (NTRS)

    Arnoult, K. M.; Wdowiak, T. J.; Beegle, L. W.

    2000-01-01

    We have demonstrated by experiment that, in an energetic environment, a simple polycyclic aromatic hydrocarbon (PAH) such as naphthalene will undergo chemical reactions that produce a wide array of more complex species (an aggregate). For a stellar wind of a highly evolved star (post-asymptotic giant branch [post-AGB]), this process would be in addition to what is expected from reactions occurring under thermodynamic equilibrium. A surprising result of that work was that produced in substantial abundance are hydrogenated forms that are hybrids of polycyclic aromatic and polycyclic alkanes. Infrared spectroscopy described here reveals a spectral character for these materials that has much in common with that observed for the constituents of circumstellar clouds of post-AGB stars. It can be demonstrated that a methylene (-CH2-) substructure, as in cycloalkanes, is the likely carrier of the 6.9 microns band emission of dust that has recently been formed around IRAS 22272+5433, NGC 7027, and CPD -56 8032. Ultraviolet spectroscopy previously done with a lower limit of 190 nm had revealed that this molecular aggregate can contribute to the interstellar extinction feature at 2175 angstroms. We have now extended our UV spectroscopy of these materials to 110 nm by a vacuum ultraviolet technique. That work, described here, reveals new spectral characteristics and describes how material newly formed during the late stages of stellar evolution could have produced an extinction feature claimed to exist at 1700 angstroms in the spectrum of HD 145502 and also how the newly formed hydrocarbon material would be transformed/aged in the general interstellar environment. The contribution of this molecular aggregate to the rise in interstellar extinction at wavelengths below 1500 angstroms is also examined. The panspectral measurements of the materials produced in the laboratory, using plasmas of H, He, N, and O to convert the simple PAH naphthalene to an aggregate of complex species

  8. VizieR Online Data Catalog: 3D interstellar extinct. map within nearest kpc (Gontcharov, 2012)

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2016-07-01

    The product of the previously constructed 3D maps of stellar reddening (2010AstL...36..584G) and Rv variations (2012AstL...38...12G) has allowed us to produce a 3D interstellar extinction map within the nearest kiloparsec from the Sun with a spatial resolution of 100pc and an accuracy of 0.2m. This map is compared with the 2D reddening map by Schlegel et al. (1998ApJ...500..525S), the 3D extinction map at high latitudes by Jones et al. (2011AJ....142...44J), and the analytical 3D extinction models by Arenou et al. (1992A&A...258..104A) and Gontcharov (2009AstL...35..780G). In all cases, we have found good agreement and show that there are no systematic errors in the new map everywhere except the direction toward the Galactic center. We have found that the map by Schlegel et al. (1998ApJ...500..525S) reaches saturation near the Galactic equator at E(B-V)>0.8m, has a zero-point error and systematic errors gradually increasing with reddening, and among the analytical models those that take into account the extinction in the Gould Belt are more accurate. Our extinction map shows that it is determined by reddening variations at low latitudes and Rv variations at high ones. This naturally explains the contradictory data on the correlation or anticorrelation between reddening and Rv available in the literature. There is a correlation in a thin layer near the Galactic equator, because both reddening and Rv here increase toward the Galactic center. There is an anticorrelation outside this layer, because higher values of Rv correspond to lower reddening at high and middle latitudes. Systematic differences in sizes and other properties of the dust grains in different parts of the Galaxy manifest themselves in this way. The largest structures within the nearest kiloparsec, including the Local Bubble, the Gould Belt, the Great Tunnel, the Scorpius, Perseus, Orion, and other complexes, have manifested themselves in the constructed map. (1 data file).

  9. Unusual relative strengths of the diffuse interstellar bands in some interstellar dust clouds

    NASA Technical Reports Server (NTRS)

    Krelowski, J.; Walker, G. A. H.

    1986-01-01

    Some of the diffuse interstellar features (DIBs) in the spectra of certain stars at high galactic latitudes (1 is greater than 15 degrees) are unusually weak or absent while others have the strength expected for their color excess. In some cases the stars are probably reddened by single interstellar clouds. There appear to be three families of DIBs. The effects of these families are examined. The existance of the three families implies that at least three agents cause the DIBs and that the proportions of the agents or the physical conditions giving rise to the DIBs can vary from cloud to cloud.

  10. Probing X-Ray Absorption and Optical Extinction in the Interstellar Medium Using Chandra Observations of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Foight, Dillon R.; Güver, Tolga; Özel, Feryal; Slane, Patrick O.

    2016-07-01

    We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant (SNR) archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit SNR spectra; (ii) the spatial variations within individual remnants; (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions; and (iv) the model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation N H = (2.87 ± 0.12) × 1021 A V cm‑2, which is significantly higher than the previous measurements.

  11. Interstellar Extinction from 0.35 to 2.2 Microns: A Study Based on Luminous Southern Stars

    NASA Astrophysics Data System (ADS)

    He, Lida; Whittet, D. C. B.; Kilkenny, D.; Spencer Jones, J. H.

    1995-12-01

    We present the results of a study of interstellar extinction in the visible to near-infrared, based on a photometric study of 154 highly obscured OB stars in the southern Milky Way. Absolute visual extinctions (AV) of individual stars are deduced by three distinct methods, with extrapolation to zero frequency based on (1) the van de Hulst theoretical curve 15, (2) the empirical formula of Cardelli, Clayton, & Mathis, and (3) the power law of Martin & Whittet. Results agree to within 3%, and we conclude that the relation AV = 1.1 EV-K, based on the van de Hulst curve, provides a reliable and straightforward way to estimate AV for individual stars. Results lie in the range 2 mag < AV < 6 mag for stars in our sample. Our catalog of highly reddened stars provides a potentially valuable source list for future studies of interstellar phenomena within 10 kpc of the Sun, such as gas-phase atomic and molecular abundances, cloud kinematics, polarization, and the morphology of the Galactic magnetic field, as well as interstellar extinction. In this paper we use the data to refine various parameters which characterize the extinction law. We derive a mean extinction curve, yielding a ratio of total to selective extinction RV = AV/EB-V = 3.08±0.05. Values for individual stars lie in the range 2.5-4.7. Stars with RV substantially greater than the mean value tend to lie relatively close to the Sun, suggesting that their extinctions may be dominated by dust in local dark clouds. The mean value of stars beyond 2 kpc is 2.97 10.03. We confirm previous results which suggest that extinction curves converge to a single functional form in the infrared (λ > 0.90 μm), well described by a power law of index 1.73±0.04 and further characterized by a color excess ratio EJ-H/EH-K ≃ 1.64. We also show that visual extinctions may, in principle, be estimated purely from measurements in the infrared using the relation AV = rEJ-K, where r ≃ 1.87/(0.65 - R-1V). This result may be applied to

  12. The Gaia-ESO Survey: Extracting diffuse interstellar bands from cool star spectra. DIB-based interstellar medium line-of-sight structures at the kpc scale

    NASA Astrophysics Data System (ADS)

    Puspitarini, L.; Lallement, R.; Babusiaux, C.; Chen, H.-C.; Bonifacio, P.; Sbordone, L.; Caffau, E.; Duffau, S.; Hill, V.; Monreal-Ibero, A.; Royer, F.; Arenou, F.; Peralta, R.; Drew, J. E.; Bonito, R.; Lopez-Santiago, J.; Alfaro, E. J.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Costado, M. T.; Lardo, C.; de Laverny, P.; Zwitter, T.

    2015-01-01

    Aims: We study how diffuse interstellar bands (DIBs) measured toward distance-distributed target stars can be used to locate dense interstellar (IS) clouds in the Galaxy and probe a line-of-sight (LOS) kinematical structure, a potentially useful tool when gaseous absorption lines are saturated or not available in the spectral range. Cool target stars are numerous enough for this purpose. Methods: We devised automated DIB-fitting methods appropriate for cool star spectra and multiple IS components. The data were fitted with a combination of a synthetic stellar spectrum, a synthetic telluric transmission, and empirical DIB profiles. The initial number of DIB components and their radial velocity were guided by HI 21 cm emission spectra, or, when available in the spectral range, IS neutral sodium absorption lines. For NaI, radial velocities of NaI lines and DIBs were maintained linked during a global simultaneous fit. In parallel, stellar distances and extinctions were estimated self-consistently by means of a 2D Bayesian method from spectroscopically-derived stellar parameters and photometric data. Results: We have analyzed Gaia-ESO Survey (GES) spectra of 225 stars that probe between ~2 and 10 kpc long LOS in five different regions of the Milky Way. The targets are the two CoRoT fields, two open clusters (NGC 4815 and γ Vel), and the Galactic bulge. Two OGLE fields toward the bulge observed before the GES are also included (205 target stars). Depending on the observed spectral intervals, we extracted one or more of the following DIBs: λλ 6283.8, 6613.6, and 8620.4. For each field, we compared the DIB strengths with the Bayesian distances and extinctions, and the DIB Doppler velocities with the HI emission spectra. Conclusions: For all fields, the DIB strength and the target extinction are well correlated. For targets that are widely distributed in distance, marked steps in DIBs and extinction radial distance profiles match each other and broadly correspond to the

  13. The dark cloud TGU H994 P1 (LDN 1399, LDN 1400, and LDN 1402): Interstellar extinction and distance

    NASA Astrophysics Data System (ADS)

    Straižys, V.; Čepas, V.; Boyle, R. P.; Munari, U.; Zdanavičius, J.; Maskoliūnas, M.; Kazlauskas, A.; Zdanavičius, K.

    2016-01-01

    The results of CCD photometry in the seven-colour Vilnius system, for about 1000 stars down to V = 20 mag and their two-dimensional spectral types, are used to investigate the interstellar extinction in a 1.5 square degree area in the direction of the dark cloud TGU H994 P1 (LDN 1399, LDN 1400 and LDN 1402) in Camelopardalis. Photometric classification of 18 brightest stars down to V = 12 mag was verified by the spectra obtained with the 1.22 m telescope of the Asiago Observatory. The interstellar extinction run with distance is investigated with the results of photometry in the Vilnius system, and 504 red clump giants, identified by combining the results of infrared photometry from the 2MASS and WISE surveys. A possible distance of 140 ± 11 pc to the TGU H994 P1 cloud seems to be acceptable. Alternative distances of the cloud are discussed. The complex of the Camelopardalis clouds probably has a considerable depth along the line of sight, similar to that observed in the Taurus-Auriga complex. The maximum extinction AV in the dark filaments is found to be about 6.5 mag. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A31

  14. Observational 5-20 μm Interstellar Extinction Curves Toward Star-Forming Regions Derived From Spitzer IRS Spectra

    NASA Astrophysics Data System (ADS)

    McClure, M.

    2009-03-01

    Using Spitzer Infrared Spectrograph observations of G0-M4 III stars behind dark clouds, I construct 5-20 μm empirical extinction curves for 0.3 <= AK < 7, which is equivalent to AV between ≈3 and 50. For AK < 1, the curve appears similar to the Mathis diffuse interstellar medium extinction curve, but with a greater degree of extinction. For AK > 1, the curve exhibits lower contrast between the silicate and absorption continuum, develops ice absorption, and lies closer to the Weingartner and Draine RV = 5.5 Case B curve, a result which is consistent with that of Flaherty et al. and Chiar et al. Recently, work using Spitzer Infrared Array Camera data by Chapman et al. independently reaches a similar conclusion that the shape of the extinction curve changes as a function of increasing AK . By calculating the optical depths of the 9.7 μm silicate and 6.0, 6.8, and 15.2 μm ice features, I determine that a process involving ice is responsible for the changing shape of the extinction curve and speculate that this process is a coagulation of ice-mantled grains rather than ice-mantled grains alone.

  15. Laboratory confirmation of C60(+) as the carrier of two diffuse interstellar bands.

    PubMed

    Campbell, E K; Holz, M; Gerlich, D; Maier, J P

    2015-07-16

    The diffuse interstellar bands are absorption lines seen towards reddened stars. None of the molecules responsible for these bands have been conclusively identified. Two bands at 9,632 ångströms and 9,577 ångströms were reported in 1994, and were suggested to arise from C60(+) molecules (ref. 3), on the basis of the proximity of these wavelengths to the absorption bands of C60(+) measured in a neon matrix. Confirmation of this assignment requires the gas-phase spectrum of C60(+). Here we report laboratory spectroscopy of C60(+) in the gas phase, cooled to 5.8 kelvin. The absorption spectrum has maxima at 9,632.7 ± 0.1 ångströms and 9,577.5 ± 0.1 ångströms, and the full widths at half-maximum of these bands are 2.2 ± 0.2 ångströms and 2.5 ± 0.2 ångströms, respectively. We conclude that we have positively identified the diffuse interstellar bands at 9,632 ångströms and 9,577 ångströms as arising from C60(+) in the interstellar medium. PMID:26178962

  16. FUSE Measurements of Rydberg Bands of Interstellar CO between 925 and 1150 Å

    NASA Astrophysics Data System (ADS)

    Sheffer, Y.; Federman, S. R.; Andersson, B.-G.

    2003-11-01

    We report the detection of 11 Rydberg bands of CO in FUSE spectra of the sight line toward HD 203374A. Eight of these electronic bands are seen in the interstellar medium for the first time. Our simultaneous fit of five non-Rydberg A-X bands together with the strongest Rydberg band of CO, C-X (0-0), yields a four-component cloud structure toward the stellar target. With this model we synthesize the other Rydberg bands in order to derive their oscillator strengths. We find that the strength of some bands was underestimated in previously published results from laboratory measurements. The implication is important for theoretical calculations of the abundance of interstellar CO, because its dissociation and self-shielding depend on oscillator strengths for these bands. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer (FUSE), which is operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985.

  17. The C4H radical and the diffuse interstellar bands. An ab initio study

    NASA Technical Reports Server (NTRS)

    Kolbuszewski, Marcin

    1994-01-01

    An ab initio study of the low-lying electronic states of C4H has been presented where the species studied has a chi(2)sigma(+) ground state and two low lying pi states. Based on the vertical and adiabatic excitation energies between those states it is suggested that the 4428 A diffuse interstellar band is not carried by C4H. The application of the particle in a box model shows strong coincidences between the strong DIB's and predicted wavelengths of pi-pi transitions in C(2n)H series. Based on those coincidences, it is suggested the C(2n)H species as good candidates for carriers of diffuse interstellar bands.

  18. ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES) - Merging Observations and Laboratory Data

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2016-01-01

    The Diffuse Interstellar Bands (DIBs) are a set of 500 absorption bands that are detected in the spectra of stars with interstellar clouds in the line of sight. DIBs are found from the NUV to the NIR in the spectra of reddened stars spanning different interstellar environments in our local, and in other galaxies. DIB carriers are a significant part of the interstellar chemical inventory. They are stable and ubiquitous in a broad variety of environments and play a unique role in interstellar physics/chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics, and astrophysical modeling of line-of-sights. PAHs are among the molecular species that have been proposed as DIB carriers. We will present an assessment of the PAH-DIB model in view of the progress and the advances that have been achieved over the past years through a series of studies involving astronomical observations of DIBs, laboratory simulation of interstellar analogs for neutrals and ionized PAHs, theoretical calculations of PAH spectra and the modelization of diffuse and translucent interstellar clouds. We will present a summary of what has been learned from these complementary studies, the constraints that can now be derived for the PAHs as DIB carriers in the context of the PAH-DIB model and how these constraints can be applied to the EDIBLES project. The spectra of several neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under experimental conditions that mimic interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of specific neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations alone. We present the characteristics of the

  19. Further Studies of λ 5797.1 Diffuse Interstellar Band

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Hobbs, L. M.; Welty, Daniel E.; York, Donald G.; Dahlstrom, Julie; Witt, Adolf N.

    2015-06-01

    The λ~5797.1 DIB is unique with its sharp central feature. We simulated the spectrum based on three premises: (1) Its carrier molecule is polar as concluded from the anomalous spectrum toward the star Herschel 36. (2) The central feature is Q-branch of a parallel band of a prolate top. (3) The radiative temperature of the environment is T_r = 2.73 K. A comparison with observed spectrum indicated that the carrier contains 5-7 heavy atoms. To further strengthen this hypothesis, we have looked for vibronic satellites of the λ~5797.1 DIB. Since its anomaly toward Her 36 was ascribed to the lengthening of bonds upon the electronic excitation, vibronic satellites involving stretch vibrations are expected. Among the 73 DIBs observed toward HD 183143 to the blue of 5797.1 Å, two DIBs, λ~5545.1 and λ~5494.2 stand out as highly correlated with λ~5797.1 DIB. Their correlation coefficients 0.941 and 0.943, respectively, are not sufficiently high to establish the vibronic relation by themselves but can be explained as due to high uncertainties due to their weakness and their stellar blends. They are above the λ~5797.1 DIB by 784.0 cm-1 and 951.2 cm-1, respectively, approximately expected for stretching vibrations. Another observations which may possibly be explained by our hypothesis is the emission at 5800 Å from the Red Rectangle Nebula called RR 5800. Our analysis suggests that λ~5797.1 DIB and RR 5800 are consistently explained as caused by the same molecule. T.H. Kerr, R.E. Hibbins, S.J. Fossey, J.R. Miles, P.J. Sarre, ApJ 495, 941 (1998) T. Oka, D.E. Welty, S. Johnson, D.G. York, J. Dahlstrom, L.M. Hobbs, ApJ 773, 42 (2013) J. Huang, T. Oka, Mol. Phys. J.P. Maier Special Issue in press. G.D. Schmidt, A.N. Witt, ApJ 383, 698 (1991)

  20. Dark clouds in the vicinity of the emission nebula Sh2-205: interstellar extinction and distances

    NASA Astrophysics Data System (ADS)

    Straižys, V.; Čepas, V.; Boyle, R. P.; Zdanavičius, J.; Maskoliūnas, M.; Kazlauskas, A.; Zdanavičius, K.; Černis, K.

    2016-05-01

    Results of CCD photometry in the seven-colour Vilnius system for 922 stars down to V = 16-17 mag and for 302 stars down to 19.5 mag are used to investigate the interstellar extinction in an area of 1.5 square degrees in the direction of the P7 and P8 clumps of the dark cloud TGU H942, which lies in the vicinity of the emission nebula Sh2-205. In addition, we used 662 red clump giants that were identified by combining the 2MASS and WISE infrared surveys. The resulting plots of extinction versus distance were compared with previous results of the distribution and radial velocities of CO clouds and with dust maps in different passbands of the IRAS and WISE orbiting observatories. A possible distance of the front edge of the nearest cloud layer at 130 ± 10 pc was found. This dust layer probably covers all the investigated area, which results in extinction of up to 1.8 mag in some directions. A second rise of the extinction seems to be present at 500-600 pc. Within this layer, the clumps P7 and P8 of the dust cloud TGU H942, the Sh2-205 emission nebula, and the infrared cluster FSR 655 are probably located. In the direction of these clouds, we identified 88 young stellar objects and a new infrared cluster. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A21

  1. Dust in the small Magellanic Cloud. 2: Dust models from interstellar polarization and extinction data

    NASA Technical Reports Server (NTRS)

    Rodrigues, C. V.; Magalhaes, A. M.; Coyne, G. V.

    1995-01-01

    We study the dust in the Small Magellanic Cloud using our polarization and extinction data (Paper 1) and existing dust models. The data suggest that the monotonic SMC extinction curve is related to values of lambda(sub max), the wavelength of maximum polarization, which are on the average smaller than the mean for the Galaxy. On the other hand, AZV 456, a star with an extinction similar to that for the Galaxy, shows a value of lambda(sub max) similar to the mean for the Galaxy. We discuss simultaneous dust model fits to extinction and polarization. Fits to the wavelength dependent polarization data are possible for stars with small lambda(sub max). In general, they imply dust size distributions which are narrower and have smaller mean sizes compared to typical size distributions for the Galaxy. However, stars with lambda(sub max) close to the Galactic norm, which also have a narrower polarization curve, cannot be fit adequately. This holds true for all of the dust models considered. The best fits to the extinction curves are obtained with a power law size distribution by assuming that the cylindrical and spherical silicate grains have a volume distribution which is continuous from the smaller spheres to the larger cylinders. The size distribution for the cylinders is taken from the fit to the polarization. The 'typical', monotonic SMC extinction curve can be fit well with graphite and silicate grains if a small fraction of the SMC carbon is locked up in the grain. However, amorphous carbon and silicate grains also fit the data well. AZV456, which has an extinction curve similar to that for the Galaxy, has a UV bump which is too blue to be fit by spherical graphite grains.

  2. SMALL-SCALE STRUCTURE OF THE INTERSTELLAR MEDIUM TOWARD {rho} Oph STARS: DIFFUSE BAND OBSERVATIONS

    SciTech Connect

    Cordiner, M. A.; Smith, A. M.; Sarre, P. J.; Fossey, S. J.

    2013-02-10

    We present an investigation of small-scale structure in the distribution of large molecules/dust in the interstellar medium through observations of diffuse interstellar bands (DIBs). High signal-to-noise optical spectra were recorded toward the stars {rho} Oph A, B, C, and DE using the University College London Echelle Spectrograph on the Anglo-Australian Telescope. The strengths of some of the DIBs are found to differ by about 5%-9% between the close binary stars {rho} Oph A and B, which are separated by a projected distance on the sky of only c. 344 AU. This is the first star system in which such small-scale DIB strength variations have been reported. The observed variations are attributed to differences between a combination of carrier abundance and the physical conditions present along each sightline. The sightline toward {rho} Oph C contains relatively dense, molecule-rich material and has the strongest {lambda}{lambda}5850 and 4726 DIBs. The gas toward DE is more diffuse and is found to exhibit weak ''C{sub 2}'' (blue) DIBs and strong yellow/red DIBs. The differences in diffuse band strengths between lines of sight are, in some cases, significantly greater in magnitude than the corresponding variations among atomic and diatomic species, indicating that the DIBs can be sensitive tracers of interstellar cloud conditions.

  3. The relationship between carbon monoxide abundance and visual extinction in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Frerking, M. A.; Langer, W. D.; Wilson, R. W.

    1982-01-01

    Carbon monoxide column densities are compared to visual extinctions toward field stars in the rho Oph and Taurus molecular cloud complexes. The relationship of C(0-18) column density to extinction is established, and new determinations for (C-13)O column densities are given for a range of visual extinctions extended to beyond 20 mag. A prescription for determining hydrogen column densities and masses of molecular clouds from observations of CO isotopes is presented and discussed critically. These measurements agree well with the predictions of gas phase chemistry models which include chemical fractionation and selective isotopic photodestruction. The functional dependence of the C(O-18) column density on extinction is characterized by two different regimes separated by a distinct transition observed to occur at 4 mag in both molecular cloud complexes, whereas the functional dependence of (C-13)O is quite different in the two regions. Some saturation is found to occur for C(O-18) emission at high visual extinction and use the rarer isotopic species C(O-17) and (C-13)(O-18) to correct for it.

  4. PROBING THE LOCAL BUBBLE WITH DIFFUSE INTERSTELLAR BANDS. III. THE NORTHERN HEMISPHERE DATA AND CATALOG

    SciTech Connect

    Farhang, Amin; Khosroshahi, Habib G.; Javadi, Atefeh; Van Loon, Jacco Th.

