Science.gov

Sample records for interventional robotics part

  1. [Overview of the vascular interventional surgery robot].

    PubMed

    Li, Shenglin; Shen, Jie; Yan, Yonghua; Chen, Daguo

    2013-03-01

    In vascular invasive surgery procedures, because doctors suffered from a large number of X-ray radiation, and it is difficult to manipulate catheter, so vascular interventional robot has been rapidly developed. On the basis of analysis of vascular surgical intervention process, key technologies of vascular interventional surgical robots are provided. The image navigation system, the mechanical structure, control systems and force feedback are also analyzed. PMID:23777068

  2. MRI-powered Actuators for Robotic Interventions

    PubMed Central

    Vartholomeos, Panagiotis; Qin, Lei; Dupont, Pierre E.

    2012-01-01

    This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner. The design concept and performance limits are described and derived analytically. Simulation and experiments in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach for needle biopsies. The concepts of actuator locking mechanisms and multi-axis control are also introduced. PMID:22287082

  3. Marking parts to aid robot vision

    NASA Technical Reports Server (NTRS)

    Bales, J. W.; Barker, L. K.

    1981-01-01

    The premarking of parts for subsequent identification by a robot vision system appears to be beneficial as an aid in the automation of certain tasks such as construction in space. A simple, color coded marking system is presented which allows a computer vision system to locate an object, calculate its orientation, and determine its identity. Such a system has the potential to operate accurately, and because the computer shape analysis problem has been simplified, it has the ability to operate in real time.

  4. [Principles of MR-guided interventions, surgery, navigation, and robotics].

    PubMed

    Melzer, A

    2010-08-01

    The application of magnetic resonance imaging (MRI) as an imaging technique in interventional and surgical techniques provides a new dimension of soft tissue-oriented precise procedures without exposure to ionizing radiation and nephrotoxic allergenic, iodine-containing contrast agents. The technical capabilities of MRI in combination with interventional devices and systems, navigation, and robotics are discussed. PMID:20700775

  5. Interventional robotic systems: Applications and technology state-of-the-art

    PubMed Central

    CLEARY, KEVIN; MELZER, ANDREAS; WATSON, VANCE; KRONREIF, GERNOT; STOIANOVICI, DAN

    2011-01-01

    Many different robotic systems have been developed for invasive medical procedures. In this article we will focus on robotic systems for image-guided interventions such as biopsy of suspicious lesions, interstitial tumor treatment, or needle placement for spinal blocks and neurolysis. Medical robotics is a young and evolving field and the ultimate role of these systems has yet to be determined. This paper presents four interventional robotics systems designed to work with MRI, CT, fluoroscopy, and ultrasound imaging devices. The details of each system are given along with any phantom, animal, or human trials. The systems include the AcuBot for active needle insertion under CT or fluoroscopy, the B-Rob systems for needle placement using CT or ultrasound, the INNOMOTION for MRI and CT interventions, and the MRBot for MRI procedures. Following these descriptions, the technology issues of image compatibility, registration, patient movement and respiration, force feedback, and control mode are briefly discussed. It is our belief that robotic systems will be an important part of future interventions, but more research and clinical trials are needed. The possibility of performing new clinical procedures that the human cannot achieve remains an ultimate goal for medical robotics. Engineers and physicians should work together to create and validate these systems for the benefits of patients everywhere. PMID:16754193

  6. Robotics Programming Competition Spheres, Russian Part

    NASA Astrophysics Data System (ADS)

    Sadovski, Andrei; Kukushkina, Natalia; Biryukova, Natalia

    2016-07-01

    Spheres" such name was done to Russian part of the Zero Robotics project which is a student competition devoted to programming of SPHERES (SPHERES - Synchronized Position Hold Engage and Reorient Experimental Satellites are the experimental robotics devices which are capable of rotation and translation in all directions, http://ssl.mit.edu/spheres/), which perform different operations on the board of International Space Station. Competition takes place online on http://zerorobotics.mit.edu. The main goal is to develop a program for SPHERES to solve an annual challenge. The end of the tournament is the real competition in microgravity on the board of ISS with a live broadcast. The Russian part of the tournament has only two years history but the problems, organization and specific are useful for the other educational projects especially for the international ones. We introduce the history of the competition, its scientific and educational goals in Russia and describe the participation of Russian teams in 2014 and 2015 tournaments. Also we discuss the organizational problems.

  7. “MRI Stealth” robot for prostate interventions

    PubMed Central

    STOIANOVICI, DAN; SONG, DANNY; PETRISOR, DORU; URSU, DANIEL; MAZILU, DUMITRU; MUTENER, MICHAEL; SCHAR, MICHAEL; PATRICIU, ALEXANDRU

    2011-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep (1), designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the “MRI stealth” robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager’s room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low

  8. Robotic burnishing system for solid film lubricant coated parts

    SciTech Connect

    Fureigh, M.L.

    1986-05-01

    A robotic burnishing system in the Painting Department reduced the operation average standard hour content by 64% and maintains a good part-to-part quality level for a group of parts coated with solid film lubricant. Required to be safe and simple to operate, the system uses a small PUMA 260 robot to process coated axisymmetrical pieceparts. Special tooling and seven pairs of robotic fingers were designed and built to handle 24 different small pieceparts. Individual robotic programs were created for each part and stored on 5-1/4 in. floppy disks with backup copies in Numerical Control. The operators and the manufacturing department readily accepted the robotic system. Additional part geometries will be developed for robotic processing. 12 figs.

  9. Robotic Image-Guided Needle Interventions of the Prostate

    PubMed Central

    Mozer, Pierre C; Partin, Alan W; Stoianovici, Dan

    2009-01-01

    Prostate biopsy and needle-directed prostate therapies are currently performed free-handed or with needle external templates under ultrasound guidance. Direct image-guided intervention robots are modern instruments that have the potential to substantially enhance these procedures. These may increase the accuracy and repeatability with which needles are placed in the gland. The authors’ group has developed a robot for precise prostate targeting that operates remotely alongside the patient in the magnetic resonance imaging scanner, as guided according to the image. PMID:19390670

  10. A parallel wire robot for epicardial interventions.

    PubMed

    Costanza, Adam D; Wood, Nathan A; Passineau, Michael J; Moraca, Robert J; Bailey, Stephen H; Yoshizumi, Tomo; Riviere, Cameron N

    2014-01-01

    This paper describes the design and preliminary testing of a planar parallel wire robot that adheres to the surface of the beating heart and provides a stable platform for minimally invasive epicardial therapies. The device is deployed through a small subxiphoid skin incision and attaches to the heart using suction. This methodology obviates mechanical stabilization and lung deflation, which are typically required during minimally invasive beating-heart surgery. The prototype design involves three vacuum chambers connected by two flexible arms. The chambers adhere to the epicardium, forming the vertices of a triangular base structure. Three cables connect a movable end-effector head to the three bases; the cables then pass out of the body to external actuators. The surgical tool moves within the triangular workspace to perform injections, ablation, or other tasks on the beating heart. Tests in vitro and in vivo were conducted to demonstrate the capabilities of the system. Tests in vivo successfully demonstrated the ability to deploy through a subxiphoid incision, adhere to the surface of the beating heart, move the surgical tool head within the robot's workspace, and perform injections into the myocardium. PMID:25571402

  11. Safety issues in robotic handling of nuclear weapon parts

    SciTech Connect

    Drotning, W.; Wapman, W.; Fahrenholtz, J.

    1993-12-31

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive weapon parts. These systems will reduce the occupational radiation exposure to workers by automating operations that are currently performed manually. The robotic systems at Sandia incorporate several levels of mechanical, electrical, and software safety for handling hazardous materials. For example, tooling used by the robot to handle radioactive parts has been designed with mechanical features that allow the robot to release its payload only at designated locations in the robotic workspace. In addition, software processes check for expected and unexpected situations throughout the operations. Incorporation of features such as these provides multiple levels of safety for handling hazardous or valuable payloads with automated intelligent systems.

  12. A Parallel Wire Robot for Epicardial Interventions

    PubMed Central

    Costanza, Adam D.; Wood, Nathan A.; Passineau, Michael J.; Moraca, Robert J.; Bailey, Stephen H.; Yoshizumi, Tomo; Riviere, Cameron N.

    2015-01-01

    This paper describes the design and preliminary testing of a planar parallel wire robot that adheres to the surface of the beating heart and provides a stable platform for minimally invasive epicardial therapies. The device is deployed through a small subxiphoid skin incision and attaches to the heart using suction. This methodology obviates mechanical stabilization and lung deflation, which are typically required during minimally invasive beating-heart surgery. The prototype design involves three vacuum chambers connected by two flexible arms. The chambers adhere to the epicardium, forming the vertices of a triangular base structure. Three cables connect a movable end-effector head to the three bases; the cables then pass out of the body to external actuators. The surgical tool moves within the triangular workspace to perform injections, ablation, or other tasks on the beating heart. Tests in vitro and in vivo were conducted to demonstrate the capabilities of the system. Tests in vivo successfully demonstrated the ability to deploy through a subxiphoid incision, adhere to the surface of the beating heart, move the surgical tool head within the robot’s workspace, and perform injections into the myocardium. PMID:25571402

  13. An affordable compact humanoid robot for Autism Spectrum Disorder interventions in children.

    PubMed

    Dickstein-Fischer, Laurie; Alexander, Elizabeth; Yan, Xiaoan; Su, Hao; Harrington, Kevin; Fischer, Gregory S

    2011-01-01

    Autism Spectrum Disorder impacts an ever-increasing number of children. The disorder is marked by social functioning that is characterized by impairment in the use of nonverbal behaviors, failure to develop appropriate peer relationships and lack of social and emotional exchanges. Providing early intervention through the modality of play therapy has been effective in improving behavioral and social outcomes for children with autism. Interacting with humanoid robots that provide simple emotional response and interaction has been shown to improve the communication skills of autistic children. In particular, early intervention and continuous care provide significantly better outcomes. Currently, there are no robots capable of meeting these requirements that are both low-cost and available to families of autistic children for in-home use. This paper proposes the piloting the use of robotics as an improved diagnostic and early intervention tool for autistic children that is affordable, non-threatening, durable, and capable of interacting with an autistic child. This robot has the ability to track the child with its 3 degree of freedom (DOF) eyes and 3-DOF head, open and close its 1-DOF beak and 1-DOF each eyelids, raise its 1-DOF each wings, play sound, and record sound. These attributes will give it the ability to be used for the diagnosis and treatment of autism. As part of this project, the robot and the electronic and control software have been developed, and integrating semi-autonomous interaction, teleoperation from a remote healthcare provider and initiating trials with children in a local clinic are in progress. PMID:22255539

  14. Impact of Robotics and Geospatial Technology Interventions on Youth STEM Learning and Attitudes

    ERIC Educational Resources Information Center

    Nugent, Gwen; Barker, Bradley; Grandgenett, Neal; Adamchuk, Viacheslav I.

    2010-01-01

    This study examined the impact of robotics and geospatial technologies interventions on middle school youth's learning of and attitudes toward science, technology, engineering, and mathematics (STEM). Two interventions were tested. The first was a 40-hour intensive robotics/GPS/GIS summer camp; the second was a 3-hour event modeled on the camp…

  15. Preliminary study for motion scaling based control in minimally invasive vascular interventional robot.

    PubMed

    Feng, Zhen-Qiu; Bian, Gui-Bin; Xie, Xiao-Liang; Hao, Jian-Long; Gao, Zhan-Jie; Hou, Zeng-Guang

    2015-08-01

    Robot-assisted vascular interventions present promising trend for reducing the X-ray radiation to the surgeon during the operation. However, the control methods in the current vascular interventional robots only repeat the manipulation of the surgeon. While under certain circumstances, it is necessary to scale the manipulation of the surgeon to obtain a higher precision or a shorter manipulation time. A novel control method based on motion scaling for vascular interventional robot is proposed in this paper. The main idea of the method is to change the motion speed ratios between the master and the slave side. The motion scaling based control method is implemented in the vascular interventional robot we've developed before, so the operator can deliver the interventional devices under different motion scaling factors. Experiment studies verify the effectiveness of the motion scaling based control. PMID:26737390

  16. [Locomotion and control study on autonomous interventional diagnostic micro-robots].

    PubMed

    Gu, Da-qiang; Zhou, Yong

    2008-09-01

    This paper introduces the locomotion control and the research status of the autonomous interventional diagnostic micro-robots in detail, outlines technical problems and difficulties now existing, and discusses the developing trend of locomotion control. PMID:19119659

  17. Part identification in robotic assembly using vision system

    NASA Astrophysics Data System (ADS)

    Balabantaray, Bunil Kumar; Biswal, Bibhuti Bhusan

    2013-12-01

    Machine vision system acts an important role in making robotic assembly system autonomous. Identification of the correct part is an important task which needs to be carefully done by a vision system to feed the robot with correct information for further processing. This process consists of many sub-processes wherein, the image capturing, digitizing and enhancing, etc. do account for reconstructive the part for subsequent operations. Interest point detection of the grabbed image, therefore, plays an important role in the entire image processing activity. Thus it needs to choose the correct tool for the process with respect to the given environment. In this paper analysis of three major corner detection algorithms is performed on the basis of their accuracy, speed and robustness to noise. The work is performed on the Matlab R2012a. An attempt has been made to find the best algorithm for the problem.

  18. Medical robotics and computer-integrated interventional medicine

    NASA Astrophysics Data System (ADS)

    Taylor, Russell H.

    2012-02-01

    Computer-Integrated Interventional Medicine (CIIM) promises to have a profound impact on health care in the next 20 years, much as and for many of the same reasons that the marriage of computers and information processing methods with other technology have had on manufacturing, transportation, and other sectors of our society. Our basic premise is that the steps of creating patient-specific computational models, using these models for planning, registering the models and plans with the actual patient in the operating room, and using this information with appropriate technology to assist in carrying out and monitoring the intervention are best viewed as part of a complete patient-specific intervention process that occurs over many time scales. Further, the information generated in computer-integrated interventions can be captured and analyzed statistically to improve treatment processes. This paper will explore these themes briefly, using examples drawn from our work at the Engineering Research Center for Computer-Integrated Surgical Systems and Technology (CISST ERC).

  19. A Fully Sensorized Cooperative Robotic System for Surgical Interventions

    PubMed Central

    Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.

    2012-01-01

    In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551

  20. Child disaster mental health interventions, part II

    PubMed Central

    Pfefferbaum, Betty; Sweeton, Jennifer L.; Newman, Elana; Varma, Vandana; Noffsinger, Mary A.; Shaw, Jon A.; Chrisman, Allan K.; Nitiéma, Pascal

    2015-01-01

    This review summarizes current knowledge on the timing of child disaster mental health intervention delivery, the settings for intervention delivery, the expertise of providers, and therapeutic approaches. Studies have been conducted on interventions delivered during all phases of disaster management from pre event through many months post event. Many interventions were administered in schools which offer access to large numbers of children. Providers included mental health professionals and school personnel. Studies described individual and group interventions, some with parent involvement. The next generation of interventions and studies should be based on an empirical analysis of a number of key areas. PMID:26295009

  1. Fast and Efficient Radiological Interventions via a Graphical User Interface Commanded Magnetic Resonance Compatible Robotic Device

    PubMed Central

    Özcan, Alpay; Christoforou, Eftychios; Brown, Daniel; Tsekos, Nikolaos

    2011-01-01

    The graphical user interface for an MR compatible robotic device has the capability of displaying oblique MR slices in 2D and a 3D virtual environment along with the representation of the robotic arm in order to swiftly complete the intervention. Using the advantages of the MR modality the device saves time and effort, is safer for the medical staff and is more comfortable for the patient. PMID:17946067

  2. Long-term interventions effects of robotic training on patients after anterior cruciate ligament reconstruction

    PubMed Central

    Hu, Chunying; Huang, Qiuchen; Yu, Lili; Zhou, Yue; Gu, Rui; Ye, Miao; Ge, Meng; Xu, Yanfeng; Liu, Jianfeng

    2016-01-01

    [Purpose] The aim of this study was to examine the long-term interventions effects of robot-assisted therapy rehabilitation on functional activity levels after anterior cruciate ligament reconstruction. [Subjects and Methods] The subjects were 8 patients (6 males and 2 females) who received anterior cruciate ligament reconstruction. The subjects participated in robot-assisted therapy lasting for one month. The Timed Up-and-Go test, 10-Meter Walk test, Functional Reach Test, surface electromyography of the vastus lateralis and vastus medialis, and extensor strength of isokinetic movement of the knee joint were evaluated before and after the intervention. [Results] The average value of the of vastus medialis EMG, Functional Reach Test, and the maximum and average extensor strength of the knee joint isokinetic movement increased significantly, and the time of the 10-Meter Walk test decreased significantly. [Conclusion] These results suggest that walking ability and muscle strength can be improved by robotic walking training as a long-term intervention.

  3. Real-Time Control of Humanoid Robots Considering External Forces on Upper Part of the Body

    NASA Astrophysics Data System (ADS)

    Inomata, Kentaro; Shigemori, Yo; Uchimura, Yutaka

    Recently, the demand for the practical use of service robots has risen significantly because of acceleration of demographic aging, and a humanoid robot is one of the promising form factors of service robots. When a humanoid robot is used by a human in a real environment, the robot needs to be designed by taking into account the various external forces that act on the robot. Thus far, most of the walking humanoid robots have been mainly controlled by the conventional ZMP method to maintain a stable walking posture. However, the conventional ZMP method can not be used to handle the various external forces that act on the upper part of the humanoid robot body. To overcome these problems, in this paper, we propose a novel control method, which we called 3DZMP and pZMP, for a humanoid robot to react to the external force on the upper part of the body. The 3DZMP is defined as the point in three-dimensional space at which the moment about all axes is zero. 3DZMP can prevent the rotation of a humanoid robot. The pZMP is defined as the point corresponding to the orthographic projection of the 3DZMP on a plane. pZMP is used to evaluate the stability of 3DZMP. We implemented the proposed method on a prototype robot and verified that the robot gained the capability to react to external forces that could not be handled by the conventional ZMP method.

  4. Energy Efficient Legged Robotics at Sandia Labs, Part 2

    SciTech Connect

    Buerger, Steve; Mazumdar, Ani; Spencer, Steve

    2015-06-02

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  5. Advancements in magnetic resonance-guided robotic interventions in the prostate.

    PubMed

    Macura, Katarzyna J; Stoianovici, Dan

    2008-12-01

    Magnetic resonance imaging (MRI) provides more detailed anatomical images of the prostate compared with the transrectal ultrasound imaging. Therefore, for the purpose of intervention in the prostate gland, diagnostic or therapeutic, MRI guidance offers a possibility of more precise targeting that may be crucial to the success of prostate interventions. However, access within the scanner is limited for manual instrument handling and the MR environment is most demanding among all imaging equipment with respect to the instrumentation used. A solution to this problem is the use of MR-compatible robots purposely designed to operate in the space and environmental restrictions inside the MR scanner allowing real-time interventions. Building an MRI-compatible robot is a very challenging engineering task because, in addition to the material restrictions that MRI instruments have, the robot requires actuators and sensors that limit the type of energies that can be used. Several important design problems have to be overcome before a successful MR-compatible robot application can be built. A number of MR-compatible robots, ranging from a simple manipulator to a fully automated system, have been developed, proposing ingenious solutions to the design challenge. Several systems have been already tested clinically for prostate biopsy and brachytherapy. As technology matures, precise image guidance for prostate interventions performed or assisted by specialized MR-compatible robotic devices may provide a uniquely accurate solution for guiding the intervention directly based on MR findings and feedback. Such an instrument would become a valuable clinical tool for biopsies directly targeting imaged tumor foci and delivering tumor-centered focal therapy. PMID:19512852

  6. Advancements in Magnetic Resonance–Guided Robotic Interventions in the Prostate

    PubMed Central

    Macura, Katarzyna J.; Stoianovici, Dan

    2011-01-01

    Magnetic resonance imaging (MRI) provides more detailed anatomical images of the prostate compared with the transrectal ultrasound imaging. Therefore, for the purpose of intervention in the prostate gland, diagnostic or therapeutic, MRI guidance offers a possibility of more precise targeting that may be crucial to the success of prostate interventions. However, access within the scanner is limited for manual instrument handling and the MR environment is most demanding among all imaging equipment with respect to the instrumentation used. A solution to this problem is the use of MR-compatible robots purposely designed to operate in the space and environmental restrictions inside the MR scanner allowing real-time interventions. Building an MRI-compatible robot is a very challenging engineering task because, in addition to the material restrictions that MRI instruments have, the robot requires actuators and sensors that limit the type of energies that can be used. Several important design problems have to be overcome before a successful MR-compatible robot application can be built. A number of MR-compatible robots, ranging from a simple manipulator to a fully automated system, have been developed, proposing ingenious solutions to the design challenge. Several systems have been already tested clinically for prostate biopsy and brachytherapy. As technology matures, precise image guidance for prostate interventions performed or assisted by specialized MR-compatible robotic devices may provide a uniquely accurate solution for guiding the intervention directly based on MR findings and feedback. Such an instrument would become a valuable clinical tool for biopsies directly targeting imaged tumor foci and delivering tumor-centered focal therapy. PMID:19512852

  7. Designing HRD Interventions for Employee-Robot Interaction

    ERIC Educational Resources Information Center

    Heo, Se Jin

    2011-01-01

    The purpose of this study was to identify critical causes of work stress and job satisfaction of nurses, which can contribute to find appropriate organizational supports to help nurses effectively work with a surgical robot. Delphi method was employed to identify the critical stressors and the key causes of job satisfaction of nurses working with…

  8. The immediate intervention effects of robotic training in patients after anterior cruciate ligament reconstruction.

    PubMed

    Hu, Chunying; Huang, Qiuchen; Yu, Lili; Ye, Miao

    2016-07-01

    [Purpose] The purpose of this study was to examine the immediate effects of robot-assisted therapy on functional activity level after anterior cruciate ligament reconstruction. [Subjects and Methods] Participants included 10 patients (8 males and 2 females) following anterior cruciate ligament reconstruction. The subjects participated in robot-assisted therapy and treadmill exercise on different days. The Timed Up-and-Go test, Functional Reach Test, surface electromyography of the vastus lateralis and vastus medialis, and maximal extensor strength of isokinetic movement of the knee joint were evaluated in both groups before and after the experiment. [Results] The results for the Timed Up-and-Go Test and the 10-Meter Walk Test improved in the robot-assisted rehabilitation group. Surface electromyography of the vastus medialis muscle showed significant increases in maximum and average discharge after the intervention. [Conclusion] The results suggest that walking ability and muscle strength can be improved by robotic training. PMID:27512258

  9. The immediate intervention effects of robotic training in patients after anterior cruciate ligament reconstruction

    PubMed Central

    Hu, Chunying; Huang, Qiuchen; Yu, Lili; Ye, Miao

    2016-01-01

    [Purpose] The purpose of this study was to examine the immediate effects of robot-assisted therapy on functional activity level after anterior cruciate ligament reconstruction. [Subjects and Methods] Participants included 10 patients (8 males and 2 females) following anterior cruciate ligament reconstruction. The subjects participated in robot-assisted therapy and treadmill exercise on different days. The Timed Up-and-Go test, Functional Reach Test, surface electromyography of the vastus lateralis and vastus medialis, and maximal extensor strength of isokinetic movement of the knee joint were evaluated in both groups before and after the experiment. [Results] The results for the Timed Up-and-Go Test and the 10-Meter Walk Test improved in the robot-assisted rehabilitation group. Surface electromyography of the vastus medialis muscle showed significant increases in maximum and average discharge after the intervention. [Conclusion] The results suggest that walking ability and muscle strength can be improved by robotic training. PMID:27512258

  10. Child disaster mental health interventions, part I

    PubMed Central

    Pfefferbaum, Betty; Sweeton, Jennifer L.; Newman, Elana; Varma, Vandana; Nitiéma, Pascal; Shaw, Jon A; Chrisman, Allan K.; Noffsinger, Mary A

    2015-01-01

    This review of child disaster mental health intervention studies describes the techniques used in the interventions and the outcomes addressed, and it provides a preliminary evaluation of the field. The interventions reviewed here used a variety of strategies such as cognitive behavioral approaches, exposure and narrative techniques, relaxation, coping skill development, social support, psychoeducation, eye movement desensitization and reprocessing, and debriefing. A diagnosis of posttraumatic stress disorder (PTSD) and/or posttraumatic stress reactions were the most commonly addressed outcomes although other reactions such as depression, anxiety, behavior problems, fear, and/or traumatic grief also were examined. Recommendations for future research are outlined. PMID:25914863

  11. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part II.

    PubMed

    Sidhu, P S; Brabrand, K; Cantisani, V; Correas, J M; Cui, X W; D'Onofrio, M; Essig, M; Freeman, S; Gilja, O H; Gritzmann, N; Havre, R F; Ignee, A; Jenssen, C; Kabaalioğlu, A; Lorentzen, T; Mohaupt, M; Nicolau, C; Nolsøe, C P; Nürnberg, D; Radzina, M; Saftoiu, A; Serra, C; Spârchez, Z; Sporea, I; Dietrich, C F

    2015-12-01

    This is the second part of the series on interventional ultrasound guidelines of the Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB). It deals with the diagnostic interventional procedure. General points are discussed which are pertinent to all patients, followed by organ-specific imaging that will allow the correct pathway and planning for the interventional procedure. This will allow for the appropriate imaging workup for each individual interventional procedure (Long version). PMID:26669871

  12. Precision instrument placement using a 4-DOF robot with integrated fiducials for minimally invasive interventions

    NASA Astrophysics Data System (ADS)

    Stenzel, Roland; Lin, Ralph; Cheng, Peng; Kronreif, Gernot; Kornfeld, Martin; Lindisch, David; Wood, Bradford J.; Viswanathan, Anand; Cleary, Kevin

    2007-03-01

    Minimally invasive procedures are increasingly attractive to patients and medical personnel because they can reduce operative trauma, recovery times, and overall costs. However, during these procedures, the physician has a very limited view of the interventional field and the exact position of surgical instruments. We present an image-guided platform for precision placement of surgical instruments based upon a small four degree-of-freedom robot (B-RobII; ARC Seibersdorf Research GmbH, Vienna, Austria). This platform includes a custom instrument guide with an integrated spiral fiducial pattern as the robot's end-effector, and it uses intra-operative computed tomography (CT) to register the robot to the patient directly before the intervention. The physician can then use a graphical user interface (GUI) to select a path for percutaneous access, and the robot will automatically align the instrument guide along this path. Potential anatomical targets include the liver, kidney, prostate, and spine. This paper describes the robotic platform, workflow, software, and algorithms used by the system. To demonstrate the algorithmic accuracy and suitability of the custom instrument guide, we also present results from experiments as well as estimates of the maximum error between target and instrument tip.

  13. A networked modular hardware and software system for MRI-guided robotic prostate interventions

    NASA Astrophysics Data System (ADS)

    Su, Hao; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Cole, Gregory; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare; Fischer, Gregory S.

    2012-02-01

    Magnetic resonance imaging (MRI) provides high resolution multi-parametric imaging, large soft tissue contrast, and interactive image updates making it an ideal modality for diagnosing prostate cancer and guiding surgical tools. Despite a substantial armamentarium of apparatuses and systems has been developed to assist surgical diagnosis and therapy for MRI-guided procedures over last decade, the unified method to develop high fidelity robotic systems in terms of accuracy, dynamic performance, size, robustness and modularity, to work inside close-bore MRI scanner still remains a challenge. In this work, we develop and evaluate an integrated modular hardware and software system to support the surgical workflow of intra-operative MRI, with percutaneous prostate intervention as an illustrative case. Specifically, the distinct apparatuses and methods include: 1) a robot controller system for precision closed loop control of piezoelectric motors, 2) a robot control interface software that connects the 3D Slicer navigation software and the robot controller to exchange robot commands and coordinates using the OpenIGTLink open network communication protocol, and 3) MRI scan plane alignment to the planned path and imaging of the needle as it is inserted into the target location. A preliminary experiment with ex-vivo phantom validates the system workflow, MRI-compatibility and shows that the robotic system has a better than 0.01mm positioning accuracy.

  14. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  15. Ultrasound guided chronic pain interventions (Part II).

    PubMed

    Akkaya, Taylan; Alptekin, Alp; Özkan, Derya

    2016-04-01

    Henceforth, ultrasonography (US) is an indispensible imaging technique in regional anesthesia practice. With the guidance of US, various invasive interventions in chronic pain pathologies of the musculoskeletal system, peripheral and neuroaxial pathologies has become possible. The management includes diagnostic blocks as weel as radiofrequency ablation and institution of neurolythic agents. During these algologic interventions we are able to see the target tissue, the dispersion of the drug and all nearby vascular structures. Besides these the US also protects the team from ionic radiation that one encounters when using flouroscopy of computed tomography. Latest publication in this field show that applicability of US in chronic pain syndromes is rapidly expanding with a good future. The additional equipment (echogenic needles, 3-D US etc.) will also expands its applications in algology practice. This review highlights different applications of US in chronic pain conditions. PMID:27225734

  16. Pneumatically Operated MRI-Compatible Needle Placement Robot for Prostate Interventions

    PubMed Central

    Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Mewes, Philip W.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor

    2011-01-01

    Magnetic Resonance Imaging (MRI) has potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. The strong magnetic field prevents the use of conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot performs needle insertion under real-time 3T MR image guidance; workspace requirements, MR compatibility, and workflow have been evaluated on phantoms. The paper explains the robot mechanism and controller design and presents results of preliminary evaluation of the system. PMID:21686038

  17. A Step Towards Developing Adaptive Robot-Mediated Intervention Architecture (ARIA) for Children With Autism

    PubMed Central

    Bekele, Esubalew T; Lahiri, Uttama; Swanson, Amy R.; Crittendon, Julie A.; Warren, Zachary E.; Sarkar, Nilanjan

    2013-01-01

    Emerging technology, especially robotic technology, has been shown to be appealing to children with autism spectrum disorders (ASD). Such interest may be leveraged to provide repeatable, accurate and individualized intervention services to young children with ASD based on quantitative metrics. However, existing robot-mediated systems tend to have limited adaptive capability that may impact individualization. Our current work seeks to bridge this gap by developing an adaptive and individualized robot-mediated technology for children with ASD. The system is composed of a humanoid robot with its vision augmented by a network of cameras for real-time head tracking using a distributed architecture. Based on the cues from the child’s head movement, the robot intelligently adapts itself in an individualized manner to generate prompts and reinforcements with potential to promote skills in the ASD core deficit area of early social orienting. The system was validated for feasibility, accuracy, and performance. Results from a pilot usability study involving six children with ASD and a control group of six typically developing (TD) children are presented. PMID:23221831

  18. A step towards developing adaptive robot-mediated intervention architecture (ARIA) for children with autism.

    PubMed

    Bekele, Esubalew T; Lahiri, Uttama; Swanson, Amy R; Crittendon, Julie A; Warren, Zachary E; Sarkar, Nilanjan

    2013-03-01

    Emerging technology, especially robotic technology, has been shown to be appealing to children with autism spectrum disorders (ASD). Such interest may be leveraged to provide repeatable, accurate and individualized intervention services to young children with ASD based on quantitative metrics. However, existing robot-mediated systems tend to have limited adaptive capability that may impact individualization. Our current work seeks to bridge this gap by developing an adaptive and individualized robot-mediated technology for children with ASD. The system is composed of a humanoid robot with its vision augmented by a network of cameras for real-time head tracking using a distributed architecture. Based on the cues from the child's head movement, the robot intelligently adapts itself in an individualized manner to generate prompts and reinforcements with potential to promote skills in the ASD core deficit area of early social orienting. The system was validated for feasibility, accuracy, and performance. Results from a pilot usability study involving six children with ASD and a control group of six typically developing (TD) children are presented. PMID:23221831

  19. [History of robotics: from Archytas of Tarentum until da Vinci robot. (Part I)].

    PubMed

    Sánchez Martín, F M; Millán Rodríguez, F; Salvador Bayarri, J; Palou Redorta, J; Rodríguez Escovar, F; Esquena Fernández, S; Villavicencio Mavrich, H

    2007-02-01

    Robotic surgery is the newst technologic option in urology. To understand how new robots work is interesting to know their history. The desire to design machines imitating humans continued for more than 4000 years. There are references to King-su Tse (clasic China) making up automaton at 500 a. C. Archytas of Tarentum (at around 400 a.C.) is considered the father of mechanical engineering, and one of the occidental robotics classic referents. Heron of Alexandria, Hsieh-Fec, Al-Jazari, Roger Bacon, Juanelo Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors in the middle age, renaissance and classicism. At the XIXth century, automaton production underwent a peak and all engineering branches suffered a great development. At 1942 Asimov published the three robotics laws, based on mechanics, electronics and informatics advances. At XXth century robots able to do very complex self governing works were developed, like da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons. PMID:17645084

  20. Visual servoing of robot manipulators -- Part 1: Projective kinematics

    SciTech Connect

    Ruf, A.; Horaud, R.

    1999-11-01

    Visual servoing of robot manipulators is a key technique where the appearance of an object in the image plane is used to control the velocity of the end-effector such that the desired position is reached in the scene. The vast majority of visual servoing methods proposed so far uses calibrated robots in conjunction with calibrated cameras. It has been shown that the behavior of visual control loops does not degrade too much in the presence of calibration errors. Nevertheless, camera and robot calibration are complex and time-consuming processes requiring special-purpose mechanical devices, such as theodolites and calibration jigs. In this paper, the authors, suggest formulating a visual servoing control loop in nonmetric space, which in this case amounts to the projective space in which a triangulation of the scene using an uncalibrated stereo rig is expressed. The major consequence of controlling the robot in nonmetric space rather than in Euclidean space is that both the robot's direct kinematic map and the robot's Jacobian matrix must be defined in this space as well. Finally, they provide a practical method to estimate the projective kinematic model and they describe some preliminary simulated experiments that use this nonmetric model to perform stereo-based servoing. Nevertheless, in-depth analysis of projective control will be the topic of a forthcoming paper.

  1. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part II.

    PubMed

    Sidhu, P S; Brabrand, K; Cantisani, V; Correas, J M; Cui, X W; D'Onofrio, M; Essig, M; Freeman, S; Gilja, O H; Gritzmann, N; Havre, R F; Ignee, A; Jenssen, C; Kabaalioğlu, A; Lorentzen, T; Mohaupt, M; Nicolau, C; Nolsøe, C P; Nürnberg, D; Radzina, M; Saftoiu, A; Serra, C; Spârchez, Z; Sporea, I; Dietrich, C F

    2015-12-01

    This is the second part of the series on interventional ultrasound guidelines of the Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB). It deals with the diagnostic interventional procedure. General points are discussed which are pertinent to all patients, followed by organ-specific imaging that will allow the correct pathway and planning for the interventional procedure. This will allow for the appropriate imaging workup for each individual interventional procedure (Long version/ short version; the long version is published online). PMID:26669869

  2. Low-cost explosive ordnance disposal robot using off-the-shelf parts

    NASA Astrophysics Data System (ADS)

    Czop, Andrew; Hacker, Kurt; Murphy, James; Zimmerman, Todd

    2005-05-01

    The continuing military operations in Iraq and Afghanistan have resulted in a rapidly growing demand for mobile robots to be used during Explosive Ordnance Disposal operations. These robots are predominately used by EOD technicians for surveillance and neutralization of explosive threats from a safe standoff distance. The hazardous nature of the mission these vehicles help perform requires them to be expendable. Current commercially available systems, however, although capable of performing the mission, are costly and are not currently available in the large quantities needed by EOD technicians. The Naval EOD Technology Division (NAVEODTECHDIV) proposes an alternative; a low cost, mobile robot using Commercial Off-The-Shelf (COTS) parts that is specifically tailored to perform hazardous EOD missions. The main functions of this robot are efficient surveillance and explosive threat neutralization. The use of COTS parts allows for streamlined field supportability and repair. A proposed speed of five miles per hour is a drastic improvement over many existing EOD robots and will allow EOD teams to quickly survey and assess potentially dangerous situations. The manipulator will be capable of precision placement of neutralization charges. The cost of this proposed robot is 10,000. Current commercial robots capable of performing these EOD tasks range in price from 40,000 to over $150,000. This conference paper will describe the robot design and prototyping process, from gathering requirements to fabrication and testing.

  3. Human vs. robot operator error in a needle-based navigation system for percutaneous liver interventions

    NASA Astrophysics Data System (ADS)

    Maier-Hein, Lena; Walsh, Conor J.; Seitel, Alexander; Hanumara, Nevan C.; Shepard, Jo-Anne; Franz, A. M.; Pianka, F.; Müller, Sascha A.; Schmied, Bruno; Slocum, Alexander H.; Gupta, Rajiv; Meinzer, Hans-Peter

    2009-02-01

    Computed tomography (CT) guided percutaneous punctures of the liver for cancer diagnosis and therapy (e.g. tumor biopsy, radiofrequency ablation) are well-established procedures in clinical routine. One of the main challenges related to these interventions is the accurate placement of the needle within the lesion. Several navigation concepts have been introduced to compensate for organ shift and deformation in real-time, yet, the operator error remains an important factor influencing the overall accuracy of the developed systems. The aim of this study was to investigate whether the operator error and, thus, the overall insertion error of an existing navigation system could be further reduced by replacing the user with the medical robot Robopsy. For this purpose, we performed navigated needle insertions in a static abdominal phantom as well as in a respiratory liver motion simulator and compared the human operator error with the targeting error performed by the robot. According to the results, the Robopsy driven needle insertion system is able to more accurately align the needle and insert it along its axis compared to a human operator. Integration of the robot into the current navigation system could thus improve targeting accuracy in clinical use.

  4. Participation Patterns among Families Receiving Part C Early Intervention Services

    ERIC Educational Resources Information Center

    Khetani, Mary Alunkal

    2010-01-01

    Participation in the natural settings of home and community is one of four major goals for families receiving Part C early intervention services. While participation has been formally recognized as an important service-related outcome, there is a need to build knowledge about its key features to adequately apply the concept in practice. The need…

  5. Master device for teleoperated needle insertion-type interventional robotic system.

    PubMed

    Woo, Hyun Soo; Cho, Jang Ho; Kim, Chul Seung; Lee, Hyuk Jin

    2015-08-01

    This paper proposes a new master device for teleoperated needle insertion-type interventional robotic system. The 5-DOF master device is optimally designed based on the newly defined interventional procedures and the physicians' requirements. It comprises a 2-DOF rotational mechanism for adjustment of needle orientation, a 2-DOF translational mechanism for fine-tuning of needle entry point, and a handle assembly. The handle assembly includes a 1-DOF translational mechanism for needle insertion and buttons for operation mode selection. The passive actuation modules of the rotational mechanism and the active actuation modules of the translational mechanism are controlled appropriately for the selected mode according to the procedure phase. The needle insertion mechanism also warns the user by vibrating the shaft when the needle reaches the dangerous region. PMID:26737379

  6. A new AS-display as part of the MIRO lightweight robot for surgical applications

    NASA Astrophysics Data System (ADS)

    Grossmann, Christoph M.

    2010-02-01

    The DLR MIRO is the second generation of versatile robot arms for surgical applications, developed at the Institute for Robotics and Mechatronics at Deutsche Zentrum für Luft- und Raumfahrt (DLR) in Oberpfaffenhofen, Germany. With its low weight of 10 kg and dimensions similar to those of the human arm, the MIRO robot can assist the surgeon directly at the operating table where space is scarce. The planned scope of applications of this robot arm ranges from guiding a laser unit for the precise separation of bone tissue in orthopedics to positioning holes for bone screws, robot assisted endoscope guidance and on to the multi-robot concept for endoscopic minimally invasive surgery. A stereo-endoscope delivers two full HD video streams that can even be augmented with information, e.g vectors indicating the forces that act on the surgical tool at any given moment. SeeFront's new autostereoscopic 3D display SF 2223, being a part of the MIRO assembly, will let the surgeon view the stereo video stream in excellent quality, in real time and without the need for any viewing aids. The presentation is meant to provide an insight into the principles at the basis of the SeeFront 3D technology and how they allow the creation of autostereoscopic display solutions ranging from smallest "stamp-sized" displays to 30" desktop versions, which all provide comfortable freedom of movement for the viewer along with excellent 3D image quality.

  7. Low-cost EOD robot using off-the-shelf parts: revisions and performance testing results

    NASA Astrophysics Data System (ADS)

    Czop, Andrew; Hacker, Kurt; Murphy, James; Zimmerman, Todd

    2006-05-01

    With the large number of Improvised Explosive Devices (IEDs) and Unexploded Ordnance (UXO) being encountered during recent military operations, there exists a need for Explosive Ordnance Disposal (EOD) mobile robots. These robots are predominately used for surveillance and neutralization of these explosive threats from a safe distance. The nature of the mission means that these vehicles are prone to being damaged or destroyed. Current commercially available systems, although capable of performing the mission, are costly and in too short of supply to be lost or damaged in large numbers. At last year's SPIE conference the NAVEODTECHDIV proposed an alternative: a low cost, mobile robot which used commercial off-the-shelf (COTS) parts and was tailored to the types of missions that EOD soldiers commonly perform. The prototype of this low-cost robot, the RAMBOT (Readily Available Maintainable Robot), has been continuously improved over the past year. There have been significant improvements to the original design in the areas of communication, manipulation, and electronics. The result of this work is a final prototype design, which is currently undergoing extensive testing to characterize its capabilities. Some of these tests include vehicle characteristics such as vehicle speed and mobility, vehicle weight and size, as well as maximum effective communication range, susceptibility to temperature, manipulator load limitations, and battery longevity. This conference paper will present the design changes to the robot and fully report on the results from the test series conducted thus far.

  8. Quality of life after percutaneous coronary intervention: part 1.

    PubMed

    Cassar, Stephen; R Baldacchino, Donia

    Quality of life (QOL) is a complex concept comprised of biopsychosocial, spiritual and environmental dimensions. However, the majority of research addresses only its physical function perspectives. This two-part series examines the holistic perspective of QOL of patients after percutaneous coronary intervention (PCI). Part 1 explains the research process of a cross-sectional descriptive study and its limitations. Data were collected by a mailed WHOQOL-BREF questionnaire in Maltese from a systematic sample of patients who had undergone PCI; the response rate was 64% (n=228; males n=169, females n=59, age 40-89 years). Part 1 also considers limitations, such as its cross-sectional design and retrospective data collection. The hierarchy of human needs theory (Maslow, 1999) guided the study. Part 2 gives the findings on the holistic view of QOL. Having social and family support, as a characteristic of Maltese culture appeared to contribute towards a better QOL. PMID:23123651

  9. MRI-guided robotics at the U of Houston: evolving methodologies for interventions and surgeries.

    PubMed

    Tsekos, Nikolaos V

    2009-01-01

    Currently, we witness the rapid evolution of minimally invasive surgeries (MIS) and image guided interventions (IGI) for offering improved patient management and cost effectiveness. It is well recognized that sustaining and expand this paradigm shift would require new computational methodology that integrates sensing with multimodal imaging, actively controlled robotic manipulators, the patient and the operator. Such approach would include (1) assessing in real-time tissue deformation secondary to the procedure and physiologic motion, (2) monitoring the tool(s) in 3D, and (3) on-the-fly update information about the pathophysiology of the targeted tissue. With those capabilities, real time image guidance may facilitate a paradigm shift and methodological leap from "keyhole" visualization (i.e. endoscopy or laparoscopy) to one that uses a volumetric and informational rich perception of the Area of Operation (AoO). This capability may eventually enable a wider range and level of complexity IGI and MIS. PMID:19964404

  10. Diagnostic and interventional musculoskeletal ultrasound: part 2. Clinical applications.

    PubMed

    Smith, Jay; Finnoff, Jonathan T

    2009-02-01

    Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurological and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared to other available imaging modalities; (2) describe how ultrasound machines produce images using sound waves; (3) discuss the steps necessary to acquire and optimize an ultrasound image; (4) understand the difference ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones; and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound. Part 2 of this 2-part article will focus on the clinical applications of musculoskeletal ultrasound in clinical practice, including the ultrasonographic appearance of normal and abnormal tissues as well as specific diagnostic and interventional applications in major body regions. PMID:19627890

  11. Diagnostic and interventional musculoskeletal ultrasound: part 1. Fundamentals.

    PubMed

    Smith, Jay; Finnoff, Jonathan T

    2009-01-01

    Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurologic and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared with other available imaging modalities, (2) describe how ultrasound machines produce images using sound waves, (3) discuss the steps necessary to acquire and optimize an ultrasound image, (4) understand the different ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones, and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound in musculoskeletal practice. Part 1 of this 2-part article reviews the fundamentals of clinical ultrasonographic imaging, including relevant physics, equipment, training, image optimization, and scanning principles for diagnostic and interventional purposes. PMID:19627875

  12. Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast.

