Science.gov

Sample records for intestinal microbial antigens

  1. Antigen sampling in the fish intestine.

    PubMed

    Løkka, Guro; Koppang, Erling Olaf

    2016-11-01

    Antigen uptake in the gastrointestinal tract may induce tolerance, lead to an immune response and also to infection. In mammals, most pathogens gain access to the host though the gastrointestinal tract, and in fish as well, this route seems to be of significant importance. The epithelial surface faces a considerable challenge, functioning both as a barrier towards the external milieu but simultaneously being the site of absorption of nutrients and fluids. The mechanisms allowing antigen uptake over the epithelial barrier play a central role for maintaining the intestinal homeostasis and regulate appropriate immune responses. Such uptake has been widely studied in mammals, but also in fish, a number of experiments have been reported, seeking to reveal cells and mechanisms involved in antigen sampling. In this paper, we review these studies in addition to addressing our current knowledge of the intestinal barrier in fish and its anatomical construction. PMID:26872546

  2. Intestine-associated antigens in ovarian tumours: an immunohistological study.

    PubMed

    De Boer, W G; Ma, J; Nayman, J

    1981-07-01

    The presence of 3 intestine-associated antigens, small intestine mucin antigen (SIMA), large intestine mucin antigen (LIMA) and carcinoembryonic antigen (CEA) was studied in the female genital tract and ovarian tumours by immunofluorescence. These antigens could not be detected in normal ovary, benign cysts of ovary, fallopian tube or endometrium, but both LIMA and CEA were present in endocervical glandular tissue. The antigenic cross-reactivity of endocervical and large bowel mucin may indicate a close embryological relationship between these organs during the cloacogenic stage. The 3 antigens could be demonstrated in mucinous tumours of the ovary but were absent in serous or mesonephroid tumours. In one of the 2 endometroid tumours CEA was the only detectable antigen. These observations confirm the presence of intestinal type of epithelium in cystic mucinous tumours of the ovary and explain the cross-reactivity of mucin of benign tumours of the ovary and mucin from colonic cancer, normal colonic mucosa and gastric mucosa as reported by earlier workers. In the process of malignant transformation the columnar epithelium of ovarian cystadenoma seems to behave in the same way as superficial gastric and gall bladder epithelium by forming inappropriate intestine-associated mucin substances. Our technique may provide a specific means for studies on the histogenesis of female genital tract tumours, particularly ovarian tumours. It can also be used in differentiating between benign and malignant variants of these tumours. PMID:7029434

  3. Human intestinal microbial metabolism of naringin.

    PubMed

    Zou, Wei; Luo, Yulong; Liu, Menghua; Chen, Si; Wang, Sheng; Nie, Yichu; Cheng, Guohua; Su, Weiwei; Zhang, Kejian

    2015-09-01

    Naringin, a major flavonoid in citrus fruits, has been proved to be a promising antitussive candidate. It undertakes complicated metabolism. In this study, human intestinal microbial metabolism of naringin was studied in vitro. Six persons' fecal water, which have intestinal microbial enzyme, were used in the first experiment. Naringin was metabolized by fecal water into naringenin. Subsequently, 3-(4-hydroxyphenyl)propionic acid (4-HPPA) was produced with naringenin degradation by a person's fecal water. However, 4-HPPA was not detected after naringenin degradation by the other 5 subjects' fecal water and the reason might be that the degrading velocity of 4-HPPA exceeded the producing velocity. To confirm the difference in degrading 4-HPPA among human feces, 22 healthy persons' feces were used for incubation. In this second experiment, 15 persons' feces could degrade 4-HPPA, but the other 7 subjects' could not. Human feces showed different ability of degrading 4-HPPA, and there are no gender differences. These results may be helpful for explaining findings in pharmacological and toxicological studies and are groundwork for clinical studies. PMID:24935725

  4. Phenotypic and functional profiling of mouse intestinal antigen presenting cells.

    PubMed

    Harusato, Akihito; Flannigan, Kyle L; Geem, Duke; Denning, Timothy L

    2015-06-01

    The microbiota that populates the mammalian intestine consists of hundreds of trillions of bacteria that are separated from underlying immune cells by a single layer of epithelial cells. The intestinal immune system effectively tolerates components of the microbiota that provide benefit to the host while remaining poised to eliminate those that are harmful. Antigen presenting cells, especially macrophages and dendritic cells, play important roles in maintaining intestinal homeostasis via their ability to orchestrate appropriate responses to the microbiota. Paramount to elucidating intestinal macrophage- and dendritic cell-mediated functions is the ability to effectively isolate and identify these cells from a complex cellular environment. In this review, we summarize methodology for the isolation and phenotypic characterization of macrophages and DCs from the mouse intestine and discuss how this may be useful for gaining insight into the mechanisms by which mucosal immune tolerance is maintained. PMID:25891794

  5. Chronic kidney disease alters intestinal microbial flora.

    PubMed

    Vaziri, Nosratola D; Wong, Jakk; Pahl, Madeleine; Piceno, Yvette M; Yuan, Jun; DeSantis, Todd Z; Ni, Zhenmin; Nguyen, Tien-Hung; Andersen, Gary L

    2013-02-01

    The population of microbes (microbiome) in the intestine is a symbiotic ecosystem conferring trophic and protective functions. Since the biochemical environment shapes the structure and function of the microbiome, we tested whether uremia and/or dietary and pharmacologic interventions in chronic kidney disease alters the microbiome. To identify different microbial populations, microbial DNA was isolated from the stools of 24 patients with end-stage renal disease (ESRD) and 12 healthy persons, and analyzed by phylogenetic microarray. There were marked differences in the abundance of 190 bacterial operational taxonomic units (OTUs) between the ESRD and control groups. OTUs from Brachybacterium, Catenibacterium, Enterobacteriaceae, Halomonadaceae, Moraxellaceae, Nesterenkonia, Polyangiaceae, Pseudomonadaceae, and Thiothrix families were markedly increased in patients with ESRD. To isolate the effect of uremia from inter-individual variations, comorbid conditions, and dietary and medicinal interventions, rats were studied 8 weeks post 5/6 nephrectomy or sham operation. This showed a significant difference in the abundance of 175 bacterial OTUs between the uremic and control animals, most notably as decreases in the Lactobacillaceae and Prevotellaceae families. Thus, uremia profoundly alters the composition of the gut microbiome. The biological impact of this phenomenon is unknown and awaits further investigation. PMID:22992469

  6. The outer mucus layer hosts a distinct intestinal microbial niche

    PubMed Central

    Li, Hai; Limenitakis, Julien P.; Fuhrer, Tobias; Geuking, Markus B.; Lawson, Melissa A.; Wyss, Madeleine; Brugiroux, Sandrine; Keller, Irene; Macpherson, Jamie A.; Rupp, Sandra; Stolp, Bettina; Stein, Jens V.; Stecher, Bärbel; Sauer, Uwe; McCoy, Kathy D.; Macpherson, Andrew J.

    2015-01-01

    The overall composition of the mammalian intestinal microbiota varies between individuals: within each individual there are differences along the length of the intestinal tract related to host nutrition, intestinal motility and secretions. Mucus is a highly regenerative protective lubricant glycoprotein sheet secreted by host intestinal goblet cells; the inner mucus layer is nearly sterile. Here we show that the outer mucus of the large intestine forms a unique microbial niche with distinct communities, including bacteria without specialized mucolytic capability. Bacterial species present in the mucus show differential proliferation and resource utilization compared with the same species in the intestinal lumen, with high recovery of bioavailable iron and consumption of epithelial-derived carbon sources according to their genome-encoded metabolic repertoire. Functional competition for existence in this intimate layer is likely to be a major determinant of microbiota composition and microbial molecular exchange with the host. PMID:26392213

  7. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon.

    PubMed

    Knoop, K A; McDonald, K G; McCrate, S; McDole, J R; Newberry, R D

    2015-01-01

    The delivery of luminal substances across the intestinal epithelium to the immune system is a critical event in immune surveillance, resulting in tolerance to dietary antigens and immunity to pathogens. How this process is regulated is largely unknown. Recently goblet cell-associated antigen passages (GAPs) were identified as a pathway delivering luminal antigens to underlying lamina propria (LP) dendritic cells in the steady state. Here, we demonstrate that goblet cells (GCs) form GAPs in response to acetylcholine (ACh) acting on muscarinic ACh receptor 4. GAP formation in the small intestine was regulated at the level of ACh production, as GCs rapidly formed GAPs in response to ACh analogs. In contrast, colonic GAP formation was regulated at the level of GC responsiveness to ACh. Myd88-dependent microbial sensing by colonic GCs inhibited the ability of colonic GCs to respond to Ach to form GAPs and deliver luminal antigens to colonic LP-antigen-presenting cells (APCs). Disruption of GC microbial sensing in the setting of an intact gut microbiota opened colonic GAPs, and resulted in recruitment of neutrophils and APCs and production of inflammatory cytokines. Thus GC intrinsic sensing of the microbiota has a critical role regulating the exposure of the colonic immune system to luminal substances. PMID:25005358

  8. CD1-Restricted T Cell Recognition of Microbial Lipoglycan Antigens

    NASA Astrophysics Data System (ADS)

    Sieling, P. A.; Chatterjee, D.; Porcelli, S. A.; Prigozy, T. I.; Mazzaccaro, R. J.; Soriano, T.; Bloom, B. R.; Brenner, M. B.; Kronenberg, M.; Brennan, P. J.; Modlin, R. L.

    1995-07-01

    It has long been the paradigm that T cells recognize peptide antigens presented by major histocompatibility complex (MHC) molecules. However, nonpeptide antigens can be presented to T cells by human CD1b molecules, which are not encoded by the MHC. A major class of microbial antigens associated with pathogenicity are lipoglycans. It is shown here that human CD1b presents the defined mycobacterial lipoglycan lipoarabinomannan (LAM) to αβ T cell receptor-bearing lymphocytes. Presentation of these lipoglycan antigens required internalization and endosomal acidification. The T cell recognition required mannosides with α(1-->2) linkages and a phosphatidylinositol unit. T cells activated by LAM produced interferon γ and were cytolytic. Thus, an important class of microbial molecules, the lipoglycans, is a part of the universe of foreign antigens recognized by human T cells.

  9. Antigenic variation in the intestinal parasite Giardia lamblia.

    PubMed

    Gargantini, Pablo Rubén; Serradell, Marianela Del Carmen; Ríos, Diego Nicolás; Tenaglia, Albano Heraldo; Luján, Hugo Daniel

    2016-08-01

    Giardia lamblia trophozoites undergo antigenic variation, where one member of the Variant-specific Surface Protein (VSP) family is expressed on the surface of proliferating trophozoites and periodically replaced by another one. Two main questions have challenged researchers since antigenic switching was discovered in Giardia: What are the mechanisms involved? How are they influenced by other cellular processes or by the environment? Two molecular mechanisms have been proposed, both involving small non-coding RNAs. Here we postulate that (a) chromatin remodeling, triggered by environmental factors, also plays an important role in selecting the VSP that will be expressed and (b) the particular VSP structure may not only protect the parasite in the small intestine but also signal the need to exchange the existing VSP for another. PMID:27177351

  10. A Microbial Feed Additive Abates Intestinal Inflammation in Atlantic Salmon

    PubMed Central

    Vasanth, Ghana; Kiron, Viswanath; Kulkarni, Amod; Dahle, Dalia; Lokesh, Jep; Kitani, Yoichiro

    2015-01-01

    The efficacy of a microbial feed additive (Bactocell®) in countering intestinal inflammation in Atlantic salmon was examined in this study. Fish were fed either the additive-coated feed (probiotic) or feed without it (control). After an initial 3-week feeding, an inflammatory condition was induced by anally intubating all the fish with oxazolone. The fish were offered the feeds for 3 more weeks. Distal intestine from the groups was obtained at 4 h, 24 h, and 3 weeks, after oxazolone treatment. Inflammatory responses were prominent in both groups at 24 h, documented by changes in intestinal micromorphology, expression of inflammation-related genes, and intestinal proteome. The control group was characterized by edema, widening of intestinal villi and lamina propria, infiltration of granulocytes and lymphocytes, and higher expression of genes related to inflammatory responses, mul1b, il1b, tnfa, ifng, compared to the probiotic group or other time points of the control group. Further, the protein expression in the probiotic group at 24 h after inducing inflammation revealed five differentially regulated proteins – Calr, Psma5, Trp1, Ctsb, and Naga. At 3 weeks after intubation, the inflammatory responses subsided in the probiotic group. The findings provide evidence that the microbial additive contributes to intestinal homeostasis in Atlantic salmon. PMID:26347738

  11. Microbial imbalance and intestinal pathologies: connections and contributions

    PubMed Central

    Yang, Ye; Jobin, Christian

    2014-01-01

    Microbiome analysis has identified a state of microbial imbalance (dysbiosis) in patients with chronic intestinal inflammation and colorectal cancer. The bacterial phylum Proteobacteria is often overrepresented in these individuals, with Escherichia coli being the most prevalent species. It is clear that a complex interplay between the host, bacteria and bacterial genes is implicated in the development of these intestinal diseases. Understanding the basic elements of these interactions could have important implications for disease detection and management. Recent studies have revealed that E. coli utilizes a complex arsenal of virulence factors to colonize and persist in the intestine. Some of these virulence factors, such as the genotoxin colibactin, were found to promote colorectal cancer in experimental models. In this Review, we summarize key features of the dysbiotic states associated with chronic intestinal inflammation and colorectal cancer, and discuss how the dysregulated interplay between host and bacteria could favor the emergence of E. coli with pathological traits implicated in these pathologies. PMID:25256712

  12. Enteric defensins are essential regulators of intestinal microbial ecology.

    PubMed

    Salzman, Nita H; Hung, Kuiechun; Haribhai, Dipica; Chu, Hiutung; Karlsson-Sjöberg, Jenny; Amir, Elad; Teggatz, Paul; Barman, Melissa; Hayward, Michael; Eastwood, Daniel; Stoel, Maaike; Zhou, Yanjiao; Sodergren, Erica; Weinstock, George M; Bevins, Charles L; Williams, Calvin B; Bos, Nicolaas A

    2010-01-01

    Antimicrobial peptides are important effectors of innate immunity throughout the plant and animal kingdoms. In the mammalian small intestine, Paneth cell alpha-defensins are antimicrobial peptides that contribute to host defense against enteric pathogens. To determine if alpha-defensins also govern intestinal microbial ecology, we analyzed the intestinal microbiota of mice expressing a human alpha-defensin gene (DEFA5) and in mice lacking an enzyme required for the processing of mouse alpha-defensins. In these complementary models, we detected significant alpha-defensin-dependent changes in microbiota composition, but not in total bacterial numbers. Furthermore, DEFA5-expressing mice had striking losses of segmented filamentous bacteria and fewer interleukin 17 (IL-17)-producing lamina propria T cells. Our data ascribe a new homeostatic role to alpha-defensins in regulating the makeup of the commensal microbiota. PMID:19855381

  13. New diagnostic antigens for early trichinellosis: the excretory-secretory antigens of Trichinella spiralis intestinal infective larvae.

    PubMed

    Sun, Ge Ge; Liu, Ruo Dan; Wang, Zhong Quan; Jiang, Peng; Wang, Li; Liu, Xiao Lin; Liu, Chun Yin; Zhang, Xi; Cui, Jing

    2015-12-01

    The excretory-secretory (ES) antigens from Trichinella spiralis muscle larvae (ML) are the most commonly used diagnostic antigens for trichinellosis, but anti-Trichinella IgG antibodies cannot be detected until 2-3 weeks after infection; there is an obvious window period between Trichinella infection and antibody positivity. Intestinal infective larvae (IIL) are the first invasive stage during Trichinella infection, and their ES antigens are firstly exposed to the immune system and might be the early diagnostic markers of trichinellosis. The aim of this study was to evaluate the early diagnostic values of IIL ES antigens for trichinellosis. The IIL were collected from intestines of infected mice at 6 h postinfection (hpi), and IIL ES antigens were prepared by incubation for 18 h. Anti-Trichinella IgG antibodies in mice infected with 100 ML were detectable by ELISA with IIL ES antigens as soon as 10 days postinfection (dpi), but ELISA with ML ES antigens did not permit detection of infected mice before 12 dpi. When the sera of patients with trichinellosis at 19 dpi were assayed, the sensitivity (100 %) of ELISA with IIL ES antigens was evidently higher than 75 % of ELISA with ML ES antigens (P < 0.05) The specificity (96.86 %) of ELISA with IIL ES antigens was also higher than 89.31 % of ELISA with ML ES antigens (P < 0.05). The IIL ES antigens provided a new source of diagnostic antigens and could be considered as a potential early diagnostic antigen for trichinellosis. PMID:26342828

  14. Intestinal Dysplasia Induced by Simian Virus 40 T Antigen Is Independent of p53

    PubMed Central

    Markovics, Jennifer A.; Carroll, Patrick A.; Robles, M. Teresa Sáenz; Pope, Hannah; Coopersmith, Craig M.; Pipas, James M.

    2005-01-01

    Transgenic mice expressing simian virus 40 large T antigen in enterocytes develop intestinal hyperplasia that progresses to dysplasia with age. Hyperplasia is dependent on T antigen binding to the retinoblastoma (pRb) family of tumor suppressor proteins. Mice expressing a truncated T antigen that inactivates the pRb-family, but is defective for binding p53, exhibit hyperplasia but do not progress to dysplasia. We hypothesized that the inhibition of the pRb family leads to entry of enterocytes into the cell cycle, resulting in hyperplasia, while inactivation of p53 is required for progression to dysplasia. Therefore, we examined T antigen/p53 complexes from the intestines of transgenic mice. We found that T antigen did not induce p53 stabilization, and we could not detect T antigen/p53 complexes in villus enterocytes. In contrast, T antigen expression led to a large increase in the levels of the cyclin-dependent kinase inhibitor p21. Furthermore, mice in which pRb was inactivated by a truncated T antigen in a p53 null background exhibited intestinal hyperplasia but no progression to dysplasia. These data indicate that loss of p53 function does not play a role in T antigen-induced dysplasia in the intestine. Rather, some unknown function of T antigen is essential for progression beyond hyperplasia. PMID:15919904

  15. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    SciTech Connect

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.

  16. Microbial influences on the small intestinal response to radiation injury

    PubMed Central

    Packey, Christopher D.; Ciorba, Matthew A.