    2015-02-01

    We present new high signal-to-noise ratio (S/N) observations of the diffuse interstellar bands (DIBs) in the Local Bubble and its surroundings. We observed 432 sightlines and obtain the equivalent widths of the λ5780 and λ5797 Å DIBs up to a distance of ∼200 pc. All of the observations were carried out using the Intermediate Dispersion Spectrograph on the 2.5 m Isaac Newton Telescope, during three years, to reach a minimum S/N of ∼2000. All of the λ5780 and λ5797 absorptions are presented in this paper and we tabulate the observed values of the interstellar parameters, λ5780, λ5797, Na ID{sub 1}, and Na ID{sub 2}, including the uncertainties.

  5. Probing the Local Bubble with Diffuse Interstellar Bands. III. The Northern Hemisphere Data and Catalog

    NASA Astrophysics Data System (ADS)

    Farhang, Amin; Khosroshahi, Habib G.; Javadi, Atefeh; van Loon, Jacco Th.

    2015-02-01

    We present new high signal-to-noise ratio (S/N) observations of the diffuse interstellar bands (DIBs) in the Local Bubble and its surroundings. We observed 432 sightlines and obtain the equivalent widths of the λ5780 and λ5797 Å DIBs up to a distance of ~200 pc. All of the observations were carried out using the Intermediate Dispersion Spectrograph on the 2.5 m Isaac Newton Telescope, during three years, to reach a minimum S/N of ~2000. All of the λ5780 and λ5797 absorptions are presented in this paper and we tabulate the observed values of the interstellar parameters, λ5780, λ5797, Na ID1, and Na ID2, including the uncertainties.

  6. Experimental indication of a naphthalene-base molecular aggregate for the carrier of the 2175 angstroms interstellar extinction feature

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Wdowiak, T. J.; Robinson, M. S.; Cronin, J. R.; McGehee, M. D.; Clemett, S. J.; Gillette, S.

    1997-01-01

    Experiments where the simple polycyclic aromatic hydrocarbon (PAH) naphthalene (C10H8) is subjected to the energetic environment of a plasma have resulted in the synthesis of a molecular aggregate that has ultraviolet spectral characteristics that suggest it provides insight into the nature of the carrier of the 2175 angstroms interstellar extinction feature and may be a laboratory analog. Ultraviolet, visible, infrared, and mass spectroscopy, along with gas chromatography, indicate that it is a molecular aggregate in which an aromatic double ring ("naphthalene") structural base serves as the electron "box" chromophore that gives rise to the envelope of the 2175 angstroms feature. This chromophore can also provide the peak of the feature or function as a mantle in concert with another peak provider such as graphite. The molecular base/chromophore manifests itself both as a structural component of an alkyl-aromatic polymer and as a substructure of hydrogenated PAH species. Its spectral and molecular characteristics are consistent with what is generally expected for a complex molecular aggregate that has a role as an interstellar constituent.

  7. On the affinities of lambda 5778 and other broad diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Mcintosh, Alan; Webster, Adrian

    1994-01-01

    The authors examined the broad band 5778 A because of the quantity and quality of data that exists in literature. To investigate the affinity of that band with the bands of Family 1, the ratio W(sub lambda)(4430)/W(sub lambda)(5797) was formed. If the two band belong to the same family then the ratio should be a constant from star to star and it should not be possible to find an independent variable with which the ratio is correlated. If, however, a variable is found which does produce a statistically significant correlation with the ratio of equivalent widths then the bands cannot be in the same family. To test the affinity of the band at 5778 A with the other families the procedure was repeated using the bands at 5780 and 5787 A as being representative of Families 2 and 3 respectively. The measurement results of this test are shown using 21 stars taken from Herbig. Statistically significant correlations resulted when the band at 5778 A was tested against the bands of Families 1 and 2 but there was no correlation with Family 3. It is concluded that lambda 5778 is unlikely a member of Family 1 and so all the broad bands do not have their origin in a single carrier. Also, lambda 5778 does not appear to be a member of Family 2 either, but may be a member of Family 3. It appears that either a single carrier can be the origin of both broad and narrow bands or that the bands are produced by different carriers which exist in similar interstellar habitats. This latter possibility would require the introduction of a fourth family of bands.

  8. Assessment of the Polycyclic Aromatic Hydrocarbon-Diffuse Interstellar Band Proposal

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Bakes, F.; Allamandola, L.; Tielens, A. G. G. M.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    The potential link between neutral and/or ionized polycyclic aromatic hydrocarbons (PAHs) and the diffuse interstellar band (DIB) carriers is examined. Based on the study of the general physical and chemical properties of PAHs, an assessment is made of their possible contribution to the DIB carriers. It is found that, under the conditions reigning in the diffuse interstellar medium, PAHs can be present in the form of neutral molecules as well as positive and/or negative ions. The charge distribution of small PAHs is dominated, however, by two charge states at one time with compact PAHs present only in the neutral and cationic forms. Each PAH has a distinct spectral signature depending on its charge state. Moreover, the spectra of ionized PAHs are always clearly dominated by a single band in the DIB spectral range. In the case of compact PAH ions, the strongest absorption band is of type A (i.e., the band is broad, falls in the high energy range of the spectrum, and possess a large oscillator strength), and seems to correlate with strong and broad DIBs. In the case of non-compact PAH ions, the strongest absorption band is of type I (i.e., the band is narrow, falls in the low energy range of the spectrum, and possess a small oscillator strength), and seems to correlate with weak and narrow DIBs. Potential molecular size and structure constraints for interstellar PAHs are derived by comparing known DIB characteristics to the spectroscopic properties of PAHs. It is found that: (i) Only neutral PAHs larger than about 30 carbon atoms could, if present, contribute to the DIBs. (ii) For compact PAHs, only ions with less than about 250 carbon atoms could, if present, contribute to the DIBs. (iii) The observed distribution of the DIBs between strong/moderate and broad bands on the one hand and weak and narrow bands on the other hand can easily be interpreted in the context of the PAH proposal by a distribution between compact and non-compact PAH ions, respectively. A

  9. Towards DIB mapping in galaxies beyond 100 Mpc. A radial profile of the λ5780.5 diffuse interstellar band in AM 1353-272 B

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Weilbacher, P. M.; Wendt, M.; Selman, F.; Lallement, R.; Brinchmann, J.; Kamann, S.; Sandin, C.

    2015-04-01

    Context. Diffuse interstellar bands (DIBs) are non-stellar weak absorption features of unknown origin found in the spectra of stars viewed through one or several clouds of the interstellar medium (ISM). Research of DIBs outside the Milky Way is currently very limited. In particular, spatially resolved investigations of DIBs outside of the Local Group are, to our knowledge, inexistent. Aims: In this contribution, we explore the capability of the high-sensitivity integral field spectrograph, MUSE, as a tool for mapping diffuse interstellar bands at distances larger than 100 Mpc. Methods: We used MUSE commissioning data for AM 1353-272 B, the member with the highest extinction of the Dentist's Chair, an interacting system of two spiral galaxies. High signal-to-noise spectra were created by co-adding the signal of many spatial elements distributed in a geometry of concentric elliptical half-rings. Results: We derived decreasing radial profiles for the equivalent width of the λ5780.5 DIB both in the receding and approaching side of the companion galaxy up to distances of ~4.6 kpc from the centre of the galaxy. The interstellar extinction as derived from the Hα/Hβ line ratio displays a similar trend, with decreasing values towards the external parts. This translates into an intrinsic correlation between the strength of the DIB and the extinction within AM 1353-272 B, consistent with the currently existing global trend between these quantities when using measurements for Galactic and extragalactic sightlines. Conclusions: It seems feasible to map the DIB strength in the Local Universe, which has up to now only been performed for the Milky Way. This offers a new approach to studying the relationship between DIBs and other characteristics and species of the ISM in addition to using galaxies in the Local Group or sightlines towards very bright targets outside the Local Group. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program

  10. VizieR Online Data Catalog: Interstellar extinction curves (Jenniskens+ 1993)

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Greenberg, J. M.

    1993-09-01

    The data are a decomposition of the extinction curves published by Aiello S., Barsella B., Chlewicki G., Greenberg J.M., Patriarchi P., and Perinotto M. (1988A&AS...73..195A) in the parameter scheme of Fitzpatrick E.L. and Massa D. (1988ApJ...328..734F). Each extinction curve k(x) = (A(lambda)-A(V))/(A(B)-A(V)) is given by: k(x) = c1 + c2*x + c3* D(x,x0,y) + c4*F(x) Where x = 1/wavelength (in inverse micron), D is a Drude profile: D(x,x0,y) = x2/((x2-x02)2 + y2x2) and F is a polynomial of order 3: F(x) = 0.05392(x-5.9)2 + 0.0564(x-5.9)3 for 5.9* *.. | v * .. * * | *.. c2 1 | * 0 | * |^ * |Rv * |v|_ V B x0 5.9 8.0 x=1/wavelength (1/micron) Values of Rv, the ratio of total to selective extinction, can be found in Aiello et al. (1988A&AS...73..195A). (1 data file).

  11. EVIDENCE FOR DIACETYLENE CATION AS THE CARRIER OF A DIFFUSE INTERSTELLAR BAND

    SciTech Connect

    Krelowski, J.; Beletsky, Y.; LoCurto, G.; Galazutdinov, G. A.; Kolos, R.; Gronowski, M. E-mail: ybialets@eso.org E-mail: runizag@gmail.com

    2010-05-01

    High-quality spectra acquired at three different observatories point to the presence of a new diffuse interstellar band (DIB) at 5069 A. The spectral profile of this DIB matches published laboratory measurements of the diacetylene cation A {sup 2}{pi} {sub u} -X {sup 2}{pi} {sub g} (0-0) low-temperature gas-phase optical absorption. HC{sub 4}H{sup +} is approximately 60-80 times less abundant than CH along the analyzed lines of sight. Only an upper limit could presently be inferred from the search for an analogous band of the triacetylene cation HC{sub 6}H{sup +}, expected at 6001.1 A, which implies the HC{sub 6}H{sup +} to HC{sub 4}H{sup +} ratio of less than {approx}1/3.

  12. Space density of stars and interstellar extinction near H and chi Persei /Perseus I/

    NASA Astrophysics Data System (ADS)

    Becker, W.; Wooden, W. H., II

    1981-12-01

    Perseus I, a star field near h and χ Persei, measuring 0.155 square degrees and containing 1281 stars down to the limiting magnitude G = 18m.5 has been studied photometrically in the RGU-system. The two-colour-diagram of all stars with G < 18m is given in figure 2. The evaluation of the two-colour-diagrams for consecutive intervals in G leads to an interstellar reddening produced by two screens in distances of 0.6 kpc and 1.5 kpc from the sun, with a total reddening of E(G-R) = 0m.88 (Fig. 4). The density-functions have been determined for different intervals of absolute magnitude (Figs. 6, 7 and 8). There is a rather large number of late-type giants at the left side of the main-sequence. In addition to them, with G > 18m, further late-type giants are found at the right side of the main-sequence (Fig. 3e) which are possibly metal-poor. The luminosity-functions have been determined for two adjoining distance-intervals (Fig. 9).

  13. Imaging spectrograph for interstellar shocks (ISIS): a far-ultraviolet narrow-band imaging rocket payload

    NASA Astrophysics Data System (ADS)

    Beasley, Matthew N.; Wilkinson, Erik

    2001-12-01

    We present a new instrument for narrow band imaging without the use of conventional interference filters. This instrument will image the OVI doublet at 103.2 and 103.8 nm, the brightest astrophysical emission line from diffuse gas at 300,000 degrees. Gases at this temperature, formed mostly by supernovae blast waves, are key to understanding the energy budget of the galaxy. To date, there are no high spatial resolution narrow-band images of OVI, although some low spatial resolution narrow maps have been acquired with conventional spectrographs. Using the imaging power of a conventional two-optic Gregorian telescope in conjunction with aberration-corrected holography, we can acquire narrow band images with subarcsecond spatial resolution. An aberration-corrected holographically ruled grating in place of the secondary optic is used to diffract the ultraviolet light to stigmatic focus. Additionally, the use of few optical surfaces minimizes the light loss from poor reflectivity of materials in the far ultraviolet (FUV), thereby maximizing instrument sensitivity. This instrument is the first to use aberration-corrected holographic gratings to produce a narrow-band imaging capability in this fashion. We are now developing a rocket payload to demonstrate the power of this technique with particular application to non-radiative shocks in the interstellar medium. We present the optical design, instrument performance, and relevant scientific simulations.

  14. A Catalog of 1.5273 um Diffuse Interstellar Bands Based on APOGEE Hot Telluric Calibrators

    NASA Astrophysics Data System (ADS)

    Elyajouri, M.; Monreal-Ibero, A.; Remy, Q.; Lallement, R.

    2016-08-01

    High resolution stellar spectroscopic surveys provide massive amounts of diffuse interstellar bands (DIBs) measurements. Data can be used to study the distribution of the DIB carriers and those environmental conditions that favor their formation. In parallel, recent studies have also proved that DIBs extracted from stellar spectra constitute new tools for building the 3D structure of the Galactic interstellar medium (ISM). The amount of details on the structure depends directly on the quantity of available lines of sight. Therefore there is a need to construct databases of high-quality DIB measurements as large as possible. We aim at providing the community with a catalog of high-quality measurements of the 1.5273 μm DIB toward a large fraction of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) hot stars observed to correct for the telluric absorption and not used for ISM studies so far. This catalog would complement the extensive database recently extracted from the APOGEE observations and used for 3D ISM mapping. We devised a method to fit the stellar continuum of the hot calibration stars and extracted the DIB from the normalized spectrum. Severe selection criteria based on the absorption characteristics are applied to the results. In particular limiting constraints on the DIB widths and Doppler shifts are deduced from the H i 21 cm measurements, following a new technique of decomposition of the emission spectra. From ˜16,000 available hot telluric spectra we have extracted ˜6700 DIB measurements and their associated uncertainties. The statistical properties of the extracted absorptions are examined and our selection criteria are shown to provide a robust dataset. The resulting catalog contains the DIB total equivalent widths, central wavelengths and widths. We briefly illustrate its potential use for the stellar and interstellar communities.

  15. A Catalog of 1.5273 um Diffuse Interstellar Bands Based on APOGEE Hot Telluric Calibrators

    NASA Astrophysics Data System (ADS)

    Elyajouri, M.; Monreal-Ibero, A.; Remy, Q.; Lallement, R.

    2016-08-01

    High resolution stellar spectroscopic surveys provide massive amounts of diffuse interstellar bands (DIBs) measurements. Data can be used to study the distribution of the DIB carriers and those environmental conditions that favor their formation. In parallel, recent studies have also proved that DIBs extracted from stellar spectra constitute new tools for building the 3D structure of the Galactic interstellar medium (ISM). The amount of details on the structure depends directly on the quantity of available lines of sight. Therefore there is a need to construct databases of high-quality DIB measurements as large as possible. We aim at providing the community with a catalog of high-quality measurements of the 1.5273 μm DIB toward a large fraction of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) hot stars observed to correct for the telluric absorption and not used for ISM studies so far. This catalog would complement the extensive database recently extracted from the APOGEE observations and used for 3D ISM mapping. We devised a method to fit the stellar continuum of the hot calibration stars and extracted the DIB from the normalized spectrum. Severe selection criteria based on the absorption characteristics are applied to the results. In particular limiting constraints on the DIB widths and Doppler shifts are deduced from the H i 21 cm measurements, following a new technique of decomposition of the emission spectra. From ∼16,000 available hot telluric spectra we have extracted ∼6700 DIB measurements and their associated uncertainties. The statistical properties of the extracted absorptions are examined and our selection criteria are shown to provide a robust dataset. The resulting catalog contains the DIB total equivalent widths, central wavelengths and widths. We briefly illustrate its potential use for the stellar and interstellar communities.

  16. Mapping atomic and diffuse interstellar band absorption across the Magellanic Clouds and the Milky Way

    NASA Astrophysics Data System (ADS)

    Bailey, Mandy; van Loon, Jacco Th.; Sarre, Peter J.; Beckman, John E.

    2015-12-01

    Diffuse interstellar bands (DIBs) trace warm neutral and weakly ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic survey of two of the strongest DIBs, at 5780 and 5797 Å, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na I D and Ca II K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 Å DIB with neutral gas, and the 5780 Å DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na I D line traces the denser ISM whereas the Ca II K line traces the more diffuse, warmer gas. The Ca II K line has an additional component at ˜200-220 km s-1 seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic halo. Both the atomic lines and DIBs show sub-pc-scale structure in the Galactic foreground absorption; the 5780 and 5797 Å DIBs show very little correlation on these small scales, as do the Ca II K and Na I D lines. This suggests that good correlations between the 5780 and 5797 Å DIBs, or between Ca II K and Na I D, arise from the superposition of multiple interstellar structures. Similarity in behaviour between DIBs and Na I in the Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Milky Way suggests the abundance of DIB carriers scales in proportion to metallicity.

  17. An investigation of the 661.3 nm diffuse interstellar band in Cepheid spectra

    NASA Astrophysics Data System (ADS)

    Kashuba, S. V.; Andrievsky, S. M.; Chekhonadskikh, F. A.; Luck, R. E.; Kovtyukh, V. V.; Korotin, S. A.; Krełowski, J.; Galazutdinov, G. A.

    2016-09-01

    We have investigated the diffuse interstellar band (DIB) at 661.3 nm seen in the spectra of Cepheid stars. After removal of the blending lines of ionized yttrium and neutral iron, we determined the equivalent widths (EWs) of the DIB and used these values to investigate the E(B - V)-DIB EW relation. The relation found from Cepheids matches that found in B stars. This relation can help to find the reddening for newly discovered Cepheids without extensive photometric data, and thus determine their distances. The relation between E(B - V) and the DIB EW does not yield precise reddening values. It is not a substitute for better photometric or spectroscopic methods. At best, it is indicative, but it provides some information that may not be otherwise available. Defining R* = E(B - V)/DIB EW, which we consider to be the analogue of R = E(B - V)/Av, we investigated the Galactic longitudinal dependence of R* assuming that the DIB EW value is representative of the interstellar absorption Av. We found that there is an apparent increase of the R* value that corresponds to the abnormal absorption seen towards Cygnus constellation. Finally, we constructed a 2D map of the DIB EW distribution in the Galactic disc basing on our rather limited sample of 253 spectra of 176 Cepheids.

  18. An investigation of the 661.3 nm Diffuse Interstellar Band in Cepheid spectra

    NASA Astrophysics Data System (ADS)

    Kashuba, S. V.; Andrievsky, S. M.; Chekhonadskikh, F. A.; Luck, R. E.; Kovtyukh, V. V.; Korotin, S. A.; Krełowski, J.; Galazutdinov, G. A.

    2016-06-01

    We have investigated the diffuse interstellar band (DIB) at 661.3 nm seen in the spectra of Cepheid stars. After removal of the blending lines of ionized yttrium and neutral iron, we determined the equivalent widths (EW) of the DIB and used these values to investigate the E(B-V) - DIB EW relation. The relation found from Cepheids matches that found in B stars. This relation can help to find the reddening for newly discovered Cepheids without extensive photometric data, and thus determine their distances. The relation between E(B-V) and the DIB EW does not yield precise reddening values. It is not a substitute for better photometric or spectroscopic methods. At best, it is indicative, but it provides some information that may not be otherwise available. Defining R★=E(B-V)/DIB EW, which we consider to be the analogue of R=E(B-V)/Av, we investigated the Galactic longitudinal dependence of R★ assuming that the DIB EW value is representative of the interstellar absorption Av. We found that there is an apparent increase of the R★ value that corresponds to the abnormal absorption seen towards Cygnus constellation. Finally we constructed a 2-D map of the DIB EW distribution in the Galactic disc basing on our rather limited sample of 253 spectra of 176 Cepheids.

  19. Anomalously Broad Diffuse Interstellar Bands and Excited CH+ Absorption in the Spectrum of Herschel 36

    NASA Astrophysics Data System (ADS)

    York, D. G.; Dahlstrom, J.; Welty, D. E.; Oka, T.; Hobbs, L. M.; Johnson, S.; Friedman, S. D.; Jiang, Z.; Rachford, B. L.; Snow, T. P.; Sherman, R.; Sonnentrucker, P.

    2014-02-01

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 Å are found in absorption along the line of sight to Herschel 36, an O star system next to the bright Hourglass nebula of the Hii region Messier 8. Excited lines of CH and CH+ are seen as well. We show that the region is very compact and itemize other anomalies of the gas. An infrared-bright star within 400 AU is noted. The combination of these effects produces anomalous DIBs, interpreted by Oka et al. (2013, see also this volume) as being caused predominantly by infrared pumping of rotational levels of relatively small molecules.

  20. Excitation temperature of C2 and broadening of the 6196 Å diffuse interstellar band

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, M.; Gnaciński, P.; Schmidt, M. R.; Galazutdinov, G.; Bondar, A.; Krełowski, J.

    2009-05-01

    This paper presents a finding of the correlation between the width of a strong diffuse interstellar band at 6196 Å and the excitation temperature of C2 based on high resolution and high signal-to-noise ratio spectra. The excitation temperature was determined from absorption lines of the Phillips A1Π_u-X1Σ+g and Mulliken D1Σ+_u-X1Σ+g systems. The width and shape of the narrow 6196 Å DIB profile apparently depend on the C2 temperature, being broader for higher values. Based on data collected at the ESO (8 m telescope at Paranal, 3.6 m and 2.2 m telescopes at La Silla) and observations made with the 1.8 m telescope in South Korea and the Cassegrain Fiber Environment in Hawaii.

  1. First Infrared Band Strengths for Amorphous CO2, an Overlooked Component of Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-08-01

    Solid carbon dioxide (CO2) has long been recognized as a component of both interstellar and solar system ices, but a recent literature search has revealed significant qualitative and quantitative discrepancies in the laboratory spectra on which the abundances of extraterrestrial CO2 are based. Here we report new infrared (IR) spectra of amorphous CO2-ice along with band intensities (band strengths) of four mid-IR absorptions, the first such results in the literature. A possible thickness dependence for amorphous-CO2 IR band shapes and positions also is investigated, and the three discordant reports of amorphous CO2 spectra in the literature are addressed. Applications of our results are discussed with an emphasis on laboratory investigations and results from astronomical observations. A careful comparison with earlier work shows that the IR spectra calculated from several databases for CO2 ices, all ices being made near 10 K, are not for amorphous CO2, but rather for crystalline CO2 or crystalline-amorphous mixtures.

  2. The 2140 cm-1 (4.673 microns) Solid CO Band: The Case for Interstellar O2 and N2 and the Photochemistry of Nonpolar Interstellar Ice Analogs

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie; Allamandola, Louis J.; Sandford, Scott A.

    1997-04-01

    The infrared spectra of CO frozen in nonpolar ices containing N2, CO2, O2, and H2O and the UV photochemistry of these interstellar/precometary ice analogs are reported. The spectra are used to test the hypothesis that the narrow 2140 cm-1 (4.673 μm) interstellar absorption feature attributed to solid CO might be produced by CO frozen in ices containing nonpolar species such as N2 and O2. It is shown that mixed molecular ices containing CO, N2, O2, and CO2 provide a good match to the interstellar band at all temperatures between 12 and 30 K both before and after photolysis. The optical constants (real and imaginary parts of the index of refraction) in the region of the solid CO feature are reported for several of these ices. The N2 and O2 absorptions at 2328 cm-1 (4.296 μm) and 1549 cm-1 (6.456 μm), respectively, are also shown. The best matches between the narrow interstellar band and the feature in the laboratory spectra of nonpolar ices are for samples which contain comparable amounts of N2, O2, CO2, and CO. Co-adding the CO band from an N2:O2:CO2:CO=1:5:1/2:1 ice with that of an H2O:CO = 20:1 ice provides an excellent fit across the entire interstellar CO feature. The four-component, nonpolar ice accounts for the narrow 2140 cm-1 portion of the feature which is associated with quiescent regions of dense molecular clouds. Using this mixture, and applying the most recent cosmic abundance values, we derive that between 15% and 70% of the available interstellar N is in the form of frozen N2 along several lines of sight toward background stars. This is reduced to a range of 1%-30% for embedded objects with lines of sight more dominated by warmer grains. The cosmic abundance of O tied up in frozen O2 lies in the 10%-45% range toward background sources, and it is between 1% and 20% toward embedded objects. The amount of oxygen tied up in CO and CO2 frozen in nonpolar ices can be as much as 2%-10% toward background sources and on the order of 0.2%-5% for embedded

  3. The 2140 cm-1 (4.673 microns) solid CO band: the case for interstellar O2 and N2 and the photochemistry of nonpolar interstellar ice analogs

    NASA Technical Reports Server (NTRS)

    Elsila, J.; Allamandola, L. J.; Sandford, S. A.