    PubMed

    Larson, Blake T; Erdman, Arthur G; Tsekos, Nikolaos V; Yacoub, Essa; Tsekos, Panagiotis V; Koutlas, Ioannis G

    2004-08-01

    The objective of this work was to develop a robotic device to perform biopsy and therapeutic interventions in the breast with real-time magnetic resonance imaging (MRI) guidance. The device was designed to allow for (i) stabilization of the breast by compression, (ii) definition of the interventional probe trajectory by setting the height and pitch of a probe insertion apparatus, and (iii) positioning of an interventional probe by setting the depth of insertion. The apparatus is fitted with five computer-controlled degrees of freedom for delivering an interventional procedure. The entire device is constructed of MR compatible materials, i.e. nonmagnetic and non-conductive, to eliminate artifacts and distortion of the MR images. The apparatus is remotely controlled by means of ultrasonic motors and a graphical user interface, providing real-time MR-guided planning and monitoring of the operation. Joint motion measurements found probe placement in less than 50 s and sub-millimeter repeatability of the probe tip for same-direction point-to-point movements. However, backlash in the rotation joint may incur probe tip positional errors of up to 5 mm at a distance of 40 mm from the rotation axis, which may occur for women with large breasts. The imprecision caused by this backlash becomes negligible as the probe tip nears the rotation axis. Real-time MR-guidance will allow the physician to correct this error Compatibility of the device within the MR environment was successfully tested on a 4 Tesla MR human scanner PMID:15543863

  13. Experiments in Aligning Threaded Parts Using a Robot Hand

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Walker, I. D.

    1999-01-01

    Techniques for determining and correcting threaded part alignment using force and angular position data are developed to augment currently limited techniques for align- ing threaded parts. These new techniques are based on backspinning a nut with respect to a bolt and measuring the force change that occurs when the bolt "falls" into the nut. Kinematic models that describe the relationship between threaded parts during backspinning are introduced and are used to show how angular alignment may be determined. The models indicate how to distinguish between the aligned and misaligned cases of a bolt and a nut connection by using axial force data only. In addition, by tracking the in-plane relative attitude of the bolt during spinning, data can be obtained on the direction of the angular misalignment which, in turn, is used to correct the misalignment. Results from experiments using a bolt held in a specialized fixture and a three fingers Stanford/JPL hand are presented.

  14. Intelligent robots. Proceedings of the Third International Conference on Robot Vision and Sensory Controls RoViSeC3, Cambridge, MA, November 7-10, 1983. Parts 1 and 2

    SciTech Connect

    Casasent, D.P.; Hall, E.L.

    1984-01-01

    Aspects of pattern recognition for intelligent robots are discussed, taking into account linear algebra based object recognition algorithms for computer vision, planar object recognition by the computer vision method, real time textured-image segmentation based on noncausal Markovian random field models, model driven vision to control a surface finishing robot, robotic acquisition of jumbled parts from bins by visual and tactile guidance, and imaging using eddy current sensors. Other subjects explored are related to curved object recognition for robot vision, robot image understanding, robot applications, three-dimensional measurements for robot vision, robot vision, tactile and multirobot sensors, and precision robot vision measurements. Attention is given to mode locked lasers in modulation rangefinders, advanced architectures for factory vision, hierarchical contour coding and generalization of shape, problems in three-dimensional imaging, a vision system to identify car body types for a spray painting robot, and an adaptive gas metal arc welder.

  15. Intelligent robots; Proceedings of the Third International Conference on Robot Vision and Sensory Controls RoViSeC3, Cambridge, MA, November 7-10, 1983. Parts 1 & 2

    NASA Astrophysics Data System (ADS)

    Casasent, D. P.; Hall, E. L.

    1984-01-01

    Aspects of pattern recognition for intelligent robots are discussed, taking into account linear algebra based object recognition algorithms for computer vision, planar object recognition by the computer vision method, real time textured-image segmentation based on noncausal Markovian random field models, model driven vision to control a surface finishing robot, robotic acquisition of jumbled parts from bins by visual and tactile guidance, and imaging using eddy current sensors. Other subjects explored are related to curved object recognition for robot vision, robot image understanding, robot applications, three-dimensional measurements for robot vision, robot vision, tactile and multirobot sensors, and precision robot vision measurements. Attention is given to mode locked lasers in modulation rangefinders, advanced architectures for factory vision, hierarchical contour coding and generalization of shape, problems in three-dimensional imaging, a vision system to identify car body types for a spray painting robot, and an adaptive gas metal arc welder.

  16. Treatment and technical intervention time analysis of a robotic stereotactic radiotherapy system.

    PubMed

    Crop, F; Lacornerie, T; Szymczak, H; Felin, A; Bailleux, C; Mirabel, X; Lartigau, E

    2014-02-01

    The purpose of this study is to obtain a better operational knowledge of Stereotactic Body Radiotherapy (SBRT) treatments with CyberKnife(r). An analysis of both In-room Times (IRT) and technical interventions of 5 years of treatments was performed, during which more than 1600 patients were treated for various indications, including liver (21%), lung (29%), intracranial (13%), head and neck (11%) and prostate (7%). Technical interventions were recorded along with the time of the failure, time to the intervention, and the complexity and duration of the repair. Analyses of Time Between Failures (TBF) and Service Disrupting TBF(disr) were performed. Treatment time data and variability per indication and following different system upgrades were evaluated. Large variations of IRTs were found between indications, but also large variations for each indication. The combination of the time reduction Tool (using Iris(r)) and Improved Stop Handling was of major impact to shortening of treatment times. The first implementation of the Iris collimator alone did not lead to significantly shorter IRTs for us except during prostate treatments. This was mostly due to the addition at the same time of larger rotational compensation for prostate treatments (58 instead of 1.58). Significant differences of duration between the first fraction and following fractions of a treatment, representing the necessity of defining imaging parameters and explanation to patients, were found for liver (12 min) and lung treatments using Xsight(r) Spine (5 min). Liver and lung treatments represent the longest IRT's and involve the largest variability's in IRT. The malfunction rate of the system followed a Weibull distribution with the shape and scale parameters of 0.8 and 39.7. Mean TBF(disr) was 68 work hours. 60 to 80% of the service disrupting interventions were resolved within 30-60 min, 5% required external intervention and 30% occurred in the morning. The presented results can be applied in the

  17. Interactive autonomy and robotic skills

    NASA Technical Reports Server (NTRS)

    Kellner, A.; Maediger, B.

    1994-01-01

    Current concepts of robot-supported operations for space laboratories (payload servicing, inspection, repair, and ORU exchange) are mainly based on the concept of 'interactive autonomy' which implies autonomous behavior of the robot according to predefined timelines, predefined sequences of elementary robot operations and within predefined world models supplying geometrical and other information for parameter instantiation on the one hand, and the ability to override and change the predefined course of activities by human intervention on the other hand. Although in principle a very powerful and useful concept, in practice the confinement of the robot to the abstract world models and predefined activities appears to reduce the robot's stability within real world uncertainties and its applicability to non-predefined parts of the world, calling for frequent corrective interaction by the operator, which in itself may be tedious and time-consuming. Methods are presented to improve this situation by incorporating 'robotic skills' into the concept of interactive autonomy.

  18. Preclinical evaluation of an MRI-compatible pneumatic robot for angulated needle placement in transperineal prostate interventions

    PubMed Central

    Tokuda, Junichi; Song, Sang-Eun; Fischer, Gregory S.; Iordachita, Iulian; Seifabadi, Reza; Cho, Bong Joon; Tuncali, Kemal; Fichtinger, Gabor; Tempany, Clare M.; Hata, Nobuhiko

    2013-01-01

    Purpose To evaluate the targeting accuracy of a small profile MRI-compatible pneumatic robot for needle placement that can angulate a needle insertion path into a large accessible target volume. Methods We extended our MRI-compatible pneumatic robot for needle placement to utilize its four degrees-of-freedom (4-DOF) mechanism with two parallel triangular structures and support transperineal prostate biopsies in a closed-bore magnetic resonance imaging (MRI) scanner. The robot is designed to guide a needle towards a lesion so that a radiologist can manually insert it in the bore. The robot is integrated with navigation software that allows an operator to plan angulated needle insertion by selecting a target and an entry point. The targeting error was evaluated while the angle between the needle insertion path and the static magnetic field was between −5.7° and 5.7° horizontally and between −5.7° and 4.3° vertically in the MRI scanner after sterilizing and draping the device. Results The robot positioned the needle for angulated insertion as specified on the navigation software with overall targeting error of 0.8 ± 0.5 mm along the horizontal axis and 0.8 ± 0.8 mm along the vertical axis. The two-dimensional root-mean-square targeting error on the axial slices as containing the targets was 1.4 mm. Conclusions Our preclinical evaluation demonstrated that the MRI-compatible pneumatic robot for needle placement with the capability to angulate the needle insertion path provides targeting accuracy feasible for clinical MRI-guided prostate interventions. The clinical feasibility has to be established in a clinical study. PMID:22678723

  19. Development and Evaluation of an Actuated MRI-Compatible Robotic System for MRI-Guided Prostate Intervention.

    PubMed

    Krieger, Axel; Song, Sang-Eun; Cho, Nathan B; Iordachita, Iulian; Guion, Peter; Fichtinger, Gabor; Whitcomb, Louis L

    2012-09-12

    This paper reports the design, development, and magnetic resonance imaging (MRI) compatibility evaluation of an actuated transrectal prostate robot for MRI-guided needle intervention in the prostate. The robot performs actuated needle MRI-guidance with the goals of providing (i) MRI compatibility, (ii) MRI-guided needle placement with accuracy sufficient for targeting clinically significant prostate cancer foci, (iii) reducing interventional procedure times (thus increasing patient comfort and reducing opportunity for needle targeting error due to patient motion), (iv) enabling real-time MRI monitoring of interventional procedures, and (v) reducing the opportunities for error that arise in manually actuated needle placement. The design of the robot, employing piezo-ceramic-motor actuated needle guide positioning and manual needle insertion, is reported. Results of a MRI compatibility study show no reduction of MRI signal-to-noise-ratio (SNR) with the motors disabled. Enabling the motors reduces the SNR by 80% without RF shielding, but SNR is only reduced by 40% to 60% with RF shielding. The addition of radio-frequency shielding is shown to significantly reduce image SNR degradation caused by the presence of the robotic device. An accuracy study of MRI-guided biopsy needle placements in a prostate phantom is reported. The study shows an average in-plane targeting error of 2.4 mm with a maximum error of 3.7 mm. These data indicate the system's needle targeting accuracy is similar to that obtained with a previously reported manually actuated system, and is sufficient to reliably sample clinically significant prostate cancer foci under MRI-guidance. PMID:23326181

  20. Development and Evaluation of an Actuated MRI-Compatible Robotic System for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Song, Sang-Eun; Cho, Nathan B.; Iordachita, Iulian; Guion, Peter; Fichtinger, Gabor; Whitcomb, Louis L.

    2012-01-01

    This paper reports the design, development, and magnetic resonance imaging (MRI) compatibility evaluation of an actuated transrectal prostate robot for MRI-guided needle intervention in the prostate. The robot performs actuated needle MRI-guidance with the goals of providing (i) MRI compatibility, (ii) MRI-guided needle placement with accuracy sufficient for targeting clinically significant prostate cancer foci, (iii) reducing interventional procedure times (thus increasing patient comfort and reducing opportunity for needle targeting error due to patient motion), (iv) enabling real-time MRI monitoring of interventional procedures, and (v) reducing the opportunities for error that arise in manually actuated needle placement. The design of the robot, employing piezo-ceramic-motor actuated needle guide positioning and manual needle insertion, is reported. Results of a MRI compatibility study show no reduction of MRI signal-to-noise-ratio (SNR) with the motors disabled. Enabling the motors reduces the SNR by 80% without RF shielding, but SNR is only reduced by 40% to 60% with RF shielding. The addition of radio-frequency shielding is shown to significantly reduce image SNR degradation caused by the presence of the robotic device. An accuracy study of MRI-guided biopsy needle placements in a prostate phantom is reported. The study shows an average in-plane targeting error of 2.4 mm with a maximum error of 3.7 mm. These data indicate the system’s needle targeting accuracy is similar to that obtained with a previously reported manually actuated system, and is sufficient to reliably sample clinically significant prostate cancer foci under MRI-guidance. PMID:23326181

  1. Modelling of a biologically inspired robotic fish driven by compliant parts.

    PubMed

    El Daou, Hadi; Salumäe, Taavi; Chambers, Lily D; Megill, William M; Kruusmaa, Maarja

    2014-03-01

    Inspired by biological swimmers such as fish, a robot composed of a rigid head, a compliant body and a rigid caudal fin was built. It has the geometrical properties of a subcarangiform swimmer of the same size. The head houses a servo-motor which actuates the compliant body and the caudal fin. It achieves this by applying a concentrated moment on a point near the compliant body base. In this paper, the dynamics of the compliant body driving the robotic fish is modelled and experimentally validated. Lighthill's elongated body theory is used to define the hydrodynamic forces on the compliant part and Rayleigh proportional damping is used to model damping. Based on the assumed modes method, an energetic approach is used to write the equations of motion of the compliant body and to compute the relationship between the applied moment and the resulting lateral deflections. Experiments on the compliant body were carried out to validate the model predictions. The results showed that a good match was achieved between the measured and predicted deformations. A discussion of the swimming motions between the real fish and the robot is presented. PMID:24451164

  2. Brief Report: Development of a Robotic Intervention Platform for Young Children with ASD

    ERIC Educational Resources Information Center

    Warren, Zachary; Zheng, Zhi; Das, Shuvajit; Young, Eric M.; Swanson, Amy; Weitlauf, Amy; Sarkar, Nilanjan

    2015-01-01

    Increasingly researchers are attempting to develop robotic technologies for children with autism spectrum disorder (ASD). This pilot study investigated the development and application of a novel robotic system capable of dynamic, adaptive, and autonomous interaction during imitation tasks with embedded real-time performance evaluation and…

  3. Brief Report: Development of a Robotic Intervention Platform for Young Children with ASD.

    PubMed

    Warren, Zachary; Zheng, Zhi; Das, Shuvajit; Young, Eric M; Swanson, Amy; Weitlauf, Amy; Sarkar, Nilanjan

    2015-12-01

    Increasingly researchers are attempting to develop robotic technologies for children with autism spectrum disorder (ASD). This pilot study investigated the development and application of a novel robotic system capable of dynamic, adaptive, and autonomous interaction during imitation tasks with embedded real-time performance evaluation and feedback. The system was designed to incorporate both a humanoid robot and a human examiner. We compared child performance within system across these conditions in a sample of preschool children with ASD (n = 8) and a control sample of typically developing children (n = 8). The system was well-tolerated in the sample, children with ASD exhibited greater attention to the robotic system than the human administrator, and for children with ASD imitation performance appeared superior during the robotic interaction. PMID:25503680

  4. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  5. Improving Collaborative Play Between Children with Autism Spectrum Disorders and Their Siblings: The Effectiveness of a Robot-Mediated Intervention Based on Lego® Therapy.

    PubMed

    Huskens, Bibi; Palmen, Annemiek; Van der Werff, Marije; Lourens, Tino; Barakova, Emilia

    2015-11-01

    The aim of the study was to investigate the effectiveness of a brief robot-mediated intervention based on Lego(®) therapy on improving collaborative behaviors (i.e., interaction initiations, responses, and play together) between children with ASD and their siblings during play sessions, in a therapeutic setting. A concurrent multiple baseline design across three child-sibling pairs was in effect. The robot-intervention resulted in no statistically significant changes in collaborative behaviors of the children with ASD. Despite limited effectiveness of the intervention, this study provides several practical implications and directions for future research. PMID:25428293

  6. Robotics

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2012-01-01

    Earth's upper atmosphere is an extreme environment: dry, cold, and irradiated. It is unknown whether our aerobiosphere is limited to the transport of life, or there exist organisms that grow and reproduce while airborne (aerophiles); the microenvironments of suspended particles may harbor life at otherwise uninhabited altitudes[2]. The existence of aerophiles would significantly expand the range of planets considered candidates for life by, for example, including the cooler clouds of a hot Venus-like planet. The X project is an effort to engineer a robotic exploration and biosampling payload for a comprehensive survey of Earth's aerobiology. While many one-shot samples have been retrieved from above 15 km, their results are primarily qualitative; variations in method confound comparisons, leaving such major gaps in our knowledge of aerobiology as quantification of populations at different strata and relative species counts[1]. These challenges and X's preliminary solutions are explicated below. X's primary balloon payload is undergoing a series of calibrations before beginning flights in Spring 2012. A suborbital launch is currently planned for Summer 2012. A series of ground samples taken in Winter 2011 is being used to establish baseline counts and identify likely background contaminants.

  7. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    SciTech Connect

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron

    2010-04-15

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  8. Basic Robotics.

    ERIC Educational Resources Information Center

    Mullen, Frank

    This curriculum outline consists of instructional materials and information concerning resources for use in teaching a course in robotics. Addressed in the individual sections of the outline are the following topics: the nature of an industrial robot; the parts of an industrial robot (the manipulator, the power structure, and the control system);…

  9. Operation and force analysis of the guide wire in a minimally invasive vascular interventional surgery robot system

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Wang, Hongbo; Sun, Li; Yu, Hongnian

    2015-03-01

    To develop a robot system for minimally invasive surgery is significant, however the existing minimally invasive surgery robots are not applicable in practical operations, due to their limited functioning and weaker perception. A novel wire feeder is proposed for minimally invasive vascular interventional surgery. It is used for assisting surgeons in delivering a guide wire, balloon and stenting into a specific lesion location. By contrasting those existing wire feeders, the motion methods for delivering and rotating the guide wire in blood vessel are described, and their mechanical realization is presented. A new resistant force detecting method is given in details. The change of the resistance force can help the operator feel the block or embolism existing in front of the guide wire. The driving torque for rotating the guide wire is developed at different positions. Using the CT reconstruction image and extracted vessel paths, the path equation of the blood vessel is obtained. Combining the shapes of the guide wire outside the blood vessel, the whole bending equation of the guide wire is obtained. That is a risk criterion in the delivering process. This process can make operations safer and man-machine interaction more reliable. A novel surgery robot for feeding guide wire is designed, and a risk criterion for the system is given.

  10. Robot assisted radical prostatectomy: how I do it. Part I: Patient preparation and positioning.

    PubMed

    Valdivieso, Roger F; Hueber, Pierre-Alain; Zorn, Kevin C

    2013-10-01

    Radical prostatectomy remains the standard treatment for long term cure of clinically localized prostate cancer, offering excellent oncologic outcomes, with cancer-specific survival approaching 95% at 15 years after surgery. The introduction of the "da Vinci Robotic Surgical System" (Intuitive Surgical, Sunnyvale, CA, USA) has been another important step toward a minimally invasive approach to radical prostatectomy. Technologic peculiarities, such as three-dimensional vision, wristed instrumentation with seven degrees of freedom of motion, lack of tremor, a 10x-magnification and a comfortable seated position for the surgeon has added value to the surgeon and patient. In this first part of a two article series, we describe preoperative patient preparation and positioning protocols for robot assisted radical prostatectomy (RARP) that are currently used in our institution (University of Montreal Hospital Center (CHUM)-Hopital St-Luc). We use the four-arm da Vinci Si Surgical System. Our experience with RARP is now over 250 cases with the senior surgeon having performed over 1200 RARPs and we have continually refined our technique to improve patient outcomes. PMID:24128839

  11. Design of micro robots with microgrippers for manipulation of micro-parts

    NASA Astrophysics Data System (ADS)

    Nah, Siew Kuan; Zhong, Zhaowei

    2005-04-01

    In this paper, a design of a micro-robot system with microgrippers for the purpose of manipulation of micro-parts is proposed. The methodology includes the integration of micro-actuators for micromanipulation tasks of requirements that will involve small size, low weight, high resolution, high linearity and high accuracy. The combination of micro-assembly stages and microgrippers with CNC technology will allow the fixing of a microgripper onto a CNC robot. In order to minimize the size of the microgripper, the structure is fabricated as a monolithic piece with elastic flexure hinges. The microgripper mechanism consists of flexure notch hinges and parallel movement of the gripping arms. These elements transmit the gripping force and gripping motion and realize a good mechanical advantage ratio. The compliant mechanism system of the microgrippers is analyzed using a theoretical pseudo-rigid-body model and flexural hinge equation to investigate and predict the displacement and force relationships between the inputs and the outputs. In addition, a finite element study is done on the mechanism model to compare with the theoretical results.

  12. Empirically Supported Interventions and School Psychology: Rationale and Methodological Issues--Part II.

    ERIC Educational Resources Information Center

    Kratochwill, Thomas R.; Stoiber, Karen Callan

    2000-01-01

    This paper, part two of a two-part article, presents conceptual and practice issues on the use of empirically supported interventions in school and community settings. Discusses the essential practice issues, given the dual goal of advancing research in empirically supported interventions and of producing a knowledge base that has direct meaning…

  13. An Occupation and Participation Approach to Reading Intervention (OPARI) Part II: Pilot Clinical Application

    ERIC Educational Resources Information Center

    Grajo, Lenin C.; Candler, Catherine

    2016-01-01

    The Occupation and Participation Approach to Reading Intervention (OPARI) is an intervention approach for children with reading difficulties that emphasizes reading as an important occupation of children. Part I presented the theoretical basis of the OPARI. Part II describes a pilot clinical application of the OPARI. Guided by Schkade and…

  14. Diet and psoriasis, part I: Impact of weight loss interventions.

    PubMed

    Debbaneh, Maya; Millsop, Jillian W; Bhatia, Bhavnit K; Koo, John; Liao, Wilson

    2014-07-01

    One of the most frequently asked questions by patients with psoriasis is whether dietary changes can improve their condition. Included in this discussion is whether dietary weight loss can benefit their skin disease. Obesity has been associated with a proinflammatory state and several studies have demonstrated a relationship between body mass index and psoriasis severity. However, the question of whether weight loss interventions can impact psoriasis outcome is less clear. Here, we review the literature to examine the efficacy of weight loss interventions, both dietary and surgical, on psoriasis disease course. PMID:24709272

  15. Task-level robot programming: Integral part of evolution from teleoperation to autonomy

    NASA Technical Reports Server (NTRS)

    Reynolds, James C.

    1987-01-01

    An explanation is presented of task-level robot programming and of how it differs from the usual interpretation of task planning for robotics. Most importantly, it is argued that the physical and mathematical basis of task-level robot programming provides inherently greater reliability than efforts to apply better known concepts from artificial intelligence (AI) to autonomous robotics. Finally, an architecture is presented that allows the integration of task-level robot programming within an evolutionary, redundant, and multi-modal framework that spans teleoperation to autonomy.

  16. So Long, Robot Reader! A Superhero Intervention Plan for Improving Fluency

    ERIC Educational Resources Information Center

    Marcell, Barclay; Ferraro, Christine

    2013-01-01

    This article presents an engaging means for turning disfluent readers into prosody superstars. Each week students align with Poetry Power Man and his superhero friends to battle the evil Robot Reader and his sidekicks. The Fluency Foursome helps students adhere to the multidimensional aspects of fluency where expression and comprehension are…

  17. Reducing Youth Gun Violence. Part One--An Overview [and] Part Two--Prevention and Intervention Programs.

    ERIC Educational Resources Information Center

    McEvoy, Alan, Ed.

    1996-01-01

    This document contains two issues of a journal on reducing youth gun violence, reprinted from a report by the U.S. Department of Justice. The first issue, part one, provides an overview of programs and initiatives. The second issue, part two, describes prevention and intervention programs. To reduce violence and build healthy communities requires…

  18. A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming

    SciTech Connect

    Meier, Horst; Laurischkat, Roman; Zhu Junhong

    2011-01-17

    One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi body system model and its included compensation method.

  19. Improving Collaborative Play between Children with Autism Spectrum Disorders and Their Siblings: The Effectiveness of a Robot-Mediated Intervention Based on Lego® Therapy

    ERIC Educational Resources Information Center

    Huskens, Bibi; Palmen, Annemiek; Van der Werff, Marije; Lourens, Tino; Barakova, Emilia

    2015-01-01

    The aim of the study was to investigate the effectiveness of a brief robot-mediated intervention based on Lego® therapy on improving collaborative behaviors (i.e., interaction initiations, responses, and play together) between children with ASD and their siblings during play sessions, in a therapeutic setting. A concurrent multiple baseline design…

  20. Robotic intelligence kernel

    SciTech Connect

    Bruemmer, David J.

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  1. 3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot.

    PubMed

    Brosed, Francisco Javier; Aguilar, Juan José; Guillomía, David; Santolaria, Jorge

    2011-01-01

    This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting of a laser triangulation sensor and a motorized linear stage. First, the geometric model incorporating an automatic simple module for long term stability improvement will be outlined in the article. The new method used in the automatic module allows the sensor set up, including the motorized linear stage, for the scanning avoiding external measurement devices. In the measurement model the robot is just a positioning of parts with high repeatability. Its position and orientation data are not used for the measurement and therefore it is not directly "coupled" as an active component in the model. The function of the robot is to present the various surfaces of the workpiece along the measurement range of the vision system, which is responsible for the measurement. Thus, the whole system is not affected by the robot own errors following a trajectory, except those due to the lack of static repeatability. For the indirect link between the vision system and the robot, the original model developed needs only one first piece measuring as a "zero" or master piece, known by its accurate measurement using, for example, a Coordinate Measurement Machine. The strategy proposed presents a different approach to traditional laser triangulation systems on board the robot in order to improve the measurement accuracy, and several important cues for self-recalibration are explored using only a master piece. Experimental results are also presented to demonstrate the technique and the final 3D measurement accuracy. PMID:22346569

  2. 3D Geometrical Inspection of Complex Geometry Parts Using a Novel Laser Triangulation Sensor and a Robot

    PubMed Central

    Brosed, Francisco Javier; Aguilar, Juan José; Guillomía, David; Santolaria, Jorge

    2011-01-01

    This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting of a laser triangulation sensor and a motorized linear stage. First, the geometric model incorporating an automatic simple module for long term stability improvement will be outlined in the article. The new method used in the automatic module allows the sensor set up, including the motorized linear stage, for the scanning avoiding external measurement devices. In the measurement model the robot is just a positioning of parts with high repeatability. Its position and orientation data are not used for the measurement and therefore it is not directly “coupled” as an active component in the model. The function of the robot is to present the various surfaces of the workpiece along the measurement range of the vision system, which is responsible for the measurement. Thus, the whole system is not affected by the robot own errors following a trajectory, except those due to the lack of static repeatability. For the indirect link between the vision system and the robot, the original model developed needs only one first piece measuring as a “zero” or master piece, known by its accurate measurement using, for example, a Coordinate Measurement Machine. The strategy proposed presents a different approach to traditional laser triangulation systems on board the robot in order to improve the measurement accuracy, and several important cues for self-recalibration are explored using only a master piece. Experimental results are also presented to demonstrate the technique and the final 3D measurement accuracy. PMID:22346569

  3. Integrating socially assistive robotics into mental healthcare interventions: applications and recommendations for expanded use.

    PubMed

    Rabbitt, Sarah M; Kazdin, Alan E; Scassellati, Brian

    2015-02-01

    As a field, mental healthcare is faced with major challenges as it attempts to close the huge gap between those who need services and those who receive services. In recent decades, technological advances have provided exciting new resources in this battle. Socially assistive robotics (SAR) is a particularly promising area that has expanded into several exciting mental healthcare applications. Indeed, a growing literature highlights the variety of clinically relevant functions that these robots can serve, from companion to therapeutic play partner. This paper reviews the ways that SAR have already been used in mental health service and research and discusses ways that these applications can be expanded. We also outline the challenges and limitations associated with further integrating SAR into mental healthcare. SAR is not proposed as a replacement for specially trained and knowledgeable professionals nor is it seen as a panacea for all mental healthcare needs. Instead, robots can serve as clinical tools and assistants in a wide range of settings. Given the dramatic growth in this area, now is a critical moment for individuals in the mental healthcare community to become engaged in this research and steer it toward our field's most pressing clinical needs. PMID:25462112

  4. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery.

    PubMed

    Guo, Jian; Guo, Shuxiang; Yu, Yang

    2016-10-01

    In this paper, we proposed a novel master-slave robotic catheterization system with force feedback for VIS (Vascular Interventional Surgery). The force feedback to the operator on the master side is the key factor to improve the safety during VIS. The developed system used the MR (magneto rheological) fluid to realize force feedback, and it used the developed multidimensional monitoring interface to realize the visualization of force feedback, the developed multidimensional monitoring interface can monitor the motion information of the catheter and contact force between catheter tip or side wall and blood vessel wall, and the motion data of the catheter was collected and generated diagram for reference to surgeon. We have developed a force sensor array to detect the contact force between catheter tip or side wall and blood vessel wall. The force information was detected by the developed contact force sensor array when the catheter contacted with the blood vessel. The force feedback and multidimensional information monitoring interface evaluation experiments were done, the tracking characteristic evaluation experiments were also carried out, the experimental results indicated that the developed novel robotic catheterization system with force feedback and visualization of force feedback is effective for VIS, it can improve the safety during VIS. PMID:27499092

  5. A MR-conditional High-torque Pneumatic Stepper Motor for MRI-guided and Robot-assisted Intervention

    PubMed Central

    Chen, Yue; Kwok, Ka-Wai; Tse, Zion Tsz Ho

    2015-01-01

    Magnetic Resonance Imaging allows for visualizing detailed pathological and morphological changes of soft tissue. This increasingly attracts attention on MRI-guided intervention; hence, MR-conditional actuations have been widely investigated for development of image-guided and robot-assisted surgical devices under the MRI. This paper presents a simple design of MR-conditional stepper motor which can provide precise and high-torque actuation without adversely affecting the MR image quality. This stepper motor consists of two MR-conditional pneumatic cylinders and the corresponding supporting structures. Alternating the pressurized air can drive the motor to rotate each step in 3.6° with the motor coupled to a planetary gearbox. Experimental studies were conducted to validate its dynamics performance. Maximum 800mNm output torque can be achieved. The motor accuracy independently varied by two factors: motor operating speed and step size, was also investigated. The motor was tested within a Siemens 3T MRI scanner. The image artifact and the signal-to-noise ratio (SNR) were evaluated in order to study its MRI compliancy. The results show that the presented pneumatic stepper motor generated 2.35% SNR reduction in MR images and no observable artifact was presented besides the motor body itself. The proposed motor test also demonstrates a standard to evaluate the motor capability for later incorporation with motorized devices used in robot-assisted surgery under MRI. PMID:24957635

  6. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part I. General Aspects (long Version).

    PubMed

    Lorentzen, T; Nolsøe, C P; Ewertsen, C; Nielsen, M B; Leen, E; Havre, R F; Gritzmann, N; Brkljacic, B; Nürnberg, D; Kabaalioglu, A; Strobel, D; Jenssen, C; Piscaglia, F; Gilja, O H; Sidhu, P S; Dietrich, C F

    2015-10-01

    This is the first part of the Guidelines on Interventional Ultrasound of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) and covers all general aspects of ultrasound-guided procedures (long version). PMID:26468774

  7. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part III - Abdominal Treatment Procedures (Short Version).

    PubMed

    Dietrich, C F; Lorentzen, T; Appelbaum, L; Buscarini, E; Cantisani, V; Correas, J M; Cui, X W; D'Onofrio, M; Gilja, O H; Hocke, M; Ignee, A; Jenssen, C; Kabaalioğlu, A; Leen, E; Nicolau, C; Nolsøe, C P; Radzina, M; Serra, C; Sidhu, P S; Sparchez, Z; Piscaglia, F

    2016-02-01

    The third part of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) Guidelines on Interventional Ultrasound assesses the evidence for ultrasound-guided and assisted interventions in abdominal treatment procedures. Recommendations for clinical practice are presented covering indications, contraindications, safety and efficacy of the broad variety of these techniques. In particular, drainage of abscesses and fluid collections, interventional tumor ablation techniques, interventional treatment of symptomatic cysts and echinococcosis, percutaneous transhepatic cholangiography and drainage, percutaneous gastrostomy, urinary bladder drainage, and nephrostomy are addressed (short version; a long version is published online). PMID:26871408

  8. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part III - Abdominal Treatment Procedures (Long Version).

    PubMed

    Dietrich, C F; Lorentzen, T; Appelbaum, L; Buscarini, E; Cantisani, V; Correas, J M; Cui, X W; D'Onofrio, M; Gilja, O H; Hocke, M; Ignee, A; Jenssen, C; Kabaalioğlu, A; Leen, E; Nicolau, C; Nolsøe, C P; Radzina, M; Serra, C; Sidhu, P S; Sparchez, Z; Piscaglia, F

    2016-02-01

    The third part of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) Guidelines on Interventional Ultrasound (INVUS) assesses the evidence for ultrasound-guided and assisted interventions in abdominal treatment procedures. Recommendations for clinical practice are presented covering indications, contraindications, and safe and effective performance of the broad variety of these techniques. In particular, drainage of abscesses and fluid collections, interventional tumor ablation techniques, interventional treatment of symptomatic cysts and echinococcosis, percutaneous transhepatic cholangiography and drainage, percutaneous gastrostomy, urinary bladder drainage, and nephrostomy are addressed (long version). PMID:26670019

  9. 75 FR 68613 - Part C Early Intervention Services Grant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... be transferring Ryan White HIV/AIDS Program, Part C funds as a Non-Competitive Replacement Award, to... treatment services and avoid a disruption of HIV/AIDS clinical care to clients in East and Central Harlem... Health will receive $577,174 of fiscal year (FY) 2010 funds to ensure ongoing clinical HIV/ AIDS...

  10. Systematic review of occupational therapy-related interventions for people with multiple sclerosis: part 2. Impairment.

    PubMed

    Yu, Chih-Huang; Mathiowetz, Virgil

    2014-01-01

    This article is the second part of a systematic review of studies on occupational therapy-related intervention for people with multiple sclerosis (MS). The objective of this systematic review was to critically appraise and synthesize the applicable findings to address the following focused question: What is the evidence for the effectiveness of interventions within the scope of occupational therapy practice for people with multiple sclerosis? Part 1 (Yu & Mathiowetz, 2014) reviewed evidence for the effectiveness of activity- and participation-based interventions for people with MS. In contrast to the top-down approach, enabling occupational performance can be achieved through remediating impaired personal abilities. Therefore, Part 2 focuses on occupational therapy interventions targeting impairment. Studies included in this review focused on improving client factors and performance skills in people with MS, including cognition, emotional regulation, and motor and praxis skills. PMID:24367953

  11. Concept for practical exercises for studying autonomous flying robots in a university environment: Part I

    NASA Astrophysics Data System (ADS)

    Band, Ricardo; Pleban, Johann; Schön, Stefan; Creutzburg, Reiner; Fischer, Arno

    2013-03-01

    The aim of this paper is to demonstrate the usefulness of a concept of practical exercises for studying autonomous flying robots for computer science students in a university environment. It will show how students may assemble, program, fly, network and apply autonomous flying robots i.e. drones, quadrocopters, hexacopters, octocopters, helicopters, helicams, bugbots in different exercises, improve their skills, theoretical and practical knowledge in different aspects.

  12. An Occupation and Participation Approach to Reading Intervention (OPARI) Part I: Defining Reading as an Occupation

    ERIC Educational Resources Information Center

    Grajo, Lenin C.; Candler, Catherine

    2016-01-01

    This is the first of two papers that explore a role that occupational therapy can play in supporting children with reading challenges. Part I presents the grounding framework for an occupation and participation approach to reading intervention (OPARI) and serves to introduce the clinical application of the approach presented in Part II. In this…

  13. Towards explaining the health impacts of residential energy efficiency interventions - A realist review. Part 1: Pathways.

    PubMed

    Willand, Nicola; Ridley, Ian; Maller, Cecily

    2015-05-01

    This paper is Part 1 of a realist review that tries to explain the impacts of residential energy efficiency interventions (REEIs) on householder health. According to recent systematic reviews residential energy efficiency interventions may benefit health. It is argued that home energy improvement are complex interventions and that a better understanding of the latent mechanisms and contextual issues that may shape the outcome of interventions is needed for effective intervention design. This realist review synthesises the results of 28 energy efficiency improvement programmes. This first part provides a review of the explanatory factors of the three key pathways, namely warmth in the home, affordability of fuel and psycho-social factors, and the pitfall of inadequate indoor air quality. The review revealed that REEIs improved winter warmth and lowered relative humidity with benefits for cardiovascular and respiratory health. In addition, residential energy efficiency improvements consolidated the meaning of the home as a safe haven, strengthened the householder's perceived autonomy and enhanced social status. Although satisfaction with the home proved to be an important explanation for positive mental health outcomes, financial considerations seemed to have played a secondary role. Evidence for negative impacts was rare but the risk should not be dismissed. Comprehensive refurbishments were not necessarily more effective than thermal retrofits or upgrades. A common protocol for the quantitative and qualitative evaluation of interventions would facilitate the synthesis of future studies. Householder and contextual influences are addressed in Part 2. PMID:25687402

  14. Personalized, relevance-based Multimodal Robotic Imaging and augmented reality for Computer Assisted Interventions.

    PubMed

    Navab, Nassir; Fellow, Miccai; Hennersperger, Christoph; Frisch, Benjamin; Fürst, Bernhard

    2016-10-01

    In the last decade, many researchers in medical image computing and computer assisted interventions across the world focused on the development of the Virtual Physiological Human (VPH), aiming at changing the practice of medicine from classification and treatment of diseases to that of modeling and treating patients. These projects resulted in major advancements in segmentation, registration, morphological, physiological and biomechanical modeling based on state of art medical imaging as well as other sensory data. However, a major issue which has not yet come into the focus is personalizing intra-operative imaging, allowing for optimal treatment. In this paper, we discuss the personalization of imaging and visualization process with particular focus on satisfying the challenging requirements of computer assisted interventions. We discuss such requirements and review a series of scientific contributions made by our research team to tackle some of these major challenges. PMID:27475417

  15. Parents' Judgments of the Acceptability and Importance of Socially Interactive Robots for Intervening with Young Children with Disabilities. Social Robots Research Reports, Number 1

    ERIC Educational Resources Information Center

    Dunst, Carl J.; Trivette, Carol M.; Prior, Jeremy; Hamby, Deborah W.; Embler, Davon

    2013-01-01

    A number of different types of socially interactive robots are being used as part of interventions with young children with disabilities to promote their joint attention and language skills. Parents' judgments of two dimensions (acceptance and importance) of the social validity of four different social robots were the focus of the study described…

  16. Child Factors Associated with Enrollment in Part C Early Intervention among Children Adopted from China

    ERIC Educational Resources Information Center

    Bruder, Mary Beth; Dunst, Carl J.; Mogro-Wilson, Cristina

    2009-01-01

    The provision of services under Part C of the Individuals With Disabilities Education Act is built on a premise that children benefit from early intervention. This article presents findings from a study of children adopted from China. Given information obtained from a survey, the researchers grouped children as (a) those who received early…

  17. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part I. General Aspects (Short Version).

    PubMed

    Lorentzen, T; Nolsøe, C P; Ewertsen, C; Nielsen, M B; Leen, E; Havre, R F; Gritzmann, N; Brkljacic, B; Nürnberg, D; Kabaalioglu, A; Strobel, D; Jenssen, C; Piscaglia, F; Gilja, O H; Sidhu, P S; Dietrich, C F

    2015-10-01

    This is the first part of the Guidelines on Interventional Ultrasound of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) and covers all general aspects of ultrasound-guided procedures (short version; the long version is published online). PMID:26468772

  18. Design of a decoupled MRI-compatible force sensor using fiber bragg grating sensors for robot-assisted prostate interventions

    NASA Astrophysics Data System (ADS)

    Monfaredi, Reza; Seifabadi, Reza; Fichtinger, Gabor; Iordachita, Iulian

    2013-03-01

    During prostate needle insertion, the gland rotates and displaces resulting in needle placement inaccuracy. To compensate for this error, we proposed master-slave needle steering under real-time MRI in a previous study. For MRI-compatibility and accurate motion control, the master (and the slave) robot uses piezo actuators. These actuators however, are non-backdrivable. To cope with this issue, force sensor is required. Force sensor is also required at the slave side to reflect the insertion force to clinician's hand through the master robot. Currently, there is no MRI-compatible force sensor commercially available. In order to generate a combination of linear and rotary motions for needle steering, this study is seeking to develop a MRI-compatible 2 Degrees of Freedom (DOF) force/torque sensor. Fiber Brag Grating (FBG) strain measuring sensors which are proven to be MRI-compatible are used. The active element is made of phosphor-bronze and other parts are made of brass. The force and torque measurements are designed to be entirely decoupled. The sensor measures -20 to 20 N axial force with 0.1 N resolution, and -200 to 200 Nmm axial torque with 1 Nmm resolution. Analytical and Finite Element (FE) analyses are performed to ensure the strains are within the measurable range of the FBG sensors. The sensor is designed to be compact (diameter =15 mm, height =20 mm) and easy to handle and install. The proposed sensor is fabricated and calibrated using a commercial force/torque sensor.

  19. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  20. An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention.

    PubMed

    Krieger, Axel; Iordachita, Iulian I; Guion, Peter; Singh, Anurag K; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A; Camphausen, Kevin; Fichtinger, Gabor; Whitcomb, Louis L

    2011-11-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system-a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  1. Low-cost high-performance mobile robot design utilizing off-the-shelf parts and the Beowulf concept: the Beobot project

    NASA Astrophysics Data System (ADS)

    Mundhenk, Terrell N.; Ackerman, Christopher; Chung, Daesu; Dhavale, Nitin; Hudson, Brian; Hirata, Ried; Pichon, Eric; Shi, Zhan; Tsui, April; Itti, Laurent

    2003-10-01

    Utilizing off the shelf low cost parts, we have constructed a robot that is small, light, powerful and relatively inexpensive (< $3900). The system is constructed around the Beowulf concept of linking multiple discrete computing units into a single cooperative system. The goal of this project is to demonstrate a new robotics platform with sufficient computing resources to run biologically-inspired vision algorithms in real-time. This is accomplished by connecting two dual-CPU embedded PC motherboards using fast gigabit Ethernet. The motherboards contain integrated Firewire, USB and serial connections to handle camera, servomotor, GPS and other miscellaneous inputs/outputs. Computing systems are mounted on a servomechanism-controlled off-the-shelf "Off Road" RC car. Using the high performance characteristics of the car, the robot can attain relatively high speeds outdoors. The robot is used as a test platform for biologically-inspired as well as traditional robotic algorithms, in outdoor navigation and exploration activities. Leader following using multi blob tracking and segmentation, and navigation using statistical information and decision inference from image spectral information are discussed. The design of the robot is open-source and is constructed in a manner that enhances ease of replication. This is done to facilitate construction and development of mobile robots at research institutions where large financial resources may not be readily available as well as to put robots into the hands of hobbyists and help lead to the next stage in the evolution of robotics, a home hobby robot with potential real world applications.

  2. Robot assisted radical prostatectomy: how I do it. Part II: Surgical technique.

    PubMed

    Valdivieso, Roger F; Hueber, Pierre-Alain; Zorn, Kevin C

    2013-12-01

    The introduction of the "da Vinci Robotic Surgical System" (Intuitive Surgical, Sunnyvale, CA, USA) has been an important step towards a minimally invasive approach to radical prostatectomy. Technologic peculiarities, such as three-dimensional vision, wristed instrumentation with seven degrees of freedom of motion, lack of tremor, a 10x-magnification and a comfortable seated position for the surgeon has added value to the procedure for the surgeon and the patient. In this article, we describe the 9 step surgical technique for robot assisted radical prostatectomy (RARP) that is currently used in our institution (University of Montreal Hospital Center (CHUM) - Hopital St-Luc). We use the four-arm da Vinci Surgical System. Our experience with RARP is now over 250 cases with the senior surgeon having performed over 1200 RARPs and we have continually refined our technique to improve patient outcomes. PMID:24331353

  3. Simple robust control laws for robot manipulators. Part 1: Non-adaptive case

    NASA Technical Reports Server (NTRS)

    Wen, J. T.; Bayard, D. S.

    1987-01-01

    A new class of exponentially stabilizing control laws for joint level control of robot arms is introduced. It has been recently recognized that the nonlinear dynamics associated with robotic manipulators have certain inherent passivity properties. More specifically, the derivation of the robotic dynamic equations from the Hamilton's principle gives rise to natural Lyapunov functions for control design based on total energy considerations. Through a slight modification of the energy Lyapunov function and the use of a convenient lemma to handle third order terms in the Lyapunov function derivatives, closed loop exponential stability for both the set point and tracking control problem is demonstrated. The exponential convergence property also leads to robustness with respect to frictions, bounded modeling errors and instrument noise. In one new design, the nonlinear terms are decoupled from real-time measurements which completely removes the requirement for on-line computation of nonlinear terms in the controller implementation. In general, the new class of control laws offers alternatives to the more conventional computed torque method, providing tradeoffs between robustness, computation and convergence properties. Furthermore, these control laws have the unique feature that they can be adapted in a very simple fashion to achieve asymptotically stable adaptive control.

