Science.gov

Sample records for intestinal microbial antigens

  1. Host Responses to Intestinal Microbial Antigens in Gluten-Sensitive Mice

    PubMed Central

    Natividad, Jane M.; Huang, Xianxi; Slack, Emma; Jury, Jennifer; Sanz, Yolanda; David, Chella; Denou, Emmanuel; Yang, Pinchang; Murray, Joseph

    2009-01-01

    Background and Aims Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. Methodology/Principal Findings HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-? in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. Conclusion Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-? production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota. PMID:19649259

  2. Human Intestinal M Cells Display the Sialyl Lewis A Antigen

    PubMed Central

    Giannasca, Paul J.; Giannasca, Karen T.; Leichtner, Alan M.; Neutra, Marian R.

    1999-01-01

    The biochemical features that distinguish human M cells from other intestinal epithelial cell types are important for understanding microbial pathogenesis and for targeting vaccines to the mucosal immune system. We applied a large panel of carbohydrate-specific monoclonal antibodies and lectins to Peyers patch and cecum biopsy specimens from three normal individuals and a patient with inflammatory bowel disease. The results show that human M-cell glycosylation patterns are distinct from those of other species examined and that human M cells preferentially display the sialyl Lewis A antigen. This carbohydrate epitope is also present in a small subpopulation of enterocytes in the follicle-associated epithelium and in goblet cell mucins. PMID:9916113

  3. Diversity of the human intestinal microbial flora.

    PubMed

    Eckburg, Paul B; Bik, Elisabeth M; Bernstein, Charles N; Purdom, Elizabeth; Dethlefsen, Les; Sargent, Michael; Gill, Steven R; Nelson, Karen E; Relman, David A

    2005-06-10

    The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease. PMID:15831718

  4. The Uptake of Soluble and Particulate Antigens by Epithelial Cells in the Mouse Small Intestine

    PubMed Central

    Howe, Savannah E.; Lickteig, Duane J.; Plunkett, Kyle N.; Ryerse, Jan S.; Konjufca, Vjollca

    2014-01-01

    Intestinal epithelial cells (IECs) overlying the villi play a prominent role in absorption of digested nutrients and establish a barrier that separates the internal milieu from potentially harmful microbial antigens. Several mechanisms by which antigens of dietary and microbial origin enter the body have been identified; however whether IECs play a role in antigen uptake is not known. Using in vivo imaging of the mouse small intestine, we investigated whether epithelial cells (enterocytes) play an active role in the uptake (sampling) of lumen antigens. We found that small molecular weight antigens such as chicken ovalbumin, dextran, and bacterial LPS enter the lamina propria, the loose connective tissue which lies beneath the epithelium via goblet cell associated passageways. However, epithelial cells overlying the villi can internalize particulate antigens such as bacterial cell debris and inert nanoparticles (NPs), which are then found co-localizing with the CD11c+ dendritic cells in the lamina propria. The extent of NP uptake by IECs depends on their size: 2040 nm NPs are taken up readily, while NPs larger than 100 nm are taken up mainly by the epithelial cells overlying Peyer's patches. Blocking NPs with small proteins or conjugating them with ovalbumin does not inhibit their uptake. However, the uptake of 40 nm NPs can be inhibited when they are administered with an endocytosis inhibitor (chlorpromazine). Delineating the mechanisms of antigen uptake in the gut is essential for understanding how tolerance and immunity to lumen antigens are generated, and for the development of mucosal vaccines and therapies. PMID:24475164

  5. The outer mucus layer hosts a distinct intestinal microbial niche

    PubMed Central

    Li, Hai; Limenitakis, Julien P.; Fuhrer, Tobias; Geuking, Markus B.; Lawson, Melissa A.; Wyss, Madeleine; Brugiroux, Sandrine; Keller, Irene; Macpherson, Jamie A.; Rupp, Sandra; Stolp, Bettina; Stein, Jens V.; Stecher, Bärbel; Sauer, Uwe; McCoy, Kathy D.; Macpherson, Andrew J.

    2015-01-01

    The overall composition of the mammalian intestinal microbiota varies between individuals: within each individual there are differences along the length of the intestinal tract related to host nutrition, intestinal motility and secretions. Mucus is a highly regenerative protective lubricant glycoprotein sheet secreted by host intestinal goblet cells; the inner mucus layer is nearly sterile. Here we show that the outer mucus of the large intestine forms a unique microbial niche with distinct communities, including bacteria without specialized mucolytic capability. Bacterial species present in the mucus show differential proliferation and resource utilization compared with the same species in the intestinal lumen, with high recovery of bioavailable iron and consumption of epithelial-derived carbon sources according to their genome-encoded metabolic repertoire. Functional competition for existence in this intimate layer is likely to be a major determinant of microbiota composition and microbial molecular exchange with the host. PMID:26392213

  6. CD1-Restricted T Cell Recognition of Microbial Lipoglycan Antigens

    NASA Astrophysics Data System (ADS)

    Sieling, P. A.; Chatterjee, D.; Porcelli, S. A.; Prigozy, T. I.; Mazzaccaro, R. J.; Soriano, T.; Bloom, B. R.; Brenner, M. B.; Kronenberg, M.; Brennan, P. J.; Modlin, R. L.

    1995-07-01

    It has long been the paradigm that T cells recognize peptide antigens presented by major histocompatibility complex (MHC) molecules. However, nonpeptide antigens can be presented to T cells by human CD1b molecules, which are not encoded by the MHC. A major class of microbial antigens associated with pathogenicity are lipoglycans. It is shown here that human CD1b presents the defined mycobacterial lipoglycan lipoarabinomannan (LAM) to ?? T cell receptor-bearing lymphocytes. Presentation of these lipoglycan antigens required internalization and endosomal acidification. The T cell recognition required mannosides with ?(1-->2) linkages and a phosphatidylinositol unit. T cells activated by LAM produced interferon ? and were cytolytic. Thus, an important class of microbial molecules, the lipoglycans, is a part of the universe of foreign antigens recognized by human T cells.

  7. Identification of Circulating Bacterial Antigens by In Vivo Microbial Antigen Discovery

    PubMed Central

    Nuti, Dana E.; Crump, Reva B.; Dwi Handayani, Farida; Chantratita, Narisara; Peacock, Sharon J.; Bowen, Richard; Felgner, Philip L.; Davies, D. Huw; Wu, Terry; Lyons, C. Rick; Brett, Paul J.; Burtnick, Mary N.; Kozel, Thomas R.; AuCoin, David P.

    2011-01-01

    ABSTRACT Detection of microbial antigens in clinical samples can lead to rapid diagnosis of an infection and administration of appropriate therapeutics. A major barrier in diagnostics development is determining which of the potentially hundreds or thousands of antigens produced by a microbe are actually present in patient samples in detectable amounts against a background of innumerable host proteins. In this report, we describe a strategy, termed in vivo microbial antigen discovery (InMAD), that we used to identify circulating bacterial antigens. This technique starts with InMAD serum, which is filtered serum that has been harvested from BALB/c mice infected with a bacterial pathogen. The InMAD serum, which is free of whole bacterial cells, is used to immunize syngeneic BALB/c mice. The resulting InMAD immune serum contains antibodies specific for the soluble microbial antigens present in sera from the infected mice. The InMAD immune serum is then used to probe blots of bacterial lysates or bacterial proteome arrays. Bacterial antigens that are reactive with the InMAD immune serum are precisely the antigens to target in an antigen immunoassay. By employing InMAD, we identified multiple circulating antigens that are secreted or shed during infection using Burkholderia pseudomallei and Francisella tularensis as model organisms. Potential diagnostic targets identified by the InMAD approach included bacterial proteins, capsular polysaccharide, and lipopolysaccharide. The InMAD technique makes no assumptions other than immunogenicity and has the potential to be a broad discovery platform to identify diagnostic targets from microbial pathogens. PMID:21846829

  8. A Microbial Feed Additive Abates Intestinal Inflammation in Atlantic Salmon

    PubMed Central

    Vasanth, Ghana; Kiron, Viswanath; Kulkarni, Amod; Dahle, Dalia; Lokesh, Jep; Kitani, Yoichiro

    2015-01-01

    The efficacy of a microbial feed additive (Bactocell®) in countering intestinal inflammation in Atlantic salmon was examined in this study. Fish were fed either the additive-coated feed (probiotic) or feed without it (control). After an initial 3-week feeding, an inflammatory condition was induced by anally intubating all the fish with oxazolone. The fish were offered the feeds for 3 more weeks. Distal intestine from the groups was obtained at 4 h, 24 h, and 3 weeks, after oxazolone treatment. Inflammatory responses were prominent in both groups at 24 h, documented by changes in intestinal micromorphology, expression of inflammation-related genes, and intestinal proteome. The control group was characterized by edema, widening of intestinal villi and lamina propria, infiltration of granulocytes and lymphocytes, and higher expression of genes related to inflammatory responses, mul1b, il1b, tnfa, ifng, compared to the probiotic group or other time points of the control group. Further, the protein expression in the probiotic group at 24 h after inducing inflammation revealed five differentially regulated proteins – Calr, Psma5, Trp1, Ctsb, and Naga. At 3 weeks after intubation, the inflammatory responses subsided in the probiotic group. The findings provide evidence that the microbial additive contributes to intestinal homeostasis in Atlantic salmon. PMID:26347738

  9. Intestinal Macrophages and Response to Microbial Encroachment

    PubMed Central

    Smith, PD; Smythies, LE; Shen, R; Greenwell-Wild, T; Gliozzi, M; Wahl, SM

    2013-01-01

    Macrophages in the gastrointestinal mucosa represent the largest pool of tissue macrophages in the body. In order to maintain mucosal homeostasis, resident intestinal macrophages uniquely do not express the lipopolysaccharide (LPS) co-receptor CD14 or the IgA (CD89) and IgG (CD16, 32, and 64) receptors, yet prominently display Toll-like receptors (TLRs) 3-9. Remarkably, intestinal macrophages also do not produce proinflammatory cytokines in response to TLR ligands, likely because of extracellular matrix (stroma) transforming growth factor-β dysregulations of nuclear factor (NF)-κB signal proteins and, via Smad signaling, expression of IκBα, thereby inhibiting NF-κB-mediated activities. Thus, in noninflamed mucosa, resident macrophages are inflammation anergic but retain avid scavenger and host defense function, an ideal profile for macrophages in close proximity to gut microbiota. In the event of impaired epithelial integrity during intestinal infection or inflammation, however, blood monoctyes also accumulate in the lamina propria and actively pursue invading microorganisms through uptake and degradation of the organism and release of inflammatory mediators. Consequently, resident intestinal macrophages are inflammation adverse, but when the need arises, they receive assistance from newly recruited circulating monocytes. PMID:20962772

  10. Microbial imbalance and intestinal pathologies: connections and contributions

    PubMed Central

    Yang, Ye; Jobin, Christian

    2014-01-01

    Microbiome analysis has identified a state of microbial imbalance (dysbiosis) in patients with chronic intestinal inflammation and colorectal cancer. The bacterial phylum Proteobacteria is often overrepresented in these individuals, with Escherichia coli being the most prevalent species. It is clear that a complex interplay between the host, bacteria and bacterial genes is implicated in the development of these intestinal diseases. Understanding the basic elements of these interactions could have important implications for disease detection and management. Recent studies have revealed that E. coli utilizes a complex arsenal of virulence factors to colonize and persist in the intestine. Some of these virulence factors, such as the genotoxin colibactin, were found to promote colorectal cancer in experimental models. In this Review, we summarize key features of the dysbiotic states associated with chronic intestinal inflammation and colorectal cancer, and discuss how the dysregulated interplay between host and bacteria could favor the emergence of E. coli with pathological traits implicated in these pathologies. PMID:25256712

  11. Kiwifruit (Actinidia deliciosa) changes intestinal microbial profile

    PubMed Central

    Lee, Yuan Kun; Low, Kay Yi; Siah, Kewin; Drummond, Lynley M.; Gwee, Kok-Ann

    2012-01-01

    Background Kiwifruit is high in pectic polysaccharides and dietary fiber. This study aimed to find out how the ingestion of kiwifruit will affect intestinal microbiota populations, namely Lactobacillus, Bacteroides, Clostridium, Bifidobacterium, and Enterococcus. Methods Freeze dried kiwifruit (equivalent of two fresh kiwifruits) was given to each of the six subjects daily for four days. Faecal samples were collected before, during and after kiwifruit consumption. The faecal bacteria were enumerated by qPCR and RT qPCR methods. Results The effect of the kiwifruit on intestinal microbiota profile varied between individuals; in general, the kiwifruit demonstrated a prebiotic effect of promoting the content of faecal lactobacilli and bifidobacteria (as compared to the baselines of the same individual before consumption) for as long as the fruit was consumed. The effect was however transient, the levels of the two bacteria returned near to that of the baselines upon cessation of consumption. Conclusion Kiwifruit is a prebiotic in selectively enhancing the growth of intestinal lactic acid bacteria. PMID:23990838

  12. Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation

    PubMed Central

    Tran, Hoa T.; Barnich, Nicolas; Mizoguchi, Emiko

    2011-01-01

    Summary The small and large intestines contain an abundance of luminal antigens derived from food products and enteric microorganisms. The function of intestinal epithelial cells is tightly regulated by several factors produced by enteric bacteria and the epithelial cells themselves. Epithelial cells actively participate in regulating the homeostasis of intestine, and failure of this function leads to abnormal and host-microbial interactions resulting in the development of intestinal inflammation. Major determinants of host susceptibility against luminal commensal bacteria include genes regulating mucosal immune responses, intestinal barrier function and microbial defense. Of note, it has been postulated that commensal bacterial adhesion and invasion on/into host cells may be strongly involved in the pathogenesis of inflammatory bowel disease (IBD). During the intestinal inflammation, the composition of the commensal flora is altered, with increased population of aggressive and detrimental bacteria and decreased populations of protective bacteria. In fact, some pathogenic bacteria, including Adherent Invasive Escherichia coli, Listeria monocytogenes and Vibrio cholerae are likely to initiate their adhesion to the host cells by expressing accessory molecules such as chitinases and/or chitin-binding proteins on themselves. In addition, several inducible molecules (e.g., chitinase 3-like-1, CEACAM6) are also induced on the host cells (e.g. epithelial cells, lamina proprial macrophages) under inflammatory conditions, and are actively participated in the host-microbial interactions. In this review, we will summarize and discuss the potential roles of these important molecules during the development of acute and chronic inflammatory conditions. PMID:21938682

  13. Enteric defensins are essential regulators of intestinal microbial ecology

    PubMed Central

    Salzman, Nita H.; Hung, Kuiechun; Haribhai, Dipica; Chu, Hiutung; Karlsson-Sjöberg, Jenny; Amir, Elad; Teggatz, Paul; Barman, Melissa; Hayward, Michael; Eastwood, Daniel; Stoel, Maaike; Zhou, Yanjiao; Sodergren, Erica; Weinstock, George M.; Bevins, Charles L.; Williams, Calvin B.; Bos, Nicolaas A.

    2009-01-01

    Antimicrobial peptides are important effectors of innate immunity throughout the plant and animal kingdoms. In the mammalian small intestine, Paneth cell α-defensins are antimicrobial peptides that contribute to host defense against enteric pathogens. To determine if α-defensins also govern intestinal microbial ecology, we analyzed the intestinal microbiota in mice expressing a human α-defensin (DEFA5) and in mice lacking an enzyme required for processing of murine α-defensins. We detected significant α-defensin-dependent changes in microbiota composition, but not in total bacterial numbers, in these complementary models. Furthermore, DEFA5-expressing mice had striking losses of Segmented Filamentous Bacteria and fewer interleukin 17-producing lamina propria T cells. These data ascribe a new homeostatic role for α-defensins in regulating the makeup of the commensal microbiota. PMID:19855381

  14. Effect of intestinal microbial ecology on the developing brain.

    PubMed

    Douglas-Escobar, Martha; Elliott, Elizabeth; Neu, Josef

    2013-04-01

    The mammalian gastrointestinal tract harbors a highly diverse microbial population that plays a major role in nutrition, metabolism, protection against pathogens, and development of the immune system. It is estimated that at least 1000 different bacterial species cohabit the human intestinal tract. Most recently, the Human Microbiome Project, using new genomic technologies, has started a catalog of specific microbiome composition and its correlation with health and specific diseases. Herein we provide a brief review of the intestinal microbiome, with a focus on new studies showing that there is an important link between the microbes that inhabit the intestinal tract and the developing brain. With future research, an understanding of this link may help us to treat various neurobehavioral problems such as autism, schizophrenia, and anxiety. PMID:23400224

  15. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-? secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    SciTech Connect

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru

    2013-06-14

    Highlights: Small intestinal epithelial cells (sIECs). sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. sIECs induce markedly enhanced IFN-? secretion by CD4{sup +} IELs. Induction of enhanced IFN-? secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-?) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-? secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-? secretion upon antigenic stimulation in vivo.

  16. TNFAIP3 Facilitates Degradation of Microbial Antigen SEB in Enterocytes

    PubMed Central

    Chen, Chi; Yang, Gui; Geng, Xiao-Rui; Wang, Xingpeng; Liu, Zhanju; Yang, Ping-Chang

    2012-01-01

    Background and Aims The enterocytes have the potential to absorb noxious substances, such as microbial products, from the gut lumen. How the enterocytes process the substances to harmless materials is not fully understood. This study aims to elucidate the role of ubiquitin E3 ligase TNFAIP3 (TNFAIP3) in facilitating the degradation of endocytic microbial products in enterocytes. Methods Human intestinal epithelial cell line, HT-29 cells, was cultured to monolayers using as an in vitro model to observe the endocytosis and degradation of microbial products, Staphylococcal enterotoxin B (SEB) in epithelial cells. The RNA interference was employed to knock down the TNFAIP3 gene in HT-29 cells to observe the role of TNFAIP3 in the degradation of endocytic SEB. The role of TNFAIP3 in facilitating the endosome/lysosome fusion was observed by immunocytochemistry. Results Upon the absorption of SEB, the expression of TNFAIP3 was increased in HT-29 cells. Silencing the TNFAIP3 gene in HT-29 cells resulted in a large quantity of SEB to be transported across the HT-29 monolayers to the transwell basal chambers; the transportation was via the intracellular pathway. TNFAIP3 was required in the fusion of SEB-carrying endosomes and lysosomes. Conclusions TNFAIP3 plays a critical role in the degradation of endocytic SEB in enterocytes. PMID:23029332

  17. Microbial DNA extraction from intestinal biopsies is improved by avoiding mechanical cell disruption

    PubMed Central

    Carbonero, Franck; Nava, Gerardo M.; Benefiel, Ann C.; Greenberg, Eugene; Gaskins, H. Rex

    2011-01-01

    Currently, standard protocols for microbial DNA extraction from intestinal tissues do not exist. We assessed the efficiency of a commercial kit with and without mechanical disruption. Better quality DNA was obtained without mechanical disruption. Thus, it appears that bead-beating is not required for efficient microbial DNA extraction from intestinal biopsies. PMID:21820015

  18. Intestinal health functions of colonic microbial metabolites: a review.

    PubMed

    Havenaar, R

    2011-06-01

    This review tries to find a scientific answer on the following two questions: (1) to what extent do we understand the specific role of colonic microbial metabolites, especially short-chain fatty acids (SCFA), in maintaining the health status and prevention of diseases of the colon and the host; (2) to what extent can we influence or even control the formation of colonic microbial metabolites which are beneficial for the health status. The review focuses on the following topics: energy source, intestinal motility, defence barrier, oxidative stress with special attention for antiinflammatory and anti-carcinogen functions, and satiety. Also the risk of overproduction of SCFA is discussed. Reviewing the literature as present today, it can be concluded that physiological levels of SCFA are vital for the health and well-being of the host and that the presence of carbohydrates (dietary fibre, prebiotics) is essential to favour the metabolic activity in the direction of carbohydrate fermentation. For optimal motor activity of the ileum and colon, to regulate the physiological intestinal mobility, steadily fermentable dietary fibres or prebiotics are crucial. The formation of SCFA, especially propionate and butyrate, up to high physiological levels in the colon, much likely also contributes to the defence mechanisms of the intestinal wall. No final answer can be given yet about the role of SCFA in anti-inflammation and anti-carcinogenicity, but recently published research shows possible mechanisms in this field. The intake of prebiotics or specific dietary fibres promotes the formation of SCFA within the physiological range, and more or less specifically increases the levels of propionate and butyrate. In this way, they provide benefit to the host, especially the natural regulation of the digestive system. PMID:21840809

  19. Development and cytolytic function of intestinal intraepithelial T lymphocytes in antigen-minimized mice.

    PubMed Central

    Kawaguchi-Miyashita, M; Shimizu, K; Nanno, M; Shimada, S; Watanabe, T; Koga, Y; Matsuoka, Y; Ishikawa, H; Hashimoto, K; Ohwaki, M

    1996-01-01

    Intraepithelial T lymphocytes in the small intestine (IEL) consist of alpha beta T-cell receptor (TCR)-bearing T cells (alpha beta-IEL) and gamma delta TCR-bearing T cells (gamma delta-IEL). Development and cytolytic activation of alpha beta-IEL sharply attenuate in germ-free (GF) mice fed a natural diet (Nat-GF), but the number and cytotoxicity of gamma delta-IEL are comparable between conventional (CV) and Nat-GF mice. In this report, we compared the properties of IEL in Nat-GF mice and GF mice fed antigen-minimized diet (AgM-GF mice) of C57BL/6 strain to evaluate an influence of gut antigenic load on IEL development. Numbers of alpha beta-IEL and gamma delta-IEL in AgM-GF mice were less by 1.9- and 1.4-fold than those in Nat-GF mice, respectively. Significant decreases in the proportions of CD4+8-, CD4-8 alpha beta +, and CD4+8+ subsets and a resultant increase in the ratio of CD4-8 alpha alpha + subset were evident in alpha beta-IEL of Nat-GF mice compared with CV mice, but the subset constitution of alpha beta-IEL was similar between Nat-GF and AgM-GF mice. In contrast, relative composition of gamma delta-IEL was not different between CV, Nat-GF, and AgM-GF mice. alpha beta-IEL displayed low cytolytic activity in Nat-GF mice and were almost deprived of their cytotoxicity under the antigen-minimized condition. While gamma delta-IEL were strongly cytolytic in Nat-GF mice their cytolytic activity was remarkably reduced in AgM-GF mice. These results indicate that gamma delta-IEL are activated independently of microbial colonization in the gastrointestinal tract but their activation occurs in response to the exogenous antigenic substances other than live micro-organisms. PMID:8943725

  20. Intestinal Intraepithelial Lymphocyte-Enterocyte Crosstalk Regulates Production of Bactericidal Angiogenin 4 by Paneth Cells upon Microbial Challenge

    PubMed Central

    Dalton, Jane E.; Overweg, Karin; Egan, Charlotte E.; Bongaerts, Roy J.; Newton, Darren J.; Cruickshank, Sheena M.; Andrew, Elizabeth M.; Carding, Simon R.

    2013-01-01

    Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ-/-) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ-/- mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ-/- mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7+ γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion. PMID:24358364

  1. Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge.

    PubMed

    Walker, Catherine R; Hautefort, Isabelle; Dalton, Jane E; Overweg, Karin; Egan, Charlotte E; Bongaerts, Roy J; Newton, Darren J; Cruickshank, Sheena M; Andrew, Elizabeth M; Carding, Simon R

    2013-01-01

    Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking ?? iIELs (TCR?(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of ?? iIELs from wild type (WT) mice to TCR?(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCR?(-/-) mice was shown to be restricted to ?? iIELs expressing V?7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL?23 in a TLR-mediated manner. Exposure of TCR-V?7(+) ?? iIELs to IL-23 promoted IL?22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for ?? iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion. PMID:24358364

  2. Microbial/host interactions: mechanisms involved in host responses to microbial antigens.

    PubMed

    Michalek, Suzanne M; Katz, Jannet; Childers, Noel K; Martin, Michael; Balkovetz, Daniel F

    2002-01-01

    The indigenous oral microflora and the host are normally in a state of equilibrium; however, the introduction of a pathogen can result in innate and adaptive immune responses that either contribute to the development of the disease or lead to host immunity. The interactions between the microorganisms and the host are very dynamic, thus allowing the complex interplay between host molecules and bacterial antigens. In this article, we focus on the mechanisms involved in the pathogenesis of and host responses to two oral pathogens: the Gram-negative bacterium Porphyromonas gingivalis, implicated in the etiology of periodontal disease, and the Gram-positive Streptococcus mutans, a primary agent involved in dental caries formation. Furthermore, we address mechanisms involved in the ability of select adjuvants and delivery systems to potentiate mucosal and systemic immune responses to microbial vaccine antigens. PMID:12403360

  3. Chronic Psychological Stress in Rats Induces Intestinal Sensitization to Luminal Antigens

    PubMed Central

    Yang, Ping-Chang; Jury, Jennifer; Sderholm, Johan D.; Sherman, Philip M.; McKay, Derek M.; Perdue, Mary H.

    2006-01-01

    There is increasing evidence that stress plays a role in the pathophysiology of chronic intestinal disorders, but the mechanisms remain unclear. Previous studies in rats have revealed that stress decreases gut barrier function and allows excessive uptake of luminal material. Here, we investigated whether chronic psychological stress acts to induce sensitization of intestinal tissues to oral antigens. Rats were subjected to 1 hour per day of water avoidance stress or sham stress daily for 10 days, and horseradish peroxidase (HRP) was delivered by gavage on day 5. Studies to determine sensitization were conducted on day 20. All stressed rats developed HRP-specific IgE antibodies, antigen-induced intestinal secretion, and increased numbers of inflammatory cells in gut mucosa. Luminal HRP was absorbed more readily by enterocytes of stressed animals. In addition, stressed rats had increased expression of interleukin-4 and decreased expression of interferon-? in gut mucosa, a cytokine profile that is typical of allergic conditions. Treatment of stressed rats with an antagonist to corticotropin-releasing hormone (previously shown to inhibit stress-enhanced gut permeability) eliminated the manifestations of intestinal hypersensitivity. Our results indicate that the presence of oral antigen during chronic psychological stress alters the immune response (to sensitization rather than oral tolerance) and causes subsequent antigen-induced gut pathophysiology. PMID:16400013

  4. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine.

    PubMed

    Kim, Kwang Soon; Hong, Sung-Wook; Han, Daehee; Yi, Jaeu; Jung, Jisun; Yang, Bo-Gie; Lee, Jun Young; Lee, Minji; Surh, Charles D

    2016-02-19

    Dietary antigens are normally rendered nonimmunogenic through a poorly understood "oral tolerance" mechanism that involves immunosuppressive regulatory T (Treg) cells, especially Treg cells induced from conventional T cells in the periphery (pTreg cells). Although orally introducing nominal protein antigens is known to induce such pTreg cells, whether a typical diet induces a population of pTreg cells under normal conditions thus far has been unknown. By using germ-free mice raised and bred on an elemental diet devoid of dietary antigens, we demonstrated that under normal conditions, the vast majority of the small intestinal pTreg cells are induced by dietary antigens from solid foods. Moreover, these pTreg cells have a limited life span, are distinguishable from microbiota-induced pTreg cells, and repress underlying strong immunity to ingested protein antigens. PMID:26822607

  5. O-Antigen Delays Lipopolysaccharide Recognition and Impairs Antibacterial Host Defense in Murine Intestinal Epithelial Cells

    PubMed Central

    Duerr, Claudia U.; Zenk, Sebastian F.; Chassin, Cécilia; Pott, Johanna; Gütle, Dominique; Hensel, Michael; Hornef, Mathias W.

    2009-01-01

    Although Toll-like receptor (TLR) 4 signals from the cell surface of myeloid cells, it is restricted to an intracellular compartment and requires ligand internalization in intestinal epithelial cells (IECs). Yet, the functional consequence of cell-type specific receptor localization and uptake-dependent lipopolysaccharide (LPS) recognition is unknown. Here, we demonstrate a strikingly delayed activation of IECs but not macrophages by wildtype Salmonella enterica subsp. enterica sv. (S.) Typhimurium as compared to isogenic O-antigen deficient mutants. Delayed epithelial activation is associated with impaired LPS internalization and retarded TLR4-mediated immune recognition. The O-antigen-mediated evasion from early epithelial innate immune activation significantly enhances intraepithelial bacterial survival in vitro and in vivo following oral challenge. These data identify O-antigen expression as an innate immune evasion mechanism during apical intestinal epithelial invasion and illustrate the importance of early innate immune recognition for efficient host defense against invading Salmonella. PMID:19730692

  6. Rat intestinal mucosal responses to a microbial flora and different diets.

    PubMed Central

    Sharma, R; Schumacher, U; Ronaasen, V; Coates, M

    1995-01-01

    The effects of diet on the histochemical composition of intestinal mucosubstances and the morphology of the villi and crypts were investigated by comparing the data of germ free and conventionally maintained rats fed either a purified diet or a commercial diet. The influence of intestinal microflora was evaluated by comparing the germ free rats and those harbouring either a conventional rat flora or a human microbial flora. In both germ free rats and those maintained conventionally, feeding a purified diet resulted in shallower crypts in the small intestine but deeper crypts in the large intestine compared with their counterparts fed on the commercial diet. The preliminary data obtained with association of human flora showed a reduction of the villus height and crypt depth in the small intestine and, to some extent, the amount of neutral mucins in the goblet cells of both small and large intestine and an increase in the amount of sulphated mucins in the large intestine. In rats given the commercial diet the periodic acid Schiff staining for neutral mucins was more intense in the upper crypts of the small intestine than in the lower crypts, and to a lesser extent in the upper crypts of the large intestine. These results provide evidence that the dietary composition, microbial flora, as well as the interactions between the dietary constituents and microbial flora change the mucosal architecture and the mucus composition and therefore alter the functional characteristics of the intestinal tract. Images Figure 1 Figure 2 PMID:7883219

  7. Unfolded protein responses in the intestinal epithelium: sensors for the microbial and metabolic environment.

    PubMed

    Rath, Eva; Haller, Dirk

    2012-10-01

    In inflammatory bowel disease, the intestinal microbiota is a key driver of inflammation. Hence, efficient sensing of luminal antigens and subsequent initiation of adequate immune responses is crucial for maintaining homeostasis, particularly in intestinal epithelial cells. Pathways such as Toll-like receptor-mediated signaling and autophagy sense microbial products to activate inflammatory processes and, concomitantly, interact with cellular stress responses such as the unfolded protein response (UPR). Proteostasis is particularly sensitive toward environmental challenges and triggers, such as oxidative stress and metabolic alterations, and impact protein folding in different cellular compartments. In contrast, disturbances in energy supply including impaired mitochondrial function and epithelial ?-oxidation have been suspected to contribute toward intestinal inflammation. Interestingly, the 2 main organelles linking metabolic pathways, inflammatory signaling and pathogen-sensing, endoplasmic reticulum (ER) and mitochondria (mt), can trigger distinct UPRs, and both ER UPR and mt UPR have been shown to be disease-relevant in inflammatory bowel disease. The ER is essential for the coordination of metabolic responses through controlling the synthetic and catabolic pathways of various nutrients and furthermore, ER UPR signaling directly intersects with inflammation-associated NF-?B and Toll-like receptor pathways. Consistently, next to their function in cellular energy supply, mitochondria are increasingly recognized as integrators of immune responses. For instance, mitochondria participate in innate immunity to viral infection through the pattern recognition receptor retinoic acid inducible gene-I and are involved in inflammasome activation. Thus, we hypothesize that a concerted UPR activation might represent an innate mechanism to sense potentially threatening changes of the mucosal metabolic environment and impacts host cellular functions and immune responses. PMID:22955354

  8. Effect of pre-slaughter stressors on intestinal microbial populations of pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The swine intestinal microbiota is a complex ecosystem, which may be disturbed by many factors. Studies have focused on the relation between antimicrobial use and resistance in intestinal microbial populations, whereas the effect of non-antimicrobial factors, such as stress, remains unknown. During ...

  9. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice

    PubMed Central

    Huang, Yen-Lin; Chassard, Christophe; Hausmann, Martin; von Itzstein, Mark; Hennet, Thierry

    2015-01-01

    Rapid shifts in microbial composition frequently occur during intestinal inflammation, but the mechanisms underlying such changes remain elusive. Here we demonstrate that an increased caecal sialidase activity is critical in conferring a growth advantage for some bacteria including Escherichia coli (E. coli) during intestinal inflammation in mice. This sialidase activity originates among others from Bacteroides vulgatus, whose intestinal levels expand after dextran sulphate sodium administration. Increased sialidase activity mediates the release of sialic acid from intestinal tissue, which promotes the outgrowth of E. coli during inflammation. The outburst of E. coli likely exacerbates the inflammatory response by stimulating the production of pro-inflammatory cytokines by intestinal dendritic cells. Oral administration of a sialidase inhibitor and low levels of intestinal α2,3-linked sialic acid decrease E. coli outgrowth and the severity of colitis in mice. Regulation of sialic acid catabolism opens new perspectives for the treatment of intestinal inflammation as manifested by E. coli dysbiosis. PMID:26303108

  10. New perspective on dextran sodium sulfate colitis: antigen-specific T cell development during intestinal inflammation.

    PubMed

    Morgan, Mary E; Zheng, Bin; Koelink, Pim J; van de Kant, Hendrick J G; Haazen, Lizette C J M; van Roest, Manon; Garssen, Johan; Folkerts, Gert; Kraneveld, Aletta D

    2013-01-01

    CD4+ T cell responses against oral antigens can develop in inflammatory bowel disease (IBD) patients, which may modulate disease. Dextran sodium sulfate (DSS) colitis is commonly used to study IBD, however, it is not considered the best model in which to study T cell involvement in intestinal disease. Our aim was to determine if antigen-specific T cells could be induced during DSS colitis and if they could be detected after disease resolution. To induce antigen-specific T cells, the tracking antigen, ovalbumin (OVA), was administered orally during colitis initiation. Disease severity was monitored, and the antigen-reactivity of CD4+ T cells examined using CD69 expression. While OVA-directed, CD4+ Foxp3+ regulatory T cells could be detected in the spleens of both OVA-treated control and DSS mice, OVA-reactive, CD4+ Foxp3-T cells were only found in the OVA and DSS-treated mice. These results indicate that during DSS colitis T cells develop that are specific against oral antigens, and they are found systemically after colitis resolution. This gives added depth and utility to the DSS model as well as a way to track T cells that are primed against luminal antigens. PMID:23936123

  11. The composition of the zebrafish intestinal microbial community varies across development.

    PubMed

    Zac Stephens, W; Burns, Adam R; Stagaman, Keaton; Wong, Sandi; Rawls, John F; Guillemin, Karen; Bohannan, Brendan J M

    2016-03-01

    The assembly of resident microbial communities is an important event in animal development; however, the extent to which this process mirrors the developmental programs of host tissues is unknown. Here we surveyed the intestinal bacteria at key developmental time points in a sibling group of 135 individuals of a model vertebrate, the zebrafish (Danio rerio). Our survey revealed stage-specific signatures in the intestinal microbiota and extensive interindividual variation, even within the same developmental stage. Microbial community shifts were apparent during periods of constant diet and environmental conditions, as well as in concert with dietary and environmental change. Interindividual variation in the intestinal microbiota increased with age, as did the difference between the intestinal microbiota and microbes in the surrounding environment. Our results indicate that zebrafish intestinal microbiota assemble into distinct communities throughout development, and that these communities are increasingly different from the surrounding environment and from one another. PMID:26339860

  12. An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells

    NASA Astrophysics Data System (ADS)

    Powell, Jonathan J.; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E.; Skepper, Jeremy N.; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A.; Gomez-Morilla, Inmaculada; Grime, Geoffrey W.; Kirkby, Karen J.; Mabbott, Neil A.; Donaldson, David S.; Williams, Ifor R.; Rios, Daniel; Girardin, Stephen E.; Haas, Carolin T.; Bruggraber, Sylvaine F. A.; Laman, Jon D.; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P. H.; Pele, Laetitia C.

    2015-05-01

    In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1’, whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis.

  13. An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells.

    PubMed

    Powell, Jonathan J; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E; Skepper, Jeremy N; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Gomez-Morilla, Inmaculada; Grime, Geoffrey W; Kirkby, Karen J; Mabbott, Neil A; Donaldson, David S; Williams, Ifor R; Rios, Daniel; Girardin, Stephen E; Haas, Carolin T; Bruggraber, Sylvaine F A; Laman, Jon D; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P H; Pele, Laetitia C

    2015-04-01

    In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule 'programmed death-ligand 1', whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis. PMID:25751305

  14. An Endogenous Nanomineral Chaperones Luminal Antigen and Peptidoglycan to Intestinal Immune Cells

    PubMed Central

    Powell, Jonathan J; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E; Skepper, Jeremy N; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Gomez-Morilla, Inmaculada; Grime, Geoffrey W; Kirkby, Karen J; Mabbott, Neil A; Donaldson, David S; Williams, Ifor R; Rios, Daniel; Girardin, Stephen E; Haas, Carolin T; Bruggraber, Sylvaine FA; Laman, Jon D; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P H; Pele, Laetitia C

    2015-01-01

    In humans and other mammals, it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally-fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer’s patches - small areas of the intestine concentrated with particle-scavenging immune cells. In wild type mice, intestinal immune cells containing these naturally-formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1 (PD-L1)’, whereas in NOD1/2 double knock-out mice, which cannot recognize peptidoglycan, PD-L1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and how this helps to shape intestinal immune homeostasis. PMID:25751305

  15. Microbial antigenic variation mediated by homologous DNA recombination

    PubMed Central

    Vink, Cornelis; Rudenko, Gloria; Seifert, H. Steven

    2012-01-01

    Pathogenic microorganisms employ numerous molecular strategies in order to delay or circumvent recognition by the immune system of their host. One of the most widely used strategies of immune evasion is antigenic variation, in which immunogenic molecules expressed on the surface of a microorganism are continuously modified. As a consequence, the host is forced to constantly adapt its humoral immune response against this pathogen. An antigenic change thus provides the microorganism with an opportunity to persist and/or replicate within the host (population) for an extended period of time or to effectively infect a previously infected host. In most cases, antigenic variation is caused by genetic processes that lead to modification of the amino acid sequence of a particular antigen or to alterations in the expression of biosynthesis genes that induce changes in expression of a variant antigen. Here, we will review antigenic variation systems that rely on homologous DNA recombination and which are found in a wide range of cellular, human pathogens, including bacteria (such as Neisseria spp., Borrelia spp., Treponema pallidum and Mycoplasma spp.), fungi (like Pneumocystis carinii) and parasites (such as the African trypanosome Trypanosoma brucei). Specifically, the various DNA recombination-based antigenic variation systems will be discussed with a focus on the employed mechanisms of recombination, the DNA substrates, and the enzymatic machinery involved. PMID:22212019

  16. Starch microparticles as oral vaccine adjuvant: antigen-dependent uptake in mouse intestinal mucosa.

    PubMed

    Larhed, Agneta; Stertman, Linda; Edvardsson, Emma; Sjöholm, Ingvar

    2004-06-01

    An oral vaccine formulation comprised of starch microparticles with conjugated antigens is being developed. In this report we have examined the uptake of such microparticles by the intestinal mucosa and examined whether the conjugated antigen can influence the uptake. Two model antigens were used: recombinant cholera toxin B subunit (rCTB), which is known to bind to the ubiquitous GM1-receptor, and human serum albumin (HSA) which is not known to have any specific binding properties. The uptake was studied in mouse ligated intestinal loops into which the microparticles were injected. The intestinal loops were excised, fixed in ice-cold 95% ethanol. Entire specimens were mounted, exposed to fluorescence-labeled reagents staining the cytoskeleton, the particles and/or M cells and examined in a confocal laser-scanning microscope. A qualitative difference in the uptake of the rCTB- and HSA-conjugated microparticles was seen. The rCTB-conjugated microparticles were found both in villi and in the follicles of the Peyer's patches. HSA-conjugated microparticles could only be detected in the follicles of the Peyer's patches and not in villi. The rCTB conjugated to the microparticles did not lose its ability to bind the GM1-receptor, as shown with a GM1-ELISA, and the uptake of rCTB-conjugated microparticles in villi is most probably facilitated by the rCTB binding to the GM1-receptor. The qualitative difference in uptake could be of importance for the development of an immune response as the cytokine and chemokine microenvironment during antigen presentation will decide the differentiation of the immune response induced. PMID:15512780

  17. Toll-dependent selection of microbial antigens for presentation by dendritic cells.

    PubMed

    Blander, J Magarian; Medzhitov, Ruslan

    2006-04-01

    Dendritic cells constitutively sample the tissue microenvironment and phagocytose both microbial and host apoptotic cells. This leads to the induction of immunity against invading pathogens or tolerance to peripheral self antigens, respectively. The outcome of antigen presentation by dendritic cells depends on their activation status, such that Toll-like receptor (TLR)-induced dendritic cell activation makes them immunogenic, whereas steady-state presentation of self antigens leads to tolerance. TLR-inducible expression of co-stimulatory signals is one of the mechanisms of self/non-self discrimination. However, it is unclear whether or how the inducible expression of co-stimulatory signals would distinguish between self antigens and microbial antigens when both are encountered by dendritic cells during infection. Here we describe a new mechanism of antigen selection in dendritic cells for presentation by major histocompatibility complex class II molecules (MHC II) that is based on the origin of the antigen. We show that the efficiency of presenting antigens from phagocytosed cargo is dependent on the presence of TLR ligands within the cargo. Furthermore, we show that the generation of peptide-MHC class II complexes is controlled by TLRs in a strictly phagosome-autonomous manner. PMID:16489357

  18. Effect of specific antigen stimulation on intraepithelial lymphocyte migration to small intestinal mucosa

    PubMed Central

    Komoto, S; Miura, S; Koseki, S; Goto, M; Hachimura, S; Fujimori, H; Hokari, R; Hara, Y; Ogino, T; Watanabe, C; Nagata, H; Kaminogawa, S; Hibi, T; Ishii, H

    2005-01-01

    Migration of intraepithelial lymphocytes (IELs) into intestinal epithelium is not yet well understood. We established an IEL-cell line from ovalbumin (OVA) 233 transgenic (Tg) mice and investigated the effect of antigen stimulation on the dynamic process of IEL migration into small intestinal mucosa. The cell line was a T cell receptor (TCR) ??+ CD4+ CD8 phenotype, expressing ?E?7 integrin in 90% of cells. Under intravital microscopy, the lined IELs adhered selectively to the microvessels of the intestinal villus tip of the Tg mice. The accumulation of IELs was significantly inhibited by an antibody against ?7-integrin and MAdCAM-1. When IELs were stimulated with OVA, the accumulation was attenuated compared to that of resting cells, with decreased expression of ?E?7 integrin. In Tg mice fed with OVA, the number of IELs which migrated in the villus mucosa was significantly smaller than in the non-fed controls. The preferential migratory capacity of IELs to villus mucosa may be altered by specific antigen stimulations. PMID:15807848

  19. Microbial activities and intestinal homeostasis: A delicate balance between health and disease

    PubMed Central

    Ohland, Christina L.; Jobin, Christian

    2015-01-01

    The concept that the intestinal microbiota modulates numerous physiological processes including immune development and function, nutrition and metabolism as well as pathogen exclusion is relatively well established in the scientific community. The molecular mechanisms driving these various effects and the events leading to the establishment of a “healthy” microbiome are slowly emerging. The objective of this review is to bring into focus important aspects of microbial/host interactions in the intestine and to discuss key molecular mechanisms controlling health and disease states. We will discuss recent evidence on how microbes interact with the host and one another and their impact on intestinal homeostasis. PMID:25729763

  20. Gut Microbial Colonization Orchestrates TLR2 Expression, Signaling and Epithelial Proliferation in the Small Intestinal Mucosa

    PubMed Central

    Hrmann, Nives; Brando, Ins; Jckel, Sven; Ens, Nelli; Lillich, Maren; Walter, Ulrich; Reinhardt, Christoph

    2014-01-01

    The gut microbiota is an environmental factor that determines renewal of the intestinal epithelium and remodeling of the intestinal mucosa. At present, it is not resolved if components of the gut microbiota can augment innate immune sensing in the intestinal epithelium via the up-regulation of Toll-like receptors (TLRs). Here, we report that colonization of germ-free (GF) Swiss Webster mice with a complex gut microbiota augments expression of TLR2. The microbiota-dependent up-regulation of components of the TLR2 signaling complex could be reversed by a 7 day broad-spectrum antibiotic treatment. TLR2 downstream signaling via the mitogen-activated protein kinase (ERK1/2) and protein-kinase B (AKT) induced by bacterial TLR2 agonists resulted in increased proliferation of the small intestinal epithelial cell line MODE-K. Mice that were colonized from birth with a normal gut microbiota (conventionally-raised; CONV-R) showed signs of increased small intestinal renewal and apoptosis compared with GF controls as indicated by elevated mRNA levels of the proliferation markers Ki67 and Cyclin D1, elevated transcripts of the apoptosis marker Caspase-3 and increased numbers of TUNEL-positive cells per intestinal villus structure. In accordance, TLR2-deficient mice showed reduced proliferation and reduced apoptosis. Our findings suggest that a tuned proliferation response of epithelial cells following microbial colonization could aid to protect the host from its microbial colonizers and increase intestinal surface area. PMID:25396415

  1. EatA, an Immunogenic Protective Antigen of Enterotoxigenic Escherichia coli, Degrades Intestinal Mucin

    PubMed Central

    Kumar, Pardeep; Luo, Qingwei; Vickers, Tim J.; Sheikh, Alaullah; Lewis, Warren G.

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity and mortality due to infectious diarrhea in developing countries for which there is presently no effective vaccine. A central challenge in ETEC vaccinology has been the identification of conserved surface antigens to formulate a broadly protective vaccine. Here, we demonstrate that EatA, an immunogenic secreted serine protease of ETEC, contributes to virulence by degrading MUC2, the major protein present in the small intestinal mucous layer, and that removal of this barrier in vitro accelerates toxin access to the enterocyte surface. In addition, we demonstrate that vaccination with the recombinant secreted passenger domain of EatA (rEatAp) elicits high titers of antibody and is protective against intestinal infection with ETEC. These findings may have significant implications for development of both subunit and live-attenuated vaccines against ETEC and other enteric pathogens, including Shigella flexneri, that express similar proteins. PMID:24478066

  2. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor gamma delta

    SciTech Connect

    Bandeira, A.; Itohara, S.; Bonneville, M.; Burlen-Defranoux, O.; Mota-Santos, T.; Coutinho, A.; Tonegawa, S. )

    1991-01-01

    The kinetics of postnatal intestinal colonization by T cells carrying gamma delta and alpha beta T-cell antigen receptors were studied in nude and normal mice by flow cytometry and immunohistology. Furthermore, gamma delta and alpha beta T-cell development was analyzed in lethally irradiated mice that were reconstituted by fetal liver precursors with or without a thymus. Our results establish that a major subpopulation of gamma delta intestinal intraepithelial lymphocytes is produced from uncommitted precursors at extrathymic sites. This work further shows that a small pool of T cells carrying alpha beta T-cell receptors can also differentiate extrathymically from CD3- fetal liver precursors but with rates of production and peripheral expansion much reduced as compared with those observed in thymus-bearing animals.

  3. Microbial production of volatile sulphur compounds in the large intestine of pigs fed two different diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only little is known about the microbial production of volatile sulphur compounds (VSC) in the 18 gastrointestinal tract, the dietary influence, and the magnitude of this production. To investigate intestinal VSC production in more detail, pigs were fed diets based on either wheat and barley (CONTRO...

  4. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weaning and transport stress can have a negative impact on the piglet's immune system and intestinal microbiota. The objective of this study was to determine the influence of a yeast product on innate immunity and microbial ecology of the gastrointestinal tract following stress of weaning and trans...

  5. Enzyme-linked immunospot assay (ELISPOT): Quantification of Th-1 cellular immune responses against microbial antigens.

    PubMed

    Chambers, Isfahan R; Cone, Tiffany R; Oswald-Richter, Kyra; Drake, Wonder P

    2010-01-01

    Adaptive immunity is an important component to clearance of intracellular pathogens. The ability to detect and quantify these responses in humans is an important diagnostic tool. The enzyme-linked immunospot assay (ELISPOT) is gaining popularity for its ability to identify cellular immune responses against microbial antigens, including immunosuppressed populations such as those with HIV infection, transplantation, and steroid use. This assay has the capacity to quantify the immune responses against specific microbial antigens, as well as distinguish if these responses are Th1 or Th2 in character. ELISPOT is not limited to the site of inflammation. It is versatile in its ability to assess for immune responses within peripheral blood, as well as sites of active involvement such as bronchoalveolar lavage, cerebral spinal fluid, and ascites. Detection of immune responses against a single or multiple antigens is possible, as well as specific epitopes within microbial proteins. This assay facilitates detection of immune responses over time, as well as distinctions in antigens recognized by host T cells. Dual color ELISPOT assays are available for detection of simultaneous expression of two cytokines. Recent applications for this technique include diagnosis of extrapulmonary tuberculosis, as well as investigation of the contribution of infectious antigens to autoimmune diseases. PMID:21178951

  6. TLR sorting by Rab11 endosomes maintains intestinal epithelial-microbial homeostasis.

    PubMed

    Yu, Shiyan; Nie, Yingchao; Knowles, Byron; Sakamori, Ryotaro; Stypulkowski, Ewa; Patel, Chirag; Das, Soumyashree; Douard, Veronique; Ferraris, Ronaldo P; Bonder, Edward M; Goldenring, James R; Ip, Yicktung Tony; Gao, Nan

    2014-09-01

    Compartmentalization of Toll-like receptors (TLRs) in intestinal epithelial cells (IECs) regulates distinct immune responses to microbes; however, the specific cellular machinery that controls this mechanism has not been fully identified. Here we provide genetic evidences that the recycling endosomal compartment in enterocytes maintains a homeostatic TLR9 intracellular distribution, supporting mucosal tolerance to normal microbiota. Genetic ablation of a recycling endosome resident small GTPase, Rab11a, a gene adjacent to a Crohn's disease risk locus, in mouse IECs and in Drosophila midgut caused epithelial cell-intrinsic cytokine production, inflammatory bowel phenotype, and early mortality. Unlike wild-type controls, germ-free Rab11a-deficient mouse intestines failed to tolerate the intraluminal stimulation of microbial agonists. Thus, Rab11a endosome controls intestinal host-microbial homeostasis at least partially via sorting TLRs. PMID:25063677

  7. TLR sorting by Rab11 endosomes maintains intestinal epithelial-microbial homeostasis

    PubMed Central

    Yu, Shiyan; Nie, Yingchao; Knowles, Byron; Sakamori, Ryotaro; Stypulkowski, Ewa; Patel, Chirag; Das, Soumyashree; Douard, Veronique; Ferraris, Ronaldo P; Bonder, Edward M; Goldenring, James R; Ip, Yicktung Tony; Gao, Nan

    2014-01-01

    Compartmentalization of Toll-like receptors (TLRs) in intestinal epithelial cells (IECs) regulates distinct immune responses to microbes; however, the specific cellular machinery that controls this mechanism has not been fully identified. Here we provide genetic evidences that the recycling endosomal compartment in enterocytes maintains a homeostatic TLR9 intracellular distribution, supporting mucosal tolerance to normal microbiota. Genetic ablation of a recycling endosome resident small GTPase, Rab11a, a gene adjacent to a Crohn's disease risk locus, in mouse IECs and in Drosophila midgut caused epithelial cell-intrinsic cytokine production, inflammatory bowel phenotype, and early mortality. Unlike wild-type controls, germ-free Rab11a-deficient mouse intestines failed to tolerate the intraluminal stimulation of microbial agonists. Thus, Rab11a endosome controls intestinal host-microbial homeostasis at least partially via sorting TLRs. PMID:25063677

  8. MICROBIAL SUCCESSION AND INTESTINAL ENZYME ACTIVITIES IN THE DEVELOPING RAT

    EPA Science Inventory

    The succession of gastrointestinal flora in the developing rat was studied, concomitant with studies of intestinal enzyme activity. Aerobes and anaerobes were identified as members of 4 major bacterial groups, i.e., Lactobacilli spp., Gram positive enterococci, Gram negative rods...

  9. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation

    PubMed Central

    Goto, Yoshiyuki; Panea, Casandra; Nakato, Gaku; Cebula, Anna; Lee, Carolyn; Diez, Marta Galan; Laufer, Terri M.; Ignatowicz, Leszek; Ivanov, Ivaylo I.

    2014-01-01

    SUMMARY How commensal microbiota contributes to immune cell homeostasis at barrier surfaces is poorly understood. Lamina propria (LP) T helper 17 (Th17) cells participate in mucosal protection and are induced by commensal segmented filamentous bacteria (SFB). Here we show that MHCII-dependent antigen presentation of SFB antigens by intestinal dendritic cells (DCs) is crucial for Th17 cell induction. Expression of MHCII on CD11c+ cells was necessary and sufficient for SFB-induced Th17 cell differentiation. Most SFB-induced Th17 cells recognized SFB in an MHCII-dependent manner. SFB primed and induced Th17 cells locally in the LP and Th17 cell induction occurred normally in mice lacking secondary lymphoid organs. The importance of other innate cells was unveiled by the finding that MHCII deficiency in group 3 innate lymphoid cells (ILCs) resulted in an increase in SFB independent Th17 cell differentiation. Our results outline the complex role of DCs and ILCs in the regulation of intestinal Th17 cell homeostasis PMID:24684957

  10. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation.

    PubMed

    Goto, Yoshiyuki; Panea, Casandra; Nakato, Gaku; Cebula, Anna; Lee, Carolyn; Diez, Marta Galan; Laufer, Terri M; Ignatowicz, Leszek; Ivanov, Ivaylo I

    2014-04-17

    How commensal microbiota contributes to immune cell homeostasis at barrier surfaces is poorly understood. Lamina propria (LP) T helper 17 (Th17) cells participate in mucosal protection and are induced by commensal segmented filamentous bacteria (SFB). Here we show that MHCII-dependent antigen presentation of SFB antigens by intestinal dendritic cells (DCs) is crucial for Th17 cell induction. Expression of MHCII on CD11c(+) cells was necessary and sufficient for SFB-induced Th17 cell differentiation. Most SFB-induced Th17 cells recognized SFB in an MHCII-dependent manner. SFB primed and induced Th17 cells locally in the LP and Th17 cell induction occurred normally in mice lacking secondary lymphoid organs. The importance of other innate cells was unveiled by the finding that MHCII deficiency in group 3 innate lymphoid cells (ILCs) resulted in an increase in SFB-independent Th17 cell differentiation. Our results outline the complex role of DCs and ILCs in the regulation of intestinal Th17 cell homeostasis. PMID:24684957

  11. Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization.

    PubMed

    Johansson, Malin E V; Jakobsson, Hedvig E; Holmn-Larsson, Jessica; Schtte, Andr; Ermund, Anna; Rodrguez-Pieiro, Ana M; Arike, Liisa; Wising, Catharina; Svensson, Frida; Bckhed, Fredrik; Hansson, Gunnar C

    2015-11-11

    The intestinal mucus layer provides a barrier limiting bacterial contact with the underlying epithelium. Mucus structure is shaped by intestinal location and the microbiota. To understand how commensals modulate gut mucus, we examined mucus properties under germ-free (GF) conditions and during microbial colonization. Although the colon mucus organization of GF mice was similar to that of conventionally raised (Convr) mice, the GF inner mucus layer was penetrable to bacteria-sized beads. During colonization, in which GF mice were gavaged with Convr microbiota, the small intestine mucus required 5weeks to be normally detached and colonic inner mucus 6weeks to become impenetrable. The composition of the small intestinal microbiota during colonization was similar to Convr donors until 3weeks, when Bacteroides increased, Firmicutes decreased, and segmented filamentous bacteria became undetectable. These findings highlight the dynamics of mucus layer development and indicate that studies of mature microbe-mucus interactions should be conducted weeks after colonization. PMID:26526499

  12. Host and Microbial Factors in Regulation of T Cells in the Intestine

    PubMed Central

    Kim, Chang H.

    2013-01-01

    The intestine is divided into specialized tissue areas that provide distinct microenvironments for T cells. Regulation of T-cell responses in the gut has been a major focus of recent research activities in the field. T cells in the intestine are regulated by the interplay between host and microbial factors. In the small intestine, retinoic acid (RA) is a major tissue factor that plays important roles in regulation of immune responses. In the large intestine, the influence of RA diminishes, but that of commensal bacterial products increases. RA, gut microbiota, and inflammatory mediators co-regulate differentiation, distribution, and/or effector functions of T cells. Coordinated regulation of immune responses by these factors promotes well-balanced immunity and immune tolerance. Dysregulation of this process can increase infection and inflammatory diseases. PMID:23772228

  13. Comparison of microbial populations in the small intestine, large intestine and feces of healthy horses using terminal restriction fragment length polymorphism

    PubMed Central

    2013-01-01

    Background The composition of the microbiota of the equine intestinal tract is complex. Determining whether the microbial composition of fecal samples is representative of proximal compartments of the digestive tract could greatly simplify future studies. The objectives of this study were to compare the microbial populations of the duodenum, ileum, cecum, colon and rectum (feces) within and between healthy horses, and to determine whether rectal (fecal) samples are representative of proximal segments of the gastrointestinal tract. Intestinal samples were collected from ten euthanized horses. 16S rRNA gene PCR-based TRFLP was used to investigate microbiota richness in various segments of the gastrointestinal tract, and dice similarity indices were calculated to compare the samples. Results Within horses large variations of microbial populations along the gastrointestinal tract were seen. The microbiota in rectal samples was only partially representative of other intestinal compartments. The highest similarity was obtained when feces were compared to the cecum. Large compartmental variations were also seen when microbial populations were compared between six horses with similar dietary and housing management. Conclusion Rectal samples were not entirely representative of intestinal compartments in the small or large intestine. This should be taken into account when designing studies using fecal sampling to assess other intestinal compartments. Similarity between horses with similar dietary and husbandry management was also limited, suggesting that parts of the intestinal microbiota were unique to each animal in this study. PMID:23497580

  14. The intestinal microbiota in health and disease: the influence of microbial products on immune cell homeostasis

    PubMed Central

    Abt, Michael C.; Artis, David

    2016-01-01

    Purpose of review A vast and diverse array of microbes colonizes the mammalian gastrointestinal tract. These microorganisms are integral in shaping the development and function of the immune system. Metagenomic sequencing analysis has revealed alterations in intestinal microbiota in patients suffering from chronic inflammatory diseases, including inflammatory bowel disease and asthma. This review will discuss the mechanisms through which the innate immune system recognizes and responds to the intestinal microbiota as well as the effect of specific microbiota-derived signals on immune cell homeostasis. Recent findings Recent studies in murine model systems have demonstrated that manipulation of the intestinal microbiota can alter mammalian immune cell homeostasis. Specific microbial signals have been identified that can impact immune cell function both within the intestinal tract and in peripheral tissues. These microbiota-derived signals can either have an immunoregulatory effect, creating an immune state that is refractory to inflammation, or conversely, act as an adjuvant, aiding in the propagation of an immune response. Summary Associations between alterations in the microbiota and human disease implicate intestinal microbial signals in shaping immune responses. These signals are recognized by innate immune cells and influence the ability of these cells to modulate both the local and systemic immune response. PMID:19770652

  15. PCR-DGGE analysis of intestinal bacteria and effect of Bacillus spp. on intestinal microbial diversity in kuruma shrimp ( Marsupenaeus japonicus)

    NASA Astrophysics Data System (ADS)

    Liu, Huaide; Liu, Mei; Wang, Baojie; Jiang, Keyong; Jiang, Shan); Sun, Shujuan; Wang, Lei

    2010-07-01

    In this study, the intestinal microbiota of kuruma shrimp ( Marsupenaeus japonicus) was examined by molecular analysis of the 16S rDNA to identify the dominant intestinal bacteria and to investigate the effects of Bacillus spp. on intestinal microbial diversity. Samples of the intestines of kuruma shrimp fed normal feed and Bacillus spp. amended feed. PCR and denaturing gradient gel electrophoresis (DGGE) analyses were then performed on DNA extracted directly from the guts. Population fingerprints of the predominant organisms were generated by DGGE analysis of the universal V3 16S rDNA amplicons, and distinct bands in the gels were sequenced. The results suggested that the gut of kuruma shrimp was dominated by Vibrio sp. and uncultured gamma proteobacterium. Overall, the results of this study suggest that PCR-DGGE is a possible method of studying the intestinal microbial diversity of shrimp.

  16. Fecal Calprotectin levels and Serological Responses to Microbial Antigens among Children and Adolescents with Inflammatory Bowel Disease

    PubMed Central

    Ashorn, Sara; Honkanen, Teemu; Kolho, Kaija-Leena; Ashorn, Merja; Vlineva, Tuuli; Wei, Bo; Braun, Jonathan; Rantala, Immo; Luukkaala, Tiina; Iltanen, Sari

    2008-01-01

    Objectives Non-invasive, sensitive and specific tools for early identification of chronic inflammatory bowel diseases (IBD) are needed for clinical practice. The aim was to identify new non-invasive test combinations for characterization of IBD in children and adolescents by comparing serological responses to microbial antigens and fecal calprotectin, a new promising marker for intestinal inflammation. Patients and methods Our study included 73 children who underwent endoscopies because of suspicion of IBD. Their sera were tested for antibodies to the Pseudomonas fluorescens-associated sequence I2, a Bacteroides caccae TonB-linked outer membrane protein, OmpW and anti-Saccharomyces cerevisiae (ASCA). Simultaneously, samples for fecal calprotectin measurements were obtained from 55 subjects. Results IBD was diagnosed in 60 patients (CD in 18 patients, UC in 36 and IC in six). Thirteen children had a non-IBD disease. Fecal calprotectin levels were elevated (? 100ug/g) more frequently in IBD patients (89%, 39/44) compared to non-IBD cases (9%, 1/11, p<0.001). ASCA antibodies in sera were detected in 67% (12/18) of patients with CD, in 14% (5/36) of the children with UC and in 50% (3/6) of patients with IC. Seroreactivity for I2 was observed in 42% of the IBD patients, this frequency being higher than in non-IBD cases (7,7% seropositive; p=0.025). Serum anti-I2 IgA levels (median absorbances) were higher in those with IBD compared to those without gut inflammation (p=0.039). The combination of the measurements of fecal calprotectin and serological responses to microbial antigens (ASCA, I2 and OmpW) identified 100% of CD patients (sensitivity 100%, specificity 36%, PPV 66%, NPV 100%) and 89% of UC patients (sensitivity 89%, specificity 36%, PPV 77%, NPV 57%). Conclusions Increased levels of serological responses to microbial antigens (ASCA, I2 and OmpW) and fecal calprotectin are evident in both CD and UC patients. The combination of these markers provides valuable, non-invasive tools for the diagnostics of IBD. PMID:18618670

  17. Deregulation of intestinal anti-microbial defense by the dietary additive, maltodextrin

    PubMed Central

    Nickerson, Kourtney P; Chanin, Rachael; McDonald, Christine

    2015-01-01

    Inflammatory bowel disease (IBD) is a complex, multi-factorial disease thought to arise from an inappropriate immune response to commensal bacteria in a genetically susceptible person that results in chronic, cyclical, intestinal inflammation. Dietary and environmental factors are implicated in the initiation and perpetuation of IBD; however, a singular causative agent has not been identified. As of now, the role of environmental priming or triggers in IBD onset and pathogenesis are not well understood, but these factors appear to synergize with other disease susceptibility factors. In previous work, we determined that the polysaccharide dietary additive, maltodextrin (MDX), impairs cellular anti-bacterial responses and suppresses intestinal anti-microbial defense mechanisms. In this addendum, we review potential mechanisms for dietary deregulation of intestinal homeostasis, postulate how dietary and genetic risk factors may combine to result in disease pathogenesis, and discuss these ideas in the context of recent findings related to dietary interventions for IBD. PMID:25738413

  18. Deregulation of intestinal anti-microbial defense by the dietary additive, maltodextrin.

    PubMed

    Nickerson, Kourtney P; Chanin, Rachael; McDonald, Christine

    2015-01-01

    Inflammatory bowel disease (IBD) is a complex, multi-factorial disease thought to arise from an inappropriate immune response to commensal bacteria in a genetically susceptible person that results in chronic, cyclical, intestinal inflammation. Dietary and environmental factors are implicated in the initiation and perpetuation of IBD; however, a singular causative agent has not been identified. As of now, the role of environmental priming or triggers in IBD onset and pathogenesis are not well understood, but these factors appear to synergize with other disease susceptibility factors. In previous work, we determined that the polysaccharide dietary additive, maltodextrin (MDX), impairs cellular anti-bacterial responses and suppresses intestinal anti-microbial defense mechanisms. In this addendum, we review potential mechanisms for dietary deregulation of intestinal homeostasis, postulate how dietary and genetic risk factors may combine to result in disease pathogenesis, and discuss these ideas in the context of recent findings related to dietary interventions for IBD. PMID:25738413

  19. Synergism between Trichuris suis and the microbial flora of the large intestine causing dysentery in pigs.

    PubMed Central

    Rutter, J M; Beer, R J

    1975-01-01

    The role of the microbial flora of the large intestine in experimental Trichuris suis infection was studied by comparing the clinical syndrome in conventionally reared (CR) pigs, specific pathogen-free pigs, and gnotobiotic pigs. Thedisease in CR pigs was characterized by a severe mucohemorrhagic enteritis; in contrast, a mild catarrhal enteritis was observed in specific pathogen-free and gnotobiotic pigs.Spirochaetes and vibrio-like organisms were observed only in CR pigs and increased during the clinical phase of the disease. The clinical syndrome was not transmitted by oral administration of intestinal or fecal material from infected CR pigs to CR pigs free of T. suis. Smaller numbers of T. suis produced diarrhea in CR pigs and significantly reduced the growth rates of infected animals; clinical signs and the reduction in growth rate was prevented by incorporating an antibacterial substance (dimetridazole) in the food. Although clinical trichuriasis closely resembles swin dysentery, the two syndromes seem to be distinct. The present results suggest that a microbial component acts synergistically with T. suis to produce the severe clinical syndrome in CR pigs, but identification of the microbial component and the mechanism by which clinical signs are produced await further studies of the bacterial flora of the large intestine of pigs. Images PMID:1167536

  20. An imbalance in mucosal cytokine profile causes transient intestinal inflammation following an animal's first exposure to faecal bacteria and antigens

    PubMed Central

    Sydora, B C; MacFarlane, S M; Lupicki, M; Dmytrash, A L; Dieleman, L A; Fedorak, R N

    2010-01-01

    Intestinal microflora play a critical role in the initiation and perpetuation of chronic inflammatory bowel diseases. In genetically susceptible hosts, bacterial colonization results in rapid-onset chronic intestinal inflammation. Nevertheless, the intestinal and systemic immune response to faecal bacteria and antigen exposure into a sterile intestinal lumen of a post-weaned animal with a mature immune system are not understood clearly. This study examined the effects of faecal bacteria and antigen exposure on the intestinal mucosal and systemic immune system in healthy axenic mice. Axenic wild-type mice were inoculated orally with a crude faecal slurry solution derived from conventionally raised mice and were analysed prior to and then at days 3, 7, 14 and 28 post-treatment. Ingestion of faecal slurry resulted in a transient, early onset of proinflammatory interferon (IFN)-γ, tumour necrosis factor (TNF)-α and interleukin (IL)-17 response that was maximal at day 3. In contrast, the transient release of the anti-inflammatory cytokines IL-10 and IL-4 occurred later and was maximal at day 7. Both responses subsided by day 14. This early cytokine imbalance was associated with a brief rise in colonic and caecal histopathological injury score at day 7. The bacterial antigen-specific systemic response was found to follow the intestinal immune response with a maximal release of both pro- and anti-inflammatory cytokines at day 7. Thus, first exposure of healthy axenic wild-type mice to normal faecal flora and antigens results in an early proinflammatory cytokine response and transient colonic inflammation that then resolves in conjunction with a subsequent anti-inflammatory cytokine profile. PMID:20345974

  1. An imbalance in mucosal cytokine profile causes transient intestinal inflammation following an animal's first exposure to faecal bacteria and antigens.