    1997-01-01

    The infrared spectra of CO frozen in nonpolar ices containing N2, CO2, O2, and H2O and the UV photochemistry of these interstellar/precometary ice analogs are reported. The spectra are used to test the hypothesis that the narrow 2140 cm-1 (4.673 microns) interstellar absorption feature attributed to solid CO might be produced by CO frozen in ices containing nonpolar species such as N2 and O2. It is shown that mixed molecular ices containing CO, N2, O2, and CO2 provide a good match to the interstellar band at all temperatures between 12 and 30 K both before and after photolysis. The optical constants (real and imaginary parts of the index of refraction) in the region of the solid CO feature are reported for several of these ices. The N2 and O2 absorptions at 2328 cm-1 (4.296 microns) and 1549 cm-1 (6.456 microns), respectively, are also shown. The best matches between the narrow interstellar band and the feature in the laboratory spectra of nonpolar ices are for samples which contain comparable amounts of N2, O2, CO2, and CO. Co-adding the CO band from an N2:O2:CO2:CO = 1:5:1/2:1 ice with that of an H2O:CO = 20:1 ice provides an excellent fit across the entire interstellar CO feature. The four-component, nonpolar ice accounts for the narrow 2140 cm-1 portion of the feature which is associated with quiescent regions of dense molecular clouds. Using this mixture, and applying the most recent cosmic abundance values, we derive that between 15% and 70% of the available interstellar N is in the form of frozen N2 along several lines of sight toward background stars. This is reduced to a range of 1%-30% for embedded objects with lines of sight more dominated by warmer grains. The cosmic abundance of O tied up in frozen O2 lies in the 10%-45% range toward background sources, and it is between 1% and 20% toward embedded objects. The amount of oxygen tied up in CO and CO2 frozen in nonpolar ices can be as much as 2%-10% toward background sources and on the order of 0

  4. The 2140 cm-1 (4.673 microns) solid CO band: the case for interstellar O2 and N2 and the photochemistry of nonpolar interstellar ice analogs.

    PubMed

    Elsila, J; Allamandola, L J; Sandford, S A

    1997-04-20

    The infrared spectra of CO frozen in nonpolar ices containing N2, CO2, O2, and H2O and the UV photochemistry of these interstellar/precometary ice analogs are reported. The spectra are used to test the hypothesis that the narrow 2140 cm-1 (4.673 microns) interstellar absorption feature attributed to solid CO might be produced by CO frozen in ices containing nonpolar species such as N2 and O2. It is shown that mixed molecular ices containing CO, N2, O2, and CO2 provide a good match to the interstellar band at all temperatures between 12 and 30 K both before and after photolysis. The optical constants (real and imaginary parts of the index of refraction) in the region of the solid CO feature are reported for several of these ices. The N2 and O2 absorptions at 2328 cm-1 (4.296 microns) and 1549 cm-1 (6.456 microns), respectively, are also shown. The best matches between the narrow interstellar band and the feature in the laboratory spectra of nonpolar ices are for samples which contain comparable amounts of N2, O2, CO2, and CO. Co-adding the CO band from an N2:O2:CO2:CO = 1:5:1/2:1 ice with that of an H2O:CO = 20:1 ice provides an excellent fit across the entire interstellar CO feature. The four-component, nonpolar ice accounts for the narrow 2140 cm-1 portion of the feature which is associated with quiescent regions of dense molecular clouds. Using this mixture, and applying the most recent cosmic abundance values, we derive that between 15% and 70% of the available interstellar N is in the form of frozen N2 along several lines of sight toward background stars. This is reduced to a range of 1%-30% for embedded objects with lines of sight more dominated by warmer grains. The cosmic abundance of O tied up in frozen O2 lies in the 10%-45% range toward background sources, and it is between 1% and 20% toward embedded objects. The amount of oxygen tied up in CO and CO2 frozen in nonpolar ices can be as much as 2%-10% toward background sources and on the order of 0

  5. Probing the Local Bubble with diffuse interstellar bands. I. Project overview and southern hemisphere survey

    NASA Astrophysics Data System (ADS)

    Bailey, Mandy; van Loon, Jacco Th.; Farhang, Amin; Javadi, Atefeh; Khosroshahi, Habib G.; Sarre, Peter J.; Smith, Keith T.

    2016-01-01

    Context. The Sun traverses a low-density, hot entity called the Local Bubble. Despite its relevance to life on Earth, the conditions in the Local Bubble and its exact configuration are not very well known. Besides that, there is some unknown interstellar substance that causes a host of absorption bands across the optical spectrum, called diffuse interstellar bands (DIBs). Aims: We have started a project to chart the Local Bubble in a novel way and learn more about the carriers of the DIBs, by using DIBs as tracers of diffuse gas and environmental conditions. Methods: We conducted a high signal-to-noise spectroscopic survey of 670 nearby early-type stars to map DIB absorption in and around the Local Bubble. The project started with a southern hemisphere survey conducted at the European Southern Observatory's New Technology Telescope and has since been extended to an all-sky survey using the Isaac Newton Telescope. Results: In this first paper in the series, we introduce the overall project and present the results from the southern hemisphere survey. We make available a catalogue of equivalent-width measurements of the DIBs at 5780, 5797, 5850, 6196, 6203, 6270, 6283, and 6614 Å, of the interstellar Na i D lines at 5890 and 5896 Å, and of the stellar He i line at 5876 Å. We find that the 5780 Å DIB is relatively strong throughout, as compared to the 5797 Å DIB, but especially within the Local Bubble and at the interface with a more neutral medium. The 6203 Å DIB shows similar behaviour with respect to the 6196 Å DIB. Some nearby stars show surprisingly strong DIBs, whereas some distant stars show very weak DIBs, indicating small-scale structure within, as well as outside, the Local Bubble. The sight lines with non-detections trace the extent of the Local Bubble especially clearly and show it opening out into the halo. Conclusions: The Local Bubble has a wall that is in contact with hot gas and/or a harsh interstellar radiation field. That wall is perforated

  6. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. II. ANALYSIS OF RADIATIVELY EXCITED CH{sup +}, CH, AND DIFFUSE INTERSTELLAR BANDS

    SciTech Connect

    Oka, Takeshi; Welty, Daniel E.; Johnson, Sean; York, Donald G.; Hobbs, L. M.; Dahlstrom, Julie

    2013-08-10

    Absorption spectra toward Herschel 36 (Her 36) for the A-bar{sup 1}{Pi} Leftwards-Open-Headed-Arrow X-tilde{sup 1}{Sigma} transitions of CH{sup +} in the J = 1 excited rotational level and for the A-bar{sup 2}{Delta} Leftwards-Open-Headed-Arrow X-tilde{sup 2}{Pi} transitions of CH in the J = 3/2 excited fine structure level have been analyzed. These excited levels are above their ground levels by 40.1 K and {approx}25.7 K and indicate high radiative temperatures of the environment of 14.6 K and 6.7 K, respectively. The effect of the high radiative temperature is more spectacular in some diffuse interstellar bands (DIBs) observed toward Her 36; remarkable extended tails toward red (ETRs) were observed. We interpret these ETRs as being due to a small decrease of the rotational constants upon excitation of the excited electronic states. Along with radiative pumping of a great many high-J rotational levels, this causes the ETRs. In order to study this effect quantitatively, we have developed a model calculation in which the effects of collisions and radiation are treated simultaneously. The simplest case of linear molecules is considered. It has been found that the ETR is reproduced if the fraction of the variation of the rotational constant, {beta} {identical_to} (B' - B)/B, is sufficiently high (3%-5%) and the radiative temperature is high (T{sub r} > 50 K). Although modeling for general molecules is beyond the scope of this paper, the results indicate that the prototypical DIBs {lambda}5780.5, {lambda}5797.1, and {lambda}6613.6 which show the pronounced ETRs are due to polar molecules that are sensitive to the radiative excitation. The requirement of high {beta} favors relatively small molecules with three to six heavy atoms. DIBs {lambda}5849.8, {lambda}6196.0, and {lambda}6379.3 that do not show the pronounced ETRs are likely due to non-polar molecules or large polar molecules with small {beta}.

  7. Exploring the diffuse interstellar bands with the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Wen; Ménard, Brice; Zhu, Guangtun

    2015-10-01

    We use star, galaxy and quasar spectra taken by the Sloan Digital Sky Survey to map out the distribution of diffuse interstellar bands (DIBs) induced by the Milky Way. After carefully removing the intrinsic spectral energy distribution of each source, we show that by stacking thousands of spectra, it is possible to measure statistical flux fluctuations at the 10-3 level, detect more than 20 DIBs and measure their strength as a function of position on the sky. We create a map of DIB absorption covering about 5000 deg2 and measure correlations with various tracers of the interstellar medium: atomic and molecular hydrogen, dust and polycyclic aromatic hydrocarbons (PAHs). After recovering known correlations, we show that each DIB has a different dependence on atomic and molecular hydrogen: while they are all positively correlated with N_{H I}, they exhibit a range of behaviours with N_{H_2} showing positive, negative or no correlation. We show that a simple parametrization involving only N_{H I} and N_{H_2} applied to all the DIBs is sufficient to reproduce a large collection of observational results reported in the literature: it allows us to naturally describe the relations between DIB strength and dust reddening (including the so-called skin effect), the related scatter, DIB pair-wise correlations and families, the affinity for σ/ζ-type environments and other correlations related to molecules. Our approach allows us to characterize DIB dependencies in a simple manner and provides us with a metric to characterize the similarity between different DIBs.

  8. Investigation of a laboratory candidate for the carrier of the 4430 A diffuse interstellar band

    NASA Technical Reports Server (NTRS)

    Wdowiak, Thomas J.; Beegle, Luther W.; Lee, Wei; Robinson, Michael S.

    1994-01-01

    The 4430 A diffuse interstellar band (DIB) is unique among DIB's in that as one of the strong bands, it is the bluest strong band with no others observed at shorter wavelengths. This position at the edge of the DIF 'forrest' suggests it may be the easiest to replicate in the laboratory. In earlier experiments (Wdowiak 1980) an interesting candidate using a gas discharge followed by cryogenic matrix isolation was produced, and this report details its further investigation. This absorption feature, produced when 1 part CH4 in 200 parts Ar is discharged and frozen out approximately 10 K, is at a wavelength of 4500 A in the argon matrix. Our recent experiments strongly indicate it is due to a carbon-based reactive species that is stable against mercury vapor UV radiation, and not likely to be from a contaminant. The effect of matrix shift can be estimated by considering the blueward shift between Ar and Ne matrices in the cases of the pyrene and C60 cations. This suggests that a shift from 4500 A for an Af matrix to the vicinity of 4300 A for a Ne matrix and the gas phase is not unreasonable. A liquid He cooled Ne matrix isolation experiment was prepared to determine the wavelength of the feature in that matrix. Replacing CH4 with C2H2 results in an equivalent absorption due to C3, greatly diminished absorptions from C2 and Ch, and no observable feature at 4500 A. To date our experiments indicate CH4 is a favored precursor for production of the reactive carrier of the 4500 A feature. Perhaps C2H2 is not suitable because of its tendency to polymerize easily in the discharge.

  9. CH^+ Spectrum and Diffuse Interstellar Bands Toward Herschel 36 Excited by Dust Emission

    NASA Astrophysics Data System (ADS)

    Dahlstrom, Julie; Oka, Takeshi; Johnson, Sean; Welty, Daniel E.; Hobbs, Lew M.; York, Donald G.

    2012-06-01

    All electronic CH^+ interstellar absorption lines so far observed had been limited to the R(0) transition starting from the J = 0 ground level; this is because of the very rapid J = 1 → 0 spontaneous emission with the life time of ˜ 140 s. We have observed the R(1) and Q(1) lines of the A^1π ← X^1Σ band from the excited J = 1 level 40.08 K (27.86 cm-1) above the J = 0 level toward Herschel 36 indicating high radiative temperature of T_r = 17.5 K. The high temperature is most likely due to far infrared dust emission from the Her 36 SE. We have also observed the R_1(3/2) line of CH starting from the excited fine structure level J = 3/2 which is 25.76 - 25.57 K above the J = 1/2 level. The effect of high radiative temperature is also noticed as unique lineshapes of diffuse interstellar bands (DIBs) observed toward Her 36. We have examined seven DIBs including λ 5780.5, λ 5797.1, λ 6190.0, and λ 6613.0 that are correlated with each other with correlation coefficients > 0.93. While for ordinary sightlines the lineshapes of these DIBs are more or less symmetric, those toward Her 36 show a long tail toward the red. This is due to far infrared pumping of high J rotational levels of polar carriers of the DIBs by the dust emission. We have developed a model calculation of relaxation taking into account of both radiative and collisional processes. A linear molecule with about 6 carbon atoms can explain some of the DIBs. For the DIBs we have examined, probably the carriers are of this size since we cannot explain the large difference between the DIBs toward ordinary sightlines and toward Her 36 with larger molecules. Goto, M., Stecklum, B., Linz, H., Feldt, M., Henning, Th., Pascucci, I., and Usuda, T. 2006, ApJ, {649} 299.

  10. A Search For Time-Varying Diffuse Interstellar Bands in Moderate Resolution Supernova Spectra

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle; Foster, Jonathan; Fesen, Robert; Parrent, Jerod; Drout, Maria; Kamble, Atish; Cenko, Brad; Silverman, Jeffrey; Filippenko, Alex; Mazzali, Paolo; Maeda, Keiichi; Marion, Howie; Soderberg, Alicia

    2014-08-01

    One of the longest standing problems in optical and infrared astronomy is the unknown nature of the diffuse interstellar bands (DIBs). The DIBs represent some 500 narrow absorption lines with central wavelengths that do not correspond with the spectral lines of any known ion or molecule and yet -- embarrassingly -- may be associated with a large reservoir of organic material in our Galaxy. Our group recently discovered unusually strong DIB absorption features in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibited changes in equivalent width over short (30 days) timescales. These never-before-seen changes implied that the supernova was interacting with a nearby source of the DIBs and that the source was potentially associated with mass loss of the progenitor star. Moreover, additional examples of weak time-varying DIB features observed in archival low resolution spectra suggest that a wide variety of supernovae may also exhibit these changes but at levels that are more difficult to detect. We propose a ToO Gemini N+S GMOS program that will obtain moderate resolution spectra with high signal to noise ratios of nearby Type Ibc supernovae to robustly measure the ubiquity of this DIB time-variability phenomenon. These observations will reveal unique information about the mass-loss environment of Type Ibc progenitor systems and provide new constraints on the properties of DIB carriers.

  11. Probing the Local Bubble with Diffuse Interstellar Bands. II. The DIB Properties in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Farhang, Amin; Khosroshahi, Habib G.; Javadi, Atefeh; van Loon, Jacco Th.; Bailey, Mandy; Molaeinezhad, Alireza; Tavasoli, Saeed; Habibi, Farhang; Kourkchi, Ehsan; Rezaei, Sara; Saberi, Maryam; Hardy, Liam

    2015-02-01

    We present a new high signal-to-noise ratio spectroscopic survey of the Northern hemisphere to probe the Local Bubble and its surroundings using the λ5780 Å and λ5797 Å diffuse interstellar bands (DIBs). We observed 432 sightlines to a distance of 200 pc over a duration of three years. In this study, we establish the λ5780 and λ5797 correlations with Na I, Ca II and E B-V, for both inside and outside the Local Bubble. The correlations show that among all neutral and ionized atoms, the correlation between Ca II and λ5780 is stronger than its correlation with λ5797, suggesting that λ5780 is more associated with regions where Ca+ is more abundant. We study the λ5780 correlation with λ5797, which shows a tight correlation within and outside the Local Bubble. In addition, we investigate the DIB properties in UV irradiated and UV shielded regions. We find that, within and beyond the Local Bubble, λ5797 is located in denser parts of clouds, protected from UV irradiation, while λ5780 is located in the low-density regions of clouds.

  12. PROBING THE LOCAL BUBBLE WITH DIFFUSE INTERSTELLAR BANDS. II. THE DIB PROPERTIES IN THE NORTHERN HEMISPHERE

    SciTech Connect

    Farhang, Amin; Khosroshahi, Habib G.; Javadi, Atefeh; Molaeinezhad, Alireza; Tavasoli, Saeed; Habibi, Farhang; Kourkchi, Ehsan; Rezaei, Sara; Saberi, Maryam; Van Loon, Jacco Th.; Bailey, Mandy; Hardy, Liam

    2015-02-10

    We present a new high signal-to-noise ratio spectroscopic survey of the Northern hemisphere to probe the Local Bubble and its surroundings using the λ5780 Å and λ5797 Å diffuse interstellar bands (DIBs). We observed 432 sightlines to a distance of 200 pc over a duration of three years. In this study, we establish the λ5780 and λ5797 correlations with Na I, Ca II and E {sub B-V}, for both inside and outside the Local Bubble. The correlations show that among all neutral and ionized atoms, the correlation between Ca II and λ5780 is stronger than its correlation with λ5797, suggesting that λ5780 is more associated with regions where Ca{sup +} is more abundant. We study the λ5780 correlation with λ5797, which shows a tight correlation within and outside the Local Bubble. In addition, we investigate the DIB properties in UV irradiated and UV shielded regions. We find that, within and beyond the Local Bubble, λ5797 is located in denser parts of clouds, protected from UV irradiation, while λ5780 is located in the low-density regions of clouds.

  13. PAHs and the Diffuse Interstellar Bands. What have we Learned from the New Generation of Laboratory and Observational Studies?

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones, An extensive laboratory program has been developed at NASA Ames to characterize the physical and chemical properties of PAHs in astrophysical environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the gas phase in the near-W and visible range in astrophysically relevant environments. These measurements provide data on PAHs and nanometer-sized particles that can now be directly compared to astronomical observations. The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong V W radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral

  14. Time Dependent Density Functional Theory Calculations of Large Compact PAH Cations: Implications for the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.

  15. VLT UVES Observations of Interstellar Molecules and Diffuse Bands in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Welty, D. E.; Federman, S. R.; Gredel, R.; Thorburn, J. A.; Lambert, D. L.

    2006-07-01

    2 is quite consistent with the temperature of the cosmic microwave background radiation measured with COBE. Toward most of our targets, the UVES spectra also reveal absorption at velocities corresponding to the Magellanic Clouds ISM from several of the strongest of the diffuse interstellar bands (DIBs; at 5780, 5797, and 6284 Å). On average, the three DIBs are weaker by factors of 7-9 (LMC) and about 20 (SMC), compared to those typically observed in Galactic sight lines with similar N(H I), presumably due to the lower metallicities and stronger radiation fields in the LMC and SMC. The three DIBs are also weaker (on average, but with some exceptions), by factors of order 2-6, relative to E(B-V), N(Na I), and N(K I) in the Magellanic Clouds. The detection of several of the so-called C2 DIBs toward Sk 143 and Sk -67 2 with strengths similar to those in comparable Galactic sight lines, however, indicates that no single, uniform scaling factor (e.g., one related to metallicity) applies to all DIBs (or for all sight lines) in the Magellanic Clouds. Based on observations collected at the European Southern Observatory, Chile, under programs 67.C-0281, 70.D-0164, 72.C-0064, 72.C-0682, and 74.D-0109.

  16. A Critical Examination of the l-C3H-2 Spectrum and the Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    McCall, B. J.; Oka, T.; Thorburn, J.; Hobbs, L. M.; York, D. G.

    2002-03-01

    It has recently been suggested by J. P. Maier's group that the origin band and three vibronic bands of the linear propadienylidene anion l-C3H-2 match the diffuse interstellar bands (DIBs). We have examined the wavelength ranges in question using data from our ongoing DIB survey at the Apache Point Observatory. We find that the strongest DIB (λ6993) is not an acceptable wavelength match to the origin band of l-C3H-2, based on high-resolution laboratory data. The nondetection of interstellar features corresponding to the K=2<--1 and K=0<--1 branches of para l-C3H-2 also argues against the assignment of λ6993 to the K=1<--0 branch of ortho l-C3H-2. Two of the three DIBs that have been attributed to vibronic bands do not correlate in intensity with λ6993, providing further evidence against the assignment of this set of DIBs to l-C3H-2.

  17. On a common carrier hypothesis for the 6613.6 and 6196.0 Å diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Glinski, R. J.; Eller, M. W.

    2016-09-01

    We explore via spectroscopic modeling whether the highly correlated diffuse interstellar bands at 6613.6 and 6196.0 Å might originate from a single molecule. Efforts were made to simulate the band contours of the DIBs along the three lines-of-sight, which have been observed by others at high resolution: HD179406, HD174165, and Her 36. Reasonable simultaneous fits were obtained using a prolate symmetric top molecule that exhibits transitions of two different band types, type-a parallel and type-b perpendicular bands. Two different excited states of a long- or heavy-chain, forked molecule are proposed. A minimum number of adjustable parameters were used including ground and excited state A and B rotational constants, an excited state centrifugal distortion constant, and three different rotational excitation temperatures. Points in favor and against the hypothesis are discussed.

  18. A SURVEY OF DIFFUSE INTERSTELLAR BANDS IN THE ANDROMEDA GALAXY: OPTICAL SPECTROSCOPY OF M31 OB STARS

    SciTech Connect

    Cordiner, Martin A.; Cox, Nick L. J.; Evans, Christopher J.; Trundle, Carrie; Smith, Keith T.; Sarre, Peter J.; Gordon, Karl D.

    2011-01-01

    We present the largest sample to date of intermediate-resolution blue-to-red optical spectra of B-type supergiants in M31 and undertake the first survey of diffuse interstellar bands (DIBs) in this galaxy. Spectral classifications, radial velocities, and interstellar reddenings are presented for 34 stars in three regions of M31. Based on a subset of these stars with foreground-corrected reddening E{sup M31}{sub B-V}{>=} 0.05, the strengths of the M31 DIBs are analyzed with respect to the amount of dust, ultraviolet radiation field strength, and polycyclic aromatic hydrocarbon emission flux. Radial velocities and equivalent widths are given for the {lambda}5780 and {lambda}6283 DIBs toward 11 stars. Equivalent widths are also presented for the following DIBs detected in three sightlines in M31: {lambda}{lambda}4428, 5705, 5780, 5797, 6203, 6269, 6283, 6379, 6613, 6660, and 6993. All of these M31 DIB carriers reside in clouds at radial velocities matching those of interstellar Na I and/or H I. The relationships between DIB equivalent widths and reddening (E{sup M31}{sub B-V}) are consistent with those observed in the local interstellar medium (ISM) of the Milky Way (MW). Many of the observed sightlines show DIB strengths (per unit reddening) which lie at the upper end of the range of Galactic values. DIB strengths per unit reddening are found (with 68% confidence) to correlate with the interstellar UV radiation field strength. The strongest DIBs are observed where the interstellar UV flux is lowest. The mean Spitzer 8/24 {mu}m emission ratio in our three fields is slightly lower than that measured in the MW, but we identify no correlation between this ratio and the DIB strengths in M31. Interstellar oxygen abundances derived from the spectra of three M31 H II regions in one of the fields indicate that the average metallicity of the ISM in that region is 12 + log [O/H] = 8.54 {+-} 0.18, which is approximately equal to the value in the solar neighborhood.