  4. Concept for practical exercises for studying autonomous flying robots in a university environment: part II

    NASA Astrophysics Data System (ADS)

    Gageik, Nils; Dilger, Erik; Montenegro, Sergio; Schön, Stefan; Wildenhein, Rico; Creutzburg, Reiner; Fischer, Arno

    2015-03-01

    The present paper demonstrates the application of quadcopters as educational material for students in aerospace computer science, as it is already in usage today. The work with quadrotors teaches students theoretical and practical knowledge in the fields of robotics, control theory, aerospace and electrical engineering as well as embedded programming and computer science. For this the material, concept, realization and future view of such a course is discussed in this paper. Besides that, the paper gives a brief overview of student research projects following the course, which are related to the research and development of fully autonomous quadrotors.

  5. 78 FR 25458 - Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... HUMAN SERVICES Health Resources and Services Administration Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV/AIDS Program AGENCY: Health Resources and Services Administration (HRSA), HHS. ACTION: Notice of Ryan White HIV/AIDS Program Part C Early Intervention Services...

  6. Potential impact of pharmacist interventions to reduce cost for Medicare Part D beneficiaries.

    PubMed

    Thatcher, Erin E; Vanwert, Elizabeth M; Erickson, Steven R

    2013-06-01

    The objective was to determine the impact of simulated pharmacist interventions on out-of-pocket cost, time to coverage gap, and cost per patient to the Medicare Part D program using actual patient cases from an adult general medicine clinic. Medication profiles of 100 randomly selected Medicare-eligible patients from a university-affiliated general internal medicine clinic were reviewed by a pharmacist to identify opportunities to cost-maximize the patients' therapies based on the plan. An online Part-D calculator, Aetna Medicare Rx Essentials, was used as the standard plan to determine medication cost and time to gap. The primary analysis was comparison of the patients' pre-review and post-review out-of-pocket cost, time to coverage gap, and cost to Medicare. A total of 65 patients had at least 1 simulated pharmacist cost intervention. The most common intervention was substituting for a less costly generic, followed by substituting a generic for a brand name. Projected patient cost savings was $476 per year. The average time to coverage gap was increased by 0.7 ±1.2 months. This study illustrates that the pharmacists may be able to reduce cost to some patients as well as to the Medicare Part D program. PMID:23178417

  7. Simple robust control laws for robot manipulators. Part 2: Adaptive case

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Wen, J. T.

    1987-01-01

    A new class of asymptotically stable adaptive control laws is introduced for application to the robotic manipulator. Unlike most applications of adaptive control theory to robotic manipulators, this analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and utilizes a parameterization based on physical (time-invariant) quantities. This approach is made possible by using energy-like Lyapunov functions which retain the nonlinear character and structure of the dynamics, rather than simple quadratic forms which are ubiquitous to the adaptive control literature, and which have bound the theory tightly to linear systems with unknown parameters. It is a unique feature of these results that the adaptive forms arise by straightforward certainty equivalence adaptation of their nonadaptive counterparts found in the companion to this paper (i.e., by replacing unknown quantities by their estimates) and that this simple approach leads to asymptotically stable closed-loop adaptive systems. Furthermore, it is emphasized that this approach does not require convergence of the parameter estimates (i.e., via persistent excitation), invertibility of the mass matrix estimate, or measurement of the joint accelerations.

  8. Combining psychological and engineering approaches to utilizing social robots with children with autism.

    PubMed

    Dickstein-Fischer, Laurie; Fischer, Gregory S

    2014-01-01

    It is estimated that Autism Spectrum Disorder (ASD) affects 1 in 68 children. Early identification of an ASD is exceedingly important to the introduction of an intervention. We are developing a robot-assisted approach that will serve as an improved diagnostic and early intervention tool for children with autism. The robot, named PABI® (Penguin for Autism Behavioral Interventions), is a compact humanoid robot taking on an expressive cartoon-like embodiment. The robot is affordable, durable, and portable so that it can be used in various settings including schools, clinics, and the home. Thus enabling significantly enhanced and more readily available diagnosis and continuation of care. Through facial expressions, body motion, verbal cues, stereo vision-based tracking, and a tablet computer, the robot is capable of interacting meaningfully with an autistic child. Initial implementations of the robot, as part of a comprehensive treatment model (CTM), include Applied Behavioral Analysis (ABA) therapy where the child interacts with a tablet computer wirelessly interfaced with the robot. At the same time, the robot makes meaningful expressions and utterances and uses stereo cameras in eyes to track the child, maintain eye contact, and collect data such as affect and gaze direction for charting of progress. In this paper we present the clinical justification, anticipated usage with corresponding requirements, prototype development of the robotic system, and demonstration of a sample application for robot-assisted ABA therapy. PMID:25570078

  9. A research synthesis of therapeutic interventions for whiplash-associated disorder (WAD): Part 4 – noninvasive interventions for chronic WAD

    PubMed Central

    Teasell, Robert W; McClure, J Andrew; Walton, David; Pretty, Jason; Salter, Katherine; Meyer, Matthew; Sequeira, Keith; Death, Barry

    2010-01-01

    Whiplash-associated disorder (WAD) represents a significant public health problem, resulting in substantial social and economic costs throughout the industrialized world. While many treatments have been advocated for patients with WAD, scientific evidence supporting their effectiveness is often lacking. A systematic review was conducted to evaluate the strength of evidence for various WAD therapies. Multiple databases (including Web of Science, EMBASE and PubMed) were searched to identify all studies published from January 1980 through March 2009 that evaluated the effectiveness of any clearly defined treatment for acute (less than two weeks), subacute (two to 12 weeks) or chronic (longer than 12 weeks) WAD. The present article, the fourth in a five-part series, evaluates the evidence for noninvasive interventions initiated during the chronic phase of WAD. Twenty-two studies that met the inclusion criteria were identified, 12 of which were randomized controlled trials with ‘good’ overall methodological quality (median Physiotherapy Evidence Database score of 6). For the treatment of chronic WAD, there is evidence to suggest that exercise programs are effective in relieving whiplash-related pain, at least over the short term. While the majority of a subset of nine studies supported the effectiveness of interdisciplinary interventions, the two randomized controlled trials provided conflicting results. Finally, there was limited evidence, consisting of one supportive case series each, that both manual joint manipulation and myofeedback training may provide some benefit. Based on the available research, exercise programs were the most effective noninvasive treatment for patients with chronic WAD, although many questions remain regarding the relative effectiveness of various exercise regimens. PMID:21038010

  10. Evaluation of short term effects of the IROMEC robotic toy for children with developmental disabilities.

    PubMed

    Klein, Tanja; Gelderblom, Gert Jan; de Witte, Luc; Vanstipelen, Silvie

    2011-01-01

    Research shows a reduced playfulness in children with developmental disabilities. This is a barrier for participation and children's health and wellbeing. IROMEC is a purposely designed robot to support play in impaired children. The reported study evaluates short-term effects of the IROMEC robot toy supporting play in an occupational therapy intervention for children with developmental disabilities. Two types of play intervention (standard occupational therapy versus robot-facilitated play intervention) were compared regarding their effect on the level of playfulness, on children's general functional development, goal achievement as well as the therapist's evaluation of the added value of a robot-facilitated play intervention. Three young children took part in this single-subject design study. Evaluation was performed through Test of Playfulness (ToP), the IROMEC evaluation questionnaire and qualitative evaluation by the therapists. Results confirmed the IROMEC robot did partly meet the needs of the children and therapists, and positive impact on TOP results was found with two children. This suggests robotic toys can support children with developmental disabilities in enriching play. Long term effect evaluation should verify these positive indications resulting from use of this innovative social robot for children with developmental disabilities. But it also became clear further development of the robot is required. PMID:22275609

  11. A Review of CAM for Procedural Pain in Infancy: Part II. Other Interventions.

    PubMed

    Tsao, Jennie C I; Evans, Subhadra; Meldrum, Marcia; Altman, Tamara; Zeltzer, Lonnie K

    2008-12-01

    This article is the second in a two-part series reviewing the empirical evidence for complementary and alternative medicine (CAM) approaches for the management of pain related to medical procedures in infants up to 6 weeks of age. Part I of this series investigated the effects of sucrose with or without non-nutritive sucking (NNS). The present article examines other CAM interventions for procedural pain including music-based interventions, olfactory stimulation, kangaroo care and swaddling. Computerized databases were searched for relevant studies including prior reviews and primary trials. Preliminary support was revealed for the analgesic effects of the CAM modalities reviewed. However, the overall quality of the evidence for these approaches remains relatively weak. Additional well-designed trials incorporating rigorous methodology are required. Such investigations will assist in the development of evidence-based guidelines on the use of CAM interventions either alone or in concert with conventional approaches to provide safe, reliable analgesia for infant procedural pain. PMID:18955254

  12. From training to robot behavior: towards custom scenarios for robotics in training programs for ASD.

    PubMed

    Gillesen, J C C; Barakova, E I; Huskens, B E B M; Feijs, L M G

    2011-01-01

    Successful results have been booked with using robotics in therapy interventions for autism spectrum disorders (ASD). However, to make the best use of robots, the behavior of the robot needs to be tailored to the learning objectives and personal characteristics of each unique individual with ASD. Currently training practices include adaptation of the training programs to the condition of each individual client, based on the particular learning goals or the mood of the client. To include robots in such training will imply that the trainers are enabled to control a robot through an intuitive interface. For this purpose we use a visual programming environment called TiViPE as an interface between robot and trainer, where scenarios for specific learning objectives can easily be put together as if they were graphical LEGO-like building blocks. This programming platform is linked to the NAO robot from Aldebaran Robotics. A process flow for converting trainers' scenarios was developed to make sure the gist of the original scenarios was kept intact. We give an example of how a scenario is processed, and implemented into the clinical setting, and how detailed parts of a scenario can be developed. PMID:22275585

  13. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part B, Characterization; robotics/automation

    SciTech Connect

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate theses problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part B of Volume 3 and contains the Characterization and Robotics/Automation sections.

  14. Effects of a Socially Interactive Robot on the Conversational Turns between Parents and Their Young Children with Autism. Social Robots Research Reports, Number 6

    ERIC Educational Resources Information Center

    Dunst, Carl J.; Hamby, Deborah W.; Trivette, Carol M.; Prior, Jeremy; Derryberry, Graham

    2013-01-01

    The effects of a socially interactive robot on the conversational turns between four young children with autism and their mothers were investigated as part of the intervention study described in this research report. The interventions with each child were conducted over 4 or 5 days in the children's homes where a practitioner facilitated…

  15. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  16. Minimizing Human Intervention for Constructing Korean Part-of-Speech Tagged Corpus

    NASA Astrophysics Data System (ADS)

    Lee, Do-Gil; Hong, Gumwon; Lee, Seok Kee; Rim, Hae-Chang

    The construction of annotated corpora requires considerable manual effort. This paper presents a pragmatic method to minimize human intervention for the construction of Korean part-of-speech (POS) tagged corpus. Instead of focusing on improving the performance of conventional automatic POS taggers, we devise a discriminative POS tagger which can selectively produce either a single analysis or multiple analyses based on the tagging reliability. The proposed approach uses two decision rules to judge the tagging reliability. Experimental results show that the proposed approach can effectively control the quality of corpus and the amount of manual annotation by the threshold value of the rule.

  17. 32 CFR Appendix E to Part 57 - DoD-CC on Early Intervention, Special Education, and Related Services

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false DoD-CC on Early Intervention, Special Education... SERVICES TO ELIGIBLE DOD DEPENDENTS Pt. 57, App. E Appendix E to Part 57—DoD-CC on Early Intervention, Special Education, and Related Services A. Committee Membership The DoD-CC shall meet at least yearly...

  18. 32 CFR Appendix E to Part 57 - DoD-CC on Early Intervention, Special Education, and Related Services

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false DoD-CC on Early Intervention, Special Education... SERVICES TO ELIGIBLE DOD DEPENDENTS Pt. 57, App. E Appendix E to Part 57—DoD-CC on Early Intervention, Special Education, and Related Services A. Committee Membership The DoD-CC shall meet at least yearly...

  19. 32 CFR Appendix E to Part 57 - DoD-CC on Early Intervention, Special Education, and Related Services

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false DoD-CC on Early Intervention, Special Education... SERVICES TO ELIGIBLE DOD DEPENDENTS Pt. 57, App. E Appendix E to Part 57—DoD-CC on Early Intervention, Special Education, and Related Services A. Committee Membership The DoD-CC shall meet at least yearly...

  20. 32 CFR Appendix E to Part 57 - DoD-CC on Early Intervention, Special Education, and Related Services

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false DoD-CC on Early Intervention, Special Education... SERVICES TO ELIGIBLE DOD DEPENDENTS Pt. 57, App. E Appendix E to Part 57—DoD-CC on Early Intervention, Special Education, and Related Services A. Committee Membership The DoD-CC shall meet at least yearly...

  1. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... computer station and directs the movements of a robot. Small surgical tools are attached to the robot's ...

  2. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part B: Applications

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. This report, Part B of a three part report on AI, presents overviews of the key application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. The basic approaches to such systems, the state-of-the-art, existing systems and future trends and expectations are covered.

  3. Robotic technology in cardiovascular medicine.

    PubMed

    Bonatti, Johannes; Vetrovec, George; Riga, Celia; Wazni, Oussama; Stadler, Petr

    2014-05-01

    Robotic technology has been used in cardiovascular medicine since the late 1990s. Interventional cardiology, electrophysiology, endovascular surgery, minimally invasive cardiac surgery, and laparoscopic vascular surgery are all fields of application. Robotic devices enable endoscopic reconstructive surgery in narrow spaces and fast, very precise placement of catheters and devices in catheter-based interventions. In all robotic systems, the operator manipulates the robotic arms from a control station or console. In the field of cardiac surgery, mitral valve repair, CABG surgery, atrial septal defect repair, and myxoma resection can be achieved using robotic technology. Furthermore, vascular surgeons can perform a variety of robotically assisted operations to treat aortic, visceral, and peripheral artery disease. In electrophysiology, ablation procedures for atrial fibrillation can be carried out with robotic support. In the past few years, robotically assisted percutaneous coronary intervention and abdominal aortic endovascular surgery techniques have been developed. The basic feasibility and safety of robotic approaches in cardiovascular medicine has been demonstrated, but learning curves and the high costs associated with this technology have limited its widespread use. Nonetheless, increased procedural speed, accuracy, and reduced exposure to radiation and contrast agent in robotically assisted catheter-based interventions, as well as reduced surgical trauma and shortened patient recovery times after robotic cardiovascular surgery are promising achievements in the field. PMID:24663088

  4. Robot Tools

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Mecanotron, now division of Robotics and Automation Corporation, developed a quick-change welding method called the Automatic Robotics Tool-change System (ARTS) under Marshall Space Flight Center and Rockwell International contracts. The ARTS system has six tool positions ranging from coarse sanding disks and abrasive wheels to cloth polishing wheels with motors of various horsepower. The system is used by fabricators of plastic body parts for the auto industry, by Texas Instruments for making radar domes, and for advanced composites at Aerospatiale in France.

  5. Human Factors in Automated and Robotic Space Systems: Proceedings of a symposium. Part 1

    NASA Technical Reports Server (NTRS)

    Sheridan, Thomas B. (Editor); Kruser, Dana S. (Editor); Deutsch, Stanley (Editor)

    1987-01-01

    Human factors research likely to produce results applicable to the development of a NASA space station is discussed. The particular sessions covered in Part 1 include: (1) system productivity -- people and machines; (2) expert systems and their use; (3) language and displays for human-computer communication; and (4) computer aided monitoring and decision making. Papers from each subject area are reproduced and the discussions from each area are summarized.

  6. Human Factors in Automated and Robotic Space Systems: Proceedings of a symposium. Part 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Human factors research likely to produce results applicable to the development of a NASA space station is discussed. The particular sessions covered in Part 2 include: (1) computer aided monitoring and decision making; (2) telepresence and supervisory control; (3) social factors in productivity and performance; and (4) the human role in space systems. Papers from each subject area are reproduced and the discussions from each area are summarized.

  7. Hard-to-Reach or Out-of-Reach? Reasons Why Women Refuse to Take Part in Early Interventions

    ERIC Educational Resources Information Center

    Barlow, Jane; Kirkpatrick, Sue; Stewart-Brown, Sarah; Davis, Hilton

    2005-01-01

    The aim of this study was to explore the reasons why vulnerable women refuse to take part in early interventions. In-depth interviews were conducted with 19 women who refused to take part in an evaluation of an intensive home visiting programme. A number of themes were identified including perceptions about vulnerability, misperceptions about the…

  8. 32 CFR Appendix E to Part 57 - DoD-CC on Early Intervention, Special Education, and Related Services

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false DoD-CC on Early Intervention, Special Education, and Related Services E Appendix E to Part 57 National Defense Department of Defense OFFICE OF THE... SERVICES TO ELIGIBLE DOD DEPENDENTS Pt. 57, App. E Appendix E to Part 57—DoD-CC on Early...

  9. Industrial robots and robotics

    SciTech Connect

    Kafrissen, S.; Stephens, M.

    1984-01-01

    This book discusses the study of robotics. It provides information of hardware, software, applications and economics. Eleven chapters examine the following: Minicomputers, Microcomputers, and Microprocessors; The Servo-Control System; The Activators; Robot Vision Systems; and Robot Workcell Environments. Twelve appendices supplement the data.

  10. Systematic review of occupational therapy-related interventions for people with multiple sclerosis: part 1. Activity and participation.

    PubMed

    Yu, Chih-Huang; Mathiowetz, Virgil

    2014-01-01

    This article is the first part of a systematic review of studies on occupational therapy-related intervention for people with multiple sclerosis (MS). The objective of this systematic review was to critically appraise and synthesize the applicable findings to address the following focused question: What is the evidence for the effectiveness of interventions within the scope of occupational therapy practice for people with multiple sclerosis? This article focuses on occupational therapy interventions aimed at activity and participation, including programs (e.g., inpatient and outpatient rehabilitation) in which an occupational therapy practitioner was one member of the team. Part 2 (Yu & Mathiowetz, 2014) focuses on interventions within the scope of occupational therapy to remediate impairment (e.g., exercise, cognition, emotional regulation). PMID:24367952

  11. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... Robotic surgery is similar to laparoscopic surgery. It can be performed through smaller cuts than open surgery. ...

  12. Randomization in robot tasks

    NASA Technical Reports Server (NTRS)

    Erdmann, Michael

    1992-01-01

    This paper investigates the role of randomization in the solution of robot manipulation tasks. One example of randomization is shown by the strategy of shaking a bin holding a part in order to orient the part in a desired stable state with some high probability. Randomization can be useful for mobile robot navigation and as a means of guiding the design process.

  13. Going Green Robots

    ERIC Educational Resources Information Center

    Nelson, Jacqueline M.

    2011-01-01

    In looking at the interesting shapes and sizes of old computer parts, creating robots quickly came to the author's mind. In this article, she describes how computer parts can be used creatively. Students will surely enjoy creating their very own robots while learning about the importance of recycling in the society. (Contains 1 online resource.)

  14. Space robotics in Japan

    NASA Astrophysics Data System (ADS)

    Whittaker, William; Lowrie, James W.; McCain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-03-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  15. Space robotics in Japan

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Lowrie, James W.; Mccain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-01-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  16. Patients with atrial fibrillation undergoing percutaneous coronary intervention: current concepts and concerns: part II.

    PubMed

    Dzeshka, Mikhail S; Brown, Richard A; Lip, Gregory Y H

    2015-01-01

    Atrial fibrillation (AF) and coronary artery disease (CAD) often present concomitantly. Given the increased risk of thrombotic complications with either of them but different pathogenesis of clot formation, combined antithrombotic therapy is necessary in patients developing acute coronary syndrome and/or undergoing percutaneous coronary intervention (PCI). Different antithrombotic regimens in this group of patients have been summarized and discussed earlier. Triple therapy remains the treatment of choice in these patients despite the increased risk of hemorrhagic complications. Given the absence of evidence from randomized controlled trials, balancing the risk of stroke and stent thrombosis against the risk of major bleeding is a challenge. Precise stroke and bleeding risk assessment is an essential part of the decision making process regarding antithrombotic management. Continuing the discussion of current concepts and concerns of antithrombotic management in AF patients undergoing PCI, we emphasize the importance of various strategies to reduce bleeding in the modern era, namely, radial access combined with careful selection of a P2Y₁₂ receptor inhibitor, use of newer drug-eluting stents, and uninterrupted anticoagulation for patients undergoing procedures. We also focus on the role of the non-vitamin K oral anticoagulants (novel oral anticoagulants, eg, dabigatran, rivaroxaban, apixaban, and edoxaban) which are increasingly used for stroke prevention in AF. Finally, recent recommendations on the management of antithrombotic therapy in AF patients presenting with acute coronary syndrome and/or undergoing PCI as well as ongoing clinical trials and future directions are highlighted. PMID:25534093

  17. Restricting state part C eligibility policy is associated with lower early intervention utilization.

    PubMed

    McManus, Beth M; Magnusson, Dawn; Rosenberg, Steven

    2014-05-01

    To examine if state differences in early intervention (EI) utilization can be explained by recent restrictions on EI state eligibility policy. The sample (n = 923), derived from the 2009/10 National Survey of Children with Special Health Care Needs, included CSHCN who were ages 0-3 with a developmental delay or disability that affected their function. Multi-level logistic modeling was used to describe state differences in EI utilization and to determine if narrower state eligibility policy explained these differences. EI utilization ranged from 6 to 87 % across states. Having a severe condition (β = 0.99, SE = 0.28) and a usual source of care (β = 0.01, SE = 0.001) was associated with higher odds of utilizing EI. Compared to a diagnosed disability, having a developmental delay (β = -0.61, SE = 0.20) was associated with lower odds of utilizing EI. Living in a state with narrow and narrower state eligibility policy (β = -0.18, SE = 0.06) was significantly associated with lower odds of EI utilization, and this effect was strongest for children with the most severe functional impairments. Significant state variation in EI rates exists that can be explained, in part, by the restrictiveness of state eligibility criteria. Children with the most severe functional impairments appear to be least likely to utilize EI in states with the most restrictive eligibility policies. PMID:23929559

  18. Effectiveness of brief interventions as part of the Screening, Brief Intervention and Referral to Treatment (SBIRT) model for reducing the nonmedical use of psychoactive substances: a systematic review

    PubMed Central

    2014-01-01

    Background The purpose of this systematic review is to assess the effectiveness of brief interventions (BIs) as part of the Screening, Brief Intervention, and Referral to Treatment (SBIRT) model for reducing the nonmedical use of psychoactive substances. Methods Bibliographic databases (including MEDLINE, Embase, The Cochrane Library, CINAHL, and PsycINFO to April 2012) and gray literature sources were searched. We included randomized controlled trials that opportunistically screened adolescents or adults and then provided a one-to-one, verbal BI to those at risk of substance-use harm. Of interest was the nonmedical use of psychoactive substances (for example, drugs prohibited by international law), excluding alcohol, nicotine, and caffeine. Interventions comprised four or fewer sessions and were compared with no/delayed intervention or provision of information only. Studies were assessed for bias using the Cochrane risk of bias tool. Results were synthesized narratively. Evidence was interpreted according to the GRADE framework. Results We identified 8,836 records. Of these, five studies met our inclusion criteria. Two studies compared BI with no BI, and three studies compared BI with information only. Studies varied in characteristics such as substances targeted, screening procedures, and BI administered. Outcomes were mostly reported by a single study, leading to limited or uncertain confidence in effect estimates. Conclusions Insufficient evidence exists as to whether BIs, as part of SBIRT, are effective or ineffective for reducing the use of, or harms associated with nonmedical use of, psychoactive substances when these interventions are administered to nontreatment-seeking, screen-detected populations. Updating this review with emerging evidence will be important. Trial registration CRD42012002414 PMID:24887418

  19. [Robotic surgery in gynecology].

    PubMed

    Csorba, Roland

    2012-06-24

    Minimally invasive surgery has revolutionized gynecological interventions over the past 30 years. The introduction of the da Vinci robotic surgery in 2005 has resulted in large changes in surgical management. The robotic platform allows less experienced laparoscopic surgeons to perform more complex procedures. It can be utilized mainly in general gynecology and reproductive gynecology. The robot is being increasingly used for procedures such as hysterectomy, myomectomy, adnexal surgery, and tubal anastomosis. In urogynecology, the robot is being utilized for sacrocolopexy as well. In the field of gynecologic oncology, the robot is being increasingly used for hysterectomy and lymphadenectomy in oncologic diseases. Despite the rapid and widespread adaption of robotic surgery in gynecology, there are no randomized trials comparing its efficacy and safety to other traditional surgical approaches. This article presents the development, technical aspects and indications of robotic surgery in gynecology, based on the previously published reviews. Robotic surgery can be highly advantageous with the right amount of training, along with appropriate patient selection. Patients will have less blood loss, less post-operative pain, faster recovery, and fewer complications compared to open surgery and laparoscopy. However, until larger randomized control trials are completed which report long-term outcomes, robotic surgery cannot be stated to have priority over other surgical methods. PMID:22714030

  20. Research and Evaluations of the Health Aspects of Disasters, Part VI: Interventional Research and the Disaster Logic Model.

    PubMed

    Birnbaum, Marvin L; Daily, Elaine K; O'Rourke, Ann P; Kushner, Jennifer

    2016-04-01

    . Birnbaum ML , Daily EK , O'Rourke AP , Kushner J . Research and evaluations of the health aspects of disasters, part VI: interventional research and the Disaster Logic Model. Prehosp Disaster Med. 2016;31(2):181-194. PMID:26830875

  1. Ground operation of robotics on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Wojcik, Z. Alex; Hunter, David G.; Cantin, Marc R.

    1993-01-01

    This paper reflects work carried out on Ground Operated Telerobotics (GOT) in 1992 to refine further the ideas, procedures, and technologies needed to test the procedures in a high latency environment, and to integrate GOT into Space Station Freedom operations. Space Station Freedom (SSF) will be in operation for 30 years, and will depend on robots to carry out a significant part of the assembly, maintenance, and utilization workload. Current plans call for on-orbit robotics to be operated by on-board crew members. This approach implies that on-orbit robotics operations use up considerable crew time, and that these operations cannot be carried out when SSF is unmanned. GOT will allow robotic operations to be operated from the ground, with on-orbit crew interventions only when absolutely required. The paper reviews how GOT would be implemented, how GOT operations would be planned and supported, and reviews GOT issues, critical success factors, and benefits.

  2. Human-Like Behavior Generation Based on Head-Arms Model for Robot Tracking External Targets and Body Parts.

    PubMed

    Zhang, Zhijun; Beck, Aryel; Magnenat-Thalmann, Nadia

    2015-08-01

    Facing and pointing toward moving targets is a usual and natural behavior in daily life. Social robots should be able to display such coordinated behaviors in order to interact naturally with people. For instance, a robot should be able to point and look at specific objects. This is why, a scheme to generate coordinated head-arm motion for a humanoid robot with two degrees-of-freedom for the head and seven for each arm is proposed in this paper. Specifically, a virtual plane approach is employed to generate the analytical solution of the head motion. A quadratic program (QP)-based method is exploited to formulate the coordinated dual-arm motion. To obtain the optimal solution, a simplified recurrent neural network is used to solve the QP problem. The effectiveness of the proposed scheme is demonstrated using both computer simulation and physical experiments. PMID:25252290

  3. Facts, fallacies, and politics of comparative effectiveness research: Part 2 - implications for interventional pain management.

    PubMed

    Manchikanti, Laxmaiah; Falco, Frank J E; Boswell, Mark V; Hirsch, Joshua A

    2010-01-01

    times it becomes an orphan. Part 2 of this comprehensive review will provide facts, fallacies, and politics of CER along with discussion of potential outcomes, impact of CER on health care delivery, and implications for interventional pain management in the United States. PMID:20119475

  4. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  5. 78 FR 10183 - Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... HUMAN SERVICES Health Resources and Services Administration Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV/AIDS Program AGENCY: Health Resources and Services... prevent a lapse in comprehensive primary care services for persons living with HIV/AIDS, HRSA will...

  6. 78 FR 18989 - Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... HUMAN SERVICES Health Resources and Services Administration Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV/AIDS Program AGENCY: Health Resources and Services Administration (HRSA), Department of Health and Human Services. ACTION: Notice of Ryan White HIV/AIDS...

  7. 78 FR 31568 - Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... HUMAN SERVICES Health Resources and Services Administration Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV/AIDS Program AGENCY: Health Resources and Services Administration (HRSA), Department of Health and Human Services. ACTION: Notice of Ryan White HIV/AIDS...

  8. 78 FR 10183 - Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... HUMAN SERVICES Health Resources and Services Administration Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV/AIDS Program AGENCY: Health Resources and Services... a lapse in comprehensive primary care services for persons living with HIV/AIDS, HRSA will...

  9. 75 FR 5603 - Part C Early Intervention Services Grant Under the Ryan White HIV/AIDS Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration Part C Early Intervention Services Grant Under the Ryan White HIV/AIDS Program AGENCY: Health Resources and Services Administration (HRSA),...

  10. 78 FR 10182 - Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... HUMAN SERVICES Health Resources and Services Administration Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV/AIDS Program AGENCY: Health Resources and Services Administration (HRSA), Department of Health and Human Services. ACTION: Notice of Ryan White HIV/AIDS...

  11. 78 FR 78976 - Ryan White HIV/AIDS Program Part C Early Intervention Services Grant Under the Ryan White HIV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... HUMAN SERVICES Health Resources and Services Administration Ryan White HIV/AIDS Program Part C Early Intervention Services Grant Under the Ryan White HIV/AIDS Program AGENCY: Health Resources and Services Administration (HRSA), Department of Health and Human Services. ACTION: Notice of Ryan White HIV/AIDS...

  12. 78 FR 10183 - Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... HUMAN SERVICES Health Resources and Services Administration Ryan White HIV/AIDS Program, Part C Early Intervention Services Grant Under the Ryan White HIV/AIDS Program AGENCY: Health Resources and Services Administration (HRSA), Department of Health and Human Services. ACTION: Notice of Ryan White HIV/AIDS...

  13. An Eligibility Determination Algorithm for Part C Early Intervention Enrollment. TRACE Practice Guide, Volume 1, Number 1

    ERIC Educational Resources Information Center

    Dunst, Carl J.

    2006-01-01

    Procedures for using a decision algorithm for determining whether an infant or toddler is eligible for Part C early intervention is the focus of this eligibility determination practice guideline. An algorithm is a step-by-step problem-solving procedure or decision-making process that results in a solution or accurate decision in a finite number of…

  14. Self-Administered Behavioral Family Intervention for Parents of Toddlers: Part 1. Efficacy

    ERIC Educational Resources Information Center

    Morawska, Alina; Sanders, Matthew R.

    2006-01-01

    This study examined the efficacy of a self-administered behavioral family intervention for 126 parents of toddlers. The effects of 2 different levels of intensity of the self-administered intervention were contrasted (self-administered alone or self-administered plus brief therapist telephone assistance). The results provide support for the…

  15. Drink Refusal Training as Part of a Combined Behavioral Intervention: Effectiveness and Mechanisms of Change

    ERIC Educational Resources Information Center

    Witkiewitz, Katie; Donovan, Dennis M.; Hartzler, Bryan

    2012-01-01

    Objective: Many trials have demonstrated the effectiveness of cognitive behavioral interventions for alcohol dependence, yet few studies have examined why particular treatments are effective. This study was designed to evaluate whether drink refusal training was an effective component of a combined behavioral intervention (CBI) and whether change…

  16. Implementation of a two-part unit-based multiple intervention: moving evidence-based practice into action.

    PubMed

    Rashotte, Judy; Thomas, Margot; Grégoire, Diane; Ledoux, Sheila

    2008-06-01

    This study examined the impact of a 2-part unit-based multiple intervention on the use by pediatric critical care nurses of best practice guidelines for pressure-ulcer prevention. A total of 23 nurses participated in a repeated-measures design pre- and post-intervention to address 2 questions: Is there a difference in nurses' evidence-based practices following implementation of an educational intervention only versus implementation of both an educational and an innovative intervention? Are the changes sustained 6 months after completion of the intervention? A significant change occurred in the implementation of 2 of 11 recommended practices following both interventions: assessment of risk of pressure ulcers using an age-appropriate tool (p < or = 0.001), and the documentation of same (p < or = 0.001). These changes may have been sustained. The findings bring to light the real challenges encountered when attempting to implement and evaluate multiple knowledge translation strategies associated with complex best practice guidelines in clinical practice. PMID:18714900

  17. An MR-conditional high-torque pneumatic stepper motor for MRI-guided and robot-assisted intervention.

    PubMed

    Chen, Yue; Kwok, Ka-Wai; Tse, Zion Tsz Ho

    2014-09-01

    Magnetic resonance imaging allows for visualizing detailed pathological and morphological changes of soft tissue. MR-conditional actuations have been widely investigated for development of image-guided and robot-assisted surgical devices under the Magnetic resonance imaging (MRI). This paper presents a simple design of MR-conditional stepper motor which can provide precise and high-torque actuation without adversely affecting the MR image quality. This stepper motor consists of two MR-conditional pneumatic cylinders and the corresponding supporting structures. Alternating the pressurized air can drive the motor to rotate each step in 3.6° with the motor coupled to a planetary gearbox. Experimental studies were conducted to validate its dynamics performance. Maximum 800 mN m output torque is achieved. The motor accuracy independently varied by two factors: motor operating speed and step size, was also investigated. The motor was tested within a 3T Siemens MRI scanner (MAGNETOM Skyra, Siemens Medical Solutions, Erlangen, Germany) and a 3T GE MRI scanner (GE SignaHDx, GE Healthcare, Milwaukee, WI, USA). The image artifact and the signal-to-noise ratio (SNR) were evaluated for study of its MRI compliancy. The results show that the presented pneumatic stepper motor generated 2.35% SNR reduction in MR images. No observable artifact was presented besides the motor body itself. The proposed motor test also demonstrates a standard to evaluate the pneumatic motor capability for later incorporation with motorized devices used under MRI. PMID:24957635

  18. [Robotics in oral and maxillofacial surgery. Possibilities, chances, risks].

    PubMed

    Hassfeld, S; Raczkowsky, J; Bohner, P; Hofele, C; Holler, C; Mühling, J; Rembold, U

    1997-11-01

    Robot systems are being tested in stereotactic neurosurgical interventions, orthopedic surgery of the hip or knee and advancal endoscopic systems for minimally invasive surgery. In contrast to most industrially manufactured products, objects for medical treatment are characterized by plasticity as well as by complex and individual forms. Thus, features of robots in this field have to be further developed in terms of advanced sensory and specific micromotoric systems. Safety and cooperation between surgeon and robot on the patient in the operating room have to be guaranteed. Extensive three-dimensional diagnosis, computer-aided planning and simulation of the intervention as well as sensory systems that monitor the actual performance of the operation are mandatory parts of this concept. In our interdisciplinary study, we aim to examine whether a robot-given a complete preoperative planning and simulation procedure-is able to perform certain surgical operations more precisely than the surgeon. Examples are drilling with depth control, shaping of bone surface by milling, sawing with defined depth in cranial osteotomies, defined preparation of implant sites and the positioning and insertion of dental and other surgical implants, whereby autonomous employment of the robot is not that which is aspired to in these interventions but rather the interactive support of the surgeon. PMID:9490216

  19. Predicting the long-term effects of human-robot interaction: a reflection on responsibility in medical robotics.

    PubMed

    Datteri, Edoardo

    2013-03-01

    This article addresses prospective and retrospective responsibility issues connected with medical robotics. It will be suggested that extant conceptual and legal frameworks are sufficient to address and properly settle most retrospective responsibility problems arising in connection with injuries caused by robot behaviours (which will be exemplified here by reference to harms occurred in surgical interventions supported by the Da Vinci robot, reported in the scientific literature and in the press). In addition, it will be pointed out that many prospective responsibility issues connected with medical robotics are nothing but well-known robotics engineering problems in disguise, which are routinely addressed by roboticists as part of their research and development activities: for this reason they do not raise particularly novel ethical issues. In contrast with this, it will be pointed out that novel and challenging prospective responsibility issues may emerge in connection with harmful events caused by normal robot behaviours. This point will be illustrated here in connection with the rehabilitation robot Lokomat. PMID:21800171

  20. Robotic servicing of EOS instruments

    NASA Technical Reports Server (NTRS)

    Razzaghi, Andrea I.; Juberts, Maris

    1990-01-01

    This paper addresses robotic servicing of the Earth Observing Satellite (EOS) instruments. The goals of implementing a robotic servicing system on EOS would be to maintain the instruments throughout the required mission life and minimize life-cycle costs. To address robot servicing, an initial design concept has been developed which will be applied to a representative EOS instrument. This instrument will be used as a model for determining the most practical level of servicing of its parts, and how to design these parts for robot servicing. Using this representative EOS instrument as a model, a generic design scheme will be developed that can be applied to all EOS instruments. The first task is to determine how to identify which parts must be designed for robot servicing. Next, the requirements imposed on the instruments and the servicing robot when designing for robot serviceability must be examined.

  1. [Robots and intellectual property].

    PubMed

    Larrieu, Jacques

    2013-12-01

    This topic is part of the global issue concerning the necessity to adapt intellectual property law to constant changes in technology. The relationship between robots and IP is dual. On one hand, the robots may be regarded as objects of intellectual property. A robot, like any new machine, could qualify for a protection by a patent. A copyright may protect its appearance if it is original. Its memory, like a database, could be covered by a sui generis right. On the other hand, the question of the protection of the outputs of the robot must be raised. The robots, as the physical embodiment of artificial intelligence, are becoming more and more autonomous. Robot-generated works include less and less human inputs. Are these objects created or invented by a robot copyrightable or patentable? To whom the ownership of these IP rights will be allocated? To the person who manufactured the machine ? To the user of the robot? To the robot itself? All these questions are worth discussing. PMID:24558740

  2. Empirically Supported Interventions and School Psychology: Rationale and Methodological Issues--Part I.

    ERIC Educational Resources Information Center

    Stoiber, Karen Callan; Kratochwill, Thomas R.

    2000-01-01

    Presents historical, contextual, and methodological perspectives on the use of empirically supported interventions in school and community settings. Historical advances are reviewed within the context of scientist-practitioner model, psychosocial outcome research, meta-analysis, and the development of criteria and practice guidelines for…

  3. The Burden of Disaster: Part II. Applying Interventions Across the Child’s Social Ecology

    PubMed Central

    Pfefferbaum, Rose L.; Pfefferbaum, Betty; Jacobs, Anne K.; Noffsinger, Mary A.; Sherrieb, Kathleen; Norris, Fran H.

    2014-01-01

    This second of two articles describes the application of disaster mental health interventions within the context of the child’s social ecology consisting of (he Micro-, Meso-, Exo-, and Macrosystems. Microsystem interventions involving parents, siblings, and close friends include family preparedness planning and practice, psychoeducation, role modeling, emotional support, and redirection. Mesosystem interventions provided by schools and faith-based organizations include safety and support, assessment, referral, and counseling. Exosystem interventions include those provided through community-based mental health programs, healthcare organizations, the workplace, the media, local volunteer disaster organizations, and other local organizations. Efforts to build community resilience to disasters are likely to have influence through the Exosystem. The Macrosystem – including the laws, history, cultural and subcultural characteristics, and economic and social conditions that underlie the other systems – affects the child indirectly through public policies and disaster programs and services that become available in the child’s Exosystem in the aftermath of a disaster. The social ecology paradigm, described more fully in a companion article (Noffsinger, Pfefferbaum, Pfefferbaum, Sherrieb, & Norris,2012), emphasizes relationships among systems and can guide the development and delivery of services embedded in naturally-occurring structures in the child’s environment. PMID:23894798

  4. Health Care Policy and Part H Services: Early Intervention as a Concept (Not a Separate Program).

    ERIC Educational Resources Information Center

    Shonkoff, Jack P.

    This paper argues that there is a critical need to reframe the fundamental policy questions which fragment early childhood intervention services and health care, in order to construct an integrated system of comprehensive services that includes basic health care and developmental support for all children and their families and that provides…

  5. Beyond Part C: Reducing Middle School Special Education for Early Intervention Children with Developmental Delays

    ERIC Educational Resources Information Center

    Ullery, Mary Anne; Katz, Lynne

    2016-01-01

    This study examined the rates of special education placement during middle school grades (sixth through eighth) among children who participated in the Linda Ray Intervention Program (LRIP) center-based and home-based learning modalities. The study sample included 113 children in Miami Dade County Public Schools who had gestational cocaine exposure…

  6. An Effective Psychoeducational Intervention for Early Childhood Caries Prevention: Part I

    PubMed Central

    Weber-Gasparoni, Karin; Reeve, Johnmarshall; Ghosheh, Natalie; Warren, Joh J.; Drake, David R.; Kramer, Katherine W.O.; Dawson, Deborah V.

    2016-01-01

    Purpose The purpose was to compare whether mothers exposed to an autonomy-supportive psychoeducational videotaped message, informed by the self-determination theory (SDT), demonstrated greater changes in oral health knowledge and behavioral intentions as a preventive means for early childhood caries (ECC) than mothers exposed to a neutral message delivered by brochure. Methods Data were collected at baseline, one-, and six-month follow-ups from 415 12- to 49-month-old WIC-enrolled children and their mothers: 283 in the video intervention group and 132 in the brochure control group. Mothers completed questionnaires on maternal knowledge and behavioral intentions for oral health care. Chi-square, Wilcoxon rank-sum, and Mann-Whitney tests were used to analyze data (P<.05). Results Relative to their baseline scores, the intervention group showed a greater increase in knowledge than the control group, both at one-month (P=.002) and six-month follow-ups (P<.001). The video group also demonstrated a greater increase in behavioral intentions than controls, both at one-month (P<.05) and six-month follow-ups (P<.001). Knowledge and behavioral intention levels at six-month follow-up did not differ significantly from those at one-month follow-up, indicating that intervention-based increases in these measures were maintained over time. Conclusions Data provided evidence of the effectiveness of the autonomy-supportive psychoeducational intervention for ECC prevention relative to a neutral brochure. PMID:23756308

  7. Psychoeducational Interventions with Pediatric Cancer Patients: Part I. Patient Information and Knowledge

    ERIC Educational Resources Information Center

    Bradlyn, Andrew S.; Beale, Ivan L.; Kato, Pamela M.

    2003-01-01

    We present a systematic review of published research on psychoeducational interventions for children with cancer. The current lack of an organizational model for this literature makes it difficult to form a coherent picture of the scattered literature and draw nomothetic conclusions. A model is described that is based on functional concepts from…

  8. ARIES NDA Robot operators` manual

    SciTech Connect

    Scheer, N.L.; Nelson, D.C.

    1998-05-01

    The ARIES NDA Robot is an automation device for servicing the material movements for a suite of Non-destructive assay (NDA) instruments. This suite of instruments includes a calorimeter, a gamma isotopic system, a segmented gamma scanner (SGS), and a neutron coincidence counter (NCC). Objects moved by the robot include sample cans, standard cans, and instrument plugs. The robot computer has an RS-232 connection with the NDA Host computer, which coordinates robot movements and instrument measurements. The instruments are expected to perform measurements under the direction of the Host without operator intervention. This user`s manual describes system startup, using the main menu, manual operation, and error recovery.

  9. Dynamics and Control of Constrained Multibody Systems modeled with Maggi's equation: Application to Differential Mobile Robots Part I

    NASA Astrophysics Data System (ADS)

    Amengonu, Yawo H.; Kakad, Yogendra P.

    2014-07-01

    Quasivelocity techniques such as Maggi's and Boltzmann-Hamel's equations eliminate Lagrange multipliers from the beginning as opposed to the Euler-Lagrange method where one has to solve for the n configuration variables and the multipliers as functions of time when there are m nonholonomic constraints. Maggi's equation produces n second-order differential equations of which (n-m) are derived using (n-m) independent quasivelocities and the time derivative of the m kinematic constraints which add the remaining m second order differential equations. This technique is applied to derive the dynamics of a differential mobile robot and a controller which takes into account these dynamics is developed.