    PubMed

    Sydora, B C; MacFarlane, S M; Lupicki, M; Dmytrash, A L; Dieleman, L A; Fedorak, R N

    2010-07-01

    Intestinal microflora play a critical role in the initiation and perpetuation of chronic inflammatory bowel diseases. In genetically susceptible hosts, bacterial colonization results in rapid-onset chronic intestinal inflammation. Nevertheless, the intestinal and systemic immune response to faecal bacteria and antigen exposure into a sterile intestinal lumen of a post-weaned animal with a mature immune system are not understood clearly. This study examined the effects of faecal bacteria and antigen exposure on the intestinal mucosal and systemic immune system in healthy axenic mice. Axenic wild-type mice were inoculated orally with a crude faecal slurry solution derived from conventionally raised mice and were analysed prior to and then at days 3, 7, 14 and 28 post-treatment. Ingestion of faecal slurry resulted in a transient, early onset of proinflammatory interferon (IFN)-gamma, tumour necrosis factor (TNF)-alpha and interleukin (IL)-17 response that was maximal at day 3. In contrast, the transient release of the anti-inflammatory cytokines IL-10 and IL-4 occurred later and was maximal at day 7. Both responses subsided by day 14. This early cytokine imbalance was associated with a brief rise in colonic and caecal histopathological injury score at day 7. The bacterial antigen-specific systemic response was found to follow the intestinal immune response with a maximal release of both pro- and anti-inflammatory cytokines at day 7. Thus, first exposure of healthy axenic wild-type mice to normal faecal flora and antigens results in an early proinflammatory cytokine response and transient colonic inflammation that then resolves in conjunction with a subsequent anti-inflammatory cytokine profile. PMID:20345974

  2. Intestinal Microbiota, Microbial Translocation, and Systemic Inflammation in Chronic HIV Infection

    PubMed Central

    Dinh, Duy M.; Volpe, Gretchen E.; Duffalo, Chad; Bhalchandra, Seema; Tai, Albert K.; Kane, Anne V.; Wanke, Christine A.; Ward, Honorine D.

    2015-01-01

    Background.?Despite effective antiretroviral therapy (ART), patients with chronic human immunodeficiency virus (HIV) infection have increased microbial translocation and systemic inflammation. Alterations in the intestinal microbiota may play a role in microbial translocation and inflammation. Methods.?We profiled the fecal microbiota by pyrosequencing the gene encoding 16S ribosomal RNA (rRNA) and measured markers of microbial translocation and systemic inflammation in 21 patients who had chronic HIV infection and were receiving suppressive ART (cases) and 16 HIV-uninfected controls. Results.?The fecal microbial community composition was significantly different between cases and controls. The relative abundance of Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, Erysipelotrichi, Erysipelotrichales, Erysipelotrichaceae, and Barnesiella was significantly enriched in cases, whereas that of Rikenellaceae and Alistipes was depleted. The plasma soluble CD14 level (sCD14) was significantly higher and the endotoxin core immunoglobulin M (IgM) level lower in cases, compared with controls. There were significant positive correlations between the relative abundances of Enterobacteriales and Enterobacteriaceae and the sCD14 level; the relative abundances of Gammaproteobacteria, Enterobacteriales, and Enterobacteriaceae and the interleukin 1? (IL-1?) level; the relative abundances of Enterobacteriales and Enterobacteriaceae and the interferon ? level; and the relative abundances of Erysipelotrichi and Barnesiella and the TNF-? level. There were negative correlations between endotoxin core IgM and IL-1? levels. Conclusions.?Patients who have chronic HIV infection and are receiving suppressive ART display intestinal dysbiosis associated with increased microbial translocation and significant associations between specific taxa and markers of microbial translocation and systemic inflammation. This was an exploratory study, the findings of which need to be confirmed. PMID:25057045

  3. Intestinal M cells.

    PubMed

    Ohno, Hiroshi

    2016-02-01

    We have an enormous number of commensal bacteria in our intestine, moreover, the foods that we ingest and the water we drink is sometimes contaminated with pathogenic microorganisms. The intestinal epithelium is always exposed to such microbes, friend or foe, so to contain them our gut is equipped with specialized gut-associated lymphoid tissue (GALT), literally the largest peripheral lymphoid tissue in the body. GALT is the intestinal immune inductive site composed of lymphoid follicles such as Peyer's patches. M cells are a subset of intestinal epithelial cells (IECs) residing in the region of the epithelium covering GALT lymphoid follicles. Although the vast majority of IEC function to absorb nutrients from the intestine, M cells are highly specialized to take up intestinal microbial antigens and deliver them to GALT for efficient mucosal as well as systemic immune responses. I will discuss recent advances in our understanding of the molecular mechanisms of M-cell differentiation and functions. PMID:26634447

  4. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology

    PubMed Central

    Yu, Linda Chia-Hui; Wang, Jin-Town; Wei, Shu-Chen; Ni, Yen-Hsuan

    2012-01-01

    The gastrointestinal tract is the largest reservoir of commensal bacteria in the human body, providing nutrients and space for the survival of microbes while concurrently operating mucosal barriers to confine the microbial population. The epithelial cells linked by tight junctions not only physically separate the microbiota from the lamina propria, but also secrete proinflammatory cytokines and reactive oxygen species in response to pathogen invasion and metabolic stress and serve as a sentinel to the underlying immune cells. Accumulating evidence indicates that commensal bacteria are involved in various physiological functions in the gut and microbial imbalances (dysbiosis) may cause pathology. Commensal bacteria are involved in the regulation of intestinal epithelial cell turnover, promotion of epithelial restitution and reorganization of tight junctions, all of which are pivotal for fortifying barrier function. Recent studies indicate that aberrant bacterial lipopolysaccharide-mediated signaling in gut mucosa may be involved in the pathogenesis of chronic inflammation and carcinogenesis. Our perception of enteric commensals has now changed from one of opportunistic pathogens to active participants in maintaining intestinal homeostasis. This review attempts to explain the dynamic interaction between the intestinal epithelium and commensal bacteria in disease and health status. PMID:22368784

  5. The food contaminant fumonisin B1 reduces the maturation of porcine CD11R1+ intestinal antigen presenting cells and antigen-specific immune responses, leading to a prolonged intestinal ETEC infection

    PubMed Central

    Devriendt, Bert; Gallois, Mélanie; Verdonck, Frank; Wache, Yann; Bimczok, Diane; Oswald, Isabelle P.; Goddeeris, Bruno M.; Cox, Eric

    2009-01-01

    Consumption of food or feed contaminated with fumonisin B1 (FB1), a mycotoxin produced by Fusarium verticillioides, can lead to disease in humans and animals. The present study was conducted to examine the effect of FB1 intake on the intestinal immune system. Piglets were used as a target and as a model species for humans since their gastro-intestinal tract is very similar. The animals were orally exposed to a low dose of FB1 (1 mg/kg body weight FB1) for 10 days which did not result in clinical signs. However, when compared to non-exposed animals, FB1-exposed animals showed a longer shedding of F4+ enterotoxigenic Escherichia coli (ETEC) following infection and a lower induction of the antigen-specific immune response following oral immunization. Further analyses to elucidate the mechanisms behind these observations revealed a reduced intestinal expression of IL-12p40, an impaired function of intestinal antigen presenting cells (APC), with decreased upregulation of Major Histocompatibility Complex Class II molecule (MHC-II) and reduced T cell stimulatory capacity upon stimulation. Taken together, these results indicate an FB1-mediated reduction of in vivo APC maturation. PMID:19389343

  6. Changes in afferent impulse activity of small intestine mesenteric nerves in response to antigen challenge.

    PubMed

    Nozdrachev, A D; Akoev, G N; Filippova, L V; Sherman, N O; Lioudyno, M I; Makarov, F N

    1999-01-01

    Sprague-Dawley rats (weight 130-150 g) were sensitized by an intraperitoneal injection of 1 mg chicken egg albumin with 0.25 ml Freund's adjuvant to stimulate immunoglobulin E antibody production. Leukocyte migration inhibitory factor was used as an indicator of animal sensitization. In acute electrophysiological experiments on sensitized animals, an intra-arterial or intraluminal chicken egg albumin (100 microg) challenge evoked a 10% enhancement of the activity of mesenteric nerves of the small intestine, regardless of the injection site chosen. Afferent nerve activity in control animals was not changed during the chicken egg albumin challenge. Morphometry at the light microscope level showed activation of mast cell degranulation after the antigen challenge to presensitized rats. Intraluminal injections of a stimulator of mast cell degranulation, compound 48/80 (20-30 mg), were found to increase afferent discharges in intact rats. An antagonist of H1 histamine receptors, clemastine, reduced the effect of compound 48/80. The results obtained provide direct evidence for the stimulation of sensory nerve endings by mast cell mediators released during mast cell degranulation. PMID:10625072

  7. T-cell activation by transitory neo-antigens derived from distinct microbial pathways.

    PubMed

    Corbett, Alexandra J; Eckle, Sidonia B G; Birkinshaw, Richard W; Liu, Ligong; Patel, Onisha; Mahony, Jennifer; Chen, Zhenjun; Reantragoon, Rangsima; Meehan, Bronwyn; Cao, Hanwei; Williamson, Nicholas A; Strugnell, Richard A; Van Sinderen, Douwe; Mak, Jeffrey Y W; Fairlie, David P; Kjer-Nielsen, Lars; Rossjohn, Jamie; McCluskey, James

    2014-05-15

    T cells discriminate between foreign and host molecules by recognizing distinct microbial molecules, predominantly peptides and lipids. Riboflavin precursors found in many bacteria and yeast also selectively activate mucosal-associated invariant T (MAIT) cells, an abundant population of innate-like T cells in humans. However, the genesis of these small organic molecules and their mode of presentation to MAIT cells by the major histocompatibility complex (MHC)-related protein MR1 (ref. 8) are not well understood. Here we show that MAIT-cell activation requires key genes encoding enzymes that form 5-amino-6-d-ribitylaminouracil (5-A-RU), an early intermediate in bacterial riboflavin synthesis. Although 5-A-RU does not bind MR1 or activate MAIT cells directly, it does form potent MAIT-activating antigens via non-enzymatic reactions with small molecules, such as glyoxal and methylglyoxal, which are derived from other metabolic pathways. The MAIT antigens formed by the reactions between 5-A-RU and glyoxal/methylglyoxal were simple adducts, 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU) and 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), respectively, which bound to MR1 as shown by crystal structures of MAIT TCR ternary complexes. Although 5-OP-RU and 5-OE-RU are unstable intermediates, they became trapped by MR1 as reversible covalent Schiff base complexes. Mass spectra supported the capture by MR1 of 5-OP-RU and 5-OE-RU from bacterial cultures that activate MAIT cells, but not from non-activating bacteria, indicating that these MAIT antigens are present in a range of microbes. Thus, MR1 is able to capture, stabilize and present chemically unstable pyrimidine intermediates, which otherwise convert to lumazines, as potent antigens to MAIT cells. These pyrimidine adducts are microbial signatures for MAIT-cell immunosurveillance. PMID:24695216

  8. Effects of alfalfa meal on the intestinal microbial diversity and immunity of growing ducks.

    PubMed

    Jiang, J F; Song, X M; Wu, J L; Jiang, Y Q

    2014-12-01

    This study was conducted to investigate the effects of alfalfa meal diets on the intestinal microbial diversity and immunity of growing egg-type ducks. A total of 128 healthy 7-week-old female egg-type Shaoxing ducks were selected and randomly assigned into four dietary treatments: 0%, 3%, 6% and 9% alfalfa meal for 8 weeks. Each treatment consisted of four replicates of eight ducks each. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was used to characterize the microbiota. The results showed that the DGGE fingerprints of the V6-V8 fragments of the 16S rRNA from the caeca and faeces of ducks fed 3%, 6% and 9% alfalfa meal had significantly higher microbiota species richness than those fed 0% alfalfa meal (p < 0.05). The Shannon-Weiner index of the microbiota from the caeca and faeces of ducks fed 3%, 6% and 9% alfalfa meal was significantly higher than those fed 0% alfalfa meal (p < 0.05). Molecular analysis of the caecal and faecal DNA extracts showed that the alfalfa meal diet promotes the intestinal microbial diversity, as indicated by their higher species richness and Shannon-Weiner index. However, the groups did not significantly differ in terms of average daily gain, feed intake and gain-to-feed ratio (p > 0.05), and the 3-9% alfalfa meal did not affect the growth performance of the growing egg-type ducks. The proliferation of T and B lymphocytes was significantly greater (p < 0.05) in the groups supplemented with 3%, 6% and 9% of alfalfa meal than the unsupplemented control group, and alfalfa meal promoted the lymphocytes proliferation of the growing egg-type ducks. Dietary alfalfa meal supplementation increases intestinal microbial community diversity and improves of the immune response growing egg-type ducks. PMID:24460922

  9. Differential response to microbial antigens by age of diagnosis in patients with Crohn’s disease

    PubMed Central

    Quezada, Sandra M; Rustgi, Ankur; Jambaulikar, Guruprasad D; Cross, Raymond K

    2015-01-01

    Purpose Fifteen percent of incident Crohn’s disease (CD) cases are diagnosed at older ages and demonstrate colonic location and inflammatory behavior. Serologic responses to gut microbial antigens are associated with specific phenotypes, and may differ by age at diagnosis. Our aim was to identify an association between age at diagnosis of CD and responses to gut microbial antigens. Patients and methods Levels of anti-Saccharomyces cerevisiae antibodies (ASCA) immunoglobulins A and G (IgA and IgG), antibodies to Escherichia coli outer membrane porin-C (anti-Omp-C), antibodies to clostridial flagellin (anti-CBir-1), and perinuclear anti-neutrophil cytoplasmic antibodies (p-ANCA) were compared in patients by age in three diagnosis groups: patients diagnosed at ages of <40, ≥40–59, and ≥60 years. For each antigen, patients with antibody levels in the first, second, third, and fourth quartile were assigned a score of 1, 2, 3, or 4, respectively. Individual scores were added to create a quartile sum score representing cumulative quantitative immune response. Results Eighteen, 17, and 12 patients were diagnosed at ages <40, 40–59, and ≥60 years, respectively. The majority (71%) had ileocolonic disease in the youngest group, compared to 36% in the oldest group (P=0.001). Mean ASCA IgA and IgG titers were increased in the youngest age group compared to the older groups (P=0.19 and P=0.13, respectively). Mean quartile sum scores for antibody levels were 7.2±2.8 in those patients diagnosed at ages <40 years, 4.9±2.9 in the 40–59-year-old age group, and 5.6±2.6 in the ≥60-year-old age group (P=0.06). Conclusion A trend toward decreased cumulative immune responses to CD-associated gut antigens was observed in CD patients diagnosed at older ages compared to younger patients. Host responses to microbial antigens may be less important in older onset IBD and may contribute to the distinct phenotype in this group. PMID:26089697

  10. [The evaluation of the action of microbial enzyme preparations on the motility of the rat and canine small intestine].

    PubMed

    Beliaev, O A; Fedin, A N

    1998-01-01

    The effect of combined microbial enzyme agents trizyme and triaze containing alkaline and neutral proteases, lipase, and amilase on the evacuation capacity of the small intestine of conscious rats and of the dog small intestine operated on by the Thiry-Vella method. Therapeutic doses of the enzymatic agents had no noticeable effect on the evacuation function of the intestine. The contraction of bands of the rat intestine induced by electrical stimulation depended on the concentration of the perfusate of the solution of the enzymatic agents. Low concentration of the agents caused no effect or weakly activated the contractions of the smooth intestinal muscles. Doses of the agents higher than the mean therapeutic doses caused decrease of the contraction amplitude of the intestinal bands by 30-40%. PMID:9854628

  11. Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis.

    PubMed

    Jain, Nitya; Walker, W Allan

    2015-01-01

    Neonates face unique challenges in the period following birth. The postnatal immune system is in the early stages of development and has a range of functional capabilities that are distinct from the mature adult immune system. Bidirectional immune-microbial interactions regulate the development of mucosal immunity and alter the composition of the microbiota, which contributes to overall host well-being. In the past few years, nutrition has been highlighted as a third element in this interaction that governs host health by modulating microbial composition and the function of the immune system. Dietary changes and imbalances can disturb the immune-microbiota homeostasis, which might alter susceptibility to several autoimmune and metabolic diseases. Major changes in cultural traditions, socioeconomic status and agriculture are affecting the nutritional status of humans worldwide, which is altering core intestinal microbial communities. This phenomenon is especially relevant to the neonatal and paediatric populations, in which the microbiota and immune system are extremely sensitive to dietary influences. In this Review, we discuss the current state of knowledge regarding early-life nutrition, its effects on the microbiota and the consequences of diet-induced perturbation of the structure of the microbial community on mucosal immunity and disease susceptibility. PMID:25201040

  12. Microbially synthesized modular virus-like particles and capsomeres displaying group A streptococcus hypervariable antigenic determinants.

    PubMed

    Chuan, Yap P; Wibowo, Nani; Connors, Natalie K; Wu, Yang; Hughes, Fiona K; Batzloff, Michael R; Lua, Linda H L; Middelberg, Anton P J

    2014-06-01

    Effective and low-cost vaccines are essential to control severe group A streptococcus (GAS) infections prevalent in low-income nations and the Australian aboriginal communities. Highly diverse and endemic circulating GAS strains mandate broad-coverage and customized vaccines. This study describes an approach to deliver cross-reactive antigens from endemic GAS strains using modular virus-like particle (VLP) and capsomere systems. The antigens studied were three heterologous N-terminal peptides (GAS1, GAS2, and GAS3) from the GAS surface M-protein that are specific to endemic strains in Australia Northern Territory Aboriginal communities. In vivo data presented here demonstrated salient characteristics of the modular delivery systems in the context of GAS vaccine design. First, the antigenic peptides, when delivered by unadjuvanted modular VLPs or adjuvanted capsomeres, induced high titers of peptide-specific IgG antibodies (over 1??10(4) ). Second, delivery by capsomere was superior to VLP for one of the peptides investigated (GAS3), demonstrating that the delivery system relative effectiveness was antigen-dependant. Third, significant cross-reactivity of GAS2-induced IgG with GAS1 was observed using either VLP or capsomere, showing the possibility of broad-coverage vaccine design using these delivery systems and cross-reactive antigens. Fourth, a formulation containing three pre-mixed modular VLPs, each at a low dose of 5??g (corresponding to <600?ng of each GAS peptide), induced significant titers of IgGs specific to each peptide, demonstrating that a multivalent, broad-coverage VLP vaccine formulation was possible. In summary, the modular VLPs and capsomeres reported here demonstrate, with promising preliminary data, innovative ways to design GAS vaccines using VLP and capsomere delivery systems amenable to microbial synthesis, potentially adoptable by developing countries. PMID:24338691

  13. Studies of the microbial metabolism of flavonoids extracted from the leaves of Diospyros kaki by intestinal bacteria.

    PubMed

    Zhang, Sheng-hai; Wang, Ying-zi; Meng, Fan-yun; Li, You-lin; Li, Cai-xia; Duan, Fei-peng; Wang, Qing; Zhang, Xiu-ting; Zhang, Chun-ni

    2015-01-01

    Flavonoid glycosides are metabolized by intestinal bacteria, giving rise to a wide range of phenolic acids that may exert systemic effects in the body. The microbial metabolism of flavonoids extracted from the leaves of Diospyros kaki (FLDK) by intestinal bacteria was investigated in vitro. High-performance liquid chromatography/linear trap quadrupole orbitrap mass spectrometry was performed to analyze the metabolites of flavonoids in vivo using Xcalibur2.1 software. The results showed that the levels of flavonoid glycosides and flavonoid aglycones decreased rapidly in the process of microbial metabolism by intestinal bacteria in vitro, and the metabolic rate may be related to the concentration of intestinal bacteria in the culture solution. In vivo metabolites of FLDK were detected in rat plasma and urine after oral administration of FLDK. Eight flavonoids were identified in the urine, and three were identified in the plasma; however, flavonoid aglycones were not found in the plasma. PMID:25011569

  14. Intestine.

    PubMed

    Smith, J M; Skeans, M A; Horslen, S P; Edwards, E B; Harper, A M; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    Intestine and intestine-liver transplant plays an important role in the treatment of intestinal failure, despite decreased morbidity associated with parenteral nutrition. In 2014, 210 new patients were added to the intestine transplant waiting list. Among prevalent patients on the list at the end of 2014, 65% were waiting for an intestine transplant and 35% were waiting for an intestine-liver transplant. The pretransplant mortality rate decreased dramatically over time for all age groups. Pretransplant mortality was highest for adult candidates, at 22.1 per 100 waitlist years compared with less than 3 per 100 waitlist years for pediatric candidates, and notably higher for candidates for intestine-liver transplant than for candidates for intestine transplant without a liver. Numbers of intestine transplants without a liver increased from a low of 51 in 2013 to 67 in 2014. Intestine-liver transplants increased from a low of 44 in 2012 to 72 in 2014. Short-gut syndrome (congenital and other) was the main cause of disease leading to both intestine and intestine-liver transplant. Graft survival improved over the past decade. Patient survival was lowest for adult intestine-liver recipients and highest for pediatric intestine recipients. PMID:26755265

  15. Distinct Patterns of IgG and IgA against Food and Microbial Antigens in Serum and Feces of Patients with Inflammatory Bowel Diseases

    PubMed Central

    Frehn, Lisa; Jansen, Anke; Bennek, Eveline; Mandic, Ana D.; Temizel, Ilknur; Tischendorf, Stefanie; Verdier, Julien; Tacke, Frank; Streetz, Konrad; Trautwein, Christian; Sellge, Gernot

    2014-01-01

    Background Inflammatory bowel disease (IBD) is associated with a defective intestinal barrier and enhanced adaptive immune responses against commensal microbiota. Immune responses against food antigens in IBD patients remain poorly defined. Methods IgG and IgA specific for food and microfloral antigens (wheat and milk extracts; purified ovalbumin; Escherichia coli and Bacteroides fragilis lysates; mannan from Saccharomyces cerevisiae) were analyzed by ELISA in the serum and feces of patients with Crohn's disease (CD; n = 52 for serum and n = 20 for feces), ulcerative colitis (UC; n = 29; n = 17), acute gastroenteritis/colitis (AGE; n = 12; n = 9) as well as non-inflammatory controls (n = 61; n = 39). Results Serum anti-Saccharomyces cerevisiae antibodies (ASCA) and anti-B. fragilis IgG and IgA levels were increased in CD patients whereas antibody (Ab) levels against E. coli and food antigens were not significantly different within the patient groups and controls. Subgroup analysis revealed that CD patients with severe diseases defined by stricturing and penetrating lesions have slightly higher anti-food and anti-microbial IgA levels whereas CD and UC patients with arthropathy have decreased anti-food IgG levels. Treatment with anti-TNF-α Abs in CD patients was associated with significantly decreased ASCA IgG and IgA and anti-E. coli IgG. In the feces specific IgG levels against all antigens were higher in CD and AGE patients while specific IgA levels were higher in non-IBD patients. Anti-food IgG and IgA levels did not correlate with food intolerance. Summary In contrast to anti-microbial Abs, we found only minor changes in serum anti-food Ab levels in specific subgroups of IBD patients. Fecal Ab levels towards microbial and food antigens show distinct patterns in controls, CD and UC patients. PMID:25215528

  16. Intestinal Microbial Diversity during Early-Life Colonization Shapes Long-Term IgE Levels

    PubMed Central

    Cahenzli, Julia; Köller, Yasmin; Wyss, Madeleine; Geuking, Markus B.; McCoy, Kathy D.

    2013-01-01

    Summary Microbial exposure following birth profoundly impacts mammalian immune system development. Microbiota alterations are associated with increased incidence of allergic and autoimmune disorders with elevated serum IgE as a hallmark. The previously reported abnormally high serum IgE levels in germ-free mice suggests that immunoregulatory signals from microbiota are required to control basal IgE levels. We report that germ-free mice and those with low-diversity microbiota develop elevated serum IgE levels in early life. B cells in neonatal germ-free mice undergo isotype switching to IgE at mucosal sites in a CD4 T-cell- and IL-4-dependent manner. A critical level of microbial diversity following birth is required in order to inhibit IgE induction. Elevated IgE levels in germ-free mice lead to increased mast-cell-surface-bound IgE and exaggerated oral-induced systemic anaphylaxis. Thus, appropriate intestinal microbial stimuli during early life are critical for inducing an immunoregulatory network that protects from induction of IgE at mucosal sites. PMID:24237701

  17. Distribution of Glucagon-Like Peptide (GLP)-2-Immunoreactive Cells in the Chicken Small Intestine: Antigen Retrieval Immunohistochemistry

    PubMed Central

    MONIR, Mohammad M.; HIRAMATSU, Kohzy; NISHIMURA, Kei; TAKEMOTO, Chihiro; WATANABE, Takafumi

    2013-01-01

    ABSTRACT An antigen retrieval method for immunohistochemical staining of glucagon-like peptide (GLP)-2-immunoreactive cells was investigated in the chicken small intestine. GLP-2-immunoreactive cells were observed as open-typed endocrine cells in the villous epithelium and crypts on both antigen retrieval agent-treated and untreated preparations. No obvious differences were detected in morphological features of GLP-2-immunoreactive cells between treated and untreated preparations. The frequencies of occurrence of GLP-2-immunoreactive cells, however, were significantly different in treated and untreated preparations: in the proximal and distal regions of jejunum and ileum obtained from untreated preparations, the frequencies of occurrence were 0.5 ± 0.2, 0.7 ± 0.1, 0.9 ± 0.2 and 1.5 ± 0.3, respectively (cell numbers per mucosal area: cells/mm2, mean ± SD), whereas those from treated sections were 14.7 ± 2.3, 19.8 ± 2.3, 23.5 ± 4.7 and 34.6 ± 4.9 cells/mm2, respectively. These data indicate that this antigen retrieval method is able to make immunoreactive GLP-2 available for detection and that GLP-2 may act as one of the common hormones secreted by L cells in the chicken small intestine. PMID:24334814

  18. Sampling of intestinal microbiota and targeted amplification of bacterial 16S rRNA genes for microbial ecologic analysis

    PubMed Central

    Tong, Maomeng; Jacobs, Jonathan P.; McHardy, Ian H.; Braun, Jonathan

    2015-01-01

    Dysbiosis of host-associated commensal microbiota is emerging as an important factor in risk and phenotype of immunologic, metabolic, and behavioral diseases. Appropriate collection and pre-processing of biospecimens from humans or mice is necessary for accurate analysis of microbial composition and functional state. Methods to sample intestinal luminal and mucosal microbiota from humans and mice, and to profile microbial phylogenetic composition using 16S rRNA sequencing are presented here. Data generated using this protocol can be used for downstream quantitative analysis of microbial ecology. PMID:25367129

  19. Proliferative cell nuclear antigen (PCNA) expression in the intestine of Salmo trutta trutta naturally infected with an acanthocephalan

    PubMed Central

    2012-01-01

    Background Changes in the production of proliferating cell nuclear antigen (PCNA), a 36 kd protein involved in protein synthesis, within intestinal epithelia can provide an early indication of deviations to normal functioning. Inhibition or stimulation of cell proliferation and PCNA can be determined through immunohistochemical staining of intestinal tissue. Changes in the expression of PCNA act as an early warning system of changes to the gut and this application has not been applied to the fields of aquatic parasitology and fish health. The current study set out to determine whether a population of wild brown trout, Salmo trutta trutta (L.) harbouring an infection of the acanthocephalan Dentitruncus truttae Sinzar, 1955 collected from Lake Piediluco in Central Italy also effected changes in the expression of PCNA. Methods A total of 29 brown trout were investigated, 19 of which (i.e. 65.5%) were found to harbour acanthocephalans (5320 worms fish-1). Histological sections of both uninfected and infected intestinal material were immunostained for PCNA. Results The expression of PCNA was observed in the epithelial cells in the intestinal crypts and within the mast cells and fibroblasts in the submucosa layer which is consistent with its role in cell proliferation and DNA synthesis. The number of PCNA-positive cells in both the intestinal epithelium and the submucosa layer in regions close to the point of parasite attachment were significantly higher than the number observed in uninfected individuals and in infected individuals in zones at least 0.7?cm from the point of parasite attachment (ANOVA, p?intestinal tract of S. t. trutta effected a significant increase in the number of PCNA positive cells (mast cells and fibroblasts) at the site of parasite attachment when compared to the number of positive cells found in uninfected conspecifics and in tissue zones away from the point of parasite attachment. PMID:22967751

  20. Next generation sequencing shows high variation of the intestinal microbial species composition in Atlantic cod caught at a single location

    PubMed Central

    2013-01-01

    Background The observation that specific members of the microbial intestinal community can be shared among vertebrate hosts has promoted the concept of a core microbiota whose composition is determined by host-specific selection. Most studies investigating this concept in individual hosts have focused on mammals, yet the diversity of fish lineages provides unique comparative opportunities from an evolutionary, immunological and environmental perspective. Here we describe microbial intestinal communities of eleven individual Atlantic cod (Gadus morhua) caught at a single location based on an extensively 454 sequenced 16S rRNA library of the V3 region. Results We obtained a total of 280447 sequences and identify 573 Operational Taxonomic Units (OTUs) at 97% sequence similarity level, ranging from 40 to 228 OTUs per individual. We find that ten OTUs are shared, though the number of reads of these OTUs is highly variable. This variation is further illustrated by community diversity estimates that fluctuate several orders of magnitude among specimens. The shared OTUs belong to the orders of Vibrionales, which quantitatively dominate the Atlantic cod intestinal microbiota, followed by variable numbers of Bacteroidales, Erysipelotrichales, Clostridiales, Alteromonadales and Deferribacterales. Conclusions The microbial intestinal community composition varies significantly in individual Atlantic cod specimens caught at a single location. This high variation among specimens suggests that a complex combination of factors influence the species distribution of these intestinal communities. PMID:24206635

  1. Transcriptome profiles of chicken intestinal intraepithelial lymphocytes altered by the intake of a multi-strain direct-fed microbials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current study was conducted to investigate the effects of the direct-fed microbials (DFM) including three Bacillus subtilis strains on the modulation of transcriptional profile in chicken intestinal intraepithelial lymphocytes (IEL). The multiple-strain DFM product modified 453 probes from 1,98...

  2. ?? T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response.

    PubMed

    Zeng, Xun; Wei, Yu-Ling; Huang, Jun; Newell, Evan W; Yu, Hongxiang; Kidd, Brian A; Kuhns, Michael S; Waters, Ray W; Davis, Mark M; Weaver, Casey T; Chien, Yueh-hsiu

    2012-09-21

    ?? Tcells contribute uniquely to immune competence. Nevertheless, how they function remains an enigma. It is unclear what most ?? Tcells recognize, what is required for them to mount an immune response, and how the ?? Tcell response is integrated into host immune defense. Here, we report that a noted B cell antigen, the algae protein phycoerythrin (PE), is a murine and human ?? Tcell antigen. Employing this specificity, we demonstrated that antigen recognition activated naive ?? Tcells to make interleukin-17 and respond to cytokine signals that perpetuate the response. High frequencies of antigen-specific ?? Tcells in naive animals and their ability to mount effector response without extensive clonal expansion allow ?? Tcells to initiate a swift, substantial response. These results underscore the adaptability of lymphocyte antigen receptors and suggest an antigen-driven rapid response in protective immunity prior to the maturation of classical adaptive immunity. PMID:22960222

  3. Detection of potential microbial antigens by immuno-PCR (PCR-amplified immunoassay).

    PubMed

    Mehta, Promod K; Raj, Ankush; Singh, Netra Pal; Khuller, Gopal K

    2014-05-01

    Immuno-PCR (PCR-amplified immunoassay; I-PCR) is a novel ultrasensitive method combining the versatility of ELISA with the sensitivity of nucleic acid amplification of PCR. The enormous exponential amplification power of PCR in an I-PCR assay leads to at least a 10(2)-10(4)-fold increase in sensitivity compared with an analogous ELISA. I-PCR has been used to detect many biological molecules such as proto-oncogenes, toxins, cytokines, hormones, and biomarkers for autoimmune and Alzheimer's diseases, as well as microbial antigens and antibodies, and it can be adapted as a novel diagnostic tool for various infectious and non-infectious diseases. Quantitative real-time I-PCR has the potential to become the most analytically sensitive method for the detection of proteins. The sensitivity and specificity of a real-time I-PCR assay can be enhanced further with the use of magnetic beads and nanoparticles. This review is primarily focused on the detection of potential viral, bacterial and parasitic antigens by I-PCR assay, thus enabling their application for immunological research and for early diagnosis of infectious diseases. PMID:24568881

  4. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class.

    PubMed

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera; Linninge, Caroline; Ahrn, Siv; Hjberg, Ole; Licht, Tine Rask; Bahl, Martin Iain

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did not always result from major changes in microbiota and vice versa. PMID:26691591

  5. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class

    PubMed Central

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera; Linninge, Caroline; Ahrné, Siv; Højberg, Ole; Licht, Tine Rask; Bahl, Martin Iain

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10–11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did not always result from major changes in microbiota and vice versa. PMID:26691591

  6. Dietary inclusion of feathers affects intestinal microbiota and microbial metabolites in growing Leghorn-type chickens.

    PubMed

    Meyer, B; Bessei, W; Bessei, A W; Vahjen, W; Zentek, J; Harlander-Matauschek, A

    2012-07-01

    Feather pecking in laying hens is a serious behavioral problem that is often associated with feather eating. The intake of feathers may influence the gut microbiota and its metabolism. The aim of this study was to determine the effect of 2 different diets, with or without 5% ground feathers, on the gut microbiota and the resulting microbial fermentation products and to identify keratin-degrading bacteria in chicken digesta. One-day-old Lohmann-Selected Leghorn chicks were divided into 3 feeding groups: group A (control), B (5% ground feathers in the diet), and C, in which the control diet was fed until wk 12 and then switched to the 5% feather diet to study the effect of time of first feather ingestion. The gut microbiota was analyzed by cultivation and denaturing gradient gel electrophoresis of ileum and cecum digesta. Short-chain fatty acids, ammonia, and lactate concentrations were measured as microbial metabolites. The concentration of keratinolytic bacteria increased after feather ingestion in the ileum (P < 0.001) and cecum (P = 0.033). Bacterial species that hydrolyzed keratin were identified as Enterococcus faecium, Lactobacillus crispatus, Lactobacillus reuteri-like species (97% sequence homology), and Lactobacillus salivarius-like species (97% sequence homology). Molecular analysis of cecal DNA extracts showed that the feather diet lowered the bacterial diversity indicated by a reduced richness (P < 0.001) and shannon (P = 0.012) index. The pattern of microbial metabolites indicated some changes, especially in the cecum. This study showed that feather intake induced an adaptation of the intestinal microbiota in chickens. It remains unclear to what extent the changed metabolism of the microbiota reflects the feather intake and could have an effect on the behavior of the hens. PMID:22700493

  7. CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity

    PubMed Central

    Vaziri, Nosratola D.

    2013-01-01

    Purpose of review Chronic kidney disease (CKD) is associated with oxidative stress and inflammation which contribute to progression of kidney disease and its numerous complications. Until recently, little attention had been paid to the role of the intestine and its microbial flora in the pathogenesis of CKD-associated inflammation. This article is intended to provide an over view of the impact of uremia on the structure and function of the gut and its microbial flora and their potential link to the associated systemic inflammation. Recent findings Recent studies conducted in the authors laboratories have demonstrated marked disintegration of the colonic epithelial barrier structure and significant alteration of the colonic bacterial flora in humans and animals with advanced CKD. The observed disruption of the intestinal epithelial barrier complex can play an important part in the development of systemic inflammation by enabling influx of endotoxin and other noxious luminal contents into the systemic circulation. Similarly via disruption of the normal symbiotic relationship and production, absorption and retention of noxious products, alteration of the microbial flora can contribute to systemic inflammation and uremic toxicity. In fact recent studies have documented the role of colonic bacteria as the primary source of several well known pro-inflammatory/pro-oxidant uremic toxins as well as many as-yet unidentified retained compounds. Summary CKD results in disruption of the intestinal barrier structure and marked alteration of its microbial flora events that play a major role in the pathogenesis of inflammation and uremic toxicity. PMID:23010760

  8. Effects of the soluble fibre pectin on intestinal cell proliferation, fecal short chain fatty acid production and microbial population.

    TOXLINE Toxicology Bibliographic Information

    Fukunaga T; Sasaki M; Araki Y; Okamoto T; Yasuoka T; Tsujikawa T; Fujiyama Y; Bamba T

    2003-01-01

    AIM: Although pectin, a dietary fibre, has been suggested to possess some trophic effects on the intestine, the mechanisms involved remain unclear. This study aimed to evaluate the effects of pectin on rat intestinal cell proliferation and the intraluminal environment.METHODS: Control and pectin-fed rats were given a fibre-free elemental diet (ED) and an ED containing 2.5% pectin, respectively. On the 15th day, the length, weight and number of Ki-67-positive cells from each intestinal segment, and the short chain fatty acids (SCFAs) and microbial population in the caecum were measured. Plasma glucagon-like peptide-2 (GLP-2) concentration and GLP-2 receptor (GLP-2R) mRNA levels in the epithelium were also determined.RESULTS: Pectin supplementation resulted in significant increases in the length, weight, and number of Ki-67-positive cells in the ileum, caecum and colon. Although pectin supplementation did not affect the caecal microbial flora that produced SCFAs, the caecal SCFA content was significantly increased. Pectin supplementation also induced an increase in the plasma GLP-2 concentration, but did not affect the GLP-2R mRNA levels in the small intestine.CONCLUSIONS: The increases in the caecal SCFAs and plasma GLP-2 levels induced by pectin supplementation may cause mucosal proliferation in the lower intestinal tract.

  9. Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells

    PubMed Central

    2014-01-01

    Background Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized. Results We aimed to gain insight into the mechanisms involved in the immunomodulatory effect of the CRL1505 strain and therefore evaluated in vitro the crosstalk between L. rhamnosus CRL1505, porcine intestinal epithelial cells (IECs) and antigen presenting cells (APCs) from swine Peyer’s patches in order to deepen our knowledge about the mechanisms, through which this strain may help preventing viral diarrhoea episodes. L. rhamnosus CRL1505 was able to induce IFN–α and –β in IECs and improve the production of type I IFNs in response to poly(I:C) challenge independently of Toll-like receptor (TLR)-2 or TLR9 signalling. In addition, the CRL1505 strain induced mRNA expression of IL-6 and TNF-α via TLR2 in IECs. Furthermore, the strain significantly increased surface molecules expression and cytokine production in intestinal APCs. The improved Th1 response induced by L. rhamnosus CRL1505 was triggered by TLR2 signalling and included augmented expression of MHC-II and co-stimulatory molecules and expression of IL-1β, IL-6, and IFN-γ in APCs. IL-10 was also significantly up-regulated by CRL1505 in APCs. Conclusions It was recently reviewed the emergence of TLR agonists as new ways to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. The use of L. rhamnosus CRL1505 as modulator of innate immunity and inductor of antiviral type I IFNs, IFN-γ, and regulatory IL-10 clearly offers the potential to overcome this challenge. PMID:24886142

  10. Effects of feed additives and mixed eimeria species infection on intestinal microbial ecology of broilers.

    PubMed

    Hume, M E; Clemente-Hernndez, S; Oviedo-Rondn, E O

    2006-12-01

    Evaluation of digestive microbial ecology is necessary to understand effects of growth-promoting feed. In the current study, the dynamics of intestinal microbial communities (MC) were examined in broilers fed diets supplemented with a combination of antibiotic (bacitracin methylene disalicylate) and ionophore (Coban 60), and diets containing 1 of 2 essential oil (EO) blends, Crina Poultry (CP) and Crina Alternate (CA). Five treatments were analyzed: 1) unmedicated uninfected control; 2) unmedicated infected control; 3) feed additives monensin (bacitracin methylene disalicylate) + monensin (Coban 60; AI); 4) EO blend CP; and 5) EO blend CA. Additives were mixed into a basal feed mixture, and EO were adjusted to 100 ppm. Chicks were infected by oral gavage at 19 d of age with Eimeria acervulina, Eimeria maxima, and Eimeria tenella. Duodenal, ileal, and cecal samples were taken from 12 birds per treatment just before and 7 d after challenge; 2 samples each were pooled to give a final number of 6 samples total; and all pooled samples were frozen until used for DNA extraction. Denaturing gradient gel electrophoresis was used to examine PCR-amplified fragments of the bacterial 16S ribosomal DNA variable region. Results are presented as percentages of similarity coefficients (SC). Dendrograms of PCR amplicon or band patterns indicated MC differences due to intestinal location, feed additives, and cocci challenge. Essential oil blends CP and CA affected MC in all gut sections. Each EO had different effects over MC, and they differed in most instances from the AI group. The cocci challenge caused drastic MC population shifts in duodenal, ileal, and cecal sections (36.7, 55.4, and 36.2% SC, respectively). Diets supplemented with CP supported higher SC between pre- and postchallenge MC (89.9, 83.3, and 76.4%) than AI (81.8., 57.4, and 60.0%). We concluded that mixed coccidia challenge caused drastic shifts in MC. These EO blends modulated MC better than AI, avoiding drastic shifts after a mixed challenge. PMID:17135664

  11. Microbial Population Differentials between Mucosal and Submucosal Intestinal Tissues in Advanced Crohn's Disease of the Ileum

    PubMed Central

    Chiodini, Rodrick J.; Dowd, Scot E.; Chamberlin, William M.; Galandiuk, Susan; Davis, Brian; Glassing, Angela

    2015-01-01

    Since Crohn's disease is a transmural disease, we hypothesized that examination of deep submucosal tissues directly involved in the inflammatory disease process may provide unique insights into bacterial populations transgressing intestinal barriers and bacterial populations more representative of the causes and agents of the disease. We performed deep 16s microbiota sequencing on isolated ilea mucosal and submucosal tissues on 20 patients with Crohn's disease and 15 non-inflammatory bowel disease controls with a depth of coverage averaging 81,500 sequences in each of the 70 DNA samples yielding an overall resolution down to 0.0001% of the bacterial population. Of the 4,802,328 total sequences generated, 98.9% or 4,749,183 sequences aligned with the Kingdom Bacteria that clustered into 8545 unique sequences with <3% divergence or operational taxonomic units enabling the identification of 401 genera and 698 tentative bacterial species. There were significant differences in all taxonomic levels between the submucosal microbiota in Crohn's disease compared to controls, including organisms of the Order Desulfovibrionales that were present within the submucosal tissues of most Crohn's disease patients but absent in the control group. A variety of organisms of the Phylum Firmicutes were increased in the subjacent submucosa as compared to the parallel mucosal tissue including Ruminococcus spp., Oscillospira spp., Pseudobutyrivibrio spp., and Tumebacillus spp. In addition, Propionibacterium spp. and Cloacibacterium spp. were increased as well as large increases in Proteobacteria including Parasutterella spp. and Methylobacterium spp. This is the first study to examine the microbial populations within submucosal tissues of patients with Crohn's disease and to compare microbial communities found deep within the submucosal tissues with those present on mucosal surfaces. Our data demonstrate the existence of a distinct submucosal microbiome and ecosystem that is not well reflected in the mucosa and/or downstream fecal material. PMID:26222621

  12. Arabinoxylan‐oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem

    PubMed Central

    Sanchez, J. I.; Marzorati, M.; Grootaert, C.; Baran, M.; Van Craeyveld, V.; Courtin, C. M.; Broekaert, W. F.; Delcour, J. A.; Verstraete, W.; Van de Wiele, T.

    2009-01-01

    Summary Arabinoxylan‐oligosaccharides (AXOS) are a recently newly discovered class of candidate prebiotics as – depending on their structure – they are fermented in different regions of gastrointestinal tract. This can have an impact on the protein/carbohydrate fermentation balance in the large intestine and, thus, affect the generation of potentially toxic metabolites in the colon originating from proteolytic activity. In this study, we screened different AXOS preparations for their impact on the in vitro intestinal fermentation activity and microbial community structure. Short‐term fermentation experiments with AXOS with an average degree of polymerization (avDP) of 29 allowed part of the oligosaccharides to reach the distal colon, and decreased the concentration of proteolytic markers, whereas AXOS with lower avDP were primarily fermented in the proximal colon. Additionally, prolonged supplementation of AXOS with avDP 29 to the Simulator of Human Intestinal Microbial Ecosystem (SHIME) reactor decreased levels of the toxic proteolytic markers phenol and p‐cresol in the two distal colon compartments and increased concentrations of beneficial short‐chain fatty acids (SCFA) in all colon vessels (25–48%). Denaturant gradient gel electrophoresis (DGGE) analysis indicated that AXOS supplementation only slightly modified the total microbial community, implying that the observed effects on fermentation markers are mainly caused by changes in fermentation activity. Finally, specific quantitative PCR (qPCR) analysis showed that AXOS supplementation significantly increased the amount of health‐promoting lactobacilli as well as of Bacteroides–Prevotella and Clostridium coccoides–Eubacterium rectale groups. These data allow concluding that AXOS are promising candidates to modulate the microbial metabolism in the distal colon. PMID:21261885

  13. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow.

    PubMed

    Kim, Hyun Jung; Huh, Dongeun; Hamilton, Geraldine; Ingber, Donald E

    2012-06-21

    Development of an in vitro living cell-based model of the intestine that mimics the mechanical, structural, absorptive, transport and pathophysiological properties of the human gut along with its crucial microbial symbionts could accelerate pharmaceutical development, and potentially replace animal testing. Here, we describe a biomimetic 'human gut-on-a-chip' microdevice composed of two microfluidic channels separated by a porous flexible membrane coated with extracellular matrix (ECM) and lined by human intestinal epithelial (Caco-2) cells that mimics the complex structure and physiology of living intestine. The gut microenvironment is recreated by flowing fluid at a low rate (30 ?L h(-1)) producing low shear stress (0.02 dyne cm(-2)) over the microchannels, and by exerting cyclic strain (10%; 0.15 Hz) that mimics physiological peristaltic motions. Under these conditions, a columnar epithelium develops that polarizes rapidly, spontaneously grows into folds that recapitulate the structure of intestinal villi, and forms a high integrity barrier to small molecules that better mimics whole intestine than cells in cultured in static Transwell models. In addition, a normal intestinal microbe (Lactobacillus rhamnosus GG) can be successfully co-cultured for extended periods (>1 week) on the luminal surface of the cultured epithelium without compromising epithelial cell viability, and this actually improves barrier function as previously observed in humans. Thus, this gut-on-a-chip recapitulates multiple dynamic physical and functional features of human intestine that are critical for its function within a controlled microfluidic environment that is amenable for transport, absorption, and toxicity studies, and hence it should have great value for drug testing as well as development of novel intestinal disease models. PMID:22434367

  14. Dectin-1 Is Essential for Reverse Transcytosis of Glycosylated SIgA-Antigen Complexes by Intestinal M Cells

    PubMed Central

    Rochereau, Nicolas; Drocourt, Daniel; Perouzel, Eric; Pavot, Vincent; Redelinghuys, Pierre; Brown, Gordon D.; Tiraby, Gerard; Roblin, Xavier; Verrier, Bernard; Genin, Christian; Corthésy, Blaise; Paul, Stéphane

    2013-01-01

    Intestinal microfold (M) cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA) to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell–mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1+ dendritic cells (DCs) via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases. PMID:24068891

  15. Soybean meal alters autochthonous microbial populations, microvilli morphology and compromises intestinal enterocyte integrity of rainbow trout, Oncorhynchus mykiss (Walbaum).

    PubMed

    Merrifield, D L; Dimitroglou, A; Bradley, G; Baker, R T M; Davies, S J

    2009-09-01

    Abstract Rainbow trout were fed either a diet containing fishmeal (FM) as the crude protein source or a diet containing 50% replacement with soybean meal (SBM) for 16 weeks. An enteritis-like effect was observed in the SBM group; villi, enterocytes and microvilli were noticeably damaged compared with the FM group. The posterior intestine microvilli of SBM-fed fish were significantly shorter and the anterior intestine microvilli significantly less dense than the FM-fed fish. Electron microscopy confirmed the presence of autochthonous bacterial populations associated with microvilli of both fish groups. Reduced density of microvilli consequently led to increased exposure of enterocyte tight junctions, which combined with necrotic enterocytes is likely to diminish the protective barrier of the intestinal epithelium. No significant differences in total viable counts of culturable microbial populations were found between the groups in any of the intestinal regions. A total of 1500 isolates were tentatively placed into groups or genera, according to standard methods. Subsequent partial 16S rRNA sequencing revealed species that have not been identified from the rainbow trout intestine previously. Compared with the FM group levels of Psychrobacter spp. and yeast were considerably higher in the SBM group; a reduction of Aeromonas spp. was also observed. PMID:19490393

  16. Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum).

    PubMed

    Dimitroglou, A; Merrifield, D L; Moate, R; Davies, S J; Spring, P; Sweetman, J; Bradley, G

    2009-10-01

    A study was conducted to investigate the effect of mannan oligosaccharide (MOS) on the gut microbiota and intestinal morphology of rainbow trout under commercial farming conditions. Juvenile (mean initial BW 38.2 +/- 1.7 g) and subadult (111.7 +/- 11.6 g) trout were fed 2 dietary treatments for 111 and 58 d, respectively. The control treatment consisted of a standard commercial diet, and the MOS treatment consisted of the control diet supplemented with 0.2% MOS. Morphology of the anterior and the posterior intestine was examined with light and electron microscopy. Light microscopy demonstrated increased gut absorptive surface area in the subadult MOS group. Additionally, electron microscopy revealed an increase in microvilli length and density in the subadult MOS group compared with the control (P < 0.05). However, no significant improvements were detected in the juvenile group. Culture-based evaluation of the intestinal microbiota showed that MOS significantly reduced (P < 0.05) the viable intestinal bacterial populations (by approximately 2 log scales in all cases). Levels of Aeromonas/Vibrio spp. were significantly decreased (P < 0.05) in the juvenile MOS group (9% of the total microbiota) compared with the juvenile control group (37%). Additionally, analysis of microbial communities was conducted using denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA. The denaturing gradient gel electrophoresis fingerprinting revealed an alteration of bacterial populations; analysis of similarity, similarity percentages, and nonmetric multidimensional scaling analysis showed that MOS reduced species richness and increased similarity of bacterial populations found within the subadult and juvenile groups. The current study shows that MOS modulates intestinal microbial communities, which subsequently improve gut morphology and epithelial brush border. PMID:19617514

  17. The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice

    PubMed Central

    Wisniewski, Paul J.; Noji, Michael; McGuinness, Lora R.; Lightfoot, Stanley A.

    2016-01-01

    Background The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet. Methods Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2). The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of 16S rRNA gene amplicons. Results Lean sedentary (LS) mice presented normal histologic villi while obese sedentary (OS) mice had similar villi height with more than twice the width of the LS animals. Both lean (LX) and obese exercise (OX) mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp. Conclusion These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host. PMID:26954359

  18. The effects of intestinal microbial community structure on disease manifestation in IL-10-/- mice infected with Helicobacter hepaticus

    PubMed Central

    2013-01-01

    Background The aberrant inflammation that is the hallmark of the inflammatory bowel diseases (IBD) is associated with several factors, including changes in the intestinal microbiota. Here, we confirmed that an intestinal microbiota is needed for development of typhlocolitis in Helicobacter hepaticus infected IL-10-/- C57BL/6 mice, and investigated the role of the microbiota in modulating disease. Results We altered the murine microbiota by treatment with the antibiotics vancomycin or cefoperazone prior to H. hepaticus infection. Through surveys of the 16S rRNA encoding-gene, analyses of histology and changes in expression of host mediators, we correlated alterations in the microbiota with host responses. We found that resident microbes are essential for initiation of disease, as animals mono-associated with H. hepaticus did not develop colitis. Despite the requirement for an indigenous microbiota for the initiation of disease, the severity of disease was independent of antibiotic-induced changes in the microbial community structure. Despite differences in the expression of host inflammatory mediators associated with shifts in the microbiota, H. hepaticus infection led to similar histopathologic lesions in microbial communities exposed to either cefoperazone or vancomycin. Conclusion In conclusion, we demonstrate that colitis due to H. hepaticus infection can be initiated and progress in the presence of several different microbial communities. Furthermore, H. hepaticus is the main driver of inflammation in this model, while the specific structure of the microbiota may modulate the host pathways that lead to chronic inflammation. PMID:24450737

  19. Early Changes in Microbial Colonization Selectively Modulate Intestinal Enzymes, but Not Inducible Heat Shock Proteins in Young Adult Swine

    PubMed Central

    Arnal, Marie-Edith; Zhang, Jing; Messori, Stefano; Bosi, Paolo; Smidt, Hauke; Lallès, Jean-Paul

    2014-01-01

    Metabolic diseases and obesity are developing worldwide in a context of plethoric intake of high energy diets. The intestine may play a pivotal role due to diet-induced alterations in microbiota composition and increased permeability to bacterial lipopolysaccharide inducing metabolic inflammation. Early programming of metabolic disorders appearing in later life is also suspected, but data on the intestine are lacking. Therefore, we hypothesized that early disturbances in microbial colonization have short- and long-lasting consequences on selected intestinal components including key digestive enzymes and protective inducible heat shock proteins (HSP). The hypothesis was tested in swine offspring born to control mothers (n = 12) or mothers treated with the antibiotic amoxicillin around parturition (n = 11), and slaughtered serially at 14, 28 and 42 days of age to assess short-term effects. To evaluate long-term consequences, young adult offspring from the same litters were offered a normal or a fat-enriched diet for 4 weeks between 140 and 169 days of age and were then slaughtered. Amoxicillin treatment transiently modified both mother and offspring microbiota. This was associated with early but transient reduction in ileal alkaline phosphatase, HSP70 (but not HSP27) and crypt depth, suggesting a milder or delayed intestinal response to bacteria in offspring born to antibiotic-treated mothers. More importantly, we disclosed long-term consequences of this treatment on jejunal alkaline phosphatase (reduced) and jejunal and ileal dipeptidylpeptidase IV (increased and decreased, respectively) of offspring born to antibiotic-treated dams. Significant interactions between early antibiotic treatment and later diet were observed for jejunal alkaline phosphatase and sucrase. By contrast, inducible HSPs were not affected. In conclusion, our data suggest that early changes in bacterial colonization not only modulate intestinal architecture and function transiently, but also exert site- and sometimes diet-specific long-term effects on key components of intestinal homeostasis. PMID:24505340

  20. Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells

    PubMed Central

    Cerovic, V; Houston, S A; Westlund, J; Utriainen, L; Davison, E S; Scott, C L; Bain, C C; Joeris, T; Agace, W W; Kroczek, R A; Mowat, A M; Yrlid, U; Milling, S WF

    2015-01-01

    Cross-presentation of cellular antigens is crucial for priming CD8+ T cells, and generating immunity to intracellular pathogens—particularly viruses. It is unclear which intestinal phagocytes perform this function in vivo. To address this, we examined dendritic cells (DCs) from the intestinal lymph of IFABP-tOVA 232-4 mice, which express ovalbumin in small intestinal epithelial cells (IECs). Among lymph DCs (LDCs) only CD103+ CD11b− CD8α+ DCs cross-present IEC-derived ovalbumin to CD8+ OT-I T cells. Similarly, in the mesenteric lymph nodes (MLNs), cross-presentation of IEC–ovalbumin was limited to the CD11c+ MHCIIhi CD8α+ migratory DCs, but absent from all other subsets, including the resident CD8αhi DCs. Crucially, delivery of purified CD8α+ LDCs, but not other LDC subsets, into the MLN subcapsular lymphatic sinus induced proliferation of ovalbumin-specific, gut-tropic CD8+ T cells in vivo. Finally, in 232-4 mice treated with R848, CD8α+ LDCs were uniquely able to cross-prime interferon γ-producing CD8+ T cells and drive their migration to the intestine. Our results clearly demonstrate that migrating CD8α+ intestinal DCs are indispensable for cross-presentation of cellular antigens and, in conditions of inflammation, for the initial differentiation of effector CD8+ T cells. They may therefore represent an important target for the development of antiviral vaccinations. PMID:24850430

  1. Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens

    PubMed Central

    2010-01-01

    Background The influence of diet on intestinal microflora has been investigated mainly using conventional microbiological approaches. Although these studies have advanced knowledge on human intestinal microflora, it is imperative that new methods are applied to facilitate scientific progress. Culture-independent molecular fingerprinting method of Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE) has been used to study microbial communities in a variety of environmental samples. However, these protocols must be optimized prior to their application in order to enhance the quality and accuracy of downstream analyses. In this study, the relative efficacy of four commercial DNA extraction kits (Mobio Ultra Clean Fecal DNA Isolation Kit, M; QIAamp DNA Stool Mini Kit, Q; FastDNA SPIN Kit, FSp; FastDNA SPIN Kit for Soil, FSo) were evaluated. Further, PCR-DGGE technique was also assessed for its feasibility in detecting differences in human intestinal bacterial fingerprint profiles. Method Total DNA was extracted from varying weights of human fecal specimens using four different kits, followed by PCR amplification of bacterial 16S rRNA genes, and DGGE separation of the amplicons. Results Regardless of kit, maximum DNA yield was obtained using 10 to 50 mg (wet wt) of fecal specimens and similar DGGE profiles were obtained. However, kits FSp and FSo extracted significantly larger amounts of DNA per g dry fecal specimens and produced more bands on their DGGE profiles than kits M and Q due to their use of bead-containing lysing matrix and vigorous shaking step. DGGE of 16S rRNA gene PCR products was suitable for capturing the profiles of human intestinal microbial community and enabled rapid comparative assessment of inter- and intra-subject differences. Conclusion We conclude that extraction kits that incorporated bead-containing lysing matrix and vigorous shaking produced high quality DNA from human fecal specimens (10 to 50 mg, wet wt) that can be resolved as bacterial community fingerprints using PCR-DGGE technique. Subsequently, PCR-DGGE technique can be applied for studying variations in human intestinal microbial communities. PMID:20492702

  2. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review.

    PubMed

    Mosele, Juana I; Macià, Alba; Motilva, Maria-José

    2015-01-01

    Phenolic compounds represent a diverse group of phytochemicals whose intake is associated with a wide spectrum of health benefits. As consequence of their low bioavailability, most of them reach the large intestine where, mediated by the action of local microbiota, a series of related microbial metabolites are accumulated. In the present review, gut microbial transformations of non-absorbed phenolic compounds are summarized. Several studies have reached a general consensus that unbalanced diets are associated with undesirable changes in gut metabolism that could be detrimental to intestinal health. In terms of explaining the possible effects of non-absorbed phenolic compounds, we have also gathered information regarded their influence on the local metabolism. For this purpose, a number of issues are discussed. Firstly, we consider the possible implications of phenolic compounds in the metabolism of colonic products, such as short chain fatty acids (SCFA), sterols (cholesterol and bile acids), and microbial products of non-absorbed proteins. Due to their being recognized as affective antioxidant and anti-inflammatory agents, the ability of phenolic compounds to counteract or suppress pro-oxidant and/or pro-inflammatory responses, triggered by bowel diseases, is also presented. The modulation of gut microbiota through dietetic maneuvers including phenolic compounds is also commented on. Although the available data seems to assume positive effects in terms of gut health protection, it is still insufficient for solid conclusions to be extracted, basically due to the lack of human trials to confirm the results obtained by the in vitro and animal studies. We consider that more emphasis should be focused on the study of phenolic compounds, particularly in their microbial metabolites, and their power to influence different aspects of gut health. PMID:26393570

  3. MICROBIAL COMMUNITY CHANGES IN THE INTESTINE OF THE PRE-ADOLESCENT TURKEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colonization of the intestine by opportunistic pathogens can be inhibited by the native flora but factors such as antibiotic use and age can disrupt the equilibrium, providing a susceptible environment. Thus, identifying periods of innate susceptibility in the poultry intestine is important for both...

  4. Lack of norovirus replication and histo-blood group antigen expression in 3-dimensional intestinal epithelial cells.

    PubMed

    Herbst-Kralovetz, Melissa M; Radtke, Andrea L; Lay, Margarita K; Hjelm, Brooke E; Bolick, Alice N; Sarker, Shameema S; Atmar, Robert L; Kingsley, David H; Arntzen, Charles J; Estes, Mary K; Nickerson, Cheryl A

    2013-03-01

    Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. A previous study, which used a 3-dimensional (3-D) intestinal model derived from INT-407 cells reported NoV replication and extensive cytopathic effects (CPE). Using the same 3-D model, but with highly purified Norwalk virus (NV), we attempted to replicate this study. Our results showed no evidence of NV replication by real-time PCR of viral RNA or by immunocytochemical detection of viral structural and nonstructural proteins. Immunocytochemical analysis of the 3-D cultures also showed no detectable presence of histo-blood group antigens that participate in NV binding and host tropism. To determine the potential cause of CPE observed in the previous study, we exposed 3-D cultures to lipopolysaccharide concentrations consistent with contaminated stool samples and observed morphologic features similar to CPE. We conclude that the 3-D INT-407 model does not support NV replication. PMID:23622517

  5. Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis.

    PubMed Central

    Wassef, J S; Keren, D F; Mailloux, J L

    1989-01-01

    Strains of Shigella flexneri with different invasive and pathogenic potentials were inoculated into the intestinal lumen of acutely ligated loops in nonimmune rabbits. After 90 min, tissues processed for ultrastructural as well as light microscopy showed that the bacilli were phagocytosed by M cells over lymphoid follicles of Peyer's patches and carried in vacuoles into the epithelium. Nonpathogenic as well as pathogenic strains were readily taken up regardless of the presence of the 140-megadalton virulence plasmid. More virulent than avirulent shigellae were found in M cells at 90 min, reflecting replication or preferential uptake of the virulent strains. Heat-killed shigellae of the virulent strain were taken up by M cells to the same degree as the avirulent strains. Incubation of the bacteria for 18 h resulted in surface ulceration which was limited to epithelium overlying lymphoid follicles (M cell areas) in acute loops exposed to the virulent shigellae. Villus epithelium adjacent to the ulcerated follicular domes was intact, although there was mucus depletion. In the present study, we found that pathogenic shigellae appear to replicate in the M cells, escape from the phagocytic vesicles, and thereby initiate the ulcerations in this experimental model of dysentery. While initial antigen processing in the gut for a mucosal immune response may require uptake of luminal microorganisms by M cells, this may pose a threat under some circumstances. Images PMID:2645214

  6. Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae.

    PubMed

    Cerezuela, Rebeca; Fumanal, Milena; Tapia-Paniagua, Silvana Teresa; Meseguer, Jos; Moriigo, Miguel Angel; Esteban, Ma Angeles

    2012-12-01

    The effects on histology and microbial ecology in gilthead seabream (Sparus aurata) intestine caused by dietary probiotic and microalgae were studied. Fish were fed non-supplemented (C, control) or supplemented diets with Tetraselmis chuii, Phaeodactylum tricornutum and Bacillus subtilis single or combined (diets T, P, B, BT and BP) for 4 weeks. Curiously, fish fed the experimental diets showed similar morphological alterations when studied by light and electron microscopy and significant signs of intestinal damage were detected. No effect of microalgae or B. subtilis on the intestinal absorptive area was observed, whereas the number of goblet cells and IELs were significantly lower in fish fed the T, P, B and BT diets and T, BT and BP diets, respectively. Interestingly, only the diets containing B. subtilis resulted in a significant reduction of microvilli height. Alterations such as wide intercellular spaces and large vacuoles in enterocytes were observed in fish fed T, B, BT, BT and P in lesser degrees. These observations demonstrate that fish fed experimental diets presented different signs of oedema and inflammation that could compromise their body homeostasis. Moreover, the experimental diets cause important alterations in the intestinal microbiota by a significant decrease in bacterial diversity, as demonstrated by the fall in specific richness, Shannon and range-weighted richness indices. To our knowledge, this is the first in vivo study regarding the implications of the use of probiotics in combination with immunostimulants on fish intestinal morphology and microbiota. More morphofunctional studies are needed in order to correlate the nutritional and immune aspects of fish gut. PMID:23053048

  7. Differential interaction of Escherichia coli heat-labile toxin and cholera toxin with pig intestinal brush border glycoproteins depending on their ABH and related blood group antigenic determinants.

    PubMed Central

    Balanzino, L E; Barra, J L; Monferran, C G; Cumar, F A

    1994-01-01

    The ability of glycoproteins from pig intestinal brush border membranes (BBM) to bind cholera toxin (CT) or heat-labile toxins from strains of Escherichia coli isolated from human (LTh) or pig (LTp) intestines was studied. Glycoproteins capable of binding the toxins are also recognized by antibodies or lectins specific for ABO(H) blood group and related antigens. Pigs expressing A, H, or I antigenic determinants were used for comparison. The toxin-binding capacity of a glycoprotein depends on the toxin type and the blood group epitope borne by the glycoprotein. LTh and LTp preferably bound to several blood group A-active glycoproteins rather than H-active glycoproteins. By contrast, CT practically did not recognize either blood group A- or blood group H-active glycoproteins, while glycoproteins from pigs expressing I antigenic determinants were able to interact with LTh, LTp, and CT. LTh, LTp, or CT glycoprotein binding was selectively inhibited by specific lectins or monosaccharides. Affinity purification of the toxin binding brush border glycoproteins on the basis of their blood group reactivity suggests that such glycoproteins are hydrolytic enzymes. BBM from A+ pigs contain about 27 times more LTh binding sites, in addition to those recognized by CT, than an equivalent membrane preparation from H+ pigs. The present findings may help clarify some previous unclear results on LTh binding to intestinal BBM glycoproteins obtained by use of animals not typed by their ABO(H) blood group phenotype. Images PMID:7510669

  8. Lysosomal Trafficking, Antigen Presentation, and Microbial Killing Are Controlled by the Arf-like GTPase Arl8b

    PubMed Central

    Garg, Salil; Sharma, Mahak; Ung, Cindy; Tuli, Amit; Barral, DuarteC.; Hava, DavidL.; Veerapen, Natacha; Besra, GurdyalS.; Hacohen, Nir; Brenner, MichaelB.

    2011-01-01

    Summary Antigen presentation and microbial killing are critical arms of host defense that depend upon cargo trafficking into lysosomes. Yet, the molecular regulators of traffic into lysosomes are only partly understood. Here, using a lysosome-dependent immunological screen of a trafficking shRNA library, we identified the Arf-like GTPase Arl8b as a critical regulator of cargo delivery to lysosomes. Homotypic fusion and vacuole protein sorting (HOPS) complex members were identified as effectors of Arl8b and were dependent on Arl8b for recruitment to lysosomes, suggesting that Arl8b-HOPS plays a general role in directing traffic to lysosomes. Moreover, the formation of CD1antigen-presenting complexes in lysosomes, their delivery to the plasma membrane, and phagosome-lysosome fusion were all markedly impaired in Arl8b silenced cells resulting in corresponding defects in Tcell activation and microbial killing. Together, these results define Arl8b as a key regulator of lysosomal cellular and immunological functions. PMID:21802320

  9. The intestinal epithelial barrier: how to distinguish between the microbial flora and pathogens.

    PubMed

    Magalhaes, Joao G; Tattoli, Ivan; Girardin, Stephen E

    2007-04-01

    The gastrointestinal tract is fundamental for the uptake of nutrients and fluids, but it also represents the greatest surface of the body in contact with the external environment and most human pathogens enter the body through the mucosal surface, especially in the intestine. The intestinal immune system protects the sterile core of the organism against invasion and systemic dissemination of both pathogens and limits for level penetration of commensal microorganisms. In addition, the human intestine is continually in contact with 10(14) commensal bacteria containing more than 500 different species. These commensal bacteria confer health benefits to their host by helping dietary digestion, development of gut immunity and preventing colonization by pathogens. To maintain integrity and normal function of intestine, a delicate equilibrium must be reached between the bacterial flora and intestinal immune system. This review discusses the recent advances in our understanding of how the mucosal intestinal barrier maintains a local homeostatic response to the resident intestinal bacteria, while protecting the host against enteric pathogens. In particular, the emerging function of Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in controlling mucosal immunity will be presented. PMID:17324587

  10. Mucosal cell-mediated immunity to mycobacterial, enterobacterial and other microbial antigens in inflammatory bowel disease.

    PubMed Central

    Ibbotson, J P; Lowes, J R; Chahal, H; Gaston, J S; Life, P; Kumararatne, D S; Sharif, H; Alexander-Williams, J; Allan, R N

    1992-01-01

    Culture studies have suggested that Mycobacterium paratuberculosis may play a role in the aetiology of Crohn's disease. However, evidence of sensitization to mycobacterial antigens amongst patients with Crohn's disease has not yet been adequately demonstrated. Previous studies of cell-mediated immunity (CMI) in Crohn's disease were restricted to responses of peripheral blood mononuclear cells (PBMC) to mycobacterial antigens. In this study we have investigated the proliferative responses of both PBMC and mesenteric lymph node mononuclear cells (MLNMC) to a range of mycobacterial and non-mycobacterial antigens. There was no evidence of specific sensitization in the responses of MLNMC and PBMC from patients with inflammatory bowel disease (IBD) to the mycobacterial antigens. However, anergy to M. paratuberculosis could not be excluded. IBD MLNMC responses to most antigens were generally greater than those of PBMC, which were often undetectable. When compared with controls, there was evidence of increased CMI to a range of non-mycobacterial antigens, especially Yersinia enterocolitica, amongst both MLNMC and PBMC from patients with Crohn's disease and ulcerative colitis (UC). These results do not provide support to the proposed role of mycobacteria in the pathogenesis of Crohn's disease, but indicate that further investigation may determine a role for bacterial-specific T cell-mediated responses in the pathogenesis of IBD. PMID:1735186

  11. Mucosal cell-mediated immunity to mycobacterial, enterobacterial and other microbial antigens in inflammatory bowel disease.