    2014-01-01

    Purpose of review Injury to the small bowel from ionizing radiation occurs commonly in patients undergoing cancer therapy and less commonly in instances of accidental radiation overexposure. Several lines of evidence now suggest that dynamic interactions between the host’s enteric microbiota and innate immune system are important in modulating the intestinal response to radiation. Here, we will review recent developments in the area of acute radiation enteropathy and examine the current state of knowledge regarding the impact of host–microbial interactions in the process. Recent findings There is promise in the development and testing of new clinical biomarkers including serum citrulline. Toll-like receptor agonists and innate immune system signaling pathways including nuclear factor-kappa B profoundly alter intestinal epithelial cell apoptosis and crypt survival after radiation exposure. Germ-free conditions, probiotics and antibiotics are each identified as modifiers of disease development and course. A human study suggested that luminal microbiota composition may influence the host’s intestinal response to radiation and may change in those developing postradiation diarrhea. Summary New knowledge implies that investigations aimed at deciphering the microbiome–host interactions before and after small bowl radiation injury may eventually allow prediction of disease course and offer opportunities for the development of novel therapeutic or prophylactic strategies. PMID:20040865

  17. Intestinal dendritic cells survey circulatory antigens prior to induction of CD8+ T cells

    PubMed Central

    Chang, Sun Young; Song, Joo-Hye; Guleng, Bayasi; Cotoner, Carmen Alonso; Arihiro, Seiji; Zhao, Yun; Chiang, Hao-Sen; O'Keeffe, Michael; Liao, Gongxian; Karp, Christopher L.; Kweon, Mi-Na; Sharpe, Arlene H.; Bhan, Atul; Terhorst, Cox; Reinecker, Hans-Christian

    2013-01-01

    Circulatory antigens transit through the small intestine via the fenestrated capillaries in the lamina propria prior to entering into the draining lymphatics. But whether or how this process controls mucosal immune responses remains unknown. Here we demonstrate that dendritic cells (DCs) of the lamina propria can sample and process both circulatory and luminal antigens. Surprisingly, antigen cross-presentation by resident CX3CR1+ DCs induced differentiation of precursor cells into CD8+ T cells that expressed interleukin-10 (IL-10), IL-13 and IL-9 and could migrate into adjacent compartments. We conclude that lamina propria CX3CR1+ DCs facilitate the surveillance of circulatory antigens and act as a conduit for the processing of self- and intestinally-absorbed-antigens, leading to the induction of CD8+ T cells, that partake in the control of T cell activation during mucosal immune responses. PMID:23246312

  18. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk

    PubMed Central

    Tang, W.H. Wilson; Wang, Zeneng; Levison, Bruce S.; Koeth, Robert A.; Britt, Earl B.; Fu, Xiaoming; Wu, Yuping; Hazen, Stanley L.

    2013-01-01

    BACKGROUND Recent studies in animals have shown a mechanistic link between intestinal microbial metabolism of the choline moiety in dietary phosphatidylcholine (lecithin) and coronary artery disease through the production of a proatherosclerotic metabolite, trimethylamine-N-oxide (TMAO). We investigated the relationship among intestinal microbiota-dependent metabolism of dietary phosphatidylcholine, TMAO levels, and adverse cardiovascular events in humans. METHODS We quantified plasma and urinary levels of TMAO and plasma choline and betaine levels by means of liquid chromatography and online tandem mass spectrometry after a phosphatidylcholine challenge (ingestion of two hard-boiled eggs and deuterium [d9]-labeled phosphatidylcholine) in healthy participants before and after the suppression of intestinal microbiota with oral broad-spectrum antibiotics. We further examined the relationship between fasting plasma levels of TMAO and incident major adverse cardiovascular events (death, myocardial infarction, or stroke) during 3 years of follow-up in 4007 patients undergoing elective coronary angiography. RESULTS Time-dependent increases in levels of both TMAO and its d9 isotopologue, as well as other choline metabolites, were detected after the phosphatidylcholine challenge. Plasma levels of TMAO were markedly suppressed after the administration of antibiotics and then reappeared after withdrawal of antibiotics. Increased plasma levels of TMAO were associated with an increased risk of a major adverse cardiovascular event (hazard ratio for highest vs. lowest TMAO quartile, 2.54; 95% confidence interval, 1.96 to 3.28; P<0.001). An elevated TMAO level predicted an increased risk of major adverse cardiovascular events after adjustment for traditional risk factors (P<0.001), as well as in lower-risk subgroups. CONCLUSIONS The production of TMAO from dietary phosphatidylcholine is dependent on metabolism by the intestinal microbiota. Increased TMAO levels are associated

  19. Antigenic and structural features of goblet-cell mucin of human small intestine.

    PubMed Central

    Mantle, M; Forstner, G G; Forstner, J F

    1984-01-01

    With the use of a newly developed solid-phase radioimmunoassay method, the major antigenic determinants of human small-intestinal goblet-cell mucin were investigated and related to the overall tertiary structure of the mucin. Preliminary hapten inhibition studies with various oligosaccharides of known sequence and structure suggested that the determinants did not reside in carbohydrate. Exhaustive thiol reduction, however, almost abolished antigenicity, caused breakdown of the mucin into small heterogeneous glycopeptides, and liberated a 'link' peptide of Mr 118000. Western 'blots' of reduced mucin from polyacrylamide gels on to nitrocellulose sheets showed that a small amount of residual antigenicity remained in large-Mr glycopeptides (Mr greater than 200000). The 'link' peptide was not antigenic. Timed Pronase digestion of native mucin resulted in a progressive loss of antigenic determinants. Gel electrophoresis revealed that after 8h of digestion the 118000-Mr peptide had disappeared, whereas antigenicity, which was confined to large-Mr glycopeptides, was destroyed much more slowly with time (70% by 24h, 100% by 72h). Despite the loss of antigenicity, 72h-Pronase-digested glycopeptides retained all of the carbohydrate of the native mucin. Therefore the antibody to human small-intestinal mucin appears to recognize a 'naked' (non-glycosylated and Pronase-susceptible) peptide region(s) of mucin glycopeptides. For full antigenicity, however, disulphide bonds are required to stabilize a specific three-dimensional configuration of the 'naked' region. Images Fig. 4. Fig. 6. PMID:6199017

  20. Intestinal immunization of mice with antigen conjugated to anti-MHC class II antibodies.

    PubMed

    Estrada, A; McDermott, M R; Underdown, B J; Snider, D P

    1995-07-01

    We have explored a new technique for immunization of the intestinal tract of mice, using protein antigens bound to antibodies with specificity for murine MHC class II molecules (MHC-II). Either of two protein antigens, hen avidin (AV) or hen egg lysozyme (HEL) were covalently conjugated to anti-MHC-II antibodies and the purified conjugates were given orally (p.o.) or by direct intraduodenal (i.d.) injection into the intestinal lumen of mice. A secondary immunization p.o. with the same conjugate or with the non-conjugated antigen in the presence of cholera toxin (CTX) resulted in production of both intestinal secretory IgA and serum IgA antibody by those mice. In addition, serum IgG antibodies were produced. Conjugates with appropriate MHC-II specificity targeted the antigen because they induced more IgA and IgG antibody than conjugates with irrelevant antibody specificity or antigen alone, and because they induced antibody in mice that were genetic low responders to antigen. The results indicate the feasibility of oral subunit type vaccines with antibody targeting technology. PMID:7483762

  1. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine.

    PubMed

    Kim, Kwang Soon; Hong, Sung-Wook; Han, Daehee; Yi, Jaeu; Jung, Jisun; Yang, Bo-Gie; Lee, Jun Young; Lee, Minji; Surh, Charles D

    2016-02-19

    Dietary antigens are normally rendered nonimmunogenic through a poorly understood "oral tolerance" mechanism that involves immunosuppressive regulatory T (Treg) cells, especially Treg cells induced from conventional T cells in the periphery (pTreg cells). Although orally introducing nominal protein antigens is known to induce such pTreg cells, whether a typical diet induces a population of pTreg cells under normal conditions thus far has been unknown. By using germ-free mice raised and bred on an elemental diet devoid of dietary antigens, we demonstrated that under normal conditions, the vast majority of the small intestinal pTreg cells are induced by dietary antigens from solid foods. Moreover, these pTreg cells have a limited life span, are distinguishable from microbiota-induced pTreg cells, and repress underlying strong immunity to ingested protein antigens. PMID:26822607

  2. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice

    PubMed Central

    Huang, Yen-Lin; Chassard, Christophe; Hausmann, Martin; von Itzstein, Mark; Hennet, Thierry

    2015-01-01

    Rapid shifts in microbial composition frequently occur during intestinal inflammation, but the mechanisms underlying such changes remain elusive. Here we demonstrate that an increased caecal sialidase activity is critical in conferring a growth advantage for some bacteria including Escherichia coli (E. coli) during intestinal inflammation in mice. This sialidase activity originates among others from Bacteroides vulgatus, whose intestinal levels expand after dextran sulphate sodium administration. Increased sialidase activity mediates the release of sialic acid from intestinal tissue, which promotes the outgrowth of E. coli during inflammation. The outburst of E. coli likely exacerbates the inflammatory response by stimulating the production of pro-inflammatory cytokines by intestinal dendritic cells. Oral administration of a sialidase inhibitor and low levels of intestinal α2,3-linked sialic acid decrease E. coli outgrowth and the severity of colitis in mice. Regulation of sialic acid catabolism opens new perspectives for the treatment of intestinal inflammation as manifested by E. coli dysbiosis. PMID:26303108

  3. The composition of the zebrafish intestinal microbial community varies across development.

    PubMed

    Zac Stephens, W; Burns, Adam R; Stagaman, Keaton; Wong, Sandi; Rawls, John F; Guillemin, Karen; Bohannan, Brendan J M

    2016-03-01

    The assembly of resident microbial communities is an important event in animal development; however, the extent to which this process mirrors the developmental programs of host tissues is unknown. Here we surveyed the intestinal bacteria at key developmental time points in a sibling group of 135 individuals of a model vertebrate, the zebrafish (Danio rerio). Our survey revealed stage-specific signatures in the intestinal microbiota and extensive interindividual variation, even within the same developmental stage. Microbial community shifts were apparent during periods of constant diet and environmental conditions, as well as in concert with dietary and environmental change. Interindividual variation in the intestinal microbiota increased with age, as did the difference between the intestinal microbiota and microbes in the surrounding environment. Our results indicate that zebrafish intestinal microbiota assemble into distinct communities throughout development, and that these communities are increasingly different from the surrounding environment and from one another. PMID:26339860

  4. Neonatal Colonisation Expands a Specific Intestinal Antigen-Presenting Cell Subset Prior to CD4 T-Cell Expansion, without Altering T-Cell Repertoire

    PubMed Central

    Mitchard, Louisa; Harley, Ross; Warwick, James; Burt, Rachel; van Diemen, Pauline M.; Stevens, Mark; Bailey, Mick

    2012-01-01

    Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα+) antigen-presenting cell subset, whilst SIRPα−CD11R1+ antigen-presenting cells (APCs) are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα+ antigen-presenting cells as orchestrators of early-life mucosal immune development. PMID:22442714

  5. Transport phenomena of microbial flora in the small intestine with peristalsis.

    PubMed

    Ishikawa, T; Sato, T; Mohit, G; Imai, Y; Yamaguchi, T

    2011-06-21

    The gastrointestinal tract of humans is colonized by indigenous prokaryotic and eukaryotic microbial cells that form a complex ecological system called microbial flora. Although the microbial flora has diverse functions, its homeostasis inside the gastrointestinal tract is still largely unknown. Therefore, creating a model for investigating microbial flora in the gastrointestinal tract is important. In this study, we developed a novel numerical model to explore the transport phenomena of microbial flora in the small intestine. By simultaneously solving the flow field generated by peristalsis, the concentrations of oxygen and nutrient, and the densities of moderate anaerobes and aerobes, the effects of fluid mechanics on the transport phenomena of microbial flora are discussed. The results clearly illustrated that fluid mechanics have considerable influence not only on the bacterial population, but also on the concentration distributions of oxygen and nutrient. Especially, the flow field enhances the radial variation of the concentration fields. We also show scaling arguments for bacterial growth and oxygen consumption, which capture the main features of the results. Additionally, we investigated the transport phenomena of microbial flora in a long tube with 40 constrictions. The results showed a high growth rate of aerobes in the upstream side and a high growth rate of anaerobes in the downstream side, which qualitatively agrees with experimental observations of human intestines. These new findings provide the fundamental basis for a better understanding of the transport phenomena of microbial flora in the intestine. PMID:21440560

  6. An Endogenous Nanomineral Chaperones Luminal Antigen and Peptidoglycan to Intestinal Immune Cells

    PubMed Central

    Powell, Jonathan J; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E; Skepper, Jeremy N; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Gomez-Morilla, Inmaculada; Grime, Geoffrey W; Kirkby, Karen J; Mabbott, Neil A; Donaldson, David S; Williams, Ifor R; Rios, Daniel; Girardin, Stephen E; Haas, Carolin T; Bruggraber, Sylvaine FA; Laman, Jon D; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P H; Pele, Laetitia C

    2015-01-01

    In humans and other mammals, it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally-fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer’s patches - small areas of the intestine concentrated with particle-scavenging immune cells. In wild type mice, intestinal immune cells containing these naturally-formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1 (PD-L1)’, whereas in NOD1/2 double knock-out mice, which cannot recognize peptidoglycan, PD-L1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and how this helps to shape intestinal immune homeostasis. PMID:25751305

  7. An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells

    NASA Astrophysics Data System (ADS)

    Powell, Jonathan J.; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E.; Skepper, Jeremy N.; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A.; Gomez-Morilla, Inmaculada; Grime, Geoffrey W.; Kirkby, Karen J.; Mabbott, Neil A.; Donaldson, David S.; Williams, Ifor R.; Rios, Daniel; Girardin, Stephen E.; Haas, Carolin T.; Bruggraber, Sylvaine F. A.; Laman, Jon D.; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P. H.; Pele, Laetitia C.

    2015-05-01

    In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1’, whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis.

  8. An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells.

    PubMed

    Powell, Jonathan J; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E; Skepper, Jeremy N; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Gomez-Morilla, Inmaculada; Grime, Geoffrey W; Kirkby, Karen J; Mabbott, Neil A; Donaldson, David S; Williams, Ifor R; Rios, Daniel; Girardin, Stephen E; Haas, Carolin T; Bruggraber, Sylvaine F A; Laman, Jon D; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P H; Pele, Laetitia C

    2015-04-01

    In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule 'programmed death-ligand 1', whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis. PMID:25751305

  9. Microbial antigenic variation mediated by homologous DNA recombination.

    PubMed

    Vink, Cornelis; Rudenko, Gloria; Seifert, H Steven

    2012-09-01

    Pathogenic microorganisms employ numerous molecular strategies in order to delay or circumvent recognition by the immune system of their host. One of the most widely used strategies of immune evasion is antigenic variation, in which immunogenic molecules expressed on the surface of a microorganism are continuously modified. As a consequence, the host is forced to constantly adapt its humoral immune response against this pathogen. An antigenic change thus provides the microorganism with an opportunity to persist and/or replicate within the host (population) for an extended period of time or to effectively infect a previously infected host. In most cases, antigenic variation is caused by genetic processes that lead to the modification of the amino acid sequence of a particular antigen or to alterations in the expression of biosynthesis genes that induce changes in the expression of a variant antigen. Here, we will review antigenic variation systems that rely on homologous DNA recombination and that are found in a wide range of cellular, human pathogens, including bacteria (such as Neisseria spp., Borrelia spp., Treponema pallidum, and Mycoplasma spp.), fungi (such as Pneumocystis carinii) and parasites (such as the African trypanosome Trypanosoma brucei). Specifically, the various DNA recombination-based antigenic variation systems will be discussed with a focus on the employed mechanisms of recombination, the DNA substrates, and the enzymatic machinery involved. PMID:22212019

  10. Microbial activities and intestinal homeostasis: A delicate balance between health and disease

    PubMed Central

    Ohland, Christina L.; Jobin, Christian

    2015-01-01

    The concept that the intestinal microbiota modulates numerous physiological processes including immune development and function, nutrition and metabolism as well as pathogen exclusion is relatively well established in the scientific community. The molecular mechanisms driving these various effects and the events leading to the establishment of a “healthy” microbiome are slowly emerging. The objective of this review is to bring into focus important aspects of microbial/host interactions in the intestine and to discuss key molecular mechanisms controlling health and disease states. We will discuss recent evidence on how microbes interact with the host and one another and their impact on intestinal homeostasis. PMID:25729763

  11. Evidence of Microbial Translocation Associated with Perturbations in T Cell and Antigen-Presenting Cell Homeostasis in Hookworm Infections

    PubMed Central

    George, Palakkal Jovvian; Anuradha, Rajamanickam; Kumar, Nathella Pavan; Kumaraswami, Vasanthapuram; Nutman, Thomas B.; Babu, Subash

    2012-01-01

    Background Microbial translocation (MT) is the process by which microbes or microbial products translocate from the intestine to the systemic circulation. MT is a common cause of systemic immune activation in HIV infection and is associated with reduced frequencies of CD4+ T cells; no data exist, however, on the role of MT in intestinal helminth infections. Methods We measured the plasma levels of MT markers, acute-phase proteins, and pro- and anti - inflammatory cytokines in individuals with or without hookworm infections. We also estimated the absolute counts of CD4+ and CD8+ T cells as well as the frequencies of memory T cell and dendritic cell subsets. Finally, we also measured the levels of all of these parameters in a subset of individuals following treatment of hookworm infection. Results Our data suggest that hookworm infection is characterized by increased levels of markers associated with MT but not acute-phase proteins nor pro-inflammatory cytokines. Hookworm infections were also associated with increased levels of the anti – inflammatory cytokine – IL-10, which was positively correlated with levels of lipopolysaccharide (LPS). In addition, MT was associated with decreased numbers of CD8+ T cells and diminished frequencies of particular dendritic cell subsets. Antihelmintic treatment of hookworm infection resulted in reversal of some of the hematologic and microbiologic alterations. Conclusions Our data provide compelling evidence for MT in a human intestinal helminth infection and its association with perturbations in the T cell and antigen-presenting cell compartments of the immune system. Our data also reveal that at least one dominant counter-regulatory mechanism i.e. increased IL-10 production might potentially protect against systemic immune activation in hookworm infections. PMID:23056659

  12. EatA, an Immunogenic Protective Antigen of Enterotoxigenic Escherichia coli, Degrades Intestinal Mucin

    PubMed Central

    Kumar, Pardeep; Luo, Qingwei; Vickers, Tim J.; Sheikh, Alaullah; Lewis, Warren G.