  10. A naturalistic study of psychotherapy for bulimia nervosa, part 2: therapeutic interventions in the community.

    PubMed

    Thompson-Brenner, Heather; Westen, Drew

    2005-09-01

    Data from naturalistic samples provide an important complement to findings from randomized trials of psychotherapy. A random national sample of US clinicians provided data on 145 completed treatments of patients with bulimic symptoms. We attempted to characterize the nature of treatments in the community and to examine the relation between treatment variables and outcome. Clinicians of all theoretical orientations report using interventions with polysymptomatic cases designed to address clinically significant personality characteristics and interpersonal patterns. Whereas cognitive-behavioral therapy is associated with more rapid remission of eating symptoms, psychodynamic interventions and increased treatment length predict better global outcome across treatment modalities, suggesting the importance of integrative treatments for the broad range of pathology seen in patients with bulimic symptoms. PMID:16131941

  11. Pharmacological Interventions Including Medical Injections for Neck Pain: An Overview as Part of the ICON§ Project

    PubMed Central

    Peloso, Paul M; Khan, Mahweesh; Gross, Anita R; Carlesso, Lisa; Santaguida, Lina; Lowcock, Janet; MacDermid, Joy C; Walton, Dave; Goldsmith, Charlie H; Langevin, Pierre; Shi, Qiyun

    2013-01-01

    Objectives: To conduct an overview (review-of-reviews) on pharmacological interventions for neck pain. Search Strategy: Computerized databases and grey literature were searched from 2006 to 2012. Selection Criteria: Systematic reviews of randomized controlled trials (RCT) in adults with acute to chronic neck pain reporting effects of pharmacological interventions including injections on pain, function/disability, global perceived effect, quality of life and patient satisfaction. Data Collection & Analysis: Two independent authors selected articles, assessed risk of bias and extracted data The GRADE tool was used to evaluate the body of evidence and an external panel provided critical review. Main Results: We found 26 reviews reporting on 47 RCTs. Most pharmacological interventions had low to very low quality methodologic evidence with three exceptions. For chronic neck pain, there was evidence of: a small immediate benefit for eperison hydrochloride (moderate GRADE, 1 trial, 157 participants);no short-term pain relieving benefit for botulinum toxin-A compared to saline (strong GRADE; 5 trial meta-analysis, 258 participants) nor for subacute/chronic whiplash (moderate GRADE; 4 trial meta-analysis, 183 participants) including reduced pain, disability or global perceived effect; andno long-term benefit for medial branch block of facet joints with steroids (moderate GRADE; 1 trial, 120 participants) over placebo to reduce pain or disability; Reviewers' Conclusions: While in general there is a lack of evidence for most pharmacological interventions, current evidence is against botulinum toxin-A for chronic neck pain or subacute/chronic whiplash; against medial branch block with steroids for chronic facet joint pain; but in favour of the muscle relaxant eperison hydrochloride for chronic neck pain. PMID:24155805

  12. An Effective Psychoeducational Intervention for Early Childhood Caries Prevention: Part II

    PubMed Central

    Weber-Gasparoni, Karin; Warren, John J.; Reeve, Johnmarshall; Drake, David R.; Kramer, Katherine W.O.; Marshall, Teresa A.; Dawson, Deborah V.

    2016-01-01

    Purpose The purpose was to compare whether mothers exposed to an autonomy-supportive psychoeducational videotaped message, informed by self-determination theory (SDT), demonstrated greater changes in behavior concerning their children's oral health than mothers exposed to a neutral message delivered by brochure. Methods Data were collected at baseline, one- and six-month follow-ups from 415 12- to 49- month-old WIC-enrolled children and their mothers: 283 in the video intervention group and 132 in the brochure control group. Mothers completed questionnaires regarding their child's dietary/oral hygiene habits. Chi-square, Wilcoxon Signed Rank, Mann-Whitney, and McNemar tests were used to analyze data (P<0.05). Results Significantly more positive changes were observed for dietary/oral hygiene behaviors among the intervention group mothers at one- and six-month follow-ups than for the controls. Significantly fewer mothers in the intervention group shared dining ware with their child at both one- (P=0.0046) and six-month follow-ups (P<0.0001); this practice was decreased only at six-months for the control group mothers (P=0.05). Restricting consideration only to mothers who were not checking for white spot lesions at baseline, a significantly greater proportion of mothers in the intervention group performed this behavior at six-months (P=0.0044). Conclusions Data provided evidence of the effectiveness of the SDT videotaped oral health message relative to a neutral brochure. PMID:23756309

  13. Socially intelligent robots: dimensions of human-robot interaction.

    PubMed

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them. PMID:17301026

  14. Ericksonian Approach to Experiential Education, Part 1: Developing the Stance of the Practitioner; Part 2: Tailoring Interventions; Part 3: Applying Specific Ericksonian Techniques.

    ERIC Educational Resources Information Center

    Itin, Christian

    This three-part workshop presentation explores the ideas of Milton Erickson on the therapeutic relationship and the therapeutic use of metaphor, and applies these ideas to experiential education and adventure therapy. Part 1 introduces the practitioner to the core philosophy within an Ericksonian approach: "utilization" of a client's behavior and…

  15. Flexible control for welding robots

    SciTech Connect

    Mangold, V.L. Jr.

    1994-12-31

    The single limiting characteristic of robot welding applications that typically impairs the success and functionality of a robot welding work cell is workpiece or process-specific variances. Nearly as problematic for most robot arc welding applications in the near term, and potentially a larger problem in the future, is the compatibility of control systems utilized with industrial robots. The robot industry has developed over time in a manner that is significantly different than a related capital equipment genre, metal cutting machine tools. The robot industry, impacted by the overwhelming dominance of Japanese and European producers, have tended toward proprietary control systems that utilized application software that is nonstandard in nature and nontransportable from one robot product to another. This presentation discusses the use of standard platform controls with transportable welding software written in C or C++ code that can greatly increase the flexibility of robot welding operations. The presentation discusses the use of an Adept 1, Allen Bradley and Giddings and Lewis control system interchangeably with the same 6-axis arm robot for arc welding purposes. The flexibility of pin compatible control systems and software that is transportable from one robot line to another will greatly improve robot system performance. The long term maintenance cost and ultimately the financial viability of job shop, small parts robotic arc welding applications will also be enhanced.

  16. Consensus on timing of intervention for common congenital heart diseases: part II - cyanotic heart defects.

    PubMed

    Rao, P Syamasundar

    2013-08-01

    The purpose of this review/editorial is to discuss how and when to treat the most common cyanotic congenital heart defects (CHDs); the discussion of acyanotic heart defects was presented in a previous editorial. By and large, the indications and timing of intervention are decided by the severity of the lesion. While some patients with acyanotic CHD may not require surgical or transcatheter intervention because of spontaneous resolution of the defect or mildness of the defect, the majority of cyanotic CHD will require intervention, mostly surgical. Total surgical correction is the treatment of choice for tetralogy of Fallot patients although some patients may need to be palliated initially by performing a modified Blalock-Taussig shunt. For transposition of the great arteries, arterial switch (Jatene) procedure is the treatment of choice, although Rastelli procedure is required for patients who have associated ventricular septal defect (VSD) and pulmonary stenosis (PS). Some of these babies may require Prostaglandin E1 infusion and/or balloon atrial septostomy prior to corrective surgery. In tricuspid atresia patients, most babies require palliation at presentation either with a modified Blalock-Taussig shunt or pulmonary artery banding followed later by staged Fontan (bidirectional Glenn followed later by extracardiac conduit Fontan conversion usually with fenestration). Truncus arteriosus babies are treated by closure of VSD along with right ventricle to pulmonary artery conduit; palliative banding of the pulmonary artery is no longer recommended. Total anomalous pulmonary venous connection babies require anastomosis of the common pulmonary vein with the left atrium at presentation. Other defects should also be addressed by staged correction or complete repair depending upon the anatomy/physiology. Feasibility, safety and effectiveness of treatment of cyanotic CHD with currently available medical, transcatheter and surgical methods are well established and should

  17. Nonstandard drugs and feasible new interventions for autoimmune hepatitis: part II.

    PubMed

    Czaja, Albert J

    2012-10-01

    Molecular, cellular, and genetic interventions are now feasible for autoimmune hepatitis because of improved understanding of pathogenic mechanisms, advances in recombinant technology, and previous successes in animal models and humans with other immune-mediated inflammatory diseases. Non-mitogenic monoclonal antibodies to CD3 promote apoptosis of cytotoxic T lymphocytes, inhibit production of pro-inflammatory cytokines, improve the function of regulatory T cells, and induce a durable remission in mouse models and humans with autoimmune diabetes. Monoclonal antibodies to CD20 deplete B lymphocytes, modify antibody-dependent and cell-mediated cytotoxic pathways, enhance regulatory T cell function, and improve isolated cases of autoimmune hepatitis with B-cell disorders. Recombinant cytotoxic T lymphocyte antigen-4 fused with immunoglobulin can block the second co-stimulatory signal required for lymphocyte activation, and it has been licensed for use in rheumatoid arthritis but not tried in autoimmune hepatitis. Other considerations on the distant horizon are monoclonal antibodies against inhibitory receptors on regulatory T cells, adoptive transfer of fresh regulatory T cells, tailored glycolipids that strengthen the immunosuppressive activity of natural killer T cells, small inhibitory ribonucleic acid molecules that silence promoter genes supporting disease activity, and mesenchymal stem cell transplantation to re-constitute immune homeostasis and support the damaged liver. Development of these feasible new interventions for autoimmune hepatitis requires therapeutic animal models, societal support, and a collaborative network of investigators to conduct rigorous clinical trials. PMID:22563780

  18. Randomized controlled trials in industrial low back pain. Part 3. Subacute/chronic pain interventions.

    PubMed

    Scheer, S J; Watanabe, T K; Radack, K L

    1997-04-01

    The most significant costs attributed to settlement of workplace back injury claims are related to chronic low back pain (LBP). Unfortunately, our knowledge of this fact has not led to a reduction of the considerable costs paid out annually by employers and insurers to deal with the chronic pain syndrome. This article is the third in a series of reviews on randomized controlled trials found in the English language medical literature between 1975 and 1993. Of more than 4,000 LBP citations, 35 studies met-the selection criteria of randomization, reasonable concurrent controls and work return comparisons. This review focuses on the 12 studies utilizing nonsurgical interventions for subacute and chronic LBP, including multidisciplinary pain clinics, exercise, cognitive-behavioral strategies, and others. A 26-point quality system was again used to compare the methodologic rigor of each study. The majority of prospective studies investigating return to work after chronic LBP have methodological limitations; additional research is clearly needed to more confidently answer the question of what interventions improve work capacity in patients with chronic LBP. PMID:9111463

  19. Robotics: A Bridge for Education and Technology.

    ERIC Educational Resources Information Center

    Warnat, Winifred I.

    Robotics (robot usage) is discussed from a historical perspective with regard to its role in employment and education. Part 1 examines the transition from an industrial to an information society and speculates what the future might hold, particularly in terms of employment. Part 2 gives a historical overview of the robotics industry and discusses…

  20. Feasibility of using a humanoid robot to elicit communicational response in children with mild autism

    NASA Astrophysics Data System (ADS)

    Malik, Norjasween Abdul; Shamsuddin, Syamimi; Yussof, Hanafiah; Azfar Miskam, Mohd; Che Hamid, Aminullah

    2013-12-01

    Research evidences are accumulating with regards to the potential use of robots for the rehabilitation of children with autism. The purpose of this paper is to elaborate on the results of communicational response in two children with autism during interaction with the humanoid robot NAO. Both autistic subjects in this study have been diagnosed with mild autism. Following the outcome from our first pilot study; the aim of this current experiment is to explore the application of NAO robot to engage with a child and further teach about emotions through a game-centered and song-based approach. The experiment procedure involved interaction between humanoid robot NAO with each child through a series of four different modules. The observation items are based on ten items selected and referenced to GARS-2 (Gilliam Autism Rating Scale-second edition) and also input from clinicians and therapists. The results clearly indicated that both of the children showed optimistic response through the interaction. Negative responses such as feeling scared or shying away from the robot were not detected. Two-way communication between the child and robot in real time significantly gives positive impact in the responses towards the robot. To conclude, it is feasible to include robot-based interaction specifically to elicit communicational response as a part of the rehabilitation intervention of children with autism.

  1. Yakson touch as a part of early intervention in the Neonatal Intensive Care Unit: A systematic narrative review.

    PubMed

    Parashar, Preeti; Samuel, Asir John; Bansal, Arpna; Aranka, Vencita Priyanka

    2016-06-01

    Yakson is a Korean therapeutic touch given to neonates and infants by caressing their abdomen with one hand while the other hand is placed on the back of the neonate\\infant either to relieve their pain or to calm them down. It was traditionally used by Koreans by caressing the aching body part of their children with a belief that it would relieve their pain. In spite of clinical evidence of its usefulness, there is limited literature available on Yakson touch. A systematic narrative review (SNR) was undertaken on studies that were carried out on the effectiveness of Yakson touch on infants and neonates. Only seven studies were detected from five major electronic databases, searched with the keywords: "Yakson," "Yakson touch," and "Yakson in neonates". One of the studies has been included in two Cochrane reviews by the same group of researchers published in 2011 and 2015, respectively, and also in a literature review. The evidence from these articles suggests that Yakson touch is able to increase the sleep scores of infants, affects their behavioral response, decreases the stress levels, increases maternal attachment, and has calming effects on them. However, the number of studies is limited, and thus the efficacy of this intervention has not been sufficiently established. Hence, there is a definite need for future studies to prove the efficacy of Yakson to include it in the early intervention programs. This SNR is aimed at compiling the studies which determined to prove the efficacy of the intervention of Yakson. PMID:27390459

  2. MITOCHONDRIAL DISEASES PART III: THERAPEUTIC INTERVENTIONS IN MOUSE MODELS OF OXPHOS DEFICIENCIES

    PubMed Central

    Peralta, Susana; Torraco, Alessandra; Iommarini, Luisa; Diaz, Francisca

    2015-01-01

    Mitochondrial defects are the cause of numerous disorders affecting the oxidative phosphorylation system (OXPHOS) in humans leading predominantly to neurological and muscular degeneration. The molecular origin, manifestations, and progression of mitochondrial diseases have a broad spectrum, which makes very challenging to find a globally effective therapy. The study of the molecular mechanisms underlying the mitochondrial dysfunction indicates that there is a wide range of pathways, enzymes and molecules that could be potentially targeted for therapeutic purpose. Therefore, focusing on the pathology of the disease is essential to design new treatments. In this review, we will summarize and discuss the different therapeutic interventions tested in some mouse models of mitochondrial diseases laying emphasis on the molecular mechanisms of action and their potential applications. PMID:25638392

  3. An occupational therapy approach to persons with chronic fatigue syndrome: part two, assessment and intervention.

    PubMed

    Taylor, Renee R; Kielhofner, Gary W

    2003-01-01

    Chronic Fatigue Syndrome (CFS) is a highly disabling condition that significantly interferes with occupational life. Occupational therapy services are very relevant for this population. Yet, information about the assessment and treatment of CFS is almost absent from occupational therapy literature. As a result, few occupational therapists possess expertise in evaluating and providing therapy for this complex condition. This paper describes an approach to evaluating and providing services for individuals with CFS according to the Model of Human Occupation. This model offers an integrative means of understanding the synergistic and evolving relationships between motivation, values, roles, habits, functional capabilities, and the environment as they influence individuals with CFS, and it provides a framework for the types of changes required in these different domains during the rehabilitation process. A case study illustrates recommended assessment and intervention approaches. PMID:23944638

  4. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, volume 2, part 1. Appendix A: Software documentation

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.

    1982-01-01

    Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability.

  5. The Maiden Voyage of a Kinematics Robot

    NASA Astrophysics Data System (ADS)

    Greenwolfe, Matthew L.

    2015-04-01

    In a Montessori preschool classroom, students work independently on tasks that absorb their attention in part because the apparatus are carefully designed to make mistakes directly observable and limit exploration to one aspect or dimension. Control of error inheres in the apparatus itself, so that teacher intervention can be minimal.1 Inspired by this example, I created a robotic kinematics apparatus that also shapes the inquiry experience. Students program the robot by drawing kinematic graphs on a computer and then observe its motion. Exploration is at once limited to constant velocity and constant acceleration motion, yet open to complex multi-segment examples difficult to achieve in the lab in other ways. The robot precisely and reliably produces the motion described by the students' graphs, so that the apparatus itself provides immediate visual feedback about whether their understanding is correct as they are free to explore within the hard-coded limits. In particular, the kinematic robot enables hands-on study of multi-segment constant velocity situations, which lays a far stronger foundation for the study of accelerated motion. When correction is anonymous—just between one group of lab partners and their robot—students using the kinematic robot tend to flow right back to work because they view the correction as an integral part of the inquiry learning process. By contrast, when correction occurs by the teacher and/or in public (e.g., returning a graded assignment or pointing out student misconceptions during class), students all too often treat the event as the endpoint to inquiry. Furthermore, quantitative evidence shows a large gain from pre-test to post-test scores using the Test of Understanding Graphs in Kinematics (TUG-K).

  6. CASSY Robot

    NASA Astrophysics Data System (ADS)

    Pittman, Anna; Wright, Ann; Rice, Aaron; Shyaka, Claude

    2014-03-01

    The CASSY Robot project involved two square robots coded in RobotC. The goal was to code a robot to do a certain set of tasks autonomously. To begin with, our task was to code the robot so that it would roam a certain area, marked off by black tape. When the robot hit the black tape, it knew to back up and turn around. It was able to do this thanks to the light sensor that was attached to the bottom of the robot. Also, whenever the robot hit an obstacle, it knew to stop, back up, and turn around. This was primarily to prevent the robot from hurting itself if it hit an obstacle. This was accomplished by using touch sensors set up as bumpers. Once that was accomplished, we attached sonar sensors and created code so that one robot was able to find and track the other robot in a sort of intruder/police scenario. The overall goal of this project was to code the robot so that we can test it against a robot coded exactly the same, but using Layered Mode Selection Logic. Professor.

  7. The Effects of Rhythm and Robotic Interventions on the Imitation/Praxis, Interpersonal Synchrony, and Motor Performance of Children with Autism Spectrum Disorder (ASD): A Pilot Randomized Controlled Trial

    PubMed Central

    Srinivasan, Sudha M.; Kaur, Maninderjit; Park, Isabel K.; Gifford, Timothy D.; Marsh, Kerry L.; Bhat, Anjana N.

    2015-01-01

    We assessed the effects of three interventions, rhythm, robotic, and standard-of-care, on the imitation/praxis, interpersonal synchrony, and overall motor performance of 36 children with Autism Spectrum Disorder (ASD) between 5 and 12 years of age. Children were matched on age, level of functioning, and services received, prior to random assignment to one of the three groups. Training was provided for 8 weeks with 4 sessions provided each week. We assessed generalized changes in motor skills from the pretest to the posttest using a standardized test of motor performance, the Bruininks-Oseretsky Test of Motor Proficiency, 2nd edition (BOT-2). We also assessed training-specific changes in imitation/praxis and interpersonal synchrony during an early and a late session. Consistent with the training activities practiced, the rhythm and robot groups improved on the body coordination composite of the BOT-2, whereas the comparison group improved on the fine manual control composite of the BOT-2. All three groups demonstrated improvements in imitation/praxis. The rhythm and robot groups also showed improved interpersonal synchrony performance from the early to the late session. Overall, socially embedded movement-based contexts are valuable in promoting imitation/praxis, interpersonal synchrony, and motor performance and should be included within the standard-of-care treatment for children with ASD. PMID:26793394

  8. The Effects of Rhythm and Robotic Interventions on the Imitation/Praxis, Interpersonal Synchrony, and Motor Performance of Children with Autism Spectrum Disorder (ASD): A Pilot Randomized Controlled Trial.

    PubMed

    Srinivasan, Sudha M; Kaur, Maninderjit; Park, Isabel K; Gifford, Timothy D; Marsh, Kerry L; Bhat, Anjana N

    2015-01-01

    We assessed the effects of three interventions, rhythm, robotic, and standard-of-care, on the imitation/praxis, interpersonal synchrony, and overall motor performance of 36 children with Autism Spectrum Disorder (ASD) between 5 and 12 years of age. Children were matched on age, level of functioning, and services received, prior to random assignment to one of the three groups. Training was provided for 8 weeks with 4 sessions provided each week. We assessed generalized changes in motor skills from the pretest to the posttest using a standardized test of motor performance, the Bruininks-Oseretsky Test of Motor Proficiency, 2nd edition (BOT-2). We also assessed training-specific changes in imitation/praxis and interpersonal synchrony during an early and a late session. Consistent with the training activities practiced, the rhythm and robot groups improved on the body coordination composite of the BOT-2, whereas the comparison group improved on the fine manual control composite of the BOT-2. All three groups demonstrated improvements in imitation/praxis. The rhythm and robot groups also showed improved interpersonal synchrony performance from the early to the late session. Overall, socially embedded movement-based contexts are valuable in promoting imitation/praxis, interpersonal synchrony, and motor performance and should be included within the standard-of-care treatment for children with ASD. PMID:26793394

  9. Feasibility and Acceptance of a Robotic Surgery Ergonomic Training Program

    PubMed Central

    Craven, Renatta; Mosaly, Prithima; Gehrig, Paola A.

    2014-01-01

    Background and Objectives: Assessment of ergonomic strain during robotic surgery indicates there is a need for intervention. However, limited data exist detailing the feasibility and acceptance of ergonomic training (ET) for robotic surgeons. This prospective, observational pilot study evaluates the implementation of an evidence-based ET module. Methods: A two-part survey was conducted. The first survey assessed robotic strain using the Nordic Musculoskeletal Questionnaire (NMQ). Participants were given the option to participate in either an online or an in-person ET session. The ET was derived from Occupational Safety and Health Administration guidelines and developed by a human factors engineer experienced with health care ergonomics. After ET, a follow-up survey including the NMQ and an assessment of the ET were completed. Results: The survey was sent to 67 robotic surgeons. Forty-two (62.7%) responded, including 18 residents, 8 fellows, and 16 attending physicians. Forty-five percent experienced strain resulting from performing robotic surgery and 26.3% reported persistent strain. Only 16.6% of surgeons reported prior ET in robotic surgery. Thirty-five (78%) surgeons elected to have in-person ET, which was successfully arranged for 32 surgeons (91.4%). Thirty-seven surgeons (88.1%) completed the follow-up survey. All surgeons participating in the in-person ET found it helpful and felt formal ET should be standard, 88% changed their practice as a result of the training, and 74% of those reporting strain noticed a decrease after their ET. Conclusion: Thus, at a high-volume robotics center, evidence-based ET was easily implemented, well-received, changed some surgeons' practice, and decreased self-reported strain related to robotic surgery. PMID:25489213

  10. Human-robot coordination using scripts

    NASA Astrophysics Data System (ADS)

    Barnes, Laura E.; Murphy, Robin R.; Craighead, Jeffrey D.

    2006-05-01

    This paper describes an extension of scripts, which have been used to control sequences of robot behavior, to facilitate human-robot coordination. The script mechanism permits the human to both conduct expected, complementary activities with the robot and to intervene opportunistically taking direct control. Scripts address the six major issues associated with human-robot coordination. They allow the human to visualize the robot's mental model of the situation and build a better overall understanding of the situation and what level of autonomy or intervention is needed. It also maintains synchronization of the world and robot models so that control can be seamlessly transferred between human and robot while eliminating "coordination surprise". The extended script mechanism and its implementation in Java on an Inuktun micro-VGTV robot for the technical search task in urban search and rescue is described.

  11. Robot Grasps Rotating Object

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.

    1991-01-01

    Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.

  12. Effects of Individual and Group Contingency Interventions on Attendance in Adolescent Part-Time Employees

    ERIC Educational Resources Information Center

    Berkovits, Shira Melody; Sturmey, Peter; Alvero, Alicia M.

    2012-01-01

    This study examined the effects of individual and group monetary contingencies on the attendance of adolescent part-time employees. Attendance increased in both individual and group contingency phases; however staff questionnaire responses indicated a preference for the individual contingencies. Future research should consider staff acceptability…

  13. Assistance to States for the Education of Children with Disabilities and the Early Intervention Program for Infants and Toddlers with Disabilities. Final Regulations. Federal Register, Part II, Department of Education, 34 CFR Parts 300 and 303.

    ERIC Educational Resources Information Center

    Federal Register, 1999

    1999-01-01

    This document presents final regulations for the Assistance to States for Education of Children with Disabilities program under Part B of the Individuals with Disabilities Act (IDEA Part B) and the Early Intervention Program for Infants and Toddlers with Disabilities under Part C of the Act. These regulations are needed to implement changes made…

  14. [Determinants of health and health policy. Part 3. From intervention of quality of life].

    PubMed

    Zácek, A

    2000-03-29

    Effectiveness of outputs of a qualified intervention can be valued by several positive criteria corresponding to the "quality of life" conception, which is based on the feeling of the health and contentment. The finding that great differences in the income among different social groups in conditions of the liberal market society correlate with several health and social problems brought about to the hypothesis that the decrease of the differences in the income, accompanied by strengthening of various forms of the social cohesion, civic solidarity, legitimate equality, and ethical justice may substantially improve the health status of the population. The hypothesis has been verified in many epidemiological studies and found to be valid enough for the health policy and far-seeing economy. Analytics of the World Bank recommend to governments primary invest into the health of socially week groups in order to decrease their poverty and to keep social conciliation. World Health Organization (WHO) sets in its new program for Europe called "21 Goals for the 21st Century" that differences in the health status among the European states should diminish till 2020 by one third and within the countries by one quarter at least. Both goals should be achieved by a substantial improvement of the health status of the ill-adapted social groups and by significant improvement of those socioeconomical conditions which may have adverse effects namely on the differences in incomes, education and opportunities for employment. PMID:10916199

  15. Saliency detection and model-based tracking: a two part vision system for small robot navigation in forested environment

    NASA Astrophysics Data System (ADS)

    Roberts, Richard; Ta, Duy-Nguyen; Straub, Julian; Ok, Kyel; Dellaert, Frank

    2012-06-01

    Towards the goal of fast, vision-based autonomous flight, localization, and map building to support local planning and control in unstructured outdoor environments, we present a method for incrementally building a map of salient tree trunks while simultaneously estimating the trajectory of a quadrotor flying through a forest. We make significant progress in a class of visual perception methods that produce low-dimensional, geometric information that is ideal for planning and navigation on aerial robots, while directing computational resources using motion saliency, which selects objects that are important to navigation and planning. By low-dimensional geometric information, we mean coarse geometric primitives, which for the purposes of motion planning and navigation are suitable proxies for real-world objects. Additionally, we develop a method for summarizing past image measurements that avoids expensive computations on a history of images while maintaining the key non-linearities that make full map and trajectory smoothing possible. We demonstrate results with data from a small, commercially-available quad-rotor flying in a challenging, forested environment.

  16. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  17. Nutritional interventions to prevent and treat osteoarthritis. Part II: focus on micronutrients and supportive nutraceuticals.

    PubMed

    Lopez, Hector L

    2012-05-01

    Osteoarthritis (OA) is the most common cause of musculoskeletal disability in the elderly, and it places an enormous economic burden on society, which will remain a major health care challenge with an aging population. Management of OA is primarily focused on palliative relief using agents such as nonsteroidal anti-inflammatory drugs (NSAID) and analgesics. However, such an approach is limited by a narrow therapeutic focus that fails to address the progressive and multimodal nature of OA. Given the favorable safety profile of most nutritional interventions, identifying disease-modifying pharmaconutrients capable of improving symptoms and also preventing, slowing, or even reversing the degenerative process in OA should remain an important paradigm in translational and clinical research. The goals of pharmaconutrition for metabolic optimization are to drive biochemical reactions in a desired direction and to meet health condition-specific metabolic demands. Applying advances in nutritional science to musculoskeletal medicine remains challenging, given the fluid and dynamic nature of the field, along with a rapidly developing regulatory climate over manufacturing and commerce requirements. The purpose of this article is to review the available literature on effectiveness and potential mechanism for OA of micronutrient vitamins; minerals; glycosaminoglycans; avocado-soybean unsaponifiable fractions; methylsulfonylmethane; s-adenosylmethionine; undenatured and hydrolyzed collagen preparations; phytoflavonoid compounds found in fruits, vegetables, spices, teas, and nuts; and other nutrients on the horizon. There also is a discussion on the concept of rational polysupplementation via the strategic integration of multiple nutraceuticals with potential complementary mechanisms for improving outcomes in OA. As applied nutritional science evolves, it will be important to stay on the forefront of proteomics, metabolomics, epigenetics, and nutrigenomics, because they hold

  18. Control of robot manipulator compliance

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Pooran, Farhad J.; Premack, Timothy

    1986-01-01

    Robotic assembly operations such as mating and fastening of parts are more successful if the robot manipulator compliance can be controlled so that various coordinates are free to comply with external constraints. This paper presents the design of a hybrid controller to provide active compliance to a six-degree-of-freedom robot built at NASA/GSFC using force and position feedback. Simulation results of a 2 degree-of-freedom model is presented and discussed.

  19. Association of a Full-Day versus Part-Day Preschool Intervention with School Readiness, Attendance, and Parent Involvement

    PubMed Central

    Reynolds, Arthur J.; Richardson, Brandt A.; Hayakawa, C. Momoko; Lease, Erin M.; Warner-Richter, Mallory; Englund, Michelle M.; Ou, Suh-Ruu; Sullivan, Molly

    2015-01-01

    Importance Early childhood interventions have demonstrated many positive effects on well-being. Whether attending for the full day vs part day improves outcomes is unknown. Objective To evaluate the association between a school-based full- and part-day early childhood development program and multiple indicators of school readiness, attendance, and parent involvement for a large cohort of low-income children. Design, Setting, and Participants End-of-preschool follow-up of a nonrandomized, matched-group cohort of predominantly low-income, ethnic minority children who enrolled in the Child-Parent Centers for the full school day (7 hours; n = 409) or part of the day (3 hours on average; n = 573) in the fall of 2012 in 11 schools in Chicago, Ill. Interventions The Midwest Child-Parent Center Education Program provides comprehensive education, family-support, and health services from preschool to third grade in high-poverty neighborhoods. In the preschool component assessed in this study, 3- and 4-year-olds in enrolled in the program for full- or part-day. Main Outcomes and Measures School readiness skills in 6 domains and on a total score at the end of the year, attendance and chronic absences, and parental involvement. Mean raw scores and the number of items for readiness domains were as follows: literacy (57.1, 12 items), language (37.8, 6), math (36.3, 7), cognitive (57.6, 10), socioemotional (55.4, 9), physical health (33.8, 5), and the total (278.0; 49). Results Full-day preschool participants had higher scores than part-day peers in the same schools on socioemotional development (58.6 vs. 54.5; diff. = 4.1; P = .025; 95% CI = 0.5, 7.6), language (39.9 vs. 37.3; diff = 2.6; P =.010; 95% CI = 0.6, 4.6), math (40.0 vs. 36.4; diff. = 3.6; P = .022; 95% CI = 0.5, 6.7), and physical health (35.5 vs. 33.6; diff. = 1.9; P = .006; 95% CI = 0.5, 3.2) but not parent involvement in school (3.95 vs. 4.65; diff. = -0.70; P = .170; 95% CI = -1.7, 3.0). The full-day group also

  20. Yakson touch as a part of early intervention in the Neonatal Intensive Care Unit: A systematic narrative review

    PubMed Central

    Parashar, Preeti; Samuel, Asir John; Bansal, Arpna; Aranka, Vencita Priyanka

    2016-01-01

    Yakson is a Korean therapeutic touch given to neonates and infants by caressing their abdomen with one hand while the other hand is placed on the back of the neonate\\infant either to relieve their pain or to calm them down. It was traditionally used by Koreans by caressing the aching body part of their children with a belief that it would relieve their pain. In spite of clinical evidence of its usefulness, there is limited literature available on Yakson touch. A systematic narrative review (SNR) was undertaken on studies that were carried out on the effectiveness of Yakson touch on infants and neonates. Only seven studies were detected from five major electronic databases, searched with the keywords: “Yakson,“ “Yakson touch,” and “Yakson in neonates”. One of the studies has been included in two Cochrane reviews by the same group of researchers published in 2011 and 2015, respectively, and also in a literature review. The evidence from these articles suggests that Yakson touch is able to increase the sleep scores of infants, affects their behavioral response, decreases the stress levels, increases maternal attachment, and has calming effects on them. However, the number of studies is limited, and thus the efficacy of this intervention has not been sufficiently established. Hence, there is a definite need for future studies to prove the efficacy of Yakson to include it in the early intervention programs. This SNR is aimed at compiling the studies which determined to prove the efficacy of the intervention of Yakson. PMID:27390459

  1. FIRST Robotics Kickoff

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.

  2. Fathers' and Mothers' Experiences with Participation in Part C of the Individuals with Disabilities Education Act Early Intervention Process

    ERIC Educational Resources Information Center

    Baden, Kristin Marie

    2012-01-01

    Part C of the Individuals with Disabilities Education Act (IDEA) includes a provision for states to provide early intervention (EI) for infants and toddlers demonstrating developmental challenges. Limited data identify how parents, and especially fathers, feel about their experiences participating in Part C EI. This study investigated how fathers…

  3. Robot Technicians: Is There a Need?

    ERIC Educational Resources Information Center

    Minty, Gordon

    1987-01-01

    The study attempted to determine needs for training robotic technicians in Michigan. The survey had three parts: (1) needed technical specialities, (2) current problems with robot maintenance and repair, and (3) number of robots needed to keep a full-time technician occupied. (CH)

  4. Hexapod Robot

    NASA Technical Reports Server (NTRS)

    Begody, Ericka

    2016-01-01

    right or up and down. The hexapod will eventually be able to track the object moving its head and body in sync with on another and being able to rotate its body at 360 degrees. This is the plans and possible end results for the hexapod robot I will be working on during my summer internship at NASA Johnson Space Center. Since working on the hexapod project I have gained an increase interest in robotics. I enjoy the process of critical thinking. Also will working on this project I was challenged in a way that made more passionate to strive even more to become an engineer. I've learned that asking questions is an important part of the learning process. Also I learn that much more is accomplished when teamwork is applied.

  5. Rotorcraft and Enabling Robotic Rescue

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2010-01-01

    This paper examines some of the issues underlying potential robotic rescue devices (RRD) in the context where autonomous or manned rotorcraft deployment of such robotic systems is a crucial attribute for their success in supporting future disaster relief and emergency response (DRER) missions. As a part of this discussion, work related to proof-of-concept prototyping of two notional RRD systems is summarized.

  6. Mobile robotics research at Sandia National Laboratories

    SciTech Connect

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  7. Nitric Oxide and Redox Regulation in the Liver: Part II Redox biology in Pathologic Hepatocytes and Implications for intervention

    PubMed Central

    Diesen, Diana L.; Kuo, Paul C.

    2009-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are created in normal hepatocytes and are critical for normal physiological processes including oxidative respiration, growth, regeneration, apoptosis, and microsomal defense. When the levels of oxidation products exceed the capacity of normal antioxidant systems, oxidative stress occurs. This type of stress, in the form of ROS and RNS, can be damaging to all liver cells, including hepatocytes, Kupffer cells, stellate cells, and endothelial cells, through induction of inflammation, ischemia, fibrosis, necrosis, apoptosis, or through malignant transformation by damaging lipids, proteins, and/or DNA. In part I of this review, we will discuss basic redox biology in the liver, including a review of ROS, RNS, and antioxidants, with a focus on nitric oxide as a common source of RNS. We will then review the evidence for oxidative stress as a mechanism of liver injury in hepatitis (alcoholic, viral, non-alcoholic). In part II of this review, we will review oxidative stress in common pathophysiological conditions including ischemia/reperfusion injury, fibrosis, hepatocellular carcinoma, iron overload, Wilson’s disease, sepsis and acetaminophen overdose. Finally, biomarkers, proteomic, and antioxidant therapies will be discussed as areas for future therapeutic interventions. PMID:20400112

  8. A deformable spherical planet exploration robot

    NASA Astrophysics Data System (ADS)

    Liang, Yi-shan; Zhang, Xiu-li; Huang, Hao; Yang, Yan-feng; Jin, Wen-tao; Sang, Zhong-xun

    2013-03-01

    In this paper, a deformable spherical planet exploration robot has been introduced to achieve the task of environmental detection in outer space or extreme conditions. The robot imitates the morphology structure and motion mechanism of tumbleweeds. The robot is wind-driven. It consists of an axle, a spherical steel skeleton and twelve airbags. The axle is designed as two parts. The robot contracts by contracting the two-part axle. The spherical robot installs solar panels to provide energy for its control system.

  9. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part C, Robotics/automation, Waste management

    SciTech Connect

    Not Available

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  10. Robot goniophotometry at PTB

    NASA Astrophysics Data System (ADS)

    Lindemann, M.; Maass, R.; Sauter, G.

    2015-04-01

    The total luminous flux of a light source is the complete integration of its spectral radiance distribution weighted with the photopic observer and taken over all parts of its surface and over the full solid angle of emittance. The spatial distributions are measured with various types of goniophotometers and the PTB robot goniophotometer is a new type with many unique features. It is built as an arrangement of three robots with arms of more than 6 m in length and with 7 degrees of freedom each. The extreme flexibility of the robots allows computer controlled tracks with variable radii and speeds up to 3 m and 1 m s-1, respectively. One robot aligns the light source and the two other robots move photometers and array spectrometers in their hemispheres simultaneously measuring planar illuminance and the related relative spectral distribution. The robot goniophotometer is optimized for the realisation of the luminous flux unit, the lumen and it is completely characterized in this report. The relevant properties and correction factors are explained, as well as the implementation of techniques for synchronisation and stabilisation of spatially resolved or integrated photometric and colorimetric quantities. Finally, all contributions are combined in the model of evaluation for the (total) luminous flux value and the measurement uncertainty associated with that value is evaluated in the presented uncertainty budget. The goniophotometric determination of the values for colorimetric quantities is explained for the total luminous flux and the spatially distributed radiant power.

  11. PIR-1 and PIRPL. A Project in Robotics Education. Revised.

    ERIC Educational Resources Information Center

    Schultz, Charles P.

    This paper presents the results of a project in robotics education that included: (1) designing a mobile robot--the Personal Instructional Robot-1 (PIR-1); (2) providing a guide to the purchase and assembly of necessary parts; (3) providing a way to interface the robot with common classroom microcomputers; and (4) providing a language by which the…

  12. Hopping robot

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.

    2001-01-01

    The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.

  13. Robotics research

    SciTech Connect

    Brady, M.; Paul, R.

    1984-01-01

    Organized around a view of robotics as ''the intelligent connection of perception to action,'' the fifty-three contributions collected in this book present leading current research in one of the fastest moving fields of artificial intelligence. Readings Include: Hand-Eye Coordination in Rope Handling; 3-D Balance Using 2-D algorithms. A Model Driven Visual Inspection Module: Stereo Vision: Complexity and Constraints; Interpretation of Contact Geometers from Force Measurement; The Utah MIT Dextrous Hand: Work in Progress; Hierarchical Nonlinear Control for Robots; VAL-11; A Robot Programming Language and Control System; Technological Barriers in Robotics: A Perspective from Industry.

  14. Robotic Surgery

    PubMed Central

    Lanfranco, Anthony R.; Castellanos, Andres E.; Desai, Jaydev P.; Meyers, William C.

    2004-01-01

    Objective: To review the history, development, and current applications of robotics in surgery. Background: Surgical robotics is a new technology that holds significant promise. Robotic surgery is often heralded as the new revolution, and it is one of the most talked about subjects in surgery today. Up to this point in time, however, the drive to develop and obtain robotic devices has been largely driven by the market. There is no doubt that they will become an important tool in the surgical armamentarium, but the extent of their use is still evolving. Methods: A review of the literature was undertaken using Medline. Articles describing the history and development of surgical robots were identified as were articles reporting data on applications. Results: Several centers are currently using surgical robots and publishing data. Most of these early studies report that robotic surgery is feasible. There is, however, a paucity of data regarding costs and benefits of robotics versus conventional techniques. Conclusions: Robotic surgery is still in its infancy and its niche has not yet been well defined. Its current practical uses are mostly confined to smaller surgical procedures. PMID:14685095

  15. Grasping-Force Sensor For Robot Hand

    NASA Technical Reports Server (NTRS)

    Scheinman, Victor D.; Bejczy, Antal K.; Primus, Howard K.

    1991-01-01

    Grasping-force sensor designed for use on robot hand including interdigitating claws required to remain in alignment. Sensor integral part of grasping claw assembly on robot hand. Base frames deflect elastically, partly in manner of cantilever beam and partly in manner of parallelogram linkage. Strain gauges measure grasping forces by measuring deflections. Operator feels initial contact between claws and object and modifies motions of robot arm, hand and claws accordingly.

  16. Towards a sustainable modular robot system for planetary exploration

    NASA Astrophysics Data System (ADS)

    Hossain, S. G. M.

    This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.

  17. The ROMPS robot in HitchHiker

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1992-01-01

    The Robotics Branch of the Goddard Space Flight Center has under development a robot that fits inside a Get Away Special can. In the RObotic Materials Processing System (ROMPS) HitchHiker experiment, this robot is used to transport pallets containing wafers of different materials from their storage rack to a halogen lamp furnace for rapid thermal processing in a microgravity environment. It then returns them to their storage rack. A large part of the mechanical design of the robot dealt with the potential misalignment between the various components that are repeatedly mated and demated. A system of tapered guides and compliant springs was designed to work within the robot's force and accuracy capabilities. This paper discusses the above and other robot design issues in detail, and presents examples of ROMPS robot analyses that are applicable to other HitcherHiker materials handling missions.

  18. The ROMPS robot in HitchHiker

    NASA Astrophysics Data System (ADS)

    Voellmer, George

    1992-10-01

    The Robotics Branch of the Goddard Space Flight Center has under development a robot that fits inside a Get Away Special can. In the RObotic Materials Processing System (ROMPS) HitchHiker experiment, this robot is used to transport pallets containing wafers of different materials from their storage rack to a halogen lamp furnace for rapid thermal processing in a microgravity environment. It then returns them to their storage rack. A large part of the mechanical design of the robot dealt with the potential misalignment between the various components that are repeatedly mated and demated. A system of tapered guides and compliant springs was designed to work within the robot's force and accuracy capabilities. This paper discusses the above and other robot design issues in detail, and presents examples of ROMPS robot analyses that are applicable to other HitcherHiker materials handling missions.

  19. Robotic system

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O. (Inventor)

    2003-01-01

    A robot having a plurality of interconnected sections is disclosed. Each of the sections includes components which are moveable relative to components of an adjacent section. A plurality of electric motors are operably connected to at least two of said relatively moveable components to effect relative movement. A fitted, removable protective covering surrounds the sections to protect the robot.

  20. Robotics 101

    ERIC Educational Resources Information Center

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  1. Robotic Surgery

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Automated Endoscopic System for Optimal Positioning, or AESOP, was developed by Computer Motion, Inc. under a SBIR contract from the Jet Propulsion Lab. AESOP is a robotic endoscopic positioning system used to control the motion of a camera during endoscopic surgery. The camera, which is mounted at the end of a robotic arm, previously had to be held in place by the surgical staff. With AESOP the robotic arm can make more precise and consistent movements. AESOP is also voice controlled by the surgeon. It is hoped that this technology can be used in space repair missions which require precision beyond human dexterity. A new generation of the same technology entitled the ZEUS Robotic Surgical System can make endoscopic procedures even more successful. ZEUS allows the surgeon control various instruments in its robotic arms, allowing for the precision the procedure requires.

  2. Controlling robots with spoken commands

    SciTech Connect

    Beugelsdijk, T.; Phelan, P.

    1987-10-01

    A robotic system for handling radioactive materials has been developed at Los Alamos National Laboratory. Because of safety considerations, the robot must be under the control of a human operator continuously. In this paper we describe the implementation of a voice-recognition system that makes such control possible, yet permits the robot to perform preprogrammed manipulations without the operator's intervention. We also describe the training given both the operator and the voice recognition-system, as well as practical problems encountered during routine operation. A speech synthesis unit connected to the robot's control computer provides audible feedback to the operator. Thus, when a task is completed or if an emergency develops, the computer provides an appropriate spoken message. Implementation and operation of this commercially available hardware are discussed.