    PubMed

    Ibbotson, J P; Lowes, J R; Chahal, H; Gaston, J S; Life, P; Kumararatne, D S; Sharif, H; Alexander-Williams, J; Allan, R N

    1992-02-01

    Culture studies have suggested that Mycobacterium paratuberculosis may play a role in the aetiology of Crohn's disease. However, evidence of sensitization to mycobacterial antigens amongst patients with Crohn's disease has not yet been adequately demonstrated. Previous studies of cell-mediated immunity (CMI) in Crohn's disease were restricted to responses of peripheral blood mononuclear cells (PBMC) to mycobacterial antigens. In this study we have investigated the proliferative responses of both PBMC and mesenteric lymph node mononuclear cells (MLNMC) to a range of mycobacterial and non-mycobacterial antigens. There was no evidence of specific sensitization in the responses of MLNMC and PBMC from patients with inflammatory bowel disease (IBD) to the mycobacterial antigens. However, anergy to M. paratuberculosis could not be excluded. IBD MLNMC responses to most antigens were generally greater than those of PBMC, which were often undetectable. When compared with controls, there was evidence of increased CMI to a range of non-mycobacterial antigens, especially Yersinia enterocolitica, amongst both MLNMC and PBMC from patients with Crohn's disease and ulcerative colitis (UC). These results do not provide support to the proposed role of mycobacteria in the pathogenesis of Crohn's disease, but indicate that further investigation may determine a role for bacterial-specific T cell-mediated responses in the pathogenesis of IBD. PMID:1735186

  12. Differences in intestinal microbial metabolites in laying hens with high and low levels of repetitive feather-pecking behavior.

    PubMed

    Meyer, Beatrice; Zentek, Jrgen; Harlander-Matauschek, Alexandra

    2013-02-17

    Feather pecking in laying hens is a serious behavioral problem and is often associated with feather eating. There is some evidence that ingested feathers affect gut function. The aim of the present study was to explore whether differences in intestinal microbial metabolites in laying hens with high and low levels of repetitive feather-pecking behavior exist. Sixty high feather-pecking birds (H) and sixty low feather-pecking birds (L) of the White Leghorn breed were used for behavioral recordings of feather pecking. Feather pecking activity was observed for 5 weeks, after which 22 H birds with the highest and 22 L birds with the lowest feather pecking activity were chosen. The number of whole feathers and feather parts in the gizzard and intestinal microbial metabolites in the ileum and ceca of these laying hens was examined. Biogenic amines, short-chain fatty acids, ammonia and lactate were measured as microbial metabolites. A higher number of feather parts and particles were found in H than in L birds. Putrescine and cadaverine concentrations were higher in the ileum of the hens with low pecking activity (P<0.001 and P=0.012). In the cecum the amounts of l-lactate, d-lactate and total lactate and SCFA were higher in H birds (P=0.007, P=0.005, P=0.006, and P<0.001). Acetate, i-butyrate, i-valeriate and n-valeriate all displayed significantly higher molar ratios in the cecal contents of L birds (P=0.001, P=0.003, P=0.001, and P<0.001). Propionate and n-butyrate showed higher molar ratios in H birds (P<0.001 and P=0.034). Ammonia was higher in the ileum and cecum of the L birds (P<0.001 and P=0.004). For the first time, this study shows that birds with high and low numbers of repetitive pecking movements to the plumage of other birds differ in their intestinal microbial metabolism. Further experiments should be conducted to investigate whether these differences alter behavior in H and L feather pecking birds. The present results, however, open new avenues of research into implications of gut bacteria, their metabolites and the polyamine system on brain and behavior in laying hens. PMID:23313560

  13. Modulatory Effects of Vasoactive Intestinal Peptide on Intestinal Mucosal Immunity and Microbial Community of Weaned Piglets Challenged by an Enterotoxigenic Escherichia coli (K88)

    PubMed Central

    Xu, Chunlan; Wang, Youming; Sun, Rui; Qiao, Xiangjin; Shang, Xiaoya; Niu, Weining

    2014-01-01

    Toll-like receptors (TLRs) recognize microbial pathogens and trigger immune response, but their regulation by neuropeptide-vasoactive intestinal peptide (VIP) in weaned piglets infected by enterotoxigenic Escherichia coli (ETEC) K88 remains unexplored. Therefore, the study was conducted to investigate its role using a model of early weaned piglets infected by ETEC K88. Male Duroc×Landrace×Yorkshire piglets (n = 24) were randomly divided into control, ETEC K88, VIP, and ETEC K88+VIP groups. On the first three days, ETEC K88 and ETEC K88+VIP groups were orally administrated with ETEC K88, other two groups were given sterile medium. Then each piglet from VIP and ETEC K88+VIP group received 10 nmol VIP intraperitoneally (i.p.) once daily, on day four and six. On the seventh day, the piglets were sacrificed. The results indicated that administration of VIP improved the growth performance, reduced diarrhea incidence of ETEC K88 challenged pigs, and mitigated the histopathological changes of intestine. Serum levels of IL-2, IL-6, IL-12p40, IFN-γ and TNF-α in the ETEC K88+ VIP group were significantly reduced compared with those in the ETEC group. VIP significantly increased IL-4, IL-10, TGF-β and S-IgA production compared with the ETEC K88 group. Besides, VIP could inhibit the expression of TLR2, TLR4, MyD88, NF-κB p65 and the phosphorylation of IκB-α, p-ERK, p-JNK, and p-38 induced by ETEC K88. Moreover, VIP could upregulate the expression of occludin in the ileum mucosa compared with the ETEC K88 group. Colon and caecum content bacterial richness and diversity were lower for pigs in the ETEC group than the unchallenged groups. These results demonstrate that VIP is beneficial for the maturation of the intestinal mucosal immune system and elicited local immunomodulatory activities. The TLR2/4-MyD88 mediated NF-κB and MAPK signaling pathway may be critical to the mechanism underlying the modulatory effect of VIP on intestinal mucosal immune function and bacterial community. PMID:25101851

  14. Effects of dietary supplementation with fermented ginkgo leaves on antioxidant capacity, intestinal morphology and microbial ecology in broiler chicks.

    PubMed

    Zhang, X H; Sun, Z Y; Cao, F L; Ahmad, H; Yang, X H; Zhao, L G; Wang, T

    2015-01-01

    1. The purpose of this study was to evaluate the effects of supplementing diets with three types of fermented Ginkgo-leaves (FGL) on growth, antioxidant capacity, intestinal morphology and microbial ecology in broiler chicks. 2. A total of 300 d-old broilers were randomly allocated to 4 dietary treatments with 6 replications of 10 birds each. Birds were fed on basal diets (Control) or basal diets supplemented with 0.5% FGL with Candida utilis (CF group), Aspergillus niger (AF group) or their combined fermentation (CAF group), respectively, for a 42 d feeding trial. 3. AF and CAF supplementation improved body weight gain (BWG) (22-42 d) and feed conversion ratio (22-42 d and 1-42 d). Concentrations of serum ?-tocopherol in CAF group, as well as hepatic ?-tocopherol in the three FGL groups were increased, while hepatic reactive oxygen species (ROS) levels were greatly decreased in group AF and CAF. Chickens in AF and CAF groups had decreased hepatic protein carbonyls and malondialdehyde (MDA), as well as jejunal and ileal protein carbonyls. The total superoxide dismutase (T-SOD) activities and glutathione (GSH) of both jejunum and ileum of the CAF group were higher than the other groups. 4. Duodenal and jejunal villous height of birds fed on the AF and CAF diets were increased, while jejunal crypt depth (CD) was decreased. Furthermore, birds fed on AF and CAF supplemented diets had increased ileal lactobacilli populations. Decreased ileal and caecal Escherichia coli and Salmonellas populations was found for the birds fed on CAF supplemented diets. 5. The present study may indicate that the improved feed efficiency and intestinal functions in the group supplemented with AF and CAF are directly connected with the improved antioxidant capacity and intestinal microbial ecology. PMID:25868615

  15. Effect of malnutrition in Ecuadorian children on titers of serum antibodies to various microbial antigens.

    PubMed Central

    Brssow, H; Sidoti, J; Dirren, H; Freire, W B

    1995-01-01

    The titers of serum antibodies to natural infection with enteric and respiratory pathogens, to a food antigen and to tetanus and diphtheria toxoid were evaluated by enzyme-linked immunosorbent assay in 1,554 Ecuadorian children younger than 5 years of age. The nutritional status of the children was assessed by anthropometry and measurement of biochemical status indicators. The children were enrolled in a representative national nutrition and health survey. Antibody titers were analyzed as a function of the nutritional status of the children. For 12 of 14 antibody concentrations tested, underweight children showed lower antibody titers than did control children. The difference was statistically significant for antibody to both T-cell-dependent antigens (tetanus toxoid, rotavirus, respiratory syncytial virus) and T-cell-independent antigens (lipopolysaccharide, polyribosyl-ribitol phosphate, capsular polysaccharide). When children with a recent episode of diarrhea were excluded, many of the differences remained significant. When these children were further classified by age, only difference in titers of antibodies to respiratory syncytial virus and tetanus toxoid remained significant. No statistically significant difference was detected between underweight and control children with respect to protective antibody levels to four bacterial antigens. Anemic children showed significantly lower antibody levels to both T-cell-dependent and T-cell-independent antigens than did control children, and a higher proportion of anemic children had diphtheria antitoxin below a conservatively defined protective antibody level. No major differences in antibody titers were seen between children with different retinol and zinc concentrations in serum. PMID:7719915

  16. Microbial ecological response of the intestinal flora of Peromyscus maniculatus and P. leucopus to heavy metal contamination.

    PubMed

    Coolon, Joseph D; Jones, Kenneth L; Narayanan, Sanjeev; Wisely, Samantha M

    2010-03-01

    Heavy metal contamination negatively affects natural systems including plants, birds, fish and bacteria by reducing biodiversity at contaminated sites. At the Tri-State Mining District, efforts have been made to remediate sites to mitigate the detrimental effects that contamination has caused on human health. While the remediation effort has returned the site to within federal safety standards, it is unclear if this effort is sufficient to restore floral and faunal communities. Intrinsic to ecosystem and organism health is the biodiversity and composition of microbial communities. We have taken advantage of recent advances in sequencing technology and surveyed the bacterial community of remediated and reference soils as well as the intestinal microbial community of two ubiquitous rodent species to provide insight on the impacts of residual heavy metal contamination on the ecosystem. Rodents found on the remediated site had reduced body mass, smaller body size and lower body fat than animals on reference sites. Using bar-coded, massively parallel sequencing, we found that bacterial communities in both the soil and Peromyscus spp. gastrointestinal tracts had no difference in diversity between reference and remediated sites but assemblages differed in response to contamination. These results suggest that niche voids left by microbial taxa that were unable to deal with the remnant levels of heavy metals on remediated sites were replaced by taxa that could persist in this environment. Whether this replacement provided similar ecosystem services as ancestral bacterial communities is unknown. PMID:20331771

  17. Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions.

    PubMed

    Pourabedin, Mohsen; Xu, Zhengxin; Baurhoo, Bushansingh; Chevaux, Eric; Zhao, Xin

    2014-05-01

    There is an increasing movement against use of antibiotic growth promoters in animal feed. Prebiotic supplementation is a potential alternative to enhance the host's natural defense through modulation of gut microbiota. In the present study, the effect of mannan oligosaccharide (MOS) and virginiamycin (VIRG) on cecal microbial ecology and intestinal morphology of broiler chickens raised under suboptimal conditions was evaluated. MOS and VIRG induced different bacterial community structures, as revealed by denaturing gradient gel electrophoresis of 16S rDNA. The antibiotic treatment reduced cecal microbial diversity while the community equitability increased. A higher bacterial diversity was observed in the cecum of MOS-supplemented birds. Quantitative polymerase chain reaction results indicated that MOS changed the cecal microbiota in favor of the Firmicutes population but not the Bacteroidetes population. No difference was observed in total bacterial counts among treatments. MOS promoted the growth of Lactobacillus spp. and Bifidobacterium spp. in the cecum and increased villus height and goblet cell numbers in the ileum and jejunum. These results provide a deeper insight into the microbial ecological changes after supplementation of MOS prebiotic in poultry diets. PMID:24766220

  18. Novel O-linked methylated glycan antigens decorate secreted immunodominant glycoproteins from the intestinal nematode Heligmosomoides polygyrus

    PubMed Central

    Hewitson, James P.; Nguyen, D. Linh; van Diepen, Angela; Smit, Cornelis H.; Koeleman, Carolien A.; McSorley, Henry J.; Murray, Janice; Maizels, Rick M.; Hokke, Cornelis H.

    2016-01-01

    Glycan molecules from helminth parasites have been associated with diverse biological functions ranging from interactions with neighbouring host cell populations to down-modulation of specific host immunity. Glycoproteins secreted by the intestinal nematode Heligmosomoides polygyrus are of particular interest as the excretory–secretory products (termed HES) of this parasite contain both heat-labile and heat-stable components with immunomodulatory effects. We used MALDI-TOF-MS and LC–MS/MS to analyse the repertoire of N- and O-linked glycans released from Heligmosomoides polygyrus excretory–secretory products by PNGase A and F, β-elimination and hydrazinolysis revealing a broad range of structures including novel methylhexose- and methylfucose-containing glycans. Monoclonal antibodies to two immunodominant glycans of H. polygyrus, previously designated Glycans A and B, were found to react by glycan array analysis to a methyl-hexose-rich fraction and to a sulphated LacDiNAc (LDN; GalNAcβ1–4GlcNAc) structure, respectively. We also analysed the glycan repertoire of a major glycoprotein in Heligmosomoides polygyrus excretory–secretory products, VAL-2, which contains many glycan structures present in Heligmosomoides polygyrus excretory–secretory products including Glycan A. However, it was found that this set of glycans is not responsible for the heat-stable immunomodulatory properties of Heligmosomoides polygyrus excretory–secretory products, as revealed by the inability of VAL-2 to inhibit allergic lung inflammation. Taken together, these studies reveal that H. polygyrus secretes a diverse range of antigenic glycoconjugates, and provides a framework to explore the biological and immunomodulatory roles they may play within the mammalian host. PMID:26688390

  19. Microbial fingerprinting detects intestinal microbiota dysbiosis in Zebrafish models with chemically-induced enterocolitis

    PubMed Central

    2013-01-01

    Background Inflammatory bowel disease (IBD) involves a breakdown in interactions between the host immune response and the resident commensal microbiota. Recent studies have suggested gut physiology and pathology relevant to human IBD can be rapidly modeled in zebrafish larvae. The aim of this study was to investigate the dysbiosis of intestinal microbiota in zebrafish models with IBD-like enterocolitis using culture-independent techniques. Results IBD-like enterocolitis was induced by exposing larval zebrafish to trinitrobenzenesulfonic acid (TNBS). Pathology was assessed by histology and immunofluorescence. Changes in intestinal microbiota were evaluated by denaturing gradient gel electrophoresis (DGGE) and the predominant bacterial composition was determined with DNA sequencing and BLAST and confirmed by real-time polymerase chain reaction. Larval zebrafish exposed to TNBS displayed intestinal-fold architecture disruption and inflammation reminiscent of human IBD. In this study, we defined a reduced biodiversity of gut bacterial community in TNBS-induced coliitis. The intestinal microbiota dysbiosis in zebrafish larvae with IBD-like colitis was characterized by an increased proportion of Proteobacteria (especially Burkholderia) and a decreased of Firmicutes(Lactobacillus group), which were significantly correlated with enterocolitis severity(Pearson correlation p < 0.01). Conclusions This is the first description of intestinal microbiota dysbiosis in zebrafish IBD-like models, and these changes correlate with TNBS-induced enterocolitis. Prevention or reversal of this dysbiosis may be a viable option for reducing the incidence and severity of human IBD. PMID:24325678

  20. Interactive effects of active Saccharomyces cerevisiae and its cell wall material on intestinal microbial ecology during the receiving period of stressed beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of active Saccharomyces cerevisiae (SC) addition and/or S. cerevisiae cell wall (CW) material on intestinal microbial profiles were evaluated in receiving beef cattle (203 +/- 1.45 kg) during the first 56 d on feed. Cattle were assigned to 1 of 4 treatment groups; with SC (n=5); with CW ...

  1. Controlling Salmonella infection in weanling pigs through water delivery of direct-fed microbials or organic acids: Part II. Effects on intestinal histology and active nutrient transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the effects of water-delivered direct-fed microbials (DFM) or organic acids on intestinal morphology and active nutrient absorption in weanling pigs following deliberate Salmonella infection. Pigs (n = 88) were weaned at 19 ± 2 d of age and assigned to one...

  2. Enterocytes: active cells in tolerance to food and microbial antigens in the gut

    PubMed Central

    Miron, N; Cristea, V

    2012-01-01

    Enterocytes used to be studied particularly in terms of digestion protagonists. However, as the immune functions of the intestinal tract were better understood, it became clear that enterocytes are not mere bystanders concerning the induction of immune tolerance to dietary peptides and gut microbiota. In fact, enterocytes are involved actively in shaping the intestinal immune environment, designed for maintaining a non-belligerent state. This tolerant milieu of the gut immune system is achieved by keeping a balance between suppression and stimulation of the inflammatory responses. Our review presents the current state of knowledge concerning the relationship between enterocytes and immune cells (dendritic cells, lymphocytes), with emphasis on the enterocytes' impact on the mechanisms leading to the induction of oral tolerance. PMID:22288583

  3. Nutritional Keys for Intestinal Barrier Modulation

    PubMed Central

    De Santis, Stefania; Cavalcanti, Elisabetta; Mastronardi, Mauro; Jirillo, Emilio; Chieppa, Marcello

    2015-01-01

    The intestinal tract represents the largest interface between the external environment and the human body. Nutrient uptake mostly happens in the intestinal tract, where the epithelial surface is constantly exposed to dietary antigens. Since inflammatory response toward these antigens may be deleterious for the host, a plethora of protective mechanisms take place to avoid or attenuate local damage. For instance, the intestinal barrier is able to elicit a dynamic response that either promotes or impairs luminal antigens adhesion and crossing. Regulation of intestinal barrier is crucial to control intestinal permeability whose increase is associated with chronic inflammatory conditions. The cross talk among bacteria, immune, and dietary factors is able to modulate the mucosal barrier function, as well as the intestinal permeability. Several nutritional products have recently been proposed as regulators of the epithelial barrier, even if their effects are in part contradictory. At the same time, the metabolic function of the microbiota generates new products with different effects based on the dietary content. Besides conventional treatments, novel therapies based on complementary nutrients are now growing. Fecal therapy has been recently used for the clinical treatment of refractory Clostridium difficile infection instead of the classical antibiotic therapy. In the present review, we will outline the epithelial response to nutritional components derived from dietary intake and microbial fermentation focusing on the consequent effects on the integrity of the epithelial barrier. PMID:26697008

  4. Campylobacter Colonization of the Turkey Intestine in the Context of Microbial Community Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relationships between development of the turkey intestinal microbiota and colonization by the food borne pathogen Campylobacter were examined. Every week of the 18 week production cycle, cecal bacterial communities and Campylobacter isolates were examined from five birds for each of two flocks. Mole...

  5. Urolithins, Intestinal Microbial Metabolites of Pomegranate Ellagitannins, Exhibit Potent Antioxidant Activity in Cell-Based Assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many health benefits of pomegranate products have been attributed to the potent antioxidant action of their tannin components, mainly punicalagins and ellagic acid. While moving through the intestines, ellagitannins are metabolized by gut bacteria into urolithins that readily enter systemic circulat...

  6. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective.

    PubMed

    Kortman, Guus A M; Raffatellu, Manuela; Swinkels, Dorine W; Tjalsma, Harold

    2014-11-01

    Iron is abundantly present on earth, essential for most microorganisms and crucial for human health. Human iron deficiency that is nevertheless highly prevalent in developing regions of the world can be effectively treated by oral iron administration. Accumulating evidence indicates that excess of unabsorbed iron that enters the colonic lumen causes unwanted side effects at the intestinal host-microbiota interface. The chemical properties of iron, the luminal environment and host iron withdrawal mechanisms, especially during inflammation, can turn the intestine in a rather stressful milieu. Certain pathogenic enteric bacteria can, however, deal with this stress at the expense of other members of the gut microbiota, while their virulence also seems to be stimulated in an iron-rich intestinal environment. This review covers the multifaceted aspects of nutritional iron stress with respect to growth, composition, metabolism and pathogenicity of the gut microbiota in relation to human health. We aim to present an unpreceded view on the dynamic effects and impact of oral iron administration on intestinal host-microbiota interactions to provide leads for future research and other applications. PMID:25205464

  7. Intestinal microbial affects of yeast products on weaned and transport stressed pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Study objectives were to determine effects of a commercially available yeast product (XPC, Diamond-V Mills) and stress of transportation on total Enterobacteriaceae, Escherichia coli, coliforms, and Lactobacilli populations in the intestine of weaning pigs. In a RCB design with a 2 x 2 factorial ar...

  8. Microecology, intestinal epithelial barrier and necrotizing enterocolitis

    PubMed Central

    Sharma, Renu; Tepas, Joseph J.

    2010-01-01

    Soon after birth, the neonatal intestine is confronted with a massive antigenic challenge of microbial colonization. Microbial signals are required for maturation of several physiological, anatomical, and biochemical functions of intestinal epithelial barrier (IEB) after birth. Commensal bacteria regulate intestinal innate and adaptive immunity and provide stimuli for ongoing repair and restitution of IEB. Colonization by pathogenic bacteria and/or dysmature response to microbial stimuli can result in flagrant inflammatory response as seen in necrotizing enterocolitis (NEC). Characterized by inflammation and hemorrhagic–ischemic necrosis, NEC is a devastating complication of prematurity. Although there is evidence that both prematurity and presence of bacteria, are proven contributing factors to the pathogenesis of NEC, the molecular mechanisms involved in IEB dysfunction associated with NEC have begun to emerge only recently. The metagenomic advances in the field of intestinal microecology are providing insight into the factors that are required for establishment of commensal bacteria that appear to provide protection against intestinal inflammation and NEC. Perturbations in achieving colonization by commensal bacteria such as premature birth or hospitalization in intensive care nursery can result in dysfunction of IEB and NEC. In this article, microbial modulation of functions of IEB and its relationship with barrier dysfunction and NEC are described. PMID:19967379

  9. Colonization of porcine small intestine by Escherichia coli: ileal colonization and adhesion by pig enteropathogens that lack K88 antigen and by some acapsular mutants.

    PubMed

    Nagy, B; Moon, H W; Isaacson, R E

    1976-04-01

    Seven K88-negative porcine enteropathogenic Escherichia coli, representing three different serogroups, caused severe diarrhea and characteristically colonized the ileum, but not the jejunum, of intragastrically exposed newborn pigs. Bacterial counts of intestinal contents and wall, fluorescence, and scanning electron microscopy all suggested that these strains colonized the ileum by adhesion to the villous epithelium. However, in ligated intestinal loops, these enteropathogenic E. coli strains adhered to jejunal epithelium as well as to ileal epithelium. Acapsular (K-) mutants, derived from one of the principal strains, retained their colonizing and adhesive abilities, whereas K- mutants from three other enteropathogenic E. coli strains did not. It is suggested that: (i) these K88-negative enteropathogenic E. coli colonize the ileum by adhesion, and (ii) the adhesion of some K-88-negative strains is mediated by surface factors other than, or in addition to, the polysaccharide K antigen. PMID:776834

  10. O-Antigen-Negative Salmonella enterica Serovar Typhimurium Is Attenuated in Intestinal Colonization but Elicits Colitis in Streptomycin-Treated Mice?

    PubMed Central

    Ilg, Karin; Endt, Kathrin; Misselwitz, Benjamin; Stecher, Brbel; Aebi, Markus; Hardt, Wolf-Dietrich

    2009-01-01

    Lipopolysaccharide (LPS) is a major constituent of the outer membrane and an important virulence factor of Salmonella enterica subspecies 1 serovar Typhimurium (serovar Typhimurium). To evaluate the role of LPS in eliciting intestinal inflammation in streptomycin-treated mice, we constructed an O-antigen-deficient serovar Typhimurium strain through deletion of the wbaP gene. The resulting strain was highly susceptible to human complement activity and the antimicrobial peptide mimic polymyxin B. Furthermore, it showed a severe defect in motility and an attenuated phenotype in a competitive mouse infection experiment, where the ?wbaP strain (SKI12) was directly compared to wild-type Salmonella. Nevertheless, the ?wbaP strain (SKI12) efficiently invaded HeLa cells in vitro and elicited acute intestinal inflammation in streptomycin-pretreated mice. Our experiments prove that the presence of complete LPS is not essential for in vitro invasion or for triggering acute colitis. PMID:19364844

  11. Intestinal microbial metabolism of phosphatidylcholine: a novel insight in the cardiovascular risk scenario

    PubMed Central

    Sorrentino, Claudia; Principi, Mariabeatrice; Giorgio, Floriana; Losurdo, Giuseppe; Di Leo, Alfredo

    2015-01-01

    Intestinal microbiota is a “dynamic organ” influencing host metabolism, nutrition, physiology and immune system. Among its several interactions, the role of a phosphatidylcholine metabolite derived by gut flora activity, i.e., trimethylamine-N-oxide (TMAO), allows perceiving a novel insight in the cardiovascular risk scenario, being a strong predictor of this condition. Based on current reports, including the paper of Tang et al., we describe here: the possible role of intestinal microbiota in cardiovascular risk as well as potential interventions to reduce gut flora TMAO production by diet, probiotics and antibiotics. Finally, we highlight the possibility of evaluating, monitoring and modulating TMAO in order to use its serum levels as a marker of cardiovascular risk in the next future, when the need of controlled studies on large series will be satisfied. PMID:26312245

  12. Direct-Fed Microbials and Their Impact on the Intestinal Microflora and Immune System of Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Direct-fed microbials (DFMs) are live microorganisms which confer a health benefit to the host. The mode of action of DFMs involves multiple mechanisms, including direct inhibition of enteric pathogens and indirectly through competitive exclusion of pathogens by the normal gut microbiota. Addition...

  13. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition

    PubMed Central

    Chang, Pamela V.; Hao, Liming; Offermanns, Stefan; Medzhitov, Ruslan

    2014-01-01

    Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-? or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-proteincoupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors. PMID:24390544

  14. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears.

    PubMed

    Schwab, Clarissa; Gänzle, Michael

    2011-03-01

    The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C. perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears. PMID:21358758

  15. Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity.

    PubMed

    Ren, Wenkai; Chen, Shuai; Yin, Jie; Duan, Jielin; Li, Tiejun; Liu, Gang; Feng, Zemeng; Tan, Bie; Yin, Yulong; Wu, Guoyao

    2014-06-01

    Currently, little is known about the function of arginine in the homeostasis of the intestinal immune system. This study was conducted to test the hypothesis that dietary arginine supplementation may alter intestinal microbiota and innate immunity in mice. Mice were fed a basal diet (containing 0.93% l-arginine; grams per gram) or the basal diet supplemented with 0.5% l-arginine for 14 d. We studied the composition of intestinal microbiota, the activation of innate immunity, and the expression of toll-like receptors (Tlrs), proinflammatory cytokines, and antimicrobials in the jejunum, ileum, or colon of mice. Signal transduction pathway activation in the jejunum and ileum, including TLR4-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?B), mitogen-activated protein kinase (MAPK), and phosphoinositide-3 kinase (PI3K)/PI3K-protein kinase B (Akt), was analyzed by Western blotting. Quantitative polymerase chain reaction analysis revealed that arginine supplementation induced (P < 0.05) a shift in the Firmicutes-to-Bacteroidetes ratio to favor Bacteroidetes in the jejunum (0.33 0.04 vs. 1.0 0.22) and ileum (0.20 0.08 vs. 1.0 0.27) compared with the control group. This finding coincided with greater (P < 0.05) activation of the innate immune system, including TLR signaling, as well as expression of proinflammatory cytokines, ?secretory immunoglobulin A, mucins, and Paneth antimicrobials in the jejunum and ileum. Finally, arginine supplementation reduced (P < 0.05) expression of the proteins for NF-?B, MAPK, and PI3K-Akt signaling pathways but activated (P < 0.05) p38 and c-Jun N-terminal protein kinase in the jejunum and the ileum, respectively. Collectively, dietary arginine supplementation of mice changes the intestinal microbiota, contributing to the activation of intestinal innate immunity through NF-?B, MAPK, and PI3K-phosphorylated Akt signaling pathways. PMID:24670969

  16. Intestinal microbial ecology of broilers vaccinated and challenged with mixed Eimeria species, and supplemented with essential oil blends.

    PubMed

    Oviedo-Rondn, E O; Hume, M E; Hernndez, C; Clemente-Hernndez, S

    2006-05-01

    Intestinal microbiota is an important component in the development of defense mechanisms in the gut mucosa. This project determined the dynamics of intestinal microbial communities (MC) of broilers vaccinated at first day of age with live oocysts of Eimeria species and fed diets supplemented with 2 specific essential oil (EO) blends, Crina Poultry (CP) and Crina Alternate (CA). Five treatments were analyzed: 1) unmedicated-uninfected (UU) control; 2) unmedicated-infected (UI) control; 3) vaccinated with Advent cocci-vaccine and without feed additive (COV) supplements; 4) vaccinated with Advent and supplemented with CP; and 5) vaccinated with Advent and supplemented with CA. The EO blends were added at 100 ppm to the same basal diets. Chicks were gavage-infected at 19 d of age with Eimeria acervulina, Eimeria maxima, and Eimeria tenella. Duodenal, ileal, and cecal samples were taken from 12 birds per treatment just before the infection and 7 d after the challenge, pooled in 6 samples, and frozen. Denaturing gradient gel electrophoresis was used to examine PCR-amplified fragments of the bacterial 16S ribosomal DNA variable region. Results are presented as percentages of similarity coefficients (SC). Dendrograms of amplicon patterns indicated MC differences due to intestinal location, feed additives, and cocci infection. The EO blends CP and CA did affect MC in all gut sections. The cocci-infection caused drastic MC population shifts in duodenal, ileal, and cecal sections (36.7, 55.4, and 36.2% SC, respectively). The CP-supplemented birds had higher SC between pre- and postchallenge MC in duodenal and ileal (73.3, 81.8%) than COV (66.4, 66.5%). However, COV broilers had the smallest changes in cecal MC after infection (79.5% SC). We concluded that cocci-vaccination causes small changes in intestinal MC, but challenge causes drastic shifts. The EO blend supplementation modulates MC in cocci-vaccinated broilers, avoiding drastic shifts after a mixed coccidia infection. Correlations between MC dynamics and host responses are discussed. PMID:16673762

  17. Biophysical and formulation studies of the Schistosoma mansoni TSP-2 extracellular domain recombinant protein, a lead vaccine candidate antigen for intestinal schistosomiasis.

    PubMed

    Cheng, Weiqiang; Curti, Elena; Rezende, Wanderson C; Kwityn, Clifford; Zhan, Bin; Gillespie, Portia; Plieskatt, Jordan; Joshi, Sangeeta B; Volkin, David B; Hotez, Peter J; Middaugh, C Russell; Bottazzi, Maria Elena

    2013-11-01

    A candidate vaccine to prevent human schistosomiasis is under development. The vaccine is comprised of a recombinant 9 kDa antigen protein corresponding to the large extracellular domain of a tetraspanin surface antigen protein of Schistosoma mansoni, Sm-TSP-2. Here, we describe the biophysical profile of the purified, recombinant Sm-TSP-2 produced in the yeast PichiaPink, which in preclinical studies in mice was shown to be an effective vaccine against intestinal schistosomiasis. Biophysical techniques including circular dichroism, intrinsic and extrinsic fluorescence and light scattering were employed to generate an empirical phase diagram, a color based map of the physical stability of the vaccine antigen over a wide range of temperatures and pH. From these studies a pH range of 6.0-8.0 was determined to be optimal for maintaining the stability and conformation of the protein at temperatures up to 25 °C. Sorbitol, sucrose and trehalose were selected as excipients that prevented physical degradation during storage. The studies described here provide guidance for maximizing the stability of soluble recombinant Sm-TSP-2 in preparation of its further development as a vaccine. PMID:23880663

  18. Examination of the microbial ecology of the avian intestine in vivo using bromodeoxyuridine.

    PubMed

    Scupham, Alexandra J

    2007-07-01

    Bromodeoxyuridine, a thymidine analogue that can be incorporated into the DNA of actively dividing cells, has been used in vivo to identify intestinal bacteria that are metabolically active in 3-week-old turkey poults during an acute period of feed withdrawal. Automated ribosomal intergenic spacer analysis was used to identify amplicons unique to animals subjected to feed withdrawal. One amplicon was unique to fasted birds while two amplicons were present in 60% of fasted birds and absent in all fed birds. Sequence analysis of 16S ribosomal genes indicated the caecal communities of all birds were dominated by Clostridiaceae while also harbouring low levels of metabolically active gamma-proteobacteria and Bacteroides. Twenty per cent of clones from the fasted animals were identified as belonging to the genus Papillibacter, suggesting these microbes may be specifically dividing in response to environmental conditions present in the caeca of fasted birds. PMID:17564613

  19. [Optimization of treatment of children with acute intestinal infections by application of Russian biological microbial preparations].

    PubMed

    Feklisova, L V

    2005-01-01

    The article presents the results of long-term (several years) use of Russian bifido- and lactocontaing probiotics and data on the clinicolaboratory effectiveness of bifidumbacterin forte, probifor, bifidin, bifilis, calcidum, florin forte, acipol and acilact in children with various intestinal infections of known and unknown etiology. The presented results were obtained by studies conducted according to the requirements of The Governmental Program of L. A. Tarasevich State Institute of Standartization and Medical Biological Preparation Control, which included randomization of groups of patients receiving codified preparations or placebo according to their age, nosology, the degree of the process severity, premorbid status, and the time when the treatment was started. Each of the programs included several hundreds of children, receiving probiotics; in which of the programs the studies were multicentered. The courses of treatment with probiotics were short (1 to 2 weeks). No significant adverse effects were observed. PMID:16404978

  20. Effects of rice straw particle size on digesta particle size distribution, nitrogen metabolism, blood biochemical parameters, microbial amino acid composition and intestinal amino acid digestibility in goats.

    PubMed

    Wang, Min; Zhao, Xiao Gang; Liao, Hai Yan; Tan, Zhi Liang; Tang, Shao Xun; Sun, Zhi Hong; Zhou, Chuan She; Han, Xue Feng

    2011-02-01

    Effects of rice straw particle size and physically effective neutral detergent fiber (peNDF) on particle size distribution of different digestive tract, nitrogen (N) metabolism, blood biochemical parameters, microbial amino acid (AA) composition and intestinal AA digestibility in goats were investigated. A 4 4 Latin square design was employed using four mature Liuyang black goats fitted with permanent ruminal, duodenal, and terminal ileal fistulae. During each of the four periods, goats were offered one of four diets that were similar in chemical composition, but varied in particle sizes and peNDF through alteration of the theoretical cut length of rice straw (10, 20, 40 and 80 mm, respectively). Dietary peNDF contents of four diets were 17.4, 20.9, 22.5 and 25.4%, respectively. Results showed that increasing particle size of rice straw and dietary peNDF significantly affected the particle size distributions of digesta in rumen, duodenum and ileum, except feces. However, increasing particle size of rice straw and peNDF did not affected N metabolism in goats, except the increased apparent N digestibility in rumen and large intestine, and the decreased apparent N digestibility in small intestine. Furthermore, increasing particle size of rice straw and peNDF showed little influence on the profile of blood biochemical parameters, microbial AA composition and intestinal AA digestibility in goats. PMID:21269364

  1. Intestinal microbial dysbiosis and colonic epithelial cell hyperproliferation by dietary ?-mangostin is independent of mouse strain.

    PubMed

    Gutierrez-Orozco, Fabiola; Thomas-Ahner, Jennifer M; Galley, Jeffrey D; Bailey, Michael T; Clinton, Steven K; Lesinski, Gregory B; Failla, Mark L

    2015-01-01

    Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that ?-mangostin (?-MG), the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary ?-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% ?-MG for four weeks. Dietary ?-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of ?-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in ?-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary ?-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution. PMID:25621505

  2. Ecological studies on intestinal microbial flora of Kenyan children with diarrhoea.

    PubMed

    Tazume, S; Takeshi, K; Saidi, S M; Ichoroh, C G; Mutua, W R; Waiyaki, P G; Ozawa, A

    1990-06-01

    The intestinal microflora was analysed together with short-chain fatty acids (SCFA) and bile acids in faeces from nine children with acute diarrhoeal disease in Lari, Kenya. Enteric pathogens such as enteroinvasive E. coli, enteropathogenic E. coli, Yersinia enterocolitica, rotavirus, Giardia lamblia and Entamoeba histolytica were isolated either singly or in combination from diarrhoeal faecal specimens. The most striking finding in these patients was a marked reduction of anaerobes. Analysis of the SCFA revealed a significantly higher quantity of the volatile fatty acids (VFA) such as acetic, propionic, and butyric acid in recovery period faeces in comparison to diarrhoeal faeces, although no significant difference was seen in the quantity of non-volatile fatty acids. On analysing bile acids in faeces, conjugated primary bile acids were detected from all cases in diarrhoea whereas the free form of secondary bile acids was seen only in recovery. The pH of recovery faecal specimens was significantly lower than that in diarrhoeal faecal specimens. There was a parallel between the decrease in number of anaerobes and fluctuation in the amount of SCFA, showing that the drastic reduction of VFA accompanying decrease of anaerobes during the diarrhoeal state, and the rise in pH thought to arise from these facts, result in an increase of water content. PMID:2348500

  3. Correlation between lack of norovirus replication and histo-blood group antigen expression in 3D-intestinal epithelial cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Noroviruses (NoV) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. One publication utilizing a 3-dimensional (3D) intestinal model derived from Int407 cells reported NoV replication and extensive cytopathi...

  4. Cross-protection of infant mice against intestinal colonisation by Campylobacter jejuni: importance of heat-labile serotyping (Lior) antigens.

    PubMed

    Abimiku, A G; Dolby, J M

    1988-08-01

    An association of the heat-labile antigens detected by the Lior serotyping scheme with ability to protect infant mice against gastrointestinal colonisation with Campylobacter jejuni has been established. Overall, 39 (57%) of 68 infant mice challenged with a heterologous strain of the same Lior serotype as the vaccine strain were protected, compared with 40 (85%) of 47 infants protected against a homologous challenge. In contrast, none of the infant mice challenged with a strain carrying the same heat-stable antigens (i.e., of the same Penner serotype as the vaccine strain) were protected. PMID:3398033

  5. The Starting Lineup: Key Microbial Players in Intestinal Immunity and Homeostasis

    PubMed Central

    Reading, Nicola C.; Kasper, Dennis L.

    2011-01-01

    The complexity of microbiota inhabiting the intestine is increasingly apparent. Delicate balance of numerous bacterial species can affect development of the immune system, how susceptible a host is to pathogenic organisms, and the auto-inflammatory state of the host. In the last decade, with the increased use of germ-free mice, gnotobiotic mice, and animal models in which a germ-free animal has been colonized with a foreign microbiota such as humanized mice, it has been possible to delineate relationships that specific bacteria have with the host immune system and to show what role they may play in overall host health. These models have not only allowed us to tease out the roles of individual species, but have also allowed the discovery and characterization of functionally unknown organisms. For example, segmented filamentous bacteria (SFB) have been shown to play a vital role in expansion of IL-17 producing cells. Prior to linking their key role in immune system development, little was known about these organisms. Bacteroides fragilis can rescue some of the immune defects of gnotobiotic mice after mono-colonization and have anti-inflammatory properties that can alleviate colitis and experimental allergic encephalitis in murine models. Additionally, Clostridium species have most recently been shown to expand regulatory T-cell populations leading to anti-inflammatory conditions. This review will highlight and summarize some of the major findings within the last decade concerning the role of select groups of bacteria including SFB, Clostridium, Bacteroides, Bifidobacterium, and Lactobacillus, and their impact on host mucosal immune systems. PMID:21779278

  6. Prebiotic effect of fructooligosaccharide in the simulator of the human intestinal microbial ecosystem (SHIME® model).

    PubMed

    Sivieri, Katia; Morales, Martha L Villarreal; Saad, Susana M I; Adorno, Maria A Tallarico; Sakamoto, Isabel Kimiko; Rossi, Elizeu A

    2014-08-01

    Maintaining "gut health" is a goal for scientists throughout the world. Therefore, microbiota management models for testing probiotics, prebiotics, and synbiotics have been developed. The SHIME(®) model was used to study the effect of fructooligosaccharide (FOS) on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2 weeks using a culture medium. This stabilization period was followed by a 2-week control period during which the microbiota was monitored. The microbiota was then subjected to a 4-week treatment period by adding 5 g/day-1 FOS to vessel one (the "stomach" compartment). Plate counts, Denaturing Gradient Gel Electrophoresis (DGGE), short-chain fatty acid (SCFA), and ammonium analyses were used to observe the influence of FOS treatment in simulated colon compartments. A significant increase (P<.01) in the Lactobacillus spp. and Bifidobacterium spp. populations was observed during the treatment period. The DGGE obtained showed the overall microbial community was changed in the ascending colon compartment of the SHIME reactor. FOS induced increase of the SCFA concentration (P<.05) during the treatment period, mainly due to significant increased levels of acetic and butyric acids. However, ammonium concentrations increased during the same period (P<.01). This study indicates the usefulness of in vitro methods that simulate the colon region as part of research towards the improvement of human health. PMID:24654949

  7. IGHV1-69 B Cell Chronic Lymphocytic Leukemia Antibodies Cross-React with HIV-1 and Hepatitis C Virus Antigens as Well as Intestinal Commensal Bacteria

    PubMed Central

    Hwang, Kwan-Ki; Trama, Ashley M.; Kozink, Daniel M.; Chen, Xi; Wiehe, Kevin; Cooper, Abby J.; Xia, Shi-Mao; Wang, Minyue; Marshall, Dawn J.; Whitesides, John; Alam, Munir; Tomaras, Georgia D.; Allen, Steven L.; Rai, Kanti R.; McKeating, Jane; Catera, Rosa; Yan, Xiao-Jie; Chu, Charles C.; Kelsoe, Garnett; Liao, Hua-Xin; Chiorazzi, Nicholas; Haynes, Barton F.

    2014-01-01

    B-cell chronic lymphocytic leukemia (B-CLL) patients expressing unmutated immunoglobulin heavy variable regions (IGHVs) use the IGHV1-69 B cell receptor (BCR) in 25% of cases. Since HIV-1 envelope gp41 antibodies also frequently use IGHV1-69 gene segments, we hypothesized that IGHV1-69 B-CLL precursors may contribute to the gp41 B cell response during HIV-1 infection. To test this hypothesis, we rescued 5 IGHV1-69 unmutated antibodies as heterohybridoma IgM paraproteins and as recombinant IgG1 antibodies from B-CLL patients, determined their antigenic specificities and analyzed BCR sequences. IGHV1-69 B-CLL antibodies were enriched for reactivity with HIV-1 envelope gp41, influenza, hepatitis C virus E2 protein and intestinal commensal bacteria. These IGHV1-69 B-CLL antibodies preferentially used IGHD3 and IGHJ6 gene segments and had long heavy chain complementary determining region 3s (HCDR3s) (?21 aa). IGHV1-69 B-CLL BCRs exhibited a phenylalanine at position 54 (F54) of the HCDR2 as do rare HIV-1 gp41 and influenza hemagglutinin stem neutralizing antibodies, while IGHV1-69 gp41 antibodies induced by HIV-1 infection predominantly used leucine (L54) allelic variants. These results demonstrate that the B-CLL cell population is an expansion of members of the innate polyreactive B cell repertoire with reactivity to a number of infectious agent antigens including intestinal commensal bacteria. The B-CLL IGHV1-69 B cell usage of F54 allelic variants strongly suggests that IGHV1-69 B-CLL gp41 antibodies derive from a restricted B cell pool that also produces rare HIV-1 gp41 and influenza hemagglutinin stem antibodies. PMID:24614505

  8. Analysis of the intestinal microbial community structure of healthy and long-living elderly residents in Gaotian Village of Liuyang City.

    PubMed

    Yu, Xiaomin; Wu, Xiaoli; Qiu, Liang; Wang, Dengyuan; Gan, Min; Chen, Xingxing; Wei, Hua; Xu, Feng

    2015-11-01

    Gaotian, one typical conservative village in rural area of South China, is differentiated from other adjacent village for its longevity and health situation of residents. To ascertain the difference of intestinal microbial community between Gaotian and other region, high-throughput sequencing and systematical bioinformation analyses was adopted to compare 21 samples in long life group with 28 in control group. The α diversity showed that the diversity of species of intestinal flora of Gaotian villagers was higher than that of control group, while the β diversity showed that the similarity of intestinal flora for Gaotian residents was also much higher than that of control group. OTU cluster analysis and Venn diagram showed that the intestinal microbial community of Gaotian villagers is different from that of control group. To quantitatively compare the main flora constitution in all samples, real-time PCR was performed, and the results showed that the biomass of Enterococcus, Lactobacillus, Enterobacteriaceae, Clostridium perfringens, and Bacteroides of Gaotian villages is generally significantly higher than that of control group. Remarkably, some special species, i.e., Methanobacterium, Butyricimonas, Deinococcus, and Streptococcaceae, have been found in Gaotian villagers. Overall, this study lays a preparatory basis for exploration of the resources of special species from healthy and long-living elderly Gaotian villagers and for proposal of a hypothesis, namely, the diversity in intestinal flora of Gaotian might contribute to the longevity and health of local residents. Further study should be focused on screening and functional evaluation of the special species in the long-life residents. PMID:26298698

  9. Impaired Accumulation of Antigen-Specific CD8 Lymphocytes in Chemokine CCL25-Deficient Intestinal Epithelium and Lamina Propria1

    PubMed Central

    Wurbel, Marc-Andr; Malissen, Marie; Guy-Grand, Delphine; Malissen, Bernard; Campbell, James J.

    2008-01-01

    CCL25 and CCR9 constitute a chemokine/receptor pair involved in T cell development and in gut-associated immune responses. In this study, we generated CCL25?/? mice to answer questions that could not be addressed with existing CCR9?/? mice. Similar phenotypes were observed for both CCL25?/? and CCR9?/? mice, consistent with the notion that CCL25 and CCR9 interact with each other exclusively. We assessed the requirement for CCL25 in generating CCR9high CD8 intestinal memory-phenotype T cells and the subsequent accumulation of these cells within effector sites. TCR-transgenic naive CD8 T cells were transferred into wild-type or CCL25-deficient hosts. Oral sensitization with Ag allowed these naive donor cells to efficiently differentiate into CCR9high memory-phenotype cells within the mesenteric lymph nodes of wild-type hosts. This differentiation event occurred with equal efficiency in the MLN of CCL25-deficient hosts, demonstrating that CCL25 is not required to induce the CCR9high memory phenotype in vivo. However, we found that CCL25 deficiency severely impaired the Ag-dependent accumulation of donor-derived CD8 T cells within both lamina propria and epithelium of the small intestine. Thus, although CCL25 is not necessary for generating memory-phenotype CD8 T cells with gut-homing properties, this chemokine is indispensable for their trafficking to the small intestine. PMID:17548595

  10. Gamma delta T cells recognize a microbial encoded B Cell antigen to initiate a rapid antigen-specific Interleukin-17 response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gamma delta T cells contribute uniquely to host immune defense, but the way in which they do so remains an enigma. Here we show that an algae protein, phycoerythrin (PE) is recognized by gamma delta T cells from mice, bovine and humans and binds directly to specific gamma delta T cell antigen recept...

  11. A Gut Microbial Metabolite of Linoleic Acid, 10-Hydroxy-cis-12-octadecenoic Acid, Ameliorates Intestinal Epithelial Barrier Impairment Partially via GPR40-MEK-ERK Pathway*

    PubMed Central

    Miyamoto, Junki; Mizukure, Taichi; Park, Si-Bum; Kishino, Shigenobu; Kimura, Ikuo; Hirano, Kanako; Bergamo, Paolo; Rossi, Mauro; Suzuki, Takuya; Arita, Makoto; Ogawa, Jun; Tanabe, Soichi

    2015-01-01

    Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca2+]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease. PMID:25505251

  12. Association between the ABO blood group and the human intestinal microbiota composition

    PubMed Central

    2012-01-01

    Background The mucus layer covering the human intestinal epithelium forms a dynamic surface for host-microbial interactions. In addition to the environmental factors affecting the intestinal equilibrium, such as diet, it is well established that the microbiota composition is individually driven, but the host factors determining the composition have remained unresolved. Results In this study, we show that ABO blood group is involved in differences in relative proportion and overall profiles of intestinal microbiota. Specifically, the microbiota from the individuals harbouring the B antigen (secretor B and AB) differed from the non-B antigen groups and also showed higher diversity of the Eubacterium rectale-Clostridium coccoides (EREC) and Clostridium leptum (CLEPT) -groups in comparison with other blood groups. Conclusions Our novel finding indicates that the ABO blood group is one of the genetically determined host factors modulating the composition of the human intestinal microbiota, thus enabling new applications in the field of personalized nutrition and medicine. PMID:22672382

  13. Breast Milk and Solid Food Shaping Intestinal Immunity

    PubMed Central

    Parigi, Sara M.; Eldh, Maria; Larssen, Pia; Gabrielsson, Susanne; Villablanca, Eduardo J.

    2015-01-01

    After birth, the intestinal immune system enters a critical developmental stage, in which tolerogenic and pro-inflammatory cells emerge to contribute to the overall health of the host. The neonatal health is continuously challenged by microbial colonization and food intake, first in the form of breast milk or formula and later in the form of solid food. The microbiota and dietary compounds shape the newborn immune system, which acquires the ability to induce tolerance against innocuous antigens or induce pro-inflammatory immune responses against pathogens. Disruption of these homeostatic mechanisms might lead to undesired immune reactions, such as food allergies and inflammatory bowel disease. Hence, a proper education and maturation of the intestinal immune system is likely important to maintain life-long intestinal homeostasis. In this review, the most recent literature regarding the effects of dietary compounds in the development of the intestinal immune system are discussed. PMID:26347740

  14. Comparison of Yacon (Smallanthus sonchifolius) Tuber with Commercialized Fructo-oligosaccharides (FOS) in Terms of Physiology, Fermentation Products and Intestinal Microbial Communities in Rats

    PubMed Central

    UTAMI, Ni Wayan Arya; SONE, Teruo; TANAKA, Michiko; NAKATSU, Cindy H; SAITO, Akihiko; ASANO, Kozo

    2013-01-01

    The yacon (Smallanthus sonchifolius) tuber was examined with regard to its prebiotic effects compared with commercialized fructo-oligosaccharides (FOS). A feed containing 10% yacon tuber, which is equivalent to 5% commercialized FOS in terms of the amount of fructo-oligosaccharides (GF2, GF3 and GF4), was administrated to rats for 28 days. The yacon diet changed the intestinal microbial communities beginning in the first week, resulting in a twofold greater concentration of cecal short-chain fatty acids (SCFAs). The SCFA composition differed, but the cecal pH in rats fed yacon tuber was equal to that in rats fed FOS. Serum triglycerides were lower in rats fed yacon compared with rats fed FOS and the control diet. Cecal size was greater with the yacon tuber diet compared with the control diet. The abundant fermentation in the intestines created a selective environment for the intestinal microbiota, which included Lactobacillus acidophilus, Bifidobacterium pseudolongum, Bifidobacterium animalis and Barnesiella spp. according to identification with culture-independent analysis, 16S rRNA gene PCR-DGGE combined with cloning and sequencing. Barnesiella spp. and B. pseudolongum were only found in the rats fed the yacon diet, while L. acidophilus and B. animalis were found in abundance in rats fed both the yacon and FOS diets. The genus Barnesiella has not previously been reported to be associated with yacon or FOS fermentation. We concluded that the physiological and microbiological effects of the yacon tuber were different from those of FOS. Differences in cecal size, blood triglycerides and microbial community profiles including their metabolites (SCFAs) between the yacon tuber and FOS were shown to be more greatly affected by the yacon tuber rather than FOS. PMID:24936376

  15. Comparison of Yacon (Smallanthus sonchifolius) Tuber with Commercialized Fructo-oligosaccharides (FOS) in Terms of Physiology, Fermentation Products and Intestinal Microbial Communities in Rats.

    PubMed

    Utami, Ni Wayan Arya; Sone, Teruo; Tanaka, Michiko; Nakatsu, Cindy H; Saito, Akihiko; Asano, Kozo

    2013-01-01

    The yacon (Smallanthus sonchifolius) tuber was examined with regard to its prebiotic effects compared with commercialized fructo-oligosaccharides (FOS). A feed containing 10% yacon tuber, which is equivalent to 5% commercialized FOS in terms of the amount of fructo-oligosaccharides (GF2, GF3 and GF4), was administrated to rats for 28 days. The yacon diet changed the intestinal microbial communities beginning in the first week, resulting in a twofold greater concentration of cecal short-chain fatty acids (SCFAs). The SCFA composition differed, but the cecal pH in rats fed yacon tuber was equal to that in rats fed FOS. Serum triglycerides were lower in rats fed yacon compared with rats fed FOS and the control diet. Cecal size was greater with the yacon tuber diet compared with the control diet. The abundant fermentation in the intestines created a selective environment for the intestinal microbiota, which included Lactobacillus acidophilus, Bifidobacterium pseudolongum, Bifidobacterium animalis and Barnesiella spp. according to identification with culture-independent analysis, 16S rRNA gene PCR-DGGE combined with cloning and sequencing. Barnesiella spp. and B. pseudolongum were only found in the rats fed the yacon diet, while L. acidophilus and B. animalis were found in abundance in rats fed both the yacon and FOS diets. The genus Barnesiella has not previously been reported to be associated with yacon or FOS fermentation. We concluded that the physiological and microbiological effects of the yacon tuber were different from those of FOS. Differences in cecal size, blood triglycerides and microbial community profiles including their metabolites (SCFAs) between the yacon tuber and FOS were shown to be more greatly affected by the yacon tuber rather than FOS. PMID:24936376

  16. A comparison of the effect of water-delivered direct fed microbials or organic acids with an in-feed antibiotic on weanling pig growth performance, intestinal morphology, gut microbiota and immune status following a...

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pigs (n=88) weaned at 19 days of age were used in a 14-days experiment to compare the effects of water delivered direct fed microbials (DFM) or a propionic acid (PA) based blend with an in-feed antibiotic on growth performance, intestinal morphology, gut microbiota and immune status following a Salm...

  17. Intestinal epithelial expression of TNFAIP3 results in microbial invasion of the inner mucus layer and induces colitis in IL-10-deficient mice

    PubMed Central

    Murphy, Stephen F.; Rhee, Lesley; Grimm, Wesley A.; Weber, Christopher R.; Messer, Jeannette S.; Lodolce, James P.; Chang, Jonathan E.; Bartulis, Sarah J.; Nero, Thomas; Kukla, Renata A.; MacDougall, Gordon; Binghay, Charles; Kolodziej, Lauren E.

    2014-01-01

    Tumor necrosis factor-induced protein 3 (TNFAIP3; also known as A20) negatively regulates NF-?B and MAPK signals to control inflammatory responses. TNFAIP3 also protects against TNF-induced cell death. Intestinal epithelial cell (IEC) expression of TNFAIP3 improves barrier function and tight junction integrity and prevents dextran sulfate sodium (DSS)-induced IEC death and colitis. We therefore investigated the effects of TNFAIP3 expression in IEC on immune homeostasis in the intestines of immune-compromised mice. Villin-TNFAIP3 (v-TNFAIP3) transgenic mice were interbred with IL-10?/? mice (v-TNFAIP3 IL-10?/?) and incidence, onset, and severity of colitis was assessed. v-TNFAIP3 IL-10?/? mice displayed severe, early onset, and highly penetrant colitis that was not observed in IL-10?/? or v-TNFAIP3 mice. V-TNFAIP3 mice displayed altered expression of mucosal cytokines, increased numbers of mucosal regulatory T cells, and altered expression of mucosal antimicrobial peptides (AMPs). Microbial colonization of the inner mucus layer of v-TNFAIP3 mice was observed, along with alterations in the microbiome, but this was not sufficient to induce colitis in v-TNFAIP3 mice. The relative sterility of the inner mucus layer observed in wild-type and IL-10?/? mice was lost in v-TNFAIP3 IL-10?/? mice. Thus IEC-derived factors, induced by signals that are inhibited by TNFAIP3, suppress the onset of inflammatory bowel disease in IL-10?/? mice. Our results indicate that IEC expression of TNFAIP3 alters AMP expression and allows microbial colonization of the inner mucus layer, which activates an IL-10-dependent anti-inflammatory process that is necessary to prevent colitis. PMID:25234043

  18. Intestinal epithelial expression of TNFAIP3 results in microbial invasion of the inner mucus layer and induces colitis in IL-10-deficient mice.

    PubMed

    Murphy, Stephen F; Rhee, Lesley; Grimm, Wesley A; Weber, Christopher R; Messer, Jeannette S; Lodolce, James P; Chang, Jonathan E; Bartulis, Sarah J; Nero, Thomas; Kukla, Renata A; MacDougall, Gordon; Binghay, Charles; Kolodziej, Lauren E; Boone, David L

    2014-11-01

    Tumor necrosis factor-induced protein 3 (TNFAIP3; also known as A20) negatively regulates NF-?B and MAPK signals to control inflammatory responses. TNFAIP3 also protects against TNF-induced cell death. Intestinal epithelial cell (IEC) expression of TNFAIP3 improves barrier function and tight junction integrity and prevents dextran sulfate sodium (DSS)-induced IEC death and colitis. We therefore investigated the effects of TNFAIP3 expression in IEC on immune homeostasis in the intestines of immune-compromised mice. Villin-TNFAIP3 (v-TNFAIP3) transgenic mice were interbred with IL-10(-/-) mice (v-TNFAIP3 IL-10(-/-)) and incidence, onset, and severity of colitis was assessed. v-TNFAIP3 IL-10(-/-) mice displayed severe, early onset, and highly penetrant colitis that was not observed in IL-10(-/-) or v-TNFAIP3 mice. V-TNFAIP3 mice displayed altered expression of mucosal cytokines, increased numbers of mucosal regulatory T cells, and altered expression of mucosal antimicrobial peptides (AMPs). Microbial colonization of the inner mucus layer of v-TNFAIP3 mice was observed, along with alterations in the microbiome, but this was not sufficient to induce colitis in v-TNFAIP3 mice. The relative sterility of the inner mucus layer observed in wild-type and IL-10(-/-) mice was lost in v-TNFAIP3 IL-10(-/-) mice. Thus IEC-derived factors, induced by signals that are inhibited by TNFAIP3, suppress the onset of inflammatory bowel disease in IL-10(-/-) mice. Our results indicate that IEC expression of TNFAIP3 alters AMP expression and allows microbial colonization of the inner mucus layer, which activates an IL-10-dependent anti-inflammatory process that is necessary to prevent colitis. PMID:25234043

  19. Exogenous Control of the Expression of Group I CD1 Molecules Competent for Presentation of Microbial Nonpeptide Antigens to Human T Lymphocytes

    PubMed Central

    Aquino, Angelo; Graziani, Grazia; Franzese, Ornella; Prete, Salvatore P.; Bonmassar, Enzo; Bonmassar, Laura; D'Atri, Stefania

    2011-01-01

    Group I CD1 (CD1a, CD1b, and CD1c) glycoproteins expressed on immature and mature dendritic cells present nonpeptide antigens (i.e., lipid or glycolipid molecules mainly of microbial origin) to T cells. Cytotoxic CD1-restricted T lymphocytes recognizing mycobacterial lipid antigens were found in tuberculosis patients. However, thanks to a complex interplay between mycobacteria and CD1 system, M. tuberculosis possesses a successful tactic based, at least in part, on CD1 downregulation to evade CD1-dependent immunity. On the ground of these findings, it is reasonable to hypothesize that modulation of CD1 protein expression by chemical, biological, or infectious agents could influence host's immune reactivity against M. tuberculosis-associated lipids, possibly affecting antitubercular resistance. This scenario prompted us to perform a detailed analysis of the literature concerning the effect of external agents on Group I CD1 expression in order to obtain valuable information on the possible strategies to be adopted for driving properly CD1-dependent immune functions in human pathology and in particular, in human tuberculosis. PMID:21603161

  20. Maintenance of Intestinal Th17 Cells and Reduced Microbial Translocation in SIV-infected Rhesus Macaques Treated with Interleukin (IL)-21

    PubMed Central

    Ende, Zachary S.; Iriele, Robin I.; Cervasi, Barbara; Lawson, Benton; McGary, Colleen S.; Rogers, Kenneth A.; Else, James G.; Silvestri, Guido; Easley, Kirk; Estes, Jacob D.; Villinger, Francois; Pahwa, Savita; Paiardini, Mirko

    2013-01-01

    In pathogenic HIV and SIV infections of humans and rhesus macaques (RMs), preferential depletion of CD4+ Th17 cells correlates with mucosal immune dysfunction and disease progression. Interleukin (IL)-21 promotes differentiation of Th17 cells, long-term maintenance of functional CD8+ T cells, and differentiation of memory B cells and antibody-secreting plasma cells. We hypothesized that administration of IL-21 will improve mucosal function in the context of pathogenic HIV/SIV infections. To test this hypothesis, we infected 12 RMs with SIVmac239 and at day 14 post-infection treated six of them with rhesus rIL-21-IgFc. IL-21-treatment was safe and did not increase plasma viral load or systemic immune activation. Compared to untreated animals, IL-21-treated RMs showed (i) higher expression of perforin and granzyme B in total and SIV-specific CD8+ T cells and (ii) higher levels of intestinal Th17 cells. Remarkably, increased levels of Th17 cells were associated with reduced levels of intestinal T cell proliferation, microbial translocation and systemic activation/inflammation in the chronic infection. In conclusion, IL-21-treatment in SIV-infected RMs improved mucosal immune function through enhanced preservation of Th17 cells. Further preclinical studies of IL-21 may be warranted to test its potential use during chronic infection in conjunction with antiretroviral therapy. PMID:23853592

  1. Loss of T Cell and B Cell Quiescence Precedes the Onset of Microbial Flora-Dependent Wasting Disease and Intestinal Inflammation in Gimap5-Deficient Mice

    PubMed Central

    Barnes, Michael J.; Aksoylar, Halil; Krebs, Philippe; Bourdeau, Tristan; Arnold, Carrie N.; Xia, Yu; Khovananth, Kevin; Engel, Isaac; Sovath, Sosathya; Lampe, Kristin; Laws, Eleana; Saunders, Amy; Butcher, Geoffrey W.; Kronenberg, Mitchell; Steinbrecher, Kris; Hildeman, David; Grimes, H. Leighton; Beutler, Bruce; Hoebe, Kasper

    2015-01-01

    Homeostatic control of the immune system involves mechanisms that ensure the self-tolerance, survival and quiescence of hematopoietic-derived cells. In this study, we demonstrate that the GTPase of immunity associated protein (Gimap)5 regulates these processes in lymphocytes and hematopoietic progenitor cells. As a consequence of a recessive N-ethyl-N-nitrosoureainduced germline mutation in the P-loop of Gimap5, lymphopenia, hepatic extramedullary hematopoiesis, weight loss, and intestinal inflammation occur in homozygous mutant mice. Irradiated fetal liver chimeric mice reconstituted with Gimap5-deficient cells lose weight and become lymphopenic, demonstrating a hematopoietic cell-intrinsic function for Gimap5. Although Gimap5-deficient CD4+ T cells and B cells appear to undergo normal development, they fail to proliferate upon Ag-receptor stimulation although NF-?B, MAP kinase and Akt activation occur normally. In addition, in Gimap5-deficient mice, CD4+ T cells adopt a CD44high CD62Llow CD69low phenotype and show reduced IL-7r? expression, and T-dependent and T-independent B cell responses are abrogated. Thus, Gimap5-deficiency affects a noncanonical signaling pathway required for Ag-receptorinduced proliferation and lymphocyte quiescence. Antibiotic-treatment or the adoptive transfer of Rag-sufficient splenocytes ameliorates intestinal inflammation and weight loss, suggesting that immune responses triggered by microbial flora causes the morbidity in Gimap5-deficient mice. These data establish Gimap5 as a key regulator of hematopoietic integrity and lymphocyte homeostasis. PMID:20190135

  2. Determining the role of a probiotic in the restoration of intestinal microbial balance by molecular and cultural techniques.

    PubMed

    Shoaib, Affhan; Dachang, W; Xin, Y

    2015-01-01

    The human intestine has a vast variety of microorganisms, and their balance is dependent on several factors. Antibiotics affect microfloral balance and allow naturally opportunistic organisms to multiply. Azithromycin is the most widely used macrolide antibiotic, active against a wide number of pathogens including Pseudomonas aeruginosa and Staphylococcus aureus. It is currently used in the treatment of cystic fibrosis patients. The use of probiotics has advantages in gastrointestinal conditions, including infectious diarrhea and imbalance due to antibiotic use. In this research, the effect of azithromycin on the intestinal microbiota of Sprague Dawley rats and the role of Lactobacillus acidophilus in the restoration of the balance by employing molecular and cultural techniques was investigated. PCR with universal primers targeting the V3 region of the 16S rRNA gene followed by DGGE was used to characterize the overall intestinal microbiota composition. Cultivable fecal bacteria count using microbiological media and semi-quantitative PCR with group-specific primers were also utilized to analyze the effects of antibiotic and probiotic on microflora. We found that the total amount of 16S rRNA gene and fecal aerobic bacterial count was reduced following azithromycin administration along with elimination of non-pathogenic Escherichia coli, but it was restored by the use of the probiotic. The results from PCR with group-specific primers showed that Bacteroides sp was present in the control and probiotic groups, but it was nearly eliminated in the antibiotic group. Moreover, semi-quantitative PCR revealed that the numbers of Enterobacteriaceae were nearly the same in the probiotic group and decreased in the antibiotic group, while Bifidobacterium was significantly increased in the probiotic group and decreased in the antibiotic group (P < 0.05) as compared with that in the control group. Azithromycin-induced dysbiosis can result in prolonged deleterious effects on the host. The present study revealed that the use of lactic acid bacteria particularly L. acidophilus helped to restore intestinal microfloral balance. PMID:25730092

  3. An organotypic slice model for ex vivo study of neural, immune, and microbial interactions of mouse intestine

    PubMed Central

    Schwerdtfeger, Luke A.; Ryan, Elizabeth P.