  19. Laboratory determination of the infrared band strengths of pyrene frozen in water ice: Implications for the composition of interstellar ices

    SciTech Connect

    Hardegree-Ullman, E. E.; Gudipati, M. S.; Werner, M.; Boogert, A. C. A.; Lignell, H.; Allamandola, L. J.; Stapelfeldt, K. R. E-mail: gudipati@jpl.nasa.gov

    2014-04-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 μm) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H{sub 2}O and D{sub 2}O ices. The D{sub 2}O mixtures are used to measure pyrene bands that are masked by the strong bands of H{sub 2}O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 μm. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ∼50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 μm spectral region, taking into account the strength of the 3.25 μm CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget and account for 2%-9% of the unidentified absorption in the 5-8 μm region.

  20. Laboratory Determination of the Infrared Band Strengths of Pyrene Frozen in Water Ice: Implications for the Composition of Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Hardegree-Ullman, E.E.; Gudipati, M.S.; Boogert, A.C.A.; Lignell, H.; Allamandola, L.J.; Stapelfeldt, K. R.; Werner, M.

    2014-01-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometers) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10 to 20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H2O and deuterium oxide ices. The deuterium oxide mixtures are used to measure pyrene bands that are masked by the strong bands of H2O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 micrometers. Our infrared band strengths were normalized to experimentally determined ultraviolet (UV) band strengths, and we find that they are generally approximately 50% larger than those reported by Bouwman et al. (2011) based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. (2008) to estimate the contribution of frozen PAHs to absorption in the 5 to 8 micrometer spectral region, taking into account the strength of the 3.25 micrometer CH stretching mode. It is found that frozen neutral PAHs contain 5 to 9% of the cosmic carbon budget, and account for 2 to 9% of the unidentified absorption in the 5 to 8 micrometer region.

  1. Observations and Analysis of Extended Tail Toward Red in the Diffuse Interstellar Bands of Herschel 36

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Welty, Daniel E.; Johnson, Sean; York, Donald G.; Hobbs, Lew M.; Dahlstrom, Julie

    2013-06-01

    In the studies of the Diffuse Interstellar Bands (DIBs), the sightline toward Herschel 36 near the center of the HII region Messier 8 is unique. It shows spectra of CH^+ and CH in the first excited level indicating the presence of a cloud with high radiative temperature. The heating is most likely due to far infrared emission from the adjacent intense infrared source Her 36 SE at a distance of 0.25" from Her 36. The effect of the high radiative temperature on some DIBs is spectacular. It produces on a normally symmetric bell-shape line a very prominent Extended Tail toward Red (ETR) on prototypical DIBs λ 5780.5, λ 5797.1, and λ 6613 while other DIBs λ 5849.8, λ 6196.0, and λ 6379.3 are little affected. We interpret this as indicating that the carriers of the former 3 DIBs that are seriously affected by the radiation are polar molecules and the pronounced ETRs are the result of the decrease of rotational constant B (3 - 5 %) upon electronic excitation. High J rotational levels are pumped radiatively and with the negative (B' - B) produces the ETR. We have developed a model calculation of rotational distribution taking into account of both radiative and collisional processes. In view of the complexity of the problem linear molecules are considered. 7 parameters enter into the calculation but we find the fractional variation of B and the radiative temperature T_r are the most decisive. Although molecules with a general shape is beyond the scope of this work, we conclude that the 3 DIBs which show the pronounced ETRs are due to polar molecules and the requirement of high variation of B indicates that the molecules are not that large perhaps composed of 3-6 heavy atoms. The 3 DIBs that do not show the pronounced ETRs are likely due to non-polar molecules or large polar molecules with small fractional variation of B. Goto, M., Stecklum, B., Linz, H., Feldt, M., Henning, Th., Pascucci, I., and Usuda, T. 2006, ApJ, 649 299. Oka, T., Welty, D. E., Johnson, S., York

  2. VLT/X-Shooter survey of near-infrared diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.; Cami, J.; Kaper, L.; Ehrenfreund, P.; Foing, B. H.; Ochsendorf, B. B.; van Hooff, S. H. M.; Salama, F.

    2014-09-01

    Context. The unknown identity of the diffuse interstellar band (DIB) carriers poses one of the longest standing unresolved problems in astrophysics. While the presence, properties, and behaviour of hundreds of optical DIBs between 4000 Å and 9000 Å have been well established, information on DIBs in both the ultra-violet and near-infrared (NIR) ranges is limited. Aims: In this paper, we present a spectral survey of the NIR range, from 0.9 μm to 2.5 μm. Our observations were designed to detect new DIBs, confirm previously proposed NIR DIBs, and characterise their behaviour with respect to known line-of-sight properties (including the optical DIBs present in our spectra). Methods: Using the X-Shooter instrument mounted on the ESO Very Large Telescope (VLT) we obtained medium-resolution spectra of eight known DIB targets and one telluric reference star, from 3000 Å to 25 000 Å in one shot. Results: In addition to the known 9577, 9632, 10 780, 11 797, and 13 175 Å NIR DIBs, we confirm 9 out of the 13 NIR DIBs that were presented by Geballe et al. (2011, Nature, 479, 200). Furthermore, we report 11 new NIR DIB candidates. The strengths of the strongest NIR DIBs show a general correlation with reddening, E(B - V), but with a large scatter. Several NIR DIBs are more strongly correlated with the 5780 Å DIB strength than with E(B - V); this is especially the case for the 15 268 Å DIB. The NIR DIBs are strong: the summed equivalent widths of the five strongest NIR DIBs represent a small percent of the total equivalent width of the entire average DIB spectrum (per unit reddening). The NIR DIBs towards the translucent cloud HD 147889 are all weak with respect to the general trend. No direct match was found between observed NIR DIBs and laboratory matrix-isolation spectroscopic data of polycyclic aromatic hydrocarbons (PAHs). Conclusions: The strong correlation between the 5780-15 268 DIB pair implies that (Nf)5780/(Nf)15 268 = 14. However, the reduced strength of the

  3. Three sets of fine extinction bands in a tectonically deformed vein-quartz single crystal

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Van der Donck, Tom; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2014-05-01

    Intracrystalline fine extinction bands (FEBs) in quartz, are narrow (less than 5µm thick), planar microstructures with a misorientation up to 5° with respect to the host crystal, occurring in closely spaced sets (spacing of 4-5μm). FEBs have been commonly attributed to a large range of brittle and/or crystal-plastic mechanisms, revealing considerable disagreement on the responsible crystal-plastic slip systems and the ambient conditions. Another question that arises, is whether or not the FEBs rotate from a basal plane orientation to orientations ranging between the basal and prism planes. Usually only one set of FEBs occurs in a single crystal, though two sets are observed, in particular with increasing strain. Tentatively, a maximum of two sets of sub-basal FEBs has been postulated to develop in a single quartz crystal in a tectonic context. However, we identified several crystals in naturally deformed vein-quartz containing three sets of FEBs. The vein-quartz has been deformed under sub-greenschist metamorphic conditions, during the late Palaeozoic Variscan orogeny, in the High-Ardenne slate belt (Belgium). The vein-quartz has been subjected to bulging dynamic recrystallisation and shows a high degree of undulatory extinction, abundant subgrains and wide extinction bands sub-parallel to the c-axis. We attempted to characterise these three sets of FEBs by means of light microscopy, EBSD-OIM and universal stage microscopy. In both cases studied the c-axis is inclined less than 8° with respect to the thin-section plane. The different sets of FEBs show a consistent orientation with respect to the c-axis. One set of FEBs deviates maximum 10° from the basal plane. The other two sets deviate between 15 and 35° from a basal plane orientation. Corresponding FEBs, at the same angle with respect to the c-axis, have similar morphologies. In relative EBSD orientation maps FEBs show a maximum misorientation of 3°, and have a lower pattern quality than the host crystal

  4. STUDIES OF THE DIFFUSE INTERSTELLAR BANDS. IV. THE NEARLY PERFECT CORRELATION BETWEEN lambdalambda6196.0 AND 6613.6

    SciTech Connect

    McCall, Benjamin J.; Drosback, Meredith M.; Snow, Theodore P.; Thorburn, Julie A.; York, Donald G.; Hobbs, L. M.; Friedman, Scott D.; Rachford, Brian L.; Sonnentrucker, Paule; Welty, Daniel E.

    2010-01-10

    In a sample of 114 diffuse cloud sightlines spanning a wide range of interstellar environments, we find the equivalent widths of the diffuse interstellar bands (DIBs) lambda6196.0 and lambda6613.6 to be extremely well correlated, with a correlation coefficient of 0.986. A maximum likelihood functional relationship analysis shows that the observations are consistent with a perfect correlation if the observational errors, which are dominated by continuum placement and other systematics such as interfering lines, have been underestimated by a factor of 2. The quality of this correlation far exceeds other previously studied correlations, such as that between the lambda5780.5 DIB and either the color excess or the atomic hydrogen column density. The unusually tight correlation between these two DIBs would seem to suggest that they might represent the first pair of DIBs known to be due to the same molecular carrier. However, further theoretical work will be required to determine whether the different linewidths and band shapes of these two DIBs can be consistent with a common carrier. If the two DIBs do not in fact share the same molecular carrier, their two carriers must be chemically very closely related.

  5. Interaction Between the Broad-Lined Type Ic Supernova 2012ap and Carriers of Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle N.; Foster, Jonathan B.; Soderberg, Alicia M.; Fesen, Robert A.; Parrent, Jerod T.; Sanders, Nathan E.; Drout, Maria R.; Kamble, Atish; Cenko, S. Bradley

    2014-01-01

    The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad- lined Type Ic supernova SN2012ap that exhibit changes in equivalent width over short (. 30 days) timescales. The 4428 A and 6283 A DIB features get weaker with time, whereas the 5780 A feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.

  6. INTERACTION BETWEEN THE BROAD-LINED TYPE Ic SUPERNOVA 2012ap AND CARRIERS OF DIFFUSE INTERSTELLAR BANDS

    SciTech Connect

    Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle N.; Soderberg, Alicia M.; Sanders, Nathan E.; Drout, Maria R.; Kamble, Atish; Chakraborti, Sayan; Kirshner, Robert P.; Foster, Jonathan B.; Fesen, Robert A.; Parrent, Jerod T.; Pickering, Timothy E.; Cenko, S. Bradley; Silverman, Jeffrey M.; Marion, G. H. Howie; Vinko, Jozsef; Filippenko, Alexei V.; Mazzali, Paolo; Maeda, Keiichi; and others

    2014-02-10

    Diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond to electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (≲ 30 days) timescales. The 4428 Å and 6283 Å DIB features get weaker with time, whereas the 5780 Å feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.

  7. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  8. Ammonium and formate ions in interstellar ice analogues. Ice morphology and the elusive 6.85 μm band.

    NASA Astrophysics Data System (ADS)

    Herrero, V. J.; Mate, B.; Galvez, O.; Fernandez-Torre, D.; Moreno, M. A.; Escribano, R.

    2011-05-01

    Tentative identifications of ions in interstellar ices, based on mid IR spectra, have been reported in the literature for about two decades, but these identifications remain often vague or controversia. NH4+ and HCOO- are among the purportedly identified ions. In particular the ν4 deformation mode of NH4+ has been put forward as a firm candidate for the ubiquitous 6.85 μm band. For the generation of the ions in laboratory ice mixtures the samples are often processed with high energy photons or charged particles. On other occasions acid-base reactions of suitable precursors, which can be very efficient even at very low temperatures, are employed. These procedures, can shed light on astrophysical generation pathways, but can also lead to uncertainties in the assignment of newly formed spectral bands to a given species. In this work we have used a different approach. To minimize ambiguity we produce directly (compact) ice samples containing the ions of interest through the sudden freeze of aqueous solution droplets of NH4Cl, NaCOOH, and NH4COOH on a cold (14 K) Si substrate, where their spectra are recorded. In complementary experiments, NH4+ and HCOO- ions are produced through acid-base reactions in (porous) ices formed by co-deposition of H2O, NH3 and HCOOH. The comparison of the ice spectra with those of liquid solutions, solid salts, and DFT calculations indicate that the ν4 band of ammonium ions embedded in compact ice becomes very broad and disappears virtually. The broadening effect is also present, though not so marked, for HCCO-. In the porous ices there seems to be a segregation of NH4+HCOO- ionic networks from the ice that gives rise to more pronounced spectral features. We conclude that NH4+ is not a likely carrier for the prominent 6.85 μm band in the compact ices often assumed for the interstellar grain mantles.

  9. STUDIES OF DIFFUSE INTERSTELLAR BANDS V. PAIRWISE CORRELATIONS OF EIGHT STRONG DIBs AND NEUTRAL HYDROGEN, MOLECULAR HYDROGEN, AND COLOR EXCESS

    SciTech Connect

    Friedman, Scott D.; Sonnentrucker, Paule; York, Donald G.; Hobbs, L. M.; McCall, Benjamin J.; Dahlstrom, Julie; Welty, Daniel E.; Drosback, Meredith M.; Rachford, Brian L.; Snow, Theodore P.

    2011-01-20

    We establish correlations between equivalent widths of eight diffuse interstellar bands (DIBs), and examine their correlations with atomic hydrogen, molecular hydrogen, and E{sub B-V}. The DIBs are centered at {lambda}{lambda} 5780.5, 6204.5, 6283.8, 6196.0, 6613.6, 5705.1, 5797.1, and 5487.7, in decreasing order of Pearson's correlation coefficient with N(H) (here defined as the column density of neutral hydrogen), ranging from 0.96 to 0.82. We find the equivalent width (EW) of {lambda}5780.5 is better correlated with column densities of H than with E{sub B-V} or H{sub 2}, confirming earlier results based on smaller data sets. We show that the same is true for six of the seven other DIBs presented here. Despite this similarity, the eight strong DIBs chosen are not correlated well enough with each other to suggest they come from the same carrier. We further conclude that these eight DIBs are more likely to be associated with H than with H{sub 2}, and hence are not preferentially located in the densest, most UV shielded parts of interstellar clouds. We suggest that they arise from different molecules found in diffuse H regions with very little H{sub 2} (molecular fraction f < 0.01). Of the 133 stars with available data in our study, there are three with significantly weaker {lambda}5780.5 than our mean H-{lambda}5780.5 relationship, all of which are in regions of high radiation fields, as previously noted by Herbig. The correlations will be useful in deriving interstellar parameters when direct methods are not available. For instance, with care, the value of N(H) can be derived from W{sub {lambda}}(5780.5).

  10. The 2140 cm(exp -1) (4.673 Microns) Solid CO Band: The Case for Interstellar O2 and N2 and the Photochemistry of Non-Polar Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie; Allamandola, Louis J.; Sandford, Scott A.; Witteborn, Fred C. (Technical Monitor)

    1996-01-01

    The infrared spectra of CO frozen in non-polar ices containing N2, CO2, O2, and H2O, and the ultraviolet photochemistry of these interstellar/precometary ice analogs are reported. The spectra are used to test the hypothesis that the narrow 2140/cm (4.673 micrometer) interstellar absorption feature attributed to solid CO might be produced by CO frozen in ices containing non-polar species such as N2 and O2. It is shown that mixed molecular ices containing CO, N2, O2, and CO2 provide a very good match to the interstellar band at all temperatures between 12 and 30 K both before and after photolysis. The optical constants (real and imaginary parts of the index of refraction) in the region of the solid CO feature are reported for several of these ices.

  11. Extinction in young massive clusters

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino

    2016-01-01

    Up to ages of ~100 Myr, massive clusters are still swamped in large amounts of gas and dust, causing considerable and uneven levels of extinction. At the same time, large grains (ices?) produced by type II supernovae profoundly alter the interstellar medium (ISM), thus resulting in extinction properties very different from those of the diffuse ISM. To obtain physically meaningful parameters of stars (luminosities, effective temperatures, masses, ages, etc.) we must understand and measure the local extinction law. We have developed a powerful method to unambiguously determine the extinction law everywhere across a cluster field, using multi-band photometry of red giant stars belonging to the red clump (RC) and are applying it to young massive clusters in the Local Group. In the Large Magellanic Cloud, with about 20 RC stars per arcmin2, for each field we can easily derive an accurate extinction curve over the entire wavelength range of the photometry. As an example, we present the extinction law of the Tarantula nebula (30 Dor) based on thousands of stars observed as part of the Hubble Tarantula Treasury Project. We discuss how the incautious adoption of the Milky Way extinction law in the analysis of massive star forming regions may lead to serious underestimates of the fluxes and of the star formation rates by factors of 2 or more.

  12. HIGH-RESOLUTION OPTICAL SPECTROSCOPY OF DY Cen: DIFFUSE INTERSTELLAR BANDS IN A PROTO-FULLERENE CIRCUMSTELLAR ENVIRONMENT?

    SciTech Connect

    Garcia-Hernandez, D. A.; Lambert, David L. E-mail: nkrao@iiap.res.in

    2012-11-01

    We search high-resolution and high-quality VLT/UVES optical spectra of the hot R Coronae Borealis star DY Cen for electronic transitions of the C{sub 60} molecule and diffuse interstellar bands (DIBs). We report the non-detection of the strongest C{sub 60} electronic transitions (e.g., those at {approx}3760, 3980, and 4024 A). The absence of C{sub 60} absorption bands may support recent laboratory results, which show that the {approx}7.0, 8.5, 17.4, and 18.8 {mu}m emission features seen in DY Cen-and other similar objects with polycyclic-aromatic-hydrocarbon-like dominated IR spectra-are attributable to proto-fullerenes or fullerene precursors rather than to C{sub 60}. DIBs toward DY Cen are normal for its reddening; the only exception is the DIB at 6284 A (possibly also the 7223 A DIB) which is found to be unusually strong. We also report the detection of a new broad (FWHM {approx} 2 A) and unidentified feature centered at {approx}4000 A. We suggest that this new band may be related to the circumstellar proto-fullerenes seen at infrared wavelengths.

  13. Cholinergic neuronal lesions in the medial septum and vertical limb of the diagonal bands of Broca induce contextual fear memory generalization and impair acquisition of fear extinction.

    PubMed

    Knox, Dayan; Keller, Samantha M

    2016-06-01

    Previous research has shown that the ventral medial prefrontal cortex (vmPFC) and hippocampus (Hipp) are critical for extinction memory. Basal forebrain (BF) cholinergic input to the vmPFC and Hipp is critical for neural function in these substrates, which suggests BF cholinergic neurons may be critical for extinction memory. In order to test this hypothesis, we applied cholinergic lesions to different regions of the BF and observed the effects these lesions had on extinction memory. Complete BF cholinergic lesions induced contextual fear memory generalization, and this generalized fear was resistant to extinction. Animals with complete BF cholinergic lesions could not acquire cued fear extinction. Restricted cholinergic lesions in the medial septum and vertical diagonal bands of Broca (MS/vDBB) mimicked the effects that BF cholinergic lesions had on contextual fear memory generalization and acquisition of fear extinction. Cholinergic lesions in the horizontal diagonal band of Broca and nucleus basalis (hDBB/NBM) induced a small deficit in extinction of generalized contextual fear memory with no accompanying deficits in cued fear extinction. The results of this study reveal that MS/vDBB cholinergic neurons are critical for inhibition and extinction of generalized contextual fear memory, and via this process, may be critical for acquisition of cued fear extinction. Further studies delineating neural circuits and mechanisms through which MS/vDBB cholinergic neurons facilitate these emotional memory processes are needed. © 2015 Wiley Periodicals, Inc. PMID:26606423

  14. Infrared extinction in the inner Milky Way through red clump giants

    SciTech Connect

    González-Fernández, C.; Asensio Ramos, A.; Garzón, F.; Cabrera-Lavers, A.; Hammersley, P. L.

    2014-02-20

    While the shape of the extinction curve in the infrared is considered to be set and the extinction ratios between infrared bands are usually taken to be approximately constant, a number of recent studies point to either a spatially variable behavior of the exponent of the power law or a different extinction law altogether. In this paper, we propose a method to analyze the overall behavior of the interstellar extinction by means of the red-clump population, and we apply it to those areas of the Milky Way where the presence of interstellar matter is heavily felt: areas located in 5° < l < 30° and b = 0°. We show that the extinction ratios traditionally used for the near infrared could be inappropriate for the inner Galaxy and we analyze the behavior of the extinction law from 1 μm to 8 μm.

  15. VizieR Online Data Catalog: Catalog of Eq.Widths of Interstellar 217nm Band (Friedemann 1992)

    NASA Astrophysics Data System (ADS)

    Friedemann, C.

    2005-03-01

    (from CDS Inf. Bull. 40, 31) The main task of the catalogue consists in a comprehensive collection of equivalent widths of the 217nm band derived from both spectrophotometric and filterphotometric measurements obtained with TD-1, OAO-2 and ANS satellites. These data concern reddened O, B stars with color excesses E(B-V) >= 0.02 mag. The extinction curve is approximated by the empirical formula introduced by Guertler et al. (1982AN....303..105G) e({lambda}) = A(i/{lambda} - 1/{lambda}o)n + B + C {kappa}({lambda}) The relative errors amount to about {delta}A/A = +/- 0.10, {delta}B/B = +/- 0.02 and {delta}C/C = +/- 0.03. (1 data file).

  16. A Laboratory Search for the Carrier Molecules of the Diffuse Interstellar Bands; Rare Earths and the Neutron Capture Process

    NASA Astrophysics Data System (ADS)

    Stockett, Mark H.

    The identity of the carrier molecules of the Diffuse Interstellar Bands (DIBs) is the most durable mystery of spectroscopic astronomy. The DIBs comprise over 400 mostly broad, weak absorption features observed along many lines of sight throughout the Milky Way. Though large Polycyclic Aromatic Hydrocarbons (PAHs) are suspected to be the source of the DIBs, no definitive matches have yet been made to laboratory PAH spectra. The Diffuse Interstellar Band Synchrotron Radiation Carrier Hunt (DIBSyRCH) experiment has been built at the Synchrotron Radiation Center (SRC) to test this hypothesis by conducting a spectroscopic survey of a broad range of low-temperature, gas phase PAH molecules and ions. The key elements of this experiment are the synchrotron radiation continuum from the SRC White Light beamline, a custom echelle spectrograph and the Cryogenic Circulating Advective Multi-Pass (CCAMP) absorption cell. The development and results of this experiment are described in detail. Recent abundance determinations of heavy n(eutron)-capture elements in very old, very metal-poor Galactic halostars have yielded new insights on the roles of the r(apid)- and s(low)-processes in the initial burst of Galactic nucleosynthesis. The Rare Earth (RE) elements are an important part of such efforts. The results of this ongoing work are reshaping our understanding of the chemical evolution of the Galaxy. Absolute atomic transition probabilities are necessary for quantitative spectroscopy in astronomy and applied fields such as lighting. I performed lifetime measurements, accurate to +/-5%, for 8 even parity and 72 odd parity levels of singly ionized erbium. These radiative lifetimes were used to determine absolute transition probabilities for 418 lines of Er II, enabling new Er abundance measurements for the sun and 5 r-process rich, metal poor stars. I performed absorption experiments using synchrotron radiation to assess the impact of possible unobserved infrared branches on

  17. Broad band X-ray Telescope observations of the hot interstellar media in NGC 1399 and NGC 4472

    NASA Technical Reports Server (NTRS)

    Serlemitsos, P. J.; Loewenstein, M.; Mushotzky, R. F.; Marshall, F. E.; Petre, R.