  3. Can Robotic Interaction Improve Joint Attention Skills?

    PubMed Central

    Zheng, Zhi; Swanson, Amy R.; Bekele, Esubalew; Zhang, Lian; Crittendon, Julie A.; Weitlauf, Amy F.; Sarkar, Nilanjan

    2013-01-01

    Although it has often been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorder (ASD), relatively few investigations have indexed the impact of intervention and feedback approaches. This pilot study investigated the application of a novel robotic interaction system capable of administering and adjusting joint attention prompts to a small group (n = 6) of children with ASD. Across a series of four sessions, children improved in their ability to orient to prompts administered by the robotic system and continued to display strong attention toward the humanoid robot over time. The results highlight both potential benefits of robotic systems for directed intervention approaches as well as potent limitations of existing humanoid robotic platforms. PMID:24014194

  4. Can Robotic Interaction Improve Joint Attention Skills?

    PubMed

    Warren, Zachary E; Zheng, Zhi; Swanson, Amy R; Bekele, Esubalew; Zhang, Lian; Crittendon, Julie A; Weitlauf, Amy F; Sarkar, Nilanjan

    2015-11-01

    Although it has often been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorder (ASD), relatively few investigations have indexed the impact of intervention and feedback approaches. This pilot study investigated the application of a novel robotic interaction system capable of administering and adjusting joint attention prompts to a small group (n = 6) of children with ASD. Across a series of four sessions, children improved in their ability to orient to prompts administered by the robotic system and continued to display strong attention toward the humanoid robot over time. The results highlight both potential benefits of robotic systems for directed intervention approaches as well as potent limitations of existing humanoid robotic platforms. PMID:24014194

  5. Early Intervention and Maltreated Children: A Current Look at the Child Abuse Prevention and Treatment Act and Part C

    ERIC Educational Resources Information Center

    Moxley, Kathleen M.; Squires, Jane; Lindstrom, Lauren

    2012-01-01

    Current literature regarding the prevalence of child abuse and neglect, resulting developmental impacts on children, and early intervention services for children and families involved in the child welfare system is summarized. While early intervention eligibility referrals are mandated for this population under the Child Abuse Prevention and…

  6. Robotic transportation.

    PubMed

    Lob, W S

    1990-09-01

    Mobile robots perform fetch-and-carry tasks autonomously. An intelligent, sensor-equipped mobile robot does not require dedicated pathways or extensive facility modification. In the hospital, mobile robots can be used to carry specimens, pharmaceuticals, meals, etc. between supply centers, patient areas, and laboratories. The HelpMate (Transitions Research Corp.) mobile robot was developed specifically for hospital environments. To reach a desired destination, Help-Mate navigates with an on-board computer that continuously polls a suite of sensors, matches the sensor data against a pre-programmed map of the environment, and issues drive commands and path corrections. A sender operates the robot with a user-friendly menu that prompts for payload insertion and desired destination(s). Upon arrival at its selected destination, the robot prompts the recipient for a security code or physical key and awaits acknowledgement of payload removal. In the future, the integration of HelpMate with robot manipulators, test equipment, and central institutional information systems will open new applications in more localized areas and should help overcome difficulties in filling transport staff positions. PMID:2208684

  7. Artificial heart for humanoid robot

    NASA Astrophysics Data System (ADS)

    Potnuru, Akshay; Wu, Lianjun; Tadesse, Yonas

    2014-03-01

    A soft robotic device inspired by the pumping action of a biological heart is presented in this study. Developing artificial heart to a humanoid robot enables us to make a better biomedical device for ultimate use in humans. As technology continues to become more advanced, the methods in which we implement high performance and biomimetic artificial organs is getting nearer each day. In this paper, we present the design and development of a soft artificial heart that can be used in a humanoid robot and simulate the functions of a human heart using shape memory alloy technology. The robotic heart is designed to pump a blood-like fluid to parts of the robot such as the face to simulate someone blushing or when someone is angry by the use of elastomeric substrates and certain features for the transport of fluids.

  8. Towards a Location-based Service for Early Mental Health Interventions in Disaster Response Using Minimalistic Tele-operated Android Robots Technology

    NASA Astrophysics Data System (ADS)

    Vahidi, H.; Mobasheri, A.; Alimardani, M.; Guan, Q.; Bakillah, M.

    2014-04-01

    Providing early mental health services during disaster is a great challenge in the disaster response phase. Lack of access to adequate mental-health professionals in the early stages of large-scale disasters dramatically influences the trend of a successful mental health aid. In this paper, a conceptual framework has been suggested for adopting cellphone-type tele-operated android robots in the early stages of disasters for providing the early mental health services for disaster survivors by developing a locationbased and participatory approach. The techniques of enabling GI-services in a Peer-to-Peer (P2P) environment were studied to overcome the limitations of current centralized services. Therefore, the aim of this research study is to add more flexibility and autonomy to GI web services (WMS, WFS, WPS, etc.) and alleviate to some degree the inherent limitations of these centralized systems. A P2P system Architecture is presented for the location-based service using minimalistic tele-operated android robots, and some key techniques of implementing this service using BestPeer were studied for developing this framework.

  9. [Robotic surgery].

    PubMed

    Sándor, József; Haidegger, Tamás; Kormos, Katalin; Ferencz, Andrea; Csukás, Domokos; Bráth, Endre; Szabó, Györgyi; Wéber, György

    2013-10-01

    Due to the fast spread of laparoscopic cholecystectomy, surgical procedures have been changed essentially. The new techniques applied for both abdominal and thoracic procedures provided the possibility for minimally invasive access with all its advantages. Robots - originally developed for industrial applications - were retrofitted for laparoscopic procedures. The currently prevailing robot-assisted surgery is ergonomically more advantageous for the surgeon, as well as for the patient through the more precise preparative activity thanks to the regained 3D vision. The gradual decrease of costs of robotic surgical systems and development of new generations of minimally invasive devices may lead to substantial changes in routine surgical procedures. PMID:24144815

  10. Definition of Compartment Based Radical Surgery in Uterine Cancer—Part I: Therapeutic Pelvic and Periaortic Lymphadenectomy by Michael Höckel Translated to Robotic Surgery

    PubMed Central

    Kimmig, Rainer; Iannaccone, Antonella; Buderath, Paul; Aktas, Bahriye; Wimberger, Pauline; Heubner, Martin

    2013-01-01

    Objective. To define compartment based therapeutic pelvic and periaortic lymphadenectomy in cervical and endometrial cancer. Compartment based oncologic surgery appears to be favorable for patients in terms of radicality as well as complication rates, and the same appears to be true for robotic surgery. We describe a method of robotically assisted compartment based lymphadenectomy step by step in uterine cancer and demonstrate feasibility data from 35 patients. Methods. Patients with the diagnosis of endometrial (n = 16) or cervical (n = 19) cancer were included. Patients were treated by rTMMR (robotic total mesometrial resection) or rPMMR (robotic peritoneal mesometrial resection) and pelvic or pelvic/periaortic rtLNE (robotic therapeutic lymphadenectomy) with cervical cancer FIGO IB-IIA or endometrial cancer FIGO I-III. Results. No transition to open surgery was necessary. Complication rates were 13% for endometrial cancer and 21% for cervical cancer. Within follow-up time median (22/20) month we noted 1 recurrence of cervical cancer and 2 endometrial cancer recurrences. Conclusions. We conclude that compartment based rtLNE is a feasible and safe technique for the treatment of uterine cancers and is favorable in aspects of radicality and complication rates. It should be analyzed in multicenter studies with extended followup on the basis of the described technique. PMID:23589777

  11. Development of an Interactive Augmented Environment and Its Application to Autonomous Learning for Quadruped Robots

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hayato; Osaki, Tsugutoyo; Okuyama, Tetsuro; Gramm, Joshua; Ishino, Akira; Shinohara, Ayumi

    This paper describes an interactive experimental environment for autonomous soccer robots, which is a soccer field augmented by utilizing camera input and projector output. This environment, in a sense, plays an intermediate role between simulated environments and real environments. We can simulate some parts of real environments, e.g., real objects such as robots or a ball, and reflect simulated data into the real environments, e.g., to visualize the positions on the field, so as to create a situation that allows easy debugging of robot programs. The significant point compared with analogous work is that virtual objects are touchable in this system owing to projectors. We also show the portable version of our system that does not require ceiling cameras. As an application in the augmented environment, we address the learning of goalie strategies on real quadruped robots in penalty kicks. We make our robots utilize virtual balls in order to perform only quadruped locomotion in real environments, which is quite difficult to simulate accurately. Our robots autonomously learn and acquire more beneficial strategies without human intervention in our augmented environment than those in a fully simulated environment.

  12. Can Text Messages Reach the Parts Other Process Measures Cannot Reach: An Evaluation of a Behavior Change Intervention Delivered by Mobile Phone?

    PubMed Central

    Irvine, Linda; Falconer, Donald W.; Jones, Claire; Ricketts, Ian W.; Williams, Brian; Crombie, Iain K.

    2012-01-01

    Background Process evaluation is essential in developing, piloting and evaluating complex interventions. This often involves observation of intervention delivery and interviews with study participants. Mobile telephone interventions involve no face to face contact, making conventional process evaluation difficult. This study assesses the utility of novel techniques for process evaluation involving no face to face contact. Methods Text messages were delivered to 34 disadvantaged men as part of a feasibility study of a brief alcohol intervention. Process evaluation focused on delivery of the text messages and responses received from study participants. The computerized delivery system captured data on receipt of the messages. The text messages, delivered over 28 days, included nine which asked questions. Responses to these questions served as one technique for process evaluation by ascertaining the nature of engagement with the study and with steps on the causal chain to behavior change. Results A total of 646 SMS text messages were sent to participants. Of these, 613 messages (95%) were recorded as delivered to participants’ telephones. 88% of participants responded to messages that asked questions. There was little attenuation in responses to the questions across the intervention period. Content analysis of the responses revealed that participants engaged with text messages, thought deeply about their content and provided carefully considered personal responses to the questions. Conclusions Socially disadvantaged men, a hard to reach population, engaged in a meaningful way over a sustained period with an interactive intervention delivered by text message. The novel process measures used in the study are unobtrusive, low cost and collect real-time data on all participants. They assessed the fidelity of delivery of the intervention and monitored retention in the study. They measured levels of engagement and identified participants’ reactions to components of the

  13. Development of autonomous eating mechanism for biomimetic robots

    NASA Astrophysics Data System (ADS)

    Jeong, Kil-Woong; Cho, Ik-Jin; Lee, Yun-Jung

    2005-12-01

    Most of the recently developed robots are human friendly robots which imitate animals or humans such as entertainment robot, bio-mimetic robot and humanoid robot. Interest for these robots are being increased because the social trend is focused on health, welfare, and graying. Autonomous eating functionality is most unique and inherent behavior of pets and animals. Most of entertainment robots and pet robots make use of internal-type battery. Entertainment robots and pet robots with internal-type battery are not able to operate during charging the battery. Therefore, if a robot has an autonomous function for eating battery as its feeds, the robot is not only able to operate during recharging energy but also become more human friendly like pets. Here, a new autonomous eating mechanism was introduced for a biomimetic robot, called ELIRO-II(Eating LIzard RObot version 2). The ELIRO-II is able to find a food (a small battery), eat and evacuate by itself. This work describe sub-parts of the developed mechanism such as head-part, mouth-part, and stomach-part. In addition, control system of autonomous eating mechanism is described.

  14. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  15. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  16. Robotic arm

    SciTech Connect

    Kwech, H.

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube is disclosed. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel. 23 figs.

  17. Robotic arm

    SciTech Connect

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  18. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  19. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  20. Intelligent robots and computer vision VIII: Algorithms and techniques; Proceedings of the Meeting, Philadelphia, PA, Nov. 6-10, 1989. Parts 1 2

    SciTech Connect

    Casasent, D.P.

    1990-01-01

    Theoretical and practical aspects of computer-vision systems for robotics applications are discussed in reviews and reports. Sections are devoted to pattern recognition for intelligent robots and computer vision; segmentation, image processing, and feature extraction; three-dimensional shape determination and representation; color and range image processing; and neural networks and associative processors for advanced vision processing. Also considered are the biological basis for machine vision, fuzzy logic in intelligent systems and computer vision, image understanding and analysis, time-sequential image processing, and polar exponential grid processing for synthetic vision systems. Extensive diagrams, graphs, and sample images are provided.

  1. Current approaches to treatments for schizophrenia spectrum disorders, part II: psychosocial interventions and patient-focused perspectives in psychiatric care

    PubMed Central

    Chien, Wai Tong; Leung, Sau Fong; Yeung, Frederick KK; Wong, Wai Kit

    2013-01-01

    Schizophrenia is a disabling psychiatric illness associated with disruptions in cognition, emotion, and psychosocial and occupational functioning. Increasing evidence shows that psychosocial interventions for people with schizophrenia, as an adjunct to medications or usual psychiatric care, can reduce psychotic symptoms and relapse and improve patients’ long-term outcomes such as recovery, remission, and illness progression. This critical review of the literature was conducted to identify the common approaches to psychosocial interventions for people with schizophrenia. Treatment planning and outcomes were also explored and discussed to better understand the effects of these interventions in terms of person-focused perspectives such as their perceived quality of life and satisfaction and their acceptability and adherence to treatments or services received. We searched major health care databases such as EMBASE, MEDLINE, and PsycLIT and identified relevant literature in English from these databases. Their reference lists were screened, and studies were selected if they met the criteria of using a randomized controlled trial or systematic review design, giving a clear description of the interventions used, and having a study sample of people primarily diagnosed with schizophrenia. Five main approaches to psychosocial intervention had been used for the treatment of schizophrenia: cognitive therapy (cognitive behavioral and cognitive remediation therapy), psychoeducation, family intervention, social skills training, and assertive community treatment. Most of these five approaches applied to people with schizophrenia have demonstrated satisfactory levels of short- to medium-term clinical efficacy in terms of symptom control or reduction, level of functioning, and/or relapse rate. However, the comparative effects between these five approaches have not been well studied; thus, we are not able to clearly understand the superiority of any of these interventions. With the

  2. Robot Rescue

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.

  3. Evaluation of a Professional Development Workshop on Integration of Robotics into Early Childhood Classrooms

    NASA Astrophysics Data System (ADS)

    Seddighin, Safoura

    According to the previous research, the lack of knowledge about technology and developmentally appropriate pedagogical approaches to bring it to the classrooms, in addition to the low level of sense of self-efficacy, and positive attitude towards teaching with technology, are among the major impediments to the successful integration of new technologies into early childhood classrooms. The focus of this research as part of a three year long NSF funded project, "Ready for Robotics", is to seek strategies to be used towards resolving the problem stated above. The current thesis reports a study in which 32 early childhood educators participated in a professional development workshop on the integration of robotics as an educational intervention into their traditional classrooms. Results show a statistically significant increase in the level of knowledge in all the three areas of technology in general, pedagogy, and robotics content, along with non-numerical positive effects of the workshop.

  4. Parallel Architecture For Robotics Computation

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1990-01-01

    Universal Real-Time Robotic Controller and Simulator (URRCS) is highly parallel computing architecture for control and simulation of robot motion. Result of extensive algorithmic study of different kinematic and dynamic computational problems arising in control and simulation of robot motion. Study led to development of class of efficient parallel algorithms for these problems. Represents algorithmically specialized architecture, in sense capable of exploiting common properties of this class of parallel algorithms. System with both MIMD and SIMD capabilities. Regarded as processor attached to bus of external host processor, as part of bus memory.

  5. CANINE: a robotic mine dog

    NASA Astrophysics Data System (ADS)

    Stancil, Brian A.; Hyams, Jeffrey; Shelley, Jordan; Babu, Kartik; Badino, Hernán.; Bansal, Aayush; Huber, Daniel; Batavia, Parag

    2013-01-01

    Neya Systems, LLC competed in the CANINE program sponsored by the U.S. Army Tank Automotive Research Development and Engineering Center (TARDEC) which culminated in a competition held at Fort Benning as part of the 2012 Robotics Rodeo. As part of this program, we developed a robot with the capability to learn and recognize the appearance of target objects, conduct an area search amid distractor objects and obstacles, and relocate the target object in the same way that Mine dogs and Sentry dogs are used within military contexts for exploration and threat detection. Neya teamed with the Robotics Institute at Carnegie Mellon University to develop vision-based solutions for probabilistic target learning and recognition. In addition, we used a Mission Planning and Management System (MPMS) to orchestrate complex search and retrieval tasks using a general set of modular autonomous services relating to robot mobility, perception and grasping.

  6. What is next in robotic urology?

    PubMed

    Cathelineau, Xavier; Sanchez-Salas, Rafael; Sivaraman, Arjun

    2014-12-01

    The application of robotic technology in surgical practice was developed during the past three decades, but its clinical application has made a significant impact during the last 10 years. Urologists have embraced surgical robots throughout their evolution, and robot-assisted urologic surgeries have matured into everyday clinical practice in many parts of the world. Long-term data from robot-assisted radical prostatectomies (RARP), an early robotic urologic surgery, has shown that the results are comparable to contemporary open radical prostatectomy (ORP) cohorts. Robot-assisted partial nephrectomy (RAPN) is largely restricted to high-volume academic centers; comparative studies have demonstrated significant advantages in favor of RAPN over laparoscopic partial nephrectomy (LPN) to achieve adequate warm ischemia time, surgical margins free of cancer cells, and no peri-operative complications. Robot-assisted radical cystectomy shows results that are comparable to contemporary open radical cystectomy. Several authors have reported the feasibility of robotic intracorporeal urinary diversion. The available long-term outcomes of robot-assisted urological surgeries are comparable to conventional open surgical methods and are associated with fewer complications. Surgical robots continue to evolve, and robotic engineers alongside surgeons strive hard to synthesize and evaluate novel robotic platforms, downsize hardware, and develop flexible instruments and newer technologies. Robotic applications available at this point represent the infancy of this technology. Future developments in robotics are profoundly limited to human imagination and can potentially scale to unimaginable heights. We would expect robots coupled with imaging and energies, aiming to provide accurate and reliable treatments which will be finely targeted by biogenetic information. PMID:25341557

  7. Mission Reliability Estimation for Repairable Robot Teams

    NASA Technical Reports Server (NTRS)

    Trebi-Ollennu, Ashitey; Dolan, John; Stancliff, Stephen

    2010-01-01

    A mission reliability estimation method has been designed to translate mission requirements into choices of robot modules in order to configure a multi-robot team to have high reliability at minimal cost. In order to build cost-effective robot teams for long-term missions, one must be able to compare alternative design paradigms in a principled way by comparing the reliability of different robot models and robot team configurations. Core modules have been created including: a probabilistic module with reliability-cost characteristics, a method for combining the characteristics of multiple modules to determine an overall reliability-cost characteristic, and a method for the generation of legitimate module combinations based on mission specifications and the selection of the best of the resulting combinations from a cost-reliability standpoint. The developed methodology can be used to predict the probability of a mission being completed, given information about the components used to build the robots, as well as information about the mission tasks. In the research for this innovation, sample robot missions were examined and compared to the performance of robot teams with different numbers of robots and different numbers of spare components. Data that a mission designer would need was factored in, such as whether it would be better to have a spare robot versus an equivalent number of spare parts, or if mission cost can be reduced while maintaining reliability using spares. This analytical model was applied to an example robot mission, examining the cost-reliability tradeoffs among different team configurations. Particularly scrutinized were teams using either redundancy (spare robots) or repairability (spare components). Using conservative estimates of the cost-reliability relationship, results show that it is possible to significantly reduce the cost of a robotic mission by using cheaper, lower-reliability components and providing spares. This suggests that the

  8. Preliminary Testing of a Compact, Bone-Attached Robot for Otologic Surgery

    PubMed Central

    Dillon, Neal P.; Balachandran, Ramya; dit Falisse, Antoine Motte; Wanna, George B.; Labadie, Robert F.; Withrow, Thomas J.; Fitzpatrick, J. Michael; Webster, Robert J.

    2014-01-01

    Otologic surgery often involves a mastoidectomy procedure, in which part of the temporal bone is milled away in order to visualize critical structures embedded in the bone and safely access the middle and inner ear. We propose to automate this portion of the surgery using a compact, bone-attached milling robot. A high level of accuracy is required to avoid damage to vital anatomy along the surgical path, most notably the facial nerve, making this procedure well-suited for robotic intervention. In this study, several of the design considerations are discussed and a robot design and prototype are presented. The prototype is a 4 degrees-of-freedom robot similar to a four-axis milling machine that mounts to the patient’s skull. A positioning frame, containing fiducial markers and attachment points for the robot, is rigidly attached to the skull of the patient, and a CT scan is acquired. The target bone volume is manually segmented in the CT by the surgeon and automatically converted to a milling path and robot trajectory. The robot is then attached to the positioning frame and is used to drill the desired volume. The accuracy of the entire system (image processing, planning, robot) was evaluated at several critical locations within or near the target bone volume with a mean free space accuracy result of 0.50 mm or less at all points. A milling test in a phantom material was then performed to evaluate the surgical workflow. The resulting milled volume did not violate any critical structures. PMID:25477726

  9. Preliminary testing of a compact bone-attached robot for otologic surgery

    NASA Astrophysics Data System (ADS)

    Dillon, Neal P.; Balachandran, Ramya; Motte dit Falisse, Antoine; Wanna, George B.; Labadie, Robert F.; Withrow, Thomas J.; Fitzpatrick, J. Michael; Webster, Robert J.

    2014-03-01

    Otologic surgery often involves a mastoidectomy procedure, in which part of the temporal bone is milled away in order to visualize critical structures embedded in the bone and safely access the middle and inner ear. We propose to automate this portion of the surgery using a compact, bone-attached milling robot. A high level of accuracy is required t o avoid damage to vital anatomy along the surgical path, most notably the facial nerve, making this procedure well-suited for robotic intervention. In this study, several of the design considerations are discussed and a robot design and prototype are presented. The prototype is a 4 degrees-of-freedom robot similar to a four-axis milling machine that mounts to the patient's skull. A positioning frame, containing fiducial markers and attachment points for the robot, is rigidly attached to the skull of the patient, and a CT scan is acquired. The target bone volume is manually segmented in the CT by the surgeon and automatically converted to a milling path and robot trajectory. The robot is then attached to the positioning frame and is used to drill the desired volume. The accuracy of the entire system (image processing, planning, robot) was evaluated at several critical locations within or near the target bone volume with a mean free space accuracy result of 0.50 mm or less at all points. A milling test in a phantom material was then performed to evaluate the surgical workflow. The resulting milled volume did not violate any critical structures.

  10. The TAOS Robotic Observatory

    NASA Astrophysics Data System (ADS)

    Lehner, Matthew; Wen, C.-Y.; Wang, J.-H.; Marshall, S. L.; Schwamb, M. E.; Zhang, Z.-W.; Bianco, F. B.; Gimmarco, J.; Porrata, R.; Alcock, C.; Axelrod, T.; Byun, Y.-I.; Chen, W. P.; Cook, K. H.; Dave, R.; Kim, D.-W.; King, S.-K.; Lee, T.; Lin, H.-C.; Wang, S.-Y.; Yen, W.-L.; Rice, J. A.; de Pater, I.; Szentgyorgyi, A.; Geary, J.; Norton, T.; Reyes-Ruiz, M.

    2011-03-01

    The Taiwanese-American Occultation survey (TAOS) operate four small telescopes in central Taiwan to search for occultations by small (~1 km diameter) Kuiper Belt Objects. The system is fully robotic, requiring human intervention only in the event of hardware failures. However, the status of the system during observations is monitored remotely via smart-phone. A successor survey, the Transneptunian Automated Occultation Survey (TAOS II) is currently being constructed. This next generation survey will be more than one hundred times as sensitive as the earlier survey. In this paper, we summarize the science goals of the surveys, describe the two surveys, and discuss the lessons learned in automating the TAOS observations.

  11. Robots Show Us How to Teach Them: Feedback from Robots Shapes Tutoring Behavior during Action Learning

    PubMed Central

    Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J.; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J.; Wrede, Britta

    2014-01-01

    Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction. PMID:24646510

  12. Rehabilitation robotics

    PubMed Central

    KREBS, H.I.; VOLPE, B.T.

    2015-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician’s toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual’s functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We will provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we will then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We will present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. PMID:23312648

  13. Medical robotics.

    PubMed

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management. PMID:21642033

  14. Modeling and simulation of tumor-influenced high resolution real-time physics-based breast models for model-guided robotic interventions

    NASA Astrophysics Data System (ADS)

    Neylon, John; Hasse, Katelyn; Sheng, Ke; Santhanam, Anand P.

    2016-03-01

    Breast radiation therapy is typically delivered to the patient in either supine or prone position. Each of these positioning systems has its limitations in terms of tumor localization, dose to the surrounding normal structures, and patient comfort. We envision developing a pneumatically controlled breast immobilization device that will enable the benefits of both supine and prone positioning. In this paper, we present a physics-based breast deformable model that aids in both the design of the breast immobilization device as well as a control module for the device during every day positioning. The model geometry is generated from a subject's CT scan acquired during the treatment planning stage. A GPU based deformable model is then generated for the breast. A mass-spring-damper approach is then employed for the deformable model, with the spring modeled to represent a hyperelastic tissue behavior. Each voxel of the CT scan is then associated with a mass element, which gives the model its high resolution nature. The subject specific elasticity is then estimated from a CT scan in prone position. Our results show that the model can deform at >60 deformations per second, which satisfies the real-time requirement for robotic positioning. The model interacts with a computer designed immobilization device to position the breast and tumor anatomy in a reproducible location. The design of the immobilization device was also systematically varied based on the breast geometry, tumor location, elasticity distribution and the reproducibility of the desired tumor location.

  15. Generic robot architecture

    SciTech Connect

    Bruemmer, David J; Few, Douglas A

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  16. Comparing an Emotion- and a Behavior-Focused Parenting Program as Part of a Multsystemic Intervention for Child Conduct Problems.

    PubMed

    Duncombe, Melissa E; Havighurst, Sophie S; Kehoe, Christiane E; Holland, Kerry A; Frankling, Emma J; Stargatt, Robyn

    2016-01-01

    This study evaluated the effectiveness of a multisystemic early intervention that included a comparison of an emotion- and behavior-focused parenting program for children with emerging conduct problems. The processes that moderated positive child outcomes were also explored. A repeated measures cluster randomized group design methodology was employed with three conditions (Tuning in to Kids, Positive Parenting Program, and waitlist control) and two periods (preintervention and 6-month follow-up). The sample consisted of 320 predominantly Caucasian 4- to 9-year-old children who were screened for disruptive behavior problems. Three outcome measures of child conduct problems were evaluated using a parent (Eyberg Child Behavior Inventory) and teacher (Strengths and Difficulties Questionnaire) rating scale and a structured child interview (Home Interview With Child). Six moderators were assessed using family demographic information and a parent-rated measure of psychological well-being (Depression Anxiety and Stress Scales short form). The results indicated that the multisystemic intervention was effective compared to a control group and that, despite different theoretical orientations, the emotion- and behavior-focused parenting programs were equally effective in reducing child conduct problems. Child age and parent psychological well-being moderated intervention response. This effectiveness trial supports the use of either emotion- or behavior-focused parenting programs in a multisystemic early intervention and provides greater choice for practitioners in the selection of specific programs. PMID:25469889

  17. Using Curriculum-Derived Progress Monitoring Data as Part of a Response-to-Intervention Strategy: A Case Study

    ERIC Educational Resources Information Center

    Henley, Natasha; Furlong, Michael

    2006-01-01

    The revised "Individuals with Disabilities Improvement Education Act" (2004) and subsequent Federal Regulations promote the use of alternative process of identifying students with specific learning disabilities based on how well a student responds to researched-based interventions. As these strategies are implemented, school psychologists have the…

  18. Robotics in near-earth space

    NASA Technical Reports Server (NTRS)

    Card, Michael E.

    1991-01-01

    The areas of space exploration in which robotic devices will play a part are identified, and progress to date in the space agency plans to acquire this capability is briefly reviewed. Roles and functions on orbit for robotic devices include well known activities, such as inspection and maintenance, assembly, docking, berthing, deployment, retrieval, materials handling, orbital replacement unit exchange, and repairs. Missions that could benefit from a robotic capability are discussed.

  19. Automatic learning by an autonomous mobile robot

    SciTech Connect

    de Saussure, G.; Spelt, P.F.; Killough, S.M.; Pin, F.G.; Weisbin, C.R.

    1989-01-01

    This paper describes recent research in automatic learning by the autonomous mobile robot HERMIES-IIB at the Center for Engineering Systems Advanced Research (CESAR). By acting on the environment and observing the consequences during a set of training examples, the robot learns a sequence of successful manipulations on a simulated control panel. The robot learns to classify panel configurations in order to deal with new configurations that are not part of the original training set. 5 refs., 2 figs.

  20. Robot Manipulators

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Space Shuttle's Remote Manipulator System (Canadarm) is a 50 foot robot arm used to deploy, retrieve or repair satellites in orbit. Initial spinoff version is designed to remove, inspect and replace large components of Ontario Hydro's CANDU nuclear reactors, which supply 50 percent of Ontario Hydro's total power reduction. CANDU robot is the first of SPAR's Remote Manipulator Systems intended for remote materials handling operations in nuclear servicing, chemical processing, smelting and manufacturing. Inco Limited used remote manipulator for remote control mining equipment to enhance safety and productivity of Inco's hardrock mining operations. System not only improves safety in a hazardous operation that costs more than a score of lives annually, it also increases productivity fourfold. Remote Manipulator System Division is also manufacturing a line of industrial robots and developing additional system for nuclear servicing, mining, defense and space operations.

  1. Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A commercially available ANDROS Mark V-A robot was used by Jet Propulsion Laboratory (JPL) as the departure point in the development of the HAZBOT III, a prototype teleoperated mobile robot designed for response to emergencies. Teleoperated robots contribute significantly to reducing human injury levels by performing tasks too hazardous for humans. ANDROS' manufacturer, REMOTEC, Inc., in turn, adopted some of the JPL concepts, particularly the control panel. HAZBOT III has exceptional mobility, employs solid state electronics and brushless DC motors for safer operation, and is designed so combustible gases cannot penetrate areas containing electronics and motors. Other features include the six-degree-of-freedom manipulator, the 30-pound squeeze force parallel jaw gripper and two video cameras, one for general viewing and navigation and the other for manipulation/grasping.

  2. Robot Swarms

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  3. Robotic Therapy

    PubMed Central

    Krebs, H. I.; Hogan, N.

    2012-01-01

    The last two decades have seen a remarkable shift in the neuro-rehabilitation paradigm. Neuroscientists and clinicians moved away from the perception that the brain is static and hardwired, to a new dynamic understanding that plasticity is a fundamental property of the adult human brain and might be harnessed to remap or create new neural pathways. Capitalizing on this innovative understanding, we introduced a paradigm shift in the clinical practice in 1989 when we initiated the development of the MIT-Manus robot for neuro-rehabilitation and deployed it in the clinic in 1994 10. Since then, we and others have developed and tested a multitude of robotic devices for stroke, spinal cord injury, cerebral palsy, multiple sclerosis, and Parkinson’s disease. Here we discuss whether robotic therapy has achieved a level of maturity to justify its broad adoption in the clinical realm as a tool for motor recovery. PMID:23080044

  4. A trainlike vehicle for intervention missions inside nuclear plants

    SciTech Connect

    Littmann, F.; Villedieu, E.; Chameaud, H. )

    1992-01-01

    The Unite Robotique (part of the Direction of Advanced Technologies of Commissariat a l'Energie Atomique) has worked on nuclear robotics in the field of master/slave manipulators with their associated computer-aided teleoperation controls and mobile robots. The CENTAURE mobile robot is tracked (for stair climbing) and articulated (for obstacle crossing and turning on stair landings) with a mobile platform (for increasing stability), designed for inspection missions. For intervention missions, a vehicle is needed with larger payload capabilities (volume and mass) but with the same geometrical and environmental constraints. This paper deals with a new kind of trainlike vehicle designed for intervention missions inside nuclear facilities after an incident or accident. This idea was conceived in 1986 for the EUREKA program advanced mobile robot for civilian safety and is now entering a new phase with the TELEMAN program technology for advanced locomotion systems (in partnership with Kernforschungszentrum Karlsruhe for the locomotion and Cybernetix for the tests) with the building of a two-module linkage mockup and a locomotion mockup.

  5. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation

    PubMed Central

    Brauchle, Daniel; Vukelić, Mathias; Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    While robot-assisted arm and hand training after stroke allows for intensive task-oriented practice, it has provided only limited additional benefit over dose-matched physiotherapy up to now. These rehabilitation devices are possibly too supportive during the exercises. Neurophysiological signals might be one way of avoiding slacking and providing robotic support only when the brain is particularly responsive to peripheral input. We tested the feasibility of three-dimensional robotic assistance for reaching movements with a multi-joint exoskeleton during motor imagery (MI)-related desynchronization of sensorimotor oscillations in the β-band. We also registered task-related network changes of cortical functional connectivity by electroencephalography via the imaginary part of the coherence function. Healthy subjects and stroke survivors showed similar patterns—but different aptitudes—of controlling the robotic movement. All participants in this pilot study with nine healthy subjects and two stroke patients achieved their maximum performance during the early stages of the task. Robotic control was significantly higher and less variable when proprioceptive feedback was provided in addition to visual feedback, i.e., when the orthosis was actually attached to the subject’s arm during the task. A distributed cortical network of task-related coherent activity in the θ-band showed significant differences between healthy subjects and stroke patients as well as between early and late periods of the task. Brain-robot interfaces (BRIs) may successfully link three-dimensional robotic training to the participants’ efforts and allow for task-oriented practice of activities of daily living with a physiologically controlled multi-joint exoskeleton. Changes of cortical physiology during the task might also help to make subject-specific adjustments of task difficulty and guide adjunct interventions to facilitate motor learning for functional restoration, a proposal that

  6. Control architecture for human-robot integration: application to a robotic wheelchair.

    PubMed

    Galindo, Cipriano; Gonzalez, Javier; Fernández-Madrigal, Juan-Antonio

    2006-10-01

    Completely autonomous performance of a mobile robot within noncontrolled and dynamic environments is not possible yet due to different reasons including environment uncertainty, sensor/software robustness, limited robotic abilities, etc. But in assistant applications in which a human is always present, she/he can make up for the lack of robot autonomy by helping it when needed. In this paper, the authors propose human-robot integration as a mechanism to augment/improve the robot autonomy in daily scenarios. Through the human-robot-integration concept, the authors take a further step in the typical human-robot relation, since they consider her/him as a constituent part of the human-robot system, which takes full advantage of the sum of their abilities. In order to materialize this human integration into the system, they present a control architecture, called architecture for human-robot integration, which enables her/him from a high decisional level, i.e., deliberating a plan, to a physical low level, i.e., opening a door. The presented control architecture has been implemented to test the human-robot integration on a real robotic application. In particular, several real experiences have been conducted on a robotic wheelchair aimed to provide mobility to elderly people. PMID:17036812

  7. Brain controlled robots.

    PubMed

    Kawato, Mitsuo

    2008-06-01

    In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey's motor cortex in Miguel Nicolelis's lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the "Computational Brain Project." CB-i's locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey's voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot. PMID:19404467

  8. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  9. Large robotized turning centers described

    NASA Astrophysics Data System (ADS)

    Kirsanov, V. V.; Tsarenko, V. I.

    1985-09-01

    The introduction of numerical control (NC) machine tools has made it possible to automate machining in series and small series production. The organization of automated production sections merged NC machine tools with automated transport systems. However, both the one and the other require the presence of an operative at the machine for low skilled operations. Industrial robots perform a number of auxiliary operations, such as equipment loading-unloading and control, changing cutting and auxiliary tools, controlling workpieces and parts, and cleaning of location surfaces. When used with a group of equipment they perform transfer operations between the machine tools. Industrial robots eliminate the need for workers to form auxiliary operations. This underscores the importance of developing robotized manufacturing centers providing for minimal human participation in production and creating conditions for two and three shift operation of equipment. Work carried out at several robotized manufacturing centers for series and small series production is described.

  10. Beyond Robotics

    ERIC Educational Resources Information Center

    Tally, Beth; Laverdure, Nate

    2006-01-01

    Chantilly High School Academy Robotics Team Number 612 from Chantilly, Virginia, is an award-winning team of high school students actively involved with FIRST (For Inspiration and Recognition of Science and Technology), a multinational nonprofit organization that inspires students to transform culture--making science, math, engineering and…

  11. Robotic Surgery

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2007-01-01

    The medical field has many uses for automated and remote-controlled technology. For example, if a tissue sample is only handled in the laboratory by a robotic handling system, then it will never come into contact with a human. Such a system not only helps to automate the medical testing process, but it also helps to reduce the chances of…

  12. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  13. Safety and Efficacy of At-Home Robotic Locomotion Therapy in Individuals with Chronic Incomplete Spinal Cord Injury: A Prospective, Pre-Post Intervention, Proof-of-Concept Study

    PubMed Central

    Rupp, Rüdiger; Schließmann, Daniel; Plewa, Harry; Schuld, Christian; Gerner, Hans Jürgen; Weidner, Norbert; Hofer, Eberhard P.; Knestel, Markus

    2015-01-01

    Background The compact Motorized orthosis for home rehabilitation of Gait (MoreGait) was developed for continuation of locomotion training at home. MoreGait generates afferent stimuli of walking with the user in a semi-supine position and provides feedback about deviations from the reference walking pattern. Objective Prospective, pre-post intervention, proof-of-concept study to test the feasibility of an unsupervised home-based application of five MoreGait prototypes in subjects with incomplete spinal cord injury (iSCI). Methods Twenty-five (5 tetraplegia, 20 paraplegia) participants with chronic (mean time since injury: 5.8 ± 5.4 (standard deviation, SD) years) sensorimotor iSCI (7 ASIA Impairment Scale (AIS) C, 18 AIS D; Walking Index for Spinal Cord Injury (WISCI II): Interquartile range 9 to 16) completed the training (45 minutes / day, at least 4 days / week, 8 weeks). Baseline status was documented 4 and 2 weeks before and at training onset. Training effects were assessed after 4 and 8 weeks of therapy. Results After therapy, 9 of 25 study participants improved with respect to the dependency on walking aids assessed by the WISCI II. For all individuals, the short-distance walking velocity measured by the 10-Meter Walk Test showed significant improvements compared to baseline (100%) for both self-selected (Mean 139.4% ± 35.5% (SD)) and maximum (Mean 143.1% ± 40.6% (SD)) speed conditions as well as the endurance estimated with the six-minute walk test (Mean 166.6% ± 72.1% (SD)). One device-related adverse event (pressure sore on the big toe) occurred in over 800 training sessions. Conclusions Home-based robotic locomotion training with MoreGait is feasible and safe. The magnitude of functional improvements achieved by MoreGait in individuals with iSCI is well within the range of complex locomotion robots used in hospitals. Thus, unsupervised MoreGait training potentially represents an option to prolong effective training aiming at recovery of locomotor

  14. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM

    SciTech Connect

    Unknown

    2000-09-15

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

  15. A strategy planner for NASA robotics applications

    NASA Technical Reports Server (NTRS)

    Brodd, S. S.

    1985-01-01

    Automatic strategy or task planning is an important element of robotics systems. A strategy planner under development at Goddard Space Flight Center automatically produces robot plans for assembly, disassembly, or repair of NASA spacecraft from computer aided design descriptions of the individual parts of the spacecraft.

  16. Robotics Team Lights Up New Year's Eve

    ERIC Educational Resources Information Center

    LeBlanc, Cheryl

    2011-01-01

    A robotics team from Muncie, Indiana--the PhyXTGears--is made up of high school students from throughout Delaware County. The group formed as part of the FIRST Robotics program (For Inspiration and Recognition of Science and Technology), an international program founded by inventor Dean Kamen in which students work with professional engineers and…

  17. 32 CFR Appendix A to Part 80 - Procedures for the Provision of Early Intervention Services for Infants and Toddlers With...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 CFR part 310. c. The right of the parent(s) to determine whether they, their infant or toddler, or... SECTION 6 SCHOOL ARRANGEMENTS Pt. 80, App. A Appendix A to Part 80—Procedures for the Provision of Early... 6 School Arrangement, including a system for making referrals to service providers that...

  18. 32 CFR Appendix A to Part 80 - Procedures for the Provision of Early Intervention Services for Infants and Toddlers With...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 CFR part 310. c. The right of the parent(s) to determine whether they, their infant or toddler, or... SECTION 6 SCHOOL ARRANGEMENTS Pt. 80, App. A Appendix A to Part 80—Procedures for the Provision of Early... 6 School Arrangement, including a system for making referrals to service providers that...

  19. Applying robotic technology to the solid film lubricant burnishing operation

    SciTech Connect

    Fureigh, M.L.

    1984-02-01

    The PUMA 260, a programmable robot, has been used to burnish up to 22 different parts coated with solid film lubricant in the Painting Department. Some other parts also are potential candidates for robotic applications. Robot technology can reduce the burnishing operation standard hours and relieve workers' fatigue and strain as well as produce more uniform part-to-part quality. Using VAL, the versatile computer program language for PUMA 260, the process engineer can define the optimum robot burnishing actions and speeds for each part.

  20. Adaptive heterogeneous multi-robot teams

    SciTech Connect

    Parker, L.E.

    1998-11-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail the experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  1. Part 2: Screening, Brief Intervention and Referral to Treatment Plus Recovery Management: A Proposed Model for Recovery-Oriented Primary Care.

    PubMed

    Fornili, Katherine S

    2016-01-01

    Part 1 of this two-part series (The Theoretical Basis for Recovery-Oriented Management of Substance Use Disorders in the Primary Care) explored the theoretical foundations for evidence-based substance Screening, Brief Intervention and Referral to Treatment (SBIRT) services. The aim was to produce possible explanations for why traditional SBIRT works well for individuals with unhealthy alcohol use but not as well for individuals who have more serious substance use disorders, including drug use and alcohol/drug dependence. Building on that analysis, through meaningful application of recovery management (RM) concepts within an integrated primary care/behavioral health context, a new, theory-based, recovery-oriented framework for primary care SBIRT is now introduced in Part 2. The proposed SBIRT Plus Recovery Management (SBIRT + RM) model moves traditional SBIRT from its original, limited, and narrow focus only on substance detection, brief intervention, and referral to its rightful, structured placement within a comprehensive, multidimensional, recovery-oriented system of care clinical practice environment. SBIRT+RM describes relevant strategies for improving recovery outcomes for individuals identified through primary care substance screening and defines primary care provider roles and responsibilities for sustained recovery support and long-term recovery maintenance. PMID:27272992

  2. Robotics Education and Employment.

    ERIC Educational Resources Information Center

    Linnell, Charles C.

    1993-01-01

    Describes characteristics of robots, provides a glossary of related terms, and discusses available careers in the field of robotics. Includes a list of postsecondary institutions with robotics programs. (JOW)

  3. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  4. Robotic Waterjet System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA needed a way to safely strip old paint and thermal protection material from reusable components from the Space Shuttle; to meet this requirement, Marshall Space Flight Center teamed with United Technologies' USBI Company and developed a stripping system based on hydroblasting. United Technology spun off a new company, Waterjet Systems, to commercialize and market the technology. The resulting ARMS (Automated Robotic Maintenance Systems), employ waterblasts at 55,000 pounds per square inch controlled by target-sensitive robots. The systems are used on aircraft and engine parts, and the newest application is on ships, where it not only strips but catches the ensuing wastewater. This innovation results in faster, cheaper stripping with less clean-up and reduced environmental impact.

  5. Robot arm apparatus

    SciTech Connect

    Nachbar, H.D.

    1990-12-31

    A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in ``x,`` ``y,`` and ``z`` directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.

  6. Robot arm apparatus

    DOEpatents

    Nachbar, Henry D.

    1992-01-01

    A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.

  7. Robot arm apparatus

    DOEpatents

    Nachbar, Henry D.

    1992-12-01

    A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.

  8. 32 CFR Appendix A to Part 80 - Procedures for the Provision of Early Intervention Services for Infants and Toddlers With...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 CFR part 310. c. The right of the parent(s) to determine whether they, their infant or toddler, or... timelines and provides for participation by primary referral sources, such as the CDC and the...

  9. 32 CFR Appendix A to Part 80 - Procedures for the Provision of Early Intervention Services for Infants and Toddlers With...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 CFR part 310. c. The right of the parent(s) to determine whether they, their infant or toddler, or... timelines and provides for participation by primary referral sources, such as the CDC and the...

  10. 32 CFR Appendix A to Part 80 - Procedures for the Provision of Early Intervention Services for Infants and Toddlers With...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 CFR part 310. c. The right of the parent(s) to determine whether they, their infant or toddler, or... timelines and provides for participation by primary referral sources, such as the CDC and the...

  11. Evaluation of Acquired Valvular Heart Disease by the Pediatrician: When to Follow, When to Refer for Intervention? Part II.