    2015-01-01

    Organotypic tissue slices provide seminatural, three-dimensional microenvironments for use in ex vivo study of specific organs and have advanced investigative capabilities compared with isolated cell cultures. Several characteristics of the gastrointestinal tract have made in vitro models for studying the intestine challenging, such as maintaining the intricate structure of microvilli, the intrinsic enteric nervous system, Peyer's patches, the microbiome, and the active contraction of gut muscles. In the present study, an organotypic intestinal slice model was developed that allows for functional investigation across regions of the intestine. Intestinal tissue slices were maintained ex vivo for several days in a physiologically relevant environment that preserved normal enterocyte structure, intact and proliferating crypt cells, submucosal organization, and muscle wall composure. Cell death was measured by a membrane-impermeable DNA binding indicator, ethidium homodimer, and less than 5% of cells were labeled in all regions of the villi and crypt epithelia at 24 h ex vivo. This tissue slice model demonstrated intact myenteric and submucosal neuronal plexuses and functional interstitial cells of Cajal to the extent that nonstimulated, segmental contractions occurred for up to 48 h ex vivo. To detect changes in physiological responses, slices were also assessed for segmental contractions in the presence and absence of antibiotic treatment, which resulted in slices with lesser or greater amounts of commensal bacteria, respectively. Segmental contractions were significantly greater in slices without antibiotics and increased native microbiota. This model renders mechanisms of neuroimmune-microbiome interactions in a complex gut environment available to direct observation and controlled perturbation. PMID:26680736

  4. An organotypic slice model for ex vivo study of neural, immune, and microbial interactions of mouse intestine.

    PubMed

    Schwerdtfeger, Luke A; Ryan, Elizabeth P; Tobet, Stuart A

    2016-02-15

    Organotypic tissue slices provide seminatural, three-dimensional microenvironments for use in ex vivo study of specific organs and have advanced investigative capabilities compared with isolated cell cultures. Several characteristics of the gastrointestinal tract have made in vitro models for studying the intestine challenging, such as maintaining the intricate structure of microvilli, the intrinsic enteric nervous system, Peyer's patches, the microbiome, and the active contraction of gut muscles. In the present study, an organotypic intestinal slice model was developed that allows for functional investigation across regions of the intestine. Intestinal tissue slices were maintained ex vivo for several days in a physiologically relevant environment that preserved normal enterocyte structure, intact and proliferating crypt cells, submucosal organization, and muscle wall composure. Cell death was measured by a membrane-impermeable DNA binding indicator, ethidium homodimer, and less than 5% of cells were labeled in all regions of the villi and crypt epithelia at 24 h ex vivo. This tissue slice model demonstrated intact myenteric and submucosal neuronal plexuses and functional interstitial cells of Cajal to the extent that nonstimulated, segmental contractions occurred for up to 48 h ex vivo. To detect changes in physiological responses, slices were also assessed for segmental contractions in the presence and absence of antibiotic treatment, which resulted in slices with lesser or greater amounts of commensal bacteria, respectively. Segmental contractions were significantly greater in slices without antibiotics and increased native microbiota. This model renders mechanisms of neuroimmune-microbiome interactions in a complex gut environment available to direct observation and controlled perturbation. PMID:26680736

  5. The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing

    PubMed Central

    2009-01-01

    Background Recent studies have shown that the fecal microbiota is generally resilient to short-term antibiotic administration, but some bacterial taxa may remain depressed for several months. Limited information is available about the effect of antimicrobials on small intestinal microbiota, an important contributor to gastrointestinal health. The antibiotic tylosin is often successfully used for the treatment of chronic diarrhea in dogs, but its exact mode of action and its effect on the intestinal microbiota remain unknown. The aim of this study was to evaluate the effect of tylosin on canine jejunal microbiota. Tylosin was administered at 20 to 22 mg/kg q 24 hr for 14 days to five healthy dogs, each with a pre-existing jejunal fistula. Jejunal brush samples were collected through the fistula on days 0, 14, and 28 (14 days after withdrawal of tylosin). Bacterial diversity was characterized using massive parallel 16S rRNA gene pyrosequencing. Results Pyrosequencing revealed a previously unrecognized species richness in the canine small intestine. Ten bacterial phyla were identified. Microbial populations were phylogenetically more similar during tylosin treatment. However, a remarkable inter-individual response was observed for specific taxa. Fusobacteria, Bacteroidales, and Moraxella tended to decrease. The proportions of Enterococcus-like organisms, Pasteurella spp., and Dietzia spp. increased significantly during tylosin administration (p < 0.05). The proportion of Escherichia coli-like organisms increased by day 28 (p = 0.04). These changes were not accompanied by any obvious clinical effects. On day 28, the phylogenetic composition of the microbiota was similar to day 0 in only 2 of 5 dogs. Bacterial diversity resembled the pre-treatment state in 3 of 5 dogs. Several bacterial taxa such as Spirochaetes, Streptomycetaceae, and Prevotellaceae failed to recover at day 28 (p < 0.05). Several bacterial groups considered to be sensitive to tylosin increased in their proportions. Conclusion Tylosin may lead to prolonged effects on the composition and diversity of jejunal microbiota. However, these changes were not associated with any short-term clinical signs of gastrointestinal disease in healthy dogs. Our results illustrate the complexity of the intestinal microbiota and the challenges associated with evaluating the effect of antibiotic administration on the various bacterial groups and their potential interactions. PMID:19799792

  6. Prevention of Intestinal Allergy in Mice by rflaA:Ova Is Associated with Enforced Antigen Processing and TLR5-Dependent IL-10 Secretion by mDC

    PubMed Central

    Schlke, Stefan; Wolfheimer, Sonja; Gadermaier, Gabriele; Wangorsch, Andrea; Siebeneicher, Susanne; Briza, Peter; Spreitzer, Ingo; Schiller, Dirk; Loeschner, Bettina; Uematsu, Satoshi; Ryffel, Bernard; Akira, Shizuo; Waibler, Zoe; Vieths, Stefan; Toda, Masako; Scheurer, Stephan

    2014-01-01

    Conjugated vaccines consisting of flagellin and antigen activate TLR5 and induce strong innate and adaptive immune responses. Objective of the present study was to gain further insight into the mechanisms by which flagellin fusion proteins mediate their immune modulating effects. In a mouse model of Ova-induced intestinal allergy a fusion protein of flagellin and Ova (rflaA:Ova) was used for intranasal and intraperitoneal vaccination. Aggregation status of flaA, Ova and flaA:Ova were compared by light scattering, uptake of fluorescence labeled proteins into mDC was analyzed, processing was investigated by microsomal digestion experiments. Mechanism of DC-activation was investigated using proteasome and inflammasome inhibitors. Immune responses of wildtype, IL-10?/?, TLR5?/? mDCs and Ova-transgenic T cells were investigated. Mucosal and i.p.-application of rflaA:Ova were able to prevent allergic sensitization, suppress disease-related symptoms, prevent body weight loss and reduction in food uptake. Intranasal vaccination resulted in strongest suppression of Ova-specific IgE production. These protective effects were associated with increased aggregation of rflaA:Ova and accompanied by tenfold higher uptake rates into mDC compared to the mixture of both proteins. Microsomal digestion showed that stimulation with rflaA:Ova resulted in faster degradation and the generation of different peptides compared to rOva. rflaA:Ova-mediated activation of mDC could be suppressed in a dose-dependent manner by the application of both inflammasome and proteasome inhibitors. Using TLR5?/? mDC the rflaA:Ova induced IL-10 secretion was shown to be TLR5 dependent. In co-cultures of IL-10?/? mDC with DO11.10 T cells the lack of rflaA:Ova-mediated IL-10 secretion resulted in enhanced levels of both TH2 (IL-4, IL-5) and TH1 (IL-2 and IFN-y) cytokines. In summary, mucosal vaccination with flaA:Ova showed strongest preventive effect. Stimulation with rflaA:Ova results in strong immune modulation mediated by enhanced uptake of the aggregated fusion protein, likely resulting in a different processing by DC as well as stronger TLR5 mediated cell activation. PMID:24516564

  7. Intestinal M cells: The fallible sentinels?

    PubMed Central

    Miller, Harvey; Zhang, Jianbing; KuoLee, Rhonda; Patel, Girishchandra B; Chen, Wangxue

    2007-01-01

    The gastrointestinal tract represents the largest mucosal membrane surface in the human body. The immune system in the gut is the first line of host defense against mucosal microbial pathogens and it plays a crucial role in maintaining mucosal homeostasis. Membranous or microfold cells, commonly referred to as microfold cells, are specialized epithelial cells of the gut-associated lymphoid tissues (GALT) and they play a sentinel role for the intestinal immune system by delivering luminal antigens through the follicle-associated epithelium to the underlying immune cells. M cells sample and uptake antigens at their apical membrane, encase them in vesicles to transport them to the basolateral membrane of M cells, and from there deliver antigens to the nearby lymphocytes. On the flip side, some intestinal pathogens exploit M cells as their portal of entry to invade the host and cause infections. In this article, we briefly review our current knowledge on the morphology, development, and function of M cells, with an emphasis on their dual role in the pathogenesis of gut infection and in the development of host mucosal immunity. PMID:17461437

  8. CD69 Is the Crucial Regulator of Intestinal Inflammation: A New Target Molecule for IBD Treatment?

    PubMed Central

    2015-01-01

    CD69 has been identified as an early activation marker of lymphocytes. However, recent work has indicated that CD69 plays an essential role for the regulation of inflammatory processes. Particularly, CD69 is highly expressed by lymphocytes at mucosal sites being constantly exposed to the intestinal microflora (one of the nature's most complex and most densely populated microbial habitats) and food antigens, while only a small number of circulating leukocytes express this molecule. In this review we will discuss the role of CD69 in mucosal tissue and consider CD69 as a potential target for the development of novel treatments of intestinal inflammation. PMID:25759842

  9. Host-microbiota interactions in the intestine.

    PubMed

    Elson, Charles O; Alexander, Katie L

    2015-01-01

    The comprehensive collection of bacterial species, termed microbiota, within human and other mammalian hosts has profound effects on both innate and adaptive immunity. Multiple host innate mechanisms contribute to intestinal homeostasis, including epithelial production of protective mucin layers maintaining spatial segregation in the intestine as well as epithelial cell secretion of a broad range of antimicrobial peptides. Additionally, epithelial cells employ autophagy to contain and eliminate invading bacteria; interestingly, genetic variants in specific autophagy genes are linked to susceptibility to Crohn's disease. Innate lymphoid cells, which rapidly respond to cytokine and microbial signals, have emerged as important regulators of the intestinal immune response to the microbiota. With regard to adaptive immunity, specific microbial species stimulate induction of regulatory T cells while others induce effector T cells within the gut. Such stimulation is subject to dysregulation during inflammation and disease, contributing to 'dysbiosis' or an abnormal microbiota composition that has been associated with a variety of immune-mediated inflammatory disorders, including celiac disease. The microbiota communicates with the immune system and vice versa; thus, an abnormal microbiota composition likely translates into an altered host immune response, though the exact mechanisms of such are not yet clear. Immunoglobulin A plays a critical role in limiting bacterial access to the host and in maintaining mutualism with the microbiota. Perturbation of the mucosal barrier via infection or other means can induce effector T cells reactive to the intestinal microbiota, and these cells can persist as memory cells for extended periods of time and potentially serve as pathogenic effector cells upon re-encounter with antigen. Health is associated with a diverse microbiota that functions to maintain the balance between T effector and T regulatory cells in the intestine. Whether dysbiosis can be reversed in immune-mediated disease, thus restoring health, is a question of intense interest for this active area of research. PMID:25925913

  10. Effect of Bacillus amyloliquefaciens-based Direct-fed Microbial on Performance, Nutrient Utilization, Intestinal Morphology and Cecal Microflora in Broiler Chickens.

    PubMed

    Lei, Xinjian; Piao, Xiangshu; Ru, Yingjun; Zhang, Hongyu; Pron, Alexandre; Zhang, Huifang

    2015-02-01

    The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM) on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control), and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP), 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30) or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60). Experimental diets were fed in two phases: starter (d 1 to 21) and finisher (d 22 to 42). Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21) and finisher (d 42) phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01) compared with the control group. For the finisher phase and the overall experiment (d 1 to 42) broilers fed diets with the DFM had better body weight gain (BWG) and FCR than that of control (p<0.05). Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP), dry matter (DM) and gross energy during both starter and finisher phases (p<0.05) compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05). The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control group (p<0.01). In addition, the population of Lactobacillus was increased in DFM 30 and DFM 60 groups as compared with control and AGP groups (p<0.01). It can be concluded that Bacillus amyloliquefaciens-based DFM could be an alternative to the use of AGPs in broilers diets based on plant protein. PMID:25557820

  11. Effect of Bacillus amyloliquefaciens-based Direct-fed Microbial on Performance, Nutrient Utilization, Intestinal Morphology and Cecal Microflora in Broiler Chickens

    PubMed Central

    Lei, Xinjian; Piao, Xiangshu; Ru, Yingjun; Zhang, Hongyu; Péron, Alexandre; Zhang, Huifang

    2015-01-01

    The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM) on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control), and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP), 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30) or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60). Experimental diets were fed in two phases: starter (d 1 to 21) and finisher (d 22 to 42). Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21) and finisher (d 42) phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01) compared with the control group. For the finisher phase and the overall experiment (d 1 to 42) broilers fed diets with the DFM had better body weight gain (BWG) and FCR than that of control (p<0.05). Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP), dry matter (DM) and gross energy during both starter and finisher phases (p<0.05) compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05). The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control group (p<0.01). In addition, the population of Lactobacillus was increased in DFM 30 and DFM 60 groups as compared with control and AGP groups (p<0.01). It can be concluded that Bacillus amyloliquefaciens-based DFM could be an alternative to the use of AGPs in broilers diets based on plant protein. PMID:25557820

  12. Medium-chain triglyceride as an alternative of in-feed colistin sulfate to improve growth performance and intestinal microbial environment in newly weaned pigs.

    PubMed

    Yen, Hung-Che; Lai, Wei-Kang; Lin, Chuan-Shun; Chiang, Shu-Hsing

    2015-01-01

    Five hundred and twenty-eight newly weaned pigs were given four treatments, with eight replicates per treatment. Sixteen to 18 pigs were assigned per replicate and were fed diets supplemented with 0 or 3% medium-chain triglyceride (MCT) and 0 or 40?ppm colistin sulfate (CS) in a 2??2 factorial arrangement for 2 weeks. The results showed that dietary supplementation with MCT improved the gain-to-feed ratio during days 3-7 and in the overall period (P?intestinal microbial environment and the feed utilization efficiency of newly weaned pigs. PMID:25039368

  13. Adding mucins to an in vitro batch fermentation model of the large intestine induces changes in microbial population isolated from porcine feces depending on the substrate.

    PubMed

    Tran, T H T; Boudry, C; Everaert, N; Théwis, A; Portetelle, D; Daube, G; Nezer, C; Taminiau, B; Bindelle, J

    2016-02-01

    Adding mucus to in vitro fermentation models of the large intestine shows that some genera, namely lactobacilli, are dependent on host-microbiota interactions and that they rely on mucosal layers to increase their activity. This study investigated whether this dependence on mucus is substrate dependent and to what extent other genera are impacted by the presence of mucus. Inulin and cellulose were fermented in vitro by a fecal inoculum from pig in the presence or not of mucin beads in order to compare fermentation patterns and bacterial communities. Mucins increased final gas production with inulin and shifted short-chain fatty acid molar ratios (P < 0.001). Quantitative real-time PCR analyses revealed that Lactobacillus spp. and Bifidobacterium spp. decreased with mucins, but Bacteroides spp. increased when inulin was fermented. A more in-depth community analysis indicated that the mucins increased Proteobacteria (0.55 vs 0.25%, P = 0.013), Verrucomicrobia (5.25 vs 0.03%, P = 0.032), Ruminococcaceae, Bacteroidaceae and Akkermansia spp. Proteobacteria (5.67 vs 0.55%, P < 0.001) and Lachnospiraceae (33 vs 10.4%) were promoted in the mucus compared with the broth, while Ruminococcaceae decreased. The introduction of mucins affected many microbial genera and fermentation patterns, but from PCA results, the impact of mucus was independent of the fermentation substrate. PMID:26691596

  14. Oral administration of Saccharomyces boulardii ameliorates carbon tetrachloride-induced liver fibrosis in rats via reducing intestinal permeability and modulating gut microbial composition.

    PubMed

    Li, Ming; Zhu, Lin; Xie, Ao; Yuan, Jieli

    2015-02-01

    To investigate the effects of orally administrated Saccharomyces boulardii (S. boulardii) on the progress of carbon tetrachloride (CCl4)-induced liver fibrosis, 34 male Wistar rats were randomly divided into four experimental groups including the control group (n = 8), the cirrhotic group (n = 10), the preventive group (n = 8), and the treatment group (n = 8). Results showed that the liver expression levels of collagen, type I, alpha 1 (Col1A1), alpha smooth muscle actin (αSMA), transforming growth factor beta (TGF-β) and the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) increased significantly in cirrhotic rats compared with control and decreased by S. boulardii administration. Treatment of S. boulardii also attenuated the increased endotoxin levels and pro-inflammatory cytokines in CCl4-treated rats. And, these were associated with the changes of intestinal permeability and fecal microbial composition. Our study suggested that oral administration of S. boulardii can promote the liver function of CCl4-treated rats, and the preventive treatment of this probiotic yeast may decelerate the progress of liver fibrosis. PMID:25227279

  15. Perturbations of mucosal homeostasis through interactions of intestinal microbes with myeloid cells

    PubMed Central

    Schey, Regina; Danzer, Claudia; Mattner, Jochen

    2014-01-01

    Mucosal surfaces represent the largest areas of interactions of the host with its environment. Subsequently, the mucosal immune system has evolved complex strategies to maintain the integrity of the host by inducing protective immune responses against pathogenic and tolerance against dietary and commensal microbial antigens within the broad range of molecules the intestinal epithelium is exposed to. Among many other specialized cell subsets, myeloid cell populations - due to their strategic location in the subepithelial lamina propria - are the first ones to scavenge and process these intestinal antigens and to send consecutive signals to other immune and non-immune cell subsets. Thus, myeloid cell populations represent attractive targets for clinical intervention in chronic inflammatory bowel diseases (IBDs) such as ulcerative colitis (UC) and Crohn's disease (CD) as they initiate and modulate inflammatory or regulatory immune response and shape the intestinal T cell pool. Here, we discuss the interactions of the intestinal microbiota with dendritic cell and macrophage populations and review in this context the literature on four promising candidate molecules that are critical for the induction and maintenance of intestinal homeostasis on the one hand, but also for the initiation and propagation of chronic intestinal inflammation on the other. PMID:25466587

  16. Intestinal Microbial Dysbiosis and Colonic Epithelial Cell Hyperproliferation by Dietary α-Mangostin is Independent of Mouse Strain

    PubMed Central

    Gutierrez-Orozco, Fabiola; Thomas-Ahner, Jennifer M.; Galley, Jeffrey D.; Bailey, Michael T.; Clinton, Steven K.; Lesinski, Gregory B.; Failla, Mark L.

    2015-01-01

    Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that α-mangostin (α-MG), the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary α-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% α-MG for four weeks. Dietary α-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of α-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in α-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary α-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution. PMID:25621505

  17. Mixed culture models for predicting intestinal microbial interactions between Escherichia coli and Lactobacillus in the presence of probiotic Bacillus subtilis.

    PubMed

    Yang, J J; Niu, C C; Guo, X H

    2015-01-01

    Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (P<0.01). B. subtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (P<0.05). The viability of Lactobacillus increased when co-cultured with B. subtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (P<0.05). The role of Bacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended. PMID:26259891

  18. Interleukin-19: A Constituent of the Regulome That Controls Antigen Presenting Cells in the Lungs and Airway Responses to Microbial Products

    PubMed Central

    Hoffman, Carol; Park, Sung-Hyun; Daley, Eleen; Emson, Claire; Louten, Jennifer; Sisco, Maureen; de Waal Malefyt, Rene; Grunig, Gabriele

    2011-01-01

    Background Interleukin (IL)-19 has been reported to enhance chronic inflammatory diseases such as asthma but the in vivo mechanism is incompletely understood. Because IL-19 is produced by and regulates cells of the monocyte lineage, our studies focused on in vivo responses of CD11c positive (CD11c+) alveolar macrophages and lung dendritic cells. Methodology/Principal Findings IL-19-deficient (IL-19-/-) mice were studied at baseline (nave) and following intranasal challenge with microbial products, or recombinant cytokines. Nave IL-19-/- mixed background mice had a decreased percentage of CD11c+ cells in the bronchoalveolar-lavage (BAL) due to the deficiency in IL-19 and a trait inherited from the 129-mouse strain. BAL CD11c+ cells from fully backcrossed IL-19-/- BALB/c or C57BL/6 mice expressed significantly less Major Histocompatibility Complex class II (MHCII) in response to intranasal administration of lipopolysaccharide, Aspergillus antigen, or IL-13, a pro-allergic cytokine. Neurogenic-locus-notch-homolog-protein-2 (Notch2) expression by lung monocytes, the precursors of BAL CD11c+ cells, was dysregulated: extracellular Notch2 was significantly decreased, transmembrane/intracellular Notch2 was significantly increased in IL-19-/- mice relative to wild type. Instillation of recombinant IL-19 increased extracellular Notch2 expression and dendritic cells cultured from bone marrow cells in the presence of IL-19 showed upregulated extracellular Notch2. The CD205 positive subset among the CD11c+ cells was 3-5-fold decreased in the airways and lungs of nave IL-19-/- mice relative to wild type. Airway inflammation and histological changes in the lungs were ameliorated in IL-19-/- mice challenged with Aspergillus antigen that induces T lymphocyte-dependent allergic inflammation but not in IL-19-/- mice challenged with lipopolysaccharide or IL-13. Conclusions/Significance Because MHCII is the molecular platform that displays peptides to T lymphocytes and Notch2 determines cell fate decisions, our studies suggest that endogenous IL-19 is a constituent of the regulome that controls both processes in vivo. PMID:22110701

  19. Effect of Scrophularia striata and Ferulago angulata, as alternatives to virginiamycin, on growth performance, intestinal microbial population, immune response, and blood constituents of broiler chickens.

    PubMed

    Rostami, Farhad; Ghasemi, Hossein A; Taherpour, Kamran

    2015-09-01

    An experiment was conducted to investigate the comparative effect of Scrophularia striata, Ferulago angulata, and virginiamycin (VM) on performance, intestinal microbial population, immune response, and blood constituents of broilers. A total of 300 Ross 308 male broiler chickens were randomly assigned to 5 treatments, with 5 replicates/treatment (10 chickens/pen). Birds were fed either a corn-soybean meal basal diet (control) or the basal diet supplemented with 200 mg/kg VM; 4 g/kg S. striata (SS1); 8 g/kg S. striata (SS2); 4 g/kg F. angulata (FA1); or 8 g/kg F. angulata (FA2). After 6 wk, the BW, ADG, and feed-to-gain ratio (F:G) of the VM, SS1, and FA1 groups were better (P<0.01) compared with the control group. At 42 d, cecal lactobacillus counts were higher (P=0.032) in SS2 and FA2 groups compared with the control and VM groups. In addition, broilers fed any of the diets exhibited lower coliform counts (P<0.05) in the ileum and ceca than those fed the control diet. Total and IgG antibody titers against SRBC for secondary responses, relative spleen weight, and lymphocyte counts were higher (P<0.05) in birds fed the SS2 or FA2 diet compared with the control group. Moreover, feeding the SS2 or FA2 diet decreased (P<0.05) the blood heterophil/lymphocyte ratio and plasma triglyceride level, whereas only the SS2 diet increased (P=0.037) the white blood cell counts compared with the control diet. All diets, except for the VM diet, decreased (P=0.009) the plasma cholesterol level compared to the control treatment. The plasma high-density lipoprotein cholesterol level was also increased (P=0.042) in the SS2 and FA2 groups. In conclusion, dietary S. striata or F. angulata at a level of 4 g/kg diet enhanced growth performance, which was comparable to that of VM used as an antibiotic growth promoter. Furthermore, a high dose of both herbs (8 g/kg diet) could beneficially affect the intestinal health and immune status of broilers. PMID:26217029

  20. Agent-based model of Fecal Microbial Transplant effect on Bile Acid Metabolism on suppressing Clostridium difficile infection: an example of agent-based modeling of intestinal bacterial infection

    PubMed Central

    Peer, Xavier; An, Gary

    2014-01-01

    Agent-based modeling is a computational modeling method that represents system-level behavior as arising from multiple interactions between the multiple components that make up a system. Biological systems are thus readily described using agent-based models (ABMs), as multi-cellular organisms can be viewed as populations of interacting cells, and microbial systems manifest as colonies of individual microbes. Intersections between these two domains underlie an increasing number of pathophysiological processes, and the intestinal tract represents one of the most significant locations for these inter-domain interactions, so much so that it can be considered an internal ecology of varying robustness and function. Intestinal infections represent significant disturbances of this internal ecology, and one of the most clinically relevant intestinal infections is Clostridium difficile infection (CDI). CDI is precipitated by the use of broad-spectrum antibiotics, involves the depletion of commensal microbiota, and alterations in bile acid composition in the intestinal lumen. We present an example ABM of CDI (the Clostridium difficile Infection ABM, or CDIABM) to examine fundamental dynamics of the pathogenesis of CDI and its response to treatment with anti-CDI antibiotics and a newer treatment therapy, Fecal Microbial Transplant (FMT). The CDIABM focuses on one specific mechanism of potential CDI suppression: commensal modulation of bile acid composition. Even given its abstraction, the CDIABM reproduces essential dynamics of CDI and its response to therapy, and identifies a paradoxical zone of behavior that provides insight into the role of intestinal nutritional status and the efficacy of anti-CDI therapies. It is hoped that this use case example of the CDIABM can demonstrate the usefulness of both agent-based modeling and the application of abstract functional representation as the biomedical community seeks to address the challenges of increasingly complex diseases with the goal of personalized medicine. PMID:25168489

  1. Agent-based model of fecal microbial transplant effect on bile acid metabolism on suppressing Clostridium difficile infection: an example of agent-based modeling of intestinal bacterial infection.

    PubMed

    Peer, Xavier; An, Gary

    2014-10-01

    Agent-based modeling is a computational modeling method that represents system-level behavior as arising from multiple interactions between the multiple components that make up a system. Biological systems are thus readily described using agent-based models (ABMs), as multi-cellular organisms can be viewed as populations of interacting cells, and microbial systems manifest as colonies of individual microbes. Intersections between these two domains underlie an increasing number of pathophysiological processes, and the intestinal tract represents one of the most significant locations for these inter-domain interactions, so much so that it can be considered an internal ecology of varying robustness and function. Intestinal infections represent significant disturbances of this internal ecology, and one of the most clinically relevant intestinal infections is Clostridium difficile infection (CDI). CDI is precipitated by the use of broad-spectrum antibiotics, involves the depletion of commensal microbiota, and alterations in bile acid composition in the intestinal lumen. We present an example ABM of CDI (the C. difficile Infection ABM, or CDIABM) to examine fundamental dynamics of the pathogenesis of CDI and its response to treatment with anti-CDI antibiotics and a newer treatment therapy, fecal microbial transplant. The CDIABM focuses on one specific mechanism of potential CDI suppression: commensal modulation of bile acid composition. Even given its abstraction, the CDIABM reproduces essential dynamics of CDI and its response to therapy, and identifies a paradoxical zone of behavior that provides insight into the role of intestinal nutritional status and the efficacy of anti-CDI therapies. It is hoped that this use case example of the CDIABM can demonstrate the usefulness of both agent-based modeling and the application of abstract functional representation as the biomedical community seeks to address the challenges of increasingly complex diseases with the goal of personalized medicine. PMID:25168489

  2. Intestinal colonization resistance

    PubMed Central

    Lawley, Trevor D; Walker, Alan W

    2013-01-01

    Dense, complex microbial communities, collectively termed the microbiota, occupy a diverse array of niches along the length of the mammalian intestinal tract. During health and in the absence of antibiotic exposure the microbiota can effectively inhibit colonization and overgrowth by invading microbes such as pathogens. This phenomenon is called ‘colonization resistance’ and is associated with a stable and diverse microbiota in tandem with a controlled lack of inflammation, and involves specific interactions between the mucosal immune system and the microbiota. Here we overview the microbial ecology of the healthy mammalian intestinal tract and highlight the microbe–microbe and microbe–host interactions that promote colonization resistance. Emerging themes highlight immunological (T helper type 17/regulatory T-cell balance), microbiota (diverse and abundant) and metabolic (short-chain fatty acid) signatures of intestinal health and colonization resistance. Intestinal pathogens use specific virulence factors or exploit antibiotic use to subvert colonization resistance for their own benefit by triggering inflammation to disrupt the harmony of the intestinal ecosystem. A holistic view that incorporates immunological and microbiological facets of the intestinal ecosystem should facilitate the development of immunomodulatory and microbe-modulatory therapies that promote intestinal homeostasis and colonization resistance. PMID:23240815

  3. Alcohol Lowers Your (Intestinal) Inhibitions.

    PubMed

    Iyer, Namrata; Vaishnava, Shipra

    2016-02-10

    Alcohol causes microbiota dysbiosis and breaches intestinal integrity, resulting in liver inflammation and ultimately cirrhosis. In this issue of Cell Host & Microbe, Wang etal. (2016) demonstrate that ethanol suppresses the intestinal anti-microbial response. This enables gut bacteria to trespass to the liver and thus exacerbates the disease progression. PMID:26867168

  4. How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology

    PubMed Central

    Frosali, Simona; Gambassi, Giovanni; Pandolfi, Franco

    2015-01-01

    The gut is able to maintain tolerance to microbial and food antigens. The intestine minimizes the number of harmful bacteria by shaping the microbiota through a symbiotic relationship. In healthy human intestine, a constant homeostasis is maintained by the perfect regulation of microbial load and the immune response generated against it. Failure of this balance may result in various pathological conditions. Innate immune sensors, such as Toll-like receptors (TLRs), may be considered an interface among intestinal epithelial barrier, microbiota, and immune system. TLRs pathway, activated by pathogens, is involved in the pathogenesis of several infectious and inflammatory diseases. The alteration of the homeostasis between physiologic and pathogenic bacteria of intestinal flora causes a condition called dysbiosis. The breakdown of homeostasis by dysbiosis may increase susceptibility to inflammatory bowel diseases. It is evident that environment, genetics, and host immunity form a highly interactive regulatory triad that controls TLR function. Imbalanced relationships within this triad may promote aberrant TLR signaling, critically contributing to acute and chronic intestinal inflammatory processes, such as in IBD, colitis, and colorectal cancer. The study of interactions between different components of the immune systems and intestinal microbiota will open new horizons in the knowledge of gut inflammation. PMID:26090491

  5. Intestinal Cancer

    MedlinePLUS

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  6. TREATMENT OF LONG-EVANS RATS WITH A DEFINED MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS IMPACTS INTESTINAL MICROBIAL METABOLISM.

    EPA Science Inventory

    Water treatment results in the production of numerous halogenated disinfection by-products (DBPs), and has been associated with human colorectal cancer. Because the intestinal microbiota can bioactivate promutagens and procarcinogens, several studies have been done to examine the...

  7. [Interaction between humans and intestinal bacteria as a determinant for intestinal health : intestinal microbiome and inflammatory bowel diseases].

    PubMed

    Haller, Dirk; Hrmannsperger, G

    2015-02-01

    Recent scientific results underline the importance of the intestinal microbiome, the totality of all intestinal microbes and their genes, for the health of the host organism. The intestinal microbiome can therefore be considered as a kind of "external organ". It has been shown that the intestinal microbiota is a complex and dynamic ecosystem that influences host immunity and metabolism beyond the intestine. The composition and functionality of the intestinal microbiota is of major importance for the development and maintenance of intestinal functions. Inflammatory bowel diseases (IBD) are characterized by dysregulated interactions between the host and its microbiota.The present contribution summarizes current knowledge of the composition and development of the intestinal microbiome and gives an overview of the bidirectional interaction between host and microbiota. The contribution informs about insights regarding the role of the intestinal microbiota in IBD and finally discusses the protective potential of microbial therapies in the context of IBD. PMID:25566836

  8. Orally-Induced Intestinal CD4+ CD25+ FoxP3+ Treg Controlled Undesired Responses towards Oral Antigens and Effectively Dampened Food Allergic Reactions

    PubMed Central

    Smaldini, Paola Lorena; Orsini Delgado, María Lucía; Fossati, Carlos Alberto; Docena, Guillermo Horacio

    2015-01-01

    The induction of peripheral tolerance may constitute a disease-modifying treatment for allergic patients. We studied how oral immunotherapy (OIT) with milk proteins controlled allergy in sensitized mice (cholera toxin plus milk proteins) upon exposure to the allergen. Symptoms were alleviated, skin test was negativized, serum specific IgE and IgG1 were abrogated, a substantial reduction in the secretion of IL-5 and IL-13 by antigen-stimulated spleen cells was observed, while IL-13 gene expression in jejunum was down-regulated, and IL-10 and TGF-β were increased. In addition, we observed an induction of CD4+CD25+FoxP3+ cells and IL-10- and TGF-β-producing regulatory T cells in the lamina propria. Finally, transfer experiments confirmed the central role of these cells in tolerance induction. We demonstrated that the oral administration of milk proteins pre- or post-sensitization controlled the Th2-immune response through the elicitation of mucosal IL-10- and TGF-β-producing Tregs that inhibited hypersensitivity symptoms and the allergic response. PMID:26517875

  9. Two Japanese cases of dermatitis herpetiformis associated each with lung cancer and autoimmune pancreatitis but showing no intestinal symptom or circulating immunoglobulin A antibodies to any known antigens.

    PubMed

    Shigeta, Mika; Saiki, Minoru; Tsuruta, Daisuke; Ohata, Chika; Ishii, Norito; Ono, Fumitake; Hamada, Takahiro; Dainichi, Teruki; Furumura, Minao; Zone, John J; Karpati, Sarolta; Sitaru, Cassian; Hashimoto, Takashi

    2012-12-01

    Dermatitis herpetiformis (DH) is common in some Caucasian populations but extremely rare in Japanese, probably because of different immunogenetic backgrounds. We report two Japanese DH cases with typical clinical, histological and direct immunofluorescence features. However, no symptom of gluten-sensitive enteropathy was shown. The diagnosis was confirmed by eliminating other autoimmune blistering diseases by indirect immunofluorescence, enzyme-linked immunosorbent assays and immunoblotting. However, circulating immunoglobulin (Ig)A anti-endomysium, reticulin and gliadin antibodies were not detected. IgA antibodies to tissue and epidermal transglutaminases were also negative. One case was associated with lung cancer and the other one with autoimmune pancreatitis. On review of 17 cases of DH reported in Japan over the previous 10 years, including our cases, one case was associated with gluten-sensitive enteropathy, four with malignant neoplasms, two with autoimmune systemic disorders and one with psoriasis. Although our cases were typical of DH in clinical, histopathological and IgA deposit features, they showed different human leukocyte antigen haplotypes, no gluten-sensitive enteropathy and no DH-specific IgA antibodies, including those to epidermal and tissue transglutaminases. These results suggest that studies of unique characteristics in Japanese DH patients should facilitate further understanding of pathogenesis in DH. PMID:22963165

  10. The Intestinal Flora Is Required to Support Antibody Responses to Systemic Immunization in Infant and Germ Free Mice

    PubMed Central

    Lamousé-Smith, Esi S.; Tzeng, Alice; Starnbach, Michael N.

    2011-01-01

    The presence of a complex and diverse intestinal flora is functionally important for regulating intestinal mucosal immune responses. However, the extent to which a balanced intestinal flora regulates systemic immune responses is still being defined. In order to specifically examine whether the acquisition of a less complex flora influences responses to immunization in the pre-weaning stages of life, we utilize a model in which infant mice acquire an intestinal flora from their mothers that has been altered by broad-spectrum antibiotics. In this model, pregnant dams are treated with a cocktail of antibiotics that alters both the density and microbial diversity of the intestinal flora. After challenge with a subcutaneous immunization, the antibiotic altered flora infant mice have lower antigen specific antibody titers compared to control age-matched mice. In a second model, we examined germ free (GF) mice to analyze how the complete lack of flora influences the ability to mount normal antibody responses following subcutaneous immunization. GF mice do not respond well to immunization and introduction of a normal flora into GF mice restores the capacity of these mice to respond. These results indicate that a gastrointestinal flora reduced in density and complexity at critical time points during development adversely impacts immune responses to systemic antigens. PMID:22114681

  11. Gut microbial status induced by antibiotic growth promoter alters the prebiotic effects of dietary DVAQUA® on Aeromonas hydrophila-infected tilapia: production, intestinal bacterial community and non-specific immunity.

    PubMed

    Zhou, Zhigang; He, Suxu; Liu, Yuchun; Cao, Yanan; Meng, Kun; Yao, Bin; Ringø, Einar; Yoon, Ilkyu

    2011-05-01

    The purpose of the present study was to investigate whether dietary antibiotic-induced changes in the fish intestinal microbiota altered host physiological responses to the infection with Aeromonas hydrophila in hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂). After an 8-week induction period with an antibiotic-supplemented or antibiotic-non-supplemented diet, 160 hybrid tilapias in 16 tanks were each injected with phosphate buffered saline (PBS) or A. hydrophila at a dose of one-half of the LD(50). Then, all of the diets were changed to a prebiotic-supplemented one for the sequential 8-week response period. Parameters including production, gut microbial diversity and count, and non-specific immunity were determined at the end of the response period. Our results showed that A. hydrophila infection had no effects on the growth and diet conversion of tilapia, but it caused the decrease of the gut bacterial count, the number of visual bands, and the Shannon diversity and equitability indexes of gut bacteria in antibiotic-non-supplemented fish based on PCR-DGGE fingerprints. Infection with A. hydrophila reduced the gut bacterial evenness (lower Shannon equitability index), and slightly improved the gut bacterial richness (more visual bands) in antibiotic-supplemented tilapia. In addition, A. hydrophila infection affected non-specific immunity such as serum lysozyme activity and serum alternative complement pathway (C3 and C4) activities regardless of hybrid tilapia fed antibiotic-supplemented diets. These changes varied based on the intestinal microbial status of the fish before infection with A. hydrophila. PMID:21146333

  12. Microbial-induced meprin ? cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus

    PubMed Central

    Schtte, Andr; Ermund, Anna; Becker-Pauly, Christoph; Johansson, Malin E. V.; Rodriguez-Pineiro, Ana M.; Bckhed, Fredrik; Mller, Stefan; Lottaz, Daniel; Bond, Judith S.; Hansson, Gunnar C.

    2014-01-01

    The mucus that covers and protects the epithelium of the intestine is built around its major structural component, the gel-forming MUC2 mucin. The gel-forming mucins have traditionally been assumed to be secreted as nonattached. The colon has a two-layered mucus system where the inner mucus is attached to the epithelium, whereas the small intestine normally has a nonattached mucus. However, the mucus of the small intestine of meprin ?-deficient mice was now found to be attached. Meprin ? is an endogenous zinc-dependent metalloprotease now shown to cleave the N-terminal region of the MUC2 mucin at two specific sites. When recombinant meprin ? was added to the attached mucus of meprin ?-deficient mice, the mucus was detached from the epithelium. Similar to meprin ?-deficient mice, germ-free mice have attached mucus as they did not shed the membrane-anchored meprin ? into the luminal mucus. The ileal mucus of cystic fibrosis (CF) mice with a nonfunctional cystic fibrosis transmembrane conductance regulator (CFTR) channel was recently shown to be attached to the epithelium. Addition of recombinant meprin ? to CF mucus did not release the mucus, but further addition of bicarbonate rendered the CF mucus normal, suggesting that MUC2 unfolding exposed the meprin ? cleavage sites. Mucus is thus secreted attached to the goblet cells and requires an enzyme, meprin ? in the small intestine, to be detached and released into the intestinal lumen. This process regulates mucus properties, can be triggered by bacterial contact, and is nonfunctional in CF due to poor mucin unfolding. PMID:25114233

  13. Intestinal Obstruction

    MedlinePLUS

    ... Abscesses Abdominal Wall Hernias Inguinal Hernia Acute Mesenteric Ischemia Appendicitis Ileus Intestinal Obstruction Ischemic Colitis Perforation of ... Abscesses Abdominal Wall Hernias Inguinal Hernia Acute Mesenteric Ischemia Appendicitis Ileus Intestinal Obstruction Ischemic Colitis Perforation of ...

  14. Intestinal Malrotation

    MedlinePLUS

    ... the intestines don't position themselves normally during fetal development and aren't attached inside properly as a result. The exact reason this occurs is unknown. When a fetus develops in the womb, the intestines start out ...

  15. Intestinal Obstruction

    MedlinePLUS

    ... Acute Mesenteric Ischemia Appendicitis Ileus Intestinal Obstruction Ischemic Colitis Perforation of the Digestive Tract An obstruction of ... Acute Mesenteric Ischemia Appendicitis Ileus Intestinal Obstruction Ischemic Colitis Perforation of the Digestive Tract NOTE: This is ...

  16. Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets

    PubMed Central

    Chowdhury, Shankar R; King, Dale E; Willing, Benjamin P; Band, Mark R; Beever, Jonathan E; Lane, Adrienne B; Loor, Juan J; Marini, Juan C; Rund, Laurie A; Schook, Lawrence B; Van Kessel, Andrew G; Gaskins, H Rex

    2007-01-01

    Background To gain insight into host-microbe interactions in a piglet model, a functional genomics approach was used to address the working hypothesis that transcriptionally regulated genes associated with promoting epithelial barrier function are activated as a defensive response to the intestinal microbiota. Cesarean-derived germfree (GF) newborn piglets were colonized with adult swine feces, and villus and crypt epithelial cell transcriptomes from colonized and GF neonatal piglets were compared using laser-capture microdissection and high-density porcine oligonucleotide microarray technology. Results Consistent with our hypothesis, resident microbiota induced the expression of genes contributing to intestinal epithelial cell turnover, mucus biosynthesis, and priming of the immune system. Furthermore, differential expression of genes associated with antigen presentation (pan SLA class I, B2M, TAP1 and TAPBP) demonstrated that microbiota induced immune responses using a distinct regulatory mechanism common for these genes. Specifically, gene network analysis revealed that microbial colonization activated both type I (IFNAR) and type II (IFNGR) interferon receptor mediated signaling cascades leading to enhanced expression of signal transducer and activator of transcription 1 (STAT1), STAT2 and IFN regulatory factor 7 (IRF7) transcription factors and the induction of IFN-inducible genes as a reflection of intestinal epithelial inflammation. In addition, activated RNA expression of NF-kappa-B inhibitor alpha (NF?BIA; a.k.a I-kappa-B-alpha, IKB?) and toll interacting protein (TOLLIP), both inhibitors of inflammation, along with downregulated expression of the immunoregulatory transcription factor GATA binding protein-1 (GATA1) is consistent with the maintenance of intestinal homeostasis. Conclusion This study supports the concept that the intestinal epithelium has evolved to maintain a physiological state of inflammation with respect to continuous microbial exposure, which serves to sustain a tight intestinal barrier while preventing overt inflammatory responses that would compromise barrier function. PMID:17615075

  17. Effect of lactulose supplementation on growth performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens.

    PubMed

    Calik, Ali; Ergn, Ahmet

    2015-09-01

    This study investigated the effects of dietary lactulose supplementation on broiler growth performance, intestinal histomorphology, cecal microflora, and cecal short-chain fatty acid (SCFA) concentrations. A total of 245 one-day-old male broiler chickens were randomly assigned to 5 different treatments, with 7 replicates including 7 birds each. The birds received the same basal diet based on corn--soybean meal, and lactulose was included in the diet at 0, 0.2, 0.4, 0.6, or 0.8% at the expense of corn and/or soybean meal. The body weight gain (linear, P=0.027) and feed conversion (linear, P=0.003) from 0 to 21 d showed significant improvement as dietary lactulose was increased from 0.2 to 0.8%. However, dietary lactulose did not affect broiler performance at the end of the experiment (42 d). Furthermore, intestinal measurements and the goblet cell count of broilers fed a lactulose-containing diet differed from those of birds fed a diet that did not contain lactulose. In addition, a significant quadratic response in the Lactobacillus count (P?0.001) was observed at 42 d on increasing the level of lactulose. The cecal coliform bacterial population was not affected by the dietary treatments. Supplementation with lactulose significantly increased the concentrations of acetate, propionate, butyrate, and total SCFA measured on d 7 and d 42. In conclusion, inclusion of lactulose in the diet can enhance broiler performance and intestinal morphology by selectively stimulating intestinal microflora and increasing cecal SCFA concentrations. PMID:26188035

  18. Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip.

    PubMed

    Williams, J M; Duckworth, C A; Burkitt, M D; Watson, A J M; Campbell, B J; Pritchard, D M

    2015-05-01

    The intestinal epithelium is a critical component of the gut barrier. Composed of a single layer of intestinal epithelial cells (IECs) held together by tight junctions, this delicate structure prevents the transfer of harmful microorganisms, antigens, and toxins from the gut lumen into the circulation. The equilibrium between the rate of apoptosis and shedding of senescent epithelial cells at the villus tip, and the generation of new cells in the crypt, is key to maintaining tissue homeostasis. However, in both localized and systemic inflammation, this balance may be disturbed as a result of pathological IEC shedding. Shedding of IECs from the epithelial monolayer may cause transient gaps or microerosions in the epithelial barrier, resulting in increased intestinal permeability. Although pathological IEC shedding has been observed in mouse models of inflammation and human intestinal conditions such as inflammatory bowel disease, understanding of the underlying mechanisms remains limited. This process may also be an important contributor to systemic and intestinal inflammatory diseases and gut barrier dysfunction in domestic animal species. This review aims to summarize current knowledge about intestinal epithelial cell shedding, its significance in gut barrier dysfunction and host-microbial interactions, and where research in this field is directed. PMID:25428410

  19. Immunity to intestinal pathogens: lessons learned from Salmonella

    PubMed Central

    McSorley, Stephen J.

    2014-01-01

    Summary Salmonella are a common source of food or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens. PMID:24942689

  20. Anaphylactic release of intestinal goblet cell mucus.

    PubMed Central

    Lake, A M; Bloch, K J; Sinclair, K J; Walker, W A

    1980-01-01

    The effect of intestinal anaphylaxis on goblet cell mucus release was tested in rats immunized with small doses of egg albumin and alum and challenged intraduodenally with antigen. The alteration in vascular and mucosal permeability which accompanies intestinal anaphylaxis was reflected by increased retention of 125I-labelled rat serum albumin in gut wall segments and increased amounts of protein-bound radioactivity in the intestinal secretion from the segments. Intestinal goblet cell mucus was labelled in vivo with 35S. Infusion of antigen, into the duodenum of actively immunized rats led to the appearance of 35S-labelled high molecular weight glycoprotein, presumably of goblet cell origin, in the intestinal secretions. Goblet cell mucus release was dependent on the dose of antigen infused, was antigen-specific and was inhibited by pretreatment of rats with cyproheptidine. Enhanced release of goblet cell mucus was observed in normal rats prepared by intravenous injection of rat antiserum rich in IgE anti-egg albumin antibodies and challenged by intraduodenal infusion of antigen. Prior heating of the antiserum inhibited passive transfer of the reaction; this finding is consistent with the heat lability of IgE antibodies. The latter class of antibodies are presumed to be responsible for intestinal anaphylaxis and its associated mucus release in the model system examined. PMID:7380466

  1. Antigenic Variation in Bacterial Pathogens.

    PubMed

    Palmer, Guy H; Bankhead, Troy; Seifert, H Steven

    2016-02-01

    Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented. PMID:26999387

  2. Simultaneous multicolor detection system of the single-molecular microbial antigen by total internal reflection fluorescence microscopy with fluorescent nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Yamamoto, Mayu; Manabe, Noriyoshi; Yasuhara, Masato; Suzuki, Kazuo; Yamamoto, Kenji

    2005-11-01

    Immunological diagnostic methods have been widely performed and showed high performance in molecular and cellular biology, molecular imaging, and medical diagnostics. We have developed novel methods for the fluorescent labeling of several antibodies coupled with fluorescent nanocrystals QDs. In this study we demonstrated that two bacterial toxins, diphtheria toxin and tetanus toxin, were detected simultaneously in the same view field of a cover slip by using directly QD-conjugated antibodies. We have succeeded in detecting bacterial toxins by counting luminescent spots on the evanescent field with using primary antibody conjugated to QDs. In addition, each bacterial toxin in the mixture can be separately detected by single excitation laser with emission band pass filters, and simultaneously in situ pathogen quantification was performed by calculating the luminescent density on the surface of the cover slip. Our results demonstrate that total internal reflection fluorescence microscopy (TIRFM) enables us to distinguish each antigen from mixed samples and can simultaneously quantitate multiple antigens by QD-conjugated antibodies. Bioconjugated QDs could have great potentialities for in practical biomedical applications to develop various high-sensitivity detection systems.

  3. Synthetic Small Intestinal Scaffolds for Improved Studies of Intestinal Differentiation

    PubMed Central

    Costello, Cait M.; Hongpeng, Jia; Shaffiey, Shahab; Yu, Jiajie; Jain, Nina K.; Hackam, David

    2014-01-01

    In vitro intestinal models can provide new insights into small intestinal function, including cellular growth and proliferation mechanisms, drug absorption capabilities, and host-microbial interactions. These models are typically formed with cells cultured on 2D scaffolds or transwell inserts, but it is widely understood that epithelial cells cultured in 3D environments exhibit different phenotypes that are more reflective of native tissue. Our focus was to develop a porous, synthetic 3D tissue scaffold with villous features that could support the culture of epithelial cell types to mimic the natural microenvironment of the small intestine. We demonstrated that our scaffold could support the co-culture of Caco-2 cells with a mucus-producing cell line, HT29-MTX, as well as small intestinal crypts from mice for extended periods. By recreating the surface topography with accurately sized intestinal villi, we enable cellular differentiation along the villous axis in a similar manner to native intestines. In addition, we show that the biochemical microenvironments of the intestine can be further simulated via a combination of apical and basolateral feeding of intestinal cell types cultured on the 3D models. PMID:24390638

  4. Systemic Lupus Erythematosus: Molecular Mimicry between Anti-dsDNA CDR3 Idiotype, Microbial and Self PeptidesAs Antigens for Th Cells

    PubMed Central

    Aas-Hanssen, Kristin; Thompson, Keith M.; Bogen, Bjarne; Munthe, Ludvig A.

    2015-01-01

    Systemic lupus erythematosus (SLE) is marked by a T helper (Th) cell-dependent B cell hyperresponsiveness, with frequent germinal center reactions, and gammaglobulinemia. A feature of SLE is the finding of IgG autoantibodies specific for dsDNA. The specificity of the Th cells that drive the expansion of anti-dsDNA B cells is unresolved. However, anti-microbial, anti-histone, and anti-idiotype Th cell responses have been hypothesized to play a role. It has been entirely unclear if these seemingly disparate Th cell responses and hypotheses could be related or unified. Here, we describe that H chain CDR3 idiotypes from IgG+ B cells of lupus mice have sequence similarities with both microbial and self peptides. Matched sequences were more frequent within the mutated CDR3 repertoire and when sequences were derived from lupus mice with expanded anti-dsDNA B cells. Analyses of histone sequences showed that particular histone peptides were similar to VDJ junctions. Moreover, lupus mice had Th cell responses toward histone peptides similar to anti-dsDNA CDR3 sequences. The results suggest that Th cells in lupus may have multiple cross-reactive specificities linked to the IgVH CDR3 Id-peptide sequences as well as similar DNA-associated protein motifs. PMID:26284067

  5. Parasite antigens*

    PubMed Central

    1975-01-01

    The currently available preparations used as antigen in the serological investigation of parasitic diseases are ill-defined heterogeneous mixtures, and there is an evident need for better characterized reagents. Antigens of different parasite species (schistosomes, filariae, trypanosomes, and plasmodia) are discussed and parasite sources enumerated. Modern methods for the preparation of antigenic extracts and their fractionation are described, together with certain guidelines as to their biochemical characterization and their immunological activity. In order to implement this endeavour and to make better use of serological techniques in parasitic diseases, proposals are made concerning collaborative research and field application among a number of laboratories on schistosome, onchocercal, trypanosome, and plasmodial antigens. PMID:1084794

  6. Colonization of porcine intestine by enterotoxigenic Escherichia coli: selection of piliated forms in vivo, adhesion of piliated forms to epithelial cells in vitro, and incidence of a pilus antigen among porcine enteropathogenic E. coli.

    PubMed

    Nagy, B; Moon, H W; Isaacson, R E

    1977-04-01

    In contrast to K88-positive porcine enterotoxigenic Escherichia coli (ETEC), K88-negative porcine ETEC strains did not adhere to isolated intestinal epithelial cells in vitro. However, they did adhere to intestinal epithelium in vivo. Growth of one such ETEC (strain 987) in pig small intestine consistently yielded a greater percentage of piliated cells than did growth in vitro. This increase was demonstrable by electron microscopy, by change in colonial morphology, and by agglutination in specific antisera against the pili of strain 987. In contrast to the stored stock culture (which contained very few piliated cells), richly piliated forms of strain 987 did adhere to isolated intestinal epithelial cells in vitro. A series of porcine E. coli strains was tested for agglutinability in antiserum against the pili of strain 987, and several K88-negative ETEC strains were agglutinated. These data are consistent with the hypothesis that pili facilitate intestinal adhesion and colonization by K88-negative ETEC strains. PMID:326676

  7. Epithelial cell contributions to intestinal immunity.

    PubMed

    Hooper, Lora V

    2015-01-01

    The epithelial surfaces of the mammalian intestine interface directly with the external environment and thus continuously encounter pathogenic bacteria, fungi, viruses, and parasites. The intestinal epithelium is also closely associated with complex communities of symbiotic microorganisms. Intestinal epithelial cells are thus faced with the unique challenge of directly interacting with enormous numbers of microbes that include both pathogens and symbionts. As a result, gut epithelia have evolved an array of strategies that contribute to host immunity. This chapter considers the various mechanisms used by epithelial cells to limit microbial invasion of host tissues, shape the composition of indigenous microbial communities, and coordinate the adaptive immune response to microorganisms. Study of intestinal epithelial cells has contributed fundamental insights into intestinal immune homeostasis and has revealed how impaired epithelial cell function can contribute to inflammatory disease. PMID:25727289

  8. Intestinal Parasitoses.

    ERIC Educational Resources Information Center

    Lagardere, Bernard; Dumburgier, Elisabeth

    1994-01-01

    Intestinal parasites have become a serious public health problem in tropical countries because of the climate and the difficulty of achieving efficient hygiene. The objectives of this journal issue are to increase awareness of the individual and collective repercussions of intestinal parasites, describe the current conditions of contamination and…

  9. Mass Spectrometry and Multiplex Antigen Assays to Assess Microbial Quality and Toxin Production of Staphylococcus aureus Strains Isolated from Clinical and Food Samples

    PubMed Central

    Attien, Paul; Sina, Haziz; Moussaoui, Wardi; Zimmermann-Meisse, Galle; Dadi, Thomas; Keller, Daniel; Riegel, Philippe; Edoh, Vincent; Kotchoni, Simeon O.; Dj, Marcellin; Prvost, Gilles

    2014-01-01

    The aim of our study was to investigate the microbial quality of meat products and on some clinical samples in Abidjan focused on Staphylococcus genus and the toxin production profile of Staphylococcus aureus (S. aureus) isolated. Bacteria were collected from 240 samples of three meat products sold in Abidjan and 180 samples issued from clinical infections. The strains were identified by both microbiological and MALDI-TOF-MS methods. The susceptibility to antibiotics was determined by the disc diffusion method. The production of Panton-Valentine Leukocidin, LukE/D, and epidermolysins was screened using radial gel immunodiffusion. The production of staphylococcal enterotoxins and TSST-1 was screened by a Bio-Plex Assay. We observed that 96/240 of meat samples and 32/180 of clinical samples were contaminated by Staphylococcus. Eleven species were isolated from meats and 4 from clinical samples. Forty-two S. aureus strains were isolated from ours samples. Variability of resistance was observed for most of the tested antibiotics but none of the strains displays a resistance to imipenem and quinolones. We observed that 89% of clinical S. aureus were resistant to methicillin against 58% for those issued from meat products. All S. aureus isolates issued from meat products produce epidermolysins whereas none of the clinical strains produced these toxins. The enterotoxins were variably produced by both clinical and meat product samples. PMID:24987686

  10. The intestinal microbiome of fish under starvation

    PubMed Central

    2014-01-01

    Background Starvation not only affects the nutritional and health status of the animals, but also the microbial composition in the host’s intestine. Next-generation sequencing provides a unique opportunity to explore gut microbial communities and their interactions with hosts. However, studies on gut microbiomes have been conducted predominantly in humans and land animals. Not much is known on gut microbiomes of aquatic animals and their changes under changing environmental conditions. To address this shortcoming, we determined the microbial gene catalogue, and investigated changes in the microbial composition and host-microbe interactions in the intestine of Asian seabass in response to starvation. Results We found 33 phyla, 66 classes, 130 orders and 278 families in the intestinal microbiome. Proteobacteria (48.8%), Firmicutes (15.3%) and Bacteroidetes (8.2%) were the three most abundant bacteria taxa. Comparative analyses of the microbiome revealed shifts in bacteria communities, with dramatic enrichment of Bacteroidetes, but significant depletion of Betaproteobacteria in starved intestines. In addition, significant differences in clusters of orthologous groups (COG) functional categories and orthologous groups were observed. Genes related to antibiotic activity in the microbiome were significantly enriched in response to starvation, and host genes related to the immune response were generally up-regulated. Conclusions This study provides the first insights into the fish intestinal microbiome and its changes under starvation. Further detailed study on interactions between intestinal microbiomes and hosts under dynamic conditions will shed new light on how the hosts and microbes respond to the changing environment. PMID:24708260

  11. Altered enteric microbiota ecology in interleukin 10-deficient mice during development and progression of intestinal inflammation

    PubMed Central

    Maharshak, Nitsan; Packey, Christopher D.; Ellermann, Melissa; Manick, Sayeed; Siddle, Jennica P.; Huh, Eun Young; Plevy, Scott; Sartor, R. Balfour; Carroll, Ian M.

    2013-01-01

    Inflammatory bowel diseases (IBD) result from dysregulated immune responses toward microbial and perhaps other luminal antigens in a genetically susceptible host, and are associated with altered composition and diversity of the intestinal microbiota. The interleukin 10-deficient (IL-10?/?) mouse has been widely used to model human IBD; however the specific alterations that occur in the intestinal microbiota of this mouse model during the onset of colonic inflammation have not yet been defined. The aim of our study was to define the changes in diversity and composition that occur in the intestinal microbiota of IL-10?/? mice during the onset and progression of colonic inflammation. We used high throughput sequencing of the 16S rRNA gene to characterize the diversity and composition of formerly germ-free, wild-type and IL-10?/? mice associated with the same intestinal microbiota over time. Following two weeks of colonization with a specific pathogen-free (SPF) microbiota we observed a significant increase in the diversity and richness of the intestinal microbiota of wild-type mice. In contrast, a progressive decrease in diversity and richness was observed at three and four weeks in IL-10?/? mice. This decrease in diversity and richness was mirrored by an increase in Proteobacteria and Escherichia coli in IL-10?/? mice. An increase in E. coli was also observed in conventionally raised IL-10?/? mice at the point of colonic inflammation. Our data reports the sequential changes in diversity and composition of the intestinal microbiota in an immune-mediated mouse model that may help provide insights into the primary vs. secondary role of dysbiosis in human IBD patients. PMID:23822920

  12. CANCER MUCOSA ANTIGENS A NOVEL PARADIGM IN CANCER IMMUNOTHERAPEUTICS

    PubMed Central

    Snook, Adam E; Waldman, Scott A

    2011-01-01

    Employing antigens with expression restricted to normal intestinal mucosa and derivative colorectal tumors cancer mucosa antigens (CMAs) represents a novel paradigm in anti-tumor immunotherapy. Immune compartmentalization limits tolerance to CMAs and restricts mucosa-targeted autoimmunity, allowing safe and effective immunotherapy for metastatic colorectal cancer. Guanylyl cyclase C (GCC), an intestine/colorectal cancer-restricted protein, is poised for clinical evaluation as the index CMA.

  13. Intestinal Malrotation

    MedlinePLUS

    ... scar tissue growth after an abdominal operation, and inflammatory bowel disease (IBD). Malrotation is twisting of the intestines (or ... Spleen and Lymphatic System Vomiting Congenital Heart Defects Inflammatory Bowel Disease Contact Us Print Resources Send to a friend ...

  14. Intestine Transplant

    MedlinePLUS

    ... intestine transplants are performed in conjunction with a liver transplant. During Recovery Postoperative care begins with a team ... Pediatric Living Donation Legal Site Map Contact Espanol © 2016 Transplant Living. A service of the United Network ...

  15. Intestinal obstruction

    MedlinePLUS

    ... and rectum. In: Townsend CM, Beauchamp RD, Evers BM, Mattox KL, eds. Sabiston Textbook of Surgery . 19th ... MO: WB Saunders; 2012:chap 52. McKenzie S, Evers BM. Small intestine. In: Townsend CM, Beauchamp RD, Evers ...

  16. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism.

    PubMed

    Kaetzel, Charlotte S

    2014-12-01

    Secretory IgA (SIgA) antibodies in the intestinal tract form the first line of antigen-specific immune defense, preventing access of pathogens as well as commensal microbes to the body proper. SIgA is transported into external secretions by the polymeric immunoglobulin receptor (pIgR). Evidence is reported here that the gut microbiota regulates production of SIgA and pIgR, which act together to regulate the composition and activity of the microbiota. SIgA in the intestinal mucus layer helps to maintain spatial segregation between the microbiota and the epithelial surface without compromising the metabolic activity of the microbes. Products shed by members of the microbial community promote production of SIgA and pIgR by activating pattern recognition receptors on host epithelial and immune cells. Maternal SIgA in breast milk provides protection to newborn mammals until the developing intestinal immune system begins to produce its own SIgA. Disruption of the SIgA-pIgR-microbial triad can increase the risk of infectious, allergic and inflammatory diseases of the intestine. PMID:24877874

  17. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism

    PubMed Central

    Kaetzel, Charlotte S.

    2014-01-01

    Secretory IgA (SIgA) antibodies in the intestinal tract form the first line of antigen-specific immune defense, preventing access of pathogens as well as commensal microbes to the body proper. SIgA is transported into external secretions by the polymeric immunoglobulin receptor (pIgR). Evidence is reported here that the gut microbiota regulates production of SIgA and pIgR, which act together to regulate the composition and activity of the microbiota. SIgA in the intestinal mucus layer helps to maintain spatial segregation between the microbiota and the epithelial surface without compromising the metabolic activity of the microbes. Products shed by members of the microbial community promote production of SIgA and pIgR by activating pattern recognition receptors on host epithelial and immune cells. Maternal SIgA in breast milk provides protection to newborn mammals until the developing intestinal immune system begins to produce its own SIgA. Disruption of the SIgA-pIgR-microbial triad can increase the risk of infectious, allergic andinflammatory diseases of the intestine. PMID:24877874

  18. Microbial Pattern Recognition Receptors Mediate M-Cell Uptake of a Gram-Negative Bacterium

    PubMed Central

    Tyrer, Peter; Foxwell, A. Ruth; Cripps, Allan W.; Apicella, Michael A.; Kyd, Jennelle M.

    2006-01-01

    The receptors involved in the sampling of particulate microbial antigens by the gut are largely unknown. Here we demonstrate for the first time in an in vitro M-cell model and in situ in isolated murine intestinal segments that the receptors TLR-4, PAF-R, and ?5?1 integrin are all involved in mediating bacterial uptake associated with transcytosis. The pattern of expression of TLR-4 and ?5?1 integrin differed between M cells and enterocytes. There was increased apical expression of TLR-4 in M-cell cultures, and it was present on the apical surface of murine M cells but not enterocytes in situ. In contrast, PAF-R was expressed equally by both cell types in vitro and was abundantly expressed throughout the intestinal epithelium. Inhibition of TLR-4 and PAF-R, but not TLR-2, reduced gram-negative bacterial uptake by both cell types, whereas inhibition of the apically expressed ?5?1 integrin significantly reduced the ability of M cells to translocate bacteria. Hence, the involvement of each receptor was dependent not only on differences in the level of receptor expression but the?cellular localization. Using bacteria that had mutations that affected the bacterial lipooligosaccharide structure indicated that the oligosaccharide moiety was important in bacterial uptake. Taken together, the data suggest that pathogen-associated molecular pattern interactions with pattern recognition receptors are key factors in M-cell recognition of intestinal antigens for mucosal immune priming. PMID:16369019

  19. Immunogenetic control of the intestinal microbiota.

    PubMed

    Marietta, Eric; Rishi, Abdul; Taneja, Veena

    2015-07-01

    All vertebrates contain a diverse collection of commensal, symbiotic and pathogenic microorganisms, such as bacteria, viruses and fungi, on their various body surfaces, and the ecological community of these microorganisms is referred to as the microbiota. Mucosal sites, such as the intestine, harbour the majority of microorganisms, and the human intestine contains the largest community of commensal and symbiotic bacteria. This intestinal community of bacteria is diverse, and there is a significant variability among individuals with respect to the composition of the intestinal microbiome. Both genetic and environmental factors can influence the diversity and composition of the intestinal bacteria with the predominant environmental factor being diet. So far, studies have shown that diet-dependent differences in the composition of intestinal bacteria can be classified into three groups, called enterotypes. Other environmental factors that can influence the composition include antibiotics, probiotics, smoking and drugs. Studies of monozygotic and dizygotic twins have proven that genetics plays a role. Recently, MHC II genes have been associated with specific microbial compositions in human infants and transgenic mice that express different HLA alleles. There is a growing list of genes/molecules that are involved with the sensing and monitoring of the intestinal lumen by the intestinal immune system that, when genetically altered, will significantly alter the composition of the intestinal microflora. The focus of this review will be on the genetic factors that influence the composition of the intestinal microflora. PMID:25913295

  20. Small Intestine Disorders

    MedlinePLUS

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  1. The Forminalized Rat: A Convenient Microbial Ecosystem.

    ERIC Educational Resources Information Center

    Lee, Adrian

    1984-01-01

    Presents a series of experiments built around the bacteria found in the intestinal tract of formalinized rats as a model for discussing microbial ecology. Describes methods of examination of intestinal content, student tasks, and discussion questions; also gives a challenge problem to solve.

  2. Small intestinal bacterial overgrowth syndrome

    PubMed Central

    Bures, Jan; Cyrany, Jiri; Kohoutova, Darina; Förstl, Miroslav; Rejchrt, Stanislav; Kvetina, Jaroslav; Vorisek, Viktor; Kopacova, Marcela

    2010-01-01

    Human intestinal microbiota create a complex polymicrobial ecology. This is characterised by its high population density, wide diversity and complexity of interaction. Any dysbalance of this complex intestinal microbiome, both qualitative and quantitative, might have serious health consequence for a macro-organism, including small intestinal bacterial overgrowth syndrome (SIBO). SIBO is defined as an increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract. There are several endogenous defence mechanisms for preventing bacterial overgrowth: gastric acid secretion, intestinal motility, intact ileo-caecal valve, immunoglobulins within intestinal secretion and bacteriostatic properties of pancreatic and biliary secretion. Aetiology of SIBO is usually complex, associated with disorders of protective antibacterial mechanisms (e.g. achlorhydria, pancreatic exocrine insufficiency, immunodeficiency syndromes), anatomical abnormalities (e.g. small intestinal obstruction, diverticula, fistulae, surgical blind loop, previous ileo-caecal resections) and/or motility disorders (e.g. scleroderma, autonomic neuropathy in diabetes mellitus, post-radiation enteropathy, small intestinal pseudo-obstruction). In some patients more than one factor may be involved. Symptoms related to SIBO are bloating, diarrhoea, malabsorption, weight loss and malnutrition. The gold standard for diagnosing SIBO is still microbial investigation of jejunal aspirates. Non-invasive hydrogen and methane breath tests are most commonly used for the diagnosis of SIBO using glucose or lactulose. Therapy for SIBO must be complex, addressing all causes, symptoms and complications, and fully individualised. It should include treatment of the underlying disease, nutritional support and cyclical gastro-intestinal selective antibiotics. Prognosis is usually serious, determined mostly by the underlying disease that led to SIBO. PMID:20572300

  3. Intestinal microbiota in inflammatory bowel disease: Friend of foe?

    PubMed Central

    Fava, Francesca; Danese, Silvio

    2011-01-01

    Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota, leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy individuals the intestinal microbiota have a symbiotic relationship with the host organism and possess important and unique functions, including a metabolic function (i.e. digestion of dietary compounds and xenobiotics, fermentation of undigestible carbohydrates with production of short chain fatty acids), a mucosal barrier function (i.e. by inhibiting pathogen invasion and strengthening epithelial barrier integrity), and an immune modulatory function (i.e. mucosal immune system priming and maintenance of intestinal epithelium homeostasis). A fine balance regulates the mechanism that allows coexistence of mammals with their commensal bacteria. In IBD this mechanism of immune tolerance is impaired because of several potential causative factors. The gut microbiota composition and activity of IBD patients are abnormal, with a decreased prevalence of dominant members of the human commensal microbiota (i.e. Clostridium IXa and IV groups, Bacteroides, bifidobacteria) and a concomitant increase in detrimental bacteria (i.e. sulphate-reducing bacteria, Escherichia coli). The observed dysbiosis is concomitant with defective innate immunity and bacterial killing (i.e. reduced mucosal defensins and IgA, malfunctioning phagocytosis) and overaggressive adaptive immune response (due to ineffective regulatory T cells and antigen presenting cells), which are considered the basis of IBD pathogenesis. However, we still do not know how the interplay between these parameters causes the disease. Studies looking at gut microbial composition, epithelial integrity and mucosal immune markers in genotyped IBD populations are therefore warranted to shed light on this obscure pathogenesis. PMID:21350704

  4. Ontogeny of Intestinal Epithelial Innate Immune Responses

    PubMed Central

    Hornef, Mathias W.; Fulde, Marcus

    2014-01-01

    Emerging evidence indicates that processes during postnatal development might significantly influence the establishment of mucosal host-microbial homeostasis. Developmental and adaptive immunological processes but also environmental and microbial exposure early after birth might thus affect disease susceptibility and health during adult life. The present review aims at summarizing the current understanding of the intestinal epithelial innate immune system and its developmental and adaptive changes after birth. PMID:25346729

  5. Role of Intestinal Myofibroblasts in HIV-Associated Intestinal Collagen Deposition and Immune Reconstitution following Combination Antiretroviral Therapy

    PubMed Central

    Asmuth, David M; Pinchuk, Irina V; Wu, Jian; Vargas, Gracie; Chen, Xiaoli; Mann, Surinder; Albanese, Anthony; Ma, Zhong-Min; Saroufeem, Ramez; Melcher, Gregory P; Troia-Cancio, Paolo; Torok, Natalie J; Miller, Christopher J; Powell, Don W.