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity and mortality due to infectious diarrhea in developing countries for which there is presently no effective vaccine. A central challenge in ETEC vaccinology has been the identification of conserved surface antigens to formulate a broadly protective vaccine. Here, we demonstrate that EatA, an immunogenic secreted serine protease of ETEC, contributes to virulence by degrading MUC2, the major protein present in the small intestinal mucous layer, and that removal of this barrier in vitro accelerates toxin access to the enterocyte surface. In addition, we demonstrate that vaccination with the recombinant secreted passenger domain of EatA (rEatAp) elicits high titers of antibody and is protective against intestinal infection with ETEC. These findings may have significant implications for development of both subunit and live-attenuated vaccines against ETEC and other enteric pathogens, including Shigella flexneri, that express similar proteins. PMID:24478066

  13. Screening and characterization of early diagnostic antigens in excretory-secretory proteins from Trichinella spiralis intestinal infective larvae by immunoproteomics.

    PubMed

    Liu, Ruo Dan; Jiang, Peng; Wen, Hui; Duan, Jiang Yang; Wang, Li Ang; Li, Jie Feng; Liu, Chun Ying; Sun, Ge Ge; Wang, Zhong Quan; Cui, Jing

    2016-02-01

    The excretory-secretory (ES) antigens from Trichinella spiralis muscle larvae are the most commonly used diagnostic antigens for trichinellosis, but specific IgG antibodies were not detected in early stage of infection. The aim of this study was to identify early diagnostic antigens from ES proteins of intestinal infective larvae (IIL), the first invasive stage of T. spiralis. Six bands (92, 52, 45, 35, 32, and 29 kDa) of IIL ES proteins were recognized by infection sera in Western blotting as early as 10 days post infection. Total of 54 T. spiralis proteins in six bands were identified by shotgun LC-MS/MS, 30 proteins were annotated, and 27 had hydrolase activity. Several proteins (serine protease, putative trypsin, deoxyribonuclease II family protein, etc.) could be considered as the potential early diagnostic antigens for trichinellosis. Our study provides new insights for screening early diagnostic antigens from intestinal worms of T. spiralis. PMID:26468148

  14. Pathophysiology of intestinal uptake and absorption of antigens in food allergy.

    PubMed

    Walker, W A

    1987-11-01

    An important adaptation of the gastrointestinal tract to the extrauterine environment is its development of a mucosal barrier against the penetration of proteins and protein fragments. To combat the potential danger of invasion across the mucosal barrier, the infant must develop within the lumen and on the luminal mucosal surface an elaborate system of defense mechanisms that act to control and maintain the epithelium as an impermeable barrier to the uptake of macromolecular antigens. These defenses include a unique local immunologic system adapted to function in the complicated milieu of the intestine as well as other nonimmunologic processes such as a gastric barrier, intestinal surface secretions, peristaltic movement, etc, all of which help to provide maximum protection for the intestinal surface. Unfortunately, during the immediate postpartum period, especially for premature and "small-for-date" infants, this elaborate local defense system is incompletely developed. As a result of the delay in the maturation of the mucosal barrier, newborn infants are particularly vulnerable to pathologic penetration by harmful intraluminal substances. The consequences of altered defense are susceptibility to infection and the potential for hypersensitivity reactions and the formation of immune complexes. With these reactions comes the potential for developing life-threatening diseases such as necrotizing enterocolitis, sepsis, and hepatitis. Fortunately, nature has provided a means for passively protecting the "vulnerable" newborn against the dangers of a deficient intestinal defense system: human milk. It is now increasingly apparent that human milk contains not only antibodies and viable leukocytes, but many other substances that can interfere with bacterial colonization and prevent antigen penetration. PMID:3318588

  15. Microbial production of volatile sulphur compounds in the large intestine of pigs fed two different diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only little is known about the microbial production of volatile sulphur compounds (VSC) in the 18 gastrointestinal tract, the dietary influence, and the magnitude of this production. To investigate intestinal VSC production in more detail, pigs were fed diets based on either wheat and barley (CONTRO...

  16. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weaning and transport stress can have a negative impact on the piglet's immune system and intestinal microbiota. The objective of this study was to determine the influence of a yeast product on innate immunity and microbial ecology of the gastrointestinal tract following stress of weaning and trans...

  17. TLR sorting by Rab11 endosomes maintains intestinal epithelial-microbial homeostasis

    PubMed Central

    Yu, Shiyan; Nie, Yingchao; Knowles, Byron; Sakamori, Ryotaro; Stypulkowski, Ewa; Patel, Chirag; Das, Soumyashree; Douard, Veronique; Ferraris, Ronaldo P; Bonder, Edward M; Goldenring, James R; Ip, Yicktung Tony; Gao, Nan

    2014-01-01

    Compartmentalization of Toll-like receptors (TLRs) in intestinal epithelial cells (IECs) regulates distinct immune responses to microbes; however, the specific cellular machinery that controls this mechanism has not been fully identified. Here we provide genetic evidences that the recycling endosomal compartment in enterocytes maintains a homeostatic TLR9 intracellular distribution, supporting mucosal tolerance to normal microbiota. Genetic ablation of a recycling endosome resident small GTPase, Rab11a, a gene adjacent to a Crohn's disease risk locus, in mouse IECs and in Drosophila midgut caused epithelial cell-intrinsic cytokine production, inflammatory bowel phenotype, and early mortality. Unlike wild-type controls, germ-free Rab11a-deficient mouse intestines failed to tolerate the intraluminal stimulation of microbial agonists. Thus, Rab11a endosome controls intestinal host-microbial homeostasis at least partially via sorting TLRs. PMID:25063677

  18. MICROBIAL SUCCESSION AND INTESTINAL ENZYME ACTIVITIES IN THE DEVELOPING RAT

    EPA Science Inventory

    The succession of gastrointestinal flora in the developing rat was studied, concomitant with studies of intestinal enzyme activity. Aerobes and anaerobes were identified as members of 4 major bacterial groups, i.e., Lactobacilli spp., Gram positive enterococci, Gram negative rods...

  19. Interplay of nutrients and microbial metabolites in intestinal immune homeostasis: distinct and common mechanisms of immune regulation in the small bowel and colon.

    PubMed

    Perrigoue, Jacqueline; Das, Anuk; Mora, J Rodrigo

    2014-01-01

    The intestinal mucosa is the largest body surface exposed to the environment. While there are common features when comparing immune responses along the intestinal mucosa, the small bowel and colon exhibit striking differences in their mechanisms driving immune regulation. The vitamin A (VA) metabolite all-trans retinoic acid (RA) signaling via RA nuclear receptors plays a key role in immune homeostasis in the small bowel, and recent work indicates that RA is required for establishing immune tolerance to dietary antigens in the upper intestinal tract by inducing α4β7(+)CCR9(+) gut-tropic TREG. In contrast, microbiota-specific TREG in the colon do not appear to require RA, but can be regulated by short-chain fatty acids (SCFA), microbial metabolites that signal through the G protein-coupled receptor GPR43. Moreover, TREG do not need CCR9 to home to the colon, but utilize another G protein-coupled receptor, GPR15, which is upregulated by SCFA. Thus, the mechanisms governing intestinal tolerance to dietary antigens in the upper digestive tract differ from those controlling tolerance to the microbiota in the colon, with RA and SCFA playing key complementary roles in their respective compartments. In addition to VA and SCFA, recent studies have highlighted the roles of other dietary and microbial metabolites that influence immune cell homeostasis across the small and large bowel including dietary ligands for aryl hydrocarbon receptor and microbiota-modified bile acids. Understanding the complex and dynamic interplay between dietary metabolites and commensal microbiota within the intestinal microenvironment could therefore inform novel strategies for the treatment of food allergies and inflammatory bowel diseases. PMID:25227295

  20. Host and Microbial Factors in Regulation of T Cells in the Intestine

    PubMed Central

    Kim, Chang H.

    2013-01-01

    The intestine is divided into specialized tissue areas that provide distinct microenvironments for T cells. Regulation of T-cell responses in the gut has been a major focus of recent research activities in the field. T cells in the intestine are regulated by the interplay between host and microbial factors. In the small intestine, retinoic acid (RA) is a major tissue factor that plays important roles in regulation of immune responses. In the large intestine, the influence of RA diminishes, but that of commensal bacterial products increases. RA, gut microbiota, and inflammatory mediators co-regulate differentiation, distribution, and/or effector functions of T cells. Coordinated regulation of immune responses by these factors promotes well-balanced immunity and immune tolerance. Dysregulation of this process can increase infection and inflammatory diseases. PMID:23772228

  1. Comparison of microbial populations in the small intestine, large intestine and feces of healthy horses using terminal restriction fragment length polymorphism

    PubMed Central

    2013-01-01

    Background The composition of the microbiota of the equine intestinal tract is complex. Determining whether the microbial composition of fecal samples is representative of proximal compartments of the digestive tract could greatly simplify future studies. The objectives of this study were to compare the microbial populations of the duodenum, ileum, cecum, colon and rectum (feces) within and between healthy horses, and to determine whether rectal (fecal) samples are representative of proximal segments of the gastrointestinal tract. Intestinal samples were collected from ten euthanized horses. 16S rRNA gene PCR-based TRFLP was used to investigate microbiota richness in various segments of the gastrointestinal tract, and dice similarity indices were calculated to compare the samples. Results Within horses large variations of microbial populations along the gastrointestinal tract were seen. The microbiota in rectal samples was only partially representative of other intestinal compartments. The highest similarity was obtained when feces were compared to the cecum. Large compartmental variations were also seen when microbial populations were compared between six horses with similar dietary and housing management. Conclusion Rectal samples were not entirely representative of intestinal compartments in the small or large intestine. This should be taken into account when designing studies using fecal sampling to assess other intestinal compartments. Similarity between horses with similar dietary and husbandry management was also limited, suggesting that parts of the intestinal microbiota were unique to each animal in this study. PMID:23497580

  2. PCR-DGGE analysis of intestinal bacteria and effect of Bacillus spp. on intestinal microbial diversity in kuruma shrimp ( Marsupenaeus japonicus)

    NASA Astrophysics Data System (ADS)

    Liu, Huaide; Liu, Mei; Wang, Baojie; Jiang, Keyong; Jiang, Shan); Sun, Shujuan; Wang, Lei

    2010-07-01

    In this study, the intestinal microbiota of kuruma shrimp ( Marsupenaeus japonicus) was examined by molecular analysis of the 16S rDNA to identify the dominant intestinal bacteria and to investigate the effects of Bacillus spp. on intestinal microbial diversity. Samples of the intestines of kuruma shrimp fed normal feed and Bacillus spp. amended feed. PCR and denaturing gradient gel electrophoresis (DGGE) analyses were then performed on DNA extracted directly from the guts. Population fingerprints of the predominant organisms were generated by DGGE analysis of the universal V3 16S rDNA amplicons, and distinct bands in the gels were sequenced. The results suggested that the gut of kuruma shrimp was dominated by Vibrio sp. and uncultured gamma proteobacterium. Overall, the results of this study suggest that PCR-DGGE is a possible method of studying the intestinal microbial diversity of shrimp.

  3. Fecal Calprotectin levels and Serological Responses to Microbial Antigens among Children and Adolescents with Inflammatory Bowel Disease

    PubMed Central

    Ashorn, Sara; Honkanen, Teemu; Kolho, Kaija-Leena; Ashorn, Merja; Välineva, Tuuli; Wei, Bo; Braun, Jonathan; Rantala, Immo; Luukkaala, Tiina; Iltanen, Sari

    2008-01-01

    Objectives Non-invasive, sensitive and specific tools for early identification of chronic inflammatory bowel diseases (IBD) are needed for clinical practice. The aim was to identify new non-invasive test combinations for characterization of IBD in children and adolescents by comparing serological responses to microbial antigens and fecal calprotectin, a new promising marker for intestinal inflammation. Patients and methods Our study included 73 children who underwent endoscopies because of suspicion of IBD. Their sera were tested for antibodies to the Pseudomonas fluorescens-associated sequence I2, a Bacteroides caccae TonB-linked outer membrane protein, OmpW and anti-Saccharomyces cerevisiae (ASCA). Simultaneously, samples for fecal calprotectin measurements were obtained from 55 subjects. Results IBD was diagnosed in 60 patients (CD in 18 patients, UC in 36 and IC in six). Thirteen children had a non-IBD disease. Fecal calprotectin levels were elevated (≥ 100ug/g) more frequently in IBD patients (89%, 39/44) compared to non-IBD cases (9%, 1/11, p<0.001). ASCA antibodies in sera were detected in 67% (12/18) of patients with CD, in 14% (5/36) of the children with UC and in 50% (3/6) of patients with IC. Seroreactivity for I2 was observed in 42% of the IBD patients, this frequency being higher than in non-IBD cases (7,7% seropositive; p=0.025). Serum anti-I2 IgA levels (median absorbances) were higher in those with IBD compared to those without gut inflammation (p=0.039). The combination of the measurements of fecal calprotectin and serological responses to microbial antigens (ASCA, I2 and OmpW) identified 100% of CD patients (sensitivity 100%, specificity 36%, PPV 66%, NPV 100%) and 89% of UC patients (sensitivity 89%, specificity 36%, PPV 77%, NPV 57%). Conclusions Increased levels of serological responses to microbial antigens (ASCA, I2 and OmpW) and fecal calprotectin are evident in both CD and UC patients. The combination of these markers provides valuable

  4. Intestinal inflammation responds to microbial tissue load independent of pathogen/non-pathogen discrimination.

    PubMed

    Willer, Yvonne; Müller, Beatrice; Bumann, Dirk

    2012-01-01

    The intestinal immune system mounts inflammatory responses to pathogens but tolerates harmless commensal microbiota. Various mechanisms for pathogen/non-pathogen discrimination have been proposed but their general relevance for inflammation control is unclear. Here, we compared intestinal responses to pathogenic Salmonella and non-pathogenic E. coli. Both microbes entered intestinal Peyer's patches and, surprisingly, induced qualitatively and quantitatively similar initial inflammatory responses revealing a striking discrimination failure. Diverging inflammatory responses only occurred when Salmonella subsequently proliferated and induced escalating neutrophil infiltration, while harmless E. coli was rapidly cleared from the tissue and inflammation resolved. Transient intestinal inflammation induced by harmless E. coli tolerized against subsequent exposure thereby preventing chronic inflammation during repeated exposure. These data revealed a striking failure of the intestinal immune system to discriminate pathogens from harmless microbes based on distinct molecular signatures. Instead, appropriate intestinal responses to gut microbiota might be ensured by immediate inflammatory responses to any rise in microbial tissue loads, and desensitization after bacterial clearance. PMID:22586458

  5. Decreased microbial diversity and Lactobacillus group in the intestine of geriatric giant pandas (Ailuropoda melanoleuca).

    PubMed

    Peng, Zhirong; Zeng, Dong; Wang, Qiang; Niu, Lili; Ni, Xueqin; Zou, Fuqin; Yang, Mingyue; Sun, Hao; Zhou, Yi; Liu, Qian; Yin, Zhongqiong; Pan, Kangcheng; Jing, Bo

    2016-05-01

    It has been established beyond doubt that giant panda genome lacks lignin-degrading related enzyme, gastrointestinal microbes may play a vital role in digestion of highly fibrous bamboo diet. However, there is not much information available about the intestinal bacteria composition in captive giant pandas with different ages. In this study, we compared the intestinal bacterial community of 12 captive giant pandas from three different age groups (subadults, adults, and geriatrics) through PCR-denaturing gradient gel electrophoresis (DGGE) and real-time PCR analysis. Results indicated that microbial diversity in the intestine of adults was significantly higher than that of the geriatrics (p < 0.05), but not significant compared to the subadults (p > 0.05). The predominant bands in DGGE patterns shared by the twelve pandas were related to Firmicutes and Proteobacteria. Additionally, in comparison to healthy individuals, antibiotic-treated animals showed partial microbial dysbiosis. Real-time PCR analyses confirmed a significantly higher abundance of the Lactobacillus in the fecal microbiota of adults (p < 0.05), while other bacterial groups and species detected did not significantly differ among the three age groups (p > 0.05). This study revealed that captive giant pandas with different ages showed different intestinal bacteria composition. PMID:27038949

  6. Intestinal commensal bacteria promote T cell hyporesponsiveness and down-regulate the serum antibody responses induced by dietary antigen.

    PubMed

    Tsuda, Masato; Hosono, Akira; Yanagibashi, Tsutomu; Kihara-Fujioka, Miran; Hachimura, Satoshi; Itoh, Kikuji; Hirayama, Kazuhiro; Takahashi, Kyoko; Kaminogawa, Shuichi

    2010-08-16

    Colonization of the gut by commensal bacteria modulates the induction of oral tolerance and allergy. However, how these intestinal bacteria modulate antigen-specific T cell responses induced by oral antigens remains unclear. In order to investigate this, we used germ-free (GF) ovalbumin (OVA)-specific T cell receptor transgenic (OVA23-3) mice. Conventional (CV) or GF mice were administered an OVA-containing diet. Cytokine production by CD4(+) cells from spleen (SP), mesenteric lymph nodes (MLN) and Peyer's patches (PP) was evaluated by ELISA, as was the peripheral antibody titer. T cell phenotype was assessed by flow cytometry. CD4(+) cells from the SP and MLN of CV and GF mice fed an OVA diet for 3 weeks produced significantly less IL-2 than the corresponding cells from mice receiving a control diet, suggesting that oral tolerance could be induced at the T cell level in the systemic and intestinal immune systems of both bacterial condition of mice. However, we also observed that the T cell hyporesponsiveness induced by dietary antigen was delayed in the systemic immune tissues and was weaker in the intestinal immune tissues of the GF mice. Intestinal MLN and PP CD4(+) T cells from these animals also produced lower levels of IL-10, had less activated/memory type CD45RB(low) cells, and expressed lower levels of CTLA-4 but not Foxp3 compared to their CV counterparts. Furthermore, GF mice produced higher serum levels of OVA-specific antibodies than CV animals. CD40L expression by SP CD4(+) cells from GF mice fed OVA was higher than that of CV mice. These results suggest that intestinal commensal bacteria promote T cell hyporesponsiveness and down-regulate serum antibody responses induced by dietary antigens through modulation of the intestinal and systemic T cell phenotype. PMID:20621647

  7. Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria

    PubMed Central

    Rios, D; Wood, M B; Li, J; Chassaing, B; Gewirtz, A T; Williams, I R

    2016-01-01

    Secretory IgA (SIgA) directed against gut resident bacteria enables the mammalian mucosal immune system to establish homeostasis with the commensal gut microbiota after weaning. Germinal centers (GCs) in Peyer's patches (PPs) are the principal inductive sites where naive B cells specific for bacterial antigens encounter their cognate antigens and receive T-cell help driving their differentiation into IgA-producing plasma cells. We investigated the role of antigen sampling by intestinal M cells in initiating the SIgA response to gut bacteria by developing mice in which receptor activator of nuclear factor-κB ligand (RANKL)-dependent M-cell differentiation was abrogated by conditional deletion of Tnfrsf11a in the intestinal epithelium. Mice without intestinal M cells had profound delays in PP GC maturation and emergence of lamina propria IgA plasma cells, resulting in diminished levels of fecal SIgA that persisted into adulthood. We conclude that M-cell-mediated sampling of commensal bacteria is a required initial step for the efficient induction of intestinal SIgA. PMID:26601902

  8. Regulation by gut commensal bacteria of carcinoembryonic antigen-related cell adhesion molecule expression in the intestinal epithelium.