    PubMed

    Saxena, Anita

    2015-11-01

    Lesions of the heart valves are the commonest acquired cardiac abnormalities seen in pediatric age group. Aortic regurgitation (AR) results from abnormality of the valve leaflets or of the aortic root. Mitral valve lesion may be associated in patients with rheumatic heart disease (RHD). Left ventricle dilates and may develop dysfunction in advanced states. Coronary perfusion also tends to suffer in severe AR. The symptoms develop later and include dyspnea and palpitations. An early diastolic, high pitched murmur, best heard at base of the heart is the hallmark of AR. All symptomatic patients with severe AR and those with left ventricular dysfunction should undergo surgical intervention. Aortic stenosis (AS) is often due to congenitally bicuspid or unicuspid valve. RHD rarely results in AS; associated AR is common in such cases. The most common cause of tricuspid valve involvement is secondary to dilatation of right ventricle and tricuspid annulus resulting in tricuspid regurgitation (TR). Rarely RHD affects the tricuspid valve directly; resulting in stenosis with TR. Involvement of both mitral and aortic valves is almost pathognomonic of RHD etiology. Severity of individual lesions may be difficult to ascertain as proximal valve lesion tends to modify the assessment of the distal valve lesion. It is important to understand that all valvular lesions do not require surgery. Regular secondary prophylaxis with long acting penicillin (for patients with RHD) may retard further progression of valve lesion and must be emphasized to the family. For mild and asymptomatic moderate valvular lesions, periodic monitoring with clinical examination and echocardiography is sufficient. No guidelines are available for timing of intervention in such children; data may have to be extrapolated from published guidelines for adult patients. Various types of surgical options are available for regurgitant valves, but none is ideal. The pediatricians are required to have knowledge of

  12. Eye discomfort, headache and back pain among Mayan Guatemalan women taking part in a randomised stove intervention trial

    PubMed Central

    Díaz, Esperanza; Smith‐Sivertsen, Tone; Pope, Dan; Lie, Rolv T; Díaz, Anaite; McCracken, John; Arana, Byron; Smith, Kirk R; Bruce, Nigel

    2007-01-01

    Background Indoor air pollution (IAP) from combustion of biomass fuels represents a global health problem, estimated to cause 1.6 million premature deaths annually. Aims RESPIRE (Randomised Exposure Study of Pollution Indoors and Respiratory Effects) Guatemala is the first randomised controlled trial ever performed on health effects from solid fuel use. Its goal is to assess the effect of improved stoves (planchas) on exposure and health outcomes in a rural population reliant on wood fuel. Methods Questions about symptoms were asked at baseline and periodically after the intervention, to an initial group of 504 women (259 randomly assigned to planchas (mean (standard deviation) age 27.4 (7.2) years) and 245 using traditional open fires (28.1 (7.1) years)). Levels of carbon monoxide (CO) in exhaled breath, a biomarker of recent exposure to air pollution from biomass combustion, were measured at each visit. In addition to reducing IAP levels, the plancha may also have a positive health effect by changing the working posture to an upright position. Results A high prevalence of eye discomfort, headache and backache was found. The odds of having sore eyes and headache were substantially reduced in the plancha group relative to the group using open fires for the follow‐up period (odds ratio (OR) 0.18, 95% confidence interval (CI) 0.11 to 0.29 and (OR) 0.63, 95% CI 0.42 to 0.94, respectively). Median CO in breath among women in the intervention trial was significantly lower than controls. Conclusion In addition to reducing discomfort for women, tangible improvements in symptoms experienced by a substantial proportion of women may help to gain acceptance and wider use of planchas. PMID:17183019

  13. Robotic cystogastrostomy and debridement of walled-off pancreatic necrosis.

    PubMed

    Nassour, Ibrahim; Ramzan, Zeeshan; Kukreja, Sachin

    2016-09-01

    Walled-off pancreatic necrosis is a known complication of acute pancreatitis and requires intervention if symptomatic or complicated. Laparoscopic cystogastrostomy as a minimally invasive surgical intervention has been well-described in surgical literature but data on a robotic approach is limited. Here we report a case of robotic cystogastrostomy and debridement of walled-off pancreatic necrosis in a patient with a history of severe biliary pancreatitis. PMID:27039191

  14. 76 FR 30951 - Part C Early Intervention Services Grant Under the Ryan White HIV/AIDS Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Under the Ryan White HIV/AIDS Program AGENCY: Health Resources and Services Administration (HRSA), HHS. ACTION: Notice of Non-Competitive One-Time Program Expansion Supplement Award of Ryan White HIV/AIDS.../AIDS Program, Part C funds to the Tutwiler Clinic, Tutwiler, Mississippi, to support...

  15. 75 FR 73110 - Part C Early Intervention Services Grant under the Ryan White HIV/AIDS Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... under the Ryan White HIV/AIDS Program AGENCY: Health Resources and Services Administration (HRSA), HHS. ACTION: Notice of a non-competitive one-time replacement award from Ryan White HIV/AIDS Program, Part C... replacement award to support comprehensive primary care services for persons living with HIV/AIDS,...

  16. Investigation on Requirements of Robotic Platforms to Teach Social Skills to Individuals with Autism

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, Chris; Kuester, Deitra; Sheehan, Mark; Dhanya, Sneha

    This paper reports on some of the robotic platforms used in the project AUROSO which investigates the use of robots as educationally useful interventions to improve social interactions for individuals with Autism Spectrum Disorders (ASD). Our approach to treatment uses an educational intervention based on Socially Assistive Robotics (SAR), the DIR/Floortime intervention model and social script/stories. Requirements are established and a variety of robotic models/platforms were investigated as to the feasibility of an economical, practical and efficient means of helping teach social skills to individuals with ASD for use by teachers, families, service providers and other community organizations.

  17. ALLIANCE: An architecture for fault tolerant multi-robot cooperation

    SciTech Connect

    Parker, L.E.

    1995-02-01

    ALLIANCE is a software architecture that facilitates the fault tolerant cooperative control of teams of heterogeneous mobile robots performing missions composed of loosely coupled, largely independent subtasks. ALLIANCE allows teams of robots, each of which possesses a variety of high-level functions that it can perform during a mission, to individually select appropriate actions throughout the mission based on the requirements of the mission, the activities of other robots, the current environmental conditions, and the robot`s own internal states. ALLIANCE is a fully distributed, behavior-based architecture that incorporates the use of mathematically modeled motivations (such as impatience and acquiescence) within each robot to achieve adaptive action selection. Since cooperative robotic teams usually work in dynamic and unpredictable environments, this software architecture allows the robot team members to respond robustly, reliably, flexibly, and coherently to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. The feasibility of this architecture is demonstrated in an implementation on a team of mobile robots performing a laboratory version of hazardous waste cleanup.

  18. Cooperative robotic sentry vehicles

    NASA Astrophysics Data System (ADS)

    Feddema, John T.; Lewis, Christopher L.; Klarer, Paul; Eisler, G. R.; Caprihan, Rahul

    1999-08-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories' Intelligent Systems and Robotics Center is developing and testing the feasibility of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform a surround task. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight 'Roving All Terrain Lunar Explorer Rovers' (RATLER), a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. For the surround task, both potential field and A* search path planners have been added to the base-station and vehicles. At the base-station, the operator specifies goal and exclusion regions on a GIS map. The path planner generates vehicles paths that are previewed by the operator. Once the operator has validated the path, the appropriate information is downloaded t the vehicles. For the potential field path planner, the polygons and line segments that represent the obstacles and goals are downloaded to the vehicles, instead of the simulated paths. On board the vehicles, the same potential field path planner generates the path except that it uses the true location of itself and the nearest neighboring vehicle. For the A* path planner, the actual path is downloaded to the vehicles because of limited on-board computational power.

  19. Biophysical Intervention Strategies.

    ERIC Educational Resources Information Center

    Benson, Scott

    1987-01-01

    Biophysical interventions as part of an ecological approach to intervention with handicapped children include psychotropic medications (neuroleptics, antidepressants, stimulants, minor tranquilizers and sedatives, lithium); nutritional agents (sugar, vitamins, food allergies); and physical therapies (patterning, optometric training). (DB)

  20. Robotic Tool Changer For Automated Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Spencer, Carl N.

    1994-01-01

    Prototype robotic tool changer for automated welding system eliminates need for most manual tool setups and attendant problems: operates rapidly, always chooses designated tool, maneuvers tip of welding torch or other tool in correct position, and reliably connects water, gas, welding wire, high-voltage electrical signals, and ground. Also loads tools other than those for welding. Intended for use in robotic work cell producing all good parts, no rejects. In production, robot welds part, tests for flaws, and reworks as necessary before releasing it.

  1. Controlling Robots with Personal Computers.

    ERIC Educational Resources Information Center

    Singer, Andrew; Rony, Peter

    1983-01-01

    Discusses new robots that are mechanical arms small enough to sit on a desktop. They offer scaled-down price and performance, but are able to handle light production tasks such as spray painting or part orientation. (Available from W. C. Publications Inc., P.O. Box 1578, Montclair, NJ 07042.) (JOW)

  2. Robotic Hand

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  3. Robotic Stripping

    NASA Technical Reports Server (NTRS)

    2000-01-01

    UltraStrip Systems, Inc.'s M-200 removes paint from the hulls of ships faster than traditional grit-blasting methods. And, it does so without producing toxic airborne particles common to traditional methods. The M-2000 magnetically attaches itself to the hull of the ship. Its water jets generate 40,000 pounds of pressure per square inch, blasting away paint down to the ships steel substrate. The only by product is water and dried paint chips and these are captured by a vacuum system so no toxic residue can escape. It was built out of a partnership between the Jet Propulsion Laboratory and the National Robotics Engineering Consortium.

  4. Dual arm robotic system with sensory input

    NASA Technical Reports Server (NTRS)

    Ozguner, U.

    1987-01-01

    The need for dual arm robots in space station assembly and satellite maintainance is of increasing significance. Such robots will be in greater demand in the future when numerous tasks will be assigned to them to relieve the direct intervention of humans in space. Technological demands from these robots will be high. They will be expected to perform high speed tasks with a certain degree of autonomy. Various levels of sensing will have to be used in a sophisticated control scheme. Ongoing research in control, sensing and real-time software to produce a two-arm robotic system than can accomplish generic assembly tasks is discussed. The control hierarchy and the specific control approach are discussed. A decentralized implementation of model-reference adaptive control using Variable Structure controllers and the incorporation of tactile feedback is considered.

  5. Performance Evaluation Methods for Assistive Robotic Technology

    NASA Astrophysics Data System (ADS)

    Tsui, Katherine M.; Feil-Seifer, David J.; Matarić, Maja J.; Yanco, Holly A.

    Robots have been developed for several assistive technology domains, including intervention for Autism Spectrum Disorders, eldercare, and post-stroke rehabilitation. Assistive robots have also been used to promote independent living through the use of devices such as intelligent wheelchairs, assistive robotic arms, and external limb prostheses. Work in the broad field of assistive robotic technology can be divided into two major research phases: technology development, in which new devices, software, and interfaces are created; and clinical, in which assistive technology is applied to a given end-user population. Moving from technology development towards clinical applications is a significant challenge. Developing performance metrics for assistive robots poses a related set of challenges. In this paper, we survey several areas of assistive robotic technology in order to derive and demonstrate domain-specific means for evaluating the performance of such systems. We also present two case studies of applied performance measures and a discussion regarding the ubiquity of functional performance measures across the sampled domains. Finally, we present guidelines for incorporating human performance metrics into end-user evaluations of assistive robotic technologies.

  6. Robots and manipulators

    NASA Astrophysics Data System (ADS)

    Heer, E.

    1981-11-01

    Robots are defined and described for various applications. The key feature of robots is programmability, which allows teleoperation, repair work in hazardous situations, and unsupervised operation in industrial functions. Two types of robots now exist: special purpose, with equipment for a specific task; and general purpose, which include nonservo-controlled robots, servo-controlled robots, and sensory control robots. Sensory robots are the most sophisticated, and are equipped with both internal control sensors and external sensors such as TV cameras, pressure detectors, laser range finders, etc. Sensory feedback to a central computer enables the robots to make appropriate modifications to the control program to adapt to new situations. Pattern recognition and scans for size are features of the TV sensors, and programs to develop a universal effector (hand) are outlined. Finally, robot programming in terms of manual, walkthrough, and textual methods are described, and the potential uses of robots for space and undersea construction and repair are discussed.

  7. Robotics Algorithms Provide Nutritional Guidelines

    NASA Technical Reports Server (NTRS)

    2009-01-01

    On July 5, 1997, a small robot emerged from its lander like an insect from an egg, crawling out onto the rocky surface of Mars. About the size of a child s wagon, NASA s Sojourner robot was the first successful rover mission to the Red Planet. For 83 sols (Martian days, typically about 40 minutes longer than Earth days), Sojourner - largely remote controlled by NASA operators on Earth - transmitted photos and data unlike any previously collected. Sojourner was perhaps the crowning achievement of the NASA Space Telerobotics Program, an Agency initiative designed to push the limits of robotics in space. Telerobotics - devices that merge the autonomy of robotics with the direct human control of teleoperators - was already a part of NASA s efforts; probes like the Viking landers that preceded Sojourner on Mars, for example, were telerobotic applications. The Space Telerobotics Program, a collaboration between Ames Research Center, Johnson Space Center, Jet Propulsion Laboratory (JPL), and multiple universities, focused on developing remote-controlled robotics for three main purposes: on-orbit assembly and servicing, science payload tending, and planetary surface robotics. The overarching goal was to create robots that could be guided to build structures in space, monitor scientific experiments, and, like Sojourner, scout distant planets in advance of human explorers. While telerobotics remains a significant aspect of NASA s efforts, as evidenced by the currently operating Spirit and Opportunity Mars rovers, the Hubble Space Telescope, and many others - the Space Telerobotics Program was dissolved and redistributed within the Agency the same year as Sojourner s success. The program produced a host of remarkable technologies and surprising inspirations, including one that is changing the way people eat

  8. Integration of vision and robotic workcell

    NASA Technical Reports Server (NTRS)

    Bossieux, T. A.

    1994-01-01

    The paper discusses the incorporation of vision into a robotic cell to obtain cell status information and use this information to influence the robot operation. It discusses both mechanical and informational solutions to the operational issues which are present. The cell uses a machine vision system to determine information about part presence in the shipping tray, part location in the tray, and tray orientation. The vision system's edge detector algorithm is used to identify the orientation of the packing trays. In addition, different vision tools are used to determine if parts are present in the trays based on the unique configuration of the individual parts. The mechanical solutions discuss the handling of medium weight (10 - 25 lb.) parts at an average cycle time of 3.1 seconds per part. The robot gripper must handle 33 different models, three identical parts at a time. This is accomplished by using stacks of rotary actuators and slides between the stacks.

  9. Path Planning for Semi-automated Simulated Robotic Neurosurgery

    PubMed Central

    Hu, Danying; Gong, Yuanzheng; Hannaford, Blake; Seibel, Eric J.

    2015-01-01

    This paper considers the semi-automated robotic surgical procedure for removing the brain tumor margins, where the manual operation is a tedious and time-consuming task for surgeons. We present robust path planning methods for robotic ablation of tumor residues in various shapes, which are represented in point-clouds instead of analytical geometry. Along with the path plans, corresponding metrics are also delivered to the surgeon for selecting the optimal candidate in the automated robotic ablation. The selected path plan is then executed and tested on RAVEN™ II surgical robot platform as part of the semi-automated robotic brain tumor ablation surgery in a simulated tissue phantom. PMID:26705501

  10. Laboratory robotics systems at the Savannah River Laboratory

    SciTech Connect

    Dyches, G M; Burkett, S D

    1983-01-01

    Many analytical chemistry methods normally used at the Savannah River site require repetitive procedures and handling of radioactive and other hazardous solutions. Robotics is being investigated as a method of reducing personnel fatigue and radiation exposure and also increasing product quality. Several applications of various commercially available robot systems are discussed involving cold (nonradioactive) and hot (radioactive) sample preparations and glovebox waste removal. Problems encountered in robot programming, parts fixturing, design of special robot hands and other support equipment, glovebox operation, and operator-system interaction are discussed. A typical robot system cost analysis for one application is given.

  11. Robotic Vision for Welding

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1986-01-01

    Vision system for robotic welder looks at weld along axis of welding electrode. Gives robot view of most of weld area, including yet-unwelded joint, weld pool, and completed weld bead. Protected within welding-torch body, lens and fiber bundle give robot closeup view of weld in progress. Relayed to video camera on robot manipulator frame, weld image provides data for automatic control of robot motion and welding parameters.

  12. Robotic vehicle

    DOEpatents

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  13. Robotic vehicle

    DOEpatents

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  14. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  15. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  16. Robotic sacrocolpopexy

    PubMed Central

    Danforth, Teresa L.; Aron, Monish; Ginsberg, David A.

    2014-01-01

    Pelvic organ prolapse (POP) is a prevalent condition with 1 in 9 women seeking surgical treatment by the age of 80 years. Goals of treatment are relief and prevention of symptoms, and restoration of pelvic floor support. The gold standard for surgical treatment of POP has been abdominal sacrocolpopexy (ASC). However, emerging technologies have allowed for more minimally invasive approach including the use of laparoscopic assisted sacrocolpopexy and robotic assisted sacrocolpopexy (RASC). We performed a PubMed literature search for sacrocolpopexy, “robotic sacrocolpopexy” and “RASC” and reviewed all retrospective, prospective and randomized controlled trials. The techniques, objective and subjective outcomes and complications are discussed. The most frequent technique involves a polypropylene Y mesh attached to the anterior and posterior walls of the vagina with the single arm attached to the sacrum. Multiple concomitant procedures have been described including hysterectomy, anti-incontinence procedures and concomitant vaginal prolapse repairs. There are few studies comparing RASC to ASC, with the longest follow-up data showing no difference in subjective and objective outcomes. Anatomic success rates have been reported at 79-100% with up to 9% of patients requiring successive surgery for recurrence. Subjective success is poorly defined, but has been reported at 88-97%. Most common complications are urinary retention, urinary tract infection, bladder injury and vaginal mucosal injury. Mesh exposure is reported in up to 10% of patients. RASC allows for a minimally invasive approach to treatment of POP with comparable outcomes and low complication rates. PMID:25097320

  17. Applying Machine Vision To Robotic Automation

    NASA Astrophysics Data System (ADS)

    Lee, Jay

    1987-10-01

    Machine vision is an integral part in industry automation. This paper will discuss the 3-D vision technology and its applications. A brief description of several turkey automation systems developed and being developed that using 3-D vision technology in the fields of inspection and robotic guidance&control will be presented. The applications range from advanced robotic technology in automotive car production to sophisticated robotic system for U.S. Navy and Air force. This 3-D vision measuring capability has proved to the versatile key to successfully implementing adaptively controlled robot motion and robot path. Other extension of the technology to provide 3-D volumetric sensing and research effort in integrating 3-D vision with CAD/CAM system are examined.

  18. Demonstration of autonomous air monitoring through robotics

    SciTech Connect

    Rancatore, R.

    1989-11-01

    The project included modifying an existing teleoperated robot to include autonomous navigation, large object avoidance, and air monitoring and demonstrating that prototype robot system in indoor and outdoor environments. The robot was also modified to carry a HNU PI-101 Photoionization Detector air monitoring device. A sonar range finder, which already was an integral part of the Surveyor, was repositioned to the front of the robot chassis to detect large obstacles in the path of the robot. In addition, the software of the onboard computer was also extensively modified to provide: navigation control, dynamic steering to smoothly follow the wire-course without hesitation, obstacle avoidance, autonomous shut down and remote reporting of toxic substance detection.

  19. Social commitment robots and dementia.

    PubMed

    Roger, Kerstin; Guse, Lorna; Mordoch, Elaine; Osterreicher, Angela

    2012-03-01

    In 2010, approximately 500,000 Canadians suffered from a dementia-related illness. The number of sufferers is estimated to double in about 25 years. Due to this growing demographic, dementia (most frequently caused by Alzheimer's disease) will increasingly have a significant impact on our aging community and their caregivers. Dementia is associated with challenging behaviours such as agitation, wandering, and aggression. Care providers must find innovative strategies that facilitate the quality of life for this population; moreover, such strategies must value the individual person. Social commitment robots - designed specifically with communication and therapeutic purposes - provide one means towards attaining this goal. This paper describes a study in which Paro (a robotic baby harp seal) was used as part of a summer training program for students. Preliminary conclusions suggest that the integration of social commitment robots may be clinically valuable for older, agitated persons living with dementia in long-term care settings. PMID:22336517

  20. Implementing a Continuum of Evidence-Based Psychosocial Interventions for People With Severe Mental Illness: Part 2—Review of Critical Implementation Issues

    PubMed Central

    Briand, Catherine; Menear, Matthew

    2014-01-01

    Objective: In North America and internationally, efforts have been made to reduce the gaps between knowledge of psychosocial evidence-based practices (EBPs) and the delivery of such services in routine mental health practice. Part 2 of this review identifies key issues for stakeholders to consider when implementing comprehensive psychosocial EBPs for people with severe mental illness (SMI). Method: A rapid review of the literature was conducted. Searches were carried out in MEDLINE and PsycINFO for reports published between 1990 and 2012 using key words related to SMI, and psychosocial practices and implementation. The Consolidated Framework for Implementation Research (CFIR) was used to structure findings according to key domains and constructs known to influence the implementation process. Results: The CFIR allowed us to identify 17 issues reflecting more than 30 constructs of the framework that were viewed as influential to the process of implementing evidence-based psychosocial interventions for people with SMI. Issues arising at different levels of influence (intervention, individual, organizational, and system) and at all phases of the implementation process (planning, engagement, execution, and evaluation) were found to play important roles in implementation. Conclusion: The issues identified in this review should be taken into consideration by stakeholders when engaging in efforts to promote uptake of new psychosocial EBPs and to widen the range of effective psychosocial services available in routine mental health care. PMID:25007111

  1. Can Robotic Interaction Improve Joint Attention Skills?

    ERIC Educational Resources Information Center

    Warren, Zachary E.; Zheng, Zhi; Swanson, Amy R.; Bekele, Esubalew; Zhang, Lian; Crittendon, Julie A.; Weitlauf, Amy F.; Sarkar, Nilanjan

    2015-01-01

    Although it has often been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorder (ASD), relatively few investigations have indexed the impact of intervention and feedback approaches. This pilot study investigated the application of a novel robotic interaction…

  2. Cellular assay optimization: part II: the use of a simple integrated robotic work cell to allow the multiplexed batching of cellular assays.

    PubMed

    Macmillan, Marie A; Orme, Jonathan P; Roberts, Karen

    2011-10-01

    This report describes the implementation of an automated work cell with commercially available hardware and software, capable of handling up to 15 separate reagents for performing 96-well or 384-well assays but with a small footprint and only a single liquid dispenser and two plate washers. Extremely flexible software was used to enable this simple work cell to perform processes that would traditionally require a much larger, more expensive automation platform. With the development of the C-Myc assays for the targets DYRK, BMX, PERK, and FAK, the authors describe a software solution to multibatch assays to run simultaneously, reducing reagent dead volume and increasing the efficiency of running multiple assays such that the time to generate data across multiple targets was significantly shortened. Although a larger automated system with multiple robotic arms and extensive equipment would also be able to process multiple assays simultaneously, the work cell we have described represents an inexpensive and flexible, easily upgradable option suitable for a wider range of labs. PMID:21844326

  3. Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part B, Remedial action, robotics/automation, waste management

    SciTech Connect

    Fellows, R.L.

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration (ER) and waste management (WN) problems at the Oak Ridge K-25 Site. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remediation, decontamination, and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This volume 3 B provides the Technology Evaluation Data Sheets (TEDS) for ER/WM activities (Remedial Action Robotics and Automation, Waste Management) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than each technology in Vol. 2. The TEDS are arranged alphanumerically by the TEDS code number in the upper right corner of each data sheet. Volume 3 can be used in two ways: (1) technologies that are identified from Vol. 2 can be referenced directly in Vol. 3 by using the TEDS codes, and (2) technologies and general technology areas (alternatives) can be located in the index in the front of this volume.

  4. Intelligent robotics can boost America's economic growth

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1994-01-01

    A case is made for strategic investment in intelligent robotics as a part of the solution to the problem of improved global competitiveness for U.S. manufacturing, a critical industrial sector. Similar cases are made for strategic investments in intelligent robotics for field applications, construction, and service industries such as health care. The scope of the country's problems and needs is beyond the capability of the private sector alone, government alone, or academia alone to solve independently of the others. National cooperative programs in intelligent robotics are needed with the private sector supplying leadership direction and aerospace and non-aerospace industries conducting the development. Some necessary elements of such programs are outlined. The National Aeronautics and Space Administration (NASA) and the Lyndon B. Johnson Space Center (JSC) can be key players in such national cooperative programs in intelligent robotics for several reasons: (1) human space exploration missions require supervised intelligent robotics as enabling tools and, hence must develop supervised intelligent robotic systems; (2) intelligent robotic technology is being developed for space applications at JSC (but has a strong crosscutting or generic flavor) that is advancing the state of the art and is producing both skilled personnel and adaptable developmental infrastructure such as integrated testbeds; and (3) a NASA JSC Technology Investment Program in Robotics has been proposed based on commercial partnerships and collaborations for precompetitive, dual-use developments.

  5. EVA Robotic Assistant Project: Platform Attitude Prediction

    NASA Technical Reports Server (NTRS)

    Nickels, Kevin M.

    2003-01-01

    The Robotic Systems Technology Branch is currently working on the development of an EVA Robotic Assistant under the sponsorship of the Surface Systems Thrust of the NASA Cross Enterprise Technology Development Program (CETDP). This will be a mobile robot that can follow a field geologist during planetary surface exploration, carry his tools and the samples that he collects, and provide video coverage of his activity. Prior experiments have shown that for such a robot to be useful it must be able to follow the geologist at walking speed over any terrain of interest. Geologically interesting terrain tends to be rough rather than smooth. The commercial mobile robot that was recently purchased as an initial testbed for the EVA Robotic Assistant Project, an ATRV Jr., is capable of faster than walking speed outside but it has no suspension. Its wheels with inflated rubber tires are attached to axles that are connected directly to the robot body. Any angular motion of the robot produced by driving over rough terrain will directly affect the pointing of the on-board stereo cameras. The resulting image motion is expected to make tracking of the geologist more difficult. This will either require the tracker to search a larger part of the image to find the target from frame to frame or to search mechanically in pan and tilt whenever the image motion is large enough to put the target outside the image in the next frame. This project consists of the design and implementation of a Kalman filter that combines the output of the angular rate sensors and linear accelerometers on the robot to estimate the motion of the robot base. The motion of the stereo camera pair mounted on the robot that results from this motion as the robot drives over rough terrain is then straightforward to compute. The estimates may then be used, for example, to command the robot s on-board pan-tilt unit to compensate for the camera motion induced by the base movement. This has been accomplished in two ways

  6. Small robot autonomy in an integrated environment

    NASA Astrophysics Data System (ADS)

    O'Brien, Barry J.; Young, Stuart H.

    2008-04-01

    The U.S. Army Research Laboratory's (ARL) Computational and Information Sciences Directorate (CISD) has long been involved in autonomous asset control, specifically as it relates to small robots. Over the past year, CISD has demonstrated the ability to control and view streaming video from an FCS-surrogate PackBot robotic system over multiple network types (Soldier Radio Waveform (SRW), 802.11), as well as tasking the robot to follow both manually (ARL DigitalInk) and autonomously planned (CERDEC C2ORE) GPS waypoint routes. These capabilities remove the "stand alone system" limitations of traditional small robot systems and allow any and all data produced by such platforms to be available to anyone on the network, while at the same time reducing the amount of operator intervention required to utilize a robot. However, assumptions were made about the paths the robot was to traverse, specifically that they would be free from major obstacles. To address these system limitations, CISD is implementing obstacle detection and avoidance (OD/OA) on the PackBot. The OD/OA utilizes COTS ranging sensors with indoor and/or outdoor capabilities, and leverages existing software algorithm components into the existing CISD robotic control architecture. These new capabilities are available in an integrated environment consisting of common command and control (C2) and network interfaces and on multiple platforms (ARL ATRV, LynchBot, PackBot, etc.) due to the modular and platform/network independent architecture that ARL employs. This paper will describe the current robotic control architecture employed by ARL and provide brief descriptions of existing capabilities. Further, the paper will discuss the small robot obstacle detection/avoidance integration effort performed by ARL, along with some preliminary results on its performance and benefits.

  7. A research synthesis of therapeutic interventions for whiplash-associated disorder: Part 1 – overview and summary

    PubMed Central

    Teasell, Robert W; McClure, J Andrew; Walton, David; Pretty, Jason; Salter, Katherine; Meyer, Matthew; Sequeira, Keith; Death, Barry

    2010-01-01

    Whiplash-associated disorder (WAD) represents a significant public health problem, resulting in a substantial socioeconomic burden throughout the industrialized world, wherever costs are documented. While many treatments have been advocated for patients with WAD, scientific evidence of their effectiveness is often lacking. A systematic review was conducted to evaluate the strength of evidence supporting various WAD therapies. Multiple databases (including Web of Science, EMBASE and PubMed) were searched to identify all studies published from January 1980 through March 2009 that evaluated the effectiveness of any clearly defined treatment for acute (less than two weeks), subacute (two to 12 weeks) or chronic (longer than 12 weeks) WAD. The present article, the first in a five-part series, provides an overview of the review methodology as well as a summary and discussion of the review’s main findings. Eighty-three studies met the inclusion criteria, 40 of which were randomized controlled trials. The majority of studies (n=47) evaluated treatments initiated in the chronic stage of the disorder, while 23 evaluated treatments for acute WAD and 13 assessed therapies for subacute WAD. Exercise and mobilization programs for acute and chronic WAD had the strongest supporting evidence, although many questions remain regarding the relative effectiveness of various protocols. At present, there is insufficient evidence to support any treatment for subacute WAD. For patients with chronic WAD who do not respond to conventional treatments, it appears that radiofrequency neurotomy may be the most effective treatment option. The present review found a relatively weak but growing research base on which one could make recommendations for patients at any stage of the WAD continuum. Further research is needed to determine which treatments are most effective at reducing the disabling symptoms associated with WAD. PMID:21038007

  8. Multiple robot systems in space

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1987-01-01

    Viewgraphs from a presentation on multiple robot systems in space are included. Topics covered include categories of robots in space; scenarios of robot applications in space; some characteristics of robots in space; and some interesting problems and issues.

  9. Humanoid Robot

    NASA Technical Reports Server (NTRS)

    Linn, Douglas M. (Inventor); Ambrose, Robert O. (Inventor); Diftler, Myron A. (Inventor); Askew, Scott R. (Inventor); Platt, Robert (Inventor); Mehling, Joshua S. (Inventor); Radford, Nicolaus A. (Inventor); Strawser, Phillip A. (Inventor); Bridgwater, Lyndon (Inventor); Wampler, II, Charles W. (Inventor); Abdallah, Muhammad E. (Inventor); Ihrke, Chris A. (Inventor); Reiland, Matthew J. (Inventor); Sanders, Adam M. (Inventor); Reich, David M. (Inventor); Hargrave, Brian (Inventor); Parsons, Adam H. (Inventor); Permenter, Frank N. (Inventor); Davis, Donald R. (Inventor)

    2013-01-01

    A humanoid robot includes a torso, a pair of arms, two hands, a neck, and a head. The torso extends along a primary axis and presents a pair of shoulders. The pair of arms movably extend from a respective one of the pair of shoulders. Each of the arms has a plurality of arm joints. The neck movably extends from the torso along the primary axis. The neck has at least one neck joint. The head movably extends from the neck along the primary axis. The head has at least one head joint. The shoulders are canted toward one another at a shrug angle that is defined between each of the shoulders such that a workspace is defined between the shoulders.

  10. Intelligent robots and computer vision

    SciTech Connect

    Casasent, D.P.

    1985-01-01

    This book presents the papers given at a conference which examined artificial intelligence and image processing in relation to robotics. Topics considered at the conference included feature extraction and pattern recognition for computer vision, image processing for intelligent robotics, robot sensors, image understanding and artificial intelligence, optical processing techniques in robotic applications, robot languages and programming, processor architectures for computer vision, mobile robots, multisensor fusion, three-dimensional modeling and recognition, intelligent robots applications, and intelligent robot systems.

  11. Modeling robot contour processes

    NASA Astrophysics Data System (ADS)

    Whitney, D. E.; Edsall, A. C.

    Robot contour processes include those with contact force like car body grinding or deburring of complex castings, as well as those with little or no contact force like inspection. This paper describes ways of characterizing, identifying, and estimating contours and robot trajectories. Contour and robot are modeled as stochastic processes in order to emphasize that both successive robot cycles and successive industrial workpieces are similar but not exactly the same. The stochastic models can be used to identify the state of a workpiece or process, or to design a filter to estimate workpiece, shape and robot position from robot-based measurements.

  12. Robotic technology in urology.

    PubMed

    Murphy, D; Challacombe, B; Khan, M S; Dasgupta, P

    2006-11-01

    Urology has increasingly become a technology-driven specialty. The advent of robotic surgical systems in the past 10 years has led to urologists becoming the world leaders in the use of such technology. In this paper, we review the history and current status of robotic technology in urology. From the earliest uses of robots for transurethral resection of the prostate, to robotic devices for manipulating laparoscopes and to the current crop of master-slave devices for robotic-assisted laparoscopic surgery, the evolution of robotics in the urology operating theatre is presented. Future possibilities, including the prospects for nanotechnology in urology, are awaited. PMID:17099094

  13. Robotics for Human Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  14. Soft robotics: a bioinspired evolution in robotics.

    PubMed

    Kim, Sangbae; Laschi, Cecilia; Trimmer, Barry

    2013-05-01

    Animals exploit soft structures to move effectively in complex natural environments. These capabilities have inspired robotic engineers to incorporate soft technologies into their designs. The goal is to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments. Here, we review emerging soft-bodied robotic systems, and in particular recent developments inspired by soft-bodied animals. Incorporating soft technologies can potentially reduce the mechanical and algorithmic complexity involved in robot design. Incorporating soft technologies will also expedite the evolution of robots that can safely interact with humans and natural environments. Finally, soft robotics technology can be combined with tissue engineering to create hybrid systems for medical applications. PMID:23582470

  15. Competencies Identification for Robotics Training.

    ERIC Educational Resources Information Center

    Tang, Le D.

    A study focused on the task of identifying competencies for robotics training. The level of robotics training was limited to that of robot technicians. Study objectives were to obtain a list of occupational competencies; to rank their order of importance; and to compare opinions from robot manufacturers, robot users, and robotics educators…

  16. Robot development for nuclear material processing

    SciTech Connect

    Pedrotti, L.R.; Armantrout, G.A.; Allen, D.C.; Sievers, R.H. Sr.

    1991-07-01

    The Department of Energy is seeking to modernize its special nuclear material (SNM) production facilities and concurrently reduce radiation exposures and process and incidental radioactive waste generated. As part of this program, Lawrence Livermore National Laboratory (LLNL) lead team is developing and adapting generic and specific applications of commercial robotic technologies to SNM pyrochemical processing and other operations. A working gantry robot within a sealed processing glove box and a telerobot control test bed are manifestations of this effort. This paper describes the development challenges and progress in adapting processing, robotic, and nuclear safety technologies to the application. 3 figs.

  17. Adaptive control of a robotic manipulator

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.

    1977-01-01

    A control hierarchy for a robotic manipulator is described. The hierarchy includes perception and robot/environment interaction, the latter consisting of planning, path control, and terminal guidance loops. Environment-sensitive features include the provision of control governed by proximity, tactile, and visual sensors as well as the usual kinematic sensors. The manipulator is considered as part of an overall robot system. 'Adaptive control' in the present context refers to both the hierarchical nature of the control system and to its environment-responsive nature.

  18. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; Hammond, M. S.; Harris, D. W.; Hill, L. A.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.

    2010-01-01

    The Moon provides an important window into the early history of the Earth, containing information about planetary composition, magmatic evolution, surface bombardment, and exposure to the space environment. Robotic lunar landers to achieve science goals and to provide precursor technology development and site characterization are an important part of program balance within NASA s Science Mission Directorate (SMD) and Exploration Systems Mission Directorate (ESMD). A Robotic Lunar Lan-der mission complements SMD's initiatives to build a robust lunar science community through R&A lines and increases international participation in NASA's robotic exploration of the Moon.

  19. The Gang Intervention Handbook.

    ERIC Educational Resources Information Center

    Goldstein, Arnold P., Ed.; Huff, C. Ronald, Ed.

    This book provides overviews and evaluations of current juvenile-gang-intervention programs and recommends approaches that have been effective in both prevention and rehabilitation. Its three parts, composed of individual essays, examine patterns of ganging and gang intervention, explore the value of psychology-based interventions, and discuss the…

  20. Computer guidance system for single-incision bimanual robotic surgery.

    PubMed

    Carbone, Marina; Turini, Giuseppe; Petroni, Gianluigi; Niccolini, Marta; Menciassi, Arianna; Ferrari, Mauro; Mosca, Franco; Ferrari, Vincenzo

    2012-01-01

    The evolution of surgical robotics is following the progress of developments in Minimally Invasive Surgery (MIS), which is moving towards Single-Incision Laparoscopic Surgery (SILS) procedures. The complexity of these techniques has favored the introduction of robotic surgical systems. New bimanual robots, which are completely inserted into the patient's body, have been proposed in order to enhance the surgical gesture in SILS procedures. However, the limited laparoscopic view and the focus on the end-effectors, together with the use of complex robotic devices inside the patient's abdomen, may lead to unexpected collisions, e.g., between the surrounding anatomical organs not involved in the intervention and the surgical robot. This paper describes a computer guidance system, based on patient-specific data, designed to provide intraoperative navigation and assistance in SILS robotic interventions. The navigator has been tested in simulations of some of the surgical tasks involved in a cholecystectomy, using a synthetic anthropomorphic mannequin. The results demonstrate the usability and efficacy of the navigation system, underlining the importance of avoiding unwanted collisions between the robot arms and critical organs. The proposed computer guidance software is able to integrate any bimanual surgical robot design. PMID:22687053

  1. Evaluation of Changes in Equine Care and Limb-Related Abnormalities in Working Horses in Jaipur, India, as Part of a Two Year Participatory Intervention Study

    PubMed Central

    Whay, Helen R.; Dikshit, Amit K.; Hockenhull, Jo; Parker, Richard M. A.; Banerjee, Anindo; Hughes, Sue I.; Pritchard, Joy C.; Reix, Christine E.

    2015-01-01

    Background Previous studies have found the prevalence of lameness in working horses to be 90–100%. Risk factors for lameness in this important equine population, together with risk-reduction strategies adopted by their owners, are poorly understood. The objective was to uncover risk factors for lameness and limb abnormalities in working horses, by associating clinical lameness examination findings on three occasions over two years with owner reported changes in equine management and work practices over this period. Methodology/Principal Findings Twenty-one communities of horse owners in Jaipur, India, took part in a participatory intervention (PI) project aiming to reduce risk factors for poor welfare, particularly lameness and limb problems. Associations between quantitative measures of equine lameness/limb abnormalities and reported changes in management and work practices were compared with 21 control (C) communities of owners where no intervention had taken place. Key findings from ‘complete cases’, where the same horse stayed with the same owner for the whole study period (PI group = 73 owners of 83 horses, C group = 58 owners of 66 horses), were that more positive statements of change in equine management and work practices were made by PI group owners than C group owners. A mixed picture of potential risk factors emerged: some reported management improvements, for example reducing the weight of the load for cart animals, were associated with improved limbs and lameness, and others, such as making improvements in shoeing and increasing the age at which their animals started work, with negative outcomes. Conclusions/Significance This study illustrates the complexity and interacting nature of risk factors for lameness in working horses, and highlights the importance of longitudinal investigations that recognise and address this. PI group owners found the project useful and requested similar inputs in future. Our findings demonstrate the value of

  2. Robotic Arm Unwrapped

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken shortly after NASA's Phoenix Mars Lander touched down on the surface of Mars, shows the spacecraft's robotic arm in its stowed configuration, with its biobarrier successfully unpeeled. The 'elbow' of the arm can be seen at the top center of the picture, and the biobarrier is the shiny film seen to the left of the arm.

    The biobarrier is an extra precautionary measure for protecting Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars.

    Before the arm was heated, it was sealed in the biobarrier, which is made of a trademarked film called Tedlar that holds up to baking like a turkey-basting bag. This ensures that any new bacterial spores that might have appeared during the final steps before launch and during the journey to Mars will not contact the robotic arm.

    After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy.

    The base of the lander's Meteorological Station can be seen in this picture on the upper left. Because only the base of the station is showing, this image tells engineers that the instrument deployed successfully.

    The image was taken on landing day, May 25, 2008, by the spacecraft's Surface Stereo Imager.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Microgravity, Mesh-Crawling Legged Robots

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Marzwell, Neville; Matthews, Jaret; Richardson, Krandalyn; Wall, Jonathan; Poole, Michael; Foor, David; Rodgers, Damian

    2008-01-01

    The design, fabrication, and microgravity flight-testing are part of a continuing development of palm-sized mobile robots that resemble spiders (except that they have six legs apiece, whereas a spider has eight legs). Denoted SpiderBots (see figure), they are prototypes of proposed product line of relatively inexpensive walking robots that could be deployed in large numbers to function cooperatively in construction, repair, exploration, search, and rescue activities in connection with exploration of outer space and remote planets.

  4. Robotic Surveying

    SciTech Connect

    Suzy Cantor-McKinney; Michael Kruzic

    2007-03-01

    ZAPATA ENGINEERING challenged our engineers and scientists, which included robotics expertise from Carnegie Mellon University, to design a solution to meet our client's requirements for rapid digital geophysical and radiological data collection of a munitions test range with no down-range personnel. A prime concern of the project was to minimize exposure of personnel to unexploded ordnance and radiation. The field season was limited by extreme heat, cold and snow. Geographical Information System (GIS) tools were used throughout this project to accurately define the limits of mapped areas, build a common mapping platform from various client products, track production progress, allocate resources and relate subsurface geophysical information to geographical features for use in rapidly reacquiring targets for investigation. We were hopeful that our platform could meet the proposed 35 acres per day, towing both a geophysical package and a radiological monitoring trailer. We held our breath and crossed our fingers as the autonomous Speedrower began to crawl across the playa lakebed. We met our proposed production rate, and we averaged just less than 50 acres per 12-hour day using the autonomous platform with a path tracking error of less than +/- 4 inches. Our project team mapped over 1,800 acres in an 8-week (4 days per week) timeframe. The expertise of our partner, Carnegie Mellon University, was recently demonstrated when their two autonomous vehicle entries finished second and third at the 2005 Defense Advanced Research Projects Agency (DARPA) Grand Challenge. 'The Grand Challenge program was established to help foster the development of autonomous vehicle technology that will some day help save the lives of Americans who are protecting our country on the battlefield', said DARPA Grand Challenge Program Manager, Ron Kurjanowicz. Our autonomous remote-controlled vehicle (ARCV) was a modified New Holland 2550 Speedrower retrofitted to allow the machine

  5. Vocal Production of Young Children with Disabilities during Child-Robot Interactions. Social Robots Research Reports, Number 5

    ERIC Educational Resources Information Center

    Dunst, Carl J.; Hamby, Deborah W.; Trivette, Carol M.; Prior, Jeremy; Derryberry, Graham

    2013-01-01

    The effects of a socially interactive robot on the vocalization production of five children with disabilities (4 with autism, 1 with a sensory processing disorder) were the focus of the intervention study described in this research report. The interventions with each child were conducted over 4 or 5 days in the children's homes and involved…

  6. Robotic Lander Prototype

    NASA Video Gallery

    NASA engineers successfully integrated and completed system testing on a new robotic lander recently at Teledyne Brown Engineering’s facility in Huntsville in support of the Robotic Lunar Lander ...

  7. Robotic space colonies

    NASA Technical Reports Server (NTRS)

    Schenker, P.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper reviews recent advances in these technologies, with a particular focus on experimental state-of-the-art robot work crew system demonstrations at JPL, that are being conducted now to begin to realize the futuristic robotic colony vision.

  8. Robotic Intelligence Kernel: Communications

    SciTech Connect

    Walton, Mike C.

    2009-09-16

    The INL Robotic Intelligence Kernel-Comms is the communication server that transmits information between one or more robots using the RIK and one or more user interfaces. It supports event handling and multiple hardware communication protocols.

  9. Robots and the Economy.

    ERIC Educational Resources Information Center

    Albus, James S.

    1984-01-01

    Spectacular advances in microcomputers are forging new technological frontiers in robotics. For example, many factories will be totally automated. Economic implications of the new technology of robotics for the future are examined. (RM)

  10. Robotic Lander Development Project

    NASA Video Gallery

    The Robotic Lander Development Project at the Marshall Center is testing a prototype lander that will aid in the design and development of a new generation of small, smart, versatile robotic lander...

  11. Advances in urogynaecological robotic surgery.

    PubMed

    Swan, Kimberly; Advincula, Arnold P

    2011-09-01

    • Urogynaecology is a subspecialty practiced by both urologists and gynaecologists specialised in treating women with pelvic floor disorders and urinary incontinence. • While urogynaecology covers a vast range of disorders, two disorders frequently managed by urogynaecologists are pelvic organ prolapse (POP) and pelvic fistulae. • Surgical intervention is often the treatment option for both POP and pelvic fistulae after all conservative options have been attempted. The daVinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, CA, USA) has applications for the minimally invasive surgical management of POP and pelvic fistulas. • The following review will address the development and current state of robotic assistance in treating these disorders. PMID:21917106

  12. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  13. Robotics research projects report

    SciTech Connect

    Hsia, T.C.