    2015-01-01

    Objective To investigate the potential role of mucosal intestinal myofibroblasts (IMFs) in HIV and associated fibrosis in GALT. Design Profibrotic changes within the secondary lymphoid organs and mucosa has been implicated in failed immune reconstitution following effective cART. Microbial translocation is believed to be sustaining these systemic inflammatory pathways. IMFs are non-professional antigen-presenting cells with both immunoregulatory and mesenchymal functions that are ideally positioned to respond to translocating microbial antigen. Methods Duodenal biopsies obtained from patients naïve to cART underwent trichrome staining and examined for TGF-β expression. Combined immunostaining and second harmonic generation-analysis was used to determine IMF activation and collagen deposition. Confocal microscopy was performed to examine for IMF activation and TLR4 expression. Finally, primary IMF cultures were stimulated with LPS to demonstrate expression of inflammatory biomarkers. Results The expression of the fibrosis-promoting molecule, TGF-β1, is significantly increased in duodenal biopsies from HIV patients naïve to cART and negatively correlated with subsequent peripheral CD4 recovery. The TGFβ1 increases coincided with an increase in collagen deposition in duodenal mucosa in tissue area adjacent to IMFs. We also observed that IMFs expressed TLR4 and had an activated phenotype since they were positive for fibroblast activation protein. Finally, stimulation of IMFs from HIV patients with TLR4 resulted in significantly increased expression of profibrotic molecules, TGF-β1 and IL-6. Conclusions Our data support the hypothesis that activated IMFs may be among the major cells contributing to the profibrotic changes and thus, the establishment and maintenance of systemic inflammation interfering with immune reconstitution in HIV patients. PMID:25784439

  6. Claudin-related intestinal diseases.

    PubMed

    Barmeyer, Christian; Schulzke, Jrg D; Fromm, Michael

    2015-06-01

    With up to 200 m(2) the human intestine is the organ with the largest absorptive surface of the body. It is lined by a single layer of epithelial cells that separates the host from the environment. The intestinal epithelium provides both, selective absorption of nutrients, ions, and water but also a highly effective barrier function which includes the first line of defense against environmental antigens. The paracellular part of this barrier function is provided by tight junction (TJ) proteins, especially the large family of claudins. Changes in abundance or molecular structure of claudins can generally result in three typical effects, (i) decreased absorptive passage, (ii) increased secretory passage of small solutes and water causing leak flux diarrhea and (iii) increased absorptive passage of macromolecules which may induce inflammatory processes. Several intestinal diseases are associated with such changes that can result in intestinal inflammation and symptoms like weight loss, abdominal pain or diarrhea. This review summarizes our current knowledge on barrier dysfunction and claudin dysregulation in several intestinal diseases gastroenterologists are often faced with, like inflammatory bowel disease, microscopic colitis, celiac disease, irritable bowel syndrome, gallstones and infectious diseases like HIV enteropathy, Campylobacter jejuni and Clostridium perfringens infection. PMID:25999319

  7. [Malaria and intestinal protozoa].

    PubMed

    Rojo-Marcos, Gerardo; Cuadros-González, Juan

    2016-03-01

    Malaria is life threatening and requires urgent diagnosis and treatment. Incidence and mortality are being reduced in endemic areas. Clinical features are unspecific so in imported cases it is vital the history of staying in a malarious area. The first line treatments for Plasmodium falciparum are artemisinin combination therapies, chloroquine in most non-falciparum and intravenous artesunate if any severity criteria. Human infections with intestinal protozoa are distributed worldwide with a high global morbid-mortality. They cause diarrhea and sometimes invasive disease, although most are asymptomatic. In our environment populations at higher risk are children, including adopted abroad, immune-suppressed, travelers, immigrants, people in contact with animals or who engage in oral-anal sex. Diagnostic microscopic examination has low sensitivity improving with antigen detection or molecular methods. Antiparasitic resistances are emerging lately. PMID:26832999

  8. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis

    PubMed Central

    Dubin, Krista; Callahan, Margaret K.; Ren, Boyu; Khanin, Raya; Viale, Agnes; Ling, Lilan; No, Daniel; Gobourne, Asia; Littmann, Eric; Huttenhower, Curtis; Pamer, Eric G.; Wolchok, Jedd D.

    2016-01-01

    The composition of the intestinal microbiota influences the development of inflammatory disorders. However, associating inflammatory diseases with specific microbial members of the microbiota is challenging, because clinically detectable inflammation and its treatment can alter the microbiota's composition. Immunologic checkpoint blockade with ipilimumab, a monoclonal antibody that blocks cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) signalling, is associated with new-onset, immune-mediated colitis. Here we conduct a prospective study of patients with metastatic melanoma undergoing ipilimumab treatment and correlate the pre-inflammation faecal microbiota and microbiome composition with subsequent colitis development. We demonstrate that increased representation of bacteria belonging to the Bacteroidetes phylum is correlated with resistance to the development of checkpoint-blockade-induced colitis. Furthermore, a paucity of genetic pathways involved in polyamine transport and B vitamin biosynthesis is associated with an increased risk of colitis. Identification of these biomarkers may enable interventions to reduce the risk of inflammatory complications following cancer immunotherapy. PMID:26837003

  9. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis.

    PubMed

    Dubin, Krista; Callahan, Margaret K; Ren, Boyu; Khanin, Raya; Viale, Agnes; Ling, Lilan; No, Daniel; Gobourne, Asia; Littmann, Eric; Huttenhower, Curtis; Pamer, Eric G; Wolchok, Jedd D

    2016-01-01

    The composition of the intestinal microbiota influences the development of inflammatory disorders. However, associating inflammatory diseases with specific microbial members of the microbiota is challenging, because clinically detectable inflammation and its treatment can alter the microbiota's composition. Immunologic checkpoint blockade with ipilimumab, a monoclonal antibody that blocks cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) signalling, is associated with new-onset, immune-mediated colitis. Here we conduct a prospective study of patients with metastatic melanoma undergoing ipilimumab treatment and correlate the pre-inflammation faecal microbiota and microbiome composition with subsequent colitis development. We demonstrate that increased representation of bacteria belonging to the Bacteroidetes phylum is correlated with resistance to the development of checkpoint-blockade-induced colitis. Furthermore, a paucity of genetic pathways involved in polyamine transport and B vitamin biosynthesis is associated with an increased risk of colitis. Identification of these biomarkers may enable interventions to reduce the risk of inflammatory complications following cancer immunotherapy. PMID:26837003

  10. Effects of exogenous enzymes in corn-based and Canadian pearl millet-based diets with reduced soybean meal on growth performance, intestinal nutrient digestibility, villus development, and selected microbial populations in broiler chickens.

    PubMed

    Baurhoo, N; Baurhoo, B; Zhao, X

    2011-12-01

    An experiment was conducted to compare a commercial corn-soybean meal diet with a pearl millet diet containing less soybean meal (-27%), alone or in combination with exogenous enzymes, on growth performance, jejunal villus development, ileal CP, and AA digestibility, and cecal microbial populations in broilers. One hundred sixty 1-d-old male Ross 508 broilers (5/cage) were randomly allocated to one of the following dietary treatments: 1) a standard corn-soybean meal control diet (CTL); 2) a pearl millet-soybean meal diet (PM); 3) CTL + exogenous enzymes (CE); and 4) PM + exogenous enzymes (PE) with 8 replicate cages/treatment. The PM and PE diets contained less soybean meal because of greater CP and AA contents of pearl millet. All diets were isonitrogenous and isocaloric. Body weight and feed intake were recorded weekly over 35 d. At d 21 and 35, 8 broilers per treatment were euthanized for sample collection and analyses. Gain-to-feed was greater (P < 0.01) for pearl millet- than corn-based diets. Apparent ileal digestibility (AID) of CP and most AA was similar between corn-based and pearl millet-based diets, and enzyme supplementation improved AID of CP (P < 0.01) and most AA at both d 21 and 35. However, for AID of some AA at d 21, the response to enzyme supplementation was less pronounced in broilers fed pearl millet-based diets than those fed corn-based diets (grain enzyme, P ? 0.05). The villus was longer (P < 0.01) in broilers fed PM and PE than CTL and CE at d 35. Similarly, at d 35, lactobacilli loads were greater (P < 0.01) in broilers fed PM and PE than CTL and CE. It is concluded that, in comparison with corn, broiler diets formulated with pearl millet require less soybean meal and can be used to improve growth performance traits, intestinal lactobacilli populations, and villus development, whereas enzyme supplementation increases AID of CP and AA. PMID:21821810

  11. Intestinal spirochaetosis

    PubMed Central

    Lee, F. D.; Kraszewski, A.; Gordon, J.; Howie, J. G. R.; McSeveney, D.; Harland, W. A.

    1971-01-01

    An abnormal condition of the large intestine is described in which the surface epithelium is infested by short spirochaetes. Diagnosis can be made by light microscopy. A review of 14 cases diagnosed by rectal biopsy and 62 cases involving the appendix shows no consistent symptom complex. The possible significance is discussed. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 1 PMID:5548558

  12. Antigen presentation in celiac disease

    PubMed Central

    Qiao, Shuo-Wang; Sollid, Ludvig M; Blumberg, Richard S

    2014-01-01

    Celiac disease is caused by an inappropriate immune response to ingested gluten proteins. As a dietary antigen, gluten undergoes extensive but incomplete proteolytic digestion in the intestinal lumen. The resultant peptide fragments of gluten require deamidation, but not necessarily further intracellular processing for presentation. Recent studies reveal why the disease associated HLA-DQ2 molecule is particularly suited for binding proline-rich gluten peptides. In comparison, DQ8 exhibits different binding characteristics, which may explain the lesser risk for disease in association with this molecule. PMID:19342211

  13. Intestinal microbiota and obesity.

    PubMed

    Blaut, Michael; Klaus, Susanne

    2012-01-01

    The human gut harbors a highly diverse microbial ecosystem of approximately 400 different species, which is characterized by a high interindividual variability. The intestinal microbiota has recently been suggested to contribute to the development of obesity and the metabolic syndrome. Transplantation of gut microbiota from obese mice to nonobese, germ-free mice resulted in transfer of metabolic syndrome-associated features from the donor to the recipient. Proposed mechanisms for the role of gut microbiota include the provision of additional energy by the conversion of dietary fiber to short-chain fatty acids, effects on gut-hormone production, and increased intestinal permeability causing elevated systemic levels of lipopolysaccharides (LPS). This metabolic endotoxemia is suggested to contribute to low-grade inflammation, a characteristic trait of obesity and the metabolic syndrome. Finally, activation of the endocannabinoid system by LPS and/or high-fat diets is discussed as another causal factor. In conclusion, there is ample evidence for a role of gut microbiota in the development of obesity in rodents. However, the magnitude of its contribution to human obesity is still unknown. PMID:22249818

  14. Bacterial colonization and intestinal mucosal barrier development.

    PubMed

    Huang, Xiao-Zhong; Zhu, Li-Bin; Li, Zhong-Rong; Lin, Jing

    2013-11-01

    The intestinal tract is colonized soon after birth with a variety of ingested environmental and maternal microflora. This process is influenced by many factors including mode of delivery, diet, environment, and the use of antibiotics. Normal intestinal microflora provides protection against infection, ensures tolerance to foods, and contributes to nutrient digestion and energy harvest. In addition, enteral feeding and colonization with the normal commensal flora are necessary for the maintenance of intestinal barrier function and play a vital role in the regulation of intestinal barrier function. Intestinal commensal microorganisms also provide signals that foster normal immune system development and influence the ensuing immune responses. There is increasingly recognition that alterations of the microbial gut flora and associated changes in intestinal barrier function may be related to certain diseases of the gastrointestinal tract. This review summarizes recent advances in understanding the complex ecosystem of intestinal microbiota and its role in regulating intestinal barrier function and a few common pediatric diseases. Disruption in the establishment of a stable normal gut microflora may contribute to the pathogenesis of diseases including inflammatory bowel disease, nosocomial infection, and neonatal necrotizing enterocolitis. PMID:25254174

  15. Bacterial colonization and intestinal mucosal barrier development

    PubMed Central

    Huang, Xiao-Zhong; Zhu, Li-Bin; Li, Zhong-Rong; Lin, Jing

    2013-01-01

    The intestinal tract is colonized soon after birth with a variety of ingested environmental and maternal microflora. This process is influenced by many factors including mode of delivery, diet, environment, and the use of antibiotics. Normal intestinal microflora provides protection against infection, ensures tolerance to foods, and contributes to nutrient digestion and energy harvest. In addition, enteral feeding and colonization with the normal commensal flora are necessary for the maintenance of intestinal barrier function and play a vital role in the regulation of intestinal barrier function. Intestinal commensal microorganisms also provide signals that foster normal immune system development and influence the ensuing immune responses. There is increasingly recognition that alterations of the microbial gut flora and associated changes in intestinal barrier function may be related to certain diseases of the gastrointestinal tract. This review summarizes recent advances in understanding the complex ecosystem of intestinal microbiota and its role in regulating intestinal barrier function and a few common pediatric diseases. Disruption in the establishment of a stable normal gut microflora may contribute to the pathogenesis of diseases including inflammatory bowel disease, nosocomial infection, and neonatal necrotizing enterocolitis. PMID:25254174

  16. The Intestinal Immune System in Obesity and Insulin Resistance.

    PubMed

    Winer, Daniel A; Luck, Helen; Tsai, Sue; Winer, Shawn

    2016-03-01

    Obesity and insulin resistance are associated with chronic inflammation in metabolic tissues such as adipose tissue and the liver. Recently, growing evidence has implicated the intestinal immune system as an important contributor to metabolic disease. Obesity predisposes to altered intestinal immunity and is associated with changes to the gut microbiota, intestinal barrier function, gut-residing innate and adaptive immune cells, and oral tolerance to luminal antigens. Accordingly, the gut immune system may represent a novel therapeutic target for systemic inflammation in insulin resistance. This review discusses the emerging field of intestinal immunity in obesity-related insulin resistance and how it affects metabolic disease. PMID:26853748

  17. A defined intestinal colonization microbiota for gnotobiotic pigs.

    PubMed

    Laycock, Georgina; Sait, Leanne; Inman, Charlotte; Lewis, Marie; Smidt, Hauke; van Diemen, Pauline; Jorgensen, Frieda; Stevens, Mark; Bailey, Michael

    2012-10-15

    Maximising the ability of piglets to survive exposure to pathogens is essential to reduce early piglet mortality, an important factor in efficient commercial pig production. Mortality rates can be influenced by many factors, including early colonization by microbial commensals. Here we describe the development of an intestinal microbiota, the Bristol microbiota, for use in gnotobiotic pigs and its influence on synthesis of systemic immunoglobulins. Such a microbiota will be of value in studies of the consequences of early microbial colonization on development of the intestinal immune system and subsequent susceptibility to disease. Gnotobiotic pig studies lack a well-established intestinal microbiota. The use of the Altered Schaedler Flora (ASF), a murine intestinal microbiota, to colonize the intestines of Caesarean-derived, gnotobiotic pigs prior to gut closure, resulted in unreliable colonization with most (but not all) strains of the ASF. Subsequently, a novel, simpler porcine microbiota was developed. The novel microbiota reliably colonized the length of the intestinal tract when administered to gnotobiotic piglets. No health problems were observed, and the novel microbiota induced a systemic increase in serum immunoglobulins, in particular IgA and IgM. The Bristol microbiota will be of value for highly controlled, reproducible experiments of the consequences of early microbial colonization on susceptibility to disease in neonatal piglets, and as a biomedical model for the impact of microbial colonization on development of the intestinal mucosa and immune system in neonates. PMID:22868203

  18. Immune responses to the microbiota at the intestinal mucosal surface.

    PubMed

    Duerkop, Breck A; Vaishnava, Shipra; Hooper, Lora V

    2009-09-18

    The mammalian intestinal mucosal surface is continuously exposed to a complex and dynamic community of microorganisms. These microbes establish symbiotic relationships with their hosts, making important contributions to metabolism and digestive efficiency. The intestinal epithelial surface is the primary interface between the vast microbiota and internal host tissues. Given the enormous numbers of enteric bacteria and the persistent threat of opportunistic invasion, it is crucial that mammalian hosts monitor and regulate microbial interactions with intestinal epithelial surfaces. Here we discuss recent insights into how the innate and adaptive arms of the immune system collaborate to maintain homeostasis at the luminal surface of the intestinal host-microbial interface. These findings are also yielding a better understanding of how symbiotic host-microbial relationships can break down in inflammatory bowel disease. PMID:19766080

  19. Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality

    PubMed Central

    Clark, Rebecca I.; Salazar, Anna; Yamada, Ryuichi; Fitz-Gibbon, Sorel; Morselli, Marco; Alcaraz, Jeanette; Rana, Anil; Rera, Michael; Pellegrini, Matteo; Ja, William W.; Walker, David W.

    2015-01-01

    Summary Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals. PMID:26321641

  20. Measles virus-derived peptide/food antigen adducts facilitate the establishment of antigen specific oral tolerance.

    PubMed

    He, C; Song, C-H; Cheng, L; Chen, T; Liu, C; Liu, Z; Yang, P-C

    2013-02-01

    Allergy is a skewed T helper (Th)2 polarization response in the body; its treatment is not satisfactory currently. Oral tolerance dysfunction plays a critical role in the pathogenesis of allergy. The present study aims to restore the breached intestinal tolerance with an artificial adduct of a measles virus C protein-derived small peptide (MVCP) and a model antigen, ovalbumin (MOA), and to observe the effect of MOA on inhibition of intestinal allergy in a mouse model. The MOA was formed by the MVCP and ovalbumin. The effect of MOA on regulation of the properties of dendritic cells (DC) and CD4(+) T cells was observed with a cell culture model and a mouse model of the gut Th2 pattern inflammation. After treatment with MOA, mouse intestinal DCs showed high levels of aldehyde dehydrogenase (ALDH) activity and expressed transforming growth factor (TGF)-beta; the frequency of Treg in the intestine was also significantly increased. The treatment with MOA efficiently suppressed the antigen-specific Th2 pattern inflammation in the intestine. Administration with the MOA can induce the development of antigen-specific oral tolerance and inhibit the antigen-specific allergic reaction in the intestine. The adduct of MOA has the therapeutic potential for the allergen related immune inflammation. PMID:23568976

  1. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD)

    PubMed

    Duchmann, R; Kaiser, I; Hermann, E; Mayet, W; Ewe, K; Meyer zum Büschenfelde, K H

    1995-12-01

    Hyporesponsiveness to a universe of bacterial and dietary antigens from the gut lumen is a hallmark of the intestinal immune system. Since hyperresponsiveness against these antigens might be associated with inflammation, we studied the immune response to the indigenous intestinal microflora in peripheral blood, inflamed and non-inflamed human intestine. Lamina propria monocuclear cells (LPMC) isolated from inflamed intestine but not peripheral blood mononuclear cells (PBMC) of IBD patients with active inflammatory disease strongly proliferated after co-culture with sonicates of bacteria from autologous intestine (BsA). Proliferation was inhibitable by anti-MHC class II MoAb, suggesting that it was driven by antigen. LPMC from adjacent non-inflamed intestinal areas of the same IBD patients and PBMC or LPMC isolated from non-inflamed intestine of controls and patients with IBD in remission, in contrast, did not proliferate. PBMC or LPMC which had been tolerant to bacteria from autologous intestine, however, strongly proliferated after co-culture with bacterial sonicates from heterologous intestine (BsH). This proliferation was associated with an expansion of CD8+ T cells, increased expression of activation markers on both CD4+ and CD8+ lymphocyte subsets, and production of IL-12, interferon-gamma (IFN-gamma), and IL-10 protein. These results show that tolerance selectively exists to intestinal flora from autologous but not heterologous intestine, and that tolerance is broken in intestinal inflammation. This may be an important mechanism for the perpetuation of chronic IBD. PMID:8536356

  2. Teleost intestinal immunology.

    PubMed

    Rombout, Jan H W M; Abelli, Luigi; Picchietti, Simona; Scapigliati, Giuseppe; Kiron, Viswanath

    2011-11-01

    Teleosts clearly have a more diffuse gut associated lymphoid system, which is morphological and functional clearly different from the mammalian GALT. All immune cells necessary for a local immune response are abundantly present in the gut mucosa of the species studied and local immune responses can be monitored after intestinal immunization. Fish do not produce IgA, but a special mucosal IgM isotype seems to be secreted and may (partly) be the recently described IgZ/IgT. Fish produce a pIgR in their mucosal tissues but it is smaller (2 ILD) than the 4-5 ILD pIgR of higher vertebrates. Whether teleost pIgR is transcytosed and cleaved off in the same way needs further investigation, especially because a secretory component (SC) is only reported in one species. Teleosts also have high numbers of IEL, most of them are CD3-?+/CD8-?+ and have cytotoxic and/or regulatory function. Possibly many of these cells are TCR?? cells and they may be involved in the oral tolerance induction observed in fish. Innate immune cells can be observed in the teleost gut from first feeding onwards, but B cells appear much later in mucosal compartments compared to systemic sites. Conspicuous is the very early presence of putative T cells or their precursors in the fish gut, which together with the rag-1 expression of intestinal lymphoid cells may be an indication for an extra-thymic development of certain T cells. Teleosts can develop enteritis in their antigen transporting second gut segment and epithelial cells, IEL and eosinophils/basophils seem to play a crucial role in this intestinal inflammation model. Teleost intestine can be exploited for oral vaccination strategies and probiotic immune stimulation. A variety of encapsulation methods, to protect vaccines against degradation in the foregut, are reported with promising results but in most cases they appear not to be cost effective yet. Microbiota in fish are clearly different from terrestrial animals. In the past decade a fast increasing number of papers is dedicated to the oral administration of a variety of probiotics that can have a strong health beneficial effect, but much more attention has to be paid to the immune mechanisms behind these effects. The recent development of gnotobiotic fish models may be very helpful to study the immune effects of microbiota and probiotics in teleosts. PMID:20832474

  3. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile

    PubMed Central

    Bezirtzoglou, Eugenia Elefterios Venizelos

    2012-01-01

    Cytochromes P450 (CYPs) enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80%) followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450) cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status. PMID:23990816

  4. Intestinal amebae.

    PubMed

    Ali, Ibne Karim M

    2015-06-01

    Among the Entamoeba species that infect humans, Entamoeba histolytica causes diseases, Entamoeba dispar is a harmless commensal, Entamoeba moshkovskii seems to be a pathogen, and the pathogenicity of Entamoeba bangladeshi remains to be investigated. Species-specific detection needed for treatment decisions and for understanding the epidemiology and pathogenicity of these amebae. Antigen-based detection methods are needed for E dispar, E moshkovskii, and E bangladeshi; and molecular diagnostic test capable of detecting E histolytica, E dispar, E moshkovskii, and E bangladeshi simultaneously in clinical samples. Next-generation sequencing of DNA from stool is needed to identify novel species of Entamoeba. PMID:26004649

  5. Putative intestinal stem cells

    PubMed Central

    Pirvulet, V

    2015-01-01

    A heterogeneous set of intestinal stem cells markers has been described in intestinal glands but the ultrastructural identity of intestinal stem cells remains unknown. By using electron microscopy, this study demonstrated the presence of cells with stem morphology in the intestinal glands of mice of different ages. These putative intestinal stem cells have large, euchromatic, irregular shaped nucleus, large, visible nucleolus, few ER cisternae and mitochondria. Their morphology is distinct from the morphology of any other intestinal gland cell. Stem cells located at the base of intestinal glands undergo mitosis. This study enhances the hypothesis of a gland (crypt) base columnar cell that gives rise to all the intestinal lineages. PMID:26366225

  6. Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells.

    PubMed

    Dunn-Walters, D K; Boursier, L; Spencer, J

    1997-11-01

    In this work we have microdissected lamina propria plasma cells and used polymerase chain reaction and sequencing to investigate immunoglobulin (Ig) gene rearrangements and mutations in human intestine. In addition, specific primers were designed for individual Ig gene rearrangements to analyze the distribution of related B cell and plasma cell clones at different sites along the bowel. Confirming our earlier work, intestinal IgVH genes were highly mutated in plasma cells from older individuals (> 30 years). IgVH genes were significantly less mutated in samples taken from patients aged 11-30 years, and there were fewer mutations again in samples from young children (< 11 years). In age-matched specimens the number of mutations was equivalent in the duodenum and colon. Using complementarity-determining region 3 primers to amplify specific Ig gene rearrangements, evidence was also found for the existence of related lamina propria plasma cells along the small bowel and colon, although these were quite scarce. In addition, analysis of the numbers of related clones in a random sampling from discrete areas of lamina propria indicates that the local population is diverse. These results suggest that the highly mutated IgVH genes in adult intestinal plasma cells are a consequence of chronic antigen exposure with age. Duodenal plasma cells are as highly mutated as colonic plasma cells, despite the fact that the upper bowel has no indigenous microbial flora (the stimulus for intestinal plasma cells). They also show that the plasma cell population is diverse and can be widely disseminated along the bowel. PMID:9394824

  7. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function

    PubMed Central

    Graves, Christina L.; Harden, Scott W.; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J.; Wallet, Shannon M.

    2015-01-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. PMID:25193428

  8. Effects of ceftriaxone-induced intestinal dysbacteriosis on dendritic cells of small intestine in mice.

    PubMed

    Li, Ming; Li, Weihua; Wen, Shu; Liu, Yinhui; Tang, Li

    2013-08-01

    Intestinal microflora plays a pivotal role in the development of the innate immune system and is essential in shaping adaptive immunity. Dysbacteriosis of intestinal microflora induces altered immune responses and results in disease susceptibility. Dendritic cells (DCs), the professional antigen-presenting cells, have gained increasing attention because they connect innate and adaptive immunity. They generate both immunity in response to stimulation by pathogenic bacteria and immune tolerance in the presence of commensal bacteria. However, few studies have examined the effects of intestinal dysbacteriosis on DCs. In this study, changes of DCs in the small intestine of mice under the condition of dysbacteriosis induced by ceftriaxone sodium were investigated. It was found that intragastric administration of ceftriaxone sodium caused severe dysteriosis in mice. Compared with controls, numbers of DCs in mice with dysbacteriosis increased significantly (P = 0.0001). However, the maturity and antigen-presenting ability of DCs were greatly reduced. In addition, there was a significant difference in secretion of IL-10 and IL-12 between DCs from mice with dysbacteriosis and controls. To conclude, ceftriaxone-induced intestinal dysbacteriosis strongly affected the numbers and functions of DCs. The present data suggest that intestinal microflora plays an important role in inducing and maintaining the functions of DCs and thus is essential for the connection between innate and adaptive immune responses. PMID:23650903

  9. Administration of a Polyphenol-Enriched Feed to Farmed Sea Bass (Dicentrarchus labrax L.) Modulates Intestinal and Spleen Immune Responses

    PubMed Central

    Magrone, Thea; Fontana, Sergio; Laforgia, Flavia; Dragone, Teresa; Jirillo, Emilio; Passantino, Letizia

    2016-01-01

    Farmed fish are exposed to a continuous antigenic pressure by microbial and environmental agents, which may lead to a condition of chronic inflammation. In view of the notion that polyphenols, largely contained in fruits and vegetables, are endowed with antioxidant and anti-inflammatory activities, farmed sea bass (Dicentrarchus labrax L.) have been administered with red grape polyphenol-enriched feed. Polyphenols were extracted from the seeds of Canosina Nero di Troia Vitis vinifera and mixed with conventional feed at two different concentrations (100 and 200 mg/kg, resp.). Fish samples collected at days 223 and 273, respectively, were evaluated for intestinal and spleen cytokine release as well as for spleen macrophage (MØ) and melanomacrophage center (MMC) areas and distribution. Data will show that in treated fish decrease of intestinal interleukin- (IL-) 1β and IL-6 and increase of splenic interferon- (IFN-) γ occur. On the other hand, in the spleen reduction of MØ number seems to parallel increase in MMCs. Collectively, these data suggest that polyphenol-administered sea bass generate lower levels of intestinal proinflammatory cytokines, while producing larger amounts of spleen IFN-γ, as an expression of a robust and protective adaptive immune response. Increase of MMCs corroborates the evidence for a protective spleen response induced by feed enriched with polyphenols. PMID:26779301

  10. Administration of a Polyphenol-Enriched Feed to Farmed Sea Bass (Dicentrarchus labrax L.) Modulates Intestinal and Spleen Immune Responses.

    PubMed

    Magrone, Thea; Fontana, Sergio; Laforgia, Flavia; Dragone, Teresa; Jirillo, Emilio; Passantino, Letizia

    2016-01-01

    Farmed fish are exposed to a continuous antigenic pressure by microbial and environmental agents, which may lead to a condition of chronic inflammation. In view of the notion that polyphenols, largely contained in fruits and vegetables, are endowed with antioxidant and anti-inflammatory activities, farmed sea bass (Dicentrarchus labrax L.) have been administered with red grape polyphenol-enriched feed. Polyphenols were extracted from the seeds of Canosina Nero di Troia Vitis vinifera and mixed with conventional feed at two different concentrations (100 and 200?mg/kg, resp.). Fish samples collected at days 223 and 273, respectively, were evaluated for intestinal and spleen cytokine release as well as for spleen macrophage (M) and melanomacrophage center (MMC) areas and distribution. Data will show that in treated fish decrease of intestinal interleukin- (IL-) 1? and IL-6 and increase of splenic interferon- (IFN-) ? occur. On the other hand, in the spleen reduction of M number seems to parallel increase in MMCs. Collectively, these data suggest that polyphenol-administered sea bass generate lower levels of intestinal proinflammatory cytokines, while producing larger amounts of spleen IFN-?, as an expression of a robust and protective adaptive immune response. Increase of MMCs corroborates the evidence for a protective spleen response induced by feed enriched with polyphenols. PMID:26779301

  11. Intestinal protozoa.

    PubMed

    Juckett, G

    1996-06-01

    Giardia is the best known cause of protozoal gastrointestinal disease in North America, producing significant but not life-threatening gastrointestinal distress and diarrhea. Although diagnosis of giardiasis may be challenging, treatment is usually successful. Entamoeba histolytica poses a rarer but far more difficult clinical challenge. Dysentery caused by E. histolytica may be the most feared intestinal protozoal infection, although Cryptosporidium parvum, Balantidium coli, Isospora belli, Sarcocystis species and other newly described protozoa also may cause diarrhea in healthy individuals and may result in intractable, life-threatening illness in patients with acquired immunodeficiency syndrome or other immunosuppressive diseases. Certain protozoa once considered relatively unimportant, such as Cryptosporidium, are now recognized as significant causes of morbidity even in the United States, since transmission readily occurs through contaminated water. PMID:8644565

  12. Microbial-derived butyrate: An oncometabolite or tumor-suppressive metabolite?

    PubMed Central

    2014-01-01

    Dietary factors, microbial composition and metabolism are intimately intertwined into a complex network whose activities influence important intestinal functions. In a recent issue of Cell, Belcheva et al. (2014) show that microbial-derived butyrate promotes proliferation of cancer-initiated intestinal epithelial cells, suggesting that it can act as an oncometabolite. PMID:25121740

  13. Apolipoprotein-mediated pathways of lipid antigen presentation.

    PubMed

    van den Elzen, Peter; Garg, Salil; Len, Luis; Brigl, Manfred; Leadbetter, Elizabeth A; Gumperz, Jenny E; Dascher, Chris C; Cheng, Tan-Yun; Sacks, Frank M; Illarionov, Petr A; Besra, Gurdyal S; Kent, Sally C; Moody, D Branch; Brenner, Michael B

    2005-10-01

    Peptide antigens are presented to T cells by major histocompatibility complex (MHC) molecules, with endogenous peptides presented by MHC class I and exogenous peptides presented by MHC class II. In contrast to the MHC system, CD1 molecules bind lipid antigens that are presented at the antigen-presenting cell (APC) surface to lipid antigen-reactive T cells. Because CD1 molecules survey endocytic compartments, it is self-evident that they encounter antigens from extracellular sources. However, the mechanisms of exogenous lipid antigen delivery to CD1-antigen-loading compartments are not known. Serum apolipoproteins are mediators of extracellular lipid transport for metabolic needs. Here we define the pathways mediating markedly efficient exogenous lipid antigen delivery by apolipoproteins to achieve T-cell activation. Apolipoprotein E binds lipid antigens and delivers them by receptor-mediated uptake into endosomal compartments containing CD1 in APCs. Apolipoprotein E mediates the presentation of serum-borne lipid antigens and can be secreted by APCs as a mechanism to survey the local environment to capture antigens or to transfer microbial lipids from infected cells to bystander APCs. Thus, the immune system has co-opted a component of lipid metabolism to develop immunological responses to lipid antigens. PMID:16208376

  14. Studies on antigen competition

    PubMed Central

    Brody, N. I.; Siskind, G. W.

    1972-01-01

    Antigenic competition between two haptenic determinants was studied. It was shown that antigenic competition was greater if a 1- or 2-week interval is imposed between injection of the two antigens. Preimmunization with one antigen or with the carrier protein to which one hapten is coupled will decrease the effect of antigenic competition on the antibody response to that antigen or hapten and bring about a greater degree of depression of the antibody response to the second haptenic determinant. Finally, antigenic competition does not occur if the two antigens are injected so as to drain into different groups of regional lymph nodes. This is true even if a 3- or 7-day time interval is imposed between injection of the two antigens. The results are interpreted as suggesting that competition occurs at the level of the antigen `processing' or `localizing' step in the immune response. PMID:4111170

  15. Immunostimulatory complexes containing Eimeria tenella antigens and low toxicity plant saponins induce antibody response and provide protection from challenge in broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunostimulating complexes (ISCOMs) are unique multimolecular structures formed by encapsulating antigens, lipids and triterpene saponins and are one of the most successful antigen delivery systems for microbial antigens. In the current study, both the route of administration and the antigen conce...

  16. Interactions Between the Intestinal Microbiome and Liver Diseases

    PubMed Central

    Schnabl, Bernd; Brenner, David A.

    2014-01-01

    The human intestine harbors a diverse community of microbes that promote metabolism and digestion in their symbiotic relationship with the host. Disturbance of its homeostasis can result in disease. We review factors that disrupt intestinal homeostasis and contribute to non-alcoholic fatty liver disease (NAFLD), steatohepatitis (NASH), alcoholic liver disease, and cirrhosis. Liver disease has long been associated with qualitative and quantitative (overgrowth) dysbiotic changes in the intestinal microbiota. Extrinsic factors, such as the Western diet and alcohol, contribute to these changes. Dysbiosis results in intestinal inflammation, a breakdown of the intestinal barrier, and translocation of microbial products in animal models. However, the contribution of the intestinal microbiome to liver disease goes beyond simple translocation of bacterial products that promote hepatic injury and inflammation. Microbial metabolites produced in a dysbiotic intestinal environment and host factors are equally important in the pathogenesis of liver disease. We review how the combination of liver insult and disruptions in intestinal homeostasis contribute to liver disease. PMID:24440671

  17. STUDIES ON ANTIGENIC COMPETITION

    PubMed Central

    Brody, Neil I.; Siskind, Gregory W.

    1969-01-01

    Antigenic competition was studied in a haptenic system. It was found that: (a) The extent of competition is greater when larger doses of antigen are employed. (b) Antigenic competition appears to be independent of the carrier molecule. (c) The affinity of the antibody produced in antigenic competition is approximately equal to the affinity of antibody formed by animals immunized with only one antigen. (d) Antigenic competition only occurs when both antigens are injected so as to drain into the same regional lymph nodes. The results suggest that antigenic competition occurs locally at the site of antigen stimulation and is not mediated by a circulating factor, by tolerance induction, or by suppression due to synthesis of cross-reacting antibodies. PMID:4186444

  18. Effects of immune-mediated enteroluminal neltrophil emigration on intestinal function in pigs.

    PubMed Central

    Bellamy, J E; Hamilton, D L

    1977-01-01

    Intestinal function was assessed in cannulated loops of porcine proximal jejunum during immune-mediated emigration of neutrophils into the intestine. Net water, net sodium, net chloride, undirectional sodium and unidirectional chloride fluxes were measured before and after intestinal exposure to an antigen in both sensitized and nonsensitized pigs. Neutrophil emigration was assessed histologically. The results indicate that fluid and electrolyte movements in the intestine are not significantly altered during immune-mediated enteroluminal neutrophil emigration suggesting that the neutrophil response does not interfere with intestinal function. PMID:832187

  19. The equine intestinal microbiome.

    PubMed

    Costa, Marcio C; Weese, J Scott

    2012-06-01

    The equine intestinal tract contains a complex microbial population (microbiota) that plays an important role in health and disease. Despite the undeniable importance of a 'normal' microbiota, understanding of the composition and function of this population is currently limited. As methods to characterize the microbiota and its genetic makeup (the microbiome) have evolved, the composition and complexity of this population are starting to be revealed. As is befitting a hindgut fermenter, members of the Firmicutes phylum appear to predominate, yet there are significant populations of numerous other phyla. The microbiome appears to be profoundly altered in certain disease states, and better understanding of these alterations may offer hope for novel preventive and therapeutic measures. The development and increasing availability of next generation sequencing and bioinformatics methods offer a revolution in microbiome evaluation and it is likely that significant advances will be made in the near future. Yet, proper use of these methods requires further study of basic aspects such as optimal testing protocols, the relationship of the fecal microbiome to more proximal locations where disease occurs, normal intra- and inter-horse variation, seasonal variation, and similar factors. PMID:22626511

  20. High Fat Diet Causes Depletion of Intestinal Eosinophils Associated with Intestinal Permeability

    PubMed Central

    Johnson, Andrew M. F.; Costanzo, Anne; Gareau, Melanie G.; Armando, Aaron M.; Quehenberger, Oswald; Jameson, Julie M.; Olefsky, Jerrold M.

    2015-01-01

    The development of intestinal permeability and the penetration of microbial products are key factors associated with the onset of metabolic disease. However, the mechanisms underlying this remain unclear. Here we show that, unlike liver or adipose tissue, high fat diet (HFD)/obesity in mice does not cause monocyte/macrophage infiltration into the intestine or pro-inflammatory changes in gene expression. Rather HFD causes depletion of intestinal eosinophils associated with the onset of intestinal permeability. Intestinal eosinophil numbers were restored by returning HFD fed mice to normal chow and were unchanged in leptin-deficient (Ob/Ob) mice, indicating that eosinophil depletion is caused specifically by a high fat diet and not obesity per se. Analysis of different aspects of intestinal permeability in HFD fed and Ob/Ob mice shows an association between eosinophil depletion and ileal paracelullar permeability, as well as leakage of albumin into the feces, but not overall permeability to FITC dextran. These findings provide the first evidence that a high fat diet causes intestinal eosinophil depletion, rather than inflammation, which may contribute to defective barrier integrity and the onset of metabolic disease. PMID:25837594

  1. In remembrance of commensal intestinal microbes

    PubMed Central

    Hapfelmeier, Siegfried

    2010-01-01

    Mammals contain an enormous load of commensal microbes in the lower intestine, which induce adaptive responses in the host immune system that ensure mutual coexistence of the host and its microbial passengers. The main way of studying how the host responds to commensal colonization has been to compare animals kept in entirely germ-free conditions and their colonized counterparts. We present an overview of our development of a reversible colonization system, whereby germ free animals can be treated with live commensal bacteria that do not persist in the host, so it becomes germ free again. We describe how this system has been used to demonstrate that there is little or no immune memory for specific IgA induction in the intestinal mucosal immune system by commensal intestinal bacteria. PMID:21331242

  2. Tipping elements in the human intestinal ecosystem

    PubMed Central

    Lahti, Leo; Salojärvi, Jarkko; Salonen, Anne; Scheffer, Marten; de Vos, Willem M.

    2014-01-01

    The microbial communities living in the human intestine can have profound impact on our well-being and health. However, we have limited understanding of the mechanisms that control this complex ecosystem. Here, based on a deep phylogenetic analysis of the intestinal microbiota in a thousand western adults, we identify groups of bacteria that exhibit robust bistable abundance distributions. These bacteria are either abundant or nearly absent in most individuals, and exhibit decreased temporal stability at the intermediate abundance range. The abundances of these bimodally distributed bacteria vary independently, and their abundance distributions are not affected by short-term dietary interventions. However, their contrasting alternative states are associated with host factors such as ageing and overweight. We propose that the bistable groups reflect tipping elements of the intestinal microbiota, whose critical transitions may have profound health implications and diagnostic potential. PMID:25003530

  3. Innate defenses of the intestinal epithelial barrier.

    PubMed

    Müller, C A; Autenrieth, I B; Peschel, A

    2005-06-01

    The innate immune system plays a crucial role in maintaining the integrity of the intestine and protecting the host against a vast number of potential microbial pathogens from resident and transient gut microflora. Mucosal epithelial cells and Paneth cells produce a variety of antimicrobial peptides (defensins, cathelicidins, crytdinrelated sequence peptides, bactericidal/permeabilityincreasing protein, chemokine CCL20) and bacteriolytic enzymes (lysozyme, group IIA phospholipase A2) that protect mucosal surfaces and crypts containing intestinal stem cells against invading microbes. Many of the intestinal antimicrobial molecules have additional roles of attracting leukocytes, alarming the adaptive immune system or neutralizing proinflammatory bacterial molecules. Dysfunction of components of the innate immune system has recently been implicated in chronic inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, illustrating the pivotal role of innate immunity in maintaining the delicate balance between immune tolerance and immune response in the gut. PMID:15971105

  4. Methods for analysis of the intestinal microflora.

    PubMed

    O'Sullivan, D J

    2000-09-01

    The concept of probiotics has been around for about 100 years. Yet its impact on human nutrition is still an emerging concept. Lack of convincing scientific validation for the efficacy of any ingested probiotic bacterium on intestinal health, has been a major reason for the low impact of probiotics on human nutrition. Obtaining positive scientific validation requires the use of suitable probiotic strains and also the necessary tools to monitor the performance of these bacteria in the intestines of individuals. To date, selection of strains for probiotic purposes has not been based on a scientific directed approach, primarily because it is not yet fully known what specific traits a desirable probiotic strain should possess. Filling this knowledge void will depend largely on furthering our understanding of the human intestinal ecosystem and the functional role of specific bacteria for intestinal health. Traditional approaches for studying this ecosystem have provided a good foundation in this knowledge base. Complementation of the traditional approaches with the emergence of sophisticated molecular tools shows enormous promise for obtaining the necessary insight into the intestinal microflora. This review will cover the traditional methodologies which have been used to analyze the human intestinal microflora. It will also reveal the development of modern molecular approaches for studying the diversity and phylogeny of its flora, and the rapid molecular tools for monitoring the presence of specific strains in the intestine. Finally, it will address the advent of in situ analysis of individual microbial cells, which promises to provide tremendous advances in our understanding of the microflora and their metabolic activities in the human intestine. PMID:11709868

  5. Obesity, fatty liver disease and intestinal microbiota

    PubMed Central

    Arslan, Nur

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder that is increasing in prevalence with the worldwide epidemic of obesity. NAFLD is the hepatic manifestation of the metabolic syndrome. The term NAFLD describes a spectrum of liver pathology ranges from simple steatosis to steatosis with inflammation nonalcoholic steatohepatitis and even cirrhosis. Metabolic syndrome and NAFLD also predict hepatocellular carcinoma. Many genetic and environmental factors have been suggested to contribute to the development of obesity and NAFLD, but the exact mechanisms are not known. Intestinal ecosystem contains trillions of microorganisms including bacteria, Archaea, yeasts and viruses. Several studies support the relationship between the intestinal microbial changes and obesity and also its complications, including insulin resistance and NAFLD. Given that the gut and liver are connected by the portal venous system, it makes the liver more vulnerable to translocation of bacteria, bacterial products, endotoxins or secreted cytokines. Altered intestinal microbiota (dysbiosis) may stimulate hepatic fat deposition through several mechanisms: regulation of gut permeability, increasing low-grade inflammation, modulation of dietary choline metabolism, regulation of bile acid metabolism and producing endogenous ethanol. Regulation of intestinal microbial ecosystem by diet modifications or by using probiotics and prebiotics as a treatment for obesity and its complications might be the issue of further investigations. PMID:25469013

  6. Obesity, fatty liver disease and intestinal microbiota.

    PubMed

    Arslan, Nur

    2014-11-28

    Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder that is increasing in prevalence with the worldwide epidemic of obesity. NAFLD is the hepatic manifestation of the metabolic syndrome. The term NAFLD describes a spectrum of liver pathology ranges from simple steatosis to steatosis with inflammation nonalcoholic steatohepatitis and even cirrhosis. Metabolic syndrome and NAFLD also predict hepatocellular carcinoma. Many genetic and environmental factors have been suggested to contribute to the development of obesity and NAFLD, but the exact mechanisms are not known. Intestinal ecosystem contains trillions of microorganisms including bacteria, Archaea, yeasts and viruses. Several studies support the relationship between the intestinal microbial changes and obesity and also its complications, including insulin resistance and NAFLD. Given that the gut and liver are connected by the portal venous system, it makes the liver more vulnerable to translocation of bacteria, bacterial products, endotoxins or secreted cytokines. Altered intestinal microbiota (dysbiosis) may stimulate hepatic fat deposition through several mechanisms: regulation of gut permeability, increasing low-grade inflammation, modulation of dietary choline metabolism, regulation of bile acid metabolism and producing endogenous ethanol. Regulation of intestinal microbial ecosystem by diet modifications or by using probiotics and prebiotics as a treatment for obesity and its complications might be the issue of further investigations. PMID:25469013

  7. Histocompatibility antigen test

    MedlinePLUS

    Wang, E. Human leukocyte antigen and human neutrophil antigen systems. In: Hoffman R, Benz EJ Jr, Silberstein LE, Heslop HE, Weitz JI, eds. Hematology: Basic Principles and Practice . 6th ed. Philadelphia, ...

  8. High intestinal IgA associates with reduced risk of IgE-associated allergic diseases.

    PubMed

    Kukkonen, Kaarina; Kuitunen, Mikael; Haahtela, Tari; Korpela, Riitta; Poussa, Tuija; Savilahti, Erkki

    2010-02-01

    Development of oral tolerance and its stimulation by probiotics are still incomprehensible. Microbial stimulation of the gut may induce a subtle inflammation and induce secretion of mucosal IgA, which participates in antigen elimination. In a cohort of allergy-prone infants receiving probiotics and prebiotics or placebo we studied intestinal IgA and inflammation in the development of eczema, food allergy, asthma, and rhinitis (allergic diseases). We performed a nested unmatched case-control study of 237 infants participating in a randomized double-blind placebo-controlled allergy-prevention trial using a combination of four probiotic strains pre-natally and during 6 months form birth. We measured faecal IgA, alpha1-antitrypsin (alpha1-AT), tumour necrosis factor-alpha (TNF-alpha), and calprotectin at the age of 3 and 6 months. By age 2 yr, 124 infants had developed allergic disease or IgE-sensitization (cases) and 113 had not (controls). In infants with high faecal IgA concentration at the age of 6 months, the risk of having any allergic disease before the age of 2 yr tended to reduce [odds ratio (OR: 0.52)] and the risk for any IgE-associated (atopic) disease reduced significantly (OR: 0.49). High faecal calprotectin at the age of 6 months associated also with lower risk for IgE-associated diseases up to age 2 yr (OR: 0.49). All faecal inflammation markers (alpha1-AT, TNF-alpha, and calprotectin) correlated positively with faecal IgA (p < 0.001). Probiotics tended to augment faecal IgA (p = 0.085) and significantly increased faecal alpha1-AT (p = 0.001). High intestinal IgA in early life associates with minimal intestinal inflammation and indicates reduced risk for IgE-associated allergic diseases. PMID:19566584

  9. Intestinal Complications of IBD

    MedlinePLUS

    ... dietary intake, intestinal loss of protein, and poor absorption of nutrients. Medical treatment is usually effective in ... disease. This is the principal area for intestinal absorption of bile acids, compounds that help transport and ...

  10. Diagnosis and treatment of small intestinal bacterial overgrowth.

    PubMed

    Ponziani, Francesca Romana; Gerardi, Viviana; Gasbarrini, Antonio

    2016-02-01

    A huge number of bacteria are hosted in the gastrointestinal tract, following a gradient increasing towards the colon. Gastric acid secretion and intestinal clearance provide the qualitative and quantitative partitioning of intestinal bacteria; small intestinal bacteria overgrowth (SIBO) occurs when these barrier mechanisms fail. Diagnosis of SIBO is challenging due to the low specificity of symptoms, the frequent association with other diseases of the gastrointestinal tract and the absence of optimal objective diagnostic tests. The therapeutic approach to SIBO is oriented towards resolving predisposing conditions, and is supported by antibiotic treatment to restore the normal small intestinal microflora and by modifications of dietary habits for symptomatic relief. In the near future, metagenomics and metabolomics will help to overcome the uncertainties of SIBO diagnosis and the pitfalls of therapeutic management, allowing the design of a personalized strategy based on the direct insight into the small intestinal microbial community. PMID:26636484

  11. [Role of intestinal flora in health and disease].

    PubMed

    Guamer, F

    2007-05-01

    The terms intestinal "microflora" or "microbiota refer to the microbial ecosystem colonizing the gastrointestinal tract. Recently developed molecular biology instruments suggest that a substantial part of bacterial communities within the human gut still have to be described. The relevance and impact of resident bacteria on the host physiology and pathology are, however, well documented. The main functions of intestinal microflora include (1) metabolic activities translating into energy and nutrients uptake, and (2) host protection against invasion by foreign microorganisms. Intestinal bacteria play an essential role in the development and homeostasis of the immune system. Lymphoid follicles within the intestinal mucosa are the main areas for immune system induction and regulation. On the other hand, there is evidence implicating intestinal microbiota in certain pathological processes including multi-organ failure, colon cancer, and inflammatory bowel disease. PMID:17679289

  12. Transcriptional Modulation of Intestinal Innate Defense/Inflammation Genes by Preterm Infant Microbiota in a Humanized Gnotobiotic Mouse Model

    PubMed Central

    Lu, Lei; Yu, Yueyue; Guo, Yuee; Wang, Yunwei; Chang, Eugene B.; Claud, Erika C.

    2015-01-01

    Background and Aims It is known that postnatal functional maturation of the small intestine is facilitated by microbial colonization of the gut. Preterm infants exhibit defects in gut maturation, weak innate immunity against intestinal infection and increased susceptibility to inflammatory disorders, all of which may be related to the inappropriate microbial colonization of their immature intestines. The earliest microbes to colonize the preterm infant gut encounter a nave, immature intestine. Thus this earliest microbiota potentially has the greatest opportunity to fundamentally influence intestinal development and immune function. The aim of this study was to characterize the effect of early microbial colonization on global gene expression in the distal small intestine during postnatal gut development. Methods Gnotobiotic mouse models with experimental colonization by early (prior to two weeks of life) intestinal microbiota from preterm human infants were utilized. Microarray analysis was used to assess global gene expression in the intestinal epithelium. Results and Conclusion Multiple intestinal genes involved in metabolism, cell cycle regulation, cell-cell or cell-extracellular matrix communication, and immune function are developmental- and intestinal microbiota- regulated. Using a humanized gnotobiotic mouse model, we demonstrate that certain early preterm infant microbiota from prior to 2 weeks of life specifically induce increased NF-?B activation and a phenotype of increased inflammation whereas other preterm microbiota specifically induce decreased NF-?B activation. These fundamental differences correlate with altered clinical outcomes and suggest the existence of optimal early microbial communities to improve health outcomes. PMID:25928420

  13. Vertebrate Intestinal Endoderm Development

    PubMed Central

    Spence, Jason R.; Lauf, Ryan; Shroyer, Noah F.

    2010-01-01

    The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes. PMID:21246663

  14. Establishment of Intestinal Bacteriology

    PubMed Central

    MITSUOKA, Tomotari

    2014-01-01

    Research on intestinal bacteria began around the end of the 19th century. During the last 5 decades of the 20th century, research on the intestinal microbiota made rapid progress. At first, in my work, I first developed a method of comprehensive analysis of the intestinal microbiota, and then I established classification and identification methods for intestinal anaerobes. Using these methods I discovered a number of ecological rules governing the intestinal microbiota and the role of the intestinl microbiota in health and disease. Moreover, using germfree animals, it was proven that the intestinal microbiota has a role in carcinogenesis and aging in the host. Thus, a new interdisciplinary field, “intestinal bacteriology” was established. PMID:25032084

  15. Early intestinal growth and development in poultry.

    PubMed

    Lilburn, M S; Loeffler, S

    2015-07-01

    While there are many accepted "facts" within the field of poultry science that are in truth still open for discussion, there is little debate with respect to the tremendous genetic progress that has been made with commercial broilers and turkeys (Havenstein et al., 2003, 2007). When one considers the changes in carcass development in poultry meat strains, these genetic "improvements" have not always been accompanied by correlated changes in other physiological systems and this can predispose some birds to developmental anomalies (i.e. ascites; Pavlidis et al., 2007; Wideman et al., 2013). Over the last decade, there has been increased interest in intestinal growth/health as poultry nutritionists have attempted to adopt new approaches to deal with the broader changes in the overall nutrition landscape. This landscape includes not only the aforementioned genetic changes but also a raft of governmental policies that have focused attention on the environment (phosphorus and nitrogen excretion), consumer pressure on the use of antibiotics, and renewable biofuels with its consequent effects on ingredient costs. Intestinal morphology has become a common research tool for assessing nutritional effects on the intestine but it is only one metric among many that can be used and histological results can often be interpreted in a variety of ways. This study will address the broader body of research on intestinal growth and development in commercial poultry and will attempt to integrate the topics of the intestinal: microbial interface and the role of the intestine as an immune tissue under the broad umbrella of intestinal physiology. PMID:25910905

  16. Hepatic Injury in Nonalcoholic Steatohepatitis Contributes to Altered Intestinal Permeability

    PubMed Central

    Luther, Jay; Garber, John J.; Khalili, Hamed; Dave, Maneesh; Bale, Shyam Sundhar; Jindal, Rohit; Motola, Daniel L.; Luther, Sanjana; Bohr, Stefan; Jeoung, Soung Won; Deshpande, Vikram; Singh, Gurminder; Turner, Jerrold R.; Yarmush, Martin L.; Chung, Raymond T.; Patel, Suraj J.

    2015-01-01

    BACKGROUND & AIMS Emerging data suggest that changes in intestinal permeability and increased gut microbial translocation contribute to the inflammatory pathway involved in nonalcoholic steatohepatitis (NASH) development. Numerous studies have investigated the association between increased intestinal permeability and NASH. Our meta-analysis of this association investigates the underlying mechanism. METHODS A meta-analysis was performed to compare the rates of increased intestinal permeability in patients with NASH and healthy controls. To further address the underlying mechanism of action, we studied changes in intestinal permeability in a diet-induced (methionine-and-choline-deficient; MCD) murine model of NASH. In vitro studies were also performed to investigate the effect of MCD culture medium at the cellular level on hepatocytes, Kupffer cells, and intestinal epithelial cells. RESULTS Nonalcoholic fatty liver disease (NAFLD) patients, and in particular those with NASH, are more likely to have increased intestinal permeability compared with healthy controls. We correlate this clinical observation with in vivo data showing mice fed an MCD diet develop intestinal permeability changes after an initial phase of liver injury and tumor necrosis factor-? (TNF?) induction. In vitro studies reveal that MCD medium induces hepatic injury and TNF? production yet has no direct effect on intestinal epithelial cells. Although these data suggest a role for hepatic TNF? in altering intestinal permeability, we found that mice genetically resistant to TNF?-myosin light chain kinase (MLCK)induced intestinal permeability changes fed an MCD diet still develop increased permeability and liver injury. CONCLUSIONS Our clinical and experimental results strengthen the association between intestinal permeability increases and NASH and also suggest that an early phase of hepatic injury and inflammation contributes to altered intestinal permeability in a fashion independent of TNF? and MLCK. PMID:26405687

  17. Testing of the Small Intestine (Intestinal Dysmotility)

    MedlinePLUS

    ... Bacterial overgrowth is most easily detected by the hydrogen breath test: The patient drinks a sugar solution ... amounts in the small intestine, they give off hydrogen, some of which is absorbed into the blood, ...

  18. Intestinal Epithelial Barrier Dysfunction in Food Hypersensitivity

    PubMed Central

    Yu, Linda Chia-Hui

    2012-01-01

    Intestinal epithelial barrier plays a critical role in the maintenance of gut homeostasis by limiting the penetration of luminal bacteria and dietary allergens, yet allowing antigen sampling for the generation of tolerance. Undigested proteins normally do not gain access to the lamina propria due to physical exclusion by tight junctions at the cell-cell contact sites and intracellular degradation by lysosomal enzymes in enterocytes. An intriguing question then arises: how do macromolecular food antigens cross the epithelial barrier? This review discusses the epithelial barrier dysfunction in sensitized intestine with special emphasis on the molecular mechanism of the enhanced transcytotic rates of allergens. The sensitization phase of allergy is characterized by antigen-induced cross-linking of IgE bound to high affinity FcεRI on mast cell surface, leading to anaphylactic responses. Recent studies have demonstrated that prior to mast cell activation, food allergens are transported in large quantity across the epithelium and are protected from lysosomal degradation by binding to cell surface IgE and low-affinity receptor CD23/FcεRII. Improved immunotherapies are currently under study including anti-IgE and anti-CD23 antibodies for the management of atopic disorders. PMID:21912563

  19. Effect of Bacillus-based direct-fed microbials on Eimeria maxima infection in broiler chickens.

    PubMed

    Lee, Kyung-Woo; Lillehoj, Hyun S; Jang, Seung I; Li, Guangxing; Lee, Sung-Hyen; Lillehoj, Erik P; Siragusa, Gregory R

    2010-12-01

    The effect of dietary Bacillus-based direct-fed microbials (DFMs; eight single strains designated as Bs2084, LSSAO1, 3AP4, Bs18, 15AP4, 22CP1, Bs27, and Bs278, and one multiple-strain DFM product [AVICORR]) on growth performance, intestinal lesions, and innate and acquired immunities were evaluated in broiler chickens following Eimeria maxima (EM) infection. EM-induced reduction of body weight gain and intestinal lesions were significantly decreased by addition of 15AP4 or Bs27 into broiler diets compared with EM-infected control birds. Serum nitric oxide levels were increased in infected chickens fed with Bs27, but lowered in those given Bs2084, LSSAO1, 3AP4 or 15AP4 compared with the infected controls. Recombinant coccidial antigen (3-1E)-stimulated spleen cell proliferation was increased in chickens given Bs27, 15AP4, LSSAO1, 3AP4, or Bs18, compared with the infected controls. Finally, all experimental diets increased concanavalin A-induced splenocyte mitogenesis in infected broilers compared with the nonsupplemented and infected controls. In summary, dietary Bacillus subtilis-based DFMs reduced the clinical signs of experimental avian coccidiosis and increased various parameters of immunity in broiler chickens in a strain-dependent manner. PMID:20621358

  20. Recent progress in understandıng the function of intestinal macrophages and dendritic cells

    PubMed Central

    Kelsall, Brian

    2016-01-01

    Mucosal immune responses must be tightly controlled, particularly in the intestine, As members of the mononuclear phagocyte family, dendritic cells and macrophages, are well represented in intestinal tissues, and have developed unique functional niches. This review will focus on recent findings on antigen uptake and processing in the intestine, and the role of DCs in the imprinting homing receptors on T and B cells, the induction of IgA B cell responses, and the differentiation of regulatory T cells (Tregs). It will also address the unique phenotype of intestinal macrophages and briefly what is known regarding the relationships between these cell types. PMID:19079213

  1. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation

    PubMed Central

    Hemarajata, Peera

    2013-01-01

    Recent explorations of the human gut microbiota suggest that perturbations of microbial communities may increase predisposition to different disease phenotypes. Dietary nutrients may be converted into metabolites by intestinal microbes that serve as biologically active molecules affecting regulatory functions in the host. Probiotics may restore the composition of the gut microbiome and introduce beneficial functions to gut microbial communities, resulting in amelioration or prevention of gut inflammation and other intestinal or systemic disease phenotypes. This review describes how diet and intestinal luminal conversion by gut microbes play a role in shaping the structure and function of intestinal microbial communities. Proposed mechanisms of probiosis include alterations of composition and function of the human gut microbiome, and corresponding effects on immunity and neurobiology. PMID:23320049

  2. Diet and the Intestinal Microbiome: Associations, Functions, and Implications for Health and Disease

    PubMed Central

    Albenberg, Lindsey G.; Wu, Gary D.

    2014-01-01

    The mutual relationship between the intestinal microbiota and its mammalian host is influenced by diet. Consumption of various nutrients affects the structure of the microbial community and provides substrates for microbial metabolism. The microbiota can produce small molecules that are absorbed by the host and affect many important physiological processes. Age-dependent and societal differences in the intestinal microbiota could result from differences in diet. Examples include differences in the intestinal microbiota of breast- vs formula-fed infants, or differences in microbial richness in individuals consuming an agrarian plant-based vs a Western diet, which is high in meat and fat. We review how diet affects the structure and metabolome of the human intestinal microbiome, and may contribute to health or pathogenesis of disorders such as coronary vascular disease and inflammatory bowel diseases. PMID:24503132

  3. Diet and the intestinal microbiome: associations, functions, and implications for health and disease.

    PubMed

    Albenberg, Lindsey G; Wu, Gary D

    2014-05-01

    The mutual relationship between the intestinal microbiota and its mammalian host is influenced by diet. Consumption of various nutrients affects the structure of the microbial community and provides substrates for microbial metabolism. The microbiota can produce small molecules that are absorbed by the host and affect many important physiological processes. Age-dependent and societal differences in the intestinal microbiota could result from differences in diet. Examples include differences in the intestinal microbiota of breastfed vs formula-fed infants or differences in microbial richness in people who consume an agrarian plant-based vs a Western diet, which is high in meat and fat. We review how diet affects the structure and metabolome of the human intestinal microbiome and may contribute to health or the pathogenesis of disorders such as coronary vascular disease and inflammatory bowel disease. PMID:24503132

  4. Spatial organization of intestinal microbiota in the mouse ascending colon

    PubMed Central

    Nava, Gerardo M; Friedrichsen, Hans J; Stappenbeck, Thaddeus S

    2011-01-01

    Complex microbial populations are organized in relation to their environment. In the intestine, the inner lining (mucosa) is a potential focal point for such organization. The proximal murine colon contains mucosal folds that are known to be associated with morphologically distinct microbes. To identify these microbes, we used the technique of laser capture microdissection (LCM) to sample microbes associated with these folds (interfold region) and within the central lumen (digesta region). Using 16S rRNA gene tag pyrosequencing, we found that microbes in the interfold region were highly enriched for the phylum Firmicutes and, more specifically, for the families Lachnospiraceae and Ruminococcaceae. Other families such as Bacteroidaceae, Enterococcaceae and Lactobacillaceae were all enriched in the digesta region. This high-resolution system to capture and examine spatial organization of intestinal microbes should facilitate microbial analysis in other mouse models, furthering our understanding of hostmicrobial interactions. PMID:20981114

  5. High taxonomic level fingerprint of the human intestinal microbiota by Ligase Detection Reaction - Universal Array approach

    PubMed Central

    2010-01-01

    Background Affecting the core functional microbiome, peculiar high level taxonomic unbalances of the human intestinal microbiota have been recently associated with specific diseases, such as obesity, inflammatory bowel diseases, and intestinal inflammation. Results In order to specifically monitor microbiota unbalances that impact human physiology, here we develop and validate an original DNA-microarray (HTF-Microbi.Array) for the high taxonomic level fingerprint of the human intestinal microbiota. Based on the Ligase Detection Reaction-Universal Array (LDR-UA) approach, the HTF-Microbi.Array enables specific detection and approximate relative quantification of 16S rRNAs from 30 phylogenetically related groups of the human intestinal microbiota. The HTF-Microbi.Array was used in a pilot study of the faecal microbiota of eight young adults. Cluster analysis revealed the good reproducibility of the high level taxonomic microbiota fingerprint obtained for each of the subject. Conclusion The HTF-Microbi.Array is a fast and sensitive tool for the high taxonomic level fingerprint of the human intestinal microbiota in terms of presence/absence of the principal groups. Moreover, analysis of the relative fluorescence intensity for each probe pair of our LDR-UA platform can provide estimation of the relative abundance of the microbial target groups within each samples. Focusing the phylogenetic resolution at division, order and cluster levels, the HTF-Microbi.Array is blind with respect to the inter-individual variability at the species level. PMID:20398430

  6. Intestinal Microbiota in Healthy Adults: Temporal Analysis Reveals Individual and Common Core and Relation to Intestinal Symptoms

    PubMed Central

    Nikkilä, Janne; Immonen, Outi; Kekkonen, Riina; Lahti, Leo; Palva, Airi; de Vos, Willem M.

    2011-01-01

    Background While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT)Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point. Principal Findings A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected. Conclusions/Significance A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the individual and common core microbiota in healthy adults. The findings provide new approaches to define intestinal health and to further characterize the microbial communities inhabiting the human gut. PMID:21829582

  7. Transcutaneous antigen delivery system

    PubMed Central

    Lee, Mi-Young; Shin, Meong-Cheol; Yang, Victor C.

    2013-01-01

    Transcutaneous immunization refers to the topical application of antigens onto the epidermis. Transcutaneous immunization targeting the Langerhans cells of the skin has received much attention due to its safe, needle-free, and noninvasive antigen delivery. The skin has important immunological functions with unique roles for antigen-presenting cells such as epidermal Langerhans cells and dermal dendritic cells. In recent years, novel vaccine delivery strategies have continually been developed; however, transcutaneous immunization has not yet been fully exploited due to the penetration barrier represented by the stratum corneum, which inhibits the transport of antigens and adjuvants. Herein we review recent achievements in transcutaneous immunization, focusing on the various strategies for the enhancement of antigen delivery and vaccination efficacy. [BMB Reports 2013; 46(1): 17-24] PMID:23351379

  8. Mycobacterial antigen detection by immunohistochemistry in pulmonary tuberculosis.

    PubMed

    Humphrey, D M; Weiner, M H

    1987-07-01

    A preliminary diagnosis of tuberculosis can be established by the detection of acid-fast bacilli (AFB) and confirmed by culture of the microorganism. To evaluate an alternative method of diagnosis, the distribution of mycobacterial antigens in lung tissue specimens was characterized by an indirect peroxidase-antiperoxidase method and was compared to the detection of AFB by Ziehl-Neelsen stain. Histologic specimens were obtained from 59 hospital patients. Of nine patients with mycobacterial disease, seven had antigen detected in tissue. In two patients with tuberculous pneumonia, the distribution of mycobacterial antigens was approximately the same as that of AFB. In contrast, in four patients with caseating pulmonary granulomas, clumps of mycobacterial antigens were demonstrated in necrotic areas of the granulomas where there were few or no AFB. In one patient with Mycobacterium intracellulare infection, cross-reactive antigens stained weakly. Antigen was not found in tissue from two patients; one had miliary lung granulomas, and the second had mediastinal lymph node granulomas. Mycobacterial antigens were not detected in specimens from 50 control patients with nonmycobacterial diseases. On the basis of this study of 59 cases, immunohistochemical detection of microbial antigens appears to be useful for establishing the mycobacterial etiology of caseating pulmonary granulomas. PMID:3297995

  9. Diversity of Intestinal Macrophages in Inflammatory Bowel Diseases

    PubMed Central

    Khl, Anja A.; Erben, Ulrike; Kredel, Lea I.; Siegmund, Britta

    2015-01-01

    Macrophages as innate immune cells and fast responders to antigens play a central role in protecting the body from the luminal content at a huge interface. Chronic inflammation in inflammatory bowel diseases massively alters the number and the subset diversity of intestinal macrophages. We here address the diversity within the human intestinal macrophage compartment at the level of similarities and differences between homeostasis and chronic intestinal inflammation as well as between UC and CD, including the potential role of macrophage subsets for intestinal fibrosis. Hallmark of macrophages is their enormous plasticity, i.e., their capacity to integrate signals from their environment thereby changing their phenotype and functions. Tissue-resident macrophages located directly beneath the surface epithelium in gut homeostasis are mostly tolerogenic. The total number of macrophages increases with luminal contents entering the mucosa through a broken intestinal barrier in ulcerative colitis (UC) as well as in Crohns disease (CD). Although not fully understood, the resulting mixtures of tissue-resident and tissue-infiltrating macrophages in both entities are diverse with respect to their phenotypes and their distribution. Macrophages in UC mainly act within the intestinal mucosa. In CD, macrophages can also be found in the muscularis and the mesenteric fat tissue compartment. Taken together, the present knowledge on human intestinal macrophages so far provides a good starting point to dig deeper into the similarities and differences of functional subsets and to finally use their phenotypical diversity as markers for complex local milieus in health and disease. PMID:26697009

  10. The Intestinal Microbiota in Health and Disease

    PubMed Central

    Young, Vincent B.