    1993-01-01

    We present our analysis and interpretation of spatially resolved X-ray spectroscopy of the elliptical galaxies NGC 1399 and NGC 4472 obtained with the Broad Band X-Ray Telescope. The X-ray emission from both galaxies is dominated by thermal emission from a hot interstellar medium. The temperature of the plasma in NGC 1399 is 1.0-1.2 keV with a mild positive temperature gradient; for NGC 4472 the average temperature is 0.7-1.0 keV. The temperature of NGC 1399, when combined with other X-ray and optical data, implies that, if the gas is gravitationally confined, about 70 percent of the mass inside a radius of about 8.6 arcmin (38 kpc) is nonluminous. The derived metallicities and metallicity gradients are consistent with optically determined stellar metallicities, and allow surprisingly small upper limits to be placed on Type Ia supernovae rates in both galaxies. The implications of this for the gasdynamical evolution of the two galaxies are discussed. Limits on the oxygen-to-iron ratio and the line-of-sight column density are derived. There is a possible detection of cold gas in the line of sight to NGC 1399 that exceeds the Galactic value. Constraints on the contribution from a harder spectral component are placed, and likely candidates for the origin of this secondary component are evaluated.

  18. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral

  19. H{sub 2} MOLECULAR CLUSTERS WITH EMBEDDED MOLECULES AND ATOMS AS THE SOURCE OF THE DIFFUSE INTERSTELLAR BANDS

    SciTech Connect

    Bernstein, L. S.; Clark, F. O.; Lynch, D. K. E-mail: dave@thulescientific.com

    2013-05-01

    We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ({sup s}eed{sup )}, embedded in a single-layer shell of H{sub 2} molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H{sub 2} molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H{sub 2} shell. We refer to these clusters as contaminated H{sub 2} clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectral profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from {approx}centimeter-sized, dirty H{sub 2} ice balls, called contaminated H{sub 2} ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H{sub 2} molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the {approx}10-100 GHz spectral region.

  20. Interstellar magnesium abundances

    NASA Technical Reports Server (NTRS)

    Murray, M. J.; Dufton, P. L.; Hibbert, A.; York, D. G.

    1984-01-01

    An improved evaluation of the Mg II 1240 A doublet oscillator strength is used in conjunction with recently published Copernicus observations to derive accurate Mg II column densities toward 74 stars. These imply an average of 40 percent of interstellar magnesium is in the gaseous phase. Magnesium depletion is examined as a function of various interstellar extinction and density parameters, and the results are briefly discussed in terms of current depletion theories.

  1. OBSERVATIONS OF THE NEAR- TO MID-INFRARED UNIDENTIFIED EMISSION BANDS IN THE INTERSTELLAR MEDIUM OF THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Mori, Tamami I.; Sakon, Itsuki; Onaka, Takashi; Ohsawa, Ryou; Kaneda, Hidehiro; Umehata, Hideki E-mail: isakon@astron.s.u-tokyo.ac.jp

    2012-01-01

    We present the results of near- to mid-infrared slit spectroscopic observations (2.55-13.4 {mu}m) of the diffuse emission toward nine positions in the Large Magellanic Cloud with the infrared camera on board AKARI. The target positions are selected to cover a wide range of the intensity of the incident radiation field. The unidentified infrared bands at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m are detected toward all the targets and ionized gas signatures; hydrogen recombination lines and ionic forbidden lines are detected toward three of them. We classify the targets into two groups: those without the ionized gas signatures (Group A) and those with the ionized signatures (Group B). Group A includes molecular clouds and photodissociation regions, whereas Group B consists of H II regions. In Group A, the band ratios of I{sub 3.3{mu}m}/I{sub 11.3{mu}m}, I{sub 6.2{mu}m}/I{sub 11.3{mu}m}, I{sub 7.7{mu}m}/I{sub 11.3{mu}m}, and I{sub 8.6{mu}m}/I{sub 11.3{mu}m} show positive correlation with the IRAS and AKARI colors, but those of Group B do not follow the correlation. We discuss the results in terms of the polycyclic aromatic hydrocarbon (PAH) model and attribute the difference to the destruction of small PAHs and an increase in the recombination due to the high electron density in Group B. In the present study, the 3.3 {mu}m band provides crucial information on the size distribution and/or the excitation conditions of PAHs and plays a key role in the distinction of Group A from B. The results suggest the possibility of the diagram of I{sub 3.3{mu}m}/I{sub 11.3{mu}m} versus I{sub 7.7{mu}m}/I{sub 11.3{mu}m} as an efficient diagnostic tool to infer the physical conditions of the interstellar medium.

  2. Extinction coefficients of CC and CC bands in ethyne and ethene molecules interacting with Cu+ and Ag+ in zeolites--IR studies and quantumchemical DFT calculations.

    PubMed

    Kozyra, Paweł; Góra-Marek, Kinga; Datka, Jerzy

    2015-02-01

    The values of extinction coefficients of CC and CC IR bands of ethyne and ethene interacting with Cu+ and Ag+ in zeolites were determined in quantitative IR experiments and also by quantumchemical DFT calculations with QM/MM method. Both experimental and calculated values were in very good agreement validating the reliability of calculations. The values of extinction coefficients of ethyne and ethene interacting with bare cations and cations embedded in zeolite-like clusters were calculated. The interaction of organic molecules with Cu+ and Ag+ in zeolites ZSM-5 and especially charge transfers between molecule, cation and zeolite framework was also discussed in relation to the values of extinction coefficients. PMID:25307963

  3. MID-INFRARED EXTINCTION AND ITS VARIATION WITH GALACTIC LONGITUDE

    SciTech Connect

    Gao Jian; Jiang, B. W.; Li Aigen E-mail: bjiang@bnu.edu.c

    2009-12-10

    Based on the data obtained from the Spitzer/Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIPMSE) Legacy Program and the Two Micron All Sky Survey (2MASS) project, we derive the extinction in the four IRAC bands, [3.6], [4.5], [5.8], and [8.0] mum, relative to the 2MASS K{sub s} band (at 2.16 mum) for 131 GLIPMSE fields along the Galactic plane within |l| <= 65 deg., using red giants and red clump giants as tracers. As a whole, the mean extinction in the IRAC bands (normalized to the 2MASS K{sub s} band), A{sub [3.6]}/A{sub K{sub s}}approx0.63+-0.01, A{sub [4.5]}/A{sub K{sub s}}approx0.57+-0.03, A{sub [5.8]}/A{sub K{sub s}}approx0.49+-0.03, A{sub [8.0]}/A{sub K{sub s}}approx0.55+-0.03, exhibits little variation with wavelength (i.e., the extinction is somewhat flat or gray). This is consistent with previous studies and agrees with that predicted from the standard interstellar grain model for R{sub V} = 5.5 by Weingartner and Draine. As far as individual sightline is concerned, however, the wavelength dependence of the mid-infrared interstellar extinction A{sub l}ambda/A{sub K{sub s}} varies from one sightline to another, suggesting that there may not exist a 'universal' IR extinction law. We, for the first time, demonstrate the existence of systematic variations of extinction with Galactic longitude which appears to correlate with the locations of spiral arms as well as with the variation of the far-infrared luminosity of interstellar dust.

  4. Hubble Tarantula Treasury Project - IV. The extinction law

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino; Sabbi, Elena; Lennon, Daniel; Anderson, Jay; van der Marel, Roeland; Cignoni, Michele; Grebel, Eva K.; Larsen, Søren; Zaritsky, Dennis; Zeidler, Peter; Gouliermis, Dimitrios; Aloisi, Alessandra

    2016-02-01

    We report on the study of interstellar extinction across the Tarantula Nebula (30 Doradus), in the Large Magellanic Cloud, using observations from the Hubble Tarantula Treasury Project in the 0.3-1.6 μm range. The considerable and patchy extinction inside the nebula causes about 3500 red clump stars to be scattered along the reddening vector in the colour-magnitude diagrams, thereby allowing an accurate determination of the reddening slope in all bands. The measured slope of the reddening vector is remarkably steeper in all bands than in the the Galactic diffuse interstellar medium. At optical wavelengths, the larger ratio of total-to-selective extinction, namely RV = 4.5 ± 0.2, implies the presence of a grey component in the extinction law, due to a larger fraction of large grains. The extra large grains are most likely ices from supernova ejecta and will significantly alter the extinction properties of the region until they sublimate in 50-100 Myr. We discuss the implications of this extinction law for the Tarantula Nebula and in general for regions of massive star formation in galaxies. Our results suggest that fluxes of strongly star-forming regions are likely to be underestimated by a factor of about 2 in the optical.

  5. Near-Infrared Band Strengths of Molecules Diluted in N2 and H2O Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, Christina Rae; Gerakines, P.A.

    2012-01-01

    The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H2O and N2. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H2O- and N2-dominated mixtures of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), and NH3 (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 per centimeter, 1-2.5 micrometers) with better-known mid-infrared features (4000-400 per centimeter, 2.5-25 micrometers) at longer wavelengths.

  6. Interstellar ice analogs: band strengths of H2O, CO2, CH3OH, and NH3 in the far-infrared region

    NASA Astrophysics Data System (ADS)

    Giuliano, B. M.; Escribano, R. M.; Martín-Doménech, R.; Dartois, E.; Muñoz Caro, G. M.

    2014-05-01

    Context. Whereas observational astronomy now routinely extends to the far-infrared region of the spectrum, systematic laboratory studies are sparse. In particular, experiments on laboratory analogs performed through the years have provided information mainly about the band positions and shapes, while information about the band strengths are scarce and derivable principally from the optical constants. Aims: We measure the band strengths in the far-infrared region of interstellar ice analogs of astrophysically relevant species, such as H2O, CO2, CH3OH, and NH3, deposited at low temperature (8-10 K), followed by warm-up, to induce amorphous-crystalline phase transitions when relevant. Methods: The spectra of pure H2O, NH3, and CH3OH ices have been measured in the near-, mid- and far-infrared spectroscopic regions using the Interstellar Astrochemistry Chamber (ISAC) ultra-high-vacuum setup. In addition, far-infrared spectra of NH3 and CO2 were measured using a different set-up equipped with a bolometer detector. Band strengths in the far-infrared region were estimated using the corresponding near- and mid-infrared values as a reference. We also performed theoretical calculations of the amorphous and crystalline structures of these molecules using solid state computational programs at density functional theory (DFT) level. Vibrational assignment and mode intensities for these ices were predicted. Results: Infrared band strengths in the 25-500 μm range have been determined for the considered ice samples by direct comparison in the near- and mid-infrared regions. Our values were compared to those we calculated from the literature complex index of refraction. We found differences of a factor of two between the two sets of values. Conclusions: The calculated far-infrared band strengths provide a benchmark for interpreting the observational data from future space telescope missions, allowing the estimation of the ice column densities.

  7. Extinction law at a distance up to 25 kpc toward the Galactic poles

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2016-07-01

    Photometry from the Tycho-2, 2MASS, andWISE catalogues for clump and branch giants at a distance up to 25 kpc toward the Galactic poles has allowed the variations of various characteristics of the infrared interstellar extinction law with distance to be analyzed. The results obtained by the extinction law extrapolation method are consistent for different classes of stars and different characteristics as well as with previous studies. The conventional extinction law with a low infrared extinction is characteristic of only a thin layer no farther than 100 pc from the Galactic plane and of two thin layers near Z = -600 and +500 pc. Far from the Galactic plane, in the Galactic halo, the infrared extinction law is different: the extinction in the Ks, W1, W2, W3, and W4 bands is, respectively, 0.17, 0.16, 0.16, 0.07, and 0.03 of the extinction in the V band. The accuracy of these coefficients is 0.03. If the extinction law reflects primarily the grain size distribution, then the fraction of large dust grains far from the Galactic plane is greater than that in the circumsolar interstellar medium.

  8. Photochemistry of interstellar molecules

    NASA Technical Reports Server (NTRS)

    Stief, L. J.

    1971-01-01

    The photochemistry of two diatomic and eight polyatomic molecules is discussed quantitatively. For an interstellar molecule, the lifetime against photodecomposition depends upon the absorption cross section, the quantum yield or probability of dissociation following photon absorption, and the interstellar radiation field. The constant energy density of Habing is used for the unobserved regions of interstellar radiation field, and the field in obscuring clouds is estimated by combining the constant flux with the observed interstellar extinction curve covering the visible and ultraviolet regions. Lifetimes against photodecomposition in the unobscured regions and as a function of increasing optical thickness in obscuring clouds are calculated for the ten species. The results show that, except for CO, all the molecules have comparable lifetimes of less than one hundred years. Thus they can exist only in dense clouds and can never have been exposed to the unobscured radiation. The calculations further show that the lifetimes in clouds of moderate opacity are of the order of one million years.

  9. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    SciTech Connect

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.; Campillay, Abdo; Contreras, Carlos; Simon, Joshua D.; Burns, Christopher R.; Persson, Sven E.; Thompson, I. B.; Freedman, Wendy L.; Cox, Nick L. J.; Foley, Ryan J.; Karakas, Amanda I.; Patat, F.; Sternberg, A.; Williams, R. E.; Gal-Yam, A.; Leonard, D. C.; Stritzinger, Maximilian; Folatelli, Gastón; and others

    2013-12-10

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.

  10. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.

    PubMed

    Zhao, Weixiong; Dong, Meili; Chen, Weidong; Gu, Xuejun; Hu, Changjin; Gao, Xiaoming; Huang, Wei; Zhang, Weijun

    2013-02-19

    Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days. PMID:23320530

  11. Broad Balmer Wings in BA Hyper/Supergiants Distorted by Diffuse Interstellar Bands: Five Examples in the 30 Doradus Region from the VLT-FLAMES Tarantula Survey

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan R.; Sana, Hugues; Evans, Christopher J.; Taylor, William D.; Sabbi, Elena; Barbá, Rodolfo H.; Morrell, Nidia I.; Maíz Apellániz, Jesús; Sota, Alfredo; Dufton, Philip L.; McEvoy, Catherine M.; Clark, J. Simon; Markova, Nevena; Ulaczyk, Krzysztof

    2015-08-01

    Extremely broad emission wings at Hβ and Hα have been found in VLT-FLAMES Tarantula Survey data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of Hβ and the shortward wing of Hα. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, although we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables (LBVs). No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminous supergiants are approaching the LBV stage for the first time. Their locations in the HRD and presumed evolutionary tracks are consistent with that possibility. The available evidence for spectroscopic variations of these objects is reviewed, while recent photometric monitoring does not reveal variability. A search for circumstellar nebulae has been conducted, with an indeterminate result for one of them.

  12. THE SEARCH FOR THE DIFFUSE INTERSTELLAR BANDS AND OTHER MOLECULES IN COMETS 17P (HOLMES) AND C/2007 W1 (BOATTINI)

    SciTech Connect

    O'Malia, K. K. J.; Snow, T. P.; Thorburn, J. A.; Hammergren, M.; Dembicky, J.; Hobbs, L. M.; York, D. G.

    2010-01-01

    We present the search for both diffuse interstellar bands (DIBs) and molecules in Comet 17P (Holmes) and Comet C/2007 W1 (Boattini) occultation observations. Absorption spectra were taken during stellar occultations by Comet Holmes of 31 and beta Persei, and the occultation of BD+22 216 by Comet Boattini. While no signature of the comets was detected, we present upper limits for some common cometary molecules such as C{sub 2}, C{sub 3}, CH, CN and for the most common DIBs. We did not detect either comet in absorption, most likely because of the large distance between the line of sight to the star and the nucleus of the comet. Interstellar sight lines with comparable reddening to what was measured in Comet Holmes have DIB equivalent widths between 5 and 50 mA. However, future observations with closer approaches to a background star have great potential for spatially mapping molecule distributions in comets, and in discovering DIBs, if they are present, in comets. Future observations could detect DIBs and molecules if they are done: (1) less than approx10{sup 4}-10{sup 3} km from the nucleus (2) with a signal to noise in the background star of approx300 and (3) with a resolving power of at least 38,000.

  13. THE MID-INFRARED EXTINCTION LAW AND ITS VARIATION IN THE COALSACK NEBULA

    SciTech Connect

    Wang Shu; Gao Jian; Jiang, B. W.; Chen Yang; Li Aigen E-mail: jiangao@bnu.edu.cn E-mail: cheny@bnu.edu.cn

    2013-08-10

    In recent years, the wavelength dependence of interstellar extinction from the ultraviolet (UV) to the near- and mid-infrared (IR) has been studied extensively. Although it is well established that the UV/optical extinction law varies significantly among the different lines of sight, it is not clear how IR extinction varies among various environments. In this work, using the color-excess method and taking red giants as the extinction tracer, we determine interstellar extinction A{sub {lambda}} in the four Spitzer/IRAC bands in [3.6], [4.5], [5.8], [8.0] {mu}m (relative to A{sub K{sub s}}, extinction in the Two Micron All Sky Survey (2MASS) K{sub s} band at 2.16 {mu}m) of the Coalsack nebula, a nearby starless dark cloud, based on the data obtained from the 2MASS and Spitzer/GLIMPSE surveys. We select five individual regions across the nebula that span a wide variety of physical conditions ranging from diffuse and translucent to dense environments, as traced by the visual extinction, the Spitzer/MIPS 24 {mu}m emission, and CO emission. We find that A{sub {lambda}}/A{sub K{sub s}}, mid-IR extinction relative to A{sub K{sub s}}, decreases from diffuse to dense environments, which may be explained in terms of ineffective dust growth in dense regions. The mean extinction (relative to A{sub K{sub s}}) is calculated for the four IRAC bands as well and exhibits a flat mid-IR extinction law consistent with previous determinations for other regions. Extinction in the IRAC 4.5 {mu}m band is anomalously high, much higher than that of the other three IRAC bands, and cannot be explained in terms of CO and CO{sub 2} ice. Mid-IR extinction in the four IRAC bands has also been derived for four representative regions in the Coalsack Globule 2, which respectively exhibit strong ice absorption, moderate or weak ice absorption, and very weak or no ice absorption. The derived mid-IR extinction curves are all flat, with A{sub {lambda}}/A{sub K{sub s}} increasing with the decrease of the

  14. NEAR-INFRARED BAND STRENGTHS OF MOLECULES DILUTED IN N{sub 2} AND H{sub 2}O ICE MIXTURES RELEVANT TO INTERSTELLAR AND PLANETARY ICES

    SciTech Connect

    Richey, C. R.; Gerakines, P. A. E-mail: gerak@uab.edu

    2012-11-01

    The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H{sub 2}O and N{sub 2}. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H{sub 2}O- and N{sub 2}-dominated mixtures of CO (carbon monoxide), CO{sub 2} (carbon dioxide), CH{sub 4} (methane), and NH{sub 3} (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 cm{sup -1}, 1-2.5 {mu}m) with better-known mid-infrared features (4000-400 cm{sup -1}, 2.5-25 {mu}m) at longer wavelengths.

  15. Detection of organic matter in interstellar grains.

    PubMed

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  16. Instrumentation for interstellar exploration

    NASA Astrophysics Data System (ADS)

    Gruntman, M.

    The time has arrived for designing, building, and instrumenting a spacecraft for a dedicated foray into interstellar space surrounding our star, the Sun. This region was probed in the past by remote techniques and it will be explored in situ by the Interstellar Probe mission. The mission will significantly advance our understanding of the nature of the local interstellar medium and explore the distant frontier of the solar system by revealing the details of the interaction between the Sun and Galaxy. This mission will also be an important practical step toward interstellar flight of the future. Reaching interstellar space in reasonable time requires high escape velocities and will likely be enabled by non-chemical propulsion such as nuclear-powered electric propulsion or solar sailing. Unusually high spacecraft velocities, enormous distances from the Sun, and non-chemical propulsion will significantly influence the design of the mission, spacecraft and scientific instrumentation. We will review measurement objectives of the first mission into interstellar space and outline constrains on the instrumentation. Measurement of particles, fields, and dust in the interstellar medium will be complemented by search for complex molecules and remote sensing capabilities in various spectral bands. A "look" back at our solar system will also be a glimpse of wh at a flyby mission of the distant future would encounter in approaching another star. The instrumentation for interstellar exploration presents numerous challenges. Mass, telemetry, and power constraints would place a premium on miniaturization and autonom . There are, however,y physical limits on how small the sensors could be. New instrument concepts may be required to achieve the desired measurement capabilities under the stringent constraints of a realistic interstellar mission.

  17. Instrumentation for interstellar exploration

    NASA Astrophysics Data System (ADS)

    Gruntman, Mike

    2004-01-01

    The time has arrived for designing, building, and instrumenting a spacecraft for a dedicated foray into the galactic environment surrounding our star, the sun. This region was probed in the past by remote techniques and it will be explored in situ by the NASA's planned Interstellar Probe mission. The mission will significantly advance our understanding of the nature of the local interstellar medium and explore the distant frontier of the solar system by revealing the details of the interaction between the sun and the Galaxy. This mission will also be an important practical step toward interstellar flight of the future. Reaching interstellar space in reasonable time requires high escape velocities and will likely be enabled by non-chemical propulsion such as nuclear-powered electric propulsion or solar sailing. Unusually high spacecraft velocities, enormous distances from the Sun, and non-chemical propulsion will significantly influence design of the mission, spacecraft, and scientific instrumentation. We will review measurement objectives of the first dedicated mission into interstellar space and outline constraints on the instrumentation. Measurement of particles, fields, and dust in the interstellar medium will be complemented by search for complex organic molecules and remote sensing capabilities in various spectral bands. A "look" back at our solar system will also be a glimpse of what a truly-interstellar mission of the distant future would encounter in approaching a target star. The instrumentation for interstellar exploration presents numerous challenges. Mass, telemetry, and power constraints would place a premium on miniaturization and autonomy. There are, however, physical limits on how small the sensors could be. New instrument concepts may be required to achieve the desired measurement capabilities under the stringent constraints of a realistic interstellar mission.

  18. Laboratory optical spectroscopy of the thiophenoxy radical and its profile simulation as a diffuse interstellar band based on rotational distribution by radiation and collisions

    SciTech Connect

    Araki, Mitsunori; Niwayama, Kei; Tsukiyama, Koichi

    2014-11-01

    The gas-phase optical absorption spectrum of the thiophenoxy radical (C{sub 6}H{sub 5}S), a diffuse interstellar band (DIB) candidate molecule, was observed in the discharge of thiophenol using a cavity ringdown spectrometer. The ground-state rotational constants of the thiophenoxy radical were theoretically calculated, and the excited-state rotational constants were determined from the observed rotational profile. The rotational profile of a near prolate molecule having C {sub 2v} symmetry was simulated on the basis of a rotational distribution model by radiation and collisions. Although the simulated profile did not agree with the observed DIBs, the upper limit of the column density for the thiophenoxy radical in the diffuse clouds toward HD 204827 was evaluated to be 2 × 10{sup 13} cm{sup –2}. The profile simulation indicates that rotational distribution by radiation and collisions is important to reproduce a rotational profile for a DIB candidate and that the near prolate C {sub 2v} molecule is a possible candidate for DIB with a band width variation dependent on the line of sight.