    1983-06-01

    The research results of the Robotics Research Laboratory are summarized. Areas of research include robotic control, a stand-alone vision system for industrial robots, and sensors other than vision that would be useful for image ranging, including ultrasonic and infra-red devices. One particular project involves RHINO, a 6-axis robotic arm that can be manipulated by serial transmission of ASCII command strings to its interfaced controller. (LEW)

  14. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  15. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  16. NASA's Lunar Robotic Architecture Study

    NASA Astrophysics Data System (ADS)

    Mulville, Daniel R.

    2006-07-01

    This report documents the findings and analysis of a 60-day agency-wide Lunar Robotic Architecture Study (LRAS) conducted by the National Aeronautics and Space Administration (NASA). Work on this study began in January 2006. Its purpose was to: Define a lunar robotics architecture by addressing the following issues: 1) Do we need robotic missions at all? If so, why and under what conditions? 2) How would they be accomplished and at what cost? Are they within budget? 3) What are the minimum requirements? What is the minimum mission set? 4) Integrate these elements together to show a viable robotic architecture. 5) Establish a strategic framework for a lunar robotics program. The LRAS Final Report presents analysis and recommendations concerning potential approaches related to NASA s implementation of the President's Vision for Space Exploration. Project and contract requirements will likely be derived in part from the LRAS analysis and recommendations contained herein, but these do not represent a set of project or contract requirements and are not binding on the U.S. Government unless and until they are formally and expressly adopted as such. Details of any recommendations offered by the LRAS Final Report will be translated into implementation requirements. Moreover, the report represents the assessments and projects of the report s authors at the time it was prepared; it is anticipated that the concepts in this report will be analyzed further and refined. By the time some of the activities addressed in this report are implemented, certain assumptions on which the report s conclusions are based will likely evolve as a result of this analysis. Accordingly, NASA, and any entity under contract with NASA, should not use the information in this report for final project direction. Since the conclusion of this study, there have been various changes to the Agency's current portfolio of lunar robotic precursor activities. First, the Robotic Lunar Exploration Program (RLEP

  17. Robotic Follow Algorithm

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.

  18. Robotics development programs overview

    SciTech Connect

    Heckendorn, F.M.

    1990-11-01

    This paper discusses the applications of robotics at the Westinghouse Savannah River Site. The Savannah River Laboratory (SRL) continues to provide support to the Savannah River Site (SRS) in many areas of Robotics and Remote Vision. An overview of the current and near term future developments are presented. The driving forces for Robotics and Vision developments at SRS include the classic reasons for industrial robotics installation (i.e. repetitive and undesirable jobs) and those reasons related to radioactive environments. Protection of personnel from both radiation and radioactive contamination benefit greatly from both Robotics and Telerobotics. Additionally, the quality of information available from remote locations benefits greatly from the ability to visually monitor and remotely sense. The systems discussed include a glovebox waste handling and bagout robot, a shielded cells robot for radioactive waste sample transfer, waste handling gantry robots, a two armed master/slave manipulator as an attachment to a gantry robot, navigation robot research/testing, demonstration of the mobile underwater remote cleaning and inspection device, a camera deployment robot to support remote crane operations and for deployment of radiation sensors directly over a hazardous site, and demonstration of a large mobile robot for high radiation environments. Development of specialized and limited life vision/viewing systems for hazardous environments is also discussed.

  19. Building a Better Robot

    ERIC Educational Resources Information Center

    Navah, Jan

    2012-01-01

    Kids love to build robots, letting their imaginations run wild with thoughts of what they might look like and what they could be programmed to do. Yet when students use cereal boxes and found objects to make robots, often the projects look too similar and tend to fall apart. This alternative allows students to "build" robots in a different way,…

  20. Robotic Intelligence Kernel: Visualization

    Energy Science and Technology Software Center (ESTSC)

    2009-09-16

    The INL Robotic Intelligence Kernel-Visualization is the software that supports the user interface. It uses the RIK-C software to communicate information to and from the robot. The RIK-V illustrates the data in a 3D display and provides an operating picture wherein the user can task the robot.

  1. ODYSSEUS autonomous walking robot: The leg/arm design

    NASA Technical Reports Server (NTRS)

    Bourbakis, N. G.; Maas, M.; Tascillo, A.; Vandewinckel, C.

    1994-01-01

    ODYSSEUS is an autonomous walking robot, which makes use of three wheels and three legs for its movement in the free navigation space. More specifically, it makes use of its autonomous wheels to move around in an environment where the surface is smooth and not uneven. However, in the case that there are small height obstacles, stairs, or small height unevenness in the navigation environment, the robot makes use of both wheels and legs to travel efficiently. In this paper we present the detailed hardware design and the simulated behavior of the extended leg/arm part of the robot, since it plays a very significant role in the robot actions (movements, selection of objects, etc.). In particular, the leg/arm consists of three major parts: The first part is a pipe attached to the robot base with a flexible 3-D joint. This pipe has a rotated bar as an extended part, which terminates in a 3-D flexible joint. The second part of the leg/arm is also a pipe similar to the first. The extended bar of the second part ends at a 2-D joint. The last part of the leg/arm is a clip-hand. It is used for selecting several small weight and size objects, and when it is in a 'closed' mode, it is used as a supporting part of the robot leg. The entire leg/arm part is controlled and synchronized by a microcontroller (68CH11) attached to the robot base.

  2. Robots could assist scientists working in Greenland

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-07-01

    GREENLAND—Tom Lane and Suk Joon Lee, recent graduates of Dartmouth University's Thayer School of Engineering, in Hanover, N. H., are standing outside in the frigid cold testing an autonomous robot that could help with scientific research and logistics in harsh polar environments. This summer, Lane, Lee, and others are at Summit Station, a U.S. National Science Foundation (NSF)-sponsored scientific research station in Greenland, fine-tuning a battery-powered Yeti robot as part of a team working on the NSF-funded Cool Robot project. The station, also known as Summit Camp, is located on the highest point of the Greenland Ice Sheet (72°N, 38°W, 3200 meters above sea level) near the middle of the island. It is a proving ground this season for putting the approximately 68-kilogram, 1-cubic-meter robot through its paces, including improving Yeti's mobility capabilities and field-testing the robot. (See the electronic supplement to this Eos issue for a video of Yeti in action (http://www.agu.org/eos_elec/).) During field-testing, plans call for the robot to collect data on elevation and snow surface characteristics, including accumulation. In addition, the robot will collect black carbon and elemental carbon particulate matter air samples around Summit Camp's power generator to help study carbon dispersion over snow.

  3. 6-Axis Force/Moment Sensor In Humanoid Robot Foot

    NASA Astrophysics Data System (ADS)

    Ai-Faifi, Badrih; Al-Shammary, Maryam; Al-Shehry, Zinab

    2014-07-01

    The foot is the most Important part of the humanoid .Thought the sensor of the robot can understand the environment In which they live, it is important to developed an intelligent foot. In order to walk on uneven terrain safely this poster describes an intelligent foot with 6- axis force/moment sensors for humanoid robot that is one of the solution that can help the robot to walk in uneven terrain safely.

  4. Intelligent robots and computer vision

    SciTech Connect

    Casasent, D.P.

    1986-01-01

    This book presents the papers given at a conference on artificial intelligence and robot vision. Topics considered at the conference included pattern recognition, image processing for intelligent robotics, three-dimensional vision (depth and motion), vision modeling and shape estimation, spatial reasoning, the symbolic processing visual information, robotic sensors and applications, intelligent control architectures for robot systems, robot languages and programming, human-machine interfaces, robotics applications, and architectures of robotics.

  5. Impacts of industrial robots

    SciTech Connect

    Ayres, R.; Miller, S.

    1981-11-01

    This report briefly describes robot technology and goes into more depth about where robots are used, and some of the anticipated social and economic impacts of their use. A number of short term transitional issues, including problems of potential displacement, are discussed. The ways in which robots may impact the economics of batch production are described. A framework for analyzing the impacts of robotics on economywide economic growth and employment is presented. Human resource policy issues are discussed. A chronology of robotics technology is also given.

  6. Microgravity robotics technology program

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A.; Lawrence, Charles; Brush, Andrew S.

    1988-01-01

    A research program to develop technology for robots operating in the microgravity environment of the space station laboratory is described. These robots must be capable of manipulating payloads without causing them to experience harmful levels of acceleration, and the motion of these robots must not disturb adjacent experiments and operations by transmitting reactions that translate into damaging effects throughout the laboratory. Solutions to these problems, based on both mechanism technology and control strategies, are discussed. Methods are presented for reduction of robot base reactions through the use of redundant degrees of freedom, and the development of smoothly operating roller-driven robot joints for microgravity manipulators is discussed.

  7. Walking control of small size humanoid robot: HAJIME ROBOT 18

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hajime; Nakatsu, Ryohei

    2007-12-01

    HAJIME ROBOT 18 is a fully autonomous biped robot. It has been developed for RoboCup which is a worldwide soccer competition of robots. It is necessary for a robot to have high mobility to play soccer. High speed walking and all directional walking are important to approach and to locate in front of a ball. HAJIME ROBOT achieved these walking. This paper describes walking control of a small size humanoid robot 'HAJIME ROBOT 18' and shows the measurement result of ZMP (Zero Moment Point). HAJIME ROBOT won the Robotics Society of Japan Award in RoboCup 2005 and in RoboCup 2006 Japan Open.

  8. DREV activities related to military vehicles robotization

    NASA Astrophysics Data System (ADS)

    Montminy, B.

    The Defence Research Establishment Valcartier (DREV) is involved in a number of activities aimed at improving the performance of systems installed aboard military vehicles, automating functions normally carried out by human operators, and adding new functions that become essential to cope with new scenarios and threats. These activities relate to the development of sensors that sense the surrounding environment, processors that interpret the sensor data, and actuators that perform various robotic actions. DREV research related to those activities is reviewed as they relate to robotics which continues to increase the portion of vehicular function that is carried out autonomously. Of special interest is the CF aircraft robotization project which aims to develop an autonomous integrated aircraft protection system to detect and counter threats without any human intervention. This research involves development of means for passive surveillance of the surrounding environment, processing of multisensor data, triggering of sensing-aid devices, and actuation of countermeasures that modify the environment.

  9. Conference on Intelligent Robotics in Field, Factory, Service and Space (CIRFFSS 1994), Volume 2

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D. (Editor)

    1994-01-01

    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservations can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed the following topics: (1) vision systems integration and architecture; (2) selective perception and human robot interaction; (3) robotic systems technology; (4) military and other field applications; (5) dual-use precommercial robotic technology; (6) building operations; (7) planetary exploration applications; (8) planning; (9) new directions in robotics; and (10) commercialization.

  10. Study on the special vision sensor for detecting position error in robot precise TIG welding of some key part of rocket engine

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzeng; Chen, Nian; Wang, Bin; Cao, Yipeng

    2005-01-01

    Rocket engine is a hard-core part of aerospace transportation and thrusting system, whose research and development is very important in national defense, aviation and aerospace. A novel vision sensor is developed, which can be used for error detecting in arc length control and seam tracking in precise pulse TIG welding of the extending part of the rocket engine jet tube. The vision sensor has many advantages, such as imaging with high quality, compactness and multiple functions. The optics design, mechanism design and circuit design of the vision sensor have been described in detail. Utilizing the mirror imaging of Tungsten electrode in the weld pool, a novel method is proposed to detect the arc length and seam tracking error of Tungsten electrode to the center line of joint seam from a single weld image. A calculating model of the method is proposed according to the relation of the Tungsten electrode, weld pool, the mirror of Tungsten electrode in weld pool and joint seam. The new methodologies are given to detect the arc length and seam tracking error. Through analyzing the results of the experiments, a system error modifying method based on a linear function is developed to improve the detecting precise of arc length and seam tracking error. Experimental results show that the final precision of the system reaches 0.1 mm in detecting the arc length and the seam tracking error of Tungsten electrode to the center line of joint seam.

  11. Ask a Futurist. Peace [and] Robots.

    ERIC Educational Resources Information Center

    Joseph, Earl C.

    A futurist addresses two questions concerning world peace and the implications of using robots. In the section on peace (part 1), recommendations for world peace include: (1) implementing peace education as a mandatory part of education; (2) establishing a Department of Peace in each country to create a societal infrastructure for implementing…

  12. Calibration Check For Programmed Welding Robot

    NASA Technical Reports Server (NTRS)

    Sliwinski, Karen E.; Anderson, Ronald R.; Osterloh, Mark R.

    1992-01-01

    Preweld calibration check helps to ensure welding torch on computer-controlled welding robot mounted properly, right gas cup selected, and length of extension of electrode adjusted correctly. Performed by operator just before dry run for each set of parts welded. Procedure takes 2 to 3 minutes and enables correction of errors before parts or equipment damaged.

  13. Marsupial robots for law enforcement

    NASA Astrophysics Data System (ADS)

    Murphy, Robin R.

    2001-02-01

    Marsupial robots are a type of heterogeneous mobile robot team. A mother robot transports, supports, and recovers one or more daughter robots. This paper will cover the marsupial robot concept, the application of law enforcement, and recent results in collaborative teleoperation for the related task of urban search and rescue.

  14. Robotic Design Studio: Exploring the Big Ideas of Engineering in a Liberal Arts Environment.

    ERIC Educational Resources Information Center

    Turbak, Franklyn; Berg, Robbie

    2002-01-01

    Suggests that it is important to introduce liberal arts students to the essence of engineering. Describes Robotic Design Studio, a course in which students learn how to design, assemble, and program robots made out of LEGO parts, sensors, motors, and small embedded computers. Represents an alternative vision of how robot design can be used to…

  15. Computing Dynamics Of A Robot Of 6+n Degrees Of Freedom

    NASA Technical Reports Server (NTRS)

    Quiocho, Leslie J.; Bailey, Robert W.

    1995-01-01

    Improved formulation speeds and simplifies computation of dynamics of robot arm of n rotational degrees of freedom mounted on platform having three translational and three rotational degrees of freedom. Intended for use in dynamical modeling of robotic manipulators attached to such moving bases as spacecraft, aircraft, vessel, or land vehicle. Such modeling important part of simulation and control of robotic motions.

  16. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review

    PubMed Central

    2014-01-01

    Robot-mediated post-stroke therapy for the upper-extremity dates back to the 1990s. Since then, a number of robotic devices have become commercially available. There is clear evidence that robotic interventions improve upper limb motor scores and strength, but these improvements are often not transferred to performance of activities of daily living. We wish to better understand why. Our systematic review of 74 papers focuses on the targeted stage of recovery, the part of the limb trained, the different modalities used, and the effectiveness of each. The review shows that most of the studies so far focus on training of the proximal arm for chronic stroke patients. About the training modalities, studies typically refer to active, active-assisted and passive interaction. Robot-therapy in active assisted mode was associated with consistent improvements in arm function. More specifically, the use of HRI features stressing active contribution by the patient, such as EMG-modulated forces or a pushing force in combination with spring-damper guidance, may be beneficial. Our work also highlights that current literature frequently lacks information regarding the mechanism about the physical human-robot interaction (HRI). It is often unclear how the different modalities are implemented by different research groups (using different robots and platforms). In order to have a better and more reliable evidence of usefulness for these technologies, it is recommended that the HRI is better described and documented so that work of various teams can be considered in the same group and categories, allowing to infer for more suitable approaches. We propose a framework for categorisation of HRI modalities and features that will allow comparing their therapeutic benefits. PMID:25012864

  17. Robotic Toys as a Catalyst for Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Highfield, Kate

    2010-01-01

    Robotic toys present unique opportunities for teachers of young children to integrate mathematics learning with engaging problem-solving tasks. This article describes a series of tasks using Bee-bots and Pro-bots, developed as part a larger project examining young children's use of robotic toys as tools in developing mathematical and metacognitive…

  18. Robotics and imaging in congenital heart surgery

    PubMed Central

    Vasilyev, Nikolay V; Dupont, Pierre E; del Nido, Pedro J

    2012-01-01

    The initial success seen in adult cardiac surgery with the application of available robotic systems has not been realized as broadly in pediatric cardiac surgery. The main obstacles include extended set-up time and complexity of the procedures, as well as the large size of the instruments with respect to the size of the child. Moreover, while the main advantage of robotic systems is the ability to minimize incision size, for intracardiac repairs, cardiopulmonary bypass is still required. Catheter-based interventions, on the other hand, have expanded rapidly in both application as well as the complexity of procedures and lesions being treated. However, despite the development of sophisticated devices, robotic systems to aid catheter procedures have not been commonly applied in children. In this article, we describe new catheter-like robotic delivery platforms, which facilitate safe navigation and enable complex repairs, such as tissue approximation and fixation, and tissue removal, inside the beating heart. Additional features including the tracking of rapidly moving tissue targets and novel imaging approaches are described, along with a discussion of future prospects for steerable robotic systems. PMID:22413986

  19. First Robotic SPECT for Minimally Invasive Sentinel Lymph Node Mapping.

    PubMed

    Fuerst, Bernhard; Sprung, Julian; Pinto, Francisco; Frisch, Benjamin; Wendler, Thomas; Simon, Hervé; Mengus, Laurent; van den Berg, Nynke S; van der Poel, Henk G; van Leeuwen, Fijs W B; Navab, Nassir

    2016-03-01

    In this paper we present the usage of a drop-in gamma probe for intra-operative Single-Photon Emission Computed Tomography (SPECT) imaging in the scope of minimally invasive robot-assisted interventions. The probe is designed to be inserted and reside inside the abdominal cavity during the intervention. It is grasped during the procedure using a robotic laparoscopic gripper enabling full six degrees of freedom handling by the surgeon. We demonstrate the first deployment of the tracked probe for intra-operative in-patient robotic SPECT enabling augmented-reality image guidance. The hybrid mechanical- and image-based in-patient probe tracking is shown to have an accuracy of 0.2 mm. The overall system performance is evaluated and tested with a phantom for gynecological sentinel lymph node interventions and compared to ground-truth data yielding a mean reconstruction accuracy of 0.67 mm. PMID:26561283

  20. Expenditures for Early Intervention Services

    ERIC Educational Resources Information Center

    Hebbeler, Kathleen; Levin, Jesse; Perez, Maria; Lam, Irene; Chambers, Jay G.

    2009-01-01

    What does it cost to provide early intervention services? Data collected as part of the National Early Intervention Longitudinal Study were used to determine expenditures for infants, toddlers, and their families receiving services through Part C programs. The study found that the national average total expenditure for early intervention services…

  1. PARASURG hybrid parallel robot for minimally invasive surgery.

    PubMed

    Pisla, D; Gherman, B; Plitea, N; Gyurka, B; Vaida, C; Vlad, L; Graur, F; Radu, C; Suciu, M; Szilaghi, A; Stoica, A

    2011-01-01

    This paper presents the parallel hybrid robot, PARASURG 9M, for robotically assisted surgery, a robot which was entirely designed and produced in Romania. It is a versatile robot, being composed of a positioning and orientation module, PARASURG 5M with five degrees of freedom, having the possibility of attaching at its end either a laparoscope or an active surgical instrument for cutting/grasping, PARASIM, with four degrees of freedom. Based on its mathematical modelling, the first low-cost experimental model of the surgical robot has been built. The robot is part of the surgical robotic system, PARAMIS, with three arms, one used as a laparoscope holder, and other two for manipulating active instruments. When it is used as a manipulator of the camera, the user has the possibility to give commands in a large area for the positioning of the laparoscope using different interfaces: joystick, microphone, keyboard & mouse and haptic device. If the active surgical instrument, PARASIM, is attached, the robot commands are given through a haptic device. The main features that make the PARASURG 9M surgical robot suited for minimally invasive surgery are: precision, the elimination of the natural tremor of the surgeon, direct control over a smooth, precise, stable view of the internal surgical field for the surgeon. It also eliminates the need of a second surgeon to be present for the entire procedure (in the case of using the robot as a camera holder). In addition, there is improvement of surgeon dexterity in the case of using the PARASIM active instrument and better ergonomics in using the robot (in the case of the classic laparoscopy, the surgeon must adopt a difficult position for a long period of time, while the robot never gets tired). Having a relatively easy to understand, intuitive commanding system, the surgeons can rapidly adapt to the use of the PARASURG 9M robot in surgical procedures. PMID:22165061

  2. Costing Human Rights and Community Support Interventions as a Part of Universal Access to HIV Treatment and Care in a Southern African Setting

    PubMed Central

    Jones, Louisa; Akugizibwe, Paula; Clayton, Michaela; Amon, Joseph J; Sabin, Miriam Lewis; Bennett, Rod; Stegling, Christine; Baggaley, Rachel; Kahn, James G; Holmes, Charles B; Garg, Navneet; Obermeyer, Carla Makhlouf; Mack, Christina DeFilippo; Williams, Phoebe; Smyth, Caoimhe; Vitoria, Marco; Crowley, Siobhan; Williams, Brian; McClure, Craig; Granich, Reuben; Hirnschall, Gottfried

    2011-01-01

    Expanding access to antiretroviral therapy (ART) has both individual health benefits and potential to decrease HIV incidence. Ensuring access to HIV services is a significant human rights issue and successful programmes require adequate human rights protections and community support. However, the cost of specific human rights and community support interventions for equitable, sustainable and non-discriminatory access to ART are not well described. Human rights and community support interventions were identified using the literature and through consultations with experts. Specific costs were then determined for these health sector interventions. Population and epidemic data were provided through the Statistics South Africa 2009 national mid-year estimates. Costs of scale up of HIV prevention and treatment were taken from recently published estimates. Interventions addressed access to services, minimising stigma and discrimination against people living with HIV, confidentiality, informed consent and counselling quality. Integrated HIV programme interventions included training for counsellors, ‘Know Your Rights’ information desks, outreach campaigns for most at risk populations, and adherence support. Complementary measures included post-service interviews, human rights abuse monitoring, transportation costs, legal assistance, and funding for human rights and community support organisations. Other essential non-health sector interventions were identified but not included in the costing framework. The annual costs for the human rights and community support interventions are United States (US) $63.8 million (US $1.22 per capita), representing 1.5% of total health sector HIV programme costs. Respect for human rights and community engagement can be understood both as an obligation of expanded ART programmes and as a critically important factor in their success. Basic rights-based and community support interventions constitute only a small percentage of overall

  3. Humanlike Robots - The Upcoming Revolution in Robotics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  4. Forming Human-Robot Teams Across Time and Space

    NASA Technical Reports Server (NTRS)

    Hambuchen, Kimberly; Burridge, Robert R.; Ambrose, Robert O.; Bluethmann, William J.; Diftler, Myron A.; Radford, Nicolaus A.

    2012-01-01

    NASA pushes telerobotics to distances that span the Solar System. At this scale, time of flight for communication is limited by the speed of light, inducing long time delays, narrow bandwidth and the real risk of data disruption. NASA also supports missions where humans are in direct contact with robots during extravehicular activity (EVA), giving a range of zero to hundreds of millions of miles for NASA s definition of "tele". . Another temporal variable is mission phasing. NASA missions are now being considered that combine early robotic phases with later human arrival, then transition back to robot only operations. Robots can preposition, scout, sample or construct in advance of human teammates, transition to assistant roles when the crew are present, and then become care-takers when the crew returns to Earth. This paper will describe advances in robot safety and command interaction approaches developed to form effective human-robot teams, overcoming challenges of time delay and adapting as the team transitions from robot only to robots and crew. The work is predicated on the idea that when robots are alone in space, they are still part of a human-robot team acting as surrogates for people back on Earth or in other distant locations. Software, interaction modes and control methods will be described that can operate robots in all these conditions. A novel control mode for operating robots across time delay was developed using a graphical simulation on the human side of the communication, allowing a remote supervisor to drive and command a robot in simulation with no time delay, then monitor progress of the actual robot as data returns from the round trip to and from the robot. Since the robot must be responsible for safety out to at least the round trip time period, the authors developed a multi layer safety system able to detect and protect the robot and people in its workspace. This safety system is also running when humans are in direct contact with the robot

  5. MRI-Safe Robot for Endorectal Prostate Biopsy.

    PubMed

    Stoianovici, Dan; Kim, Chunwoo; Srimathveeravalli, Govindarajan; Sebrecht, Peter; Petrisor, Doru; Coleman, Jonathan; Solomon, Stephen B; Hricak, Hedvig

    2013-09-16

    This paper reports the development of an MRI-Safe robot for direct (interventional) MRI-guided endorectal prostate biopsy. The robot is constructed of nonmagnetic and electrically nonconductive materials, and is electricity free, using pneumatic actuation and optical sensors. Targeting biopsy lesions of MRI abnormality presents substantial clinical potential for the management of prostate cancer. The paper describes MRI-Safe requirements, presents the kinematic architecture, design and construction of the robot, and a comprehensive set of preclinical tests for MRI compatibility and needle targeting accuracy. The robot has a compact and simple 3 degree-of-freedom (DoF) structure, two for orienting a needle-guide and one to preset the depth of needle insertion. The actual insertion is performed manually through the guide and up to the preset depth. To reduce the complexity and size of the robot next to the patient, the depth setting DoF is remote. Experimental results show that the robot is safe to use in any MRI environment (MRI-Safe). Comprehensive MRI tests show that the presence and motion of the robot in the MRI scanner cause virtually no image deterioration or signal to noise ratio (SNR) change. Robot's accuracy in bench test, CT-guided in-vitro, MRI-guided in-vitro and animal tests are 0.37mm, 1.10mm, 2.09mm, and 2.58mm respectively. These values are acceptable for clinical use. PMID:25378897

  6. Collective search by mobile robots using alpha-beta coordination

    SciTech Connect

    Goldsmith, S.Y.; Robinett, R. III

    1998-04-01

    One important application of mobile robots is searching a geographical region to locate the origin of a specific sensible phenomenon. Mapping mine fields, extraterrestrial and undersea exploration, the location of chemical and biological weapons, and the location of explosive devices are just a few potential applications. Teams of robotic bloodhounds have a simple common goal; to converge on the location of the source phenomenon, confirm its intensity, and to remain aggregated around it until directed to take some other action. In cases where human intervention through teleoperation is not possible, the robot team must be deployed in a territory without supervision, requiring an autonomous decentralized coordination strategy. This paper presents the alpha beta coordination strategy, a family of collective search algorithms that are based on dynamic partitioning of the robotic team into two complementary social roles according to a sensor based status measure. Robots in the alpha role are risk takers, motivated to improve their status by exploring new regions of the search space. Robots in the beta role are motivated to improve but are conservative, and tend to remain aggregated and stationary until the alpha robots have identified better regions of the search space. Roles are determined dynamically by each member of the team based on the status of the individual robot relative to the current state of the collective. Partitioning the robot team into alpha and beta roles results in a balance between exploration and exploitation, and can yield collective energy savings and improved resistance to sensor noise and defectors. Alpha robots waste energy exploring new territory, and are more sensitive to the effects of ambient noise and to defectors reporting inflated status. Beta robots conserve energy by moving in a direct path to regions of confirmed high status.

  7. Compliant Prosthetic Or Robotic Joint

    NASA Technical Reports Server (NTRS)

    Kerley, James J.; Eklund, Wayne D.

    1989-01-01

    Rotation partly free and partly restrained by resilience and damping. Joint includes U-shaped x- and y-axis frames joined by cables that cross in at center piece. The y-axis frame rotates about y-axis on roller bearing within predetermined angular range. The y-axis frame rotates slightly farther when arm strikes stop, because cables can twist. This mimics compliant resistance of knee joint reaching limit of its forward or backward motion. Used in prosthetic device to replace diseased or damage human joint, or in robot linkage to limit movement and cushion overloads.

  8. Robotic laser-ultrasonic inspection of composites

    NASA Astrophysics Data System (ADS)

    Néron, C.; Padioleau, C.; Blouin, A.; Monchalin, J.-P.

    2013-01-01

    In laser-ultrasonics for inspecting composites, the beams are usually directed onto the part with a computer controlled scanning mirror. This approach has sensitivity limitations when the surface is very shiny (mold facing surfaces). This limitation is eliminated by controlling the direction of the laser beams with an articulated robot, its trajectory being determined from the CAD of the part or its surface mapping from a 3D laser scanner. The scanning mirror is eliminated. We are reporting here successful implementation on a 6-axis robot.

  9. NASA's first dexterous space robot

    NASA Technical Reports Server (NTRS)

    Mccain, Harry G.

    1990-01-01

    NASA is developing the Flight Telerobotic Servicer (FTS), a robotic device that can be teleoperated under constant command of a human operator or run by itself under human supervision. Plans call for the FTS to assist the astronauts in the assembly, maintenance, servicing, and inspection of Space Station Freedom. The FTS project is driven by five major objectives: to reduce Space Station dependence on crew EVA, improve crew safety, enhance crew utilization, promote remote servicing capabilities for platforms, and accelerate technology transfer from research to U.S. industry. Another part of the FTS project is a ground system that will support operations and system evolution. Not only will the FTS provide a needed operational capability during the assembly and operation of Space Station Freedom, it will also provide an expanding foundation for proving more advanced robotic and telepresence concepts in space.

  10. [Robotics and laparoscopic surgery].

    PubMed

    Martínez Ramos, Carlos

    2006-10-01

    Laparoscopic surgery has completely revolutionized modern surgery. In addition to its advantages, however, this approach also presents significant limitations. The most important are loss of the sense of depth, tactile sensation and resistance, as well as loss of natural hand-eye coordination and manual dexterity. The main motivation for the development of surgical robots is the possibility of eliminating all these limitations. Robots have acquired great potential to improve the operative possibilities of surgeons. Given the continual increase in the use of surgical robots, in the near future the structure and appearance of current operating rooms will change. The present article analyzes the origin and development of robotic systems, as well as the characteristics of the latest generation of robots. Because of the strong interest in robotic surgery and its future prospects, surgeons should be familiar with these emerging and innovative techniques. PMID:17040667

  11. Applying robotics to HAZMAT

    NASA Technical Reports Server (NTRS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-01-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  12. Applying robotics to HAZMAT

    NASA Astrophysics Data System (ADS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-02-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  13. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  14. Robotics and industrial inspection

    SciTech Connect

    Casasent, D.P.

    1983-01-01

    Image processing algorithms are discussed, taking into account hidden information in early visual processing, three-dimensional shape recognition by moirecorrelation, spatial-frequency representations of images with scale invariant properties, image-based focusing, the computational structure for the Walsh-Hadamard transform, a hybrid optical/digital moment-based robotic pattern recognition system, affordable implementations of image processing algorithms, and an analysis of low-level computer vision algorithms for implementation on a very large scale integrated processor array. Other topics considered are related to government programs and needs in robotics, DoD research and applications in robotics, time-varying image processing and control, industrial robotics, industrial applications of computer vision, and object perception and mensuration for robotics. Attention is given to laser scanning techniques for automatic inspection of heat-sealed film packages, computer software for robotic vision, and computerized tomography on a logarithmic polar grid.

  15. Survival of falling robots

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  16. INL Multi-Robot Control Interface

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robot’s condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.

  17. Robotics as Means to Increase Achievement Scores in an Informal Learning Environment

    ERIC Educational Resources Information Center

    Barker, Bradley S.; Ansorge, John

    2007-01-01

    This paper reports on a pilot study that examined the use of a science and technology curriculum based on robotics to increase the achievement scores of youth ages 9-11 in an after school program. The study examined and compared the pretest and posttest scores of youth in the robotics intervention with youth in a control group. The results…

  18. Genetic and antigenic characterization of H5, H6 and H9 avian influenza viruses circulating in live bird markets with intervention in the center part of Vietnam.

    PubMed

    Chu, Duc-Huy; Okamatsu, Masatoshi; Matsuno, Keita; Hiono, Takahiro; Ogasawara, Kohei; Nguyen, Lam Thanh; Van Nguyen, Long; Nguyen, Tien Ngoc; Nguyen, Thuy Thu; Van Pham, Dong; Nguyen, Dang Hoang; Nguyen, Tho Dang; To, Thanh Long; Van Nguyen, Hung; Kida, Hiroshi; Sakoda, Yoshihiro

    2016-08-30

    A total of 3,045 environmental samples and oropharyngeal and cloacal swabs from apparently healthy poultry have been collected at three live bird markets (LBMs) at which practices were applied to reduce avian influenza (AI) virus transmission (intervention LBMs) and six conventional LBMs (non-intervention LBMs) in Thua Thien Hue province in 2014 to evaluate the efficacy of the intervention LBMs. The 178 AI viruses, including H3 (19 viruses), H4 (2), H5 (8), H6 (30), H9 (114), and H11 (5), were isolated from domestic ducks, muscovy ducks, chickens, and the environment. The prevalence of AI viruses in intervention LBMs (6.1%; 95% CI: 5.0-7.5) was similar to that in non-intervention LBMs (5.6%; 95% CI: 4.5-6.8; χ(2)=0.532; df=1; P=0.53) in the study area. Eight H5N6 highly pathogenic avian influenza (HPAI) viruses were isolated from apparently healthy ducks, muscovy ducks, and an environmental sample in an intervention LBM. The hemagglutinin genes of the H5N6 HPAI viruses belonged to the genetic clade 2.3.4.4, and the antigenicity of the H5N6 HPAI viruses differed from the H5N1 HPAI viruses previously circulating in Vietnam. Phylogenetic and antigenic analyses of the H6 and H9 viruses isolated in both types of LBMs revealed that they were closely related to the viruses isolated from domestic birds in China, Group II of H6 viruses and Y280 lineage of H9 viruses. These results indicate that the interventions currently applied in LBMs are insufficient to control AI. A risk analysis should be conducted to identify the key factors contributing to AI virus prevalence in intervention LBMs. PMID:27527783

  19. NASA Robot Brain Surgeon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mechanical Engineer Michael Guerrero works on the Robot Brain Surgeon testbed in the NeuroEngineering Group at the Ames Research Center, Moffett Field, California. Principal investigator Dr. Robert W. Mah states that potentially the simple robot will be able to feel brain structures better than any human surgeon, making slow, very precise movements during an operation. The brain surgery robot that may give surgeons finer control of surgical instruments during delicate brain operations is still under development.

  20. Robotic liver surgery

    PubMed Central

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  1. A Unified Robotic Software Architecture for Service Robotics and Networks of Smart Sensors

    NASA Astrophysics Data System (ADS)

    Westhoff, Daniel; Zhang, Jianwei

    This paper proposes a novel architecture for the programming of multi-modal service robots and networked sensors. The presented software framework eases the development of high-level applications for distributed systems. The software architecture is based upon the Roblet-Technology, which is an exceptionally powerful medium in robotics. The possibility to develop, compile and execute an application on one workstation and distribute parts of a program based on the idea of mobile code is pointed out. Since the Roblet-Technology uses Java the development is independent of the operation system. The framework hides the network communication and therefore greatly improves the programming and testing of applications in service robotics. The concept is evaluated in the context of the service robot TASER of the TAMS Institute at the University of Hamburg. This robot consists of a mobile platform with two manipulators equipped with artificial hands. Several multimodal input and output devices for interaction round off the robot. Networked cameras in the working environment of TASER provide additional information to the robot. The integration of these smart sensors shows the extendability of the proposed concept to general distributed systems.

  2. Hopping Robot with Wheels

    NASA Technical Reports Server (NTRS)

    Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve

    2003-01-01

    A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.

  3. Advanced robot locomotion.

    SciTech Connect

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  4. Robotics for welding research

    SciTech Connect

    Braun, G.; Jones, J.

    1984-09-01

    The welding metallurgy research and education program at Colorado School of Mines (CSM) is helping industries make the transition toward automation by training students in robotics. Industry's interest is primarily in pick and place operations, although robotics can increase efficiency in areas other than production. Training students to develop fully automated robotic welding systems will usher in new curriculum requirements in the area of computers and microprocessors. The Puma 560 robot is CSM's newest acquisition for welding research 5 references, 2 figures, 1 table.

  5. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  6. The robotics review 1

    SciTech Connect

    Khatib, O.; Craig, J.J.; Lozano-Perez, T.

    1989-01-01

    Theoretical and implementation issues in robotics are discussed in reviews of recent investigations. Sections are devoted to programming, planning, and learning; sensing and perception; kinematics, dynamics, and design; and motion and force control. Particular attention is given to a robust layered control system for a mobile robot, camera calibration for three-dimensional machine vision, walking vehicles, design and control of direct-drive vehicles, an efficient parallel algorithm for robot inverse dynamics, stability problems in contact tasks, and kinematics and reaction-moment compensation for satellite-mounted robot manipulators.

  7. Robotic hair restoration.

    PubMed

    Rose, Paul T; Nusbaum, Bernard

    2014-01-01

    The latest innovation to hair restoration surgery has been the introduction of a robotic system for harvesting grafts. This system uses the follicular unit extraction/follicular isolation technique method for harvesting follicular units, which is particularly well suited to the abilities of a robotic technology. The ARTAS system analyzes images of the donor area and then a dual-chamber needle and blunt dissecting punch are used to harvest the follicular units. The robotic technology is now being used in various locations around the world. This article discusses the use of the robotic system, its capabilities, and the advantages and disadvantages of the system. PMID:24267426

  8. Hazardous Environment Robotics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.

  9. Robotic Thumb Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Goza, S. Michael (Inventor)

    2013-01-01

    An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor.

  10. Asteroid Redirect Mission: Robotic Segment

    NASA Video Gallery

    This concept animation illustrates the robotic segment of NASA's Asteroid Redirect Mission. The Asteroid Redirect Vehicle, powered by solar electric propulsion, travels to a large asteroid to robot...

  11. Social cognitive neuroscience and humanoid robotics.

    PubMed

    Chaminade, Thierry; Cheng, Gordon

    2009-01-01

    We believe that humanoid robots provide new tools to investigate human social cognition, the processes underlying everyday interactions between individuals. Resonance is an emerging framework to understand social interactions that is based on the finding that cognitive processes involved when experiencing a mental state and when perceiving another individual experiencing the same mental state overlap, both at the behavioral and neural levels. We will first review important aspects of his framework. In a second part, we will discuss how this framework is used to address questions pertaining to artificial agents' social competence. We will focus on two types of paradigm, one derived from experimental psychology and the other using neuroimaging, that have been used to investigate humans' responses to humanoid robots. Finally, we will speculate on the consequences of resonance in natural social interactions if humanoid robots are to become integral part of our societies. PMID:19665550

  12. Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    NASA Technical Reports Server (NTRS)

    Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer

    2011-01-01

    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator

  13. Holder for Fragile Parts

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1983-01-01

    Fixture with many springfingers holds irregularly-shaped parts. Gripping fixture has hundreds of springfingers, each applies minute force. Total force approximates hydrostatic pressure, resulting in well-distributed load that maintains firm grip without high stress concentrations. Applied to industrial robot manipulators, fixutre enhances ability to grasp delicate parts.

  14. Strategy for robot motion and path planning in robot taping

    NASA Astrophysics Data System (ADS)

    Yuan, Qilong; Chen, I.-Ming; Lembono, Teguh Santoso; Landén, Simon Nelson; Malmgren, Victor

    2016-06-01

    Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. The taping process is a special process which requires correct surface covering strategy and proper attachment of the masking tape for an efficient surface protection. We have introduced an automatic robot taping system consisting of a robot manipulator, a rotating platform, a 3D scanner and specially designed taping end-effectors. This paper mainly talks about the surface covering strategies for different classes of geometries. The methods and corresponding taping tools are introduced for taping of following classes of surfaces: Cylindrical/extended surfaces, freeform surfaces with no grooves, surfaces with grooves, and rotational symmetrical surfaces. A collision avoidance algorithm is introduced for the robot taping manipulation. With further improvements on segmenting surfaces of taping parts and tape cutting mechanisms, such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to assist humans in this tedious and time costly work.

  15. Strategy for robot motion and path planning in robot taping

    NASA Astrophysics Data System (ADS)

    Yuan, Qilong; Chen, I.-Ming; Lembono, Teguh Santoso; Landén, Simon Nelson; Malmgren, Victor

    2016-05-01

    Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. The taping process is a special process which requires correct surface covering strategy and proper attachment of the masking tape for an efficient surface protection. We have introduced an automatic robot taping system consisting of a robot manipulator, a rotating platform, a 3D scanner and specially designed taping end-effectors. This paper mainly talks about the surface covering strategies for different classes of geometries. The methods and corresponding taping tools are introduced for taping of following classes of surfaces: Cylindrical/extended surfaces, freeform surfaces with no grooves, surfaces with grooves, and rotational symmetrical surfaces. A collision avoidance algorithm is introduced for the robot taping manipulation. With further improvements on segmenting surfaces of taping parts and tape cutting mechanisms, such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to assist humans in this tedious and time costly work.

  16. Canadian space robotic activities

    NASA Astrophysics Data System (ADS)

    Sallaberger, Christian; Space Plan Task Force, Canadian Space Agency

    The Canadian Space Agency has chosen space robotics as one of its key niche areas, and is currently preparing to deliver the first flight elements for the main robotic system of the international space station. The Mobile Servicing System (MSS) is the Canadian contribution to the international space station. It consists of three main elements. The Space Station Remote Manipulator System (SSRMS) is a 7-metre, 7-dof, robotic arm. The Special Purpose Dextrous Manipulator (SPDM), a smaller 2-metre, 7-dof, robotic arm can be used independently, or attached to the end of the SSRMS. The Mobile Base System (MBS) will be used as a support platform and will also provide power and data links for both the SSRMS and the SPDM. A Space Vision System (SVS) has been tested on Shuttle flights, and is being further developed to enhance the autonomous capabilities of the MSS. The CSA also has a Strategic Technologies in Automation and Robotics Program which is developing new technologies to fulfill future robotic space mission needs. This program is currently developing in industry technological capabilities in the areas of automation of operations, autonomous robotics, vision systems, trajectory planning and object avoidance, tactile and proximity sensors, and ground control of space robots. Within the CSA, a robotic testbed and several research programs are also advancing technologies such as haptic devices, control via head-mounted displays, predictive and preview displays, and the dynamic characterization of robotic arms. Canada is also now developing its next Long Term Space Plan. In this context, a planetary exploration program is being considered, which would utilize Canadian space robotic technologies in this new arena.

  17. Multi-robot control interface

    DOEpatents

    Bruemmer, David J.; Walton, Miles C.

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  18. Software for Secondary-School Learning About Robotics

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Truong, Dat; Hodgson, Terry R.

    2005-01-01

    The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded.

  19. Current status of robotic gastrectomy for gastric cancer.

    PubMed

    Obama, Kazutaka; Sakai, Yoshiharu

    2016-05-01

    Although over 3000 da Vinci Surgical System (DVSS) devices have been installed worldwide, robotic surgery for gastric cancer has not yet become widely spread and is only available in several advanced institutions. This is because, at least in part, the advantages of robotic surgery for gastric cancer remain unclear. The safety and feasibility of robotic gastrectomy have been demonstrated in several retrospective studies. However, no sound evidence has been reported to support the superiority of a robotic approach for gastric cancer treatment. In addition, the long-term clinical outcomes following robotic gastrectomy have yet to be clarified. Nevertheless, a robotic approach can potentially overcome the disadvantages of conventional laparoscopic surgery if the advantageous functions of this technique are optimized, such as the use of wristed instruments, tremor filtering and high-resolution 3-D images. The potential advantages of robotic gastrectomy have been discussed in several retrospective studies, including the ability to achieve sufficient lymphadenectomy in the area of the splenic hilum, reductions in local complication rates and a shorter learning curve for the robotic approach compared to conventional laparoscopic gastrectomy. In this review, we present the current status and discuss issues regarding robotic gastrectomy for gastric cancer. PMID:26019020

  20. Artificial consciousness, artificial emotions, and autonomous robots.

    PubMed

    Cardon, Alain

    2006-12-01

    Nowadays for robots, the notion of behavior is reduced to a simple factual concept at the level of the movements. On another hand, consciousness is a very cultural concept, founding the main property of human beings, according to themselves. We propose to develop a computable transposition of the consciousness concepts into artificial brains, able to express emotions and consciousness facts. The production of such artificial brains allows the intentional and really adaptive behavior for the autonomous robots. Such a system managing the robot's behavior will be made of two parts: the first one computes and generates, in a constructivist manner, a representation for the robot moving in its environment, and using symbols and concepts. The other part achieves the representation of the previous one using morphologies in a dynamic geometrical way. The robot's body will be seen for itself as the morphologic apprehension of its material substrata. The model goes strictly by the notion of massive multi-agent's organizations with a morphologic control. PMID:17016730

  1. Robotics and nuclear power. Report by the Technology Transfer Robotics Task Team

    SciTech Connect

    Not Available

    1985-06-01

    A task team was formed at the request of the Department of Energy to evaluate and assess technology development needed for advanced robotics in the nuclear industry. The mission of these technologies is to provide the nuclear industry with the support for the application of advanced robotics to reduce nuclear power generating costs and enhance the safety of the personnel in the industry. The investigation included robotic and teleoperated systems. A robotic system is defined as a reprogrammable, multifunctional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks. A teleoperated system includes an operator who remotely controls the system by direct viewing or through a vision system.