    PubMed

    Kitamura, Yasuaki; Murata, Yoji; Park, Jung-Ha; Kotani, Takenori; Imada, Shinya; Saito, Yasuyuki; Okazawa, Hideki; Azuma, Takeshi; Matozaki, Takashi

    2015-07-01

    Carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 1 and CEACAM20, immunoglobulin superfamily members, are predominantly expressed in intestinal epithelial cells (IECs) and co-localized at the apical surface of these cells. We here showed that the expression of mouse CEACAM1 and CEACAM20 at both mRNA and protein levels was markedly reduced in IECs of the small intestine by the treatment of mice with antibiotics against Gram-positive bacteria. The expression of both proteins was also decreased in IECs of the small intestine from germ-free mice, compared with that from control specific-pathogen-free mice. Exposure of intestinal organoids to IFN-γ markedly increased the expression of either CEACAM1 or CEACAM20, whereas the exposure to TNF-α increased the expression of the former protein, but not that of the latter. In contrast, the expression of CEACAM20, but not of CEACAM1, in intestinal organoids was markedly increased by exposure to butyrate, a short-chain fatty acid produced by bacterial fermentation in the intestine. Collectively, our results suggest that Gram-positive bacteria promote the mRNA expression of CEACAM1 or CEACAM20 in the small intestine. Inflammatory cytokines or butyrate likely participates in such effects of commensal bacteria. PMID:25908210

  9. Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation.

    PubMed

    Loschko, Jakob; Schreiber, Heidi A; Rieke, Gereon J; Esterházy, Daria; Meredith, Matthew M; Pedicord, Virginia A; Yao, Kai-Hui; Caballero, Silvia; Pamer, Eric G; Mucida, Daniel; Nussenzweig, Michel C

    2016-04-01

    Conventional dendritic cells (cDCs) play an essential role in host immunity by initiating adaptive T cell responses and by serving as innate immune sensors. Although both innate and adaptive functions of cDCs are well documented, their relative importance in maintaining immune homeostasis is poorly understood. To examine the significance of cDC-initiated adaptive immunity in maintaining homeostasis, independent of their innate activities, we generated a cDC-specific Cre mouse and crossed it to a floxed MHC class II (MHCII) mouse. Absence of MHCII on cDCs resulted in chronic intestinal inflammation that was alleviated by antibiotic treatment and entirely averted under germ-free conditions. Uncoupling innate and adaptive functions of cDCs revealed that innate immune functions of cDCs are insufficient to maintain homeostasis and antigen presentation by cDCs is essential for a mutualistic relationship between the host and intestinal bacteria. PMID:27001748

  10. Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis.

    PubMed

    Jain, Nitya; Walker, W Allan

    2015-01-01

    Neonates face unique challenges in the period following birth. The postnatal immune system is in the early stages of development and has a range of functional capabilities that are distinct from the mature adult immune system. Bidirectional immune-microbial interactions regulate the development of mucosal immunity and alter the composition of the microbiota, which contributes to overall host well-being. In the past few years, nutrition has been highlighted as a third element in this interaction that governs host health by modulating microbial composition and the function of the immune system. Dietary changes and imbalances can disturb the immune-microbiota homeostasis, which might alter susceptibility to several autoimmune and metabolic diseases. Major changes in cultural traditions, socioeconomic status and agriculture are affecting the nutritional status of humans worldwide, which is altering core intestinal microbial communities. This phenomenon is especially relevant to the neonatal and paediatric populations, in which the microbiota and immune system are extremely sensitive to dietary influences. In this Review, we discuss the current state of knowledge regarding early-life nutrition, its effects on the microbiota and the consequences of diet-induced perturbation of the structure of the microbial community on mucosal immunity and disease susceptibility. PMID:25201040

  11. Microbially synthesized modular virus-like particles and capsomeres displaying group A streptococcus hypervariable antigenic determinants.

    PubMed

    Chuan, Yap P; Wibowo, Nani; Connors, Natalie K; Wu, Yang; Hughes, Fiona K; Batzloff, Michael R; Lua, Linda H L; Middelberg, Anton P J

    2014-06-01

    Effective and low-cost vaccines are essential to control severe group A streptococcus (GAS) infections prevalent in low-income nations and the Australian aboriginal communities. Highly diverse and endemic circulating GAS strains mandate broad-coverage and customized vaccines. This study describes an approach to deliver cross-reactive antigens from endemic GAS strains using modular virus-like particle (VLP) and capsomere systems. The antigens studied were three heterologous N-terminal peptides (GAS1, GAS2, and GAS3) from the GAS surface M-protein that are specific to endemic strains in Australia Northern Territory Aboriginal communities. In vivo data presented here demonstrated salient characteristics of the modular delivery systems in the context of GAS vaccine design. First, the antigenic peptides, when delivered by unadjuvanted modular VLPs or adjuvanted capsomeres, induced high titers of peptide-specific IgG antibodies (over 1 × 10(4) ). Second, delivery by capsomere was superior to VLP for one of the peptides investigated (GAS3), demonstrating that the delivery system relative effectiveness was antigen-dependant. Third, significant cross-reactivity of GAS2-induced IgG with GAS1 was observed using either VLP or capsomere, showing the possibility of broad-coverage vaccine design using these delivery systems and cross-reactive antigens. Fourth, a formulation containing three pre-mixed modular VLPs, each at a low dose of 5 μg (corresponding to <600 ng of each GAS peptide), induced significant titers of IgGs specific to each peptide, demonstrating that a multivalent, broad-coverage VLP vaccine formulation was possible. In summary, the modular VLPs and capsomeres reported here demonstrate, with promising preliminary data, innovative ways to design GAS vaccines using VLP and capsomere delivery systems amenable to microbial synthesis, potentially adoptable by developing countries. PMID:24338691

  12. Subsets of Human Dendritic Cell Precursors Express Different Toll-like Receptors and Respond to Different Microbial Antigens

    PubMed Central

    Kadowaki, Norimitsu; Ho, Stephen; Antonenko, Svetlana; de Waal Malefyt, Rene; Kastelein, Robert A.; Bazan, Fernando; Liu, Yong-Jun

    2001-01-01

    Toll-like receptors (TLRs) are ancient microbial pattern recognition receptors highly conserved from Drosophila to humans. To investigate if subsets of human dendritic cell precursors (pre-DC), including monocytes (pre-DC1), plasmacytoid DC precursors (pre-DC2), and CD11c+ immature DCs (imDCs) are developed to recognize different microbes or microbial antigens, we studied their TLR expression and responses to microbial antigens. We demonstrate that whereas monocytes preferentially express TLR 1, 2, 4, 5, and 8, plasmacytoid pre-DC strongly express TLR 7 and 9. In accordance with these TLR expression profiles, monocytes respond to the known microbial ligands for TLR2 (peptidoglycan [PGN], lipoteichoic acid) and TLR4 (lipopolysaccharide), by producing tumor necrosis factor (TNF)-α and interleukin (IL)-6. In contrast, plasmacytoid pre-DCs only respond to the microbial TLR9-ligand, CpG-ODNs (oligodeoxynucleotides [ODNs] containing unmethylated CpG motifs), by producing IFN-α. CD11c+ imDCs preferentially express TLR 1, 2, and 3 and respond to TLR 2-ligand PGN by producing large amounts of TNF-α, and to viral double-stranded RNA-like molecule poly I:C, by producing IFN-α and IL-12. The expression of distinct sets of TLRs and the corresponding difference in reactivity to microbial molecules among subsets of pre-DCs and imDCs support the concept that they have developed through distinct evolutionary pathways to recognize different microbial antigens. PMID:11561001

  13. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens.

    PubMed

    Kadowaki, N; Ho, S; Antonenko, S; Malefyt, R W; Kastelein, R A; Bazan, F; Liu, Y J

    2001-09-17

    Toll-like receptors (TLRs) are ancient microbial pattern recognition receptors highly conserved from Drosophila to humans. To investigate if subsets of human dendritic cell precursors (pre-DC), including monocytes (pre-DC1), plasmacytoid DC precursors (pre-DC2), and CD11c(+) immature DCs (imDCs) are developed to recognize different microbes or microbial antigens, we studied their TLR expression and responses to microbial antigens. We demonstrate that whereas monocytes preferentially express TLR 1, 2, 4, 5, and 8, plasmacytoid pre-DC strongly express TLR 7 and 9. In accordance with these TLR expression profiles, monocytes respond to the known microbial ligands for TLR2 (peptidoglycan [PGN], lipoteichoic acid) and TLR4 (lipopolysaccharide), by producing tumor necrosis factor (TNF)-alpha and interleukin (IL)-6. In contrast, plasmacytoid pre-DCs only respond to the microbial TLR9-ligand, CpG-ODNs (oligodeoxynucleotides [ODNs] containing unmethylated CpG motifs), by producing IFN-alpha. CD11c(+) imDCs preferentially express TLR 1, 2, and 3 and respond to TLR 2-ligand PGN by producing large amounts of TNF-alpha, and to viral double-stranded RNA-like molecule poly I:C, by producing IFN-alpha and IL-12. The expression of distinct sets of TLRs and the corresponding difference in reactivity to microbial molecules among subsets of pre-DCs and imDCs support the concept that they have developed through distinct evolutionary pathways to recognize different microbial antigens. PMID:11561001

  14. Intestine.

    PubMed

    Smith, J M; Skeans, M A; Horslen, S P; Edwards, E B; Harper, A M; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    Intestine and intestine-liver transplant plays an important role in the treatment of intestinal failure, despite decreased morbidity associated with parenteral nutrition. In 2014, 210 new patients were added to the intestine transplant waiting list. Among prevalent patients on the list at the end of 2014, 65% were waiting for an intestine transplant and 35% were waiting for an intestine-liver transplant. The pretransplant mortality rate decreased dramatically over time for all age groups. Pretransplant mortality was highest for adult candidates, at 22.1 per 100 waitlist years compared with less than 3 per 100 waitlist years for pediatric candidates, and notably higher for candidates for intestine-liver transplant than for candidates for intestine transplant without a liver. Numbers of intestine transplants without a liver increased from a low of 51 in 2013 to 67 in 2014. Intestine-liver transplants increased from a low of 44 in 2012 to 72 in 2014. Short-gut syndrome (congenital and other) was the main cause of disease leading to both intestine and intestine-liver transplant. Graft survival improved over the past decade. Patient survival was lowest for adult intestine-liver recipients and highest for pediatric intestine recipients. PMID:26755265

  15. Antigen

    MedlinePlus

    An antigen is any substance that causes your immune system to produce antibodies against it. This means your immune ... and is trying to fight it off. An antigen may be a substance from the environment, such ...

  16. Growth performance and intestinal microbial populations of growing pigs fed diets containing sucrose thermal oligosaccharide caramel.

    PubMed

    Orban, J I; Patterson, J A; Adeola, O; Sutton, A L; Richards, G N

    1997-01-01

    Four experiments were conducted to determine growth performance and changes in intestinal microbial populations of growing pigs fed diets containing sucrose thermal oligosaccharide caramel (STOC). Ninety-six barrows and 96 gilts were group-fed experimental nursery diets for 32 d after weaning in both Exp. 1 and 2. For each experiment, pigs were divided into four groups of 48 pigs and were fed either control, antibiotic (Apramycin sulfate, 34 mg/kg), 1% STOC, or 2% STOC diets for 32 d after weaning. Each diet was replicated six times with eight pigs per replication. Pigs were either orally gavaged (Exp 1) with water of STOC (2 g per pig) or pigs were creep-fed (Exp 2) either a control diet or a 2% STOC diet for 5 d before weaning (33 d). At the end of Exp 1 and 2, cecal material was collected for enumeration of total aerobes, total anaerobes, coliforms, lactobacilli, and bifidobacteria. Gilts (96 per experiment) used in Exp. 3 and 4 were weaned at 26 d and fed experimental nursery diets for 32 d. They were fed either a control or 1% STOC diet and were otherwise treated as previously described. There were no significant effects of STOC or antibiotic on ADG, ADFI, feed efficiency, or cecal microbial populations in pigs in this study. Feeding diets containing either antibiotic of STOC did not improve animal performance or change intestinal bacterial populations in the present study. PMID:9027562

  17. Intestinal Microbial Metabolites Are Linked to Severity of Myocardial Infarction in Rats.

    PubMed

    Lam, Vy; Su, Jidong; Hsu, Anna; Gross, Garrett J; Salzman, Nita H; Baker, John E

    2016-01-01

    Intestinal microbiota determine severity of myocardial infarction in rats. We determined whether low molecular weight metabolites derived from intestinal microbiota and transported to the systemic circulation are linked to severity of myocardial infarction. Plasma from rats treated for seven days with the non-absorbed antibiotic vancomycin or a mixture of streptomycin, neomycin, polymyxin B and bacitracin was analyzed using mass spectrometry-based metabolite profiling platforms. Antibiotic-induced changes in the abundance of individual groups of intestinal microbiota dramatically altered the host's metabolism. Hierarchical clustering of dissimilarities separated the levels of 284 identified metabolites from treated vs. untreated rats; 193 were altered by the antibiotic treatments with a tendency towards decreased metabolite levels. Catabolism of the aromatic amino acids phenylalanine, tryptophan and tyrosine was the most affected pathway comprising 33 affected metabolites. Both antibiotic treatments decreased the severity of an induced myocardial infarction in vivo by 27% and 29%, respectively. We then determined whether microbial metabolites of the amino acids phenylalanine, tryptophan and tyrosine were linked to decreased severity of myocardial infarction. Vancomycin-treated rats were administered amino acid metabolites prior to ischemia/reperfusion studies. Oral or intravenous pretreatment of rats with these amino acid metabolites abolished the decrease in infarct size conferred by vancomycin. Inhibition of JAK-2 (AG-490, 10 μM), Src kinase (PP1, 20 μM), Akt/PI3 kinase (Wortmannin, 100 nM), p44/42 MAPK (PD98059, 10 μM), p38 MAPK (SB203580, 10 μM), or KATP channels (glibenclamide, 3 μM) abolished cardioprotection by vancomycin, indicating microbial metabolites are interacting with cell surface receptors to transduce their signals through Src kinase, cell survival pathways and KATP channels. These inhibitors have no effect on myocardial infarct size in

  18. Pharmacokinetics, intestinal absorption and microbial metabolism of single platycodin D in comparison to Platycodi radix extract

    PubMed Central

    Shan, Jinjun; Zou, Jiashuang; Xie, Tong; Kang, An; Zhou, Wei; Deng, Haishan; Mao, Yancao; Di, Liuqing; Wang, Shouchuan

    2015-01-01

    Background: Platycodi radix, the dried root of Platycodon grandiflorum A. DC, has been widely used as food and herb medicine for treating cough, cold and other respiratory ailments, and platycodin D (PD) is one of the most important compounds in Platycodi Radix. Objective: The purpose of this study was to compare the pharmacokinetic characteristics, intestinal absorption and microbial metabolism of PD in monomer with that in Platycodi radix extract (PRE). Materials and Methods: In the pharmacokinetic study, the concentrations of PD in rat plasma were determined by ultra-performance liquid chromatography-tandem mass spectrometry and the main pharmacokinetic parameters were calculated by data analysis software (DAS). Besides, in vitro Caco-2 cells and fecal lysate were performed to investigate the intestinal absorption and metabolism, respectively. Results: The results from pharmacokinetics showed that the area under the curve, the peak concentration the time to reach peak concentration and mean residence time of PD in PRE were enhanced significantly compared with that in single PD. Caco-2 cells transport study indicated that the absorption of PD both in monomer and in PRE were poor owning that the permeability of PD were <1/106 cm/s. The hydrolysis degree of PD in PRE was significantly lower than that in monomer PD in fecal lysate, which might be illustrated by the other ingredients in PRE influenced the hydrolysis of PD via gut microbiota. Conclusion: These findings indicated that the difference of microbial metabolism, not apparent absorption in intestine for PD between in monomer and in PRE contributed to their pharmacokinetic difference. PMID:26600720

  19. Distinct Patterns of IgG and IgA against Food and Microbial Antigens in Serum and Feces of Patients with Inflammatory Bowel Diseases

    PubMed Central

    Frehn, Lisa; Jansen, Anke; Bennek, Eveline; Mandic, Ana D.; Temizel, Ilknur; Tischendorf, Stefanie; Verdier, Julien; Tacke, Frank; Streetz, Konrad; Trautwein, Christian; Sellge, Gernot

    2014-01-01

    Background Inflammatory bowel disease (IBD) is associated with a defective intestinal barrier and enhanced adaptive immune responses against commensal microbiota. Immune responses against food antigens in IBD patients remain poorly defined. Methods IgG and IgA specific for food and microfloral antigens (wheat and milk extracts; purified ovalbumin; Escherichia coli and Bacteroides fragilis lysates; mannan from Saccharomyces cerevisiae) were analyzed by ELISA in the serum and feces of patients with Crohn's disease (CD; n = 52 for serum and n = 20 for feces), ulcerative colitis (UC; n = 29; n = 17), acute gastroenteritis/colitis (AGE; n = 12; n = 9) as well as non-inflammatory controls (n = 61; n = 39). Results Serum anti-Saccharomyces cerevisiae antibodies (ASCA) and anti-B. fragilis IgG and IgA levels were increased in CD patients whereas antibody (Ab) levels against E. coli and food antigens were not significantly different within the patient groups and controls. Subgroup analysis revealed that CD patients with severe diseases defined by stricturing and penetrating lesions have slightly higher anti-food and anti-microbial IgA levels whereas CD and UC patients with arthropathy have decreased anti-food IgG levels. Treatment with anti-TNF-α Abs in CD patients was associated with significantly decreased ASCA IgG and IgA and anti-E. coli IgG. In the feces specific IgG levels against all antigens were higher in CD and AGE patients while specific IgA levels were higher in non-IBD patients. Anti-food IgG and IgA levels did not correlate with food intolerance. Summary In contrast to anti-microbial Abs, we found only minor changes in serum anti-food Ab levels in specific subgroups of IBD patients. Fecal Ab levels towards microbial and food antigens show distinct patterns in controls, CD and UC patients. PMID:25215528

  20. Microbial parasitism cross-reactive with host antigen: implications concerning loss of "self" tolerance and development of autoimmune disease.