  19. A new model for the interpretation of the unidentified infrared bands (UIBS) of the diffuse interstellar medium and of the protoplanetary nebulae

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; Keheyan, Yeghis; Heymann, Dieter

    2002-04-01

    In this work we started from the basic idea that the pure polycyclic aromatic hydrocarbons (PAHs) cannot be the real carriers of the unidentified infrared bands (UIBs), the emission spectra coming from a large variety of astronomical objects. Instead we propose a new model taken from petroleum chemistry which, we can show, is able to match both the UIBs and even the protoplanetary nebulae (PPNe) spectra. PAHs such as phenanthrene, benzoperylene, coronene and pentacene, are too pure and too specific to really exist in the interstellar medium. Instead our model proposes that the carrier of UIBs and PPNe are complex molecular mixtures like those obtained as fractions during the petroleum refining processes. These molecular mixtures are so complex that practically the investigators did not try to identify each individual component but characterized the mixture with an average molecular structure that takes into account both the average molecular weight and the average content of aromatic, naphtenic (cycloaliphatic) and aliphatic (paraffinic) fraction. We show by infrared spectroscopy that petroleum fractions obtained at certain steps of the refining process are able to match the UIBs and the PPNe infrared bands with the advantage of not being so specific as PAHs are. Namely we have used as samples a distillate aromatic extract (DAE) a treated residual aromatic extract (T-RAE) and finally a naphtenic oil. Among the three samples examined, the DAE sample was the best in matching the UIBs and PPNe spectra.

  20. Laboratory Astrochemistry: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: (1) objectives, (2) approach and techniques adopted, (3) adaptability to the nature of the problem(s), and (4) results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  1. A new model of composite interstellar grains

    NASA Astrophysics Data System (ADS)

    Voshchinnikov, N. V.; Il'in, V. B.; Henning, Th.; Dubkova, D. N.

    The approach to model composite interstellar dust grains using the exact solution to the light scattering problem for multi-layered spheras suggested by Voshchinnikov & Mathis (1999) is further developed. Heterogeneous scatterers are represented by particles with very large numof shells each including a homogeneous layer per material considered (here amorphous carbon, astronomical silicate and vacuum). It is demonstrated that the scattering characteristics (cross-sections, albedo, asymmetry factor, etc.) well converge with the increase of the number of shells (layers) and each of the characteristics has the same limit independent of the layer order in the shells. The limit obviously corresponds to composite particles consisting of several well mixed materials. However, our results indicate that layered particles with even a few shells (layers) have the characteristics close enough to these limits. The applicability of the effective medium theory (EMT) mostly utilized earlier to approximate inhomogeneous interstellar grains is examined on the base of the model. It is shown that the used EMT rules generally have the accuracy of several percents in the whole range of particle sizes provided the porosity does not exceed about 50%. For larger porosity, the rules give wrong results. Using the model we reanalyze basics of interpretation of various manifestations of cosmic dust --- interstellar extinction, scattered radiation, infrared radiation, radiation pressure, etc. It is found that an increase of porosity typically leads to the increase of cross-sections, albedo and the sweeping efficiency of small grains as well as to the decrease of dust temperature and the strength of infrared bands (the EMT fails to produce these effects). We also conclude that pure iron even in negligible amount (<˜1 % by the volume fractis unlikely to form a layer on or inside a grain because of peculiar absorption of radiation by such particles. As an example of the potential of the model, it

  2. The Origin and Evolution of Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Houches, Les

    2006-01-01

    In this lecture I will discuss the many different manifestation of interstellar dust, and current dust models that satisfy interstellar extinction, diffuse infrared emission, and interstellar abundances constraints. Dust is made predominantly in AGB stars and Type I1 supernovae, and I will present observational evidence for the presence of dust in these sources. I will then present chemical evolution models that follow the abundance of dust which is determined by the combined processes of formation, destruction by interstellar shock waves, and accretion in molecular clouds. The model will be applied to the evolution of PAHs and the evolution of dust in the high-redshift galaxy (z=6.42) JD11.

  3. Interstellar Panspermia Reconsidered

    NASA Astrophysics Data System (ADS)

    Zubrin, R.

    The absence of free-living microorganisms simpler than bacteria on Earth is evidence that life did not originate on Earth, but immigrated. The question then arises as to whether life was imported from a point of origin in our solar system, most likely Mars, of whether the solar system was seeded from interstellar sources. The search for fossil or extant prebacterial organisms (prebacteria) on Mars can resolve this question. However, to understand the likelihood of interstellar panspermia, we also need to consider whether the Earth itself has served as an efficient source for the spread of microorganisms. Close encounters with other stars due to random stellar motion occur with a frequency of 1/20 Myr, in fair agreement with the observed frequency of major impact events and mass extinctions. Such events are estimated to eject unsterilized material into interstellar space at a time-averaged rate of 10 tonnes per year. A number of mechanisms for the interstellar dissemination of bacteria along with this material are considered. It is shown that transmission of microbial life from one solar system to another is highly probable.

  4. Interstellar molecules

    NASA Astrophysics Data System (ADS)

    Smith, D.

    1987-09-01

    Some 70 different molecular species have so far been detected variously in diffuse interstellar clouds, dense interstellar clouds, and circumstellar shells. Only simple (diatomic and triatomic) species exist in diffuse clouds because of the penetration of destructive UV radiations, whereas more complex (polyatomic) molecules survive in dense clouds as a result of the shielding against this UV radiation provided by dust grains. A current list of interstellar molecules is given together with a few other molecular species that have so far been detected only in circumstellar shells. Also listed are those interstellar species that contain rare isotopes of several elements. The gas phase ion chemistry is outlined via which the observed molecules are synthesized, and the process by which enrichment of the rare isotopes occurs in some interstellar molecules is described.

  5. Identification of the UIR bands

    NASA Astrophysics Data System (ADS)

    Johnson, Fred M.

    2016-06-01

    Starlight undergoing multiple scattering processes within fluffy grains results in extinction, UV 2175A bump, DIBs and the UIR bands. Spectroscopic lab and DIB data has identified the highly fluorescent molecule Dipyridyl Magnesium Tetrabenzoporphyrin (MgTBP). Reflection and Raman scattering experimental data will be presented which designates this molecule as the primary source for UIR signals. MgTBP sublimes at about 500OC. It is produced via high temperature plasma synthesis within and subsequently ejected from comets which in turn are by-products of solar system-planetary development. Interstellar dust is the left-over refuse which implies prodigious solar system evolution in each galaxy.

  6. Interstellar Optics

    NASA Technical Reports Server (NTRS)

    Gwinn, C. R.; Britton, M. C.; Reynolds, J. E.; Jauncey, D. L.; King, E. A.; McCulloch, P. M.; Lovell, J. E. J.; Preston, R. A.

    1998-01-01

    We discuss the effects of finite source size on the diffraction pattern produced by scattering in a thin screen, particularly as applied to radio-wave scattering, by density fluctuations in the interstellar plasma.

  7. Organic Model of Interstellar Grains

    NASA Astrophysics Data System (ADS)

    Yabushita, S.; Inagaki, T.; Kawabe, T.; Wada, K.

    1987-04-01

    Extinction efficiency of grains is calculated from the Mie formula on the premise that the grains are of organic composition. The optical constants adopted for the calculations are those of E. coli, polystyrene and bovine albumin. The grain radius a is assumed to obey a distribution of the form N(a) ∝ a-α and the value of α is chosen so as to make the calculated extinction curve match the observed interstellar extinction curve. Although the calculated curve gives a reasonably good fit to the observed extinction curve for wavelengths less than 2100 Å, at longer wavelength regions, agreement is poor. It is concluded that another component is required for the organic model to be viable.

  8. A study of the fundamental characteristics of 2175A extinction

    NASA Technical Reports Server (NTRS)

    Cardelli, Jason A.; Savage, Blair D.

    1987-01-01

    The characteristics of interstellar extinction were studied in the region of the 2175 A feature for lines of sight which appear to exhibit unusually weak ultraviolet extinction. The analysis was based upon a parameterization of the observed extinction via fitting specific mathematical functions in order to determine the position and width of the 2175 A feature. The data are currently being analyzed.

  9. The Mid-Infrared Extinction Law in the Ophiuchus, Perseus, and Serpens Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Chapman, Nicholas L.; Mundy, Lee G.; Lai, Shih-Ping; Evans, Neal J., II

    2009-01-01

    We compute the mid-IR extinction law from 3.6 to 24 μm in three molecular clouds—Ophiuchus, Perseus, and Serpens—by combining data from the "Cores to Disks" Spitzer Legacy Science program with deep JHKs imaging. Using a new technique, we are able to calculate the line-of-sight (LOS) extinction law toward each background star in our fields. With these LOS measurements, we create, for the first time, maps of the χ2 deviation of the data from two extinction law models. Because our χ2 maps have the same spatial resolution as our extinction maps, we can directly observe the changing extinction law as a function of the total column density. In the Spitzer Infrared Array Camera (IRAC) bands, 3.6-8 μm, we see evidence for grain growth. Below A_{K_s} = 0.5, our extinction law is well fitted by the Weingartner and Draine RV = 3.1 diffuse interstellar-medium dust model. As the extinction increases, our law gradually flattens, and for A_{K_s} \\ge 1, the data are more consistent with the Weingartner and Draine RV = 5.5 model that uses larger maximum dust grain sizes. At 24 μm, our extinction law is 2-4 times higher than the values predicted by theoretical dust models, but is more consistent with the observational results of Flaherty et al. Finally, from our χ2 maps we identify a region in Perseus where the IRAC extinction law is anomalously high considering its column density. A steeper near-IR extinction law than the one we have assumed may partially explain the IRAC extinction law in this region.

  10. THE MID-INFRARED EXTINCTION LAW IN THE OPHIUCHUS, PERSEUS, AND SERPENS MOLECULAR CLOUDS

    SciTech Connect

    Chapman, Nicholas L.; Mundy, Lee G.; Lai, Shih-Ping; Evans, Neal J. II

    2009-01-01

    We compute the mid-IR extinction law from 3.6 to 24 {mu}m in three molecular clouds-Ophiuchus, Perseus, and Serpens-by combining data from the 'Cores to Disks' Spitzer Legacy Science program with deep JHK{sub s} imaging. Using a new technique, we are able to calculate the line-of-sight (LOS) extinction law toward each background star in our fields. With these LOS measurements, we create, for the first time, maps of the {chi}{sup 2} deviation of the data from two extinction law models. Because our {chi}{sup 2} maps have the same spatial resolution as our extinction maps, we can directly observe the changing extinction law as a function of the total column density. In the Spitzer Infrared Array Camera (IRAC) bands, 3.6-8 {mu}m, we see evidence for grain growth. Below A{sub K{sub s}}= 0.5, our extinction law is well fitted by the Weingartner and Draine R{sub V} = 3.1 diffuse interstellar-medium dust model. As the extinction increases, our law gradually flattens, and for A{sub K{sub s}}{>=}1, the data are more consistent with the Weingartner and Draine R{sub V} = 5.5 model that uses larger maximum dust grain sizes. At 24 {mu}m, our extinction law is 2-4 times higher than the values predicted by theoretical dust models, but is more consistent with the observational results of Flaherty et al. Finally, from our {chi}{sup 2} maps we identify a region in Perseus where the IRAC extinction law is anomalously high considering its column density. A steeper near-IR extinction law than the one we have assumed may partially explain the IRAC extinction law in this region.

  11. Interstellar extinction at 10-20 microns

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Rubin, Robert H.

    1989-01-01

    The IRAS low-resolution spectra (LRS) spectra of 117 stars of excellent signal/noise with optically thin silicate dust shells were analyzed. The stellar continua (assumed to be a cool black body) were subtracted, and the resulting dust shell spectra were fit with simple models F(sub lambda) assuming uniform mass loss and dust temperature as a function of distance from the star, calculated using the optical constants for silcates of Draine (1985). From the comparison of the spectra and the models, functions for the emissivity, kappa(sub lambda), were derived.

  12. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. I. OBSERVATIONS OF ROTATIONALLY EXCITED CH AND CH{sup +} ABSORPTION AND STRONG, EXTENDED REDWARD WINGS ON SEVERAL DIBs

    SciTech Connect

    Dahlstrom, Julie; York, Donald G.; Welty, Daniel E.; Oka, Takeshi; Johnson, Sean; Jiang Zihao; Sherman, Reid; Hobbs, L. M.; Friedman, Scott D.; Sonnentrucker, Paule; Rachford, Brian L.; Snow, Theodore P.

    2013-08-10

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 A are found in absorption along the line of sight to Herschel 36, the star illuminating the bright Hourglass region of the H II region Messier 8. Interstellar absorption from excited CH{sup +} in the J = 1 level and from excited CH in the J = 3/2 level is also seen. To our knowledge, neither those excited molecular lines nor such strongly extended DIBs have previously been seen in absorption from interstellar gas. These unusual features appear to arise in a small region near Herschel 36 which contains most of the neutral interstellar material in the sight line. The CH{sup +} and CH in that region are radiatively excited by strong far-IR radiation from the adjacent infrared source Her 36 SE. Similarly, the broadening of the DIBs toward Herschel 36 may be due to radiative pumping of closely spaced high-J rotational levels of relatively small, polar carrier molecules. If this picture of excited rotational states for the DIB carriers is correct and applicable to most DIBs, the 2.7 K cosmic microwave background may set the minimum widths (about 0.35 A) of known DIBs, with molecular processes and/or local radiation fields producing the larger widths found for the broader DIBs. Despite the intense local UV radiation field within the cluster NGC 6530, no previously undetected DIBs stronger than 10 mA in equivalent width are found in the optical spectrum of Herschel 36, suggesting that neither dissociation nor ionization of the carriers of the known DIBs by this intense field creates new carriers with easily detectable DIB-like features. Possibly related profile anomalies for several other DIBs are noted.

  13. Laboratory Astrochemistry: Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  14. Interstellar grains

    NASA Technical Reports Server (NTRS)

    Snow, T. P.

    1986-01-01

    There are few aspects of interstellar grains that can be unambiguously defined. Very little can be said that is independent of models or presuppositions; hence issues are raised and questions categorized, rather than providing definitive answers. The questions are issues fall into three general areas; the general physical and chemical nature of the grains; the processes by which they are formed and destroyed; and future observational approaches.

  15. Interstellar and Circumstellar Fullerenes

    NASA Astrophysics Data System (ADS)

    Bernard-Salas, J.; Cami, J.; Jones, A.; Peeters, E.; Micelotta, E.; Otsuka, M.; Sloan, G. C.; Kemper, F.; Groenewegen, M.

    Fullerenes are a particularly stable class of carbon molecules in the shape of a hollow sphere or ellipsoid that might be formed in the outflows of carbon stars. Once injected into the interstellar medium (ISM), these stable species survive and are thus likely to be widespread in the Galaxy where they contribute to interstellar extinction, heating processes, and complex chemical reactions. In recent years, the fullerene species C60 (and to a lesser extent C70 ) have been detected in a wide variety of circumstellar and interstellar environments showing that when conditions are favourable, fullerenes are formed efficiently. Fullerenes are the first and only large aromatics firmly identified in space. The detection of fullerenes is thus crucial to provide clues as to the key chemical pathways leading to the formation of large complex organic molecules in space, and offers a great diagnostic tool to describe the environment in which they reside. Since fullerenes share many physical properties with PAHs, understanding how fullerenes form, evolve and respond to their physical environment will yield important insights into one of the largest reservoirs of organic material in space. In spite of all these detections, many questions remain about precisely which members of the fullerene family are present in space, how they form and evolve, and what their excitation mechanism is. We present here an overview of what we know from astronomical observations of fullerenes in these different environments, and discuss current thinking about the excitation process. We highlight the various formation mechanisms that have been proposed, discuss the physical conditions conducive to the formation and/or detection of fullerenes in carbon stars, and their possible connection to PAHs, HACs and other dust features.

  16. Variations in the Peak Position of the 6.2 micron Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W.; Allamandola, L. J.

    2005-01-01

    more nitrogen atoms within the interior of the carbon skeleton of a PAH cation induces a significant blueshift in the position of the dominant CC stretching feature of these compounds that is suf6cient to account for the position of the interstellar bands. Subsequent studies of the effects of substitution by other heteroatoms (O and Si), metal ion complexation (Fe(+), Mg(+), and Mg(2+)), and molecular symmetry variation-all of which fail to reproduce the blueshift observed in the PANH cations-indicate that N appears to be unique in its ability to accommodate the position of the interstellar 6.2 micron bands while simultaneously satisfying the other constraints of the astrophysical problem. This result implies that the peak position of the interstellar feature near 6.2 micron traces the degree of nitrogen substitution in the population, that most of the PAHs responsible for the interstellar IR emission features incorporate nitrogen within their aromatic networks, and that a lower limit of 1%-2% of the cosmic nitrogen is sequestered within the interstellar PAH population. Finally, in view of the ubiquity and abundance of interstellar PAHs and the permanent dipoles and distinctive electronic structures of these nitrogen-substituted variants, this work impacts a wide range of observational phenomena outside of the infrared region of the spectrum including the forest of unidentified molecular rotational features and the anomalous Galactic foreground emission in the microwave, and the diffuse interstellar bands (DIBs) and other structure in the interstellar extinction curve in the ulhviolet/visible. These astrophysical ramifications are discussed, and the dipole moments and rotational constants are tabulated to facilitate further investigations of the astrophysical role of nitrogen-substituted aromatic compounds.

  17. Interstellar grains within interstellar grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; Lewis, Roy S.

    1991-01-01

    Five interstellar graphite spherules extracted from the Murchison carbonaceous meteorite are studied. The isotopic and elemental compositions of individual particles are investigated with the help of an ion microprobe, and this analysis is augmented with structural studies of ultrathin sections of the grain interiors by transmission electron microscopy. As a result, the following procedure for the formation of the interstellar graphite spherule bearing TiC crystals is inferred: (1) high-temperature nucleation and rapid growth of the graphitic carbon spherule in the atmosphere of a carbon-rich star, (2) nucleation and growth of TiC crystals during continued growth of the graphitic spherule and the accretion of TiC onto the spherule, (3) quenching of the graphite growth process by depletion of C or by isolation of the spherule before other grain types could condense.

  18. Search for diffuse band profile variations in the rho Ophiuchi cloud

    SciTech Connect

    Snow, T.P.; Timothy, J.G.; Sear, S.

    1982-01-01

    High signal-to-noise profiles of the broad diffuse interstellar band at 4430 A were obtained on the 2.2-m telescope at the Mauna Kea Observatory, using the newly-developed pulse-counting multi-anode microchannel array detector system in an effort to determine whether the band profile varies with mean grain size as expected if the band is produced by absorbers embedded in grain lattices. The lack of profile variability over several lines of sight where independent evidence indicates that the mean grain size varies shows that lambda 4430 is probably not formed by the same grains that are responsible for interstellar extinction at visible wavelengths. The possibility that this band is created by a population of very small ( approximately 100 A) grains is still viable, as is the hypothesis that it has a molecular origin.

  19. A search for diffuse band profile variations in the rho Ophiuchi cloud

    NASA Technical Reports Server (NTRS)

    Snow, T. P.; Timothy, J. G.; Sear, S.

    1982-01-01

    High signal-to-noise profiles of the broad diffuse interstellar band at 4430 A were obtained on the 2.2-m telescope at the Mauna Kea Observatory, using the newly-developed pulse-counting multi-anode microchannel array detector system in an effort to determine whether the band profile varies with mean grain size as expected if the band is produced by absorbers embedded in grain lattices. The lack of profile variability over several lines of sight where independent evidence indicates that the mean grain size varies shows that lambda 4430 is probably not formed by the same grains that are responsible for interstellar extinction at visible wavelengths. The possibility that this band is created by a population of very small ( approximately 100 A) grains is still viable, as is the hypothesis that it has a molecular origin.

  20. Dust models post-Planck: constraining the far-infrared opacity of dust in the diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Fanciullo, L.; Guillet, V.; Aniano, G.; Jones, A. P.; Ysard, N.; Miville-Deschênes, M.-A.; Boulanger, F.; Köhler, M.

    2015-08-01

    Aims: We compare the performance of several dust models in reproducing the dust spectral energy distribution (SED) per unit extinction in the diffuse interstellar medium (ISM). We use our results to constrain the variability of the optical properties of big grains in the diffuse ISM, as published by the Planck collaboration. Methods: We use two different techniques to compare the predictions of dust models to data from the Planck HFI, IRAS, and SDSS surveys. First, we fit the far-infrared emission spectrum to recover the dust extinction and the intensity of the interstellar radiation field (ISRF). Second, we infer the ISRF intensity from the total power emitted by dust per unit extinction, and then predict the emission spectrum. In both cases, we test the ability of the models to reproduce dust emission and extinction at the same time. Results: We identify two issues. Not all models can reproduce the average dust emission per unit extinction: there are differences of up to a factor ~2 between models, and the best accord between model and observation is obtained with the more emissive grains derived from recent laboratory data on silicates and amorphous carbons. All models fail to reproduce the variations in the emission per unit extinction if the only variable parameter is the ISRF intensity: this confirms that the optical properties of dust are indeed variable in the diffuse ISM. Conclusions: Diffuse ISM observations are consistent with a scenario where both ISRF intensity and dust optical properties vary. The ratio of the far-infrared opacity to the V band extinction cross-section presents variations of the order of ~20% (40-50% in extreme cases), while ISRF intensity varies by ~30% (~60% in extreme cases). This must be accounted for in future modelling. Appendices are available in electronic form at http://www.aanda.org

  1. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    SciTech Connect

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.; Beaton, R. L.; García Pérez, A. E.; Majewski, S. R.; Beers, T. C.; Bizyaev, D.; Frinchaboy, P. M.; Ge, J.; Hearty, F.; Schneider, D. P.; Holtzman, J.; Muna, D.; Nidever, D.; Shetrone, M. E-mail: gail.zasowski@gmail.com

    2014-07-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  2. Rethinking Extinction.

    PubMed

    Dunsmoor, Joseph E; Niv, Yael; Daw, Nathaniel; Phelps, Elizabeth A

    2015-10-01

    Extinction serves as the leading theoretical framework and experimental model to describe how learned behaviors diminish through absence of anticipated reinforcement. In the past decade, extinction has moved beyond the realm of associative learning theory and behavioral experimentation in animals and has become a topic of considerable interest in the neuroscience of learning, memory, and emotion. Here, we review research and theories of extinction, both as a learning process and as a behavioral technique, and consider whether traditional understandings warrant a re-examination. We discuss the neurobiology, cognitive factors, and major computational theories, and revisit the predominant view that extinction results in new learning that interferes with expression of the original memory. Additionally, we reconsider the limitations of extinction as a technique to prevent the relapse of maladaptive behavior and discuss novel approaches, informed by contemporary theoretical advances, that augment traditional extinction methods to target and potentially alter maladaptive memories. PMID:26447572

  3. Interstellar Alcohols

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.

    1995-01-01

    We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.

  4. Near-Infrared Band Strengths of Molecules Diluted in N2 and H20 Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, C. R.; Richey, Christina R.

    2012-01-01

    In order to determine the column density of a component of an ice from its infrared absorption features, the strengths of these features must be known. The peak positions, widths, profiles, and strengths of a certain ice component's infrared absorption features are affected be the overall composition of the ice. Many satellites within the solar system have surfaces that are dominated by H2O or N2 and ices in the interstellar medium (ISM) are primarily composed of H2O. The experiments presented here focus on the near-infrared absorption features of CO, CO2, CH4, and NH3 (nu=10,000-4,000/cm, lambda=1-2.5 microns) and the effects of diluting these molecules in N2 or H2O ice (mixture ratio of 5:1). This is a continuation of previous results published by our research group.