    2013-01-01

    Purpose of review The indigenous gut microbiota has been shown to be a key player in maintaining gastrointestinal homeostasis. This review discusses some of the recent work that reveals how the gut microbiome helps establish and protect intestinal health and how disturbances in this microbial community can lead to disease states. Recent findings The use of culture-independent methods has greatly improved our ability to determine the structure and function of the gut microbiome. The gut microbiota has critical interactions with the host immune system and metabolism with bilateral influences shaping both the host and the microbiome. Alterations in the gut microbiome are associated with a variety of disease states but we are only now beginning to understand the mechanisms by which this occurs. Summary Understanding how the gut microbiome contributes to intestinal health should lead to novel preventative strategies and therapies for a variety of gastrointestinal conditions. PMID:22080827

  11. Relationship between intestinal microbiota and colorectal cancer

    PubMed Central

    Cipe, Gokhan; Idiz, Ufuk Oguz; Firat, Deniz; Bektasoglu, Huseyin

    2015-01-01

    The human gastrointestinal tract hosts a complex and vast microbial community with up to 1011-1012 microorganisms colonizing the colon. The gut microbiota has a serious effect on homeostasis and pathogenesis through a number of mechanisms. In recent years, the relationship between the intestinal microbiota and sporadic colorectal cancer has attracted much scientific interest. Mechanisms underlying colonic carcinogenesis include the conversion of procarcinogenic diet-related factors to carcinogens and the stimulation of procarcinogenic signaling pathways in luminal epithelial cells. Understanding each of these mechanisms will facilitate future studies, leading to the development of novel strategies for the diagnosis, treatment, and prevention of colorectal cancer. In this review, we discuss the relationship between colorectal cancer and the intestinal microbiota. PMID:26483877

  12. The Intestinal Microbiota and Viral Susceptibility

    PubMed Central

    Pfeiffer, Julie K.; Sonnenburg, Justin L.

    2011-01-01

    Many infections start with microbial invasion of mucosal surfaces, which are typically colonized by a community of resident microbes. A growing body of literature demonstrates that the resident microbiota plays a significant role in host susceptibility to pathogens. Recent work has largely focused on the considerable effect that the intestinal microbiota can have upon bacterial pathogenesis. These studies reveal many significant gaps in our knowledge about the mechanisms by which the resident community impacts pathogen invasion and the nature of the ensuing host immune response. It is likely that as viral pathogens become the focus of studies that examine microbiota–host interaction, substantial effects of resident communities exerted via diverse mechanisms will be elucidated. Here we provide a perspective of the exciting emerging field that examines how the intestinal microbiota influences host susceptibility to viruses. PMID:21833331

  13. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism.

    PubMed

    He, Xuan; Slupsky, Carolyn M

    2014-12-01

    There is growing awareness that intestinal microbiota alters the energy harvesting capacity of the host and regulates metabolism. It has been postulated that intestinal microbiota are able to degrade unabsorbed dietary components and transform xenobiotic compounds. The resulting microbial metabolites derived from the gastrointestinal tract can potentially enter the circulation system, which, in turn, affects host metabolism. Yet, the metabolic capacity of intestinal microbiota and its interaction with mammalian metabolism remains largely unexplored. Here, we review a metabolic pathway that integrates the microbial catabolism of methionine with mammalian metabolism of methanethiol (MT), dimethyl sulfide (DMS), and dimethyl sulfoxide (DMSO), which together provide evidence that supports the microbial origin of dimethyl sulfone (DMSO2) in the human metabolome. Understanding the pathway of DMSO2 co-metabolism expends our knowledge of microbial-derived metabolites and motivates future metabolomics-based studies on ascertaining the metabolic consequences of intestinal microbiota on human health, including detoxification processes and sulfur xenobiotic metabolism. PMID:25245235

  14. Intestinal Polyps (in Children)

    MedlinePLUS

    ... the large intestine). (continued on next page) NASPGHAN • PO Box 6 • Flourtown, PA 19031 • 215-233-0808 • Fax: 215-233-3918 REV 7/10 Intestinal Polyps continued How is the diagnosis made? If a child presents with a prolapse of a polyp, the ...

  15. Suppression by Trypanosoma brucei of anaphylaxis-mediated ion transport in the small intestine of rats.

    PubMed Central

    Gould, S S; Castro, G A

    1994-01-01

    The hypothesis that failure of hosts infected with Trypanosoma brucei to express type 1 hypersensitivity is related to this parasite's ability to down-regulate IgE production, and not to an innate lack of allergenicity of T. brucei antigens, was tested by studying anaphylaxis-induced changes in net epithelial ion transport in rats. Transport changes were quantified electrophysiologically in vitro, as a change in transmural short-circuit current when sensitized intestine was challenged with homologous antigen. Rats injected parenterally with trypanosome antigen elicited intestinal anaphylaxis in response to antigenic challenge, whereas the intestine of rats infected with T. brucei failed to respond. Infection with T. brucei also suppressed the anaphylactic response in rats sensitized to and challenged with ovalbumin and T. spiralis-derived antigens. In these cases suppression was related to the ability of T. brucei to block production of IgE, and not to the physiological failure of the epithelial response. However, in rats sensitized by infection with T. spiralis, neither the anaphylactic response nor IgE production were inhibited by T. brucei. Furthermore, intestinal mastocytosis normally associated with trichinosis was unaffected by the trypanosome infection. Results support the conclusion that the failure to express anaphylaxis in T. brucei-infected rats is due to the inhibition of IgE production and not to the lack of allergenicity of trypanosome antigens. PMID:8206518

  16. Antigens in immunity

    PubMed Central

    Mitchell, Judith; Abbot, A.

    1971-01-01

    This paper describes the ultrastructural location of labelled antigens and carbon in the spleens of rats from 4 minutes to 5 days after injection. Particular attention was focused on the sites of deposition 4 minutes after intra-arterial injection of microgram quantities of 125I-labelled Salmonella flagellar antigens, crayfish haemocyanin and BSA, using colloidal carbon for comparison. The combination of radioautography with both light and electron microscopy showed the importance of antigen binding by lymphocytes in the marginal zone of the spleen. Macrophage sequestration of antigens was not prominent in the spleen, although it occurred in the liver with the flagellar antigens and haemocyanin. In the spleen marginal zone, avid antigen-binding cells were found in situ 4 minutes after the injection of labelled haemocyanin. These appear to be the counterpart in vivo of antigen-binding lymphocytes prepared in vitro. Such cells also occurred infrequently after the injection of labelled polymerized flagellin, but were not found with either BSA or carbon. The apparent movement of flagellar antigen from the marginal zone to the white pulp between 1 and 2 hours after injection was seen to involve lymphocyte-associated antigen. The follicular antigen localization occurring from 1 day onwards after injection was on the dendritic reticular cells of germinal centres, as has been described in lymph nodes after subcutaneous injection. Carbon particles were rapidly sequestered in macrophages of the spleen and liver, although some particles were found between cells in the marginal zone for as long as 2 hours after injection. By 2 and 5 days, however, all the carbon was in phagocytes, even in the white pulp. Differences between the localization of antigens and carbon were clear, even in the ultrastructural sites of their location in tingible body macrophages of germinal centres. The unexpected emphasis of lymphocyte association with labelled antigens in the spleen marginal zone has allowed a revison of the mechanism previously proposed for the movement of antigens within the microenvironments of the spleen. ImagesFIGS 1-2FIG. 3FIG. 4FIG. 5FIGS 6-7FIG. 8FIG. 9FIG. 10FIGS 11-14FIG. 15 PMID:5571538

  17. Symposium on 'dietary influences on mucosal immunity'. How dietary antigens access the mucosal immune system.

    PubMed

    Heyman, M

    2001-11-01

    The intestinal epithelium is a selective barrier where incompletely-digested food antigens are transmitted to the immune system. Food antigens are often the starting point of intestinal diseases such as food allergy or coeliac disease. The intestinal epithelial cells (IEC) take up and process food antigens mainly by fluid-phase transcytosis involving two functional pathways, one minor direct pathway without degradation and another major lysosomal degradative pathway. Among the peptidic metabolites generated during transepithelial transport of luminal antigens, some have a molecular mass compatible with a binding to restriction (major histocompatibility complex; MHC) molecules; the latter can be up regulated on enterocytes, especially in inflammatory conditions. Indeed, interferon-gamma not only increases the paracellular absorption of antigens, but also their transcytosis across epithelial cells. It has been reported that enterocytes may even directly present peptidic epitopes to underlying T-cells. As a new potential way of transmitting peptidic information to the local or systemic immune system, the secretion by IEC of antigen-presenting vesicles called exosomes and bearing MHC-peptide complexes has recently been proposed. Many other factors such as nutritional or environmental factors can also influence the properties of the epithelial barrier and the outcome of the immune response to lumen antigens. PMID:12069393

  18. IPNV Antigen Uptake and Distribution in Atlantic Salmon Following Oral Administration

    PubMed Central

    Chen, Lihan; Evensen, Øystein; Mutoloki, Stephen

    2015-01-01

    One impediment to the successful oral vaccination in fish is the hostile stomach environment that antigens must cross. Furthermore, uptake of antigens from the gut to systemic distribution is required for induction of systemic immunity, the dynamics of which are poorly understood. In the present study, groups of Atlantic salmon parr were intubated with live or inactivated infectious pancreatic necrosis virus (IPNV), either orally or anally. At 1, 24 and 72 h post infection (p.i.), the fish were sacrificed. Serum was used for assessing IPNV by ELISA, while formalin-fixed head-kidney, spleen, liver and intestine tissues were used for the demonstration of antigens by immunohistochemistry. Both live and inactivated IPNV antigens were observed in enterocytes of the intestines and in immune cells of the head-kidneys and spleens of all groups. In the liver, no antigens were observed in any of the groups. Significantly higher serum antigen OD values (p < 0.04) were observed in orally- compared to anally-intubated fish. By contrast, no difference (p = 0.05) was observed in tissue antigens between these groups by immunohistochemistry. No significant difference (p = 0.05) in serum antigens was observed between groups intubated with live and inactivated IPNV, while in tissues, significantly more antigens (p < 0.03) were observe in the latter compared to the former. These findings demonstrate that both live and inactivated IPNV are taken up by enterocytes in the intestines of Atlantic salmon, likely by receptor-mediated mechanisms. Higher IPNV uptake by the oral compared to anal route suggests that both the anterior and posterior intestines are important for the uptake of the virus and that IPNV is resistant to gastric degradation of the Atlantic salmon stomach. PMID:26008698

  19. Potentially conflicting selective forces that shape the vls antigenic variation system in Borrelia burgdorferi

    PubMed Central

    Zhou, Wei; Brisson, Dustin

    2014-01-01

    Changing environmental conditions present an evolutionary challenge for all organisms. The environment of microbial pathogens, including the adaptive immune responses of the infected host, changes rapidly and is lethal to the pathogen lineages that cannot quickly adapt. The dynamic immune environment creates strong selective pressures favoring microbial pathogen lineages with antigenic variation systems that maximize the antigenic divergence among expressed antigenic variants. However, divergence among expressed antigens may be constrained by other molecular features such as the efficient expression of functional proteins. We computationally examined potential conflicting selection pressures on antigenic variation systems using the vls antigenic variation system in Borrelia burgdorferi as a model system. The vls system alters the sequence of the expressed antigen by recombining gene fragments from unexpressed but divergent cassettes into the expression site, vlsE. The in silico analysis of natural and altered cassettes from seven lineages in the B. burgdorferi sensu lato species complex revealed that sites that are polymorphic among unexpressed cassettes, as well as the insertion/deletion mutations, are organized to maximize divergence among the expressed antigens within the constraints of translational ability and high translational efficiency. This study provides empirical evidence that conflicting selection pressures on antigenic variation systems can limit the potential antigenic divergence in order to maintain proper molecular function. PMID:24837669

  20. STAMP: Sequence tag-based analysis of microbial population dynamics

    PubMed Central

    Abel, Sren; zur Wiesch, Pia Abel; Chang, Hsiao-Han; Davis, Brigid M.; Lipsitch, Marc; Waldor, Matthew K.

    2014-01-01

    We describe a new method (STAMP) for characterization of pathogen population dynamics during infection. STAMP analyzes the frequency changes of genetically barcoded organisms to quantify population bottlenecks and infer the founding population size. Analyses of intra-intestinal Vibrio cholerae revealed infection-stage and region-specific host barriers to infection, and unexpectedly showed V. cholerae migration counter to intestinal flow. STAMP provides a robust, widely applicable analytical framework for high confidence characterization of in vivo microbial dissemination. PMID:25599549

  1. Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria.

    PubMed

    Salazar, Nuria; Gueimonde, Miguel; Hernndez-Barranco, Ana Mara; Ruas-Madiedo, Patricia; de los Reyes-Gaviln, Clara G

    2008-08-01

    Eleven exopolysaccharides (EPS) isolated from different human intestinal Bifidobacterium strains were tested in fecal slurry batch cultures and compared with glucose and the prebiotic inulin for their abilities to act as fermentable substrates for intestinal bacteria. During incubation, the increases in levels of short-chain fatty acids (SCFA) were considerably more pronounced in cultures with EPS, glucose, and inulin than in controls without carbohydrates added, indicating that the substrates assayed were fermented by intestinal bacteria. Shifts in molar proportions of SCFA during incubation with EPS and inulin caused a decrease in the acetic acid-to-propionic acid ratio, a possible indicator of the hypolipidemic effect of prebiotics, with the lowest values for this parameter being obtained for EPS from the species Bifidobacterium longum and from Bifidobacterium pseudocatenulatum strain C52. This behavior was contrary to that found with glucose, a carbohydrate not considered to be a prebiotic and for which a clear increase of this ratio was obtained during incubation. Quantitative real-time PCR showed that EPS exerted a moderate bifidogenic effect, which was comparable to that of inulin for some polymers but which was lower than that found for glucose. PCR-denaturing gradient gel electrophoresis of 16S rRNA gene fragments using universal primers was employed to analyze microbial groups other than bifidobacteria. Changes in banding patterns during incubation with EPS indicated microbial rearrangements of Bacteroides and Escherichia coli relatives. Moreover, the use of EPS from B. pseudocatenulatum in fecal cultures from some individuals accounted for the prevalence of Desulfovibrio and Faecalibacterium prausnitzii, whereas incubation with EPS from B. longum supported populations close to Anaerostipes, Prevotella, and/or Oscillospira. Thus, EPS synthesized by intestinal bifidobacteria could act as fermentable substrates for microorganisms in the human gut environment, modifying interactions among intestinal populations. PMID:18539803

  2. Studies on antigenic competition

    PubMed Central

    Kim, Young Tai; Merrifield, Nancy; Zarchy, T.; Brody, N. I.; Siskind, G. W.

    1974-01-01

    The effect of antigenic competition on antibody affinity was studied using a haptenic system in guinea-pigs. A moderate depression in the amount of antibody formed, as a result of antigenic competition, had relatively little effect on affinity. Increasing the dose of the competing antigen resulted in a greater degree of competition. Under these conditions a large amount of low affinity antibody was produced by the animals while essentially no high affinity antibody was detectable. Thus, marked competition appeared to result in a failure to select for high affinity antibody synthesis. PMID:4854459

  3. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-03-19

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  4. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-05-15

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  5. Intestinal glucose metabolism revisited.

    PubMed

    Mithieux, Gilles; Gautier-Stein, Amandine

    2014-09-01

    It is long known that the gut can contribute to the control of glucose homeostasis via its high glucose utilization capacity. Recently, a novel function in intestinal glucose metabolism (gluconeogenesis) was described. The intestine notably contributes to about 20-25% of total endogenous glucose production during fasting. More importantly, intestinal gluconeogenesis is capable of regulating energy homeostasis through a communication with the brain. The periportal neural system senses glucose (produced by intestinal gluconeogenesis) in the portal vein walls, which sends a signal to the brain to modulate hunger sensations and whole body glucose homeostasis. Relating to the mechanism of glucose sensing, the role of the glucose receptor SGLT3 has been strongly suggested. Moreover, dietary proteins mobilize intestinal gluconeogenesis as a mandatory link between their detection in the portal vein and their effect of satiety. In the same manner, dietary soluble fibers exert their anti-obesity and anti-diabetic effects via the induction of intestinal gluconeogenesis. FFAR3 is a key neural receptor involved in the specific sensing of propionate to activate a gut-brain reflex arc triggering the induction of the gut gluconeogenic function. Lastly, intestinal gluconeogenesis might also be involved in the rapid metabolic improvements induced by gastric bypass surgeries of obesity. PMID:24969963

  6. Pediatric intestinal motility disorders

    PubMed Central

    Gfroerer, Stefan; Rolle, Udo

    2015-01-01

    Pediatric intestinal motility disorders affect many children and thus not only impose a significant impact on pediatric health care in general but also on the quality of life of the affected patient. Furthermore, some of these conditions might also have implications for adulthood. Pediatric intestinal motility disorders frequently present as chronic constipation in toddler age children. Most of these conditions are functional, meaning that constipation does not have an organic etiology, but in 5% of the cases, an underlying, clearly organic disorder can be identified. Patients with organic causes for intestinal motility disorders usually present in early infancy or even right after birth. The most striking clinical feature of children with severe intestinal motility disorders is the delayed passage of meconium in the newborn period. This sign is highly indicative of the presence of Hirschsprung disease (HD), which is the most frequent congenital disorder of intestinal motility. HD is a rare but important congenital disease and the most significant entity of pediatric intestinal motility disorders. The etiology and pathogenesis of HD have been extensively studied over the last several decades. A defect in neural crest derived cell migration has been proven as an underlying cause of HD, leading to an aganglionic distal end of the gut. Numerous basic science and clinical research related studies have been conducted to better diagnose and treat HD. Resection of the aganglionic bowel remains the gold standard for treatment of HD. Most recent studies show, at least experimentally, the possibility of a stem cell based therapy for HD. This editorial also includes rare causes of pediatric intestinal motility disorders such as hypoganglionosis, dysganglionosis, chronic intestinal pseudo-obstruction and ganglioneuromatosis in multiple endocrine metaplasia. Underlying organic pathologies are rare in pediatric intestinal motility disorders but must be recognized as early as possible. PMID:26361414

  7. Early life establishment of site-specific microbial communities in the gut

    PubMed Central

    Romano-Keeler, Joann; Moore, Daniel J; Wang, Chunlin; Brucker, Robert M; Fonnesbeck, Christopher; Slaughter, James C; Li, Haijing; Curran, Danielle P; Meng, Shufang; Correa, Hernan; Lovvorn III, Harold N; Tang, Yi-Wei; Bordenstein, Seth; George Jr, Alfred L; Weitkamp, Jörn-Hendrik

    2014-01-01

    Fecal sampling is widely utilized to define small intestinal tissue-level microbial communities in healthy and diseased newborns. However, this approach may lead to inaccurate assessments of disease or therapeutics in newborns because of the assumption that the taxa in the fecal microbiota are representative of the taxa present throughout the gastrointestinal tract. To assess the stratification of microbes in the newborn gut and to evaluate the probable shortcoming of fecal sampling in place of tissue sampling, we simultaneously compared intestinal mucosa and fecal microbial communities in 15 neonates undergoing intestinal resections. We report three key results. First, when the site of fecal and mucosal samples are further apart, their microbial communities are more distinct, as indicated by low mean Sørensen similarity indices for each patient's fecal and tissue microbiota. Second, two distinct niches (intestinal mucosa and fecal microbiota) are evident by principal component analyses, demonstrating the critical role of sample source in defining microbial composition. Finally, in contrast to adult studies, intestinal bacterial diversity was higher in tissue than in fecal samples. This study represents an unprecedented map of the infant microbiota from intestinal mucosa and establishes discernable biogeography throughout the neonatal gastrointestinal tract. Our results question the reliance on fecal microbiota as a proxy for the developing intestinal microbiota. Additionally, the robust intestinal tissue-level bacterial diversity we detected at these early ages may contribute to the maturation of mucosal immunity. PMID:24637795

  8. Antigen injection (image)

    MedlinePLUS

    Leprosy is caused by the organism Mycobacterium leprae . The leprosy test involves injection of an antigen just under ... if your body has a current or recent leprosy infection. The injection site is labeled and examined ...

  9. Microbial prevalence in domestic humidifiers.

    PubMed Central

    Burge, H A; Solomon, W R; Boise, J R

    1980-01-01

    The prevalence of viable thermophilic bacteria and actinomycetes and mesophilic fungi was examined in 145 samples from 110 domestic humidifiers. A total of 72 and 43% of furnace and console humidifier samples, respectively, contained viable thermophilic bacteria, whereas 60 and 72% of these samples produced mesophilic fungal growth. Thermophilic actinomycetes were recovered from seven humidifier samples. Efforts to detect thermophilic actinomycete antigens in 15 humidifier fluid samples were not successful. Antifoulants added to humidifier fluid reservoirs had no apparent effect on microbial frequency. Airborne microbial recoveries did not reflect patterns of humidifier contamination with respect to either kinds or numbers of microorganisms in 20 homes in which volumetric air samples were obtained during humidifier operation. PMID:7377779

  10. Host genotype, intestinal microbiota and inflammatory disorders.

    PubMed

    Olivares, Marta; Laparra, J Moisés; Sanz, Yolanda

    2013-01-01

    Intestinal microbiota may influence human physiology and disease risk due to the role it plays in mediating appropriate immune responses to harmful and innocuous antigens. Colonisation of the intestine in early life seems particularly important as it is the main environmental stimulus for immune system maturation. This is a dynamic process, which depends on both environmental and genetic factors. The pathogenesis of inflammatory bowel disease, such as Crohn's disease, involves genetic polymorphisms (e.g. CARD15/nucleotide-binding oligomerisation domain 2) related to an excessive inflammatory response to commensal microbiota and to its unbalanced composition. Atopic diseases have also been linked to imbalances in microbiota and to related genetic factors (e.g. TLR4 and CD14 genes), although these associations are still controversial. Research into the relationship between the genetic risk of developing celiac disease (human leukocyte antigen (HLA)-DQ2/DQ8) and the early colonisation process in infants at family risk of the disease has also reported that the HLA-DQ genotype could influence staphylococcal colonisation. Future observational studies considering both host genetics and microbiota could be critical in defining the complex host-microbe interactions and the respective role each plays in inflammatory disorders. PMID:23360883

  11. Recognition of Microbial Glycolipids by Natural Killer T Cells

    PubMed Central

    Zajonc, Dirk M.; Girardi, Enrico

    2015-01-01

    T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell recognition of glycolipids, with an emphasis on microbial glycolipids. PMID:26300885

  12. Disrupted Intestinal Microbiota and Intestinal Inflammation in Children with Cystic Fibrosis and Its Restoration with Lactobacillus GG: A Randomised Clinical Trial

    PubMed Central

    Bruzzese, Eugenia; Callegari, Maria Luisa; Raia, Valeria; Viscovo, Sara; Scotto, Riccardo; Ferrari, Susanna; Morelli, Lorenzo; Buccigrossi, Vittoria; Lo Vecchio, Andrea; Ruberto, Eliana; Guarino, Alfredo

    2014-01-01

    Background & Aims Intestinal inflammation is a hallmark of cystic fibrosis (CF). Administration of probiotics can reduce intestinal inflammation and the incidence of pulmonary exacerbations. We investigated the composition of intestinal microbiota in children with CF and analyzed its relationship with intestinal inflammation. We also investigated the microflora structure before and after Lactobacillus GG (LGG) administration in children with CF with and without antibiotic treatment. Methods The intestinal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE), real-time polymerase chain reaction (RT-PCR), and fluorescence in situ hybridization (FISH). Intestinal inflammation was assessed by measuring fecal calprotectin (CLP) and rectal nitric oxide (rNO) production in children with CF as compared with healthy controls. We then carried out a small double-blind randomized clinical trial with LGG. Results Twenty-two children with CF children were enrolled in the study (median age, 7 years; range, 2–9 years). Fecal CLP and rNO levels were higher in children with CF than in healthy controls (184±146 µg/g vs. 52±46 µg/g; 18±15 vs. 2.6±1.2 µmol/L NO2−, respectively; P<0.01). Compared with healthy controls, children with CF had significantly different intestinal microbial core structures. The levels of Eubacterium rectale, Bacteroides uniformis, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Faecalibacterium prausnitzii were reduced in children with CF. A similar but more extreme pattern was observed in children with CF who were taking antibiotics. LGG administration reduced fecal CLP and partially restored intestinal microbiota. There was a significant correlation between reduced microbial richness and intestinal inflammation. Conclusions CF causes qualitative and quantitative changes in intestinal microbiota, which may represent a novel therapeutic target in the treatment of CF. Administration of probiotics restored gut microbiota, supporting the efficacy of probiotics in reducing intestinal inflammation and pulmonary exacerbations. Trial Registration ClinicalTrials.gov NCT 01961661 PMID:24586292

  13. Mucosal vaccines based on the use of cholera toxin B subunit as immunogen and antigen carrier.

    PubMed

    Lebens, M; Holmgren, J

    1994-01-01

    Stimulation of strong mucosal IgA immune responses as a basis for vaccine-induced protection against various pathogens has proved difficult. Most soluble protein antigens administered either parenterally or oral-mucosally have given disappointing results. A notable exception in this regard are cholera toxin (CT) and, particularly in humans, its non-toxic B subunit pentamer moiety (CTB) both of which stimulate a strong intestinal IgA antibody response and long-lasting immunological memory. Based on this, CTB has become an important component in recently developed oral vaccines against cholera and diarrhea caused by enterotoxigenic E. coli. The strong immunogenicity of CT and CTB can to a large extent be explained by their ability to bind to receptors on the intestinal mucosal surface. This has promoted much recent interest in the use of CTB as an oral delivery carrier for other vaccine-relevant antigens. Oral administration of antigens coupled to CTB either chemically or genetically has in several systems been found to markedly potentiate both intestinal and extra-intestinal IgA immune responses against the CTB-coupled antigens and to elicit substantial circulating antibody responses. In contrast to CTB, CT also has strong adjuvant properties for stimulating mucosal IgA immune responses to unrelated, non-coupled antigens after oral co-immunization. This adjuvant activity appears to be closely linked to the A subunit-catalyzed ADP-ribosylating action of CT leading to enhanced cyclic AMP formation in the affected cells. PMID:7958476

  14. ANTIGENIC STUDIES OF CANDIDA

    PubMed Central

    Hasenclever, H. F.; Mitchell, William O.; Loewe, Joseph

    1961-01-01

    Hasenclever, H. F. (U. S. Public Health Service, Bethesda, Md.), William O. Mitchell, and Joseph Loewe. Antigenic studies of Candida. II. Antigenic relation of Candida albicans group A and group B to Candida stellatoidea and Candida tropicalis. J. Bacteriol. 82:574577. 1961.Previous work in our laboratory has shown the presence of two antigenic groups within the species Candida albicans. These groups have been designated as groups A and B. Subsequent studies have been conducted to show the antigenic relationship of these groups with Candida stellatoidea and Candida tropicalis. Antisera to two strains each of C. albicans group A, C. albicans group B, C. stellatoidea, and C. tropicalis were used in this investigation. Individual suspensions from each of nine strains of C. stellatoidea and from ten strains each of the other groups and species were used to test the agglutinative properties of unadsorbed and adsorbed antisera. Separate samples of antisera to each immunizing strain were reciprocally cross adsorbed with the other immunizing strains and tested for agglutination. The results indicated that C. albicans group A and C. tropicalis were antigenically identical and C. albicans group B and C. stellatoidea were antigenically indistinguishable. PMID:13905170

  15. Celiac disease: Autoimmunity in response to food antigen.

    PubMed

    Stamnaes, J; Sollid, L M

    2015-09-01

    Celiac disease (CD) is an increasingly common disease of the small intestine that occurs in genetically susceptible subjects by ingestion of cereal gluten proteins. Gluten is highly abundant in the modern diet and well tolerated by most individuals. In CD, however, an erroneous but highly specific, adaptive immune response is mounted toward certain parts of the gluten proteome. The resulting intestinal destruction is reversible and resolved upon removal of gluten from the diet. Post-translational modification (deamidation) of gluten peptides by transglutaminase 2 (TG2) is essential for the peptides to act as HLA-DQ-restricted T-cell antigens. Characteristically, deamidated gluten and the self-protein TG2 both become targets of highly disease specific B-cell responses. These antibodies share several peculiar characteristics despite being directed against vastly different antigens, which suggests a common mechanism of development. Importantly, no clear function has been ascribed to the antibodies and their contribution to disease may relate to their function as antigen receptors of the B cells rather than as soluble immunoglobulins. Adaptive immunity against gluten and TG2 appears not to be sufficient for establishment of the disease lesion, and it has been suggested that stress responses in the intestinal epithelium are essential for the development of full-blown disease and tissue damage. In this review we will summarize current concepts of the immune pathology of CD with particular focus on recent advances in our understanding of disease specific B-cell responses. PMID:26603490

  16. Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation

    PubMed Central

    Luettig, J; Rosenthal, R; Barmeyer, C; Schulzke, JD

    2015-01-01

    The epithelial tight junction determines the paracellular water and ion movement in the intestine and also prevents uptake of larger molecules, including antigens, in an uncontrolled manner. Claudin-2, one of the 27 mammalian claudins regulating that barrier function, forms a paracellular channel for small cations and water. It is typically expressed in leaky epithelia like proximal nephron and small intestine and provides a major pathway for the paracellular transport of sodium, potassium, and fluid. In intestinal inflammation (Crohn's disease, ulcerative colitis), immune-mediated diseases (celiac disease), and infections (HIV enteropathy), claudin-2 is upregulated in small and large intestine and contributes to diarrhea via a leak flux mechanism. In parallel to that upregulation, other epithelial and tight junctional features are altered and the luminal uptake of antigenic macromolecules is enhanced, for which claudin-2 may be partially responsible through induction of tight junction strand discontinuities. PMID:25838982

  17. Vasoactive intestinal peptide test

    MedlinePLUS

    Vasoactive intestinal polypeptide test ... or drink anything for 4 hours before the test. ... This test is used to confirm the presence of a VIPoma , a tumor that releases VIP. VIPoma's are extremely ...

  18. [Intestinal obstruction, an overview].

    PubMed

    Trilling, Bertrand; Girard, Edouard; Waroquet, Pierre Alexandre; Arvieux, Catherine

    2016-01-01

    Intestinal obstruction is a pathology commonly encountered in emergency and surgical departments. Its origin is usually mechanical, caused by obstruction of the digestive tract. It is a therapeutic emergency. Surgical treatment is required for the most severe cases. PMID:26743364

  19. The large intestine (image)

    MedlinePLUS

    ... or large bowel) is the last structure to process food, taking the undigestible matter from the small intestine, absorbing water from it and leaving the waste product called feces. Feces are expelled from the ...

  20. Analyzing Antigen Recognition by Natural Killer T Cells

    PubMed Central

    Zeissig, Sebastian; Olszak, Torsten; Melum, Espen; Blumberg, Richard S.

    2013-01-01

    Natural Killer T (NKT) cells are a subset of T lymphocytes that recognize a wide variety of lipid antigens presented by CD1 molecules. NKT cells exhibit rapid activation after recognition of cognate antigens, secrete abundant amounts of T helper (Th) 1, Th2, and Th17 cytokines within hours of activation and shape the immune response through subsequent activation of dendritic, NK, T and B cells. NKT cells therefore play central roles in antimicrobial and anticancer immunity and in modulation of various autoimmune disorders. Consequently, recent research has focused on the discovery of microbial and self-antigens involved in NKT cell activation. In this chapter, we discuss different strategies for studying antigen recognition by NKT cells including CD1d tetramer-based approaches and in vitro assays characterizing NKT cell activation in response to lipid antigen presentation. While toll-like receptor (TLR) agonists and cytokines such as IL-12 are critical for NKT cell activation in vivo, particularly in the context of microbial infection, methods for detection of TLR- and cytokine-dependent NKT cell activation will not be discussed in this section. PMID:23329514

  1. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota

    PubMed Central

    Cox, Laura M.; Cho, Ilseung; Young, Scott A.; Anderson, W. H. Kerr; Waters, Bartholomew J.; Hung, Shao-Ching; Gao, Zhan; Mahana, Douglas; Bihan, Monika; Alekseyenko, Alexander V.; Methé, Barbara A.; Blaser, Martin J.

    2013-01-01

    Diet influences host metabolism and intestinal microbiota; however, detailed understanding of this tripartite interaction is limited. To determine whether the nonfermentable fiber hydroxypropyl methylcellulose (HPMC) could alter the intestinal microbiota and whether such changes correlated with metabolic improvements, C57B/L6 mice were normalized to a high-fat diet (HFD), then either maintained on HFD (control), or switched to HFD supplemented with 10% HPMC, or a low-fat diet (LFD). Compared to control treatment, both LFD and HPMC reduced weight gain (11.8 and 5.7 g, respectively), plasma cholesterol (23.1 and 19.6%), and liver triglycerides (73.1 and 44.6%), and, as revealed by 454-pyrosequencing of the microbial 16S rRNA gene, decreased microbial α-diversity and differentially altered intestinal microbiota. Both LFD and HPMC increased intestinal Erysipelotrichaceae (7.3- and 12.4-fold) and decreased Lachnospiraceae (2.0- and 2.7-fold), while only HPMC increased Peptostreptococcaceae (3.4-fold) and decreased Ruminococcaceae (2.7-fold). Specific microorganisms were directly linked with weight change and metabolic parameters in HPMC and HFD mice, but not in LFD mice, indicating that the intestinal microbiota may play differing roles during the two dietary modulations. This work indicates that HPMC is a potential prebiotic fiber that influences intestinal microbiota and improves host metabolism.—Cox, L. M., Cho, I., Young, S. A., Kerr Anderson, W. H., Waters, B. J., Hung, S.-C., Gao, Z., Mahana, D., Bihan, M., Alekseyenko, A. V., Methé, B. A., Blaser, M. J. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota. PMID:23154883

  2. Construction of a potential bivalent vaccine strain: introduction of Shigella sonnei form I antigen genes into the galE Salmonella typhi Ty21a typhoid vaccine strain.

    PubMed

    Formal, S B; Baron, L S; Kopecko, D J; Washington, O; Powell, C; Life, C A

    1981-12-01

    Shigella sonnei, an intestinal pathogen, produces a characteristic form I cell surface antigen now known to be plasmid encoded. We considered that the GalE Salmonella typhi Ty21a oral vaccine strain, highly effective against typhoid, might be modified so as to be protective also against shigellosis due to S. sonnei. The plasmid responsible for form I antigen synthesis was therefore conjugally transferred to the galE S. typhi strain. Serological studies revealed that the derivative strain produces the form I antigen in addition to the normal S. typhi somatic antigens. Testing in mice demonstrated that the derivative form I galE S. typhi strain is protective against both S. sonnei and S. typhi challenges. These data suggest that the galE S. Ty21a oral vaccine strain, which presumably stimulates the local immune system in the intestine, may also serve as a useful carrier for other antigenic determinants to protect against different intestinal infections. PMID:6174449

  3. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum

    PubMed Central

    Hsieh, Chen-Yu; Osaka, Toshifumi; Moriyama, Eri; Date, Yasuhiro; Kikuchi, Jun; Tsuneda, Satoshi

    2015-01-01

    Epithelial barrier dysfunction has been implicated as one of the major contributors to the pathogenesis of inflammatory bowel disease. The increase in intestinal permeability allows the translocation of luminal antigens across the intestinal epithelium, leading to the exacerbation of colitis. Thus, therapies targeted at specifically restoring tight junction barrier function are thought to have great potential as an alternative or supplement to immunology-based therapies. In this study, we screened Bifidobacterium, Enterococcus, and Lactobacillus species for beneficial microbes to strengthen the intestinal epithelial barrier, using the human intestinal epithelial cell line (Caco-2) in an in vitro assay. Some Bifidobacterium and Lactobacillus species prevented epithelial barrier disruption induced by TNF-α, as assessed by measuring the transepithelial electrical resistance (TER). Furthermore, live Bifidobacterium species promoted wound repair in Caco-2 cell monolayers treated with TNF-α for 48 h. Time course 1H-NMR-based metabonomics of the culture supernatant revealed markedly enhanced production of acetate after 12 hours of coincubation of B. bifidum and Caco-2. An increase in TER was observed by the administration of acetate to TNF-α-treated Caco-2 monolayers. Interestingly, acetate-induced TER-enhancing effect in the coculture of B. bifidum and Caco-2 cells depends on the differentiation stage of the intestinal epithelial cells. These results suggest that Bifidobacterium species enhance intestinal epithelial barrier function via metabolites such as acetate. PMID:25780093

  4. Intestinal ascariasis at pediatric emergency room in a developed country.

    PubMed

    Umetsu, Shuichiro; Sogo, Tsuyoshi; Iwasawa, Kentaro; Kondo, Takeo; Tsunoda, Tomoyuki; Oikawa-Kawamoto, Manari; Komatsu, Haruki; Inui, Ayano; Fujisawa, Tomoo

    2014-10-14

    Ascaris lumbricoides infection is rare among children in developed countries. Although large numbers of adult Ascaris in the small intestine can cause various abdominal symptoms, this infection remains asymptomatic until the number of worms in the intestine considerably increases in most cases. Ascaris causing bilious vomiting suggesting ileus is rare, especially in developed countries. A 6-year-old boy who lived in Japan, presented with abdominal colic, bilious vomiting at the pediatric emergency room. He appeared pale, and had no abdominal distention, tenderness, palpable abdominal mass, or findings of dehydration. He experienced bilious vomiting again during a physical examination. Laboratory tests showed mild elevation of white blood cells and C-reactive protein levels. Antigens of adenovirus, rotavirus, and norovirus were not detected from his stool, and stool culture showed normal flora. Ultrasonography showed multiple, round-shaped structures within the small intestine, and a tubular structure in a longitudinal scan of the small intestine. Capsule endoscopy showed a moving worm of Ascaris in the jejunum. Intestinal ascariasis should be considered as a cause of bilious vomiting in children, even at the emergency room in industrial countries. Ultrasound examination and capsule endoscopy are useful for diagnosis of pediatric intestinal ascariasis. PMID:25320546

  5. Intestinal ascariasis at pediatric emergency room in a developed country

    PubMed Central

    Umetsu, Shuichiro; Sogo, Tsuyoshi; Iwasawa, Kentaro; Kondo, Takeo; Tsunoda, Tomoyuki; Oikawa-Kawamoto, Manari; Komatsu, Haruki; Inui, Ayano; Fujisawa, Tomoo

    2014-01-01

    Ascaris lumbricoides infection is rare among children in developed countries. Although large numbers of adult Ascaris in the small intestine can cause various abdominal symptoms, this infection remains asymptomatic until the number of worms in the intestine considerably increases in most cases. Ascaris causing bilious vomiting suggesting ileus is rare, especially in developed countries. A 6-year-old boy who lived in Japan, presented with abdominal colic, bilious vomiting at the pediatric emergency room. He appeared pale, and had no abdominal distention, tenderness, palpable abdominal mass, or findings of dehydration. He experienced bilious vomiting again during a physical examination. Laboratory tests showed mild elevation of white blood cells and C-reactive protein levels. Antigens of adenovirus, rotavirus, and norovirus were not detected from his stool, and stool culture showed normal flora. Ultrasonography showed multiple, round-shaped structures within the small intestine, and a tubular structure in a longitudinal scan of the small intestine. Capsule endoscopy showed a moving worm of Ascaris in the jejunum. Intestinal ascariasis should be considered as a cause of bilious vomiting in children, even at the emergency room in industrial countries. Ultrasound examination and capsule endoscopy are useful for diagnosis of pediatric intestinal ascariasis. PMID:25320546

  6. Intestinal Barrier Function: Molecular Regulation and Disease Pathogenesis

    PubMed Central

    Groschwitz, Katherine R.; Hogan, Simon P.

    2014-01-01

    The intestinal epithelium is a single-cell layer that constitutes the largest and most important barrier against the external environment. It acts as a selectively permeable barrier permitting the absorption of nutrients, electrolytes and water, while maintaining an effective defense against intraluminal toxins, antigens and enteric flora. The epithelium maintains its selective barrier function through the formation of complex protein-protein networks that mechanically link adjacent cells and seal the intercellular space. The protein networks connecting epithelial cells form three adhesive complexes: desmosomes, adherens junctions and tight junctions. These complexes consist of transmembrane proteins that interact extracellularly with adjacent cells and intracellularly with adaptor proteins that link to the cytoskeleton. Over the past decade, there has been increasing recognition of an association between disrupted intestinal barrier function and the development of autoimmune and inflammatory diseases. In this review, we summarize the evolving understanding of the molecular composition and regulation of intestinal barrier function. We discuss the interactions between innate and adaptive immunity and intestinal epithelial barrier function, as well as the impact of exogenous factors on intestinal barrier function. Finally, we summarize clinical and experimental evidence demonstrating intestinal epithelial barrier dysfunction as a major factor contributing to the predisposition to inflammatory diseases including food allergy, inflammatory bowel diseases and celiac disease. PMID:19560575

  7. Claudins in intestines

    PubMed Central

    Lu, Zhe; Ding, Lei; Lu, Qun; Chen, Yan-Hua

    2013-01-01

    Intestines are organs that not only digest food and absorb nutrients, but also provide a defense barrier against pathogens and noxious agents ingested. Tight junctions (TJs) are the most apical component of the junctional complex, providing one form of cell-cell adhesion in enterocytes and playing a critical role in regulating paracellular barrier permeability. Alteration of TJs leads to a number of pathophysiological diseases causing malabsorption of nutrition and intestinal structure disruption, which may even contribute to systemic organ failure. Claudins are the major structural and functional components of TJs with at least 24 members in mammals. Claudins have distinct charge-selectivity, either by tightening the paracellular pathway or functioning as paracellular channels, regulating ions and small molecules passing through the paracellular pathway. In this review, we have discussed the functions of claudin family members, their distribution and localization in the intestinal tract of mammals, their alterations in intestine-related diseases and chemicals/agents that regulate the expression and localization of claudins as well as the intestinal permeability, which provide a therapeutic view for treating intestinal diseases. PMID:24478939

  8. Development of antigen-delivery systems, based on the Escherichia coli hemolysin secretion pathway.

    PubMed

    Gentschev, I; Mollenkopf, H; Sokolovic, Z; Hess, J; Kaufmann, S H; Goebel, W

    1996-11-01

    We describe the development of plasmid vectors carrying the expression sites, an hlyA cassette and the secretion genes of Escherichia coli hemolysin. These allow the synthesis and secretion of heterologous microbial antigens in E. coli and attenuated Salmonella aroA strains. Genes or gene fragments encoding microbial antigens are inserted in-frame into a residual part of the hlyA gene which essentially encodes the HlyA secretion signal (HlyAs). In general, the fused genes, carrying the hlyAs sequence at the 3' terminus, are efficiently expressed, and the synthesized antigens are secreted into the culture supernatant of the producing strain. Attenuated Salmonella strains synthesizing either HlyAs-fused listeriolysin or p60 of Listeria monocytogenes were constructed by this procedure and shown to provide protective immunity against L. monocytogenes in mice. The most effective protection was obtained when these microbial antigens were secreted by the attenuated Salmonella strains. We further present new approaches which may allow the application of this antigen-delivery system to any microbial antigen. PMID:8955639

  9. Autism spectrum disorders and intestinal microbiota.

    PubMed

    De Angelis, Maria; Francavilla, Ruggiero; Piccolo, Maria; De Giacomo, Andrea; Gobbetti, Marco

    2015-01-01

    Through extensive microbial-mammalian co-metabolism, the intestinal microbiota have evolved to exert a marked influence on health and disease via gut-brain-microbiota interactions. In this addendum, we summarize the findings of our recent study on the fecal microbiota and metabolomes of children with pervasive developmental disorder-not otherwise specified (PDD-NOS) or autism (AD) compared with healthy children (HC). Children with PDD-NOS or AD have altered fecal microbiota and metabolomes (including neurotransmitter molecules). We hypothesize that the degree of microbial alteration correlates with the severity of the disease since fecal microbiota and metabolomes alterations were higher in children with PDD-NOS and, especially, AD compared to HC. Our study indicates that the levels of free amino acids (FAA) and volatile organic compounds (VOC) differ in AD subjects compared to children with PDD-NOS, who are more similar to HC. Finally, we propose a new perspective on the implications for the interaction between intestinal microbiota and AD. PMID:25835343

  10. Hepatic and Intestinal Schistosomiasis: Review

    PubMed Central

    Elbaz, Tamer; Esmat, Gamal

    2013-01-01

    Schistosomiasis is an endemic disease in Egypt caused by the trematode Schistosoma which has different species. Hepatic schistosomiasis represents the best known form of chronic disease with a wide range of clinical manifestations. The pathogenesis of schistosomiasis is related to the host cellular immune response. This leads to granuloma formation and neo angiogenesis with subsequent periportal fibrosis manifested as portal hypertension, splenomegaly and esophageal varices. Intestinal schistosomiasis is another well identified form of chronic schistosomal affection. Egg deposition and granuloma formation eventually leads to acute then chronic schistosomal colitis and is commonly associated with polyp formation. It frequently presents as abdominal pain, diarrhea, tenesmus and anal pain. Definite diagnosis of schistosomiasis disease depends on microscopy and egg identification. Marked progress regarding serologic diagnosis occurred with development of recent PCR techniques that can confirm schistosomal affection at any stage. Many antischistosomal drugs have been described for treatment, praziquantel being the most safe and efficient drug. Still ongoing studies try to develop effective vaccines with identification of many target antigens. Preventive programs are highly needed to control the disease morbidity and to break the cycle of transmission. PMID:25685451

  11. Microbial Speciation.

    PubMed

    Shapiro, B Jesse; Polz, Martin F

    2015-10-01

    What are species? How do they arise? These questions are not easy to answer and have been particularly controversial in microbiology. Yet, for those microbiologists studying environmental questions or dealing with clinical issues, the ability to name and recognize species, widely considered the fundamental units of ecology, can be practically useful. On a more fundamental level, the speciation problem, the focus here, is more mechanistic and conceptual. What is the origin of microbial species, and what evolutionary and ecological mechanisms keep them separate once they begin to diverge? To what extent are these mechanisms universal across diverse types of microbes, and more broadly across the entire the tree of life? Here, we propose that microbial speciation must be viewed in light of gene flow, which defines units of genetic similarity, and of natural selection, which defines units of phenotype and ecological function. We discuss to what extent ecological and genetic units overlap to form cohesive populations in the wild, based on recent evolutionary modeling and population genomics studies. These studies suggest a continuous "speciation spectrum," which microbial populations traverse in different ways depending on their balance of gene flow and natural selection. PMID:26354896

  12. Microbial endocrinology

    PubMed Central

    Lyte, Mark

    2014-01-01

    The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior. PMID:24690573

  13. Microbial-immune cross-talk and regulation of the immune system.

    PubMed

    Cahenzli, Julia; Balmer, Maria L; McCoy, Kathy D

    2013-01-01

    We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function. PMID:22804726

  14. Archaeosomes with encapsulated antigens for oral vaccine delivery.

    PubMed

    Li, Zhengrong; Zhang, Lihui; Sun, Wenqiang; Ding, Qian; Hou, Yongtai; Xu, Yuhong

    2011-07-18

    Traditional phosphodiester lipid vesicles (liposomes) are not stable and could be easily degraded in the gastrointestinal (GI) tract. We prepared a novel lipid based oral delivery system: archaeosomes, made of the polar lipid fraction E (PLFE) extracted from Sulfolobus acidocaldarius, and tested their immunogenic potentials as oral vaccine delivery vehicles. Our study showed that the archaeosomes had significant superior stability in simulated gastric and intestinal fluids, and would help fluorescent labeled antigens to reside longer time in the GI tract after oral administration. The resulted immune responses against model antigen ovalbumin (OVA) were greatly improved, eliciting substantial IgG response systemically as well as IgA response mucosally. In addition, the archaeosomes also facilitated antigen specific CD8(+) T cell proliferation. These data indicate that archaeosomes may be a potential vaccine carrier and adjuvant for effective oral immunization. PMID:21609747

  15. PTPN2 controls differentiation of CD4⁺ T cells and limits intestinal inflammation and intestinal dysbiosis.

    PubMed

    Spalinger, M R; Kasper, S; Chassard, C; Raselli, T; Frey-Wagner, I; Gottier, C; Lang, S; Atrott, K; Vavricka, S R; Mair, F; Becher, B; Lacroix, C; Fried, M; Rogler, G; Scharl, M

    2015-07-01

    Loss-of-function variants within the gene locus encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) are associated with increased risk for Crohn's disease (CD). A disturbed regulation of T helper (Th) cell responses causing loss of tolerance against self- or commensal-derived antigens and an altered intestinal microbiota plays a pivotal role in CD pathogenesis. Loss of PTPN2 in the T-cell compartment causes enhanced induction of Th1 and Th17 cells, but impaired induction of regulatory T cells (Tregs) in several mouse colitis models, namely acute and chronic dextran sodium sulfate colitis, and T-cell transfer colitis models. This results in increased susceptibility to intestinal inflammation and intestinal dysbiosis which is comparable with that observed in CD patients. We detected inflammatory infiltrates in liver, kidney, and skin and elevated autoantibody levels indicating systemic loss of tolerance in PTPN2-deficient animals. CD patients featuring a loss-of-function PTPN2 variant exhibit enhanced Th1 and Th17 cell, but reduced Treg markers when compared with PTPN2 wild-type patients in serum and intestinal tissue samples. Our data demonstrate that dysfunction of PTPN2 results in aberrant T-cell differentiation and intestinal dysbiosis similar to those observed in human CD. Our findings indicate a novel and crucial role for PTPN2 in chronic intestinal inflammation. PMID:25492475

  16. Suppression of intestinal immunity through silencing of TCTP by RNAi in transgenic silkworm, Bombyx mori.

    PubMed

    Hu, Cuimei; Wang, Fei; Ma, Sanyuan; Li, Xianyang; Song, Liang; Hua, Xiaoting; Xia, Qingyou

    2015-12-10

    Intestinal immune response is a front line of host defense. The host factors that participate in intestinal immunity response remain largely unknown. We recently reported that Translationally Controlled Tumor Protein (BmTCTP) was obtained by constructing a phage display cDNA library of the silkworm midgut and carrying out high throughput screening of pathogen binding molecules. To further address the function of BmTCTP in silkworm intestinal immunity, transgenic RNAi silkworms were constructed by microinjection piggBac plasmid to Dazao embryos. The antimicrobial capacity of transgenic silkworm decreased since the expression of gut antimicrobial peptide from transgenic silkworm was not sufficiently induced during oral microbial challenge. Moreover, dynamic ERK phosphorylation from transgenic silkworm midgut was disrupted. Taken together, the innate immunity of intestinal was suppressed through disruption of dynamic ERK phosphorylation after oral microbial infection as a result of RNAi-mediated knockdown of midgut TCTP in transgenic silkworm. PMID:26302749

  17. The Intestinal Microbiome in Bariatric Surgery Patients.

    PubMed

    Peat, Christine M; Kleiman, Susan C; Bulik, Cynthia M; Carroll, Ian M

    2015-11-01

    With nearly 39% of the worldwide adult population classified as obese, much of the globe is facing a serious public health challenge. Increasing rates of obesity, coupled with the failure of many behavioural and pharmacological interventions, have contributed to a rise in popularity of bariatric surgery as a treatment for obesity. Surgery-mediated weight loss was initially thought to be a direct result of mechanical alterations causing restriction and calorie malabsorption. However, the mounting evidence suggests that indirect factors influence the accumulation and storage of fat in patients that have undergone this procedure. Given the established impact the intestinal microbiota has on adiposity, it is likely that this complex enteric microbial community contributes to surgery-mediated weight loss and maintenance of weight loss postsurgery. In this review, we discuss the physiological and psychological traits exhibited by bariatric surgery candidates that can be influenced by the intestinal microbiota. Additionally, we detail the studies that investigated the impact of bariatric surgery on the intestinal microbiota in humans and mouse models of this procedure. Copyright 2015 John Wiley & Sons, Ltd and Eating Disorders Association. PMID:26426680

  18. Intestinal inflammation targets cancer-inducing activity of the microbiota.

    PubMed

    Arthur, Janelle C; Perez-Chanona, Ernesto; Mhlbauer, Marcus; Tomkovich, Sarah; Uronis, Joshua M; Fan, Ting-Jia; Campbell, Barry J; Abujamel, Turki; Dogan, Belgin; Rogers, Arlin B; Rhodes, Jonathan M; Stintzi, Alain; Simpson, Kenneth W; Hansen, Jonathan J; Keku, Temitope O; Fodor, Anthony A; Jobin, Christian

    2012-10-01

    Inflammation alters host physiology to promote cancer, as seen in colitis-associated colorectal cancer (CRC). Here, we identify the intestinal microbiota as a target of inflammation that affects the progression of CRC. High-throughput sequencing revealed that inflammation modifies gut microbial composition in colitis-susceptible interleukin-10-deficient (Il10(-/-)) mice. Monocolonization with the commensal Escherichia coli NC101 promoted invasive carcinoma in azoxymethane (AOM)-treated Il10(-/-) mice. Deletion of the polyketide synthase (pks) genotoxic island from E. coli NC101 decreased tumor multiplicity and invasion in AOM/Il10(-/-) mice, without altering intestinal inflammation. Mucosa-associated pks(+) E. coli were found in a significantly high percentage of inflammatory bowel disease and CRC patients. This suggests that in mice, colitis can promote tumorigenesis by altering microbial composition and inducing the expansion of microorganisms with genotoxic capabilities. PMID:22903521

  19. Intestinal mucosal defense system, Part 2. Probiotics and prebiotics.

    PubMed

    Murgua-Peniche, Teresa; Mihatsch, Walter A; Zegarra, Jaime; Supapannachart, Sarayut; Ding, Zong-Yi; Neu, Josef

    2013-03-01

    The interplay between microorganisms and the intestine of newborn infants is associated with diverse functional and clinical outcomes that result from the specific interactions among microbial communities, their products, and the unique characteristics of the gastrointestinal tract. Multiple mechanisms of action for infant formula ingredients with probiotic activity appear to exist. These mechanisms are thought to protect the host not only from intestinal diseases but also from systemic infection. However, questions about the safety of probiotics for preterm infants remain unanswered, particularly with regard to sepsis, immunomodulatory effects, and microbial resistance. Few well-designed studies have been conducted to evaluate the effects of probiotic, prebiotic, and synbiotic ingredients on relevant clinical outcomes in preterm infants. Although existing data are encouraging, there is insufficient evidence to recommend the routine use of these ingredients in all preterm infants. PMID:23445850

  20. Meta'omic analytic techniques for studying the intestinal microbiome.

    PubMed

    Morgan, Xochitl C; Huttenhower, Curtis

    2014-05-01

    Nucleotide sequencing has become increasingly common and affordable, and is now a vital tool for studies of the human microbiome. Comprehensive microbial community surveys such as MetaHit and the Human Microbiome Project have described the composition and molecular functional profile of the healthy (normal) intestinal microbiome. This knowledge will increase our ability to analyze host and microbial DNA (genome) and RNA (transcriptome) sequences. Bioinformatic and statistical tools then can be used to identify dysbioses that might cause disease, and potential treatments. Analyses that identify perturbations in specific molecules can leverage thousands of culture-based isolate genomes to contextualize culture-independent sequences, or may integrate sequence data with whole-community functional assays such as metaproteomic or metabolomic analyses. We review the state of available systems-level models for studies of the intestinal microbiome, along with analytic techniques and tools that can be used to determine its functional capabilities in healthy and unhealthy individuals. PMID:24486053

  1. [Volvulus of the small intestine].

    PubMed

    Ivanov, A; Viiachki, I; Iar?mov, N; Viiachki, D; Gerzilov, P; Parunev, M

    1997-01-01

    Volvulus of the small intestine is a condition of bowel obstruction due to knotting and twisting of the small intestine. Two types of volvulus are described: 1) primary small intestinal volvulus where no predisposing factors exist, and 2) secondary volvulus where congenital or acquired conditions promote twisting of the small intestine. Over a 5-year period, 18 patients (eleven men and seven women) presenting volvulus of the small intestine are operated in the Emergency Surgery Clinic of the University Hospital "Queen Giovanna", representing 8.7 per cent of the total of 206 cases of small intestinal mechanical ileus (incarcerated herniations involving the small intestine are not included in the series). Primary volvulus is found in one patient. In those presenting secondary volvulus adhesions are the commonest underlying cause of small intestinal rotation--13 cases, next ranking primary tumor of the small intestine--one case, Meckel's diverticulum--one, carcinosis of peritoneum--one, and one patient with small intestine volvulation around colostomy. The most frequently encountered symptoms and laboratory examinations performed are analyzed. Intestinal necrosis is established in four instances (22 per cent). One patient dies of peritonitis and polyorganic insufficiency. Volvulus of the small intestine should be mandatorily considered in patients presenting mechanical ileus of the small intestine. Early operative intervention is a therapeutic approach contributing to preclude intestinal necrosis. PMID:9739871

  2. Pathways of Antigen Processing

    PubMed Central

    Blum, Janice S.; Wearsch, Pamela A.; Cresswell, Peter

    2014-01-01

    T cell recognition of antigen presenting cells depends on their expression of a spectrum of peptides bound to Major Histocompatibility Complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced. PMID:23298205

  3. Cancer vaccine--Antigenics.

    PubMed

    2002-01-01

    Antigenics is developing a therapeutic cancer vaccine based on heat-shock proteins (HSPs). The vaccine [HSPPC-96, Oncophage] is in a pivotal phase III clinical trial for renal cancer at 80 clinical sites worldwide. The trial is enrolling at least 500 patients who are randomised to receive surgical removal of the primary tumour followed by out-patient treatment with Oncophage((R)) or surgery only. This study was initiated on the basis of results from a pilot phase I/II study and preliminary results from a phase II study in patients with renal cell cancer. In October 2001, Oncophage was designated as a fast-track product by the Food and Drug Administration in the US for the treatment of renal cell carcinoma. Oncophage is in phase I/II trials in Italy for colorectal cancer (30 patients) and melanoma. The trials in Italy are being conducted at the Istituto dei Tumouri, Milan (in association with Sigma-Tau). Preliminary data from the phase II trial for melanoma was presented at the AACR-NCI-EORTC International Conference in Florida, USA, in October 2001. Oncophage is also in a phase I/II (42 patients) and a phase II trial (84 patients) in the US for renal cell cancer, a phase II trial in the US for non-Hodgkin's lymphoma (35 patients), a phase II trial in the US for sarcoma (20-35 patients), a phase I/II trial in the US for melanoma (36 patients), and phase I/II trials in Germany for gastric (30 patients) and pancreatic cancers. A pilot phase I trial in patients with pancreatic cancer began in the US in 1997 with 5 patients enrolled. In November 2000, Antigenics announced that this trial had been expanded to a phase I/II study which would now include survival as an endpoint and would enroll 5 additional patients. The US trials are being performed at Memorial Sloan-Kettering Cancer Center and the M.D. Anderson Cancer Center. The trials in Germany are being carried out at Johannes Gutenberg-University Hospital, Mainz. Oncophage is an autologous vaccine consisting of purified complexes of tumour-derived HSPs linked to tumour antigen peptides. When these HSPPC are readministered to a patient following surgery or biopsy of the tumour, the antigenic tumour peptides are expressed on the surface of potent antigen-presenting cells of the immune system, such as macrophages and dendritic cells. This stimulates a much more powerful anti-tumour immune response than that generated by expression of the same antigens by the tumour cell. Thus, Antigenics autologous HSP technology is attractive because it is highly specific for individual patients and circumvents the need for identification of specific antigens for individual cancers (i.e. it does not require definition of the antigenic epitopes on cancer cells) and it overcomes the immune tolerance associated with various tumours. Oncophage is manufactured in a 10-hour process from surgically resected autologous tumour. A minimum of 1-3g of tumour tissue is required to produce enough Oncophage for a course of treatment. The major limiting factor for producing Oncophage from a particular cancer is the ability to purify HSP from that cancer. From clinical studies to date, Antigenics has been able to produce HSP from 100, 98, 90, 71 and 30% of colorectal carcinoma, renal cell carcinoma, melanoma, gastric cancer and pancreatic cancer tumours, respectively. The low success rate with pancreatic cancers is because of the high concentration of proteases in that tissue type. HSPs are a family of highly conserved proteins present in the cells of all organisms. They function as molecular chaperones, assisting the correct folding of polypeptides and aiding intracellular protein transport. In addition, HSPs associate with a broad range of peptides derived from intracellular protein degradation, including antigenic peptides produced in tumour cells. Antigenics has exclusively licensed worldwide rights to its HSP immunotherapeutic complexes from Mount Sinai School of Medicine and Fordham University in the USA. On 3 November 1998, Antigenics was issued a US patent (5,830,464) covering immunotherapy in which antigen-presenting cells are isolated and mixed with heat shock protein-antigen complexes purified from patients' tumours. The patent was issued to Fordham University, New York, US, who subsequently licensed it to Antigenics. Antigenics has an agreement with Sigma Tau, under the terms of which the latter company will fund 2 clinical trials in return for an option to market Oncophage in Italy, Portugal, Spain and Switzerland. Antigenics also has an agreement with Medison for marketing of Oncophage in Israel. PMID:11909004

  4. Microbial biotechnology.

    PubMed

    Demain, A L

    2000-01-01

    For thousands of years, microorganisms have been used to supply products such as bread, beer and wine. A second phase of traditional microbial biotechnology began during World War I and resulted in the development of the acetone-butanol and glycerol fermentations, followed by processes yielding, for example, citric acid, vitamins and antibiotics. In the early 1970s, traditional industrial microbiology was merged with molecular biology to yield more than 40 biopharmaceutical products, such as erythropoietin, human growth hormone and interferons. Today, microbiology is a major participant in global industry, especially in the pharmaceutical, food and chemical industries. PMID:10631778

  5. Microbial Metabolomics

    PubMed Central

    Tang, Jane

    2011-01-01

    Microbial metabolomics constitutes an integrated component of systems biology. By studying the complete set of metabolites within a microorganism and monitoring the global outcome of interactions between its development processes and the environment, metabolomics can potentially provide a more accurate snap shot of the actual physiological state of the cell. Recent advancement of technologies and post-genomic developments enable the study and analysis of metabolome. This unique contribution resulted in many scientific disciplines incorporating metabolomics as one of their “omics” platforms. This review focuses on metabolomics in microorganisms and utilizes selected topics to illustrate its impact on the understanding of systems microbiology. PMID:22379393

  6. Intestinal microbiota during early life - impact on health and disease.

    PubMed

    Nylund, Lotta; Satokari, Reetta; Salminen, Seppo; de Vos, Willem M

    2014-11-01

    In the first years after birth, the intestinal microbiota develops rapidly both in diversity and complexity while being relatively stable in healthy adults. Different life-style-related factors as well as medical practices have an influence on the early-life intestinal colonisation. We address the impact of some of these factors on the consecutive microbiota development and later health. An overview is presented of the microbial colonisation steps and the role of the host in that process. Moreover, new early biomarkers are discussed with examples that include the association of microbiota and atopic diseases, the correlation of colic and early development and the impact of the use of antibiotics in early life. Our understanding of the development and function of the intestinal microbiota is constantly improving but the long-term influence of early-life microbiota on later life health deserves careful clinical studies. PMID:24902044

  7. Intestinal microbiota and its relationship with necrotizing enterocolitis.

    PubMed

    Patel, Ravi Mangal; Denning, Patricia W

    2015-09-01

    Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in infants born prematurely. After birth, the neonatal gut must acquire a healthy complement of commensal bacteria. Disruption or delay of this critical process, leading to deficient or abnormal microbial colonization of the gut, has been implicated as key risk factor in the pathogenesis of NEC. Conversely, a beneficial complement of commensal intestinal microbiota may protect the immature gut from inflammation and injury. Interventions aimed at providing or restoring a healthy complement of commensal bacteria, such as probiotic therapy, are currently the most promising treatment to prevent NEC. Shifting the balance of intestinal microbiota from a pathogenic to protective complement of bacteria can protect the gut from inflammation and subsequent injury that leads to NEC. Herein, we review the relationship of intestinal microbiota and NEC in preterm infants. PMID:25992911

  8. Manipulation of the Intestinal Microbiome in Newborn Infants12

    PubMed Central

    Cacho, Nicole; Neu, Josef

    2014-01-01

    The mammalian gastrointestinal tract harbors a highly diverse microbial population termed the microbiome, which plays a major role in nutrition, metabolism, protection against pathogens, and development of the immune system. It is estimated that at least 1000 different bacterial species cohabit the human intestinal tract. Herein we provide a brief review of the developing intestinal microbiome, with the understanding that its development often begins before birth and that disturbance in the microbiome during fetal life, birth, and shortly thereafter may result in adverse consequences. Postnatally, numerous environmental factors including premature delivery, mode of delivery, antibiotic usage, and diet can play an important role in how the intestinal microbiome of infants is shaped. The fact that human milk contains microbes is likely to have important ramifications. We discuss where these microbes come from and their potential role. PMID:24425730

  9. Immune Responses to Intestinal Microbes in Inflammatory Bowel Diseases.

    PubMed

    Hansen, Jonathan J

    2015-10-01

    Inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, are characterized by chronic, T-cell-mediated inflammation of the gastrointestinal tract that can cause significant, lifelong morbidity. Data from both human and animal studies indicate that IBDs are likely caused by dysregulated immune responses to resident intestinal microbes. Certain products from mycobacteria, fungi, and Clostridia stimulate increased effector T cell responses during intestinal inflammation, whereas other bacterial products from Clostridia and Bacteroides promote anti-inflammatory regulatory T cell responses. Antibody responses to bacterial and fungal components may help predict the severity of IBDs. While most currently approved treatments for IBDs generally suppress the patient's immune system, our growing understanding of microbial influences in IBDs will likely lead to the development of new diagnostic tools and therapies that target the intestinal microbiota. PMID:26306907

  10. Intestinal Microbiota and Its Relationship with Necrotizing Enterocolitis

    PubMed Central

    Patel, Ravi Mangal; Denning, Patricia W.

    2015-01-01

    Necrotizing enterocolitis is a leading cause of morbidity and mortality in infants born prematurely. After birth, the neonatal gut must acquire a healthy complement of commensal bacteria. Disruption or delay of this critical process, leading to deficient or abnormal microbial colonization of the gut, has been implicated as key risk factor in the pathogenesis of NEC. Conversely, a beneficial complement of commensal intestinal microbiota may protect the immature gut from inflammation and injury. Interventions aimed at providing or restoring a healthy complement of commensal bacteria, such as probiotic therapy, are currently the most promising treatment to prevent NEC. Shifting the balance of intestinal microbiota from a pathogenic to protective complement of bacteria can protect the gut from inflammation and subsequent injury that leads to NEC. Herein, we review the relationship of intestinal microbiota and NEC in preterm infants. PMID:25992911

  11. Intestinal Malrotation: A Rare Cause of Small Intestinal Obstruction

    PubMed Central

    Sipahi, Mesut; Caglayan, Kasim; Arslan, Ergin; Erkoc, Mustafa Fatih; Aytekin, Faruk Onder

    2014-01-01

    Background. The diagnosis of intestinal malrotation is established by the age of 1 year in most cases, and the condition is seldom seen in adults. In this paper, a patient with small intestinal malrotation-type intraperitoneal hernia who underwent surgery at an older age because of intestinal obstruction is presented. Case. A 73-year-old patient who presented with acute intestinal obstruction underwent surgery as treatment. Distended jejunum and ileum loops surrounded by a peritoneal sac and located between the stomach and transverse colon were determined. The terminal ileum had entered into the transverse mesocolon from the right lower part, resulting in kinking and subsequent segmentary obstruction. The obstruction was relieved, and the small intestines were placed into their normal position in the abdominal cavity. Conclusion. Small intestinal malrotations are rare causes of intestinal obstructions in adults. The appropriate treatment in these patients is placement of the intestines in their normal positions. PMID:25371842

  12. Regulation of Intestinal Immune Responses through TLR Activation: Implications for Pro- and Prebiotics

    PubMed Central

    de Kivit, Sander; Tobin, Mary C.; Forsyth, Christopher B.; Keshavarzian, Ali; Landay, Alan L.