    PubMed

    Paterson, P Y

    1981-09-01

    The implications of inserting eukaryotic genetic material coding for human "self" antigens into prokaryotic microbe vectors that parasitize humans are discussed against the background of contemporary concepts of immunologic tolerance to "self" constituents and the types of host autoreactive immune responses that might occur. The injurious potential of autoreactive immune responses elicited by infecting microbes which share antigenic constituents with host "self" antigens is carefully weighed. The risk of similar cross-reacting microbial vectors arising as a consequence of ongoing recombinant DNA technology and experimentation and posing public health concerns for humans is examined. On balance, the risk would appear to be extraordinarily low. PMID:6169118

  1. Sampling of intestinal microbiota and targeted amplification of bacterial 16S rRNA genes for microbial ecologic analysis

    PubMed Central

    Tong, Maomeng; Jacobs, Jonathan P.; McHardy, Ian H.; Braun, Jonathan

    2015-01-01

    Dysbiosis of host-associated commensal microbiota is emerging as an important factor in risk and phenotype of immunologic, metabolic, and behavioral diseases. Appropriate collection and pre-processing of biospecimens from humans or mice is necessary for accurate analysis of microbial composition and functional state. Methods to sample intestinal luminal and mucosal microbiota from humans and mice, and to profile microbial phylogenetic composition using 16S rRNA sequencing are presented here. Data generated using this protocol can be used for downstream quantitative analysis of microbial ecology. PMID:25367129

  2. Proliferative cell nuclear antigen (PCNA) expression in the intestine of Salmo trutta trutta naturally infected with an acanthocephalan

    PubMed Central

    2012-01-01

    Background Changes in the production of proliferating cell nuclear antigen (PCNA), a 36 kd protein involved in protein synthesis, within intestinal epithelia can provide an early indication of deviations to normal functioning. Inhibition or stimulation of cell proliferation and PCNA can be determined through immunohistochemical staining of intestinal tissue. Changes in the expression of PCNA act as an early warning system of changes to the gut and this application has not been applied to the fields of aquatic parasitology and fish health. The current study set out to determine whether a population of wild brown trout, Salmo trutta trutta (L.) harbouring an infection of the acanthocephalan Dentitruncus truttae Sinzar, 1955 collected from Lake Piediluco in Central Italy also effected changes in the expression of PCNA. Methods A total of 29 brown trout were investigated, 19 of which (i.e. 65.5%) were found to harbour acanthocephalans (5–320 worms fish-1). Histological sections of both uninfected and infected intestinal material were immunostained for PCNA. Results The expression of PCNA was observed in the epithelial cells in the intestinal crypts and within the mast cells and fibroblasts in the submucosa layer which is consistent with its role in cell proliferation and DNA synthesis. The number of PCNA-positive cells in both the intestinal epithelium and the submucosa layer in regions close to the point of parasite attachment were significantly higher than the number observed in uninfected individuals and in infected individuals in zones at least 0.7 cm from the point of parasite attachment (ANOVA, p < 0.05). Conclusions An infection of the acanthocephalan D. truttae within the intestinal tract of S. t. trutta effected a significant increase in the number of PCNA positive cells (mast cells and fibroblasts) at the site of parasite attachment when compared to the number of positive cells found in uninfected conspecifics and in tissue zones away from the point

  3. Transcriptome profiles of chicken intestinal intraepithelial lymphocytes altered by the intake of a multi-strain direct-fed microbials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current study was conducted to investigate the effects of the direct-fed microbials (DFM) including three Bacillus subtilis strains on the modulation of transcriptional profile in chicken intestinal intraepithelial lymphocytes (IEL). The multiple-strain DFM product modified 453 probes from 1,98...

  4. Supplementation of piglets with nutrient-dense complex milk replacer improves intestinal development and microbial fermentation.

    PubMed

    de Greeff, A; Resink, J W; van Hees, H M J; Ruuls, L; Klaassen, G J; Rouwers, S M G; Stockhofe-Zurwieden, N

    2016-03-01

    Weaning of piglets causes stress due to environmental, behavioral, and nutritional stressors and can lead to postweaning diarrhea and impaired gut development. The diet changes experienced during weaning require extensive adaptation of the digestive system. A well-developed piglet that had creep-feed experience before weaning performs better after weaning. In the current study, the effect of providing sow-fed piglets with a supplemental nutrient-dense complex milk replacer (NDM) on gut development and growth performance was studied. Litters of sows with similar parities (3.6 ± 0.8) and similar numbers of live born piglets (13.5 ± 0.3) were assigned to 1 of 2 groups: 1 group of piglets had ad libitum access to NDM from Day 2 through 21 after birth, whereas the other group was used as controls. Nutrient-dense complex milk replacer-fed piglets were shown to be significantly heavier after 21 d of supplementation compared with the control piglets. At Day 21, 3 piglets from each litter were euthanized for morphological and functional analyses of the intestinal tract. The small intestines of NDM-fed piglets had significantly higher weights (g) as well as significantly higher relative weight:length ratios (g//cm) compared with the small intestines of control piglets ( < 0.05). Morphometric analysis demonstrated that villi length and numbers of goblet cells did not differ between groups. However, NDM-fed piglets had deeper crypts ( < 0.001) and an increased expression of the cell-proliferation marker proliferating cell nuclear antigen in crypts ( < 0.05), suggesting higher cell-proliferation rates. The gene encoding IGF-1 showed a tendency to higher gene expression in the jejunum from NDM-fed piglets ( = 0.07) compared with the jejunum from control piglets, suggesting that IGF-1 might be involved in the regulation of cell proliferation and intestinal growth. Finally, as a result of dietary fiber in NDM, piglets showed significantly increased concentrations of metabolic

  5. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class

    PubMed Central

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera; Linninge, Caroline; Ahrné, Siv; Højberg, Ole; Licht, Tine Rask; Bahl, Martin Iain

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10–11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did

  6. Intestinal Microbial Metabolites Are Linked to Severity of Myocardial Infarction in Rats

    PubMed Central

    Lam, Vy; Su, Jidong; Hsu, Anna; Gross, Garrett J.; Salzman, Nita H.

    2016-01-01

    Intestinal microbiota determine severity of myocardial infarction in rats. We determined whether low molecular weight metabolites derived from intestinal microbiota and transported to the systemic circulation are linked to severity of myocardial infarction. Plasma from rats treated for seven days with the non-absorbed antibiotic vancomycin or a mixture of streptomycin, neomycin, polymyxin B and bacitracin was analyzed using mass spectrometry-based metabolite profiling platforms. Antibiotic-induced changes in the abundance of individual groups of intestinal microbiota dramatically altered the host’s metabolism. Hierarchical clustering of dissimilarities separated the levels of 284 identified metabolites from treated vs. untreated rats; 193 were altered by the antibiotic treatments with a tendency towards decreased metabolite levels. Catabolism of the aromatic amino acids phenylalanine, tryptophan and tyrosine was the most affected pathway comprising 33 affected metabolites. Both antibiotic treatments decreased the severity of an induced myocardial infarction in vivo by 27% and 29%, respectively. We then determined whether microbial metabolites of the amino acids phenylalanine, tryptophan and tyrosine were linked to decreased severity of myocardial infarction. Vancomycin-treated rats were administered amino acid metabolites prior to ischemia/reperfusion studies. Oral or intravenous pretreatment of rats with these amino acid metabolites abolished the decrease in infarct size conferred by vancomycin. Inhibition of JAK-2 (AG-490, 10 μM), Src kinase (PP1, 20 μM), Akt/PI3 kinase (Wortmannin, 100 nM), p44/42 MAPK (PD98059, 10 μM), p38 MAPK (SB203580, 10 μM), or KATP channels (glibenclamide, 3 μM) abolished cardioprotection by vancomycin, indicating microbial metabolites are interacting with cell surface receptors to transduce their signals through Src kinase, cell survival pathways and KATP channels. These inhibitors have no effect on myocardial infarct size in

  7. CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity

    PubMed Central

    Vaziri, Nosratola D.

    2013-01-01

    Purpose of review Chronic kidney disease (CKD) is associated with oxidative stress and inflammation which contribute to progression of kidney disease and its numerous complications. Until recently, little attention had been paid to the role of the intestine and its microbial flora in the pathogenesis of CKD-associated inflammation. This article is intended to provide an over view of the impact of uremia on the structure and function of the gut and its microbial flora and their potential link to the associated systemic inflammation. Recent findings Recent studies conducted in the author’s laboratories have demonstrated marked disintegration of the colonic epithelial barrier structure and significant alteration of the colonic bacterial flora in humans and animals with advanced CKD. The observed disruption of the intestinal epithelial barrier complex can play an important part in the development of systemic inflammation by enabling influx of endotoxin and other noxious luminal contents into the systemic circulation. Similarly via disruption of the normal symbiotic relationship and production, absorption and retention of noxious products, alteration of the microbial flora can contribute to systemic inflammation and uremic toxicity. In fact recent studies have documented the role of colonic bacteria as the primary source of several well known pro-inflammatory/pro-oxidant uremic toxins as well as many as-yet unidentified retained compounds. Summary CKD results in disruption of the intestinal barrier structure and marked alteration of its microbial flora –events that play a major role in the pathogenesis of inflammation and uremic toxicity. PMID:23010760

  8. Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells

    PubMed Central

    2014-01-01

    Background Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized. Results We aimed to gain insight into the mechanisms involved in the immunomodulatory effect of the CRL1505 strain and therefore evaluated in vitro the crosstalk between L. rhamnosus CRL1505, porcine intestinal epithelial cells (IECs) and antigen presenting cells (APCs) from swine Peyer’s patches in order to deepen our knowledge about the mechanisms, through which this strain may help preventing viral diarrhoea episodes. L. rhamnosus CRL1505 was able to induce IFN–α and –β in IECs and improve the production of type I IFNs in response to poly(I:C) challenge independently of Toll-like receptor (TLR)-2 or TLR9 signalling. In addition, the CRL1505 strain induced mRNA expression of IL-6 and TNF-α via TLR2 in IECs. Furthermore, the strain significantly increased surface molecules expression and cytokine production in intestinal APCs. The improved Th1 response induced by L. rhamnosus CRL1505 was triggered by TLR2 signalling and included augmented expression of MHC-II and co-stimulatory molecules and expression of IL-1β, IL-6, and IFN-γ in APCs. IL-10 was also significantly up-regulated by CRL1505 in APCs. Conclusions It was recently reviewed the emergence of TLR agonists as new ways to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. The use of L. rhamnosus CRL1505 as modulator of innate immunity and inductor of antiviral type I IFNs, IFN-γ, and regulatory IL-10 clearly offers the potential to overcome this challenge. PMID:24886142

  9. Effects of feed additives and mixed eimeria species infection on intestinal microbial ecology of broilers.

    PubMed

    Hume, M E; Clemente-Hernández, S; Oviedo-Rondón, E O

    2006-12-01

    Evaluation of digestive microbial ecology is necessary to understand effects of growth-promoting feed. In the current study, the dynamics of intestinal microbial communities (MC) were examined in broilers fed diets supplemented with a combination of antibiotic (bacitracin methylene disalicylate) and ionophore (Coban 60), and diets containing 1 of 2 essential oil (EO) blends, Crina Poultry (CP) and Crina Alternate (CA). Five treatments were analyzed: 1) unmedicated uninfected control; 2) unmedicated infected control; 3) feed additives monensin (bacitracin methylene disalicylate) + monensin (Coban 60; AI); 4) EO blend CP; and 5) EO blend CA. Additives were mixed into a basal feed mixture, and EO were adjusted to 100 ppm. Chicks were infected by oral gavage at 19 d of age with Eimeria acervulina, Eimeria maxima, and Eimeria tenella. Duodenal, ileal, and cecal samples were taken from 12 birds per treatment just before and 7 d after challenge; 2 samples each were pooled to give a final number of 6 samples total; and all pooled samples were frozen until used for DNA extraction. Denaturing gradient gel electrophoresis was used to examine PCR-amplified fragments of the bacterial 16S ribosomal DNA variable region. Results are presented as percentages of similarity coefficients (SC). Dendrograms of PCR amplicon or band patterns indicated MC differences due to intestinal location, feed additives, and cocci challenge. Essential oil blends CP and CA affected MC in all gut sections. Each EO had different effects over MC, and they differed in most instances from the AI group. The cocci challenge caused drastic MC population shifts in duodenal, ileal, and cecal sections (36.7, 55.4, and 36.2% SC, respectively). Diets supplemented with CP supported higher SC between pre- and postchallenge MC (89.9, 83.3, and 76.4%) than AI (81.8., 57.4, and 60.0%). We concluded that mixed coccidia challenge caused drastic shifts in MC. These EO blends modulated MC better than AI, avoiding drastic

  10. Microbial Population Differentials between Mucosal and Submucosal Intestinal Tissues in Advanced Crohn's Disease of the Ileum

    PubMed Central

    Chiodini, Rodrick J.; Dowd, Scot E.; Chamberlin, William M.; Galandiuk, Susan; Davis, Brian; Glassing, Angela

    2015-01-01

    Since Crohn's disease is a transmural disease, we hypothesized that examination of deep submucosal tissues directly involved in the inflammatory disease process may provide unique insights into bacterial populations transgressing intestinal barriers and bacterial populations more representative of the causes and agents of the disease. We performed deep 16s microbiota sequencing on isolated ilea mucosal and submucosal tissues on 20 patients with Crohn's disease and 15 non-inflammatory bowel disease controls with a depth of coverage averaging 81,500 sequences in each of the 70 DNA samples yielding an overall resolution down to 0.0001% of the bacterial population. Of the 4,802,328 total sequences generated, 98.9% or 4,749,183 sequences aligned with the Kingdom Bacteria that clustered into 8545 unique sequences with <3% divergence or operational taxonomic units enabling the identification of 401 genera and 698 tentative bacterial species. There were significant differences in all taxonomic levels between the submucosal microbiota in Crohn's disease compared to controls, including organisms of the Order Desulfovibrionales that were present within the submucosal tissues of most Crohn's disease patients but absent in the control group. A variety of organisms of the Phylum Firmicutes were increased in the subjacent submucosa as compared to the parallel mucosal tissue including Ruminococcus spp., Oscillospira spp., Pseudobutyrivibrio spp., and Tumebacillus spp. In addition, Propionibacterium spp. and Cloacibacterium spp. were increased as well as large increases in Proteobacteria including Parasutterella spp. and Methylobacterium spp. This is the first study to examine the microbial populations within submucosal tissues of patients with Crohn's disease and to compare microbial communities found deep within the submucosal tissues with those present on mucosal surfaces. Our data demonstrate the existence of a distinct submucosal microbiome and ecosystem that is not well

  11. Effects of direct-fed microbial supplementation on broiler performance, intestinal nutrient transport and integrity under experimental conditions with increased microbial challenge.

    PubMed

    Murugesan, G R; Gabler, N K; Persia, M E

    2014-02-01

    1. The effects of Aspergillus oryzae- and Bacillus subtilis-based direct-fed microbials (DFM) were investigated on the performance, ileal nutrient transport and intestinal integrity of broiler chickens, raised under experimental conditions, with increased intestinal microbial challenge. 2. The first study was a 3 × 2 factorial experiment, with 3 dietary treatments (control (CON), CON + DFM and CON + antibiotic growth promoter) with and without challenge. Chicks were fed experimental diets from 1 to 28 d, while the challenge was provided by vaccinating with 10 times the normal dose of commercial coccidial vaccine on d 9. In a second experiment, two groups of 1 d-old broilers, housed on built-up litter (uncleaned from two previous flocks), were fed the same CON and CON + DFM diets from 1 to 21 d. 3. The challenge in the first experiment reduced performance, but no differences were observed among dietary treatments from 8 to 28 d. The challenge reduced the ileal epithelial flux for D-glucose, L-lysine, DL-methionine and phosphorus on d 21. Epithelial flux for D-glucose, L-lysine and DL-methionine were increased by DFM. Ileal trans-epithelial electrical resistance (TER) was increased in challenged broilers fed DFM, although this was not observed in unchallenged birds as indicated by a significant interaction. 4. Ileal mucin mRNA expression and colon TER were increased, and colon endotoxin permeability was reduced by DFM on d 21 in the second experiment. 5. It was concluded that the addition of DFM in the diet improved the intestinal integrity of broiler chickens raised under experimental conditions designed to provide increased intestinal microbial challenge. PMID:24219515

  12. Arabinoxylan‐oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem

    PubMed Central

    Sanchez, J. I.; Marzorati, M.; Grootaert, C.; Baran, M.; Van Craeyveld, V.; Courtin, C. M.; Broekaert, W. F.; Delcour, J. A.; Verstraete, W.; Van de Wiele, T.