  2. Robotic thermal battery pellet fabrication

    NASA Astrophysics Data System (ADS)

    Kimbler, D. L.; Townsend, A. S.; Walton, R. D.; Jones, C. W.

    1985-03-01

    Thermal battery manufacturing at the General Electric Neutron Devices Department (GEND) is a sequence of operations involving materials processing, component manufacture, and assembly. These operations, for the most part, were manually performed although some operation were computer or fixture assisted. The high labor intensity and the need for process consistency in these operations made the conversion to a robotic work cell appealing in that it could increase productivity while allowing the reassignment of highly trained workers to other duties. An Alpha robot (Microbot, Inc.) was coupled with a Hewlett-Packard HP-9816 microcomputer, and custom software was developed to control the thermal battery manufacturing process. The software provided a menu driven main program with feedback at virtually every step to allow technicians with little or no computer experience to operate the system. Previously, one or two workers were assigned to each of several industrial presses used in the manufacture of thermal batteries. With the introduction of a robotic operator and a microcomputer process control, one worker alone could support two to three presses.

  3. How do robots take two parts apart

    NASA Technical Reports Server (NTRS)

    Bajcsy, Ruzena K.; Tsikos, Constantine J.

    1989-01-01

    This research is a natural progression of efforts which begun with the introduction of a new research paradigm in machine perception, called Active Perception. There it was stated that Active Perception is a problem of intelligent control strategies applied to data acquisition processes which will depend on the current state of the data interpretation, including recognition. The disassembly/assembly problem is treated as an Active Perception problem, and a method for autonomous disassembly based on this framework is presented.

  4. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    PubMed Central

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962

  5. Robotics technology discipline

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.

  6. Robot Vision Library

    NASA Technical Reports Server (NTRS)

    Howard, Andrew B.; Ansar, Adnan I.; Litwin, Todd E.; Goldberg, Steven B.

    2009-01-01

    The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lenses

  7. Robotic Intelligence Kernel: Architecture

    Energy Science and Technology Software Center (ESTSC)

    2009-09-16

    The INL Robotic Intelligence Kernel Architecture (RIK-A) is a multi-level architecture that supports a dynamic autonomy structure. The RIK-A is used to coalesce hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a framework that can be used to create behaviors for humans to interact with the robot.

  8. Robotics in medicine

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. N.; Syryamkin, V. I.

    2015-11-01

    Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.

  9. Robotics and Industrial Arts.

    ERIC Educational Resources Information Center

    Edmison, Glenn A.; And Others

    Robots are becoming increasingly common in American industry. By l990, they will revolutionize the way industry functions, replacing hundreds of workers and doing hot, dirty jobs better and more quickly than the workers could have done them. Robotics should be taught in high school industrial arts programs as a major curriculum component. The…

  10. Robots in the Classroom.

    ERIC Educational Resources Information Center

    Marsh, George; Spain, Tom

    1984-01-01

    Educational robots are defined, their essential characteristics and features are outlined, and their educational applications and what makes them run are discussed. Classroom experiences with five educational robots--Topo, Rhino XR-2, RB5X, Hero I and Tasman Turtle--are described. (MBR)

  11. Next generation space robot

    NASA Technical Reports Server (NTRS)

    Iwata, Tsutomu; Oda, Mitsushige; Imai, Ryoichi

    1989-01-01

    The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies.

  12. The 50-Minute Robot.

    ERIC Educational Resources Information Center

    Buckland, Miram R.

    1985-01-01

    Sixth graders built working "robots" (or grasping bars) for remote control use during a unit on simple mechanics. Steps for making a robot are presented, including: cutting the wood, drilling and nailing, assembling the jaws, and making them work. The "jaws," used to pick up objects, illustrate principles of levers. (DH)

  13. Real World Robotics.

    ERIC Educational Resources Information Center

    Clark, Lisa J.

    2002-01-01

    Introduces a project for elementary school students in which students build a robot by following instructions and then write a computer program to run their robot by using LabView graphical development software. Uses ROBOLAB curriculum which is designed for grade levels K-12. (YDS)

  14. Education by Robot!

    ERIC Educational Resources Information Center

    Cobb, Cheryl

    2004-01-01

    This article describes BEST (Boosting Engineering, Science, and Technology), a hands-on robotics program founded by Texas Instruments engineers Ted Mahler and Steve Marum. BEST links educators with industry to provide middle and high school students with a peek into the exciting world of robotics, with the goal of inspiring and interesting…

  15. Self-Reconfigurable Robots

    SciTech Connect

    HENSINGER, DAVID M.; JOHNSTON, GABRIEL A.; HINMAN-SWEENEY, ELAINE M.; FEDDEMA, JOHN T.; ESKRIDGE, STEVEN E.

    2002-10-01

    A distributed reconfigurable micro-robotic system is a collection of unlimited numbers of distributed small, homogeneous robots designed to autonomously organize and reorganize in order to achieve mission-specified geometric shapes and functions. This project investigated the design, control, and planning issues for self-configuring and self-organizing robots. In the 2D space a system consisting of two robots was prototyped and successfully displayed automatic docking/undocking to operate dependently or independently. Additional modules were constructed to display the usefulness of a self-configuring system in various situations. In 3D a self-reconfiguring robot system of 4 identical modules was built. Each module connects to its neighbors using rotating actuators. An individual component can move in three dimensions on its neighbors. We have also built a self-reconfiguring robot system consisting of 9-module Crystalline Robot. Each module in this robot is actuated by expansion/contraction. The system is fully distributed, has local communication (to neighbors) capabilities and it has global sensing capabilities.

  16. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality. PMID:26390078

  17. Robot Rodeo 2013

    SciTech Connect

    Deuel, Jake

    2013-08-27

    Sandia National Laboratories hosted the seventh annual Western National Robot Rodeo and Capability Exercise in June 2013. The five-day event is a lively and challenging competition that draws civilian and military bomb squad teams from across the country to see who can most effectively defuse dangerous situations with the help of robots.

  18. Motivating Students with Robotics

    ERIC Educational Resources Information Center

    Brand, Brenda; Collver, Michael; Kasarda, Mary

    2008-01-01

    In recent years, the need to advance the number of individuals pursuing science, technology, engineering, and mathematics fields has gained much attention. The Montgomery County/Virginia Tech Robotics Collaborative (MCVTRC), a yearlong high school robotics program housed in an educational shop facility in Montgomery County, Virginia, seeks to…

  19. Robot Rodeo 2013

    ScienceCinema

    Deuel, Jake

    2014-02-26

    Sandia National Laboratories hosted the seventh annual Western National Robot Rodeo and Capability Exercise in June 2013. The five-day event is a lively and challenging competition that draws civilian and military bomb squad teams from across the country to see who can most effectively defuse dangerous situations with the help of robots.

  20. INL Generic Robot Architecture

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The INL Generic Robot Architecture is a generic, extensible software framework that can be applied across a variety of different robot geometries, sensor suites and low-level proprietary control application programming interfaces (e.g. mobility, aria, aware, player, etc.).

  1. Infant discrimination of humanoid robots.

    PubMed

    Matsuda, Goh; Ishiguro, Hiroshi; Hiraki, Kazuo

    2015-01-01

    Recently, extremely humanlike robots called "androids" have been developed, some of which are already being used in the field of entertainment. In the context of psychological studies, androids are expected to be used in the future as fully controllable human stimuli to investigate human nature. In this study, we used an android to examine infant discrimination ability between human beings and non-human agents. Participants (N = 42 infants) were assigned to three groups based on their age, i.e., 6- to 8-month-olds, 9- to 11-month-olds, and 12- to 14-month-olds, and took part in a preferential looking paradigm. Of three types of agents involved in the paradigm-a human, an android modeled on the human, and a mechanical-looking robot made from the android-two at a time were presented side-by-side as they performed a grasping action. Infants' looking behavior was measured using an eye tracking system, and the amount of time spent focusing on each of three areas of interest (face, goal, and body) was analyzed. Results showed that all age groups predominantly looked at the robot and at the face area, and that infants aged over 9 months watched the goal area for longer than the body area. There was no difference in looking times and areas focused on between the human and the android. These findings suggest that 6- to 14-month-olds are unable to discriminate between the human and the android, although they can distinguish the mechanical robot from the human. PMID:26441772

  2. Infant discrimination of humanoid robots

    PubMed Central

    Matsuda, Goh; Ishiguro, Hiroshi; Hiraki, Kazuo

    2015-01-01

    Recently, extremely humanlike robots called “androids” have been developed, some of which are already being used in the field of entertainment. In the context of psychological studies, androids are expected to be used in the future as fully controllable human stimuli to investigate human nature. In this study, we used an android to examine infant discrimination ability between human beings and non-human agents. Participants (N = 42 infants) were assigned to three groups based on their age, i.e., 6- to 8-month-olds, 9- to 11-month-olds, and 12- to 14-month-olds, and took part in a preferential looking paradigm. Of three types of agents involved in the paradigm—a human, an android modeled on the human, and a mechanical-looking robot made from the android—two at a time were presented side-by-side as they performed a grasping action. Infants’ looking behavior was measured using an eye tracking system, and the amount of time spent focusing on each of three areas of interest (face, goal, and body) was analyzed. Results showed that all age groups predominantly looked at the robot and at the face area, and that infants aged over 9 months watched the goal area for longer than the body area. There was no difference in looking times and areas focused on between the human and the android. These findings suggest that 6- to 14-month-olds are unable to discriminate between the human and the android, although they can distinguish the mechanical robot from the human. PMID:26441772

  3. Dictionary of robotics

    SciTech Connect

    Waldman, H.

    1985-01-01

    The idea of using robots to perform repetitious tasks quickly, cheaply and efficiently has intrigued humans since the Industrial Revolution. Growth has occurred geometrically from the introduction of the first industrial robot in 1955, and continues, unabated, as industry sales are expected to increase 20-fold with applications in both high technology and industry. The Dictionary defines not only those terms standard to robotics but also those used in areas that are just beginning to be involved. The book offers concise, readable descriptions of robot systems, actions, hardware (including applications), communications, computer control, dynamics, cost justification, feedback, kinematics, man-machine interface, sensors and software. There are references to all major robots and manufacturers in the US, Europe and Japan.

  4. Intelligent Articulated Robot

    NASA Astrophysics Data System (ADS)

    Nyein, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    In this paper, an articulated type of industrial used robot is discussed. The robot is mainly intended to be used in pick and place operation. It will sense the object at the specified place and move it to a desired location. A peripheral interface controller (PIC16F84A) is used as the main controller of the robot. Infrared LED and IR receiver unit for object detection and 4-bit bidirectional universal shift registers (74LS194) and high current and high voltage Darlington transistors arrays (ULN2003) for driving the arms' motors are used in this robot. The amount of rotation for each arm is regulated by the limit switches. The operation of the robot is very simple but it has the ability of to overcome resetting position after power failure. It can continue its work from the last position before the power is failed without needing to come back to home position.

  5. Honda humanoid robots development.

    PubMed

    Hirose, Masato; Ogawa, Kenichi

    2007-01-15

    Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's 'challenging spirit'. PMID:17148047

  6. Value of Robotically Assisted Surgery for Mitral Valve Disease

    PubMed Central

    Mihaljevic, Tomislav; Koprivanac, Marijan; Kelava, Marta; Goodman, Avi; Jarrett, Craig; Williams, Sarah J.; Gillinov, A. Marc; Bajwa, Gurjyot; Mick, Stephanie L.; Bonatti, Johannes; Blackstone, Eugene H.

    2014-01-01

    Importance The value of robotically assisted surgery for mitral valve disease is questioned because the high cost of care associated with robotic technology may outweigh its clinical benefits. Objective To investigate conditions under which benefits of robotic surgery mitigate high technology costs. Design Clinical cohort study comparing costs of robotic vs. three contemporaneous conventional surgical approaches for degenerative mitral disease. Surgery was performed from 2006–2011, and comparisons were based on intent-to-treat, with propensity-matching used to reduce selection bias. Setting Large multi-specialty academic medical center. Participants 1,290 patients aged 57±11 years, 27% women, underwent mitral repair for regurgitation from posterior leaflet prolapse. Robotic surgery was used in 473, complete sternotomy in 227, partial sternotomy in 349, and anterolateral thoracotomy in 241. Three propensity-matched groups were formed based on demographics, symptoms, cardiac and noncardiac comorbidities, valve pathophysiology, and echocardiographic measurements: robotic vs. sternotomy (n=198 pairs) vs. partial sternotomy (n=293 pairs) vs. thoracotomy (n=224 pairs). Interventions Mitral valve repair. Main Outcome Measures Cost of care, expressed as robotic capital investment, maintenance, and direct technical hospital cost, and benefit of care, based on differences in recovery time. Results Median cost of care for robotically assisted surgery exceeded the cost of alternative approaches by 27% (−5%, 68%), 32% (−6%, 70%), and 21% (−2%, 54%) (median [15th, 85th percentiles]) for complete sternotomy, partial sternotomy, and anterolateral thoracotomy, respectively. Higher operative costs were partially offset by lower postoperative costs and earlier return to work: median 35 days for robotic surgery, 49 for complete sternotomy, 56 for partial sternotomy, and 42 for anterolateral thoracotomy. Resulting net differences in cost of robotic surgery vs. the three

  7. Robots in Space -Psychological Aspects

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.

    2006-01-01

    A viewgraph presentation on the psychological aspects of developing robots to perform routine operations associated with monitoring, inspection, maintenance and repair in space is shown. The topics include: 1) Purpose; 2) Vision; 3) Current Robots in Space; 4) Ground Based Robots; 5) AERCam; 6) Rotating Bladder Robot (ROBLR); 7) DART; 8) Robonaut; 9) Full Immersion Telepresence Testbed; 10) ERA; and 11) Psychological Aspects

  8. Absence of Intervention Training Programs: Effects Upon the Severely and Profoundly Retarded, Part I: Selected Cases of Emotional and Behavioral Disturbances.

    ERIC Educational Resources Information Center

    Balthazar, Earl E.; And Others

    Fifteen institutionalized profoundly retarded Ss, median age 7 years, who received no intervention training program, were assessed on the Balthazar Scales of Adaptive Behavior (BSAB), Sections I and II to determine whether social coping behavior would improve spontaneous maturation during a 6-month period. The Ss were recommended by nursing…

  9. Project InterActions: A Multigenerational Robotic Learning Environment

    NASA Astrophysics Data System (ADS)

    Bers, Marina U.

    2007-12-01

    This paper presents Project InterActions, a series of 5-week workshops in which very young learners (4- to 7-year-old children) and their parents come together to build and program a personally meaningful robotic project in the context of a multigenerational robotics-based community of practice. The goal of these family workshops is to teach both parents and children about the mechanical and programming aspects involved in robotics, as well as to initiate them in a learning trajectory with and about technology. Results from this project address different ways in which parents and children learn together and provide insights into how to develop educational interventions that would educate parents, as well as children, in new domains of knowledge and skills such as robotics and new technologies.

  10. Spoken commands control robot that handles radioactive materials

    SciTech Connect

    Phelan, P.F.; Keddy, C.; Beugelsdojk. T.J.

    1989-01-01

    Several robotic systems have been developed by Los Alamos National Laboratory to handle radioactive material. Because of safety considerations, the robotic system must be under direct human supervision and interactive control continuously. In this paper, we describe the implementation of a voice-recognition system that permits this control, yet allows the robot to perform complex preprogrammed manipulations without the operator's intervention. To provide better interactive control, we connected to the robot's control computer, a speech synthesis unit, which provides audible feedback to the operator. Thus upon completion of a task or if an emergency arises, an appropriate spoken message can be reported by the control computer. The training programming and operation of this commercially available system are discussed, as are the practical problems encountered during operations.

  11. MRI-Safe Robot for Endorectal Prostate Biopsy

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Srimathveeravalli, Govindarajan; Sebrecht, Peter; Petrisor, Doru; Coleman, Jonathan; Solomon, Stephen B.; Hricak, Hedvig

    2014-01-01

    This paper reports the development of an MRI-Safe robot for direct (interventional) MRI-guided endorectal prostate biopsy. The robot is constructed of nonmagnetic and electrically nonconductive materials, and is electricity free, using pneumatic actuation and optical sensors. Targeting biopsy lesions of MRI abnormality presents substantial clinical potential for the management of prostate cancer. The paper describes MRI-Safe requirements, presents the kinematic architecture, design and construction of the robot, and a comprehensive set of preclinical tests for MRI compatibility and needle targeting accuracy. The robot has a compact and simple 3 degree-of-freedom (DoF) structure, two for orienting a needle-guide and one to preset the depth of needle insertion. The actual insertion is performed manually through the guide and up to the preset depth. To reduce the complexity and size of the robot next to the patient, the depth setting DoF is remote. Experimental results show that the robot is safe to use in any MRI environment (MRI-Safe). Comprehensive MRI tests show that the presence and motion of the robot in the MRI scanner cause virtually no image deterioration or signal to noise ratio (SNR) change. Robot’s accuracy in bench test, CT-guided in-vitro, MRI-guided in-vitro and animal tests are 0.37mm, 1.10mm, 2.09mm, and 2.58mm respectively. These values are acceptable for clinical use. PMID:25378897

  12. A Survey of Space Robotics

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)

    2003-01-01

    In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.

  13. Application of artificial intelligence to robotic vision

    SciTech Connect

    Chao, P.S.; Frick, P.A.

    1983-01-01

    A brief introduction to artificial intelligence (AI) and the general vision process is provided. Two samples of AI researchers' work toward general computer vision are given. The first is a model-based vision system while the second is based on results of studies on human vision. The current state of machine vision in industrial robotics is demonstrated using a well known vision algorithm developed at SRI International. A part of a prototype robotic assembly project with vision is sketched to show the application of some AI tools to practical work. 8 references.

  14. Partner Ballroom Dance Robot -PBDR-

    NASA Astrophysics Data System (ADS)

    Kosuge, Kazuhiro; Takeda, Takahiro; Hirata, Yasuhisa; Endo, Mitsuru; Nomura, Minoru; Sakai, Kazuhisa; Koizumi, Mizuo; Oconogi, Tatsuya

    In this research, we have developed a dance partner robot, which has been developed as a platform for realizing the effective human-robot coordination with physical interaction. The robot could estimate the next dance step intended by a human and dance the step with the human. This paper introduce the robot referred to as PBDR (Partner Ballroom Dance Robot), which has performed graceful dancing with the human in EXPO 2005, Aichi, Japan.

  15. Guarded Motion for Mobile Robots

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The Idaho National Laboratory (INL) has created codes that ensure that a robot will come to a stop at a precise, specified distance from any obstacle regardless of the robot's initial speed, its physical characteristics, and the responsiveness of the low-level motor control schema. This Guarded Motion for Mobile Robots system iteratively adjusts the robot's action in response to information about the robot's environment.

  16. Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability.

    PubMed

    Kraus, Dominic; Naros, Georgios; Bauer, Robert; Leão, Maria Teresa; Ziemann, Ulf; Gharabaghi, Alireza

    2016-01-15

    Brain-robot interfaces (BRI) are studied as novel interventions to facilitate functional restoration in patients with severe and persistent motor deficits following stroke. They bridge the impaired connection in the sensorimotor loop by providing brain-state dependent proprioceptive feedback with orthotic devices attached to the hand or arm of the patients. The underlying neurophysiology of this BRI neuromodulation is still largely unknown. We investigated changes of corticospinal excitability with transcranial magnetic stimulation in thirteen right-handed healthy subjects who performed 40min of kinesthetic motor imagery receiving proprioceptive feedback with a robotic orthosis attached to the left hand contingent to event-related desynchronization of the right sensorimotor cortex in the β-band (16-22Hz). Neural correlates of this BRI intervention were probed by acquiring the stimulus-response curve (SRC) of both motor evoked potential (MEP) peak-to-peak amplitudes and areas under the curve. In addition, a motor mapping was obtained. The specificity of the effects was studied by comparing two neighboring hand muscles, one BRI-trained and one control muscle. Robust changes of MEP amplitude but not MEP area occurred following the BRI intervention, but only in the BRI-trained muscle. The steep part of the SRC showed an MEP increase, while the plateau of the SRC showed an MEP decrease. MEP mapping revealed a distributed pattern with a decrease of excitability in the hand area of the primary motor cortex, which controlled the BRI, but an increase of excitability in the surrounding somatosensory and premotor cortex. In conclusion, the BRI intervention induced a complex pattern of modulated corticospinal excitability, which may boost subsequent motor learning during physiotherapy. PMID:26505298

  17. Toward cognitive robotics

    NASA Astrophysics Data System (ADS)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  18. Future of robotic surgery.

    PubMed

    Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M

    2013-01-01

    In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency. PMID:23528717

  19. Monitoring robot actions for error detection and recovery

    NASA Technical Reports Server (NTRS)

    Gini, M.; Smith, R.

    1987-01-01

    Reliability is a serious problem in computer controlled robot systems. Although robots serve successfully in relatively simple applications such as painting and spot welding, their potential in areas such as automated assembly is hampered by programming problems. A program for assembling parts may be logically correct, execute correctly on a simulator, and even execute correctly on a robot most of the time, yet still fail unexpectedly in the face of real world uncertainties. Recovery from such errors is far more complicated than recovery from simple controller errors, since even expected errors can often manifest themselves in unexpected ways. Here, a novel approach is presented for improving robot reliability. Instead of anticipating errors, researchers use knowledge-based programming techniques so that the robot can autonomously exploit knowledge about its task and environment to detect and recover from failures. They describe preliminary experiment of a system that they designed and constructed.

  20. Design principles of a cooperative robot controller

    NASA Technical Reports Server (NTRS)

    Hayward, Vincent; Hayati, Samad

    1987-01-01

    The paper describes the design of a controller for cooperative robots being designed at McGill University in a collaborative effort with the Jet Propulsion Laboratory. The first part of the paper discusses the background and motivation for multiple arm control. Then, a set of programming primitives, which are based on the RCCL system and which permit a programmer to specify cooperative tasks are described. The first group of primitives are motion primitives which specify asynchronous motions, master/slave motions, and cooperative motions. In the context of cooperative robots, trajectory generation issues will be discussed and the implementation described. A second set of primitives provides for the specification of spatial relationships. The relations between programming and control in the case of multiple robot are examined. Finally, the paper describes the allocation of various tasks among a set of microprocessors sharing a common bus.

  1. Controller Design of Quadrotor Aerial Robot

    NASA Astrophysics Data System (ADS)

    Yali, Yu; SunFeng; Yuanxi, Wang

    This paper deduced the nonlinear dynamic model of a quadrotor aerial robot, which was a VTOL (vertical tale-off and landing) unmanned air vehicle. Since that is a complex model with the highly nonlinear multivariable strongly coupled and under-actuated property, the controller design of it was very difficult. Aimed at attaining the excellent controller, the whole system can be divided into three interconnected parts: attitude subsystem, vertical subsystem, position subsystem. Then nonlinear control strategy of them has been described, such as SDRE and Backstepping. The controller design was presented to stabilize the whole system. Through simulation result indicates, the various models have shown that the control law stabilize a quadrotor aerial robot with good tracking performance and robotness of the system.

  2. Inner rehearsal modeling for cognitive robotics

    NASA Astrophysics Data System (ADS)

    Braun, Jerome J.; Bergen, Karianne; Dasey, Timothy J.

    2011-05-01

    This paper presents a biomimetic approach involving cognitive process modeling, for use in intelligent robot decisionmaking. The principle of inner rehearsal, a process believed to occur in human and animal cognition, involves internal rehearsing of actions prior to deciding on and executing an overt action, such as a motor action. The inner-rehearsal algorithmic approach we developed is posed and investigated in the context of a relatively complex cognitive task, an under-rubble search and rescue. The paper presents the approach developed, a synthetic environment which was also developed to enable its studies, and the results to date. The work reported here is part of a Cognitive Robotics effort in which we are currently engaged, focused on exploring techniques inspired by cognitive science and neuroscience insights, towards artificial cognition for robotics and autonomous systems.

  3. Adaptive control of space based robot manipulators

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    For space based robots in which the base is free to move, motion planning and control is complicated by uncertainties in the inertial properties of the manipulator and its load. A new adaptive control method is presented for space based robots which achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. A partition is made of the fifteen degree of freedom system dynamics into two parts: a nine degree of freedom invertible portion and a six degree of freedom noninvertible portion. The controller is then designed to achieve trajectory tracking of the invertible portion of the system. This portion consist of the manipulator joint positions and the orientation of the base. The motion of the noninvertible portion is bounded, but unpredictable. This portion consist of the position of the robot's base and the position of the reaction wheel.

  4. Door breaching robotic manipulator

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Erik; Parrington, Lawrence; von Muehlen, Stephan

    2008-04-01

    As unmanned systems become more commonplace in military, police, and other security forces, they are tasked to perform missions that the original hardware was not designed for. Current military robots are built for rough outdoor conditions and have strong inflexible manipulators designed to handle a wide range of operations. However, these manipulators are not well suited for some essential indoor tasks, including opening doors. This is a complicated kinematic task that places prohibitively difficult control challenges on the robot and the operator. Honeybee and iRobot have designed a modular door-breaching manipulator that mechanically simplifies the demands upon operator and robot. The manipulator connects to the existing robotic arm of the iRobot PackBot EOD. The gripper is optimized for grasping a variety of door knobs, levers, and car-door handles. It works in conjunction with a compliant wrist and magnetic lock-out mechanism that allows the wrist to remain rigid until the gripper has a firm grasp of the handle and then bend with its rotation and the swing of the door. Once the door is unlatched, the operator simply drives the robot through the doorway while the wrist compensates for the complex, multiple degree-of-freedom motion of the door. Once in the doorway the operator releases the handle, the wrist pops back into place, and the robot is ready for the next door. The new manipulator dramatically improves a robot's ability to non-destructively breach doors and perform an inspection of a room's content, a capability that was previously out of reach of unmanned systems.

  5. Robotic-Assisted Removal of Intracardiac Cement After Percutaneous Vertebroplasty.

    PubMed

    Molloy, Thomas; Kos, Allison; Piwowarski, Amy

    2016-05-01

    Percutaneous vertebroplasty (PVP) is an increasingly common intervention, and complications resulting from embolization are increasingly observed. We report a case of polymethyl methacrylate (PMMA) embolization resulting in cardiac complications in a frail patient, which was managed with endoscopic robotic-assisted removal of the embolized material. PMID:27106432

  6. Robot-Mediated Imitation Skill Training for Children With Autism.

    PubMed

    Zheng, Zhi; Young, Eric M; Swanson, Amy R; Weitlauf, Amy S; Warren, Zachary E; Sarkar, Nilanjan

    2016-06-01

    Autism spectrum disorder (ASD) impacts 1 in 68 children in the U.S., with tremendous individual and societal costs. Technology-aided intervention, more specifically robotic intervention, has gained momentum in recent years due to the inherent affinity of many children with ASD towards technology. In this paper we present a novel robot-mediated intervention system for imitation skill learning, which is considered a core deficit area for children with ASD. The Robot-mediated Imitation Skill Training Architecture (RISTA) is designed in such a manner that it can operate either completely autonomously or in coordination with a human therapist depending on the intervention need. Experimental results are presented from small user studies validating system functionality, assessing user tolerance, and documenting subject performance. Preliminary results show that this novel robotic system draws more attention from the children with ASD and teaches gestures more effectively as compared to a human therapist. While no broad generalized conclusions can be made about the effectiveness of RISTA based on our small user studies, initial results are encouraging and justify further exploration in the future. PMID:26353376

  7. Meeting the challenges of installing a mobile robotic system

    NASA Technical Reports Server (NTRS)

    Decorte, Celeste

    1994-01-01

    The challenges of integrating a mobile robotic system into an application environment are many. Most problems inherent to installing the mobile robotic system fall into one of three categories: (1) the physical environment - location(s) where, and conditions under which, the mobile robotic system will work; (2) the technological environment - external equipment with which the mobile robotic system will interact; and (3) the human environment - personnel who will operate and interact with the mobile robotic system. The successful integration of a mobile robotic system into these three types of application environment requires more than a good pair of pliers. The tools for this job include: careful planning, accurate measurement data (as-built drawings), complete technical data of systems to be interfaced, sufficient time and attention of key personnel for training on how to operate and program the robot, on-site access during installation, and a thorough understanding and appreciation - by all concerned - of the mobile robotic system's role in the security mission at the site, as well as the machine's capabilities and limitations. Patience, luck, and a sense of humor are also useful tools to keep handy during a mobile robotic system installation. This paper will discuss some specific examples of problems in each of three categories, and explore approaches to solving these problems. The discussion will draw from the author's experience with on-site installations of mobile robotic systems in various applications. Most of the information discussed in this paper has come directly from knowledge learned during installations of Cybermotion's SR2 security robots. A large part of the discussion will apply to any vehicle with a drive system, collision avoidance, and navigation sensors, which is, of course, what makes a vehicle autonomous. And it is with these sensors and a drive system that the installer must become familiar in order to foresee potential trouble areas in the

  8. Academic Accountability and State Intervention.

    ERIC Educational Resources Information Center

    Duncan, John W.

    This speech discusses the national emerging trend toward state intervention in local educational processes as part of the academic accountability movement. It provides examples of reforms and improvements whereby state intervention furnished local school improvement. The address focuses on state intervention in Jersey City, New Jersey; predicts…

  9. A Software Architecture for Semiautonomous Robot Control

    NASA Technical Reports Server (NTRS)

    Kortenkamp, David

    2004-01-01

    A software architecture has been developed to increase the safety and effectiveness with which tasks are performed by robots that are capable of functioning autonomously but sometimes are operated under control by humans. The control system of such a robot designed according to a prior software architecture has no way of taking account of how the environment has changed or what parts of a task were performed during an interval of control by a human, so that errors can occur (and, hence, safety and effectiveness jeopardized) when the human relinquishes control. The present architecture incorporates the control, task-planning, and sensor-based-monitoring features of typical prior autonomous-robot software architectures, plus features for updating information on the environment and planning of tasks during control by a human operator in order to enable the robot to track the actions taken by the operator and to be ready to resume autonomous operation with minimal error. The present architecture also provides a user interface that presents, to the operator, a variety of information on the internal state of the robot and the status of the task.

  10. R4SA for Controlling Robots

    NASA Technical Reports Server (NTRS)

    Aghazarian, Hrand

    2009-01-01

    The R4SA GUI mentioned in the immediately preceding article is a userfriendly interface for controlling one or more robot(s). This GUI makes it possible to perform meaningful real-time field experiments and research in robotics at an unmatched level of fidelity, within minutes of setup. It provides such powerful graphing modes as that of a digitizing oscilloscope that displays up to 250 variables at rates between 1 and 200 Hz. This GUI can be configured as multiple intuitive interfaces for acquisition of data, command, and control to enable rapid testing of subsystems or an entire robot system while simultaneously performing analysis of data. The R4SA software establishes an intuitive component-based design environment that can be easily reconfigured for any robotic platform by creating or editing setup configuration files. The R4SA GUI enables event-driven and conditional sequencing similar to those of Mars Exploration Rover (MER) operations. It has been certified as part of the MER ground support equipment and, therefore, is allowed to be utilized in conjunction with MER flight hardware. The R4SA GUI could also be adapted to use in embedded computing systems, other than that of the MER, for commanding and real-time analysis of data.

  11. Biologically inspired robots as artificial inspectors

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2002-06-01

    Imagine an inspector conducting an NDE on an aircraft where you notice something is different about him - he is not real but rather he is a robot. Your first reaction would probably be to say 'it's unbelievable but he looks real' just as you would react to an artificial flower that is a good imitation. This science fiction scenario could become a reality at the trend in the development of biologically inspired technologies, and terms like artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. For many years, the trend has been to automate processes in order to increase the efficiency of performing redundant tasks where various systems have been developed to deal with specific production line requirements. Realizing that some parts are too complex or delicate to handle in small quantities with a simple automatic system, robotic mechanisms were developed. Aircraft inspection has benefitted from this evolving technology where manipulators and crawlers are developed for rapid and reliable inspection. Advancement in robotics towards making them autonomous and possibly look like human, can potentially address the need to inspect structures that are beyond the capability of today's technology with configuration that are not predetermined. The operation of these robots may take place at harsh or hazardous environments that are too dangerous for human presence. Making such robots is becoming increasingly feasible and in this paper the state of the art will be reviewed.

  12. History of Robotic and Remotely Operated Telescopes

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.

    2011-03-01

    While automated instrument sequencers were employed on solar eclipse expeditions in the late 1800s, it wasn't until the 1960s that Art Code and associates at Wisconsin used a PDP minicomputer to automate an 8-inch photometric telescope. Although this pioneering project experienced frequent equipment failures and was shut down after a couple of years, it paved the way for the first space telescopes. Reliable microcomputers initiated the modern era of robotic telescopes. Louis Boyd and I applied single board microcomputers with 64K of RAM and floppy disk drives to telescope automation at the Fairborn Observatory, achieving reliable, fully robotic operation in 1983 that has continued uninterrupted for 28 years. In 1985 the Smithsonian Institution provided us with a suburb operating location on Mt. Hopkins in southern Arizona, while the National Science Foundation funded additional telescopes. Remote access to our multiple robotic telescopes at the Fairborn Observatory began in the late 1980s. The Fairborn Observatory, with its 14 fully robotic telescopes and staff of two (one full and one part time) illustrates the potential for low operating and maintenance costs. As the information capacity of the Internet has expanded, observational modes beyond simple differential photometry opened up, bringing us to the current era of real-time remote access to remote observatories and global observatory networks. Although initially confined to smaller telescopes, robotic operation and remote access are spreading to larger telescopes as telescopes from afar becomes the normal mode of operation.

  13. Robotic Variable Polarity Plasma Arc (VPPA) Welding

    NASA Technical Reports Server (NTRS)

    Jaffery, Waris S.

    1993-01-01

    The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.

  14. Robotic Variable Polarity Plasma Arc (VPPA) welding

    NASA Astrophysics Data System (ADS)

    Jaffery, Waris S.

    1993-02-01

    The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.

  15. Robotics in shoulder rehabilitation

    PubMed Central

    Sicuri, Chiara; Porcellini, Giuseppe; Merolla, Giovanni

    2014-01-01

    Summary In the last few decades, several researches have been conducted in the field of robotic rehabilitation to meet the intensive, repetitive and task-oriented training, with the goal to recover the motor function. Up to now, robotic rehabilitation studies of the upper extremity have generally focused on stroke survivors leaving less explored the field of orthopaedic shoulder rehabilitation. In this review we analyse the present status of robotic technologies, in order to understand which are the current indications and which may be the future perspective for their application in both neurological and orthopaedic shoulder rehabilitation. PMID:25332937

  16. Agile Walking Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.; Waldron, Kenneth J.

    1990-01-01

    Proposed agile walking robot operates over rocky, sandy, and sloping terrain. Offers stability and climbing ability superior to other conceptual mobile robots. Equipped with six articulated legs like those of insect, continually feels ground under leg before applying weight to it. If leg sensed unexpected object or failed to make contact with ground at expected point, seeks alternative position within radius of 20 cm. Failing that, robot halts, examines area around foot in detail with laser ranging imager, and replans entire cycle of steps for all legs before proceeding.

  17. Advanced mechanisms for robotics

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    An overview of applied research and development at the Goddard Space Flight Center (GSFC) on mechanisms and collision avoidance skin for robots is presented. The work on robot end effectors is outlined, followed by a brief discussion of robot-friendly payload latching mechanisms and compliant joints. This is followed by discussions of the collision avoidance/management skin and the GSFC research on magnetorestrictive direct drive motors. A new project, the artificial muscle, is introduced. Each of the devices is described sufficiently to permit a basic understanding of its purpose, capabilities, and operating fundamentals. The implications for commercialization are discussed.

  18. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  19. MVACS Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, R.; Slostad, J.; Bon, B.; Braun, D.; Brill, R.; Buck, C.; Fleischner, R.; Haldeman, A.; Herman, J.; Hertzel, M.; Noon, D.; Pixler, G.; Schenker, P.; Ton, T.; Tucker, C.; Zimmerman, W.

    2000-01-01

    The primary purpose of the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm is to support to the other MVACS science instruments by digging trenches in the Martian soil; acquiring and dumping soil samples into the thermal evolved gas analyzer (TEGA); positioning the Soil Temperature Probe (STP) in the soil: positioning the Robotic Arm Air Temperature Sensor (RAATS) at various heights above the surface, and positioning the Robotic Arm Camera (RAC) for taking images of the surface, trench, soil samples, magnetic targets and other objects of scientific interest within its workspace.

  20. Architecture for robot intelligence

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard Alan (Inventor)

    2004-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  1. Burns and injuries from non-electric-appliance fires in low- and middle-income countries Part II. A strategy for intervention using the Haddon Matrix.

    PubMed

    Peck, Michael D; Kruger, Gerebreg E; van der Merwe, Anna E; Godakumbura, Wijaya; Oen, Irma M M; Swart, Dehran; Ahuja, Rajeev B

    2008-05-01

    A large proportion of burns in developing countries are related to the nature of domestic appliances used for cooking, heating, and lighting. Our overview of the problem elucidated the need for better surveillance with epidemiologic studies, which will more accurately assess the true incidence in vulnerable populations. This paper will create a framework for envisaging new approaches to the problem and begin to evaluate the strengths and weaknesses of proposed interventions. We used the Haddon Matrix to accumulate proposed interventions that encompass a pre-event, event, and post-event timeline. We propose an initial strategic outline plan for interventions based on values that are suited to the problem and the setting, are culturally appropriate, and can be employed in a reasonable period of time for a sustained period to ensure success. Recommended action steps include promoting the use of alternative energy sources, encouraging an integrated approach to finding interdisciplinary solutions, devising a better system of kerosene containerization, re-engineering appliance designs, legislating for enforcement of health and safety standards, taking a holistic approach through government inter-departmental collaboration, formally discouraging corruption, encouraging ventilation of cooking or living areas, implementing building codes, educating consumers, and training caregivers and health and emergency workers. PMID:18206310

  2. Soft Robotics: New Perspectives for Robot Bodyware and Control

    PubMed Central

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259

  3. Soft Robotics: New Perspectives for Robot Bodyware and Control.

    PubMed

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259

  4. Human-robot skills transfer interfaces for a flexible surgical robot.

    PubMed

    Calinon, Sylvain; Bruno, Danilo; Malekzadeh, Milad S; Nanayakkara, Thrishantha; Caldwell, Darwin G

    2014-09-01

    In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator. PMID:24491285

  5. Using automatic robot programming for space telerobotics

    NASA Technical Reports Server (NTRS)

    Mazer, E.; Jones, J.; Lanusse, A.; Lozano-Perez, T.; Odonnell, P.; Tournassoud, P.

    1987-01-01

    The interpreter of a task level robot programming system called Handey is described. Handey is a system that can recognize, manipulate and assemble polyhedral parts when given only a specification of the goal. To perform an assembly, Handey makes use of a recognition module, a gross motion planner, a grasp planner, a local approach planner and is capable of planning part re-orientation. The possibility of including these modules in a telerobotics work-station is discussed.

  6. Evolutionary Design and Simulation of a Tube Crawling Inspection Robot

    NASA Technical Reports Server (NTRS)

    Craft, Michael; Howsman, Tom; ONeil, Daniel; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The Space Robotics Assembly Team Simulation (SpaceRATS) is an expansive concept that will hopefully lead to a space flight demonstration of a robotic team cooperatively assembling a system from its constitutive parts. A primary objective of the SpaceRATS project is to develop a generalized evolutionary design approach for multiple classes of robots. The portion of the overall SpaceRats program associated with the evolutionary design and simulation of an inspection robot's morphology is the subject of this paper. The vast majority of this effort has concentrated on the use and modification of Darwin2K, a robotic design and simulation software package, to analyze the design of a tube crawling robot. This robot is designed for carrying out inspection duties in relatively inaccessible locations within a liquid rocket engine similar to the SSME. A preliminary design of the tube crawler robot was completed, and the mechanical dynamics of the system were simulated. An evolutionary approach to optimizing a few parameters of the system was utilized, resulting in a more optimum design.

  7. Trajectory generation for car-like robots

    SciTech Connect

    Vasseur, H.A.; Pin, F.G. )

    1990-06-01

    Autonomous robots or remotely operated vehicles have raised high hopes in the military and industrial communities because of the potential safety improvement and gain of productivity they may provide. Waste management on nuclear sites, pallet manipulation in factories, interventions on battlefields, etc., are actively studied. A lot of these applications require powerful four-wheel vehicles, the kinematics of which is similar to that of a car. Such vehicles have three degrees of freedom: the (x,y) positions in a plane and the orientation of the vehicle. Path planning is often understood as only changing the position of the vehicle, whereas the tasks performed by this kind of robot require a perfect orientation of the vehicle: forklifting a pallet or docking at a loading or unloading station requires accuracy in the orientation of the vehicle. It is this requirement and the kinematic constraints of the motion mode that have led to the path-planning algorithm presented in this paper.

  8. Software Architecture for Planetary and Lunar Robotics

    NASA Technical Reports Server (NTRS)

    Utz, Hans; Fong, Teny; Nesnas, Iasa A. D.

    2006-01-01

    A viewgraph presentation on the role that software architecture plays in space and lunar robotics is shown. The topics include: 1) The Intelligent Robotics Group; 2) The Lunar Mission; 3) Lunar Robotics; and 4) Software Architecture for Space Robotics.

  9. Application of robotics in nuclear facilities

    SciTech Connect

    Byrd, J S; Fisher, J J

    1986-01-01

    Industrial robots and other robotic systems have been successfully applied at the Savannah River nuclear site. These applications, new robotic systems presently under development, general techniques for the employment of robots in nuclear facilities, and future systems are discussed.

  10. Robotics and remote systems applications

    SciTech Connect

    Rabold, D.E.

    1996-05-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling.

  11. Robotic follow system and method

    SciTech Connect

    Bruemmer, David J; Anderson, Matthew O

    2007-05-01

    Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.

  12. K-10 Robots

    NASA Video Gallery

    Robots, scientists, engineers and flight controllers from NASA's Ames Research Center at Moffett Field, Calif., and NASA's Johnson Space Center in Houston, gathered at NASA Ames to perform a series...

  13. DOE Robotics Project

    SciTech Connect

    Not Available

    1991-01-01

    This document provide the bimonthly progress reports on the Department of Energy (DOE) Robotics Project by the University of Michigan. Reports are provided for the time periods of December 90/January 91 through June 91/July 91. (FI)

  14. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  15. Rolling friction robot fingers

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1992-01-01

    A low friction, object guidance, and gripping finger device for a robotic end effector on a robotic arm is disclosed, having a pair of robotic fingers each having a finger shaft slideably located on a gripper housing attached to the end effector. Each of the robotic fingers has a roller housing attached to the finger shaft. The roller housing has a ball bearing mounted centering roller located at the center, and a pair of ball bearing mounted clamping rollers located on either side of the centering roller. The object has a recess to engage the centering roller and a number of seating ramps for engaging the clamping rollers. The centering roller acts to position and hold the object symmetrically about the centering roller with respect to the X axis and the clamping rollers act to position and hold the object with respect to the Y and Z axis.

  16. Tank-automotive robotics

    NASA Astrophysics Data System (ADS)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  17. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed. PMID:26643022

  18. Lunar robotic maintenance module

    NASA Technical Reports Server (NTRS)

    Ayres, Michael L.

    1988-01-01

    A design for a robotic maintenance module that will assist a mobile 100-meter lunar drill is introduced. The design considers the following areas of interest: the atmospheric conditions, actuator systems, power supply, material selection, weight, cooling system and operation.

  19. Robots in operating theatres.

    PubMed Central

    Buckingham, R. A.; Buckingham, R. O.

    1995-01-01

    Robots designed for surgery have three main advantages over humans. They have greater three dimensional spatial accuracy, are more reliable, and can achieve much greater precision. Although few surgical robots are yet in clinical trials one or two have advanced to the stage of seeking approval from the UK's Medical Devices Agency and the US Federal Drug Administration. Safety is a key concern. A robotic device can be designed in an intrinsically safe way by restricting its range of movement to an area where it can do no damage. Furthermore, safety can be increased by making it passive, guided at all times by a surgeon. Nevertheless, some of the most promising developments may come from robots that are active (monitored rather than controlled by the surgeon) and not limited to intrinsically safe motion. Images Fig 1 Fig 3 Fig 4 PMID:8520340

  20. Robots on the Roof

    NASA Video Gallery

    The Aerosol Robotic Network (AERONET) is one of the first places that scientists turn when volcanoes, wildfires, pollution plumes, dust storms and many other phenomena—both natural and manmade—...