    2014-01-01

    The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs) are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC) and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g., inflammatory bowel disease), irritable bowel syndrome (IBS), allergic gastroenteritis (e.g., eosinophilic gastroenteritis and allergic IBS), and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLRs play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation. PMID:24600450

  13. Regulation of Intestinal Immune Responses through TLR Activation: Implications for Pro- and Prebiotics.

    PubMed

    de Kivit, Sander; Tobin, Mary C; Forsyth, Christopher B; Keshavarzian, Ali; Landay, Alan L

    2014-01-01

    The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs) are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC) and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g., inflammatory bowel disease), irritable bowel syndrome (IBS), allergic gastroenteritis (e.g., eosinophilic gastroenteritis and allergic IBS), and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLRs play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation. PMID:24600450

  14. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary ?-glucan supplementation.

    PubMed

    Yang, Gang; Xu, Zhenjiang; Tian, Xiangli; Dong, Shuanglin; Peng, Mo

    2015-02-27

    ?-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without ?-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the ?-glucan group. Dietary ?-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary ?-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary ?-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-?B signaling pathway, probably through modulating the balance of intestinal microbiota. PMID:25640843

  15. Neonatal intestinal lactase activity.

    PubMed

    Weaver, L T; Laker, M F; Nelson, R

    1986-09-01

    The sequential changes in intestinal lactase activity of 40 neonates were measured indirectly from the differential uptake and excretion of lactose and the non-metabolisable disaccharide lactulose contained in formula feeds. A daily decline in urinary lactose:lactulose excretion ratios, reflecting a rise in intestinal lactase activity, followed formula feeding. Percentage decline was related directly to gestation: full term infants displayed a fivefold greater decline in lactosuria than infants with a gestation of 28 weeks during the first 10 days of milk feeding. The difference between lactose:lactulose ingestion and excretion ratios suggests that within five days of starting feeds intestinal hydrolysis of lactose exceeds 98% efficiency, even in very preterm infants. PMID:3094461

  16. Classification of intestine polyps

    NASA Astrophysics Data System (ADS)

    Chou, Shih-Chen; Fuh, Chiou-Shann; Shieh, Ming J.

    1998-06-01

    In this paper, we present a method to classify hyperplastic and adenomatous polyps of large intestine semiautomatically. First, doctors locate the contour of the original polyp images by using other software package. We determine if there are gores on the polyp by using modified Sobel operator on eliminating specular reflection pixels of original color images. We then get the polyp's texture by summing the gradient magnitude of pixels within the polyps. After detecting the actual contour of the polyps, we can determined if the polyp's contour is obvious or not (i.e. if the polyp bulges smoothly or not). We then observe whether the polyp's color is redder than or whiter than its neighbors. Finally, we classify the polyp of the intestine by applying the above steps. The flow chart of classification is as shown. We apply our method on 77 color images with polyps of the intestine and compare the results with a doctor's diagnosis.

  17. The intestinal epithelium as guardian of gut barrier integrity.

    PubMed

    Zhang, Kaiyi; Hornef, Mathias W; Dupont, Aline

    2015-11-01

    A single layer of epithelial cells separates the intestinal lumen from the underlying sterile tissue. It is exposed to a multitude of nutrients and a large number of commensal bacteria. Although the presence of commensal bacteria significantly contributes to nutrient digestion, vitamin synthesis and tissue maturation, their high number represents a permanent challenge to the integrity of the epithelial surface keeping the local immune system constantly on alert. In addition, the intestinal mucosa is challenged by a variety of enteropathogenic microorganisms. In both circumstances, the epithelium actively contributes to maintaining host-microbial homeostasis and antimicrobial host defence. It deploys a variety of mechanisms to restrict the presence of commensal bacteria to the intestinal lumen and to prevent translocation of commensal and pathogenic microorganisms to the underlying tissue. Enteropathogenic microorganisms in turn have learnt to evade the host's immune system and circumvent the antimicrobial host response. In the present article, we review recent advances that illustrate the intense and intimate host-microbial interaction at the epithelial level and improve our understanding of the mechanisms that maintain the integrity of the intestinal epithelial barrier. PMID:26294173

  18. Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon.

    PubMed

    Holben, Wiliam E; Williams, Paul; Gilbert, Michael A; Saarinen, Markku; Srkilahti, Laura K; Apajalahti, Juha H A

    2002-08-01

    All studies of the microbial community of the gastrointestinal tract of salmon to date have employed culture-based approaches, typically on pond- or tank-raised, freshwater animals. We present a phylogenetic survey of the bacterial populations present in the distal intestine of salmon from three different marine locations in Europe. This was accomplished through PCR amplification, cloning, and sequencing of partial 16S rDNA genes from microbial community DNA isolated from the contents of the GI tract distal to the pyloric ceca. Using this approach, the intestinal microbial communities of wild salmon from Scotland and pen-raised salmon from Scotland and Norway were compared. The predominating bacterial populations detected were Acinetobacter junii and a novel Mycoplasma phylotype. This Mycoplasma phylotype apparently comprised approximately 96% of the total microbes in the distal intestine of wild salmon. Substantial differences in intestinal microbial community composition and diversity were observed between the two groups of pen-raised salmon, which, in addition to geographical separation, were raised on different feeds. The microbial profiles found in this study were substantially different from those indicated in earlier culture-based studies for several species of fish, presumably because of the culture-independent techniques employed. Further, analysis of short-chain fatty acids in the digestive tract indicated that the decreasing redox gradient from proximal to distal reaches common to homeothermic animals was absent in salmon, and that the bacterial fermentation levels were much lower than are reported in homeothermic animals. PMID:12082453

  19. Release of mycobacterial antigens.

    PubMed

    Majlessi, Laleh; Prados-Rosales, Rafael; Casadevall, Arturo; Brosch, Roland

    2015-03-01

    Mycobacterium tuberculosis has evolved from a Mycobacterium canettii-like progenitor pool into one of the most successful and widespread human pathogens. The pathogenicity of M. tuberculosis is linked to its ability to secrete/export/release selected mycobacterial proteins, and it is also established that active release of mycobacterial antigens is a prerequisite for strong immune recognition. Recent research has enabled mycobacterial secretion systems and vesicle-based release of mycobacterial antigens to be elucidated, which together with host-related specificities constitute key variables that determine the outcome of infection. Here, we discuss recently discovered, novel aspects on the nature and the regulation of antigen release of the tuberculosis agent with particular emphasis on the biological characterization of mycobacteria-specific ESX/type VII secretion systems and their secreted proteins, belonging to the Esx, PE, and PPE categories. The importance of specific mycobacterial antigen release is probably best exemplified by the striking differences observed between the cellular events during infection with the ESX-1-deficient, attenuated Mycobacterium bovis BCG compared to the virulent M. tuberculosis, which are clearly important for design of more specific diagnostics and more efficient vaccines. PMID:25703550

  20. Antigen detection systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissue using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular methodology is chosen ...

  1. Antigen detection systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissues or other specimens, using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular m...

  2. Antigen smuggling in tuberculosis.

    PubMed

    Hudrisier, Denis; Neyrolles, Olivier

    2014-06-11

    The importance of CD4 T lymphocytes in immunity to M. tuberculosis is well established; however, how dendritic cells activate T cells in vivo remains obscure. In this issue of Cell Host & Microbe, Srivastava and Ernst (2014) report a mechanism of antigen transfer for efficient activation of antimycobacterial T cells. PMID:24922567

  3. The antigenicity of chondrocytes.

    PubMed Central

    Gertzbein, S D; Tait, J H; Devlin, S R; Argue, S

    1977-01-01

    Stimulation in vitro of allogeneic and syngeneic mixed lymphocyte cultures suggests the presence of differentiation antigens on the surface of the chondrocyte. This may provide part of the answer to the nature of the chronicity of certain arthritic processes. PMID:194833

  4. How Is Small Intestine Adenocarcinoma Staged?

    MedlinePLUS

    ... small intestine adenocarcinoma, by stage How is small intestine adenocarcinoma staged? Staging is a process that tells ... distant m etastasis (M). T categories for small intestine adenocarcinoma T categories of small intestine cancer describe ...

  5. Secretory IgA: Arresting Microbial Pathogens at Epithelial Borders

    PubMed Central

    Mantis, Nicholas J.; Forbes, Stephen J.

    2013-01-01

    Secretory IgA (SIgA), the predominant class of antibody found in intestinal secretions. While SIgA’s role in protecting the intestinal epithelium from the enteric pathogen and toxins has long been recognized, surprisingly little is known about the molecular mechanisms by which this is achieved. The present review summarizes the current understanding of how SIgA functions to prevent microbial pathogens and toxins from gaining access to the intestinal epithelium. We also discuss recent work from our laboratory examining the interaction of a particular protective monoclonal IgA with Salmonella and propose, based on this work, that SIgA has a previously unrecognized capacity to directly interfere with microbial virulence at mucosal surfaces. PMID:20450284

  6. Small Intestinal Bacterial Overgrowth

    PubMed Central

    Dukowicz, Andrew C.; Levine, Gary M.

    2007-01-01

    Small intestinal bacterial overgrowth (SIBO), defined as excessive bacteria in the small intestine, remains a poorly understood disease. Initially thought to occur in only a small number of patients, it is now apparent that this disorder is more prevalent than previously thought. Patients with SIBO vary in presentation, from being only mildly symptomatic to suffering from chronic diarrhea, weight loss, and malabsorption. A number of diagnostic tests are currently available, although the optimal treatment regimen remains elusive. Recently there has been renewed interest in SIBO and its putative association with irritable bowel syndrome. In this comprehensive review, we will discuss the epidemiology, pathogenesis, clinical manifestations, diagnosis, and treatment of SIBO. PMID:21960820

  7. ENCYSTATION AND EXPRESSION OF CYST ANTIGENS BY 'GIARDIA LAMBLIA' IN VITRO

    EPA Science Inventory

    The cyst form of Giardia lamblia is responsible for transmission of giardiasis, a major waterborne intestinal disease. These studies demonstrate for the first time expression of cyst antigens and encystation of G. lamblia in vitro by both morphologic and immunologic criteria. The...

  8. Small intestinal ischemia and infarction

    MedlinePLUS

    ... or blood clotting disorders. Low blood pressure: Very low blood pressure in patients who already have narrowing of the intestinal arteries may also cause intestinal ischemia. This often occurs in people with other serious medical problems.

  9. Intestinal Failure (Short Bowel Syndrome)

    MedlinePLUS

    ... N Vitamin deficiencies as a result of poor absorption in the intestine N Electrolyte and mineral deficiencies ... N Kidney stones or gallstones due to poor absorption of calcium or bile How is intestinal failure ...

  10. Intestinal obstruction repair - series (image)

    MedlinePLUS

    ... colon cancer. Adhesions are scars that form between loops of intestine, usually caused by prior surgery, which ... of weakness in the abdominal wall, through which loops of intestine can slip and become trapped. Colon ...

  11. Intestinal microbiota and ulcerative colitis.

    PubMed

    Ohkusa, Toshifumi; Koido, Shigeo

    2015-11-01

    There is a close relationship between the human host and the intestinal microbiota, which is an assortment of microorganisms, protecting the intestine against colonization by exogenous pathogens. Moreover, the intestinal microbiota play a critical role in providing nutrition and the modulation of host immune homeostasis. Recent reports indicate that some strains of intestinal bacteria are responsible for intestinal ulceration and chronic inflammation in inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD). Understanding the interaction of the intestinal microbiota with pathogens and the human host might provide new strategies treating patients with IBD. This review focuses on the important role that the intestinal microbiota plays in maintaining innate immunity in the pathogenesis and etiology of UC and discusses new antibiotic therapies targeting the intestinal microbiota. PMID:26346678

  12. Small intestine contrast injection (image)

    MedlinePLUS

    ... and throat, through the stomach into the small intestine. When in place, contrast dye is introduced and ... means of demonstrating whether or not the small intestine is normal when abnormality is suspected.

  13. [Interactions between the monogastric animal gut microbiota and the intestinal immune function--a review].

    PubMed

    Yang, Lina; Bian, Gaorui; Zhu, Weiyun

    2014-05-01

    The large numbers of microorganisms that inhabit mammalian gastro-intestine have a highly coevolved relationship with the host's health in nutrition, immunity and other aspects. There is a complex relationship between microbiota and immune system. Although they can inhibit the pathogens invade epithelial tissue, many of these microbes have functions that are critical for stimulating host intestinal immune cells such as Tregs cells, Th17 cells differentiation. However, the disorder of the intestinal flora can cause bacterial translocation, intestinal barrier dysfunction. The mammalian immune system plays an essential role in maintaining homeostasis with resident microbial communities, though secreting a variety of immune effector cytokines such as MUC, sIgA, ITF, RegIIIgamma, and alpha-defensins. Here, we review the composition of intestinal flora on simple stomach animal and the interactions between resident microbes and the immune function. PMID:25199246

  14. Small intestine aspirate and culture

    MedlinePLUS

    Small intestine aspirate and culture is a lab test to check for infection in the small intestine. ... A sample of fluid from the small intestine is needed. A procedure ... done to get the sample. The fluid is placed in a special dish in ...

  15. Antigenic Scheme of Citrobacter koseri

    PubMed Central

    Sechter, Iancu; Altmann, Gideon; Cahan, David; Braunstein, Isidor; Gerichter, C. B.

    1981-01-01

    An antigenic scheme, based on the determination of 17 somatic and 9 flagellar antigens, is proposed for Citrobacter koseri. Seven of the flagellar antigens constituted the specific phase (a through g), and the others (1 and 2) were nonspecific. Of the 238 theoretically possible serotypes, 48 were identified among 680 cultures examined. PMID:7334075

  16. Phase Variable O Antigen Biosynthetic Genes Control Expression of the Major Protective Antigen and Bacteriophage Receptor in Vibrio cholerae O1

    PubMed Central

    Seed, Kimberley D.; Faruque, Shah M.; Mekalanos, John J.; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew

    2012-01-01

    The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage. PMID:23028317

  17. [Pancreatitis in intestinal diseases].

    PubMed

    Gubergrits, N B; Lukashevich, G M; Golubova, O A; Fomenko, P G

    2010-01-01

    In article review of the literature and own data about pathogenesis of pancreatitis and secondary pancreatic insufficiency in various diseases of small and large intestines is presented. The special attention is given to pancreatic insufficiency in celiac disease and in inflammatory bowel disease. The main directions of pancreatitis and exocrine pancreatic insufficiency therapy are grounded. PMID:21268323

  18. Aging and the intestine

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2006-01-01

    Over the lifetime of the animal, there are many changes in the function of the body’s organ systems. In the gastrointestinal tract there is a general modest decline in the function of the esophagus, stomach, colon, pancreas and liver. In the small intestine, there may be subtle alterations in the intestinal morphology, as well as a decline in the uptake of fatty acids and sugars. The malabsorption may be partially reversed by aging glucagon-like peptide 2 (GLP2) or dexamethasone. Modifications in the type of lipids in the diet will influence the intestinal absorption of nutrients: for example, in mature rats a diet enriched with saturated as compared with polysaturated fatty acids will enhance lipid and sugar uptake, whereas in older animals the opposite effect is observed. Thus, the results of studies of the intestinal adaptation performed in mature rats does not necessarily apply in older animals. The age-associated malabsorption of nutrients that occurs with aging may be one of the several factors which contribute to the malnutrition that occurs with aging. PMID:17171784

  19. Multiple Intestinal Lymphoma.

    PubMed

    Mastalier, B; Deaconescu, Violeta; Elaiah, W; Drăghici, C; Popp, Cristiana; Zurac, Sabina; Balea, M; Tevet, Mihaela; Botezatu, C

    2015-01-01

    Gastrointestinal tract is the most common location for extralymphonodular lymphomas. The small intestine is affected only in 9% of the cases. Intestinal lymphoma may have single or multiple location. This paper describes a case of multiple location in the small intestine of a non-Hodgkin B-cell in a 53 years old patient, who was initially diagnosed with bilateral pneumonia with pleurisy with E. coli, steeper on the right side, but the persistence of symptoms as fever, malaise, despite appropriate treatment, required further investigation. The CT exam observed fluid collection in the hypogastrium around a digestive loop. The patient underwent surgery, the intraoperative foundings being: a large mesenteric tumor - 5 cm in diameter, a terminal ileal mesenteric tumor, a mesenteric tumor - 6 cm in diameter, omentum with nodular formations, a tumor - 3.3/2.5.1 cm in the abdominal wall, pseudotumoral appendix. Segmental. enterectomy with entero-enterostomy, excision of mesenteric tumors, appendectomy and omentectomy were performed. Pathological diagnosis was non-Hodgkin marginal zone B-cell MALT type lymphoma of the small intestine with extension to the appendix, meso, omentum and abdominal wall. Postoperatively, the patient received chemotherapy for remission. PMID:26076564

  20. The impact of intestinal inflammation on the nutritional environment of the gut microbiota.

    PubMed

    Faber, Franziska; Bumler, Andreas J

    2014-12-01

    The intestinal epithelium is a single cell barrier separating a sterile mucosal tissue from a large microbial community dominated by obligate anaerobic bacteria, which inhabit the gut lumen. To maintain mucosal integrity, any breach in the epithelial barrier needs to be met with an inflammatory host response designed to repel microbial intruders from the tissue, protect the mucosal surface and repair injuries to the epithelium. In addition, inflammation induces mechanisms of nutritional immunity, which limit the availability of metals in the intestinal lumen, thereby imposing new selective forces on microbial growth. However, the inflammatory host response also has important side effects. A by-product of producing reactive oxygen and nitrogen species aimed at eradicating microbial intruders is the luminal generation of exogenous electron acceptors. The presence of these electron acceptors creates a new metabolic niche that is filled by facultative anaerobic bacteria. Here we review the changes in microbial nutrient utilization that accompany intestinal inflammation and the consequent changes in the composition of gut-associated microbial communities. PMID:24803011

  1. Mucosal and systemic immunity to intestinal reovirus infection in aged mice.

    PubMed

    Fulton, Jonathan R; Cuff, Christopher F

    2004-09-01

    Systemic immunity is progressively impaired in aging, predisposing to morbidity and mortality from neoplasia and infectious disease. However, the effect of aging on mucosal immunity is controversial. To assess intestinal immunity in aging, young and aged mice were orally exposed to reovirus or cholera toxin (CT) and specific antibody and reovirus-specific cytotoxic T-cell (CTL) responses were assessed. As previously reported, aged mice immunized orally with CT mounted diminished intestinal IgA responses to CT compared to young mice. In contrast, aged mice yielded two to three-fold more reovirus-specific IgA-producing cells in the Peyers's patches (PP) compared to young mice, and higher titers of reovirus-specific IgA in fragment culture supernatants. Cytotoxicity and CTL frequencies from aged mice were not different from those of young mice. Together, these results suggest a diminished potential for systemic and intestinal immunity to orally applied protein antigens in aging, but an intact ability to respond to intestinal virus infection. Infection with a replicating virus may induce inflammatory mediators and innate immune factors that potentiate the priming of mucosal immunity; overcoming aging related deficits otherwise observed following oral immunization with non-replicating antigens, and suggests the importance of antigen replication to antigen-specific immunotherapy strategies in the elderly. PMID:15489051

  2. [Escherichia coli Nissle 1917 as safe vehicles for intestinal immune targeted therapy--a review].

    PubMed

    Xia, Pengpeng; Zhu, Jun; Zhu, Guoqiang

    2013-06-01

    It is difficult to stimulate efficient gut mucosal immune response to intestinal infection. This article critically reviews the research progressin Escherichia coli strain Nisslel917 ( EcN) actingas a safe vehicle for the intestinal mucosal immunity, to restore gastrointestinal disorder and relieve ulcerative colitis. EcN is an orally administered probiotics, combining the excellent colonization and non-immunogenic character, and can be an ideal live vector candidate. This strain could be a tumor-targeted delivery of TAT-Apoptin fusion gene to colorectal cancer. In the treatment of ulcerative colitis and Crohn's disease, the recombinant strain of EcN can be used as a target therapeutics for defensins presenting. Genetically modified EcN could be an ideal carrier organism for gut-focused in situ synthesis and expression of specific localized antigen delivery into the intestine, and stimulate specific mucosal immune response. In vitro trial demonstrated that intestinal recombinant E. coli Nissle-HA110-120 has the potential to stimulate antigen specific response, but EcN itself does not induce mucosal immune response and influence peripheral tolerance to self-antigen. At the same time, there are evidences that EcN is safe. Recombinant E. coli Nissle-HA110-120 does not migrate, clonally expand and activate specific CD4+ T cells, neither in healthy mice nor in other animals with acute colitis, even when the intestinal epithelium suffer from inflammation and the barrier function of the epithelial layer being destroyed. PMID:24028055

  3. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease

    PubMed Central

    Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E.; Matteoli, Gianluca

    2015-01-01

    One of the main tasks of the immune system is to discriminate and appropriately react to “danger” or “non-danger” signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation. PMID:26635804

  4. Leukocyte Trafficking to the Small Intestine and Colon.

    PubMed

    Habtezion, Aida; Nguyen, Linh P; Hadeiba, Husein; Butcher, Eugene C

    2016-02-01

    Leukocyte trafficking to the small and large intestines is tightly controlled to maintain intestinal immune homeostasis, mediate immune responses, and regulate inflammation. A wide array of chemoattractants, chemoattractant receptors, and adhesion molecules expressed by leukocytes, mucosal endothelium, epithelium, and stromal cells controls leukocyte recruitment and microenvironmental localization in intestine and in the gut-associated lymphoid tissues (GALTs). Naive lymphocytes traffic to the gut-draining mesenteric lymph nodes where they undergo antigen-induced activation and priming; these processes determine their memory/effector phenotypes and imprint them with the capacity to migrate via the lymph and blood to the intestines. Mechanisms of T-cell recruitment to GALT and of T cells and plasmablasts to the small intestine are well described. Recent advances include the discovery of an unexpected role for lectin CD22 as a B-cell homing receptor GALT, and identification of the orphan G-protein-coupled receptor 15 (GPR15) as a T-cell chemoattractant/trafficking receptor for the colon. GPR15 decorates distinct subsets of T cells in mice and humans, a difference in species that could affect translation of the results of mouse colitis models to humans. Clinical studies with antibodies to integrin ?4?7 and its vascular ligand mucosal vascular addressin cell adhesion molecule 1 are proving the value of lymphocyte trafficking mechanisms as therapeutic targets for inflammatory bowel diseases. In contrast to lymphocytes, cells of the innate immune system express adhesion and chemoattractant receptors that allow them to migrate directly to effector tissue sites during inflammation. We review the mechanisms for innate and adaptive leukocyte localization to the intestinal tract and GALT, and discuss their relevance to human intestinal homeostasis and inflammation. PMID:26551552

  5. Neuron-macrophage crosstalk in the intestine: a microglia perspective

    PubMed Central

    Verheijden, Simon; Schepper, Sebastiaan De; Boeckxstaens, Guy E.

    2015-01-01

    Intestinal macrophages are strategically located in different layers of the intestine, including the mucosa, submucosa and muscularis externa, where they perform complex tasks to maintain intestinal homeostasis. As the gastrointestinal tract is continuously challenged by foreign antigens, macrophage activation should be tightly controlled to prevent chronic inflammation and tissue damage. Unraveling the precise cellular and molecular mechanisms underlying the tissue-specific control of macrophage activation is crucial to get more insight into intestinal immune regulation. Two recent reports provide unanticipated evidence that the enteric nervous system (ENS) acts as a critical regulator of macrophage function in the myenteric plexus. Both studies clearly illustrate that enteric neurons reciprocally interact with intestinal macrophages and are actively involved in shaping their phenotype. This concept has striking parallels with the central nervous system (CNS), where neuronal signals maintain microglia, the resident macrophages of the CNS, in a quiescent, anti-inflammatory state. This inevitably evokes the perception that the ENS and CNS share mechanisms of neuroimmune interaction. In line, intestinal macrophages, both in the muscularis externa and (sub)mucosa, express high levels of CX3CR1, a feature that was once believed to be unique for microglia. CX3CR1 is the sole receptor of fractalkine (CX3CL1), a factor mainly produced by neurons in the CNS to facilitate neuron-microglia communication. The striking parallels between resident macrophages of the brain and intestine might provide a promising new line of thought to get more insight into cellular and molecular mechanisms controlling macrophage activation in the gut. PMID:26528133

  6. The Human Intestinal Microbiome: A New Frontier of Human Biology

    PubMed Central

    Hattori, Masahira; Taylor, Todd D.

    2009-01-01

    To analyze the vast number and variety of microorganisms inhabiting the human intestine, emerging metagenomic technologies are extremely powerful. The intestinal microbes are taxonomically complex and constitute an ecologically dynamic community (microbiota) that has long been believed to possess a strong impact on human physiology. Furthermore, they are heavily involved in the maturation and proliferation of human intestinal cells, helping to maintain their homeostasis and can be causative of various diseases, such as inflammatory bowel disease and obesity. A simplified animal model system has provided the mechanistic basis for the molecular interactions that occur at the interface between such microbes and host intestinal epithelia. Through metagenomic analysis, it is now possible to comprehensively explore the genetic nature of the intestinal microbiome, the mutually interacting system comprising the host cells and the residing microbial community. The human microbiome project was recently launched as an international collaborative research effort to further promote this newly developing field and to pave the way to a new frontier of human biology, which will provide new strategies for the maintenance of human health. PMID:19147530

  7. The human intestinal microbiome: a new frontier of human biology.

    PubMed

    Hattori, Masahira; Taylor, Todd D

    2009-02-01

    To analyze the vast number and variety of microorganisms inhabiting the human intestine, emerging metagenomic technologies are extremely powerful. The intestinal microbes are taxonomically complex and constitute an ecologically dynamic community (microbiota) that has long been believed to possess a strong impact on human physiology. Furthermore, they are heavily involved in the maturation and proliferation of human intestinal cells, helping to maintain their homeostasis and can be causative of various diseases, such as inflammatory bowel disease and obesity. A simplified animal model system has provided the mechanistic basis for the molecular interactions that occur at the interface between such microbes and host intestinal epithelia. Through metagenomic analysis, it is now possible to comprehensively explore the genetic nature of the intestinal microbiome, the mutually interacting system comprising the host cells and the residing microbial community. The human microbiome project was recently launched as an international collaborative research effort to further promote this newly developing field and to pave the way to a new frontier of human biology, which will provide new strategies for the maintenance of human health. PMID:19147530

  8. Antigens and allergic asthma

    SciTech Connect

    Reed, C.E.; Swanson, M.C.

    1987-06-01

    There are few reliable epidemiologic data on the overall frequency and importance of allergy. We describe a practical method for quantifying the concentration of both amorphous and morphologically defined antigens in the air. A high volume air sampler is used to collect airborne particles and has a facility to separate samples into different particle sizes. Samples are tested for allergenic activity by radioallergosorbent test inhibition assay. Preliminary findings from studies of community wide, amorphous and common household allergens are reported.

  9. Telomere components as potential therapeutic targets for treating microbial pathogen infections

    PubMed Central

    Li, Bibo

    2012-01-01

    In a number of microbial pathogens that undergoes antigenic variation to evade the host’s immune attack, genes encoding surface antigens are located at subtelomeric loci, and recent studies have revealed that telomere components play important roles in regulation of surface antigen expression in several of these pathogens, indicating that telomeres play critical roles in microbial pathogen virulence regulation. Importantly, although telomere protein components and their functions are largely conserved from protozoa to mammals, telomere protein homologs in microbial pathogens and humans have low sequence homology. Therefore, pathogen telomere components are potential drug targets for therapeutic approaches because first, most telomere proteins are essential for pathogens’ survival, and second, disruption of pathogens’ antigenic variation mechanism would facilitate host’s immune system to clear the infection. PMID:23125966

  10. Glycan complexity dictates microbial resource allocation in the large intestine.

    PubMed

    Rogowski, Artur; Briggs, Jonathon A; Mortimer, Jennifer C; Tryfona, Theodora; Terrapon, Nicolas; Lowe, Elisabeth C; Basl, Arnaud; Morland, Carl; Day, Alison M; Zheng, Hongjun; Rogers, Theresa E; Thompson, Paul; Hawkins, Alastair R; Yadav, Madhav P; Henrissat, Bernard; Martens, Eric C; Dupree, Paul; Gilbert, Harry J; Bolam, David N

    2015-01-01

    The structure of the human gut microbiota is controlled primarily through the degradation of complex dietary carbohydrates, but the extent to which carbohydrate breakdown products are shared between members of the microbiota is unclear. We show here, using xylan as a model, that sharing the breakdown products of complex carbohydrates by key members of the microbiota, such as Bacteroides ovatus, is dependent on the complexity of the target glycan. Characterization of the extensive xylan degrading apparatus expressed by B. ovatus reveals that the breakdown of the polysaccharide by the human gut microbiota is significantly more complex than previous models suggested, which were based on the deconstruction of xylans containing limited monosaccharide side chains. Our report presents a highly complex and dynamic xylan degrading apparatus that is fine-tuned to recognize the different forms of the polysaccharide presented to the human gut microbiota. PMID:26112186

  11. Glycan complexity dictates microbial resource allocation in the large intestine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The structure of the human gut microbiota, which impacts on the health of the host, is controlled by complex dietary carbohydrates and members of the Bacteroidetes phylum are the major contributors to the degradation of complex dietary carbohydrates. The extent to which complex dietary carbohydrates...

  12. Glycan complexity dictates microbial resource allocation in the large intestine

    PubMed Central

    Rogowski, Artur; Briggs, Jonathon A.; Mortimer, Jennifer C.; Tryfona, Theodora; Terrapon, Nicolas; Lowe, Elisabeth C.; Baslé, Arnaud; Morland, Carl; Day, Alison M.; Zheng, Hongjun; Rogers, Theresa E.; Thompson, Paul; Hawkins, Alastair R.; Yadav, Madhav P.; Henrissat, Bernard; Martens, Eric C.; Dupree, Paul; Gilbert, Harry J.; Bolam, David N.

    2015-01-01

    The structure of the human gut microbiota is controlled primarily through the degradation of complex dietary carbohydrates, but the extent to which carbohydrate breakdown products are shared between members of the microbiota is unclear. We show here, using xylan as a model, that sharing the breakdown products of complex carbohydrates by key members of the microbiota, such as Bacteroides ovatus, is dependent on the complexity of the target glycan. Characterization of the extensive xylan degrading apparatus expressed by B. ovatus reveals that the breakdown of the polysaccharide by the human gut microbiota is significantly more complex than previous models suggested, which were based on the deconstruction of xylans containing limited monosaccharide side chains. Our report presents a highly complex and dynamic xylan degrading apparatus that is fine-tuned to recognize the different forms of the polysaccharide presented to the human gut microbiota. PMID:26112186

  13. Emerging therapies for intestinal failure.

    PubMed

    Tappenden, Kelly A

    2010-06-01

    Given the immeasurable human distress and health care burden associated with intestinal failure, medical therapies aimed at intestinal rehabilitation are needed. Following massive small-bowel resection, the residual intestine is known to adapt structurally and functionally in an attempt to compensate for the resected portion. However, parenteral nutrition may be associated with many short- and long-term complications, including prevention of intestinal adaptation and promotion of mucosal atrophy due to lack of stimulus provided by oral or enteral nutrition. However, data herein demonstrate that the addition of butyrate, a short-chain fatty acid produced in the colon by dietary fiber fermentation, stimulates intestinal adaptation when added to parenteral nutrition, indicating that current solutions could be formulated to optimize intestinal adaptation and to reduce dependence of individuals with intestinal failure receiving long-term parenteral nutrition regimens. PMID:20566971

  14. A Modular Organization of the Human Intestinal Mucosal Microbiota and Its Association with Inflammatory Bowel Disease

    PubMed Central

    Tong, Maomeng; Li, Xiaoxiao; Wegener Parfrey, Laura; Roth, Bennett; Ippoliti, Andrew; Wei, Bo; Borneman, James; McGovern, Dermot P. B.; Frank, Daniel N.; Li, Ellen; Horvath, Steve; Knight, Rob; Braun, Jonathan

    2013-01-01

    Abnormalities of the intestinal microbiota are implicated in the pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC), two spectra of inflammatory bowel disease (IBD). However, the high complexity and low inter-individual overlap of intestinal microbial composition are formidable barriers to identifying microbial taxa representing this dysbiosis. These difficulties might be overcome by an ecologic analytic strategy to identify modules of interacting bacteria (rather than individual bacteria) as quantitative reproducible features of microbial composition in normal and IBD mucosa. We sequenced 16S ribosomal RNA genes from 179 endoscopic lavage samples from different intestinal regions in 64 subjects (32 controls, 16 CD and 16 UC patients in clinical remission). CD and UC patients showed a reduction in phylogenetic diversity and shifts in microbial composition, comparable to previous studies using conventional mucosal biopsies. Analysis of weighted co-occurrence network revealed 5 microbial modules. These modules were unprecedented, as they were detectable in all individuals, and their composition and abundance was recapitulated in an independent, biopsy-based mucosal dataset 2 modules were associated with healthy, CD, or UC disease states. Imputed metagenome analysis indicated that these modules displayed distinct metabolic functionality, specifically the enrichment of oxidative response and glycan metabolism pathways relevant to host-pathogen interaction in the disease-associated modules. The highly preserved microbial modules accurately classified IBD status of individual patients during disease quiescence, suggesting that microbial dysbiosis in IBD may be an underlying disorder independent of disease activity. Microbial modules thus provide an integrative view of microbial ecology relevant to IBD. PMID:24260458

  15. Age-associated modifications of intestinal permeability and innate immunity in human small intestine.

    PubMed

    Man, Angela L; Bertelli, Eugenio; Rentini, Silvia; Regoli, Mari; Briars, Graham; Marini, Mario; Watson, Alastair J M; Nicoletti, Claudio

    2015-10-01

    The physical and immunological properties of the human intestinal epithelial barrier in aging are largely unknown. Ileal biopsies from young (7-12years), adult (20-40years) and aging (67-77years) individuals not showing symptoms of gastrointestinal (GI) pathologies were used to assess levels of inflammatory cytokines, barrier integrity and cytokine production in response to microbial challenges. Increased expression of interleukin (IL)-6, but not interferon (IFN)?, tumour necrosis factor (TNF)-? and IL-1? was observed during aging; further analysis showed that cluster of differentiation (CD)11c(+) dendritic cells (DCs) are one of the major sources of IL-6in the aging gut and expressed higher levels of CD40. Up-regulated production of IL-6 was accompanied by increased expression of claudin-2 leading to reduced transepithelial electric resistance (TEER); TEER could be restored in invitro and ex vivo cultures by neutralizing anti-IL-6 antibody. In contrast, expression of zonula occludens-1 (ZO-1), occludin and junctional-adhesion molecule-A1 did not vary with age and overall permeability to macromolecules was not affected. Finally, cytokine production in response to different microbial stimuli was assessed in a polarized invitro organ culture (IVOC). IL-8 production in response to flagellin declined progressively with age although the expression and distribution of toll-like receptor (TLR)-5 on intestinal epithelial cells (IECs) remained unchanged. Also, flagellin-induced production of IL-6 was less pronounced in aging individuals. In contrast, TNF-? production in response to probiotics (VSL#3) did not decline with age; however, in our experimental model probiotics did not down-regulate the production of IL-6 and expression of claudin-2. These data suggested that aging affects properties of the intestinal barrier likely to impact on age-associated disturbances, both locally and systemically. PMID:25948052

  16. Rapid Diagnosis of Intestinal Parasitic Protozoa, with a Focus on Entamoeba histolytica

    PubMed Central

    Singh, Anjana; Houpt, Eric; Petri, William A.

    2009-01-01

    Entamoeba histolytica is an invasive intestinal pathogenic parasitic protozoan that causes amebiasis. It must be distinguished from Entamoeba dispar and E. moshkovskii, nonpathogenic commensal parasites of the human gut lumen that are morphologically identical to E. histolytica. Detection of specific E. histolytica antigens in stools is a fast, sensitive technique that should be considered as the method of choice. Stool real-time PCR is a highly sensitive and specific technique but its high cost make it unsuitable for use in endemic areas where there are economic constraints. Serology is an important component of the diagnosis of intestinal and especially extraintestinal amebiasis as it is a sensitive test that complements the detection of the parasite antigens or DNA. Circulating Gal/GalNac lectin antigens can be detected in the serum of patients with untreated amoebic liver abscess. On the horizon are multiplex real-time PCR assays which permit the identification of multiple enteropathogens with high sensitivity and specificity. PMID:19584941

  17. Exposure to food allergens through inflamed skin promotes intestinal food allergy via the TSLP-basophil axis

    PubMed Central

    Noti, Mario; Kim, Brian S.; Siracusa, Mark C.; Rak, Gregory D.; Kubo, Masato; Moghaddam, Amin E.; Sattentau, Quentin A.; Comeau, Michael R.; Spergel, Jonathan M.; Artis, David

    2014-01-01

    Background Exposure to food allergens through a disrupted skin barrier has been recognized as a potential factor in the increasing prevalence of food allergy. Objective To test the immunological mechanisms by which epicutaneous sensitization to food allergens predisposes to intestinal food allergy. Methods Mice were epicutaneously sensitized with ovalbumin (OVA) or peanut on an atopic dermatitis-like skin lesion followed by intragastric antigen challenge. Antigen-specific serum IgE levels and Th2 cytokine responses were measured by ELISA. Expression of type-2 cytokines and mast cell proteases in the intestine were measured by real-time PCR. Accumulation of basophils in the skin and mast cells in the intestine was examined by flow cytometry. In vivo basophil depletion was achieved by diphtheria toxin treatment of Baso-DTR mice. For cell transfer studies, the basophil population was expanded in vivo by hydrodynamic tail vein injection of thymic stromal lymphopoietin cDNA plasmid. Results Sensitization to food allergens through an atopic dermatitis-like skin lesion is associated with an expansion of TSLP-elicited basophils in the skin that promote antigen-specific Th2 cytokine responses, elevated antigen-specific serum IgE levels and the accumulation of mast cells in the intestine promoting the development of intestinal food allergy. Critically, disruption of TSLP responses or depletion of basophils reduced the susceptibility to intestinal food allergy while transfer of TSLP-elicited basophils into intact skin promoted disease. Conclusion Epicutaneous sensitization on a disrupted skin barrier is associated with the accumulation of TSLP-elicited basophils that are necessary and sufficient to promote antigen-induced intestinal food allergy. PMID:24560412

  18. Clostridium difficile infection and intestinal microbiota interactions.

    PubMed

    Rodriguez, C; Taminiau, B; Van Broeck, J; Delme, M; Daube, G

    2015-12-01

    Clostridium difficile remains the leading cause of healthcare-associated diarrhoea and outbreaks continue to occur worldwide. Aside from nosocomial C.difficile infection, the bacterium is also increasingly important as a community pathogen. Furthermore, asymptomatic carriage of C.difficile in neonates, adults and animals is also well recognised. The investigation of the gut's microbial communities, in both healthy subjects and patients suffering C. difficile infection (CDI), provides findings and information relevant for developing new successful approaches for its treatment, such as faecal microbiota transplantation, or for the prophylaxis of the infection by modification of the gut microbiota using functional foods and beverages. The analysis of all available data shows new insights into the role of intestinal microbiota in health and disease. PMID:26549493

  19. Intestinal commensal microbes as immune modulators

    PubMed Central

    Ivanov, Ivaylo I.; Honda, Kenya

    2012-01-01

    Commensal bacteria are necessary for the development and maintenance of a healthy immune system. Harnessing the ability of microbiota to affect host immunity is considered an important therapeutic strategy for many mucosal and non-mucosal immune-related conditions, such as inflammatory bowel diseases (IBD), celiac disease, metabolic syndrome, diabetes and microbial infections. In addition to well-established immunostimulatory effects of the microbiota, the presence of individual mutualistic commensal bacteria with immunomodulatory effects has been described. These organisms are permanent members of the commensal microbiota and affect host immune homeostasis in specific ways. Identification of individual examples of such immunomodulatory commensals and understanding their mechanisms of interaction with the host will be invaluable in designing therapeutic strategies to reverse intestinal dysbiosis and recover immunological homeostasis. PMID:23084918

  20. Metagenomic analysis of intestinal microbiomes in chickens.

    PubMed

    Kim, Taejoong; Mundt, Egbert

    2011-01-01

    The digestive tract of animals contains a very large numbers of microorganisms with a high diversity. Traditionally, characterization of these microbial communities has relied on the ability to clonally culture each microorganism. With significant improvements in nucleotide sequencing technologies to economically obtain billions of bases, the study of genetic material recovered directly from environmental samples is becoming increasingly affordable. The investigation of microorganisms as a community regardless of their ability to be cultured has become reality. Using the metagenomic approach for analysis of chicken intestinal homogenates, we were able to greatly enhance the understanding of communities of microorganism in healthy and Runting Stunting Syndrome-infected chickens. In particular, comparative analysis of metagenomes from infected and noninfected chickens resulted in the identification of microorganisms as pathogen candidates. In this chapter, we demonstrate step-by-step how tools for comparative metagenomic analysis can facilitate the resolution of complex, multifactor-involved diseases. PMID:21431771

  1. Intestinal microbiota of dogs and cats: a bigger world than we thought.

    PubMed

    Suchodolski, Jan S

    2011-03-01

    Gut microbes play a crucial role in the regulation of host health, but the true complexity of the gastrointestinal microbiota has been underestimated using traditional culture techniques. Recent molecular-phylogenetic and metagenomic studies have revealed a highly diverse microbial community in the canine and feline gastrointestinal tract of healthy animals, consisting of bacteria, archaea, fungi, protozoa, and viruses. Alterations in microbial communities have also been reported in dogs and cats with chronic enteropathies, notably increases in Proteobacteria and depletions of Firmicutes. This review summarizes the current information about the intestinal microbial ecosystem in dogs and cats. PMID:21486635

  2. Intestinal permeation enhancers.

    PubMed

    Aungst, B J

    2000-04-01

    This review addresses the field of improving oral bioavailability through the use of excipients that increase intestinal membrane permeability. The critical issues to consider in evaluating these approaches are 1) the extent of bioavailability enhancement achieved, 2) the influence of formulation and physiological variables, 3) toxicity associated with permeation enhancement, and 4) the mechanism of permeation enhancement. The categories of permeation enhancers discussed are surfactants, fatty acids, medium chain glycerides, steroidal detergents, acyl carnitine and alkanoylcholines, N-acetylated alpha-amino acids and N-acetylated non-alpha-amino acids, and chitosans and other mucoadhesive polymers. Some of these approaches have been developed to the stage of initial clinical trials. Several seem to have potential to improve oral bioavailabilities of poorly absorbed compounds without causing significant intestinal damage. In addition, the possible use of excipients that inhibit secretory transport is reviewed. PMID:10737905

  3. The Cystic Fibrosis Intestine

    PubMed Central

    De Lisle, Robert C.; Borowitz, Drucy

    2013-01-01

    The clinical manifestations of cystic fibrosis (CF) result from dysfunction of the cystic fibrosis transmembrane regulator protein (CFTR). The majority of people with CF have a limited life span as a consequence of CFTR dysfunction in the respiratory tract. However, CFTR dysfunction in the gastrointestinal (GI) tract occurs earlier in ontogeny and is present in all patients, regardless of genotype. The same pathophysiologic triad of obstruction, infection, and inflammation that causes disease in the airways also causes disease in the intestines. This article describes the effects of CFTR dysfunction on the intestinal tissues and the intraluminal environment. Mouse models of CF have greatly advanced our understanding of the GI manifestations of CF, which can be directly applied to understanding CF disease in humans. PMID:23788646

  4. Unusual intestinal talcosis.

    PubMed

    Anani, P A; Ribaux, C; Gardiol, D

    1987-11-01

    A case of intestinal talcosis in a 46-year-old man is reported. At the age of 27, the patient was treated for pulmonary tuberculosis with tablets containing talc (183 g talc per 2,670 g total drug intake) over a period of 28 months. Eighteen years later, the patient was hospitalized for abdominal pain that remained refractory to antacids; he subsequently underwent a right hemicolectomy. Light-microscopic examination revealed a prominent fibrosis of the intestinal wall in which birefringent particles were demonstrated by polarized light. Using energy-dispersive spectroscopy, an analysis of these particles showed that they were predominantly composed of silicon and magnesium as well as small amounts of phosphorus, sulphur, calcium, and iron--the spectrum typically associated with talc. We believe that the source of this talc is the tablets ingested by the patient during prior antituberculosis therapy. PMID:3674285

  5. Intestinal sugar transport.

    PubMed

    Drozdowski, Laurie A; Thomson, Alan B R

    2006-03-21

    Carbohydrates are an important component of the diet. The carbohydrates that we ingest range from simple monosaccharides (glucose, fructose and galactose) to disaccharides (lactose, sucrose) to complex polysaccharides. Most carbohydrates are digested by salivary and pancreatic amylases, and are further broken down into monosaccharides by enzymes in the brush border membrane (BBM) of enterocytes. For example, lactase-phloridzin hydrolase and sucrase-isomaltase are two disaccharidases involved in the hydrolysis of nutritionally important disaccharides. Once monosaccharides are presented to the BBM, mature enterocytes expressing nutrient transporters transport the sugars into the enterocytes. This paper reviews the early studies that contributed to the development of a working model of intestinal sugar transport, and details the recent advances made in understanding the process by which sugars are absorbed in the intestine. PMID:16586532

  6. Probiotic Bacillus pumilus SE5 shapes the intestinal microbiota and mucosal immunity in grouper Epinephelus coioides.

    PubMed

    Yang, Hong-Ling; Xia, Han-Qin; Ye, Yi-Dan; Zou, Wen-Chao; Sun, Yun-Zhang

    2014-09-30

    The health benefits of probiotics are thought to occur, at least in part, through an improved intestinal microbial balance in fish, although the molecular mechanisms whereby probiotics modulate the intestinal microbiota by means of activation of mucosal immunity are rarely explored. In this study, the effects of viable and heat-inactivated probiotic Bacillus pumilus SE5 on the intestinal dominant microbial community and mucosal immune gene expression were evaluated. The fish were fed for 60 d with 3 different diets: control (without probiotic), and diets T1 and T2 supplemented with 1.0 10? cells g? viable and heat-inactivated B. pumilus SE5, respectively. Upregulated expression of TLR1, TLR2 and IL-8, but not MyD88 was observed in fish fed the viable probiotic, while elevated expression of TLR2, IL-8 and TGF-?1, but not MyD88 was observed in fish fed the heat-inactivated B. pumilus SE5. The induced activation of intestinal mucosal immunity, especially the enhanced expression of antibacterial epinecidin-1, was consistent with the microbial data showing that several potentially pathogenic bacterial species such as Psychroserpens burtonensis and Pantoea agglomerans were suppressed by both the viable and heat-inactivated probiotic B. pumilus SE5. These results lay the foundation for future studies on the molecular interactions between probiotics, intestinal microbiota and mucosal immunity in fish. PMID:25266899

  7. Fecal Protease Activity Is Associated with Compositional Alterations in the Intestinal Microbiota

    PubMed Central

    Carroll, Ian M.; Ringel-Kulka, Tamar; Ferrier, Laurent; Wu, Michael C.; Siddle, Jennica P.; Bueno, Lionel; Ringel, Yehuda

    2013-01-01

    Objective Intestinal proteases carry out a variety of functions in the gastrointestinal (GI) tract. Studies have reported that elevated enteric proteases in patients with GI disease can alter intestinal physiology, however the origin (human vs. microbial) of elevated proteases in patients with GI disease is unclear. Aim The aim of this study was to investigate the association between protease activity and the microbiota in human fecal samples. Design In order to capture a wide range of fecal protease (FP) activity stool samples were collected from 30 IBS patients and 24 healthy controls. The intestinal microbiota was characterized using 454 high throughput pyro-sequencing of the 16S rRNA gene. The composition and diversity of microbial communities were determined and compared using the Quantitative Insights Into Microbial Ecology (QIIME) pipeline. FP activity levels were determined using an ELISA-based method. FP activity was ranked and top and bottom quartiles (n=13 per quartile) were identified as having high and low FP activity, respectively. Results The overall diversity of the intestinal microbiota displayed significant clustering separation (p = 0.001) between samples with high vs. low FP activity. The Lactobacillales, Lachnospiraceae, and Streptococcaceae groups were positively associated with FP activity across the entire study population, whilst the Ruminococcaceae family and an unclassified Coriobacteriales family were negatively associated with FP activity. Conclusions These data demonstrate significant associations between specific intestinal bacterial groups and fecal protease activity and provide a basis for further causative studies investigating the role of enteric microbes and GI diseases. PMID:24147109

  8. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease

    PubMed Central

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-01-01

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models. PMID:25356041

  9. PARSING THE ALLOCHTHONOUS FROM THE AUTOCHTHONOUS FUNGAL BIOTA IN THE POULTRY INTESTINE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Examination of intestinal microbial communities is complicated by the presence of both autochthonous (natively colonizing) and allochthonous (transient) taxa. To examine community dynamics in poultry ceca an experiment was performed in which day-old turkeys were housed in isolators on raised wire f...

  10. Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut.

    PubMed

    Yin, Jinbao; Zhang, Xu-Xiang; Wu, Bing; Xian, Qiming

    2015-12-01

    Antibiotics have been widely used for disease prevention and treatment of the human and animals, and for growth promotion in animal husbandry. Antibiotics can disturb the intestinal microbial community, which play a fundamental role in animals' health. Misuse or overuse of antibiotics can result in increase and spread of microbial antibiotic resistance, threatening human health and ecological safety. In this study, we used Illumina Hiseq sequencing, (1)H nuclear magnetic resonance spectroscopy and metagenomics approaches to investigate intestinal microbial community shift and antibiotic resistance alteration of the mice drinking the water containing tetracycline hydrochloride (TET). Two-week TET administration caused reduction of gut microbial diversity (from 194 to 89 genera), increase in Firmicutes abundance (from 24.9 to 39.8%) and decrease in Bacteroidetes abundance (from 69.8 to 51.2%). Metagenomic analysis showed that TET treatment affected the intestinal microbial functions of carbohydrate, ribosomal, cell wall/membrane/envelope and signal transduction, which is evidenced by the alteration in the metabolites of mouse serum. Meanwhile, in the mouse intestinal microbiota, TET treatment enhanced the abundance of antibiotic resistance genes (ARGs) (from 307.3 to 1492.7 ppm), plasmids (from 425.4 to 3235.1 ppm) and integrons (from 0.8 to 179.6 ppm) in mouse gut. Our results indicated that TET administration can disturb gut microbial community and physiological metabolism of mice, and increase the opportunity of ARGs and mobile genetic elements entering into the environment with feces discharge. PMID:26423395

  11. Alcohol and the Intestine.

    PubMed

    Patel, Sheena; Behara, Rama; Swanson, Garth R; Forsyth, Christopher B; Voigt, Robin M; Keshavarzian, Ali

    2015-01-01

    Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches. PMID:26501334

  12. Alcohol and the Intestine

    PubMed Central

    Patel, Sheena; Behara, Rama; Swanson, Garth R.; Forsyth, Christopher B.; Voigt, Robin M.; Keshavarzian, Ali

    2015-01-01

    Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches. PMID:26501334

  13. MR1 presents microbial vitamin B metabolites to MAIT cells.

    PubMed

    Kjer-Nielsen, Lars; Patel, Onisha; Corbett, Alexandra J; Le Nours, Jrme; Meehan, Bronwyn; Liu, Ligong; Bhati, Mugdha; Chen, Zhenjun; Kostenko, Lyudmila; Reantragoon, Rangsima; Williamson, Nicholas A; Purcell, Anthony W; Dudek, Nadine L; McConville, Malcolm J; O'Hair, Richard A J; Khairallah, George N; Godfrey, Dale I; Fairlie, David P; Rossjohn, Jamie; McCluskey, James

    2012-11-29

    Antigen-presenting molecules, encoded by the major histocompatibility complex (MHC) and CD1 family, bind peptide- and lipid-based antigens, respectively, for recognition by T cells. Mucosal-associated invariant T (MAIT) cells are an abundant population of innate-like T cells in humans that are activated by an antigen(s) bound to the MHC class I-like molecule MR1. Although the identity of MR1-restricted antigen(s) is unknown, it is present in numerous bacteria and yeast. Here we show that the structure and chemistry within the antigen-binding cleft of MR1 is distinct from the MHC and CD1 families. MR1 is ideally suited to bind ligands originating from vitamin metabolites. The structure of MR1 in complex with 6-formyl pterin, a folic acid (vitamin B9) metabolite, shows the pterin ring sequestered within MR1. Furthermore, we characterize related MR1-restricted vitamin derivatives, originating from the bacterial riboflavin (vitamin B2) biosynthetic pathway, which specifically and potently activate MAIT cells. Accordingly, we show that metabolites of vitamin B represent a class of antigen that are presented by MR1 for MAIT-cell immunosurveillance. As many vitamin biosynthetic pathways are unique to bacteria and yeast, our data suggest that MAIT cells use these metabolites to detect microbial infection. PMID:23051753

  14. Intestinal epithelial cell regulation of mucosal inflammation.

    PubMed

    Yu, Yimin; Sitaraman, Shanthi; Gewirtz, Andrew T

    2004-01-01

    The intestinal epithelium serves as one of human's primary interfaces with the outside world. This interface is very heavily colonized with bacteria and yet permits absorption of life-sustaining nutrients while protecting the tissues below from microbial onslaught. Although the gut epithelium had been classically thought to achieve this function primarily by functioning as a passive, albeit highly selective, barrier, research over the last decade has demonstrated that in fact the epithelium plays a very active role in protecting the host from the bacteria that colonize it. As a consequence of its mediation of mucosal immunity, intestinal epithelial dysfunction appears to be central to diseases associated with aberrant gut mucosal immune responses such as inflammatory bowel disease (IBD). This article reviews: (1) how the gut epithelium participates in regulating innate immune inflammatory responses to enteric pathogens, (2) how these responses may regulate the adaptive immune system, (3) mechanisms that may resolve acute inflammation, and (4) how epithelial dysfunction may participate in regulating both the active and chronic phases of IBD. PMID:15181270

  15. The intestinal microbiota and microenvironment in liver.

    PubMed

    Ma, Hong-Di; Wang, Yin-Hu; Chang, Christopher; Gershwin, M Eric; Lian, Zhe-Xiong

    2015-03-01

    The intestinal microbiome plays a significant role in the development of autoimmune diseases, in particular, inflammatory bowel diseases. But the interplay between the intestinal tract and the liver may explain the increased association with autoimmune liver diseases and inflammatory bowel diseases. The gut-liver axis involves multiple inflammatory cell types and cytokines, chemokines and other molecules which lead to the destruction of normal liver architecture. Triggers for the initiation of these events are unclear, but appear to include multiple environmental factors, including pathogenic or even commensal microbial agents. The variation in the gut microbiome has been cited as a major factor in the pathogenesis of autoimmune liver disease and even other autoimmune diseases. The unique positioning of the liver at the juncture of the peripheral circulation and the portal circulation augments the interaction between nave T cells and other hepatic cells and leads to the disruption in the development of tolerance to commensal bacteria and other environmental agents. Finally, the innate immune system and in particular toll-like receptors play a significant role in the pathogenesis of autoimmune liver disease. PMID:25315744

  16. Whole Tumor Antigen Vaccines

    PubMed Central

    Chiang, Cheryl Lai-Lai; Benencia, Fabian; Coukos, George

    2011-01-01

    Although cancer vaccines with defined antigens are commonly used, the use of whole tumor cell preparations in tumor immunotherapy is a very promising approach and can obviate some important limitations in vaccine development. Whole tumor cells are a good source of TAAs and can induce simultaneous CTLs and CD4+ T helper cell activation. We review current approaches to prepare whole tumor cell vaccines, including traditional methods of freeze-thaw lysates, tumor cells treated with ultraviolet irradiation, and RNA electroporation, along with more recent methods to increase tumor cell immunogenicity with HOCl oxidation or infection with replication-incompetent herpes simplex virus. PMID:20356763

  17. Identification of a Core Bacterial Community within the Large Intestine of the Horse

    PubMed Central

    Dougal, Kirsty; de la Fuente, Gabriel; Harris, Patricia A.; Girdwood, Susan E.; Pinloche, Eric; Newbold, C. Jamie

    2013-01-01

    The horse has a rich and complex microbial community within its gastrointestinal tract that plays a central role in both health and disease. The horse receives much of its dietary energy through microbial hydrolysis and fermentation of fiber predominantly in the large intestine/hindgut. The presence of a possible core bacterial community in the equine large intestine was investigated in this study. Samples were taken from the terminal ileum and 7 regions of the large intestine from ten animals, DNA extracted and the V1-V2 regions of 16SrDNA 454-pyrosequenced. A specific group of OTUs clustered in all ileal samples and a distinct and different signature existed for the proximal regions of the large intestine and the distal regions. A core group of bacterial families were identified in all gut regions with clear differences shown between the ileum and the various large intestine regions. The core in the ileum accounted for 32% of all sequences and comprised of only seven OTUs of varying abundance; the core in the large intestine was much smaller (5-15% of all sequences) with a much larger number of OTUs present but in low abundance. The most abundant member of the core community in the ileum was Lactobacillaceae, in the proximal large intestine the Lachnospiraceae and in the distal large intestine the Prevotellaceae. In conclusion, the presence of a core bacterial community in the large intestine of the horse that is made up of many low abundance OTUs may explain in part the susceptibility of horses to digestive upset. PMID:24204908

  18. Effect of Gamma radiation on microbial population of natural casings

    NASA Astrophysics Data System (ADS)

    Trigo, M. J.; Fraqueza, M. J.

    1998-06-01

    The high microbial load of fresh and dry natural casings increases the risk of meat product contamination with pathogenic microorganisms, agents of foodborn diseases. The aim of this work is to evaluate the killing effect of gamma radiation of the resident microbial population of pork and beef casings, to improve their hygiene and safety. Portions of fresh pork (small intestines and colon) and dry beef casings were irradiated in a Cobalt 60 source with with absorbed doses of 1,2,5 and 10 kGy. The D 10 values of total aerobic microorganisms in the pork casings were 1.65 kGy for colon and 1.54 kGy for small intestine. The D 10 value found in beef dry casings (small intestine) was 10.17 kGy. Radurization with 5 kGy was able to reduce, at least, 6 logs the coliform bacteria in pork casings. The killing effect over faecal Streptococci was 4 logs for pork fresh casings and 2 logs for beef dry casings. Gamma radiation with 5 kGy proved to be a convenient method to reduce substantially the microbial population of pork fresh casings. Otherwise, the microbial population of beef dry casings still resisted to 10 kGy.

  19. Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis.

    PubMed

    Faderl, Martin; Noti, Mario; Corazza, Nadia; Mueller, Christoph

    2015-04-01

    In the mammalian gastrointestinal tract the close vicinity of abundant immune effector cells and trillions of commensal microbes requires sophisticated barrier and regulatory mechanisms to maintain vital host-microbial interactions and tissue homeostasis. During co-evolution of the host and its intestinal microbiota a protective multilayered barrier system was established to segregate the luminal microbes from the intestinal mucosa with its potent immune effector cells, limit bacterial translocation into host tissues to prevent tissue damage, while ensuring the vital functions of the intestinal mucosa and the luminal gut microbiota. In the present review we will focus on the different layers of protection in the intestinal tract that allow the successful mutualism between the microbiota and the potent effector cells of the intestinal innate and adaptive immune system. In particular, we will review some of the recent findings on the vital functions of the mucus layer and its site-specific adaptations to the changing quantities and complexities of the microbiota along the (gastro-) intestinal tract. Understanding the regulatory pathways that control the establishment of the mucus layer, but also its degradation during intestinal inflammation may be critical for designing novel strategies aimed at maintaining local tissue homeostasis and supporting remission from relapsing intestinal inflammation in patients with inflammatory bowel diseases. PMID:25914114

  20. The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease

    PubMed Central

    Stojancevic, Maja; Stankov, Karmen; Mikov, Momir

    2012-01-01

    The most important function of the intestinal mucosa is to form a barrier that separates luminal contents from the intestine. Defects in the intestinal epithelial barrier have been observed in several intestinal disorders such as inflammatory bowel disease (IBD). Recent studies have identified a number of factors that contribute to development of IBD including environmental triggers, genetic factors, immunoregulatory defects and microbial exposure. The current review focuses on the influence of the farnesoid X receptor (FXR) on the inhibition of intestinal inflammation in patients with IBD. The development and investigation of FXR agonists provide strong support for the regulatory role of FXR in mucosal innate immunity. Activation of FXR in the intestinal tract decreases the production of proinflammatory cytokines such as interleukin (IL) 1-beta, IL-2, IL-6, tumour necrosis factor-alpha and interferon-gamma, thus contributing to a reduction in inflammation and epithelial permeability. In addition, intestinal FXR activation induces the transcription of multiple genes involved in enteroprotection and the prevention of bacterial translocation in the intestinal tract. These data suggest that FXR agonists are potential candidates for exploration as a novel therapeutic strategy for IBD in humans. PMID:22993736

  1. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation.

    PubMed

    Jenq, Robert R; Ubeda, Carles; Taur, Ying; Menezes, Clarissa C; Khanin, Raya; Dudakov, Jarrod A; Liu, Chen; West, Mallory L; Singer, Natalie V; Equinda, Michele J; Gobourne, Asia; Lipuma, Lauren; Young, Lauren F; Smith, Odette M; Ghosh, Arnab; Hanash, Alan M; Goldberg, Jenna D; Aoyama, Kazutoshi; Blazar, Bruce R; Pamer, Eric G; van den Brink, Marcel R M

    2012-05-01

    Despite a growing understanding of the link between intestinal inflammation and resident gut microbes, longitudinal studies of human flora before initial onset of intestinal inflammation have not been reported. Here, we demonstrate in murine and human recipients of allogeneic bone marrow transplantation (BMT) that intestinal inflammation secondary to graft-versus-host disease (GVHD) is associated with major shifts in the composition of the intestinal microbiota. The microbiota, in turn, can modulate the severity of intestinal inflammation. In mouse models of GVHD, we observed loss of overall diversity and expansion of Lactobacillales and loss of Clostridiales. Eliminating Lactobacillales from the flora of mice before BMT aggravated GVHD, whereas reintroducing the predominant species of Lactobacillus mediated significant protection against GVHD. We then characterized gut flora of patients during onset of intestinal inflammation caused by GVHD and found patterns mirroring those in mice. We also identified increased microbial chaos early after allogeneic BMT as a potential risk factor for subsequent GVHD. Together, these data demonstrate regulation of flora by intestinal inflammation and suggest that flora manipulation may reduce intestinal inflammation and improve outcomes for allogeneic BMT recipients. PMID:22547653

  2. The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease.

    PubMed

    Stojancevic, Maja; Stankov, Karmen; Mikov, Momir

    2012-09-01

    The most important function of the intestinal mucosa is to form a barrier that separates luminal contents from the intestine. Defects in the intestinal epithelial barrier have been observed in several intestinal disorders such as inflammatory bowel disease (IBD). Recent studies have identified a number of factors that contribute to development of IBD including environmental triggers, genetic factors, immunoregulatory defects and microbial exposure. The current review focuses on the influence of the farnesoid X receptor (FXR) on the inhibition of intestinal inflammation in patients with IBD. The development and investigation of FXR agonists provide strong support for the regulatory role of FXR in mucosal innate immunity. Activation of FXR in the intestinal tract decreases the production of proinflammatory cytokines such as interleukin (IL) 1-beta, IL-2, IL-6, tumour necrosis factor-alpha and interferon-gamma, thus contributing to a reduction in inflammation and epithelial permeability. In addition, intestinal FXR activation induces the transcription of multiple genes involved in enteroprotection and the prevention of bacterial translocation in the intestinal tract. These data suggest that FXR agonists are potential candidates for exploration as a novel therapeutic strategy for IBD in humans. PMID:22993736

  3. Preparation of Noninfectious Arbovirus Antigens

    PubMed Central

    Brand, Orville M.; Allen, William P.

    1970-01-01

    Noninfectious arbovirus antigens were prepared from borate-saline suspensions of infected suckling mouse brain buffered with tris(hydroxmethyl)aminomethane and treated with ?-propiolactone (BPL). The activity and stability of these antigens were enhanced by altering the buffering system, by passing the virus seed through a series of four or more continuous passages in the brains of suckling mice, or by a combination of these procedures. The titers of group A and B arbovirus antigens were comparable to titers of antigens extracted by the conventional sucroseacetone-BPL (SA-BPL) method. Antigens prepared from some ungrouped and Bunyamwera arboviruses by either the borate-saline-BPL or SA-BPL method produced inconsistent results and will require the development of more unique procedures to obtain suitable hemagglutinating antigens. PMID:5485715

  4. The human milk oligosaccharide 2'-fucosyllactose augments the adaptive response to extensive intestinal.

    PubMed

    Mezoff, Ethan A; Hawkins, Jennifer A; Ollberding, Nicholas J; Karns, Rebekah; Morrow, Ardythe L; Helmrath, Michael A

    2016-03-15

    Intestinal resection resulting in short bowel syndrome (SBS) carries a heavy burden of long-term morbidity, mortality, and cost of care, which can be attenuated with strategies that improve intestinal adaptation. SBS infants fed human milk, compared with formula, have more rapid intestinal adaptation. We tested the hypothesis that the major noncaloric human milk oligosaccharide 2'-fucosyllactose (2'-FL) contributes to the adaptive response after intestinal resection. Using a previously described murine model of intestinal adaptation, we demonstrated increased weight gain from 21 to 56 days (P < 0.001) and crypt depth at 56 days (P < 0.0095) with 2'-FL supplementation after ileocecal resection. Furthermore, 2'-FL increased small bowel luminal content microbial alpha diversity following resection (P < 0.005) and stimulated a bloom in organisms of the genus Parabacteroides (log2-fold = 4.1, P = 0.035). Finally, transcriptional analysis of the intestine revealed enriched ontologies and pathways related to antimicrobial peptides, metabolism, and energy processing. We conclude that 2'-FL supplementation following ileocecal resection increases weight gain, energy availability through microbial community modulation, and histological changes consistent with improved adaptation. PMID:26702137

  5. Effects of Bacillus subtilis-based direct-fed microbials on growth performance, immune characteristics and resistance against experimental coccidiosis in broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present experiment was conducted to study the effects of dietary Bacillus-based direct-fed microbials (DFMs) on cytokine expression patterns, intestinal intraepithelial lymphocyte (IEL) subpopulation, splenocyte proliferation, macrophage functions and resistance against experimental coccidiosis ...

  6. [Metagenomics of the intestinal microbiota: potential applications].