    2009-01-01

    Summary Arabinoxylan‐oligosaccharides (AXOS) are a recently newly discovered class of candidate prebiotics as – depending on their structure – they are fermented in different regions of gastrointestinal tract. This can have an impact on the protein/carbohydrate fermentation balance in the large intestine and, thus, affect the generation of potentially toxic metabolites in the colon originating from proteolytic activity. In this study, we screened different AXOS preparations for their impact on the in vitro intestinal fermentation activity and microbial community structure. Short‐term fermentation experiments with AXOS with an average degree of polymerization (avDP) of 29 allowed part of the oligosaccharides to reach the distal colon, and decreased the concentration of proteolytic markers, whereas AXOS with lower avDP were primarily fermented in the proximal colon. Additionally, prolonged supplementation of AXOS with avDP 29 to the Simulator of Human Intestinal Microbial Ecosystem (SHIME) reactor decreased levels of the toxic proteolytic markers phenol and p‐cresol in the two distal colon compartments and increased concentrations of beneficial short‐chain fatty acids (SCFA) in all colon vessels (25–48%). Denaturant gradient gel electrophoresis (DGGE) analysis indicated that AXOS supplementation only slightly modified the total microbial community, implying that the observed effects on fermentation markers are mainly caused by changes in fermentation activity. Finally, specific quantitative PCR (qPCR) analysis showed that AXOS supplementation significantly increased the amount of health‐promoting lactobacilli as well as of Bacteroides–Prevotella and Clostridium coccoides–Eubacterium rectale groups. These data allow concluding that AXOS are promising candidates to modulate the microbial metabolism in the distal colon. PMID:21261885

  13. Probiotics stimulate enterocyte migration and microbial diversity in the neonatal mouse intestine.

    PubMed

    Preidis, Geoffrey A; Saulnier, Delphine M; Blutt, Sarah E; Mistretta, Toni-Ann; Riehle, Kevin P; Major, Angela M; Venable, Susan F; Finegold, Milton J; Petrosino, Joseph F; Conner, Margaret E; Versalovic, James

    2012-05-01

    Beneficial microbes and probiotics show promise for the treatment of pediatric gastrointestinal diseases. However, basic mechanisms of probiosis are not well understood, and most investigations have been performed in germ-free or microbiome-depleted animals. We sought to functionally characterize probiotic-host interactions in the context of normal early development. Outbred CD1 neonatal mice were orally gavaged with one of two strains of human-derived Lactobacillus reuteri or an equal volume of vehicle. Transcriptome analysis was performed on enterocyte RNA isolated by laser-capture microdissection. Enterocyte migration and proliferation were assessed by labeling cells with 5-bromo-2'-deoxyuridine, and fecal microbial community composition was determined by 16S metagenomic sequencing. Probiotic ingestion altered gene expression in multiple canonical pathways involving cell motility. L. reuteri strain DSM 17938 dramatically increased enterocyte migration (3-fold), proliferation (34%), and crypt height (29%) compared to vehicle-treated mice, whereas strain ATCC PTA 6475 increased cell migration (2-fold) without affecting crypt proliferative activity. In addition, both probiotic strains increased the phylogenetic diversity and evenness between taxa of the fecal microbiome 24 h after a single probiotic gavage. These experiments identify two targets of probiosis in early development, the intestinal epithelium and the gut microbiome, and suggest novel mechanisms for probiotic strain-specific effects. PMID:22267340

  14. Dectin-1 Is Essential for Reverse Transcytosis of Glycosylated SIgA-Antigen Complexes by Intestinal M Cells

    PubMed Central

    Rochereau, Nicolas; Drocourt, Daniel; Perouzel, Eric; Pavot, Vincent; Redelinghuys, Pierre; Brown, Gordon D.; Tiraby, Gerard; Roblin, Xavier; Verrier, Bernard; Genin, Christian; Corthésy, Blaise; Paul, Stéphane

    2013-01-01

    Intestinal microfold (M) cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA) to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell–mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1+ dendritic cells (DCs) via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases. PMID:24068891

  15. Effect of intestinal resection on serum antibodies to the mycobacterial 45/48 kilodalton doublet antigen in Crohn's disease.

    PubMed Central

    Kreuzpaintner, G; Das, P K; Stronkhorst, A; Slob, A W; Strohmeyer, G

    1995-01-01

    Interest in the role of mycobacterial infection in Crohn's disease has been revived by the cultural detection of Mycobacterium paratuberculosis in patients with Crohn's disease. This hypothesis was examined serologically using assays with high specificity for Crohn's disease. The effect of intestinal resection on serum antibodies specific for Crohn's disease was investigated with an immunoblot assay and an enzyme linked immunosorbent assay using the 45/48 kilodalton doublet antigen of Mycobacterium tuberculosis. Antibodies were detected in 64.7% of patients with Crohn's disease (n = 17), 10% of patients with ulcerative colitis (n = 10), 5% of patients with carcinoma of the colon (n = 20), and none of 10 healthy subjects with the immunoblot assay. Statistical comparison of the Crohn's disease patients with each control group resulted in p = 0.0000236. Immunoglobulin G was essentially unchanged 75 days (mean) after surgery. After more than 180 days, however, the antibody response was reduced in all of five patients studied, and was no longer demonstrable in two of them (40%). Simultaneously, the Crohn's disease activity index (CDAI) decreased. Both the high specificity of this assay for Crohn's disease and the diminished antibody response after intestinal resection in parallel with decreased CDAI support a mycobacterial aetiology of Crohn's disease. Images Figure 1 Figure 2 Figure 3 PMID:7590431

  16. The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice

    PubMed Central

    Wisniewski, Paul J.; Noji, Michael; McGuinness, Lora R.; Lightfoot, Stanley A.

    2016-01-01

    Background The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet. Methods Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2). The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of 16S rRNA gene amplicons. Results Lean sedentary (LS) mice presented normal histologic villi while obese sedentary (OS) mice had similar villi height with more than twice the width of the LS animals. Both lean (LX) and obese exercise (OX) mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp. Conclusion These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host. PMID:26954359

  17. Shear-enhanced binding of intestinal colonization factor antigen I of enterotoxigenic Escherichia coli

    PubMed Central

    Tchesnokova, Veronika; McVeigh, Annette L.; Kidd, Brian; Yakovenko, Olga; Thomas, Wendy E.; Sokurenko, Evgeni V.; Savarino, Stephen J.

    2010-01-01

    SUMMARY In the intestine, enterotoxigenic Escherichia coli works against peristaltic forces, adhering to the epithelium via the CFA/I fimbrial adhesin CfaE. The CfaE adhesin is similar in localization and tertiary (but not primary) structure to FimH, the type 1 fimbrial adhesin of uropathogenic Escherichia coli, which shows shear-dependent binding to epithelial receptors by an allosteric catch-bond mechanism. Thus, we speculated that CfaE is also capable of shear-enhanced binding. Indeed, bovine erythrocytes coursing over immobilized CFA/I fimbriae in flow-chambers exhibited low accumulation levels and fast rolling at low shear, but an 80-fold increase in accumulation and 3-fold decrease in rolling velocity at elevated shear. This effect was reversible and abolished by pre-incubation of fimbriae with anti-CfaE antibody. Erythrocytes bound to whole CfaE in the same shear-enhanced manner, but to CfaE adhesin domain in a shear-inhibitable fashion. Residue replacements designed to disrupt CfaE interdomain interaction decreased the shear-dependency of adhesion and increased binding under static conditions to human intestinal epithelial cells. These findings indicate that close interaction between adhesive and anchoring pilin domains of CfaE keeps the former in a low-affinity state that toggles into a high-affinity state upon separation of two domains, all consistent with an allosteric catch-bond mechanism of CfaE binding. PMID:20345656

  18. Early Changes in Microbial Colonization Selectively Modulate Intestinal Enzymes, but Not Inducible Heat Shock Proteins in Young Adult Swine

    PubMed Central

    Arnal, Marie-Edith; Zhang, Jing; Messori, Stefano; Bosi, Paolo; Smidt, Hauke; Lallès, Jean-Paul

    2014-01-01

    Metabolic diseases and obesity are developing worldwide in a context of plethoric intake of high energy diets. The intestine may play a pivotal role due to diet-induced alterations in microbiota composition and increased permeability to bacterial lipopolysaccharide inducing metabolic inflammation. Early programming of metabolic disorders appearing in later life is also suspected, but data on the intestine are lacking. Therefore, we hypothesized that early disturbances in microbial colonization have short- and long-lasting consequences on selected intestinal components including key digestive enzymes and protective inducible heat shock proteins (HSP). The hypothesis was tested in swine offspring born to control mothers (n = 12) or mothers treated with the antibiotic amoxicillin around parturition (n = 11), and slaughtered serially at 14, 28 and 42 days of age to assess short-term effects. To evaluate long-term consequences, young adult offspring from the same litters were offered a normal or a fat-enriched diet for 4 weeks between 140 and 169 days of age and were then slaughtered. Amoxicillin treatment transiently modified both mother and offspring microbiota. This was associated with early but transient reduction in ileal alkaline phosphatase, HSP70 (but not HSP27) and crypt depth, suggesting a milder or delayed intestinal response to bacteria in offspring born to antibiotic-treated mothers. More importantly, we disclosed long-term consequences of this treatment on jejunal alkaline phosphatase (reduced) and jejunal and ileal dipeptidylpeptidase IV (increased and decreased, respectively) of offspring born to antibiotic-treated dams. Significant interactions between early antibiotic treatment and later diet were observed for jejunal alkaline phosphatase and sucrase. By contrast, inducible HSPs were not affected. In conclusion, our data suggest that early changes in bacterial colonization not only modulate intestinal architecture and function transiently, but

  19. The Cytosolic Microbial Receptor Nod2 Regulates Small Intestinal Crypt Damage and Epithelial Regeneration following T Cell-Induced Enteropathy.

    PubMed

    Zanello, Galliano; Goethel, Ashleigh; Rouquier, Sandrine; Prescott, David; Robertson, Susan J; Maisonneuve, Charles; Streutker, Catherine; Philpott, Dana J; Croitoru, Kenneth

    2016-07-01

    Loss of function in the NOD2 gene is associated with a higher risk of developing Crohn's disease (CD). CD is characterized by activation of T cells and activated T cells are involved in mucosal inflammation and mucosal damage. We found that acute T cell activation with anti-CD3 mAb induced stronger small intestinal mucosal damage in NOD2(-/-) mice compared with wild-type mice. This enhanced mucosal damage was characterized by loss of crypt architecture, increased epithelial cell apoptosis, delayed epithelial regeneration and an accumulation of inflammatory cytokines and Th17 cells in the small intestine. Partial microbiota depletion with antibiotics did not decrease mucosal damage 1 d after anti-CD3 mAb injection, but it significantly reduced crypt damage and inflammatory cytokine secretion in NOD2(-/-) mice 3 d after anti-CD3 mAb injection, indicating that microbial sensing by Nod2 was important to control mucosal damage and epithelial regeneration after anti-CD3 mAb injection. To determine which cells play a key role in microbial sensing and regulation of mucosal damage, we engineered mice carrying a cell-specific deletion of Nod2 in villin and Lyz2-expressing cells. T cell activation did not worsen crypt damage in mice carrying either cell-specific deletion of Nod2 compared with wild-type mice. However, increased numbers of apoptotic epithelial cells and higher expression of TNF-α and IL-22 were observed in mice carrying a deletion of Nod2 in Lyz2-expressing cells. Taken together, our results demonstrate that microbial sensing by Nod2 is an important mechanism to regulate small intestinal mucosal damage following acute T cell activation. PMID:27206769

  20. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review.

    PubMed

    Mosele, Juana I; Macià, Alba; Motilva, Maria-José

    2015-01-01

    Phenolic compounds represent a diverse group of phytochemicals whose intake is associated with a wide spectrum of health benefits. As consequence of their low bioavailability, most of them reach the large intestine where, mediated by the action of local microbiota, a series of related microbial metabolites are accumulated. In the present review, gut microbial transformations of non-absorbed phenolic compounds are summarized. Several studies have reached a general consensus that unbalanced diets are associated with undesirable changes in gut metabolism that could be detrimental to intestinal health. In terms of explaining the possible effects of non-absorbed phenolic compounds, we have also gathered information regarded their influence on the local metabolism. For this purpose, a number of issues are discussed. Firstly, we consider the possible implications of phenolic compounds in the metabolism of colonic products, such as short chain fatty acids (SCFA), sterols (cholesterol and bile acids), and microbial products of non-absorbed proteins. Due to their being recognized as affective antioxidant and anti-inflammatory agents, the ability of phenolic compounds to counteract or suppress pro-oxidant and/or pro-inflammatory responses, triggered by bowel diseases, is also presented. The modulation of gut microbiota through dietetic maneuvers including phenolic compounds is also commented on. Although the available data seems to assume positive effects in terms of gut health protection, it is still insufficient for solid conclusions to be extracted, basically due to the lack of human trials to confirm the results obtained by the in vitro and animal studies. We consider that more emphasis should be focused on the study of phenolic compounds, particularly in their microbial metabolites, and their power to influence different aspects of gut health. PMID:26393570

  1. Fc Gamma Receptor Signaling in Mast Cells Links Microbial Stimulation to Mucosal Immune Inflammation in the Intestine

    PubMed Central

    Chen, Xiao; Feng, Bai-Sui; Zheng, Peng-Yuan; Liao, Xue-Qing; Chong, Jasmine; Tang, Shang-Guo; Yang, Ping-Chang

    2008-01-01

    Microbes and microbial products are closely associated with the pathogenesis of inflammatory bowel disease (IBD); however, the mechanisms behind this connection remain unclear. It has been previously reported that flagellin-specific antibodies are increased in IBD patient sera. As mastocytosis is one of the pathological features of IBD, we hypothesized that flagellin-specific immune responses might activate mast cells that then contribute to the initiation and maintenance of intestinal inflammation. Thirty-two colonic biopsy samples were collected from IBD patients. A flagellin/flagellin-specific IgG/Fc gamma receptor I complex was identified on biopsied mast cells using both immunohistochemistry and co-immunoprecipitation experiments; this complex was shown to co-localize on the surfaces of mast cells in the colonic mucosa of patients with IBD. In addition, an ex vivo study showed flagellin-IgG was able to bind to human mast cells. These cells were found to be sensitized to flagellin-specific IgG; re-exposure to flagellin induced the mast cells to release inflammatory mediators. An animal model of IBD was then used to examine flagellin-specific immune responses in the intestine. Mice could be sensitized to flagellin, and repeated challenges with flagellin induced an IBD-like T helper 1 pattern of intestinal inflammation that could be inhibited by pretreatment with anti-Fc gamma receptor I antibodies. Therefore, flagellin-specific immune responses activate mast cells in the intestine and play important roles in the pathogenesis of intestinal immune inflammation. PMID:18974296

  2. Modulatory Effects of Vasoactive Intestinal Peptide on Intestinal Mucosal Immunity and Microbial Community of Weaned Piglets Challenged by an Enterotoxigenic Escherichia coli (K88)

    PubMed Central

    Xu, Chunlan; Wang, Youming; Sun, Rui; Qiao, Xiangjin; Shang, Xiaoya; Niu, Weining

    2014-01-01

    Toll-like receptors (TLRs) recognize microbial pathogens and trigger immune response, but their regulation by neuropeptide-vasoactive intestinal peptide (VIP) in weaned piglets infected by enterotoxigenic Escherichia coli (ETEC) K88 remains unexplored. Therefore, the study was conducted to investigate its role using a model of early weaned piglets infected by ETEC K88. Male Duroc×Landrace×Yorkshire piglets (n = 24) were randomly divided into control, ETEC K88, VIP, and ETEC K88+VIP groups. On the first three days, ETEC K88 and ETEC K88+VIP groups were orally administrated with ETEC K88, other two groups were given sterile medium. Then each piglet from VIP and ETEC K88+VIP group received 10 nmol VIP intraperitoneally (i.p.) once daily, on day four and six. On the seventh day, the piglets were sacrificed. The results indicated that administration of VIP improved the growth performance, reduced diarrhea incidence of ETEC K88 challenged pigs, and mitigated the histopathological changes of intestine. Serum levels of IL-2, IL-6, IL-12p40, IFN-γ and TNF-α in the ETEC K88+ VIP group were significantly reduced compared with those in the ETEC group. VIP significantly increased IL-4, IL-10, TGF-β and S-IgA production compared with the ETEC K88 group. Besides, VIP could inhibit the expression of TLR2, TLR4, MyD88, NF-κB p65 and the phosphorylation of IκB-α, p-ERK, p-JNK, and p-38 induced by ETEC K88. Moreover, VIP could upregulate the expression of occludin in the ileum mucosa compared with the ETEC K88 group. Colon and caecum content bacterial richness and diversity were lower for pigs in the ETEC group than the unchallenged groups. These results demonstrate that VIP is beneficial for the maturation of the intestinal mucosal immune system and elicited local immunomodulatory activities. The TLR2/4-MyD88 mediated NF-κB and MAPK signaling pathway may be critical to the mechanism underlying the modulatory effect of VIP on intestinal mucosal immune function and

  3. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment.