  5. EXTINCTION IN STAR-FORMING DISK GALAXIES FROM INCLINATION-DEPENDENT COMPOSITE SPECTRA

    SciTech Connect

    Yip, Ching-Wa; Szalay, Alex S.; Wyse, Rosemary F. G.; Budavari, Tamas; Dobos, Laszlo; Csabai, Istvan E-mail: szalay@pha.jhu.ed

    2010-02-01

    Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work, we investigate the inclination dependency in composite spectra of star-forming disk galaxies from the Sloan Digital Sky Survey Data Release 5. In a volume-limited sample within a redshift range 0.065-0.075 and a r-band Petrosian absolute magnitude range -19.5 to -22 mag which exhibits a flat distribution of inclination, the inclined relative to face-on extinction in the stellar continuum is found empirically to increase with inclination in the g, r, and i bands. Within the central 0.5 intrinsic half-light radius of the galaxies, the g-band relative extinction in the stellar continuum for the highly inclined objects (axis ratio b/a = 0.1) is 1.2 mag, agreeing with previous studies. The extinction curve of the disk galaxies is given in the rest-frame wavelengths 3700-8000 A, identified with major optical emission and absorption lines in diagnostics. The Balmer decrement, Halpha/Hbeta, remains constant with inclination, suggesting a different kind of dust configuration and/or reddening mechanism in the H II region from that in the stellar continuum. One factor is shown to be the presence of spatially non-uniform interstellar extinction, presumably caused by clumped dust in the vicinity of the H II region.

  6. The size distribution of interstellar grains

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.

    1987-01-01

    Three major areas involving interstellar grains were investigated. First, studies were performed of scattering in reflection nebulae with the goal of deriving scattering characteristics of dust grains such as the albedo and the phase function asymmetry throughout the visible and the ultraviolet. Secondly, studies were performed of the wavelength dependence of interstellar extinction designed to demonstrate the wide range of grain size distributions naturally occurring in individual clouds in different parts of the galaxy. And thirdly, studies were also performed of the ultraviolet powered emission of dust grains in the 0.5 to 1.0 micron wavelength range in reflection nebulae. Findings considered of major importance are highlighted.

  7. Dust extinction and absorption: the challenge of porous grains

    NASA Astrophysics Data System (ADS)

    Voshchinnikov, N. V.; Il'in, V. B.; Henning, Th.; Dubkova, D. N.

    2006-01-01

    In many models of dusty objects in space the grains are assumed to be composite or fluffy. However, the computation of the optical properties of such particles is still a very difficult problem. We analyze how the increase of grain porosity influences basic features of cosmic dust - interstellar extinction, dust temperature, infrared bands and millimeter opacity. It is found that an increase of porosity leads to an increase of extinction cross sections at some wavelengths and a decrease at others depending on the grain model. However, this behaviour is sufficient to reproduce the extinction curve in the direction of the star σ Sco using current solar abundances. In the case of the star ζ Oph our model requires larger amounts of carbon and iron in the dust-phase than is available. Porous grains can reproduce the flat extinction across the 3 - 8 μm wavelength range measured for several lines of sight by ISO and Spitzer. Porous grains are generally cooler than compact grains. At the same time, the temperature of very porous grains becomes slightly larger in the case of the EMT-Mie calculations in comparison with the results found from the layered-sphere model. The layered-sphere model predicts a broadening of infrared bands and a shift of the peak position to larger wavelengths as porosity grows. In the case of the EMT-Mie model variations of the feature profile are less significant. It is also shown that the millimeter mass absorption coefficients grow as porosity increases with a faster growth occurring for particles with Rayleigh/non-Rayleigh inclusions. As a result, for very porous particles the coefficients given by two models can differ by a factor of about 3.

  8. The Optical-infrared Extinction Curve and Its Variation in the Milky Way

    NASA Astrophysics Data System (ADS)

    Schlafly, E. F.; Meisner, A. M.; Stutz, A. M.; Kainulainen, J.; Peek, J. E. G.; Tchernyshyov, K.; Rix, H.-W.; Finkbeiner, D. P.; Covey, K. R.; Green, G. M.; Bell, E. F.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Martin, N. F.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2016-04-01

    The dust extinction curve is a critical component of many observational programs and an important diagnostic of the physics of the interstellar medium. Here we present new measurements of the dust extinction curve and its variation toward tens of thousands of stars, a hundred-fold larger sample than in existing detailed studies. We use data from the APOGEE spectroscopic survey in combination with ten-band photometry from Pan-STARRS1, the Two Micron All-Sky Survey, and Wide-field Infrared Survey Explorer. We find that the extinction curve in the optical through infrared is well characterized by a one-parameter family of curves described by R(V). The extinction curve is more uniform than suggested in past works, with σ (R(V))=0.18, and with less than one percent of sight lines having R(V)\\gt 4. Our data and analysis have revealed two new aspects of Galactic extinction: first, we find significant, wide-area variations in R(V) throughout the Galactic plane. These variations are on scales much larger than individual molecular clouds, indicating that R(V) variations must trace much more than just grain growth in dense molecular environments. Indeed, we find no correlation between R(V) and dust column density up to E(B-V)≈ 2. Second, we discover a strong relationship between R(V) and the far-infrared dust emissivity.

  9. Determination of RV and Distance for SN 2012cu, the Type Ia Supernova with Highest Extinction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Raha, Zachary; Aldering, Greg Scott; Antilogus, Pierre; Aragon, Cecilia; Bailey, Stephen J.; Baltay, Charles; Barbary, Kyle H.; Baugh, Derek; Boone, Kyle; Bongard, Sebastien; Buton, Clement; Chen, Juncheng; Childress, Michael; Chotard, Nicolas; Copin, Yannick; Fagrelius, Parker; Fakhouri, Hannah; Feindt, Ulrich; Fleury, Mathilde; Fouchez, Dominique; Gangler, Emmanuel; Hayden, Brian; Kim, Alex G.; Kowalski, Marek; Leget, Pierre-Francois; Lombardo, Simona; Nordin, Jakob; Pain, Reynald; Pecontal, Emmanuel; Pereira, Rui; Perlmutter, Saul; Rabinowitz, David L.; Rigault, Mickael; Rubin, David; Runge, Karl; Saunders, Clare; Scalzo, Richard A.; Smadja, Gerard; Sofiatti, Caroline; Suzuki, Nao; Stocker, Andrew; Taubenberger, Stefan; Tao, Charling; Thomas, Rollin; Nearby Supernova Factory

    2016-01-01

    Multi-epoch, flux-calibrated spectroscopic data of a highly reddened Type Ia supernova, SN2012cu, from 3300 - 9700 Å, were obtained using the SuperNova Integrated Field Spectrograph. We determine its best-fit color excess, E(B-V), and total-to-selective extinction ratio, RV. We detect in the near-maximum spectra two of the diffuse interstellar band features and we further find the dust extinction properties toward SN2012cu in its host to be like those of the Milky Way. We also compare the reddening laws of Cardelli et al. (1989), O'Donnell (1994), and Fitzpatrick (1999), and find the predictions of the latter fit the data the best. Finally, the distance to the host galaxy, NGC4772, is determined to within 6%. We compare our result with distance measurements based on the Tully-Fisher method in the literature.

  10. Interstellar isomers

    NASA Technical Reports Server (NTRS)

    Defrees, D.; Mclean, D.; Herbst, E.

    1986-01-01

    Both observational and theoretical studies of molecular clouds are hindered by many difficulties. One way to partially circumvent the difficulties of characterizing the chemistry within these objects is to study the relative abundances of isomers which are synthesized from a common set of precursors. Unfortunately, only one such system has been confirmed, the HCN/HNC pair of isomers. While the basic outlines of its chemistry have been known for some years, there are still many aspects of the chemistry which are unclear. Another potential pair of isomers is HCO+/HOC+; HCO+ is an abundant instellar molecule and a tentative identification of HOC+ has been made in Sgr B2. This identification is being challenged, however, based on theoretical and laboratory evidence that HOC+ reacts with H2. Another potential pair of interstellar isomers is methyl cyanide (CH3CN, acetonitrile) and methyl isocyanide (CH3NC). The cyanide is well known, however the isocyanide has yet to be observed despite theoretical predictions that appreciable quantities should be present.

  11. Do you know the extinction in your young massive cluster?

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino; Sabbi, Elena; HTTP Team

    2015-08-01

    Up to ages of a few 100 Myr, massive clusters are still swamped in large amounts of gas and dust from their primordial cocoons. This causes considerable and uneven levels of extinction across the cluster that we must understand and measure if we want to extract any physically meaningful parameters, from basic luminosities and effective temperatures to masses and ages. We have developed a powerful method to unambiguously determine the extinction law and the absolute value of the extinction in a uniform way across a cluster field, using multi-band photometry of red giant stars belonging to the red clump (RC). Since these stars share very similar physical properties, they allow us to derive the absolute extinction in a straightforward and reliable way. In the Magellanic Clouds, with about 20 RC stars arcmin-2 or ~150 objects in a typical HST pointing, we can easily derive a solid and self-consistent absolute extinction curve over the entire wavelength range of the photometry, with no need for spectroscopy.I will show an application of this method to the Hubble Tarantula Treasury Project's observations of the Tarantula nebula, containing the massive R136 cluster. We have measured the absolute extinction towards about 3600 objects and the extinction law in the range 0.3 - 1.6 μm. At optical wavelengths, the extinction curve is almost parallel to that of the diffuse Galactic interstellar medium (ISM), but the value of RV = AV/E(B-V) = 4.5 ± 0.2 that we measure indicates that in the optical there is an extra grey component due to a larger fraction of large grains. Using the RV = 3.1 value typical of the diffuse Galactic ISM would severely underestimate the luminosities and masses and overestimate the ages of the stars in the cluster. At wavelengths longer than ~ 1 μm, the contribution of this additional component tapers off as λ-1.5, like in the Milky Way, suggesting that the nature of the grains is otherwise similar to those in our Galaxy, but with a ~ 2 times higher

  12. Observational evidence of dust evolution in galactic extinction curves

    SciTech Connect

    Cecchi-Pestellini, Cesare; Casu, Silvia; Mulas, Giacomo; Zonca, Alberto E-mail: silvia@oa-cagliari.inaf.it E-mail: azonca@oa-cagliari.inaf.it

    2014-04-10

    Although structural and optical properties of hydrogenated amorphous carbons are known to respond to varying physical conditions, most conventional extinction models are basically curve fits with modest predictive power. We compare an evolutionary model of the physical properties of carbonaceous grain mantles with their determination by homogeneously fitting observationally derived Galactic extinction curves with the same physically well-defined dust model. We find that a large sample of observed Galactic extinction curves are compatible with the evolutionary scenario underlying such a model, requiring physical conditions fully consistent with standard density, temperature, radiation field intensity, and average age of diffuse interstellar clouds. Hence, through the study of interstellar extinction we may, in principle, understand the evolutionary history of the diffuse interstellar clouds.

  13. Experiments and calculations on the extinction of starlight by iron or magnetite grains

    NASA Technical Reports Server (NTRS)

    Hecht, J.; Nuth, J.

    1982-01-01

    Both iron and magnetite have previously been proposed as constituents of interstellar grains. If either type of magnetic grain exists, it would help to explain the polarization of starlight which is thought to be caused by grains aligned by the interstellar magnetic field. A description is presented of laboratory measurements and computer calculations of the optical properties of small (approximately 25 nm radius) Fe and Fe304 grains. These results are discussed in terms of the effect of such particles on the extinction observed in the interstellar medium or in circumstellar shells. It is found that Fe is probably not responsible for the 220 nm feature in the interstellar extinction curve. Calculations show that if Fe304 is responsible for the very broad structure (VBS) in the interstellar extinction curve, then it would also be a significant contributor to the extinction in the near-UV.

  14. Photoluminescence by Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Vijh, U. P.

    2005-08-01

    In this dissertation, we report on our study of interstellar dust through the process of photoluminescence (PL). We present the discovery of a new band of dust PL, blue luminescence (BL) with λpeak˜370 nm in the proto-planetary nebula known as the Red Rectangle (RR). We attribute this to fluorescence by small, 3-4-ringed polycyclic aromatic hydrocarbon (PAH) molecules. Further analysis reveals additional independent evidence for the presence of small PAHs in this nebula. Detection of BL using long-slit spectroscopic observations in other ordinary reflection nebulae suggests that the BL carrier is an ubiquitous component of the ISM and is not restricted to the particular environment of the RR. We present the spatial distribution of the BL in these nebulae and find that the BL is spatially correlated with IR emission structures attributed to aromatic emission features (AEFs), attributed to PAHs. The carrier of the dust-associated photoluminescence process causing the extended red emission (ERE), known now for over twenty five years, remains unidentified. We constrain the character of the ERE carrier by determining the wavelengths of the radiation that initiates the ERE -- λ < 118 nm. We note that under interstellar conditions most PAH molecules are ionized to the di-cation stage by photons with E > 10.5 eV and that the electronic energy level structure of PAH di-cations is consistent with fluorescence in the wavelength band of the ERE. In the last few chapters of the dissertation we present first results from ongoing work: i) Using narrow-band imaging, we present the optical detection of the circum-binary disk of the RR in the light of the BL, and show that the morphology of the BL and ERE emissions in the RR nebula are almost mutually exclusive. It is very suggestive to attribute them to different ionization stages of the same family of carriers such as PAH molecules. ii) We also present a pure spectrum of the BL free of scattered light, resolved into seven

  15. EUVE measurement of the local interstellar wind and geocorona via resonance scattering of solar He I 584-A line emission

    NASA Astrophysics Data System (ADS)

    Flynn, B.; Vallerga, J.; Dalaudier, F.; Gladstone, G. R.

    1998-04-01

    We present results from EUVE measurements obtained during the all-sky survey of interplanetary and geocoronal He I 584 A emission. The data consist of count rates from the long wavelength spectrometer and the long wavelength photometric band of scanner C obtained over a one-year period from July 1992 to July 1993. During this period, EUVE was in survey mode so that the scanners made 5 x 360 sweeps of the sky in a plane perpendicular to the sun-Earth line, while the spectrometers were aligned with the antisolar direction. The interplanetary He I signal is morphologically consistent with previous observations with similar observing geometry, such as Prognoz 6. However, unlike the Prognoz 6 data, the EUVE measurements were made from LEO and so contain geocoronal emission as well. As a result, along sight lines where the relative speed between the interplanetary wind and the Earth is at a minimum, extinction of the interplanetary signal through resonance scattering by the He geocorona occurs. We believe this to be the first detection of line extinction of the local interstellar He wind emissions by the geocorona. We find that the geocoronal extinction signatures provide a new means of determining the interstellar He wind vector and emission line profile and add further constraints on the values of other interplanetary and solar He parameters and the morphology of the He geocorona.

  16. Effect of Dust Extinction on Gamma-ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Lŭ, Gu-Jing; Shao, Lang; Jin, Zhi-Ping; Wei, Da-Ming

    2011-10-01

    In order to study the effect of dust extinction on the afterglow of gamma-ray bursts (GRBs), we carry out numerical calculations with high precision based on the rigorous Mie theory and the latest optical properties of interstellar dust grains, and analyze the different extinction curves produced by dust grains with different physical parameters. Our results indicate that the absolute extinction quantity is substantially determined by the medium density and metallicity. However, the shape of the extinction curve is mainly determined by the size distribution of the dust grains. If the dust grains aggregate to form larger ones, they will cause a flatter or grayer extinction curve with lower extinction quantity. On the contrary, if the dust grains are disassociated to smaller ones due to some uncertain processes, they will cause a steeper extinction curve with larger amount of extinction. These results might provide an important insight into understanding the origin of the optically dark GRBs.

  17. Far-Ultraviolet Spectroscopy of the Circumstellar and Interstellar Environment of Young Stars

    NASA Astrophysics Data System (ADS)

    McJunkin, Matthew

    I have analyzed absorption from the CO Fourth Positive band system in the ultraviolet spectra of 6 Classical T Tauri stars, tripling the measurements in the literature. CO traces the molecular gas in the inner disk, providing constraints on the material in the planet-forming environment. I fit an absorption model in order to determine the column density and temperature of the gas in the disk. My CO rotational temperatures agree well with CO fluorescence measurements in the ultraviolet, but are in between infrared CO absorption and emission measurements. I also fit absorption profiles of HI against the Lyman-alpha emission from a large sample of young stars (Classical T Tauri and Herbig Ae/Be) in order to determine the amount of interstellar extinction along the line of sight. Knowing the extinction value will allow us to reconstruct the intrinsic emission from the stars, which is the radiation impacting the protoplanetary disk. This radiation determines the thermal and chemical structure of the material that may form planets. I find lower visual extinction values than those in the literature using optical, infrared, and X-ray measurement techniques. In addition, I have created a new technique using H2 fluorescence to empirically estimate the full ultraviolet extinction curve of young stars. I compare predicted line fluxes from my created H2 fluorescence model to observed fluxes from 7 strong progressions in order to determine the extinction over the 1100 - 1700 angstrom range. I then fit my extinction curves with models from the literature to determine best-fit Av and Rv values. I find that this technique is limited by the degeneracy between the Av and Rv values, needing one or the other to be determined independently. I hope to improve the technique and mitigate the limitations in future work.

  18. Complex Organics in Interstellar Space

    NASA Astrophysics Data System (ADS)

    Foing, B.; Ehrenfreund, P.; Ruiterkamp, R.; Cox, N.

    There are signatures of large organic molecules in the interstellar medium, from the ultraviolet to the infrared. Some infrared emission bands, which have been ascribed to families of large aromatic compounds are not specific for individual identification (and for discriminating free floating PAH molecules from loosely bound aromatics in amorphous carbon compounds). Red fluorescence and FUV absorption have also been ascribed to these aromatic compounds. Electronic transitions in the visible are a key to identify free gas phase molecules. The origin of Diffuse Interstellar Bands (Herbig 1995), more than 300 in recent surveys (O' Tuairisg et al 2000) is still a mystery. However the measurements of sub-structures rotational contours in DIBs (Ehrenfreund Foing 1996) indicate large molecules such as chains (12-18C), rings, 50 C PAHs or fullerenes. The distribution of DIB widths permit to estimate a distribution of size of molecular carriers. The environment properties of DIB carriers also indicate ionisation potentials similar to those of cations of large carbonaceous molecules, such as large PAHs or fullerenes (Sonnentrucker et al 1997). The correlation studies of DIBS also indicate different carriers for the strong DIBs observed in the visible (Cami et al 1997). DIBS are weakened in the in the low-metallicity Magellanic clouds (Ehrenfreund et al 2002, Cox et al 2004). The detection of near IR bands at 9577 and 9632 A coinciding with laboratory transitions of C60+ (Foing, Ehrenfreund 1994, 1997, Galatzudinov et al 2000 ) suggest that significant interstellar carbon could reside in complex fullerene type compounds. These results indicate that many different large and complex organic molecules can form and survive in the very harsh interstellar environments. A follow up interdisciplinary work is required between astronomical observations, laboratory matrix and gas phase spectroscopy, theoretical work and modelling, and active experiments in space to study the formation

  19. X-ray Haloes and Scattering by Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2003-01-01

    The presence of dust in the general interstellar medium is inferred f r o m the general extinction of starlight, the diffuse infrared emission, and the elemental abundance constraints. X-ray haloes around X-ray sources, produced by small angle scattering from intervening interstellar dust particles provide a new probe into the nature of interstellar dust. In this talk I will review the physics of X-ray scattering by dust particles, and present an analysis of dust properties around select X-ray sources.

  20. X-ray Haloes and Scattering by Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2003-01-01

    The presence of dust in the general interstellar medium is inferred from the general extinction of starlight, the diffuse infrared emission, and the elemental abundance constraints. X-ray haloes around X-ray sources, produced by small angle scattering from intervening interstellar dust particles provide a new probe into the nature of interstellar dust. In this talk I will review the physics of X-ray scattering by dust particles, and present an analysis of dust properties around select X-ray sources.

  1. Preliminary results on interstellar reddening as deduced from filter photometry

    NASA Technical Reports Server (NTRS)

    Laget, M.

    1972-01-01

    Filter photometry has been used to derive the interstellar reddening law from stars through the study of a single spectral type, B0. The deficiency in the far ultraviolet flux of a supergiant relative to a main sequence star is compared with the difference in the flux distribution due to a change of one spectral class. Individual interstellar reddening curves show the general feature reported by Stecher (1969) and by Bless and Savage (1970). There is a large amount of scatter in the far ultraviolet which may be partially due to a real difference in interstellar extinction and partially due to observational inaccuracy.

  2. Extinctions of life

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1988-01-01

    This meeting presentation examines mass extinctions through earth's history. Extinctions are charted for marine families and marine genera. Timing of marine genera extinctions is discussed. Periodicity in extinctions during the Mesozoic and Cenozoic eras is plotted and compared with Paleozoic extinction peaks. The role of extinction in evolution and mankind's role in present extinctions are examined.

  3. Science with the Galactic O-Star Spectroscopic Survey (GOSSS): the relationship between DIBs, the ISM, and extinction

    NASA Astrophysics Data System (ADS)

    Penades Ordaz, M.; Maíz Apellániz, J.; Sota, A.; Alfaro, E. J.; Walborn, N. R.; Barbá, R. H.; Morrell, N. I.; Arias, J. I.; Gamen, R. C.

    2011-11-01

    In this poster we show our preliminary analysis of DIBs (Diffuse Interstellar Bands) and other interstellar absorption lines with the purpose of understanding their origin and their relationship with extinction. We use the biggest Galactic O-star blue-violet spectroscopic sample ever (GOSSS, see Maíz Apellániz, these proceedings). This sample allows a new insight on this topic because of the adequacy of O-star spectra, the sample number (700 by early 2010 and increasing; 400 are used here), and their distribution in the Milky Way disk. We confirm the high correlation coefficients between different DIBs and E(B-V), though the detailed behavior of each case shows small differences. We also detect a moderately low correlation coefficient between CaII lambda 3934 (Ca K) and E(B-V) with a peculiar spatial distribution that we ascribe to the relationship between line saturation and velocity profiles for CaII lambda 3934.

  4. Australian Extinctions

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massive extinctions of animals and the arrival of the first humans in ancient Australia--which occurred 45,000 to 55,000 years ago--may be linked. Researchers at the Carnegie Institution, University of Colorado, Australian National University, and Bates College believe that massive fires set by the first humans may have altered the ecosystem of…

  5. Ultraviolet spectra of quenched carbonaceous composite derivatives: Comparison to the '217 nanometer' interstellar absorption feature

    NASA Technical Reports Server (NTRS)

    Sakata, Akira; Wada, Setsuko; Tokunaga, Alan T.; Narisawa, Takatoshi; Nakagawa, Hidehiro; Ono, Hiroshi

    1994-01-01

    QCCs (quenched carbonaceous composite) are amorphus carbonaceous material formed from a hydrocarbon plasma. We present the UV-visible spectra of 'filmy QCC; (obtained outside of the beam ejected from the hydrocarbon plasma) and 'dark QCC' (obtained very near to the beam) for comparison to the stellar extinction curve. When filmy QCC is heated to 500-700 C (thermally altered), the wavelength of the absorption maximum increases form 204 nm to 220-222 nm. The dark QCC has an absorption maximum at 217-222 nm. In addition, the thermally altered filmy QCC has a slope change at about 500 nm which resmbles that in the interstellar extinction curve. The resemblance of the extinction curve of the QCCs to that of the interstellar medium suggests that QCC derivatives may be representative of the type of interstellar material that produces the 217 nm interstellar medium feature. The peak extinction of the dark QCC is higher than the average interstellar extinction curve while that of the thermally altered filmy QCC is lower, so that a mixture of dark and thermally altered filmy QCC can match the peak extinction observed in the interstellar medium. It is shown from electron micrographs that most of the thermally altered flimy QCC is in the form of small grainy structure less than 4 nm in diameter. This shows that the structure unit causing the 217-222 nm feature in QCC is very small.