    PubMed

    Dusko Ehrlich, S

    2010-09-01

    A major challenge in the human metagenomics field is to identify associations of the bacterial genes and human phenotypes and act to modulate microbial populations in order to improve human health and wellbeing. MetaHIT project addresses this ambitious challenge by developing and integrating a number of necessary approaches within the context of the gut microbiome. Among the first results is the establishment of a broad catalog of the human gut microbial genes, which was achieved by an original application of the new generation sequencing technology. The catalog contains 3.3 million non-redundant genes, 150-fold more than the human genome equivalent and includes a large majority of the gut metagenomic sequences determined across three continents, Europe, America and Asia. Its content corresponds to some 1000 bacterial species, which likely represent a large fraction of species associated with humankind intestinal tract. The catalog enables development of the gene profiling approaches aiming to detect associations of bacterial genes and phenotypes. These should lead to the speedy development of diagnostic and prognostic tools and open avenues to reasoned approaches to the modulation of the individual's microbiota in order to optimize health and well-being. PMID:20889001

  7. Oral PEG 1520 protects the intestine against radiation: role of lipid rafts

    PubMed Central

    Valuckaite, Vesta; Zaborina, Olga; Long, Jason; Hauer-Jensen, Martin; Wang, Junru; Holbrook, Christopher; Zaborin, Alexander; Drabik, Kenneth; Katdare, Mukta; Mauceri, Helena; Weichselbaum, Ralph; Firestone, Millicent A.; Lee, Ka Yee; Chang, Eugene B.; Matthews, Jeffrey

    2009-01-01

    Intestinal injury following abdominal radiation therapy or accidental exposure remains a significant clinical problem that can result in varying degrees of mucosal destruction such as ulceration, vascular sclerosis, intestinal wall fibrosis, loss of barrier function, and even lethal gut-derived sepsis. We determined the ability of a high-molecular-weight polyethylene glycol-based copolymer, PEG 1520, to protect the intestine against the early and late effects of radiation in mice and rats and to determine its mechanism of action by examining cultured rat intestinal epithelia. Rats were exposed to fractionated radiation in an established model of intestinal injury, whereby an intestinal segment is surgically placed into the scrotum and radiated daily. Radiation injury score was decreased in a dose-dependent manner in rats gavaged with 0.5 or 2.0 g/kg per day of PEG 1520 (n = 913/group, P < 0.005). Complementary studies were performed in a novel mouse model of abdominal radiation followed by intestinal inoculation with Pseudomonas aeruginosa (P. aeruginosa), a common pathogen that causes lethal gut-derived sepsis following radiation. Mice mortality was decreased by 40% in mice drinking 1% PEG 1520 (n = 10/group, P < 0.001). Parallel studies were performed in cultured rat intestinal epithelial cells treated with PEG 1520 before radiation. Results demonstrated that PEG 1520 prevented radiation-induced intestinal injury in rats, prevented apoptosis and lethal sepsis attributable to P. aeruginosa in mice, and protected cultured intestinal epithelial cells from apoptosis and microbial adherence and possible invasion. PEG 1520 appeared to exert its protective effect via its binding to lipid rafts by preventing their coalescence, a hallmark feature in intestinal epithelial cells exposed to radiation. PMID:19833862

  8. Oral PEG 15-20 protects the intestine against radiation : role of lipid rafts.

    SciTech Connect

    Valuckaite, V.; Zaborina, O.; Long, J.; Hauer-Jensen, M.; Wang, J.; Holbrook, C.; Zaborin, A.; Drabik, K.; Katdare, M.; Mauceri, H.; Weichselbaum, R.; Firestone, M. A.; Lee, K. Y.; Chang, E. B.; Matthews, J.; Alverdy, J. C.; Materials Science Division; Univ. of Chicago; Univ. of Arkansas

    2009-12-01

    Intestinal injury following abdominal radiation therapy or accidental exposure remains a significant clinical problem that can result in varying degrees of mucosal destruction such as ulceration, vascular sclerosis, intestinal wall fibrosis, loss of barrier function, and even lethal gut-derived sepsis. We determined the ability of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect the intestine against the early and late effects of radiation in mice and rats and to determine its mechanism of action by examining cultured rat intestinal epithelia. Rats were exposed to fractionated radiation in an established model of intestinal injury, whereby an intestinal segment is surgically placed into the scrotum and radiated daily. Radiation injury score was decreased in a dose-dependent manner in rats gavaged with 0.5 or 2.0 g/kg per day of PEG 15-20 (n = 9-13/group, P < 0.005). Complementary studies were performed in a novel mouse model of abdominal radiation followed by intestinal inoculation with Pseudomonas aeruginosa (P. aeruginosa), a common pathogen that causes lethal gut-derived sepsis following radiation. Mice mortality was decreased by 40% in mice drinking 1% PEG 15-20 (n = 10/group, P < 0.001). Parallel studies were performed in cultured rat intestinal epithelial cells treated with PEG 15-20 before radiation. Results demonstrated that PEG 15-20 prevented radiation-induced intestinal injury in rats, prevented apoptosis and lethal sepsis attributable to P. aeruginosa in mice, and protected cultured intestinal epithelial cells from apoptosis and microbial adherence and possible invasion. PEG 15-20 appeared to exert its protective effect via its binding to lipid rafts by preventing their coalescence, a hallmark feature in intestinal epithelial cells exposed to radiation.

  9. Novel antigen delivery systems.

    PubMed

    Trovato, Maria; De Berardinis, Piergiuseppe

    2015-08-12

    Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies for making vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a non-pathogenic prokaryotic organism: the "E2 scaffold" of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus. PMID:26279977

  10. Intestinal epithelial barrier function and tight junction proteins with heat and exercise.

    PubMed

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-03-15

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. PMID:26359485

  11. Intestinal stem cells and inflammation.

    PubMed

    Asfaha, Samuel

    2015-12-01

    The intestinal epithelium is renewed every 3-5 days from at least two principal stem cell pools. Actively cycling crypt based columnar (CBC) Lgr5(+) cells and slower cycling Bmi1-expressing or Krt19-expressing cells maintain the small intestinal and colonic epithelium in homeostasis and injury. Following acute epithelial damage, Lgr5+ stem cells are susceptible to injury and a reserve stem cell or progenitor pool is responsible for regeneration of the epithelium. Current data suggests that intestinal stem cells respond to inflammatory signals to modulate their expansion during epithelial regeneration. Here, we review how inflammation and injury affect intestinal and colonic stem cells. PMID:26654865

  12. How to make an intestine

    PubMed Central

    Wells, James M.; Spence, Jason R.

    2014-01-01

    With the high prevalence of gastrointestinal disorders, there is great interest in establishing in vitro models of human intestinal disease and in developing drug-screening platforms that more accurately represent the complex physiology of the intestine. We will review how recent advances in developmental and stem cell biology have made it possible to generate complex, three-dimensional, human intestinal tissues in vitro through directed differentiation of human pluripotent stem cells. These are currently being used to study human development, genetic forms of disease, intestinal pathogens, metabolic disease and cancer. PMID:24496613

  13. [Progress in the knowledge of the intestinal human microbiota].

    PubMed

    Robles-Alonso, Virginia; Guarner, Francisco

    2013-01-01

    New sequencing technologies together with the development of bio-informatics allow a description of the full spectrum of the microbial communities that inhabit the human intestinal tract, as well as their functional contributions to host health. Most community members belong to the domain Bacteria, but Archaea, Eukaryotes (yeasts and protists), and Viruses are also present. Only 7 to 9 of the 55 known divisions or phyla of the domain Bacteria are detected in faecal or mucosal samples from the human gut. Most taxa belong to just two divisions: Bacteroidetes and Firmicutes, and the other divisions that have been consistently found are Proteobacteria, Actinobacteria, Fusobacteria, and Verrucomicrobia. Bacteroides, Faecalibacterium and Bifidobacterium are the most abundant genera but their relative proportion is highly variable across individuals. Full metagenomic analysis has identified more than 5 million non-redundant microbial genes encoding up to 20,000 biological functions related with life in the intestinal habitat. The overall structure of predominant genera in the human gut can be assigned into three robust clusters, which are known as "enterotypes". Each of the three enterotypes is identifiable by the levels of one of three genera: Bacteroides (enterotype 1), Prevotella (enterotype 2) and Ruminococcus (enterotype 3). This suggests that microbiota variations across individuals are stratified, not continuous. Next steps include the identification of changes that may play a role in certain disease states. A better knowledge of the contributions of microbial symbionts to host health will help in the design of interventions to improve symbiosis and combat disease. PMID:23848071

  14. Intestinal Microbiota And Diet in IBS: Causes, Consequences, or Epiphenomena?

    PubMed Central

    Rajilić-Stojanović, Mirjana; Jonkers, Daisy M; Salonen, Anne; Hanevik, Kurt; Raes, Jeroen; Jalanka, Jonna; de Vos, Willem M; Manichanh, Chaysavanh; Golic, Natasa; Enck, Paul; Philippou, Elena; Iraqi, Fuad A; Clarke, Gerard; Spiller, Robin C; Penders, John

    2015-01-01

    Irritable bowel syndrome (IBS) is a heterogeneous functional disorder with a multifactorial etiology that involves the interplay of both host and environmental factors. Among environmental factors relevant for IBS etiology, the diet stands out given that the majority of IBS patients report their symptoms to be triggered by meals or specific foods. The diet provides substrates for microbial fermentation, and, as the composition of the intestinal microbiota is disturbed in IBS patients, the link between diet, microbiota composition, and microbial fermentation products might have an essential role in IBS etiology. In this review, we summarize current evidence regarding the impact of diet and the intestinal microbiota on IBS symptoms, as well as the reported interactions between diet and the microbiota composition. On the basis of the existing data, we suggest pathways (mechanisms) by which diet components, via the microbial fermentation, could trigger IBS symptoms. Finally, this review provides recommendations for future studies that would enable elucidation of the role of diet and microbiota and how these factors may be (inter)related in the pathophysiology of IBS. PMID:25623659

  15. Enhancing Oral Vaccine Potency by Targeting Intestinal M Cells

    PubMed Central

    Azizi, Ali; Kumar, Ashok; Diaz-Mitoma, Francisco; Mestecky, Jiri

    2010-01-01

    The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M) cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells. PMID:21085599

  16. Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets.

    PubMed

    Liu, Hong; Zhang, Jiang; Zhang, Shihai; Yang, Fengjuan; Thacker, Phil A; Zhang, Guolong; Qiao, Shiyan; Ma, Xi

    2014-01-29

    The present study was conducted to evaluate the effects of early administration of Lactobacillus fermentum I5007 on intestinal development and microbial composition in the gastrointestinal tract using a neonatal piglet model. Full-term 4 day old piglets, fed with milk replacer, were divided into a control group (given placebo of 0.1% peptone water) and a L. fermentum I5007 group (dosed daily with 6 × 10(9) CFU/mL L. fermentum I5007). The experiment lasted 14 days. On day 14, a significant increase in the jejunum villous height (583 ± 33 vs 526 ± 18) and increases in the concentrations of butyrate (7.55 ± 0.55 vs 5.33 ± 0.39) and branched chain fatty acids in the colonic digesta were observed in piglets in the L. fermentum I5007 treatment (P < 0.05). mRNA expression of IL-1β (1.29 ± 0.29 vs. 0.62 ± 0.07) in the ileum were lower after 14 days of treatment with L. fermentum I5007. Denaturing gradient gel electrophoresis (DGGE) revealed that L. fermentum I5007 affected the colonic microbial communities on day 14 and, in particular, reduced numbers of Clostridium sp. L. fermentum I5007 play a positive role in gut development in neonatal piglets by modulating microbial composition, intestinal development, and immune status. L. fermentum I5007 may be useful as a probiotic for application in neonatal piglets. PMID:24404892

  17. Motility Disorders of the Small Intestine

    MedlinePLUS

    ... Contact Us Donate Motility Disorders of the Small Intestine The general function of the small intestine is the absorption of the food we eat. During and after a meal, the intestine normally shows very irregular or unsynchronized contractions. The ...

  18. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation.

    PubMed

    Kabat, Agnieszka M; Harrison, Oliver J; Riffelmacher, Thomas; Moghaddam, Amin E; Pearson, Claire F; Laing, Adam; Abeler-Dörner, Lucie; Forman, Simon P; Grencis, Richard K; Sattentau, Quentin; Simon, Anna Katharina; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD); however, it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4(+) T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterized by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3(+) Treg cells. Specific ablation of Atg16l1 in Foxp3(+) Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders. PMID:26910010

  19. Microfluidics and microbial engineering.

    PubMed

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-01-26

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities. PMID:26758660

  20. A deregulated intestinal cell cycle program disrupts tissue homeostasis without affecting longevity in Drosophila.

    PubMed

    Petkau, Kristina; Parsons, Brendon D; Duggal, Aashna; Foley, Edan

    2014-10-10

    Recent studies illuminate a complex relationship between the control of stem cell division and intestinal tissue organization in the model system Drosophila melanogaster. Host and microbial signals drive intestinal proliferation to maintain an effective epithelial barrier. Although it is widely assumed that proliferation induces dysplasia and shortens the life span of the host, the phenotypic consequences of deregulated intestinal proliferation for an otherwise healthy host remain unexplored. To address this question, we genetically isolated and manipulated the cell cycle programs of adult stem cells and enterocytes. Our studies revealed that cell cycle alterations led to extensive cell death and morphological disruptions. Despite the extensive tissue damage, we did not observe an impact on longevity, suggesting a remarkable degree of plasticity in intestinal function. PMID:25170078

  1. Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine.

    PubMed

    Pfeiffer, Julie K; Virgin, Herbert W

    2016-01-15

    Viruses that infect the intestine include major human pathogens (retroviruses, noroviruses, rotaviruses, astroviruses, picornaviruses, adenoviruses, herpesviruses) that constitute a serious public health problem worldwide. These viral pathogens are members of a large, complex viral community inhabiting the intestine termed "the enteric virome." Enteric viruses have intimate functional and genetic relationships with both the host and other microbial constituents that inhabit the intestine, such as the bacterial microbiota, their associated phages, helminthes, and fungi, which together constitute the microbiome. Emerging data indicate that enteric viruses regulate, and are in turn regulated by, these other microbes through a series of processes termed "transkingdom interactions." This represents a changing paradigm in intestinal immunity to viral infection. Here we review recent advances in the field and propose new ways in which to conceptualize this important area. PMID:26816384

  2. Innate immune signalling at the intestinal epithelium in homeostasis and disease

    PubMed Central

    Pott, Johanna; Hornef, Mathias

    2012-01-01

    The intestinal epithelium—which constitutes the interface between the enteric microbiota and host tissues—actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease. PMID:22801555

  3. A Deregulated Intestinal Cell Cycle Program Disrupts Tissue Homeostasis without Affecting Longevity in Drosophila*

    PubMed Central

    Petkau, Kristina; Parsons, Brendon D.; Duggal, Aashna; Foley, Edan

    2014-01-01

    Recent studies illuminate a complex relationship between the control of stem cell division and intestinal tissue organization in the model system Drosophila melanogaster. Host and microbial signals drive intestinal proliferation to maintain an effective epithelial barrier. Although it is widely assumed that proliferation induces dysplasia and shortens the life span of the host, the phenotypic consequences of deregulated intestinal proliferation for an otherwise healthy host remain unexplored. To address this question, we genetically isolated and manipulated the cell cycle programs of adult stem cells and enterocytes. Our studies revealed that cell cycle alterations led to extensive cell death and morphological disruptions. Despite the extensive tissue damage, we did not observe an impact on longevity, suggesting a remarkable degree of plasticity in intestinal function. PMID:25170078

  4. The Role of Pattern Recognition Receptors in Intestinal Inflammation

    PubMed Central

    Fukata, Masayuki; Arditi, Moshe

    2013-01-01

    Recognition of microorganisms by pattern recognition receptors (PRRs) is the primary component of innate immunity that is responsible for the maintenance of host-microbial interactions in intestinal mucosa. Disregulation in host-commensal interactions has been implicated as the central pathogenesis of inflammatory bowel disease (IBD), which predisposes to developing colorectal cancer. Recent animal studies have begun to outline some unique physiology and pathology involving each PRR signaling in the intestine. The major roles played by PRRs in the gut appear to be regulation of the number and the composition of commensal bacteria, epithelial proliferation and mucosal permiability in response to epithelial injury. In addition, PRR signaling in lamina propria immune cells may be involved in induction of inflammation in response to invasion of pathogens. Because some PRR-deficient mice have shown variable susceptibility to colitis, the outcome of intestinal inflammation may be modified depending on PRR signaling in epithelial cells, immune cells, and the composition of commensal flora. Through recent findings in animal models of IBD, this review will discuss how abnormal PRR signaling may contribute to the pathogenesis of inflammation and inflammation-associated tumorigenesis in the intestine. PMID:23515136

  5. Effect of Antibiotic Treatment on the Intestinal Metabolome?

    PubMed Central

    Antunes, L. Caetano M.; Han, Jun; Ferreira, Rosana B. R.; Loli?, Petra; Borchers, Christoph H.; Finlay, B. Brett

    2011-01-01

    The importance of the mammalian intestinal microbiota to human health has been intensely studied over the past few years. It is now clear that the interactions between human hosts and their associated microbial communities need to be characterized in molecular detail if we are to truly understand human physiology. Additionally, the study of such host-microbe interactions is likely to provide us with new strategies to manipulate these complex systems to maintain or restore homeostasis in order to prevent or cure pathological states. Here, we describe the use of high-throughput metabolomics to shed light on the interactions between the intestinal microbiota and the host. We show that antibiotic treatment disrupts intestinal homeostasis and has a profound impact on the intestinal metabolome, affecting the levels of over 87% of all metabolites detected. Many metabolic pathways that are critical for host physiology were affected, including bile acid, eicosanoid, and steroid hormone synthesis. Dissecting the molecular mechanisms involved in the impact of beneficial microbes on some of these pathways will be instrumental in understanding the interplay between the host and its complex resident microbiota and may aid in the design of new therapeutic strategies that target these interactions. PMID:21282433

  6. Analysis of Intestinal Bacterial Community Diversity of Adult Dastarcus helophoroides

    PubMed Central

    Zhang, Z. Q.; He, C.; Li, M. L.

    2014-01-01

    Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), and a culturedependent technique were used to study the diversity of the intestinal bacterial community in adult Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae). Universal bacterial primers targeting 200 bp regions of the 16S rDNA gene were used in the PCR-DGGE assay, and 14 bright bands were obtained. The intestinal bacteria detected by PCR-DGGE were classified to Enterococcus (Lactobacillales: Enterococcaceae), Bacillus (Bacillales: Bacillaceae), Cellvibrio (Pseudomonadales: Pseudomonadaceae), Caulobacter (Caulobacterales: Caulobacteraceae), and uncultured bacteria, whereas those isolated by the culture-dependent technique belonged to Staphylococcus (Bacillales: Staphylococcaceae), Pectobacterium Enterobacteriales: Enterobacteriaceae), and Enterobacter (Enterobacteriales: Enterobacteriaceae). These intestinal bacteria represented the groups Lactobacillales (Enterococcus), Pseudomonadales (Cellvibrio), Caulobacterales (Caulobacter), Bacilli (Bacillus and Staphylococcus), and Gammaproteobacteria (Pectobacterium and Enterobacter). Our results demonstrated that PCR-DGGE analysis and the culture-dependent technique were useful in determining the intestinal bacteria of D. helophoroides and the two methods should be integrated to characterize the microbial community and diversity. PMID:25200108

  7. Stool Test: H. Pylori Antigen

    MedlinePLUS

    ... Cerebral Palsy: Caring for Your Child Stool Test: H. Pylori Antigen KidsHealth > For Parents > Stool Test: H. Pylori Antigen Print A A A Text Size ... en espaol Muestra de materia fecal: antgeno de H. pylori What It Is Helicobacter pylori ( H. pylori ) ...

  8. Novel antigen delivery systems

    PubMed Central

    Trovato, Maria; Berardinis, Piergiuseppe De

    2015-01-01

    Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies for making vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a non-pathogenic prokaryotic organism: the “E2 scaffold” of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus. PMID:26279977

  9. Intestinal absorptive function.

    PubMed Central

    Spiller, R C

    1994-01-01

    The normal gut is adapted to intermittent feeding with complex macromolecular substrates of low sodium content. The high permeability of the upper small intestine to sodium, together with sodium rich saliva and pancreaticobiliary secretions results in large sodium fluxes into the lumen. These substantial sodium influxes are matched by equally large effluxes from the ileum and proximal colon, which are comparatively impermeable to sodium and capable of active sodium absorption. Resection of these distal, sodium absorbing regions of the intestine, lead to problems with sodium depletion. Controlled transit of chyme is essential to permit time for optimum digestion and absorption and a range of feedback control mechanisms exist. Partially digested nutrients, both in the duodenum and ileum, exert inhibitory feedback to delay delivery of further nutrients and here again surgery may compromise these reflexes. Brush border hydrolase values are strongly influenced by luminal nutrient concentrations, being impaired by malnutrition and total parenteral nutrition, but restored by enteral feeding. Viscous fibre slows absorption and may delay transit through mechanisms that are as yet uncertain. Whether and how novel substrates activate normal control mechanisms will be important factors determining their effectiveness and patient acceptability. PMID:8125391

  10. Common intestinal parasites.

    PubMed

    Kucik, Corry Jeb; Martin, Gary L; Sortor, Brett V

    2004-03-01

    Intestinal parasites cause significant morbidity and mortality. Diseases caused by Enterobius vermicularis, Giardia lamblia, Ancylostoma duodenale, Necator americanus, and Entamoeba histolytica occur in the United States. E. vermicularis, or pinworm, causes irritation and sleep disturbances. Diagnosis can be made using the "cellophane tape test." Treatment includes mebendazole and household sanitation. Giardia causes nausea, vomiting, malabsorption, diarrhea, and weight loss. Stool ova and parasite studies are diagnostic. Treatment includes metronidazole. Sewage treatment, proper handwashing, and consumption of bottled water can be preventive. A. duodenale and N. americanus are hookworms that cause blood loss, anemia, pica, and wasting. Finding eggs in the feces is diagnostic. Treatments include albendazole, mebendazole, pyrantel pamoate, iron supplementation, and blood transfusion. Preventive measures include wearing shoes and treating sewage. E. histolytica can cause intestinal ulcerations, bloody diarrhea, weight loss, fever, gastrointestinal obstruction, and peritonitis. Amebas can cause abscesses in the liver that may rupture into the pleural space, peritoneum, or pericardium. Stool and serologic assays, biopsy, barium studies, and liver imaging have diagnostic merit. Therapy includes luminal and tissue amebicides to attack both life-cycle stages. Metronidazole, chloroquine, and aspiration are treatments for liver abscess. Careful sanitation and use of peeled foods and bottled water are preventive. PMID:15023017

  11. Regulation of TWIK-related potassium channel-1 (Trek1) restitutes intestinal epithelial barrier function

    PubMed Central

    Huang, Huang; Liu, Jiang-Qi; Yu, Yong; Mo, Li-Hua; Ge, Rong-Ti; Zhang, Huan-Ping; Liu, Zhi-Gang; Zheng, Peng-Yuan; Yang, Ping-Chang

    2016-01-01

    The disruption of epithelial barrier integrity is an important factor in the pathogenesis of various immune disorders. However, the restitution of the compromised barrier functions is difficult. This study investigates the regulation of TWIK-related potassium channel-1 (Trek1) in the restitution of intestinal epithelial barrier functions. The human colon epithelial cell line T84 was cultured in monolayers and used to observe epithelial barrier functions in vitro. An intestinal allergy mouse model was created. Cytokine levels were determined by enzyme-linked immunosorbent assay and western blotting. The results showed that Trek1 deficiency induced T84 monolayer barrier disruption. Allergic responses markedly suppressed the expression of Trek1 in the intestinal epithelia via activating the mitogen-activated protein kinase pathways and increasing the expression of histone deacetylase-1. The inhibition of histone deacetylase-1 by sodium butyrate or the administration of a butyrate-producing probiotic (Clostridium butyricum) restored the intestinal epithelial barrier functions and markedly enhanced the effect of antigen-specific immunotherapy. The data suggest that Trek1 is required for the maintenance of intestinal epithelial barrier integrity. Allergic responses induce an insufficiency of Trek1 expression in the intestinal epithelia. Trek1 expression facilitates the restoration of intestinal epithelial barrier functions in an allergic environment. PMID:25683610

  12. Regulation of TWIK-related potassium channel-1 (Trek1) restitutes intestinal epithelial barrier function.

    PubMed

    Huang, Huang; Liu, Jiang-Qi; Yu, Yong; Mo, Li-Hua; Ge, Rong-Ti; Zhang, Huan-Ping; Liu, Zhi-Gang; Zheng, Peng-Yuan; Yang, Ping-Chang

    2016-01-01

    The disruption of epithelial barrier integrity is an important factor in the pathogenesis of various immune disorders. However, the restitution of the compromised barrier functions is difficult. This study investigates the regulation of TWIK-related potassium channel-1 (Trek1) in the restitution of intestinal epithelial barrier functions. The human colon epithelial cell line T84 was cultured in monolayers and used to observe epithelial barrier functions in vitro. An intestinal allergy mouse model was created. Cytokine levels were determined by enzyme-linked immunosorbent assay and western blotting. The results showed that Trek1 deficiency induced T84 monolayer barrier disruption. Allergic responses markedly suppressed the expression of Trek1 in the intestinal epithelia via activating the mitogen-activated protein kinase pathways and increasing the expression of histone deacetylase-1. The inhibition of histone deacetylase-1 by sodium butyrate or the administration of a butyrate-producing probiotic (Clostridium butyricum) restored the intestinal epithelial barrier functions and markedly enhanced the effect of antigen-specific immunotherapy. The data suggest that Trek1 is required for the maintenance of intestinal epithelial barrier integrity. Allergic responses induce an insufficiency of Trek1 expression in the intestinal epithelia. Trek1 expression facilitates the restoration of intestinal epithelial barrier functions in an allergic environment. PMID:25683610

  13. The role of the intestinal microbiota in enteric infection

    PubMed Central

    Sekirov, Inna; Finlay, B Brett

    2009-01-01

    The consortia of microorganisms inhabiting the length of the gastrointestinal tract, the gastrointestinal microbiota, are vital to many aspects of normal host physiology. In addition, they are an active participant in the progression of many diseases, among them enteric infections. Healthy intestinal microbiota contribute to host resistance to infection through their involvement in the development of the host immune system and provision of colonization resistance. It is not surprising then that disruptions of the microbial community translate into alterations of host susceptibility to infection. Additionally, the process of the infection itself results in a disturbance to the microbiota. This disturbance is often mediated by the host inflammatory response, allowing the pathogen to benefit from the inflammation at the intestinal mucosa. Uncovering the mechanisms underlying the hostpathogen-microbiota interactions will facilitate our understanding of the infection process and promote design of more effective and focused prophylactic and therapeutic strategies. PMID:19491248

  14. Biphasic assembly of the murine intestinal microbiota during early development.

    PubMed

    Pantoja-Feliciano, Ida Gisela; Clemente, Jose C; Costello, Elizabeth K; Perez, Maria E; Blaser, Martin J; Knight, Rob; Dominguez-Bello, Maria Gloria

    2013-06-01

    The birth canal provides mammals with a primary maternal inoculum, which develops into distinctive body site-specific microbial communities post-natally. We characterized the distal gut microbiota from birth to weaning in mice. One-day-old mice had colonic microbiota that resembled maternal vaginal communities, but at days 3 and 9 of age there was a substantial loss of intestinal bacterial diversity and dominance of Lactobacillus. By weaning (21 days), diverse intestinal bacteria had established, including strict anaerobes. Our results are consistent with vertical transmission of maternal microbiota and demonstrate a nonlinear ecological succession involving an early drop in bacterial diversity and shift in dominance from Streptococcus to Lactobacillus, followed by an increase in diversity of anaerobes, after the introduction of solid food. Mammalian newborns are born highly susceptible to colonization, and lactation may control microbiome assembly during early development. PMID:23535917

  15. Intestinal Host-Microbe Interactions under Physiological and Pathological Conditions

    PubMed Central

    Bibiloni, Rodrigo; Schiffrin, Eduardo J.

    2010-01-01

    The intestinal mucosa is unique in that it can be tolerant to the resident, symbiotic microbiota but remaining, at the same time, responsive to and able to fight pathogens. The close interaction between host-symbiotic microbiota at the mucosal level poses important challenges since microbial breaches through the gut barrier can result in the breakdown of gut homeostasis. In this paper, hosts-integrated components that help to preserve intestinal homeostasis including barrier and immune function are discussed. In addition global alterations of the microbiota that can play a role in the initiation of an exaggerated inflammatory response through an abnormal signaling of the innate and adaptive immune response are briefly described. PMID:21152123

  16. The Interplay between the Intestinal Microbiota and the Immune System

    PubMed Central

    Lei, Yuk Man Kevin; Nair, Lekha; Alegre, Maria-Luisa

    2015-01-01

    Summary The relationship between commensal microbes and their hosts has been studied for many years. Commensal microorganisms are known to have a significant role in regulating the physiology of their hosts and preventing pathogenic infections while the hosts’ immune system is important in determining the composition of the microbiota. More recently, specific effects of the intestinal microbiota on the local and distal immune systems have been uncovered with important consequences for health and disease, and alterations in intestinal microbial composition has been associated with various disease states. Here, we will review the current understanding of the microbiota/immune system crosstalk, highlight the clinical consequences of changes in the microbiota and consider how to harness this symbiotic relationship to improve public health. PMID:25481240

  17. Radioimmunoassays of hidden viral antigens

    SciTech Connect

    Neurath, A.R.; Strick, N.; Baker, L.; Krugman, S.

    1982-07-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis B virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure.

  18. Intestinal Epithelial Cells In Vitro

    PubMed Central

    Dombkowski, Alan A.; Stemmer, Paul M.; Parker, Graham C.

    2010-01-01

    Recent advances in the biology of stem cells has resulted in significant interest in the development of normal epithelial cell lines from the intestinal mucosa, both to exploit the therapeutic potential of stem cells in tissue regeneration and to develop treatment models of degenerative disorders of the digestive tract. However, the difficulty of propagating cell lines of normal intestinal epithelium has impeded research into the molecular mechanisms underlying differentiation of stem/progenitor cells into the various intestinal lineages. Several short-term organ/organoid and epithelial cell culture models have been described. There is a dearth of long-term epithelial and/or stem cell cultures of intestine. With an expanding role of stem cells in the treatment of degenerative disorders, there is a critical need for additional efforts to develop in vitro models of stem/progenitor epithelial cells of intestine. The objective of this review is to recapitulate the current status of technologies and knowledge for in vitro propagation of intestinal epithelial cells, markers of the intestinal stem cells, and gene and protein expression profiles of the intestinal cellular differentiation. PMID:19580443

  19. A recombinant attenuated Salmonella enterica Serovar Typhimurium vaccine encoding Eimeria acervulina antigen offers protection against E. acervulina challenge.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccidiosis is a ubiquitous disease caused by several distinct species of intestinal protozoan parasite Eimeria spp.. Cell-mediated immunity (CMI) is critically important for protection against Eimeria, thus our approach utilizes bacterial Type Three Secretion System (TTSS) to deliver an antigen di...

  20. [Intestinal permeability disorders in children].

    PubMed

    Dupont, C; Barau, E; Molkhou, P

    1991-03-01

    The intestinal mucosa has a certain degree of "porosity", which allows some molecules and macromolecules that are not subject to active transport, to cross the intestinal wall and enter the blood circulation. This permeability of the intestinal mucosa, which depends mostly on the size of the molecule and the state of the mucosa, can be studied with the assistance of protein macromolecules in an allergy-immunological investigation, or with inert markers, so permitting evaluation of the state of integrity of the small intestine. The markers used are polyethylene glycols (PEG) of various molecular weights, Cr EDTA, the monosaccharide sugars mannitol or rhamnose and the disaccharide sugars lactulose or cellobiose. Study of the intestinal permeability to inert markers allows detection of coeliac or Crohn's disease. It can be repeated, especially at the time of food provocation tests needed in the diagnosis of food intolerances in pediatrics in the enteropathology to cows milk proteins, atopic dermatitis and irritable colon in children. PMID:2069683

  1. Benchtop Antigen Detection Technique using Nanofiltration and Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2009-01-01

    The designed benchtop technique is primed to detect bacteria and viruses from antigenic surface marker proteins in solutions, initially water. This inclusive bio-immunoassay uniquely combines nanofiltration and near infrared (NIR) dyes conjugated to antibodies to isolate and distinguish microbial antigens, using laser excitation and spectrometric analysis. The project goals include detecting microorganisms aboard the International Space Station, space shuttle, Crew Exploration Vehicle (CEV), and human habitats on future Moon and Mars missions, ensuring astronaut safety. The technique is intended to improve and advance water contamination testing both commercially and environmentally as well. Lastly, this streamlined technique poses to greatly simplify and expedite testing of pathogens in complex matrices, such as blood, in hospital and laboratory clinics.

  2. Intronic Cis-Regulatory Modules Mediate Tissue-Specific and Microbial Control of angptl4/fiaf Transcription

    PubMed Central

    Camp, J. Gray; Jazwa, Amelia L.; Trent, Chad M.; Rawls, John F.

    2012-01-01

    The intestinal microbiota enhances dietary energy harvest leading to increased fat storage in adipose tissues. This effect is caused in part by the microbial suppression of intestinal epithelial expression of a circulating inhibitor of lipoprotein lipase called Angiopoietin-like 4 (Angptl4/Fiaf). To define the cis-regulatory mechanisms underlying intestine-specific and microbial control of Angptl4 transcription, we utilized the zebrafish system in which host regulatory DNA can be rapidly analyzed in a live, transparent, and gnotobiotic vertebrate. We found that zebrafish angptl4 is transcribed in multiple tissues including the liver, pancreatic islet, and intestinal epithelium, which is similar to its mammalian homologs. Zebrafish angptl4 is also specifically suppressed in the intestinal epithelium upon colonization with a microbiota. In vivo transgenic reporter assays identified discrete tissue-specific regulatory modules within angptl4 intron 3 sufficient to drive expression in the liver, pancreatic islet β-cells, or intestinal enterocytes. Comparative sequence analyses and heterologous functional assays of angptl4 intron 3 sequences from 12 teleost fish species revealed differential evolution of the islet and intestinal regulatory modules. High-resolution functional mapping and site-directed mutagenesis defined the minimal set of regulatory sequences required for intestinal activity. Strikingly, the microbiota suppressed the transcriptional activity of the intestine-specific regulatory module similar to the endogenous angptl4 gene. These results suggest that the microbiota might regulate host intestinal Angptl4 protein expression and peripheral fat storage by suppressing the activity of an intestine-specific transcriptional enhancer. This study provides a useful paradigm for understanding how microbial signals interact with tissue-specific regulatory networks to control the activity and evolution of host gene transcription. PMID:22479192

  3. Intronic cis-regulatory modules mediate tissue-specific and microbial control of angptl4/fiaf transcription.

    PubMed

    Camp, J Gray; Jazwa, Amelia L; Trent, Chad M; Rawls, John F

    2012-01-01

    The intestinal microbiota enhances dietary energy harvest leading to increased fat storage in adipose tissues. This effect is caused in part by the microbial suppression of intestinal epithelial expression of a circulating inhibitor of lipoprotein lipase called Angiopoietin-like 4 (Angptl4/Fiaf). To define the cis-regulatory mechanisms underlying intestine-specific and microbial control of Angptl4 transcription, we utilized the zebrafish system in which host regulatory DNA can be rapidly analyzed in a live, transparent, and gnotobiotic vertebrate. We found that zebrafish angptl4 is transcribed in multiple tissues including the liver, pancreatic islet, and intestinal epithelium, which is similar to its mammalian homologs. Zebrafish angptl4 is also specifically suppressed in the intestinal epithelium upon colonization with a microbiota. In vivo transgenic reporter assays identified discrete tissue-specific regulatory modules within angptl4 intron 3 sufficient to drive expression in the liver, pancreatic islet ?-cells, or intestinal enterocytes. Comparative sequence analyses and heterologous functional assays of angptl4 intron 3 sequences from 12 teleost fish species revealed differential evolution of the islet and intestinal regulatory modules. High-resolution functional mapping and site-directed mutagenesis defined the minimal set of regulatory sequences required for intestinal activity. Strikingly, the microbiota suppressed the transcriptional activity of the intestine-specific regulatory module similar to the endogenous angptl4 gene. These results suggest that the microbiota might regulate host intestinal Angptl4 protein expression and peripheral fat storage by suppressing the activity of an intestine-specific transcriptional enhancer. This study provides a useful paradigm for understanding how microbial signals interact with tissue-specific regulatory networks to control the activity and evolution of host gene transcription. PMID:22479192

  4. The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster.

    PubMed

    Wong, Adam C N; Vanhove, Audrey S; Watnick, Paula I

    2016-03-01

    All higher organisms negotiate a truce with their commensal microbes and battle pathogenic microbes on a daily basis. Much attention has been given to the role of the innate immune system in controlling intestinal microbes and to the strategies used by intestinal microbes to overcome the host immune response. However, it is becoming increasingly clear that the metabolisms of intestinal microbes and their hosts are linked and that this interaction is equally important for host health and well-being. For instance, an individual's array of commensal microbes can influence their predisposition to chronic metabolic diseases such as diabetes and obesity. A better understanding of host-microbe metabolic interactions is important in defining the molecular bases of these disorders and could potentially lead to new therapeutic avenues. Key advances in this area have been made using Drosophila melanogaster. Here, we review studies that have explored the impact of both commensal and pathogenic intestinal microbes on Drosophila carbohydrate and lipid metabolism. These studies have helped to elucidate the metabolites produced by intestinal microbes, the intestinal receptors that sense these metabolites, and the signaling pathways through which these metabolites manipulate host metabolism. Furthermore, they suggest that targeting microbial metabolism could represent an effective therapeutic strategy for human metabolic diseases and intestinal infection. PMID:26935105

  5. Regenerative Inflammation: Lessons from Drosophila Intestinal Epithelium in Health and Disease

    PubMed Central

    Panayidou, Stavria; Apidianakis, Yiorgos

    2013-01-01

    Intestinal inflammation is widely recognized as a pivotal player in health and disease. Defined cytologically as the infiltration of leukocytes in the lamina propria layer of the intestine, it can damage the epithelium and, on a chronic basis, induce inflammatory bowel disease and potentially cancer. The current view thus dictates that blood cell infiltration is the instigator of intestinal inflammation and tumor-promoting inflammation. This is based partially on work in humans and mice showing that intestinal damage during microbially mediated inflammation activates phagocytic cells and lymphocytes that secrete inflammatory signals promoting tissue damage and tumorigenesis. Nevertheless, extensive parallel work in the Drosophila midgut shows that intestinal epithelium damage induces inflammatory signals and growth factors acting mainly in a paracrine manner to induce intestinal stem cell proliferation and tumor formation when genetically predisposed. This is accomplished without any apparent need to involve Drosophila hemocytes. Therefore, recent work on Drosophila host defense to infection by expanding its main focus on systemic immunity signaling pathways to include the study of organ homeostasis in health and disease shapes a new notion that epithelially emanating cytokines and growth factors can directly act on the intestinal stem cell niche to promote regenerative inflammation and potentially cancer. PMID:25437036

  6. A molecular revolution in the study of intestinal microflora

    PubMed Central

    Furrie, E

    2006-01-01

    Bacterial colonisers of the colon comprise several hundred bacterial species that live in a complex ecosystem. Study of this complex ecosystem has been carried out, until recently, by traditional culture techniques with biochemical methods to identify organisms. The development of molecular techniques to investigate ecological microbial communities has provided the microbiologist with a vast array of new techniques to investigate human intestinal microflora. Metagenomics, the science of biological diversity, combines the use of molecular biology and genetics to identify and characterise genetic material from complex microbial environments. The combination of metagenomics and subsequent quantitation of each identified species using molecular techniques allows the relatively rapid analysis of whole bacterial populations in human health and disease PMID:16407377

  7. The Etiologic Role of Infectious Antigens in Sarcoidosis Pathogenesis.

    PubMed

    Celada, Lindsay J; Hawkins, Charlene; Drake, Wonder P

    2015-12-01

    Sarcoidosis is a granulomatous disease of unknown etiology, most commonly involving the lung, skin, lymph node, and eyes. Molecular and immunologic studies continue to strengthen the association of sarcoidosis with infectious antigens. Independent studies report the presence of microbial nucleic acids and proteins within sarcoidosis specimens. Complementary immunologic studies also support the role of infectious agents in sarcoidosis pathogenesis. Case reports and clinical trials have emerged regarding the efficacy of antimicrobials. They support increasing efforts to identify novel therapeutics, such as antimicrobials, that will have an impact on the observed increase in sarcoidosis morbidity and mortality. PMID:26593133

  8. Microbial Biotransformations of Bile Acids as Detected by Electrospray Mass Spectrometry123

    PubMed Central

    Hagey, Lee R.; Krasowski, Matthew D.

    2013-01-01

    Many current experiments investigating the effects of diet, dietary supplements, and pre- and probiotics on the intestinal environments do not take into consideration the potential for using bile salts as markers of environmental change. Intestinal bacteria in vertebrates can metabolize bile acids into a number of different structures, with deamidation, hydroxyl group oxidation, and hydroxyl group elimination. Fecal bile acids are readily available to sample and contain a considerable structural complexity that directly relates to intestinal morphology, bile acid residence time in the intestine, and the species of microbial forms in the intestinal tract. Here we offer a classification scheme that can serve as an initial guide to interpret the different bile acid patterns expressed in vertebrate feces. PMID:23319120

  9. Antigenic mosaic of Methanogenium spp. : analysis with poly- and monoclonal antibody probes

    SciTech Connect

    Macario, A.J.L.; Dugan, C.B.; de Macario, E.C.

    1987-02-01

    Eight well-characterized Methanogenium strains, including the six described type strains, were analyzed with poly- and monoclonal antibody probes to examine the antigenic mosaic of the genus. The pattern of cross-reactions showed that the mosaic is complex and varies with the strains; thus, these organisms have developed a considerable antigenic diversity, which is expressed in their envelopes. Every strain shared at least one determinant with at least one other strain, demonstrating the antigenic cohesiveness of the group. This finding, together with the fact that most strains displayed a distinctive antigenic fingerprint (notwithstanding the limited number of probes available), emphasizes the potential of antibodies for rapid identification of new isolates and for direct elucidation of Methanogenium strains in microbial mixtures.

  10. Interactions between parasites and microbial communities in the human gut

    PubMed Central

    Berrilli, Federica; Di Cave, David; Cavallero, Serena; D'Amelio, Stefano

    2012-01-01

    The interactions between intestinal microbiota, immune system, and pathogens describe the human gut as a complex ecosystem, where all components play a relevant role in modulating each other and in the maintenance of homeostasis. The balance among the gut microbiota and the human body appear to be crucial for health maintenance. Intestinal parasites, both protozoans and helminths, interact with the microbial community modifying the balance between host and commensal microbiota. On the other hand, gut microbiota represents a relevant factor that may strongly interfere with the pathophysiology of the infections. In addition to the function that gut commensal microbiota may have in the processes that determine the survival and the outcome of many parasitic infections, including the production of nutritive macromolecules, also probiotics can play an important role in reducing the pathogenicity of many parasites. On these bases, there is a growing interest in explaining the rationale on the possible interactions between the microbiota, immune response, inflammatory processes, and intestinal parasites. PMID:23162802

  11. Metabolism of isoflavones, lignans and prenylflavonoids by intestinal bacteria: producer phenotyping and relation with intestinal community.

    PubMed

    Possemiers, Sam; Bolca, Selin; Eeckhaut, Ellen; Depypere, Herman; Verstraete, Willy

    2007-08-01

    Many studies have investigated the importance of the intestinal bacterial activation of individual phytoestrogens. However, human nutrition contains different phytoestrogens and the final exposure depends on the microbial potential to activate all different groups within each individual. In this work, interindividual variations in the bacterial activation of the different phytoestrogens were assessed. Incubation of feces from 100 individuals using SoyLife EXTRA, LinumLife EXTRA and isoxanthohumol suggested that individuals could be separated into high, moderate and low O-desmethylangolensin (O-DMA), equol, enterodiol (END), enterolactone (ENL) or 8-prenylnaringenin producers, but that the metabolism of isoflavones, lignans and prenylflavonoids follows separate, independent pathways. However, O-DMA and equol production correlated negatively, whereas a positive correlation was found between END and ENL production. In addition, END production correlated negatively with Clostridium coccoides-Eubacterium rectale counts. Furthermore, O-DMA production was correlated with the abundance of methanogens, whereas equol production correlated with sulfate-reducing bacteria, indicating that the metabolic fate of daidzein may be related to intestinal H(2) metabolism. PMID:17506823

  12. Development of Functional Microfold (M) Cells from Intestinal Stem Cells in Primary Human Enteroids

    PubMed Central

    Rouch, Joshua D.; Scott, Andrew; Lei, Nan Ye; Solorzano-Vargas, R. Sergio; Wang, Jiafang; Hanson, Elaine M.; Kobayashi, Masae; Lewis, Michael; Stelzner, Matthias G.; Dunn, James C. Y.; Eckmann, Lars; Martín, Martín G.

    2016-01-01

    Background & Aims Intestinal microfold (M) cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer’s patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs), and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting. Methods Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium. Results Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2) in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells. Conclusions Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an in vitro setting. We anticipate that this model can be used to generate large numbers of M cells for further functional studies of these key cells of intestinal immune induction and their impact on controlling enteric pathogens and the intestinal microbiome. PMID:26820624

  13. Antigen Retrieval Immunohistochemistry

    PubMed Central

    Shi, Shan-Rong; Shi, Yan; Taylor, Clive R.

    2011-01-01

    As a review for the 20th anniversary of publishing the antigen retrieval (AR) technique in this journal, the authors intend briefly to summarize developments in AR-immunohistochemistry (IHC)–based research and diagnostics, with particular emphasis on current challenges and future research directions. Over the past 20 years, the efforts of many different investigators have coalesced in extending the AR approach to all areas of anatomic pathology diagnosis and research and further have led to AR-based protein extraction techniques and tissue-based proteomics. As a result, formalin-fixed paraffin-embedded (FFPE) archival tissue collections are now seen as a literal treasure of materials for clinical and translational research to an extent unimaginable just two decades ago. Further research in AR-IHC is likely to focus on tissue proteomics, developing a more efficient protocol for protein extraction from FFPE tissue based on the AR principle, and combining the proteomics approach with AR-IHC to establish a practical, sophisticated platform for identifying and using biomarkers in personalized medicine. PMID:21339172

  14. Intestinal barrier dysfunction in cirrhosis: Current concepts in pathophysiology and clinical implications

    PubMed Central

    Tsiaoussis, Georgios I; Assimakopoulos, Stelios F; Tsamandas, Athanassios C; Triantos, Christos K; Thomopoulos, Konstantinos C

    2015-01-01

    The intestinal lumen is a host place for a wide range of microbiota and sets a unique interplay between local immune system, inflammatory cells and intestinal epithelium, forming a physical barrier against microbial invaders and toxins. Bacterial translocation is the migration of viable or nonviable microorganisms or their pathogen-associated molecular patterns, such as lipopolysaccharide, from the gut lumen to the mesenteric lymph nodes, systemic circulation and other normally sterile extraintestinal sites. A series of studies have shown that translocation of bacteria and their products across the intestinal barrier is a commonplace in patients with liver disease. The deterioration of intestinal barrier integrity and the consulting increased intestinal permeability in cirrhotic patients play a pivotal pathophysiological role in the development of severe complications as high rate of infections, spontaneous bacterial peritonitis, hepatic encephalopathy, hepatorenal syndrome, variceal bleeding, progression of liver injury and hepatocellular carcinoma. Nevertheless, the exact cellular and molecular mechanisms implicated in the phenomenon of microbial translocation in liver cirrhosis have not been fully elucidated yet. PMID:26301048

  15. Recent advances in intestinal imaging

    PubMed Central

    Sinha, Rakesh

    2011-01-01

    In recent years, advances in scanner technology and competition from other specialties have produced rapid changes in the way the intestines are imaged. MRI and CT scan along with the traditional enteroclysis examination have emerged at the forefront of intestinal imaging. Functional modalities such as diffusion and perfusion imaging are also changing the way tumors and inflammatory bowel diseases are evaluated. CT colonography is now a valid alterative to optical colonoscopy. Contrast-enhanced USG is being used for the assessment of inflammation and post-treatment changes. In this review, recent advances in intestinal imaging are described. PMID:22013290

  16. Detection of an Antigenic Group 2 Coronavirus in an Adult Alpaca with Enteritis?

    PubMed Central

    Genova, Suzanne G.; Streeter, Robert N.; Simpson, Katharine M.; Kapil, Sanjay

    2008-01-01

    Antigenic group 2 coronavirus was detected in a fecal sample of an adult alpaca by reverse transcription-PCR. The presence of alpaca coronavirus (ApCoV) in the small intestine was demonstrated by immune histochemistry with an antinucleocapsid monoclonal antibody that reacts with group 2 coronaviruses. Other common causes of diarrhea in adult camelids were not detected. We conclude that nutritional stress may have predisposed the alpaca to severe ApCoV infection. PMID:18716008

  17. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation

    SciTech Connect

    Yang, Gang; Xu, Zhenjiang; Tian, Xiangli; Dong, Shuanglin; Peng, Mo

    2015-02-27

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota. - Highlights: • Dietary β-glucan supplementation increases the abundance of Rhodobacteraceae and Verrucomicrobiaceae in the intestine. • Dietary β-glucan supplementation changes the topological roles of OTUs in the ecological network. • Dietary β-glucan supplementation has a positive impact on the immune response of intestine of sea cucumber.

  18. Insect's intestinal organ for symbiont sorting.

    PubMed

    Ohbayashi, Tsubasa; Takeshita, Kazutaka; Kitagawa, Wataru; Nikoh, Naruo; Koga, Ryuichi; Meng, Xian-Ying; Tago, Kanako; Hori, Tomoyuki; Hayatsu, Masahito; Asano, Kozo; Kamagata, Yoichi; Lee, Bok Luel; Fukatsu, Takema; Kikuchi, Yoshitomo

    2015-09-15

    Symbiosis has significantly contributed to organismal adaptation and diversification. For establishment and maintenance of such host-symbiont associations, host organisms must have evolved mechanisms for selective incorporation, accommodation, and maintenance of their specific microbial partners. Here we report the discovery of a previously unrecognized type of animal organ for symbiont sorting. In the bean bug Riptortus pedestris, the posterior midgut is morphologically differentiated for harboring specific symbiotic bacteria of a beneficial nature. The sorting organ lies in the middle of the intestine as a constricted region, which partitions the midgut into an anterior nonsymbiotic region and a posterior symbiotic region. Oral administration of GFP-labeled Burkholderia symbionts to nymphal stinkbugs showed that the symbionts pass through the constricted region and colonize the posterior midgut. However, administration of food colorings revealed that food fluid enters neither the constricted region nor the posterior midgut, indicating selective symbiont passage at the constricted region and functional isolation of the posterior midgut for symbiosis. Coadministration of the GFP-labeled symbiont and red fluorescent protein-labeled Escherichia coli unveiled selective passage of the symbiont and blockage of E. coli at the constricted region, demonstrating the organ's ability to discriminate the specific bacterial symbiont from nonsymbiotic bacteria. Transposon mutagenesis and screening revealed that symbiont mutants in flagella-related genes fail to pass through the constricted region, highlighting that both host's control and symbiont's motility are involved in the sorting process. The blocking of food flow at the constricted region is conserved among diverse stinkbug groups, suggesting the evolutionary origin of the intestinal organ in their common ancestor. PMID:26324935

  19. Microbial Properties Database Editor Tutorial

    EPA Science Inventory

    A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbial-relevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pat...

  20. Aptamer-targeted Antigen Delivery

    PubMed Central

    Wengerter, Brian C; Katakowski, Joseph A; Rosenberg, Jacob M; Park, Chae Gyu; Almo, Steven C; Palliser, Deborah; Levy, Matthew

    2014-01-01

    Effective therapeutic vaccines often require activation of T cell-mediated immunity. Robust T cell activation, including CD8 T cell responses, can be achieved using antibodies or antibody fragments to direct antigens of interest to professional antigen presenting cells. This approach represents an important advance in enhancing vaccine efficacy. Nucleic acid aptamers present a promising alternative to protein-based targeting approaches. We have selected aptamers that specifically bind the murine receptor, DEC205, a C-type lectin expressed predominantly on the surface of CD8α+ dendritic cells (DCs) that has been shown to be efficient at facilitating antigen crosspresentation and subsequent CD8+ T cell activation. Using a minimized aptamer conjugated to the model antigen ovalbumin (OVA), DEC205-targeted antigen crosspresentation was verified in vitro and in vivo by proliferation and cytokine production by primary murine CD8+ T cells expressing a T cell receptor specific for the major histocompatibility complex (MHC) I-restricted OVA257–264 peptide SIINFEKL. Compared with a nonspecific ribonucleic acid (RNA) of similar length, DEC205 aptamer-OVA-mediated antigen delivery stimulated strong proliferation and production of interferon (IFN)-γ and interleukin (IL)-2. The immune responses elicited by aptamer-OVA conjugates were sufficient to inhibit the growth of established OVA-expressing B16 tumor cells. Our results demonstrate a new application of aptamer technology for the development of effective T cell-mediated vaccines. PMID:24682172

  1. Parenteral immunization to beta-lactoglobulin modifies the intestinal structure and mucosal electrical parameters in rabbit.

    PubMed

    Addou-Benounane, Samia; Tomé, Daniel; Kheroua, Omar; Saidi, Djamel

    2004-11-01

    Systemic and local immune responses and the intestinal structure were examined in parenterally beta-Lg-sensitized rabbits. Immunization led to high IgG titers against beta-Lg. In a Ussing chamber, a sensitized ileum had a higher short-circuit current (Isc) and potential difference (PD) than a control following in vitro beta-Lg challenge. Histological study indicated that presence of the sensitizing antigen affected and considerably modified the structure of the intestinal mucosa in sensitized rabbits when compared to controls. These alterations were revealed by active atrophy and marked infiltration of the lymphocytes. These findings indicate that antigen exposure results in morphological changes and abnormalities affecting the transport of water and electrolytes. This study provides a clearer understanding of the physiopathological mechanisms of allergy to cow's milk protein. PMID:15351325

  2. Why Microbial Communities?

    SciTech Connect

    Fredrickson, Jim

    2009-10-09

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Fredrickson introduces the symposium by defining microbial communities and describing their scientific relevance as they relate to solving problems in energy, climate, and sustainability.

  3. Why Microbial Communities?

    ScienceCinema

    Fredrickson, Jim (PNNL)

    2012-02-29

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Fredrickson introduces the symposium by defining microbial communities and describing their scientific relevance as they relate to solving problems in energy, climate, and sustainability.

  4. Intestinal Stem Cells: Got Calcium?

    PubMed

    Nszai, Mt; Cordero, Julia B

    2016-02-01

    Calcium ions are well-known intracellular signalling molecules. A new study identifies local cytoplasmic calcium as a central integrator of metabolic and proliferative signals in Drosophila intestinal stem cells. PMID:26859268

  5. Analysis of gene–environment interactions in postnatal development of the mammalian intestine

    PubMed Central

    Rakoff-Nahoum, Seth; Kong, Yong; Kleinstein, Steven H.; Subramanian, Sathish; Ahern, Philip P.; Gordon, Jeffrey I.; Medzhitov, Ruslan

    2015-01-01

    Unlike mammalian embryogenesis, which takes place in the relatively predictable and stable environment of the uterus, postnatal development can be affected by a multitude of highly variable environmental factors, including diet, exposure to noxious substances, and microorganisms. Microbial colonization of the intestine is thought to play a particularly important role in postnatal development of the gastrointestinal, metabolic, and immune systems. Major changes in environmental exposure occur right after birth, upon weaning, and during pubertal maturation into adulthood. These transitions include dramatic changes in intestinal contents and require appropriate adaptations to meet changes in functional demands. Here, we attempt to both characterize and provide mechanistic insights into postnatal intestinal ontogeny. We investigated changes in global intestinal gene expression through postnatal developmental transitions. We report profound alterations in small and large intestinal transcriptional programs that accompany both weaning and puberty in WT mice. Using myeloid differentiation factor 88 (MyD88)/TIR-domain-containing adapter-inducing interferon-β (TRIF) double knockout littermates, we define the role of toll-like receptors (TLRs) and interleukin (IL)-1 receptor family member signaling in postnatal gene expression programs and select ontogeny-specific phenotypes, such as vascular and smooth muscle development and neonatal epithelial and mast cell homeostasis. Metaanalysis of the effect of the microbiota on intestinal gene expression allowed for mechanistic classification of developmentally regulated genes by TLR/IL-1R (TIR) signaling and/or indigenous microbes. We find that practically every aspect of intestinal physiology is affected by postnatal transitions. Developmental timing, microbial colonization, and TIR signaling seem to play distinct and specific roles in regulation of gene-expression programs throughout postnatal development. PMID:25691701

  6. Analysis of gene-environment interactions in postnatal development of the mammalian intestine.

    PubMed

    Rakoff-Nahoum, Seth; Kong, Yong; Kleinstein, Steven H; Subramanian, Sathish; Ahern, Philip P; Gordon, Jeffrey I; Medzhitov, Ruslan

    2015-02-17

    Unlike mammalian embryogenesis, which takes place in the relatively predictable and stable environment of the uterus, postnatal development can be affected by a multitude of highly variable environmental factors, including diet, exposure to noxious substances, and microorganisms. Microbial colonization of the intestine is thought to play a particularly important role in postnatal development of the gastrointestinal, metabolic, and immune systems. Major changes in environmental exposure occur right after birth, upon weaning, and during pubertal maturation into adulthood. These transitions include dramatic changes in intestinal contents and require appropriate adaptations to meet changes in functional demands. Here, we attempt to both characterize and provide mechanistic insights into postnatal intestinal ontogeny. We investigated changes in global intestinal gene expression through postnatal developmental transitions. We report profound alterations in small and large intestinal transcriptional programs that accompany both weaning and puberty in WT mice. Using myeloid differentiation factor 88 (MyD88)/TIR-domain-containing adapter-inducing interferon-? (TRIF) double knockout littermates, we define the role of toll-like receptors (TLRs) and interleukin (IL)-1 receptor family member signaling in postnatal gene expression programs and select ontogeny-specific phenotypes, such as vascular and smooth muscle development and neonatal epithelial and mast cell homeostasis. Metaanalysis of the effect of the microbiota on intestinal gene expression allowed for mechanistic classification of developmentally regulated genes by TLR/IL-1R (TIR) signaling and/or indigenous microbes. We find that practically every aspect of intestinal physiology is affected by postnatal transitions. Developmental timing, microbial colonization, and TIR signaling seem to play distinct and specific roles in regulation of gene-expression programs throughout postnatal development. PMID:25691701

  7. Steroid metabolism with intestinal microorganisms.

    PubMed

    Groh, H; Schade, K; Hörhold-Schubert, C

    1993-01-01

    As a result of the metabolic activities of numerous anaerobic microorganisms with sterols, bile acids and steroid hormones as substrates in connection with the enterohepatic circulation of these compounds, the intestine may be considered as an "endocrine" active site or organ. The review summarizes transformations of steroids by anaerobic intestinal bacteria, the physiological and supposed pathophysiological meaning thereof. The aim is to recommend further investigation in this field with respect to both the elucidation of the reactions and biological responses. PMID:8478793

  8. Intestinal angioedema mimicking Crohn's disease.

    PubMed

    Malcolm, A; Prather, C M

    1999-10-18

    Angioedema usually presents as episodic attacks of swelling of the face, airway and extremities, but it may also involve visceral tissues. A 58-year-old woman with repeated episodes of abdominal pain, nausea and vomiting had two laparotomies and was treated for Crohn's disease for two years before a diagnosis of acquired intestinal angioedema was made. This case provides important insights into the presentation of intestinal angioedema. PMID:10590745

  9. Disrupted tight junctions in the small intestine of cystic fibrosis mice.

    PubMed

    De Lisle, Robert C

    2014-01-01

    The tight junction (TJ) is the major determinant of paracellular permeability, which in the gut protects the body from entry of harmful substances such as microbial components. In cystic fibrosis (CF), there is increased permeability of the small intestine both in humans and in CF mice. To gain insight into the mechanisms of increased intestinal permeability in CF, I analyze the composition of the TJ in a cystic fibrosis transmembrane conductance regulator (Cftr) knockout mouse model. Significant changes in TJ gene expression in the CF intestine were found for Cldn1, Cldn7, Cldn8 and Pmp22, which were expressed at lower levels and Cldn2 that was expressed at a higher level. Protein levels of claudin-2 were increased in the CF intestine as compared to wild-type, while other TJ proteins were not significantly different. In the villus epithelium of the CF intestine, all TJ components analyzed were mislocalized to the basal cytoplasm and showed varying degrees of loss from the TJ and apico-lateral surfaces. The pore-forming claudin-2 in the CF intestine showed more intense staining but was correctly localized to the TJ, principally in the crypts that are enlarged in CF. The cytokine TNFα, known to affect TJ, was elevated to 160% of wild-type in the CF intestine. In summary, there is a dramatic redistribution of claudin proteins from the TJ/lateral membrane to the basal cytoplasm of the villus epithelium in the CF intestine. These changes in TJ protein localization in CF are likely to be involved in the increased permeability of the CF small intestine to macromolecules and TNFα may be a causative factor. PMID:24169862

  10. Disrupted tight junctions in the small intestine of cystic fibrosis mice

    PubMed Central

    De Lisle, Robert C.

    2013-01-01

    The tight junction (TJ) is the major determinant of paracellular permeability, which in the gut protects the body from entry of harmful substances such as microbial components. In cystic fibrosis (CF) there is increased permeability of the small intestine both in humans and in CF mice. To gain insight into the mechanisms of increased intestinal permeability in CF, I analyzed the composition of the TJ in the cystic fibrosis transmembrane conductance regulator (Cftr) knockout mouse model. Significant changes in TJ gene expression in the CF intestine were found for Cldn1, Cldn7, Cldn8, and Pmp22 which were expressed at lower levels; and Cldn2 which was expressed at a higher level. Protein levels of claudin-2 were increased in the CF intestine as compared to wild type, while other TJ proteins were not significantly different. In the villus epithelium of the CF intestine, all TJ components analyzed were mislocalized to the basal cytoplasm and showed varying degrees of loss from the TJ and apico-lateral surfaces. The pore-forming claudin-2 in the CF intestine showed more intense staining but was correctly localized to the TJ, principally in the crypts which are enlarged in CF. The cytokine TNFα, known to affect TJ, was elevated to 160% of wild type in the CF intestine. In summary, there is a dramatic redistribution of claudin proteins from the TJ/lateral membrane to the basal cytoplasm of the villus epithelium in the CF intestine. These changes in TJ protein localization in CF are likely to be involved in the increased permeability of the CF small intestine to macromolecules, and TNFα may be a causative factor. PMID:24169862

  11. Epithelial Microvilli Establish an Electrostatic Barrier to Microbial Adhesion

    PubMed Central

    Bennett, Kaila M.; Walker, Sharon L.

    2014-01-01

    Microvilli are membrane extensions on the apical surface of polarized epithelia, such as intestinal enterocytes and tubule and duct epithelia. One notable exception in mucosal epithelia is M cells, which are specialized for capturing luminal microbial particles; M cells display a unique apical membrane lacking microvilli. Based on studies of M cell uptake under different ionic conditions, we hypothesized that microvilli may augment the mucosal barrier by providing an increased surface charge density from the increased membrane surface and associated glycoproteins. Thus, electrostatic charges may repel microbes from epithelial cells bearing microvilli, while M cells are more susceptible to microbial adhesion. To test the role of microvilli in bacterial adhesion and uptake, we developed polarized intestinal epithelial cells with reduced microvilli (“microvillus-minus,” or MVM) but retaining normal tight junctions. When tested for interactions with microbial particles in suspension, MVM cells showed greatly enhanced adhesion and uptake of particles compared to microvillus-positive cells. This preference showed a linear relationship to bacterial surface charge, suggesting that microvilli resist binding of microbes by using electrostatic repulsion. Moreover, this predicts that pathogen modification of electrostatic forces may contribute directly to virulence. Accordingly, the effacement effector protein Tir from enterohemorrhagic Escherichia coli O157:H7 expressed in epithelial cells induced a loss of microvilli with consequent enhanced microbial binding. These results provide a new context for microvillus function in the host-pathogen relationship, based on electrostatic interactions. PMID:24778113

  12. Effect of stress on Salmonella, coliforms and lactobacilli in different portions of the intestinal tract of swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farm animals are exposed to a variety of stressors during their lives. However, very little is known about the effect of stress on intestinal microbial populations. Therefore, two experiments were conducted to investigate the effect of common stressors (feed withdrawal, transportation, and lairage) ...

  13. Cytokeratin-positive rib osteosarcoma metastasizing to the small intestine.

    PubMed

    Kuwabara, Hiroko; Fujita, Kazuhiko; Yuki, Masako; Goto, Isao; Hanafusa, Toshiaki; Shibayama, Yuro

    2014-01-01

    Osteosarcoma (OS) is a malignant tumor in which osteoid or bone is produced directly by tumor cells. Some OS cells are positive for cytokeratin (CK) and epithelial membrane antigen by immunohistochemistry (IHC) and this may lead to a misdiagnosis of metastatic carcinoma, particularly when the tumor location is unusual. On the other hand, gastrointestinal metastasis of OS is rare. We present the case of a 67-year-old Japanese man with a small intestinal intussusception due to metastasis of a CK-positive rib OS. The tumor cells were positive for CK, osteopontin and osteonectin by IHC and a diagnosis of a CK-positive chest wall OS metastasizing to the small intestine was considered. Osteoid or bone formation was histologically absent and therefore chest wall OS had to be differentially diagnosed from metastatic carcinoma of unknown origin. A postmortem histological analysis confirmed a rib OS. Awareness of CK-positive OS is important for making a correct diagnosis and for disease management and an immunohistochemical analysis of the tumor for expression of osteopontin and osteonectin may be used to support the diagnosis. In addition, this case shows that rib OS can metastasize to the gastrointestinal tract, albeit rarely, which may induce an intestinal intussusception. PMID:24739846

  14. Salmonella landau as a live vaccine against Escherichia coli O157:H7 investigated in a mouse model of intestinal colonization.

    PubMed

    Conlan, J W; KuoLee, R; Webb, A; Perry, M B

    1999-09-01

    The present study was performed to assess the potential of a humoral mucosal immune response directed against the O157 antigen of Escherichia coli O157:H7 to prevent intestinal colonization by the pathogen. To this end, mice were gavaged with inocula of Salmonella landau, a Salmonella strain that naturally expresses the O157 antigen. Salmonella landau was avirulent for mice. Despite this, mice exposed to S. landau developed high titres of serum and coproantibodies against the O157 antigen. These mice, compared with controls, demonstrated some ability to resist transient intestinal colonization by an oral inoculum of an isolate of E. coli O157:H7. These findings suggest that a local immune response directed against the O157 antigen might increase host resistance to this pathogen. PMID:10526399

  15. Adult intestinal failure.

    PubMed

    Davidson, J; Plumb, A; Burnett, H

    2010-05-01

    Intestinal failure (IF) is the inability of the alimentary tract to digest and absorb sufficient nutrition to maintain normal fluid balance, growth, and health. It commonly arises from disease affecting the mesenteric root. Although severe IF is usually managed in specialized units, it lies at the end of a spectrum with degrees of nutritional compromise being widely encountered, but commonly under-recognized. Furthermore, in the majority of cases, the initial enteric insult occurs in non-specialist IF centres. The aim of this article is to review the common causes of IF, general principles of its management, some commoner complications, and the role of radiology in the approach to a patient with severe IF. The radiologist has a crucial role in helping provide access for feeding solutions (both enteral and parenteral) and controlling sepsis (via drainage of collections) in an initial restorative phase of treatment, whilst simultaneously mapping bowel anatomy and quality, and searching for disease complications to assist the clinicians in planning a later, restorative phase of therapy. PMID:20380940

  16. Primary intestinal lymphangiectasia: Minireview

    PubMed Central

    Ingle, Sachin B; Hinge (Ingle), Chitra R

    2014-01-01

    Primary idiopathic intestinal lymphangiectasia is an unusual disease featured by the presence of dilated lymphatic channels which are located in the mucosa, submucosa or subserosa leading to protein loosing enteropathy.Most often affected were children and generally diagnosed before third year of life but may be rarely seen in adults too. Bilateral pitting oedema of lower limb is the main clinical manifestation mimicking the systemic disease and posing a real diagnostic dilemma to the clinicians to differentiate it from other common systemic diseases like Congestive cardiac failure, Nephrotic Syndrome, Protein Energy Malnutrition, etc. Diagnosis can be made on capsule endoscopy which can localise the lesion but unable to take biopsy samples. Thus, recently double-balloon enteroscopy and biopsy in combination can be used as an effective diagnostic tool to hit the correct diagnosis. Patients respond dramatically to diet constituting low long chain triglycerides and high protein content with supplements of medium chain triglyceride. So early diagnosis is important to prevent untoward complications related to disease or treatment for the sake of accurate pathological diagnosis. PMID:25325063

  17. Proteobacteria: microbial signature of dysbiosis in gut microbiota.

    PubMed

    Shin, Na-Ri; Whon, Tae Woong; Bae, Jin-Woo

    2015-09-01

    Recent advances in sequencing techniques, applied to the study of microbial communities, have provided compelling evidence that the mammalian intestinal tract harbors a complex microbial community whose composition is a critical determinant of host health in the context of metabolism and inflammation. Given that an imbalanced gut microbiota often arises from a sustained increase in abundance of the phylum Proteobacteria, the natural human gut flora normally contains only a minor proportion of this phylum. Here, we review studies that explored the association between an abnormal expansion of Proteobacteria and a compromised ability to maintain a balanced gut microbial community. We also propose that an increased prevalence of Proteobacteria is a potential diagnostic signature of dysbiosis and risk of disease. PMID:26210164

  18. Screening for microbial metabolites affecting phenotype of Caenorhabditis elegans.

    PubMed

    Yamamuro, Daisuke; Uchida, Ryuji; Takahashi, Yoko; Masuma, Rokuro; Tomoda, Hiroshi

    2011-01-01

    Microbial samples, including our library of known microbial compounds (ca. 300) and microbial culture broths (ca. 9000), were screened for small molecules affecting the phenotype of Caenorhabditis elegans. As a result, seven known compounds were found to induce phenotypic abnormality of C. elegans. Staurosporine exhibited morphological defects in the vulva and tail of C. elegans, avermectin B1a exhibited hatching inhibition of starting eggs on day 1 at 25-100 M and growth inhibition at 0.01-12.5 M, siccanin and antimycin A inhibited the growth of C. elegans, and fluorouracil inhibited hatching of eggs newly spawned by adult C. elegans. Toromycin induced morphological defects in the intestine. 5-(4-Methoxyphenyl)-oxazole, isolated as a fungal metabolite for the first time, inhibited the hatching of eggs newly spawned by adult C. elegans. PMID:21963505

  19. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans

    PubMed Central

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-01-01

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota. PMID:26852926

  20. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans.

    PubMed

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-01-01

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota. PMID:26852926