    PubMed

    Vaziri, Nosratola D; Zhao, Ying-Yong; Pahl, Madeleine V

    2016-05-01

    Chronic kidney disease (CKD) results in systemic inflammation and oxidative stress which play a central role in CKD progression and its adverse consequences. Although many of the causes and consequences of oxidative stress and inflammation in CKD have been extensively explored, little attention had been paid to the intestine and its microbial flora as a potential source of these problems. Our recent studies have revealed significant disruption of the colonic, ileal, jejunal and gastric epithelial tight junction in different models of CKD in rats. Moreover, the disruption of the epithelial barrier structure and function found in uremic animals was replicated in cultured human colonocytes exposed to uremic human plasma in vitro We have further found significant changes in the composition and function of colonic bacterial flora in humans and animals with advanced CKD. Together, uremia-induced impairment of the intestinal epithelial barrier structure and function and changes in composition of the gut microbiome contribute to the systemic inflammation and uremic toxicity by accommodating the translocation of endotoxin, microbial fragments and other noxious luminal products in the circulation. In addition, colonic bacteria are the main source of several well-known pro-inflammatory uremic toxins such as indoxyl sulfate, p-cresol sulfate, trimethylamine-N-oxide and many as-yet unidentified retained compounds in end-stage renal disease patients. This review is intended to provide an overview of the effects of CKD on the gut microbiome and intestinal epithelial barrier structure and their role in the pathogenesis of systemic inflammation and uremic toxicity. In addition, potential interventions aimed at mitigating these abnormalities are briefly discussed. PMID:25883197

  4. The Urine Circulating Cathodic Antigen (CCA) Dipstick: A Valid Substitute for Microscopy for Mapping and Point-Of-Care Diagnosis of Intestinal Schistosomiasis

    PubMed Central

    Sousa-Figueiredo, José Carlos; Betson, Martha; Kabatereine, Narcis B.; Stothard, J. Russell

    2013-01-01

    Background The World Health Organization now recommends the provision of praziquantel treatment to preschool-aged children infected with schistosomiasis. For intestinal schistosomiasis the current operational field diagnostic standard is examination of a thick Kato-Katz smear by microscopy prepared from a single stool specimen, and although pragmatic, this methodology has well-known shortcomings. Here, as a potential alternative, the performance of the urine circulating cathodic antigen (CCA) dipstick test was assessed in terms of disease-mapping and point-of-care diagnosis for intestinal schistosomiasis in preschool-aged children. Our manuscript reports on findings at baseline and at the end of a one-year longitudinal treatment study. Methodology/Principal Findings A total of 925 children (mean age 2.8 years) were initially recruited from six lakeshore villages representative of high, moderate and low levels of disease transmission. At baseline, all children were tested for intestinal schistosomiasis by microscopic examination of duplicate Kato-Katz smears prepared from a single stool faecal, by antigen detection with the urine CCA dipstick test and by serology with a commercially available ELISA test (as ‘gold-standard’) that measures host antibody titres to soluble egg antigens. As a point-of-care diagnosis, the urine CCA dipstick test achieved sensitivity and specificity values ranging from 52.5–63.2% and 57.7–75.6%, respectively, with faecal microscopy achieving very high specificities (>87%) but sensitivities as low as 16.7% in the low transmission setting. Conclusion/Significance The urine CCA test was shown to be more effective than faecal microscopy especially in lower transmission settings. The diagnostic performance of this test was not significantly impacted by treatment history or co-infections with other intestinal helminths. PMID:23359826

  5. Novel O-linked methylated glycan antigens decorate secreted immunodominant glycoproteins from the intestinal nematode Heligmosomoides polygyrus

    PubMed Central

    Hewitson, James P.; Nguyen, D. Linh; van Diepen, Angela; Smit, Cornelis H.; Koeleman, Carolien A.; McSorley, Henry J.; Murray, Janice; Maizels, Rick M.; Hokke, Cornelis H.

    2016-01-01

    Glycan molecules from helminth parasites have been associated with diverse biological functions ranging from interactions with neighbouring host cell populations to down-modulation of specific host immunity. Glycoproteins secreted by the intestinal nematode Heligmosomoides polygyrus are of particular interest as the excretory–secretory products (termed HES) of this parasite contain both heat-labile and heat-stable components with immunomodulatory effects. We used MALDI-TOF-MS and LC–MS/MS to analyse the repertoire of N- and O-linked glycans released from Heligmosomoides polygyrus excretory–secretory products by PNGase A and F, β-elimination and hydrazinolysis revealing a broad range of structures including novel methylhexose- and methylfucose-containing glycans. Monoclonal antibodies to two immunodominant glycans of H. polygyrus, previously designated Glycans A and B, were found to react by glycan array analysis to a methyl-hexose-rich fraction and to a sulphated LacDiNAc (LDN; GalNAcβ1–4GlcNAc) structure, respectively. We also analysed the glycan repertoire of a major glycoprotein in Heligmosomoides polygyrus excretory–secretory products, VAL-2, which contains many glycan structures present in Heligmosomoides polygyrus excretory–secretory products including Glycan A. However, it was found that this set of glycans is not responsible for the heat-stable immunomodulatory properties of Heligmosomoides polygyrus excretory–secretory products, as revealed by the inability of VAL-2 to inhibit allergic lung inflammation. Taken together, these studies reveal that H. polygyrus secretes a diverse range of antigenic glycoconjugates, and provides a framework to explore the biological and immunomodulatory roles they may play within the mammalian host. PMID:26688390

  6. Effects of vasoactive intestinal polypeptide on antigen-induced bronchoconstriction and thromboxane release in guinea-pig lung.

    PubMed Central

    Ciabattoni, G.; Montuschi, P.; Currò, D.; Togna, G.; Preziosi, P.

    1993-01-01

    1. Exogenous vasoactive intestinal polypeptide (VIP) infused into the pulmonary artery of isolated and ventilated lungs of guinea-pigs decreased, in a dose-dependent fashion (1.0-10.0 nmol), airway resistance and thromboxane B2 (TXB2, the stable hydrolysis product of TXA2) release in the perfusion medium. Prostacyclin (PGI2) synthesis, as reflected by the release of its stable hydrolysis product 6-oxo-PGF1 alpha, was unaffected. Pretreatment with the 5-lipoxygenase inhibitor BWA4c (3.5 x 10(-5) M) did not modify the bronchodilatory effect of VIP or its inhibitory action on TXB2 release. 2. Basal release of immunoreactive VIP from perfused lungs decreased from an initial value of 0.96 +/- 0.10 ng min-1 (mean +/- s.e.mean) in the first 2 min to an average of 0.58 +/- 0.10 ng min-1 in the following 15-20 min. 3. Antigen challenge with ovalbumin (0.1%) in sensitized lungs caused an anaphylactic reaction in 45% of tested lungs, concomitant with a 5 fold increase in both VIP and TXB2 release. Tetrodotoxin pretreatment (10(-6) M) reduced basal VIP release by > 80% and abolished the VIP increase observed during anaphylaxis, without modifying TXB2 release or the bronchoconstrictor response. 4. Indomethacin (10(-6) M) inhibited TXB2 synthesis and release by > 90%, delayed the bronchoconstrictor response and blunted the increased VIP release during lung anaphylaxis, without influencing basal VIP release. 5. The 5-lipoxygenase inhibitor BWA4c (3.5 x 10(-5) M) blunted the increase of TXB2 and VIP release from guinea-pig lung and attenuated the bronchoconstrictor response following ovalbumin challenge.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8495242

  7. Presentation of hepatocellular antigens

    PubMed Central

    Grakoui, Arash; Crispe, Ian Nicholas

    2016-01-01

    The liver is an organ in which antigen-specific T-cell responses manifest a bias toward immune tolerance. This is clearly seen in the rejection of allogeneic liver transplants, and multiple other phenomena suggest that this effect is more general. These include tolerance toward antigens introduced via the portal vein, immune failure to several hepatotropic viruses, the lack of natural liver-stage immunity to malaria parasites, and the frequent metastasis of cancers to the liver. Here we review the mechanisms by which T cells engage with hepatocellular antigens, the context in which such encounters occur, and the mechanisms that act to suppress a full T-cell response. While many mechanisms play a role, we will argue that two important processes are the constraints on the cross-presentation of hepatocellular antigens, and the induction of negative feedback inhibition driven by interferons. The constant exposure of the liver to microbial products from the intestine may drive innate immunity, rendering the local environment unfavorable for specific T-cell responses through this mechanism. Nevertheless, tolerance toward hepatocellular antigens is not monolithic and under specific circumstances allows both effective immunity and immunopathology. PMID:26924525

  8. Fecal transplant: a safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease?

    PubMed

    Vrieze, A; de Groot, P F; Kootte, R S; Knaapen, M; van Nood, E; Nieuwdorp, M

    2013-02-01

    Recent studies have suggested an association between intestinal microbiota composition and human disease, however causality remains to be proven. With hindsight, the application of fecal transplantation (FMT) does indeed suggest a causal relation between interfering with gut microbiota composition and a resultant cure of several disease states. In this review, we aim to show the available evidence regarding the involvement of intestinal microbiota and human (autoimmune) disease. Moreover, we refer to (mostly case report) studies showing beneficial or adverse effects of fecal transplantation on clinical outcomes in some of these disease states. If these findings can be substantiated in larger randomized controlled double blind trials also implementing gut microbiota composition before and after intervention, fecal transplantation might provide us with novel insights into causally related intestinal microbiota, that might be serve as future diagnostic and treatment targets in human disease. PMID:23768558

  9. Controlling Salmonella infection in weanling pigs through water delivery of direct-fed microbials or organic acids: Part II. Effects on intestinal histology and active nutrient transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the effects of water-delivered direct-fed microbials (DFM) or organic acids on intestinal morphology and active nutrient absorption in weanling pigs following deliberate Salmonella infection. Pigs (n = 88) were weaned at 19 ± 2 d of age and assigned to one...

  10. Nutritional Keys for Intestinal Barrier Modulation

    PubMed Central

    De Santis, Stefania; Cavalcanti, Elisabetta; Mastronardi, Mauro; Jirillo, Emilio; Chieppa, Marcello

    2015-01-01

    The intestinal tract represents the largest interface between the external environment and the human body. Nutrient uptake mostly happens in the intestinal tract, where the epithelial surface is constantly exposed to dietary antigens. Since inflammatory response toward these antigens may be deleterious for the host, a plethora of protective mechanisms take place to avoid or attenuate local damage. For instance, the intestinal barrier is able to elicit a dynamic response that either promotes or impairs luminal antigens adhesion and crossing. Regulation of intestinal barrier is crucial to control intestinal permeability whose increase is associated with chronic inflammatory conditions. The cross talk among bacteria, immune, and dietary factors is able to modulate the mucosal barrier function, as well as the intestinal permeability. Several nutritional products have recently been proposed as regulators of the epithelial barrier, even if their effects are in part contradictory. At the same time, the metabolic function of the microbiota generates new products with different effects based on the dietary content. Besides conventional treatments, novel therapies based on complementary nutrients are now growing. Fecal therapy has been recently used for the clinical treatment of refractory Clostridium difficile infection instead of the classical antibiotic therapy. In the present review, we will outline the epithelial response to nutritional components derived from dietary intake and microbial fermentation focusing on the consequent effects on the integrity of the epithelial barrier. PMID:26697008

  11. Intestinal microbial affects of yeast products on weaned and transport stressed pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Study objectives were to determine effects of a commercially available yeast product (XPC, Diamond-V Mills) and stress of transportation on total Enterobacteriaceae, Escherichia coli, coliforms, and Lactobacilli populations in the intestine of weaning pigs. In a RCB design with a 2 x 2 factorial ar...

  12. Campylobacter Colonization of the Turkey Intestine in the Context of Microbial Community Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relationships between development of the turkey intestinal microbiota and colonization by the food borne pathogen Campylobacter were examined. Every week of the 18 week production cycle, cecal bacterial communities and Campylobacter isolates were examined from five birds for each of two flocks. Mole...

  13. Urolithins, Intestinal Microbial Metabolites of Pomegranate Ellagitannins, Exhibit Potent Antioxidant Activity in Cell-Based Assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many health benefits of pomegranate products have been attributed to the potent antioxidant action of their tannin components, mainly punicalagins and ellagic acid. While moving through the intestines, ellagitannins are metabolized by gut bacteria into urolithins that readily enter systemic circulat...

  14. Glucagon gene 5'-flanking sequences direct expression of simian virus 40 large T antigen to the intestine, producing carcinoma of the large bowel in transgenic mice.

    PubMed

    Lee, Y C; Asa, S L; Drucker, D J

    1992-05-25

    Glucagon and the glucagon-like peptides play important roles in the regulation of glucose homeostasis. Previous studies have demonstrated that approximately 1300 base pairs of rat glucagon gene 5'-flanking sequences direct transgene expression to the pancreas and brain, but not to the intestine, of transgenic mice. These observations suggested that different tissue-specific enhancer elements mediate activation of glucagon gene transcription in the pancreas and intestine. We have now generated mice that express SV40 large T antigen under the control of approximately 2000 base pairs of glucagon gene 5'-flanking sequences. Transgene expression was observed in the brain and pancreas in association with the development of pancreatic endocrine tumors. In contrast to the mice described previously, we also detected transgene expression throughout the gastrointestinal tract in endocrine cells of the stomach and small and large intestine. Focal areas of enteroendocrine cell hyperplasia in the large bowel invariably progressed to invasive and metastasizing plurihormonal endocrine carcinoma, which was clinically and pathologically evident by 4 weeks of age. In contrast, transgene expression in the small bowel and stomach was not associated with progression to either hyperplasia or carcinoma. The results of these studies provide functional evidence for the existence of an upstream cis-acting regulatory domain that directs glucagon gene transcription to the endocrine cells of the intestine in transgenic mice. PMID:1587847

  15. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears.

    PubMed

    Schwab, Clarissa; Gänzle, Michael

    2011-03-01

    The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C. perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears. PMID:21358758

  16. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition.

    PubMed

    Chang, Pamela V; Hao, Liming; Offermanns, Stefan; Medzhitov, Ruslan

    2014-02-11

    Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-α or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-protein-coupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors. PMID:24390544

  17. Exploring the impacts of antibiotics on the microbial communities in the swine intestinal tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of antibiotics on gastrointestinal microbial ecosystems have not been well studied. Previous research in our lab indicates that in-feed antibiotics may have unintended effects on the gut microbiota, such as an increase of Escherichia coli in feces. The goal of this study was to evaluate ...

  18. Direct-Fed Microbials and Their Impact on the Intestinal Microflora and Immune System of Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Direct-fed microbials (DFMs) are live microorganisms which confer a health benefit to the host. The mode of action of DFMs involves multiple mechanisms, including direct inhibition of enteric pathogens and indirectly through competitive exclusion of pathogens by the normal gut microbiota. Addition...

  19. Intestinal microbial ecology of broilers vaccinated and challenged with mixed Eimeria species, and supplemented with essential oil blends.

    PubMed

    Oviedo-Rondón, E O; Hume, M E; Hernández, C; Clemente-Hernández, S

    2006-05-01

    Intestinal microbiota is an important component in the development of defense mechanisms in the gut mucosa. This project determined the dynamics of intestinal microbial communities (MC) of broilers vaccinated at first day of age with live oocysts of Eimeria species and fed diets supplemented with 2 specific essential oil (EO) blends, Crina Poultry (CP) and Crina Alternate (CA). Five treatments were analyzed: 1) unmedicated-uninfected (UU) control; 2) unmedicated-infected (UI) control; 3) vaccinated with Advent cocci-vaccine and without feed additive (COV) supplements; 4) vaccinated with Advent and supplemented with CP; and 5) vaccinated with Advent and supplemented with CA. The EO blends were added at 100 ppm to the same basal diets. Chicks were gavage-infected at 19 d of age with Eimeria acervulina, Eimeria maxima, and Eimeria tenella. Duodenal, ileal, and cecal samples were taken from 12 birds per treatment just before the infection and 7 d after the challenge, pooled in 6 samples, and frozen. Denaturing gradient gel electrophoresis was used to examine PCR-amplified fragments of the bacterial 16S ribosomal DNA variable region. Results are presented as percentages of similarity coefficients (SC). Dendrograms of amplicon patterns indicated MC differences due to intestinal location, feed additives, and cocci infection. The EO blends CP and CA did affect MC in all gut sections. The cocci-infection caused drastic MC population shifts in duodenal, ileal, and cecal sections (36.7, 55.4, and 36.2% SC, respectively). The CP-supplemented birds had higher SC between pre- and postchallenge MC in duodenal and ileal (73.3, 81.8%) than COV (66.4, 66.5%). However, COV broilers had the smallest changes in cecal MC after infection (79.5% SC). We concluded that cocci-vaccination causes small changes in intestinal MC, but challenge causes drastic shifts. The EO blend supplementation modulates MC in cocci-vaccinated broilers, avoiding drastic shifts after a mixed coccidia infection

  20. [Intestinal microbial biocenosis in patients with systemic lupus erythematosus treated with prednisolone].

    PubMed

    Gul'neva, M Iu; Shilkina, N P

    2009-01-01

    This study of intestinal microflora included 60 patients with systemic lupus erythematosus (LE) and 30 ones with cardiologic problems (controls). LE was diagnosed using criteria of American Rheumatologic Association (1982). Activity of the disease was estimated based on the ECLAM index. Nineteen patients with grade II LE were given with prednisolone (15 mg/day) and 15 ones did not receive this treatment. The qualitative and quantitative composition of intestinal microflora was evaluated by bacteriological methods. Results of the study were analysed with the use of STATISTICA 6.0 software system (StatSoft). Prednisolone was shown to alter the qualitative composition of microflora and the structure of symbiotic interactions between different organisms. Specifically, colonic flora contained more enterococci and organisms possessed of hemolytic activity whereas quantitative composition remained practically unchanged. Enterococci and colibacilli with modified enzymatic activity became predominant forms. It is concluded that prednisolone therapy affects colonic microbiocenosis in patients with LE favouring the development of enterococci, atypical colibacilli, and organisms with hemolytic activity. PMID:19670716

  1. Microbial modulation of energy availability in the colon regulates intestinal transit.

    PubMed

    Wichmann, Anita; Allahyar, Ava; Greiner, Thomas U; Plovier, Hubert; Lundén, Gunnel Östergren; Larsson, Thomas; Drucker, Daniel J; Delzenne, Nathalie M; Cani, Patrice D; Bäckhed, Fredrik

    2013-11-13

    Gut microbiota contribute to host metabolic efficiency by increasing energy availability through the fermentation of dietary fiber and production of short-chain fatty acids (SCFAs) in the colon. SCFAs are proposed to stimulate secretion of the proglucagon (Gcg)-derived incretin hormone GLP-1, which stimulates insulin secretion (incretin response) and inhibits gastric emptying. We find that germ-free (GF) and antibiotic-treated mice, which have severely reduced SCFA levels, have increased basal GLP-1 levels in the plasma and increased Gcg expression in the colon. Increasing energy supply, either through colonization with polysaccharide-fermenting bacteria or through diet, suppressed colonic Gcg expression in GF mice. Increased GLP-1 levels in GF mice did not improve the incretin response but instead slowed intestinal transit. Thus, microbiota regulate the basal levels of GLP-1, and increasing these levels may be an adaptive response to insufficient energy availability in the colon that slows intestinal transit and allows for greater nutrient absorption. PMID:24237703

  2. Toxoplasma gondii Soluble Tachyzoite Antigen Triggers Protective Mechanisms against Fatal Intestinal Pathology in Oral Infection of C57BL/6 Mice

    PubMed Central

    Benevides, Luciana; Cardoso, Cristina R.; Milanezi, Cristiane M.; Castro-Filice, Letícia S.; Barenco, Paulo V. C.; Sousa, Romulo O.; Rodrigues, Rosangela M.; Mineo, José R.; Silva, João S.; Silva, Neide M.