  6. Photoluminescence by Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Vijh, U. P.

    2005-12-01

    In this dissertation talk, I will report on our study of interstellar dust through the process of photoluminescence (PL). We present the discovery of a new band of dust PL, blue luminescence (BL) with λ peak ˜ 370 nm in the proto-planetary nebula known as the Red Rectangle (RR). We attribute this to fluorescence by small, 3-4-ringed polycyclic aromatic hydrocarbon (PAH) molecules. Further analysis reveals additional independent evidence for the presence of small PAHs in this nebula. Detection of BL using long-slit spectroscopic observations in other ordinary reflection nebulae suggests that the BL carrier is an ubiquitous component of the ISM and is not restricted to the particular environment of the RR. We present the spatial distribution of the BL in these nebulae and find that the BL is spatially correlated with IR emission structures attributed to aromatic emission features (AEFs), attributed to PAHs. The carrier of the dust-associated photoluminescence process causing the extended red emission (ERE), known now for over twenty five years, remains unidentified. We constrain the character of the ERE carrier by determining the wavelengths of the radiation that initiates the ERE -- λ < 118 nm. We note that under interstellar conditions most PAH molecules are ionized to the di-cation stage by photons with E > 10.5 eV and that the electronic energy level structure of PAH di-cations is consistent with fluorescence in the wavelength band of the ERE. I will also present first results from ongoing work: Using narrow-band imaging, we present the optical detection of the circum-binary disk of the RR in the light of the BL, and show that the morphology of the BL and ERE emissions in the RR nebula are almost mutually exclusive. It is very suggestive to attribute them to different ionization stages of the same family of carriers such as PAH molecules. Financial support for this study was provided through NSF Grant AST0307307 to The University of Toledo.

  7. Mass extinctions and missing matter

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1984-01-01

    The possible influence of 'invisible matter' on the solar system's comet halo, and therefore on quasi-periodic cometary bombardment of the earth and consequent mass extinctions, is briefly addressed. Invisible matter consisting of small or cold interstellar molecular clouds could significantly modulate the comet background flux, while invisible matter consisting of a large population of old, dead stars with a relatively small galactic concentration probably could not. It is also shown that the downward force exerted by the Galaxy will perturb the halo, but will not produce any periodicity.

  8. Organic molecules in translucent interstellar clouds.

    PubMed

    Krełowski, Jacek

    2014-09-01

    Absorption spectra of translucent interstellar clouds contain many known molecular bands of CN, CH+, CH, OH, OH(+), NH, C2 and C3. Moreover, one can observe more than 400 unidentified absorption features, known as diffuse interstellar bands (DIBs), commonly believed to be carried by complex, carbon-bearing molecules. DIBs have been observed in extragalactic sources as well. High S/N spectra allow to determine precisely the corresponding column densities of the identified molecules, rotational temperatures which differ significantly from object to object in cases of centrosymmetric molecular species, and even the (12)C/(13)C abundance ratio. Despite many laboratory based studies of possible DIB carriers, it has not been possible to unambiguously link these bands to specific species. An identification of DIBs would substantially contribute to our understanding of chemical processes in the diffuse interstellar medium. The presence of substructures inside DIB profiles supports the idea that DIBs are very likely features of gas phase molecules. So far only three out of more than 400 DIBs have been linked to specific molecules but none of these links was confirmed beyond doubt. A DIB identification clearly requires a close cooperation between observers and experimentalists. The review presents the state-of-the-art of the investigations of the chemistry of interstellar translucent clouds i.e. how far our observations are sufficient to allow some hints concerning the chemistry of, the most common in the Galaxy, translucent interstellar clouds, likely situated quite far from the sources of radiation (stars). PMID:25467771

  9. Laboratory Studies of Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  10. Molecular Spectroscopy in Astrophysics: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A long-term laboratory effort has been undertaken to measure the physical and chemical characteristics of these carbon molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The laboratory results will be discussed as well as the implications for astronomy and for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. We will also present the new generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.

  11. Local Interstellar Medium. International Astronomical Union Colloquium No. 81

    NASA Technical Reports Server (NTRS)

    Kondo, Y. (Editor); Bruhweiler, F. C. (Editor); Savage, B. D. (Editor)

    1984-01-01

    Helium and hydrogen backscattering; ultraviolet and EUV absorption spectra; optical extinction and polarization; hot gases; soft X-ray observations; infrared and millimeter wavelengths; radio wavelengths and theoretical models of the interstellar matter within about 150 parsecs of the Sun were examined.

  12. The interstellar C3 chain molecule in different interstellar environments

    NASA Astrophysics Data System (ADS)

    Galazutdinov, G.; Pětlewski, A.; Musaev, F.; Moutou, C.; Lo Curto, G.; Krelowski, J.

    2002-12-01

    We present an analysis of spectra of six stars taken with high resolution (R=220 000). The stars are reddened by molecular clouds that differ by the relative strength of the 5797 and 5780 diffuse interstellar bands (DIBs). The high signal-to-noise ratio of the spectra (S/N ~ 700-1000) shows that the abundance of the linear molecule C3 with respect to EB-V varies considerably from one star to an other. There is no correlation with EB-V. The strong variations in the abundance of C3 must therefore be caused by another circumstance. We point out that this may be the case: from an analysis of the interstellar potassium lines in the same spectra we conclude large differences in the state of ionization produced by interstellar photons with energies below the ionization potential of hydrogen. The ratio of the abundances of C3 and C2 varies considerably in different directions, even when the ratio between the strengths of various DIBs remains approximately constant. Based on data collected at the ESO 3.6 m telescope operated on La Silla Observatory, Chile.

  13. Interstellar grain chemistry and organic molecules

    NASA Astrophysics Data System (ADS)

    Allamandola, L. J.; Sandford, S. A.

    1990-04-01

    The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.

  14. Interstellar grain chemistry and organic molecules

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.

    1990-01-01

    The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.

  15. The violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Mccray, R.; Snow, T. P., Jr.

    1979-01-01

    Observational evidence for high-velocity and high-temperature interstellar gas is reviewed. The physical processes that characterize this gas are described, including the ionization and emissivity of coronal gas, the behavior and appearance of high-velocity shocks, and interfaces between coronal gas and cooler interstellar gas. Hydrodynamical models for the action of supernova explosions and stellar winds on the interstellar medium are examined, and recent attempts to synthesize all the processes considered into a global model for the interstellar medium are discussed.

  16. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D.

    1981-01-01

    The International Ultraviolet Explorer observations of interstellar zinc toward 10 stars are examined. It is found that zinc is at most only slightly depleted in the interstellar medium; its abundance may serve as a tracer of the true metallicity in the gas. The local interstellar medium has abundances that apparently are homogeneous to within a factor of two, when integrated over paths of about 500 pc, and this result is important for understanding the history of nucleosynthesis in the solar neighborhood. The intrinsic errors in detecting weak interstellar lines are analyzed and suggestions are made as to how this error limit may be lowered to 5 mA per target observation.

  17. Effects of Interstellar Dust on the Photometric Properties of Faint Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Bruzual, G. A.; Magris, C.

    1986-02-01

    We compute the effects of interstellar dust on the photometric properties of disk galaxies in several photographic and photoelectric bands. The solution to the radiative transfer problem including absorption and multiple scattering 0+ light by dust grains is taken from a previous paper by the authors (Magris and Bruzual, this conference). We present magnitudes and colors V. redshift for galaxies seen at different inclination angles and with different values of the optical depth through the plane of the galaxy. The results are compared with those obtained from a straightforward application of the galactic extinction law. It is concluded that in order to properly take into account the effects of dust in the photometric properties of distant galaxies of cosmological interest it is necessary to use correction factors such as those of Magris and Bruzual.

  18. Carriers of the astronomical 2175 ? extinction feature

    SciTech Connect

    Bradley, J; Dai, Z; Ernie, R; Browning, N; Graham, G; Weber, P; Smith, J; Hutcheon, I; Ishii, H; Bajt, S; Floss, C; Stadermann, F

    2004-07-20

    The 2175 {angstrom} extinction feature is by far the strongest spectral signature of interstellar dust observed by astronomers. Forty years after its discovery the origin of the feature and the nature of the carrier remain controversial. The feature is enigmatic because although its central wavelength is almost invariant its bandwidth varies strongly from one sightline to another, suggesting multiple carriers or a single carrier with variable properties. Using a monochromated transmission electron microscope and valence electron energy-loss spectroscopy we have detected a 5.7 eV (2175 {angstrom}) feature in submicrometer-sized interstellar grains within interplanetary dust particles (IDPs) collected in the stratosphere. The carriers are organic carbon and amorphous silicates that are abundant and closely associated with one another both in IDPs and in the interstellar medium. Multiple carriers rather than a single carrier may explain the invariant central wavelength and variable bandwidth of the astronomical 2175 {angstrom} feature.

  19. Polarimetry of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    The talk will review what is known about the composition of ices and organics in the dense and diffuse interstellar media (ISM). Mixed molecular ices make up a significant fraction of the solid materials in dense molecular clouds and it is now known that thermal and radiation processing of these ices results in the production of more complex organic species, some of which may survive transport into forming stellar systems and the diffuse ISM. Molecular species identified in interstellar ices include H2O, CH3OH, CO, CH4, CO2, and somewhat surprisingly, H2. Theoretical and laboratory studies of the processing of interstellar analog ices containing these species indicate that species like HCO, H2CO, CH3, and NH3 are readily made and should also be present. The irradiation of mixed molecular ices containing these species, when followed by warming, leads to the production of a large variety of more complex species, including ethanol (CH3CH2OH), formamide (HC(=O)NH2), acetamide (CH3C(=O)NH2), nitriles or isonitriles (R-CN or R-NC hexamethylenetetramine (HMT; C6H12N4), a number of polymeric species related to polyoxymethylene [POM,(-CH2O-)n], and ketones {R-C(=O)-R'}. Spectral studies of dust in the diffuse ISM indicate the presence of fairly complex organics, some of which may be related to the organics produced in dense molecular clouds. Spectral comparisons indicate that the diffuse ISM organics may be quite similar to meteoritic kerogens, i.e. they may consist largely of aromatic moieties interlinked by short aliphatic bridges. Interestingly, recent evidence indicates that the galactic distribution of this material closely matches that of silicates, but does not correlate directly with visual extinction. This implies that a large fraction of the visual extinction is caused by a material other than these organics and silicates and that this other material has a significantly different distribution within the galaxy.

  20. NASA's IBEX Observes Interstellar Matter

    NASA Video Gallery

    The Interstellar Boundary Explorer (IBEX) has directly sampled multiple heavy elements from the Local Interstellar Cloud for the first time. It turns out that this interstellar material is not like...

  1. The effects of metallicity, radiation field and dust extinction on the charge state of PAHs in diffuse clouds: implications for the DIB carrier

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.; Spaans, M.

    2006-06-01

    Context.The unidentified diffuse interstellar bands (DIB) are observed throughout the Galaxy, the Local Group and beyond. Their carriers are possibly related to complex carbonaceous gas-phase molecules, such as (cationic) polycyclic aromatic hydrocarbons and fullerenes. Aims.In order to reveal the identity of the DIB carrier we investigate the effects of metallicity, radiation field and extinction curve on the PAH charge state distribution, and thus the theoretical emergent PAH spectrum, in diffuse interstellar clouds. This behaviour can then be linked to that of the DIB carrier, thus giving insight into its identity. Methods.We use radiative transfer and chemical models to compute the physical and chemical conditions in diffuse clouds with Galactic and Magellanic Cloud types of interstellar dust and gas. Subsequently, the PAH charge state distributions throughout these clouds are determined. Results.We find that the fraction of PAH cations is much higher in the Magellanic Cloud environments than in the Milky Way, caused predominantly by the respective lower metallicities, and mitigated by the steeper UV extinction curve. The fraction of anions is much lower in a low metallicity environment. The predicted DIB strength of cationic PAH carriers is similar to that of the Milk Way for the LMC and 40% for the SMC due to the overall metallicity. Stronger DIBs could be expected in the Magellanic Clouds if they emanate from clouds that are exposed to an average interstellar radiation field that is significantly stronger than in the Milky Way, although photo-destruction processes could possibly reduce this effect, especially for the smaller PAHs. Our results show that the presence and absence of DIB carriers in the Magellanic Cloud lines of sight can be tied to the PAH charge balance which is driven by metallicity, UV radiation and dust extinction effects.

  2. Impossible Extinction

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.

    2003-03-01

    Every 225 million years the Earth, and all the life on it, completes one revolution around the Milky Way Galaxy. During this remarkable journey, life is influenced by calamitous changes. Comets and asteroids strike the surface of the Earth, stars explode, enormous volcanoes erupt, and, more recently, humans litter the planet with waste. Many animals and plants become extinct during the voyage, but humble microbes, simple creatures made of a single cell, survive this journey. This book takes a tour of the microbial world, from the coldest and deepest places on Earth to the hottest and highest, and witnesses some of the most catastrophic events that life can face. Impossible Extinction tells this remarkable story to the general reader by explaining how microbes have survived on Earth for over three billion years. Charles Cockell received his doctorate from the University of Oxford, and is currently a microbiologist with rhe Search for Extraterrestrial Intelligence Institute (SETI), based at the British Antarctic Survey in Cambridge, UK. His research focusses on astrobiology, life in the extremes and the human exploration of Mars. Cockell has been on expeditions to the Arctic, Antarctic, Mongolia, and in 1993 he piloted a modified insect-collecting ultra-light aircraft over the Indonesian rainforests. He is Chair of the Twenty-one Eleven Foundation for Exploration, a charity that supports expeditions that forge links between space exploration and environmentalism.

  3. Is interstellar archeology possible?

    NASA Astrophysics Data System (ADS)

    Carrigan, Richard A.

    2012-09-01

    Searching for signatures of cosmic-scale archeological artifacts such as Dyson spheres is an interesting alternative to conventional radio SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archeology or sometimes cosmic archeology. A variety of interstellar archeology signatures is discussed including non-natural planetary atmospheric constituents, stellar doping, Dyson spheres, as well as signatures of stellar, and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is reviewed in the discussion of galactic signatures. These potential interstellar archeological signatures are classified using the Kardashev scale. A modified Drake equation is introduced. With few exceptions interstellar archeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.

  4. The galactic distribution of aliphatic hydrocarbons in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Pendleton, Yvonne J.; Allamandola, Louis J.

    1995-01-01

    The infrared absorption feature near 2950(exp -1) (3.4 micron), characteristic of dust in the diffuse interstellar medium (ISM), is attributed to C-H stretching vibrations of aliphatic hydrocarbons. We show here that the strength of the band does not scale linearly with visual extinction everywhere, but instead increases more rapidly for objects near the center of the Galaxy, a behavior that parallels that of the Si-O stretching band due to silicate materials in the diffuse ISM. This implies that the grains responsible for the diffuse medium aliphatic C-H and silicate Si-O stretching bands are different from those responsible for much of the observed visual extinction. It also suggests that the distribution of the carbonaceous component of the diffuse ISM is not uniform throughout the Galaxy, but instead may increase in density toward the center of the Galaxy. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of silicate-core, organic-mantle grains. Several possible models of the distribution of this material are presented and it is demonstrated that the inner parts of the Galaxy has a carrier density that is 5 to 35 times higher than in the local ISM. Depending on the model used, the density of aliphatic material in the local ISM is found to be about 1 to 2 -CH3 groups m(exp -3) and about 2 to 5 -CH2- groups m(exp -3). These densities are consistent with the strengths of the 2955 and 2925 cm(exp -1) (3.4 micron) band being described by the relations A(sub nu)/tau(sub 2955 cm(exp -1)) = 270 +/- 40 and A(sub nu)/tau(sub 2925 cm(exp -1)) = 250 +/- 40 in the local diffuse ISM.

  5. The Galactic Distribution of Aliphatic Hydrocarbons in the Diffuse Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Pendleton, Yvonne J.; Allamandola, Louis J.

    1995-01-01

    The infrared absorption feature near 2950/ cm (3.4 microns), characteristic of dust in the diffuse interstellar medium (ISM), is attributed to C-H stretching vibrations of aliphatic hydrocarbons. We show here that the strength of the band does not scale linearly with visual extinction everywhere, but instead increases more rapidly for objects near the center of the Galaxy, a behavior that parallels that of the Si-O stretching band due to silicate materials in the diffuse ISM. This implies that the grains responsible for the diffuse medium aliphatic C-H and silicate Si-O stretching bands are different from those responsible for much of the observed visual extinction. It also suggests that the distribution of the carbonaceous component of the diffuse ISM is not uniform throughout the Galaxy, but instead may increase in density toward the center of the Galaxy. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of silicate-core, organic-mantle grains. Several possible models of the distribution of this material are presented and it is demonstrated that the inner parts of the Galaxy has a carrier density that is 5 to 35 times higher than in the local ISM. Depending on the model used, the density of aliphatic material in the local ISM is found to be about 1 to 2 -CH3 groups /cc and about 2 to 5 -CH2- groups/cc. These densities are consistent with the strengths of the 2955 and 2925/ cm (3.38 and 3.42 microns) subfeatures (due to -CH3 and -CH2- groups, respectively) within the overall 2950/ cm (3.4 microns) band being described by the relations A(sub upsilon)/tau(sub 2925/cm) = 270 +/- 40 and A(sub upsilon)/tau(sub 2925/cm) = 250 +/- 40 in the local diffuse ISM.

  6. IR emission and UV extinction in two open clusters

    NASA Technical Reports Server (NTRS)

    Hackwell, James A.; Hecht, James H.

    1989-01-01

    Recent models of interstellar extinction have shown the importance of understanding both the UV and IR properties of interstellar dust grains. IRAS data have shown variations in 60 and 100 micron emissions presumably due to the presence of IR cirrus, while recent observations in the UV by Fitzpatrick and Massa have identified components in the UV extinction curve which vary in different star regions. A Draine and Anderson model connects these results by proposing that different size variations in interstellar grains would cause distinct changes in both the IR emission and the UV extinction. In order to test this model it is necessary to make observations in well defined locations away from peculiar extinction regions. In the infrared this means looking away from the galactic plane so as to limit non-local sources of IR radiation. Two open clusters that are out of the galactic plane and which contain a number of late B and early A stars suitable for UV extinction studies, and whose IRAS data show variations in the 60/100 micron ratio were studied. Based on the Drain and Anderson model, variations were expected in their UV extinction curves that correlate with the IR cirrus emission.

  7. On the Homogeneity of the Extinction Law in our Galaxy

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Galazutdinov, G.; Patriarchi, P.; Krełowski, J.

    2006-06-01

    We analyze the extinction law towards several B1V stars -- members of our Galaxy, searching for possible discrepancies from the galactic average extinction curve. Our photometric data allow to build extinction curves in a very broad range: from extreme UV till infrared. Two--colour diagrams, based on the collected photometric data from the ANS UV satellite, published UBV measurements and on the infrared 2MASS data of the selected stars, are constructed. Slopes of the fitted straight lines are used to build the average extinction curve and to search for discrepant objects. The selected stars have also been observed spectroscopically from the Terskol and ESO Observatories; these spectra allow to check their Sp/L's. The spectra of only about 30% of the initially selected objects resemble closely that of HD144470, considered as the standard of B1 V type. Other spectra either show some emission features or belong clearly to another spectral types. They are not used to build the extinction curve. Two-colour diagrams, constructed for the selected B1 V stars, showing no emission stellar features, prove that the interstellar extinction law is homogeneous in the Galaxy. Both the shape of the curve and the total--to--selective extinction ratio do not differ from the galactic average and the canonical value (3.1) respectively. The circumstellar emissions usually cause some discrepancies from the average interstellar extinction law; the discrepancies observed in the extraterrestrial ultraviolet, usually follow some misclassifications.

  8. A prelude to interstellar flight

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Norton, H. N.

    1980-01-01

    A 20 to 50 year interstellar precursor mission extending 400 to 1000 AU from the solar system is outlined as a means of bringing out and solving engineering problems inherent in a star mission, and of studying the heliopause, the interstellar medium, and cosmic rays outside the heliosphere. Solar or laser sailing combined with a 500 kWe nuclear-electric propulsion system using fission would achieve a heliocentric excess velocity of 100km/s for the 32,000 kg spacecraft having a Shuttle derivative as a launch vehicle, and containing a Pluto flyby or separate orbiter powered by radioiosotope thermoelectric generators. X-band transmission using 40 w of power, a 15 m diameter spacecraft antenna and a 100 m receiving antenna on earth and providing 100 b/s is proposed, but a rate of 2 to 4 kb/s via 500 to 1000 w of power using the K-band and a 300 m diameter receiving antenna located on an Orbiting Deep Space Relay Station is also considered.

  9. PAH in the laboratory and interstellar space

    NASA Technical Reports Server (NTRS)

    Wdowiak, Thomas J.; Flickinger, Gregory C.; Boyd, David A.

    1989-01-01

    The theory that polycyclic aromatic hydrocarbons (PAHs) are a constituent of the interstellar medium, and a source of the IR emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 microns is being studied using PAH containing acid insoluble residue of the Orgueil CI meteorite and coal tar. FTIR spectra of Orgueil PAH material that has undergone thermal treatment, and a solvent insoluble fraction of coal tar that has been exposed to hydrogen plasma are presented. The UV excided luminescence spectrum of a solvent soluble coal tar film is also shown. Comparison of the lab measurements with observations appears to support the interstellar PAH theory, and shows the process of dehydrogenation expected to take place in the interstellar medium.

  10. Processing Mechanisms for Interstellar Ices: Connections to the Solar System

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    The organic component of the interstellar medium, which has revealed itself through the ubiquitous 3.4 micrometers hydrocarbon absorption feature, is widespread throughout the disk of our galaxy and has been attributed to dust grains residing in the diffuse interstellar medium. The absorption band positions near 3.4 micrometers are characteristic of C-H stretching vibrations in the -CH3 and -CH2- groups of saturated aliphatic hydrocarbons associated with perturbing chemical groups. The production of complex molecules is thought to occur within dense molecular clouds when ice-mantled grains are processed by various energetic mechanisms. Studies of the processing of interstellar ices and the subsequent production of organic residues have relevance to studies of ices in the solar system, because primitive, icy solar system bodies such as those in the Kuiper belt are likely reservoirs of organic material, either preserved from the interstellar medium or produced in situ. Connections between the interstellar medium and the early solar nebula have long been a source of interest. A comparison of the interstellar organics and the Murchison meteorite illustrates the importance of probing the interstellar connection to the solar system, because although the carbonaceous meteorites are undoubtedly highly processed, they do retain specific interstellar signatures (such as diamonds, SiC grains, graphite and enriched D/H). The organic component, while not proven interstellar, has a remarkable similarity to the interstellar organics observed in over a dozen sightlines through our galaxy. This paper compares spectra from laboratory organics produced through the processing of interstellar ice analog materials with the high resolution infrared observations of the interstellar medium in order to investigate the mechanisms (such as ion bombardment, plasma processing, and UV photolysis) that may be producing the organics in the ISM.