    2013-01-01

    Toxoplasma gondii induces a potent IL-12 response early in infection that results in IFN-γ-dependent control of parasite growth. It was previously shown that T. gondii soluble tachyzoite antigen (STAg) injected 48 hr before intraperitoneal infection reduces lipoxin A4 and 5-lipoxygenase (5-LO)-dependent systemic IL-12 and IFN-γ production as well as hepatic immunopathology. This study investigated the ability of STAg-pretreatment to control the fatal intestinal pathology that develops in C57BL/6 mice orally infected with 100 T. gondii cysts. STAg-pretreatment prolonged the animals’ survival by decreasing tissue parasitism and pathology, mainly in the ilea. Protection was associated with decreases in the systemic IFN-γ levels and IFN-γ and TNF message levels in the ilea and with increased TGF-β production in this tissue, but protection was independent of 5-LO and IL-4. STAg-pretreatment decreased CD4+ T cell, NK cell, CD11b+ monocyte and CD11b+CD11c+ dendritic cell numbers in the lamina propria and increased CD8+ T cells in the intestinal epithelial compartment. In parallel, decreases were observed in iNOS and IL-17 expression in this organ. These results demonstrate that pretreatment with STAg can induce the recruitment of protective CD8+ T cells to the intraepithelial compartment and decrease proinflammatory immune mechanisms that promote intestinal pathology in T. gondii infection. PMID:24086456

  3. Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis.

    PubMed

    Antonissen, Gunther; Croubels, Siska; Pasmans, Frank; Ducatelle, Richard; Eeckhaut, Venessa; Devreese, Mathias; Verlinden, Marc; Haesebrouck, Freddy; Eeckhout, Mia; De Saeger, Sarah; Antlinger, Birgit; Novak, Barbara; Martel, An; Van Immerseel, Filip

    2015-01-01

    Fumonisins (FBs) are mycotoxins produced by Fusarium fungi. This study aimed to investigate the effect of these feed contaminants on the intestinal morphology and microbiota composition, and to evaluate whether FBs predispose broilers to necrotic enteritis. One-day-old broiler chicks were divided into a group fed a control diet, and a group fed a FBs contaminated diet (18.6 mg FB1+FB2/kg feed). A significant increase in the plasma sphinganine/sphingosine ratio in the FBs-treated group (0.21 ± 0.016) compared to the control (0.14 ± 0.014) indicated disturbance of the sphingolipid biosynthesis. Furthermore, villus height and crypt depth of the ileum was significantly reduced by FBs. Denaturing gradient gel electrophoresis showed a shift in the microbiota composition in the ileum in the FBs group compared to the control. A reduced presence of low-GC containing operational taxonomic units in ileal digesta of birds exposed to FBs was demonstrated, and identified as a reduced abundance of Candidatus Savagella and Lactobaccilus spp. Quantification of total Clostridium perfringens in these ileal samples, previous to experimental infection, using cpa gene (alpha toxin) quantification by qPCR showed an increase in C. perfringens in chickens fed a FBs contaminated diet compared to control (7.5 ± 0.30 versus 6.3 ± 0.24 log10 copies/g intestinal content). After C. perfringens challenge, a higher percentage of birds developed subclinical necrotic enteritis in the group fed a FBs contaminated diet as compared to the control (44.9 ± 2.22% versus 29.8 ± 5.46%). PMID:26394675

  4. Correlation between lack of norovirus replication and histo-blood group antigen expression in 3D-intestinal epithelial cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Noroviruses (NoV) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. One publication utilizing a 3-dimensional (3D) intestinal model derived from Int407 cells reported NoV replication and extensive cytopathi...

  5. The Starting Lineup: Key Microbial Players in Intestinal Immunity and Homeostasis

    PubMed Central

    Reading, Nicola C.; Kasper, Dennis L.

    2011-01-01

    The complexity of microbiota inhabiting the intestine is increasingly apparent. Delicate balance of numerous bacterial species can affect development of the immune system, how susceptible a host is to pathogenic organisms, and the auto-inflammatory state of the host. In the last decade, with the increased use of germ-free mice, gnotobiotic mice, and animal models in which a germ-free animal has been colonized with a foreign microbiota such as humanized mice, it has been possible to delineate relationships that specific bacteria have with the host immune system and to show what role they may play in overall host health. These models have not only allowed us to tease out the roles of individual species, but have also allowed the discovery and characterization of functionally unknown organisms. For example, segmented filamentous bacteria (SFB) have been shown to play a vital role in expansion of IL-17 producing cells. Prior to linking their key role in immune system development, little was known about these organisms. Bacteroides fragilis can rescue some of the immune defects of gnotobiotic mice after mono-colonization and have anti-inflammatory properties that can alleviate colitis and experimental allergic encephalitis in murine models. Additionally, Clostridium species have most recently been shown to expand regulatory T-cell populations leading to anti-inflammatory conditions. This review will highlight and summarize some of the major findings within the last decade concerning the role of select groups of bacteria including SFB, Clostridium, Bacteroides, Bifidobacterium, and Lactobacillus, and their impact on host mucosal immune systems. PMID:21779278

  6. Prebiotic effect of fructooligosaccharide in the simulator of the human intestinal microbial ecosystem (SHIME® model).

    PubMed

    Sivieri, Katia; Morales, Martha L Villarreal; Saad, Susana M I; Adorno, Maria A Tallarico; Sakamoto, Isabel Kimiko; Rossi, Elizeu A

    2014-08-01

    Maintaining "gut health" is a goal for scientists throughout the world. Therefore, microbiota management models for testing probiotics, prebiotics, and synbiotics have been developed. The SHIME(®) model was used to study the effect of fructooligosaccharide (FOS) on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2 weeks using a culture medium. This stabilization period was followed by a 2-week control period during which the microbiota was monitored. The microbiota was then subjected to a 4-week treatment period by adding 5 g/day-1 FOS to vessel one (the "stomach" compartment). Plate counts, Denaturing Gradient Gel Electrophoresis (DGGE), short-chain fatty acid (SCFA), and ammonium analyses were used to observe the influence of FOS treatment in simulated colon compartments. A significant increase (P<.01) in the Lactobacillus spp. and Bifidobacterium spp. populations was observed during the treatment period. The DGGE obtained showed the overall microbial community was changed in the ascending colon compartment of the SHIME reactor. FOS induced increase of the SCFA concentration (P<.05) during the treatment period, mainly due to significant increased levels of acetic and butyric acids. However, ammonium concentrations increased during the same period (P<.01). This study indicates the usefulness of in vitro methods that simulate the colon region as part of research towards the improvement of human health. PMID:24654949

  7. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response.

    PubMed

    Zeng, Xun; Wei, Yu-Ling; Huang, Jun; Newell, Evan W; Yu, Hongxiang; Kidd, Brian A; Kuhns, Michael S; Waters, Ray W; Davis, Mark M; Weaver, Casey T; Chien, Yueh-hsiu

    2012-09-21

    γδ T cells contribute uniquely to immune competence. Nevertheless, how they function remains an enigma. It is unclear what most γδ T cells recognize, what is required for them to mount an immune response, and how the γδ T cell response is integrated into host immune defense. Here, we report that a noted B cell antigen, the algae protein phycoerythrin (PE), is a murine and human γδ T cell antigen. Employing this specificity, we demonstrated that antigen recognition activated naive γδ T cells to make interleukin-17 and respond to cytokine signals that perpetuate the response. High frequencies of antigen-specific γδ T cells in naive animals and their ability to mount effector response without extensive clonal expansion allow γδ T cells to initiate a swift, substantial response. These results underscore the adaptability of lymphocyte antigen receptors and suggest an antigen-driven rapid response in protective immunity prior to the maturation of classical adaptive immunity. PMID:22960222

  8. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen specific Interleukin 17 response

    PubMed Central

    Zeng, Xun; Wei, Yu-ling; Huang, Jun; Newell, Evan W.; Yu, Hongxiang; Kidd, Brian A.; Kuhns, Michael S.; Waters, Ray W.; Davis, Mark M.; Weaver, Casey T.; Chien, Yueh-hsiu

    2012-01-01

    Summary γδ T cells contribute uniquely to host immune defense. However, how they function remains an enigma. Although it is unclear what most γδ T cells recognize, common dogma asserts that they recognize self-antigens. While they are the major initial Interleukin-17 (IL-17) producers in infections, it is unclear what is required to trigger these cells to act. Here, we report that a noted B cell antigen, the algae protein-phycoerythrin (PE) is an antigen for murine and human γδ T cells. PE also stained specific bovine γδ T cells. Employing this specificity, we demonstrated that antigen recognition, but not extensive clonal expansion, was required to activate naïve γδ T cells to make IL-17. In this activated state, γδ T cells gained the ability to respond to cytokine signals that perpetuated the IL-17 production. These results underscore the adaptability of lymphocyte antigen receptors and suggest a previously unrecognized antigen-driven rapid response in protective immunity prior to the maturation of classical adaptive immunity. PMID:22960222

  9. Effect of probiotic-fermented milk administration on gastrointestinal survival of Lactobacillus casei ATCC 393 and modulation of intestinal microbial flora.

    PubMed

    Sidira, Marianthi; Galanis, Alex; Ypsilantis, Petros; Karapetsas, Athanasios; Progaki, Zoi; Simopoulos, Constantinos; Kourkoutas, Yiannis

    2010-01-01

    The aim of the present study was to assess the survival of free and immobilized Lactobacillus casei ATCC 393 on apple pieces, contained in probiotic-fermented milk, after gastrointestinal (GI) transit and to investigate the potential regulation of intestinal microbial flora in a rat model. In in vitro GI stress tolerance tests, immobilized L. casei ATCC 393 exhibited significantly higher survival rates compared to free cells. At a second stage, probiotic-fermented milk produced by either free or immobilized cells was administered orally at a single dose or daily for 9 days in Wistar rats. By 12 h after single-dose administration, both free and immobilized cells were detected by microbiological and molecular analysis at levels ≥6 logCFU/g of feces. Moreover, daily administration led to significant reduction of staphylococci, enterobacteria, coliforms and streptococci counts. In conclusion, L. casei ATCC 393 contained in fermented milk survived GI transit and modulated intestinal microbiota. PMID:21160205

  10. Ration formulations containing reduced-fat dried distillers grains with solubles and their effect on lactation performance, rumen fermentation, and intestinal flow of microbial nitrogen in Holstein cows.

    PubMed

    Castillo-Lopez, E; Ramirez Ramirez, H A; Klopfenstein, T J; Hostetler, D; Karges, K; Fernando, S C; Kononoff, P J

    2014-03-01

    Sixteen multiparous lactating Holstein cows were used in 2 experiments to evaluate the effects of reduced-fat dried distillers grains with solubles (RFDG) on milk production, rumen fermentation, intestinal microbial N flow, and total-tract nutrient digestibility. In experiment 1, RFDG was fed at 0, 10, 20, or 30% of diet dry matter (DM) to 12 noncannulated Holstein cows (mean ± standard deviation: 89 ± 11 d in milk and 674 ± 68.2 kg of body weight) to determine effects on milk production. In experiment 2, the same diets were fed to 4 ruminally and duodenally cannulated Holstein cows (mean ± standard deviation: 112 ± 41 d in milk; 590 ± 61.14 kg of body weight) to evaluate the effects on rumen fermentation, intestinal flow of microbial N, and total-tract nutrient digestibility. In both experiments, cows were randomly assigned to 4 × 4 Latin squares over 21-d periods. Treatments (DM basis) were (1) control (0% RFDG), (2) 10% RFDG, (3) 20% RFDG, and (4) 30% RFDG. Feed intake and milk yield were recorded daily. In both experiments, milk samples were collected on d 19 to 21 of each period for analysis of milk components. In experiment 2, ruminal pH was measured; samples of rumen fluid, duodenal digesta, and feces were collected on d 18 to 21. Microbial N was estimated by using purines and DNA as microbial markers. Milk yield was not affected by treatment and averaged 34.0 ± 1.29 kg/d and 31.4 ± 2.81 kg/d in experiments 1 and 2, respectively. Percentage of milk protein tended to increase in experiment 1; estimates were 3.08, 3.18, 3.15, and 3.19 ± 0.06% when RFDG increased from 0 to 30% in the diets. However, milk protein concentration was not affected in experiment 2 and averaged 3.02 ± 0.07%. Percentage of milk fat was not affected and averaged 3.66 ± 0.05% and 3.25 ± 0.14% in experiments 1 and 2, respectively. Total ruminal volatile fatty acids and ammonia concentrations were not affected by treatment and averaged 135.18 ± 6.45 mM and 18.66 ± 2.32 mg

  11. Effects of Fruit Toxins on Intestinal and Microbial β-Glucosidase Activities of Seed-Predating and Seed-Dispersing Rodents (Acomys spp.).

    PubMed

    Kohl, Kevin D; Samuni-Blank, Michal; Lymberakis, Petros; Kurnath, Patrice; Izhaki, Ido; Arad, Zeev; Karasov, William H; Dearing, M Denise

    2016-01-01

    Plant secondary compounds (PSCs) have profound influence on the ecological interaction between plants and their consumers. Glycosides, a class of PSC, are inert in their intact form and become toxic on activation by either plant β-glucosidase enzymes or endogenous β-glucosidases produced by the intestine of the plant-predator or its microbiota. Many insect herbivores decrease activities of endogenous β-glucosidases to limit toxin exposure. However, such an adaptation has never been investigated in nonmodel mammals. We studied three species of spiny mice (Acomys spp.) that vary in their feeding behavior of the glycoside-rich fruit of Ochradenus baccatus. Two species, the common (Acomys cahirinus) and Crete (Acomys minous) spiny mice, behaviorally avoid activating glycosides, while the golden spiny mouse (Acomys russatus) regularly consumes activated glycosides. We fed each species a nontoxic diet of inert glycosides or a toxic diet of activated fruit toxins and investigated the responses of intestinal and microbial β-glucosidase activities. We found that individuals feeding on activated toxins had lower intestinal β-glucosidase activity and that the species that behaviorally avoid activating glycosides also had lower intestinal β-glucosidase activity regardless of treatment. The microbiota represented a larger source of toxin liberation, and the toxin-adapted species (golden spiny mouse) exhibited almost a fivefold increase in microbial β-glucosidase when fed activated toxins, while other species showed slight decreases. These results are contrary to those in insects, where glycoside-adapted species have lower β-glucosidase activity. The glycoside-adapted golden spiny mouse may have evolved tolerance mechanisms such as enhanced detoxification rather than avoidance mechanisms. PMID:27153129

  12. Gamma delta T cells recognize a microbial encoded B Cell antigen to initiate a rapid antigen-specific Interleukin-17 response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gamma delta T cells contribute uniquely to host immune defense, but the way in which they do so remains an enigma. Here we show that an algae protein, phycoerythrin (PE) is recognized by gamma delta T cells from mice, bovine and humans and binds directly to specific gamma delta T cell antigen recept...

  13. Increased peripheral T cell reactivity to microbial antigens and collagen type II in rheumatoid arthritis after treatment with soluble TNFα receptors

    PubMed Central

    Berg, L; Lampa, J; Rogberg, S; van Vollenhoven, R; Klareskog, L

    2001-01-01

    OBJECTIVE—Peripheral T cells from patients with rheumatoid arthritis (RA) are hyporesponsive when stimulated with antigen or mitogen in vitro, possibly owing to increased production of proinflammatory cytokines such as tumour necrosis factor α (TNFα). This study sought to find out if and how RA T cell reactivity is affected during treatment with etanercept (Enbrel), a soluble TNFα receptor.
METHODS—Heparinised blood was collected from patients with RA at baseline, after four and eight weeks of etanercept treatment, and from healthy controls. After density separation spontaneous production of interferon γ (IFNγ), TNFα, interleukin 6 (IL6), and IL10 by peripheral blood mononuclear cells (PBMC) was detected by ELISPOT. For detection of T cell reactivity, PBMC were stimulated in vitro with mitogen (phytohaemagglutinin (PHA)), microbial antigens (purified protein derivative (PPD), influenza), or an autoantigen, collagen type II (CII). Supernatants were analysed for IFNγ and IL2 content by enzyme linked immunosorbent assay (ELISA).
RESULTS—In RA the number of cells spontaneously producing IFNγ was significantly increased after four, but not eight weeks' treatment with etanercept. T cell reactivity, as measured by IFNγ production to PPD, influenza, and CII was significantly increased after four and sustained after eight weeks' treatment, whereas IFNγ production induced by PHA remained unchanged. TNFα production was significantly higher in patients with RA than in controls and did not change during etanercept treatment.
CONCLUSION—Treatment of patients with RA with etanercept may lead to increased peripheral T cell reactivity both to microbial antigens and to self antigens such as CII. These findings indicate that TNFα blockade may not only suppress but also stimulate certain aspects of antimicrobial immune defence and autoimmunity.

 PMID:11156546

  14. A Gut Microbial Metabolite of Linoleic Acid, 10-Hydroxy-cis-12-octadecenoic Acid, Ameliorates Intestinal Epithelial Barrier Impairment Partially via GPR40-MEK-ERK Pathway*

    PubMed Central

    Miyamoto, Junki; Mizukure, Taichi; Park, Si-Bum; Kishino, Shigenobu; Kimura, Ikuo; Hirano, Kanako; Bergamo, Paolo; Rossi, Mauro; Suzuki, Takuya; Arita, Makoto; Ogawa, Jun; Tanabe, Soichi

    2015-01-01

    Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca2+]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease. PMID:25505251

  15. Breast Milk and Solid Food Shaping Intestinal Immunity

    PubMed Central

    Parigi, Sara M.; Eldh, Maria; Larssen, Pia; Gabrielsson, Susanne; Villablanca, Eduardo J.

    2015-01-01

    After birth, the intestinal immune system enters a critical developmental stage, in which tolerogenic and pro-inflammatory cells emerge to contribute to the overall health of the host. The neonatal health is continuously challenged by microbial colonization and food intake, first in the form of breast milk or formula and later in the form of solid food. The microbiota and dietary compounds shape the newborn immune system, which acquires the ability to induce tolerance against innocuous antigens or induce pro-inflammatory immune responses against pathogens. Disruption of these homeostatic mechanisms might lead to undesired immune reactions, such as food allergies and inflammatory bowel disease. Hence, a proper education and maturation of the intestinal immune system is likely important to maintain life-long intestinal homeostasis. In this review, the most recent literature regarding the effects of dietary compounds in the development of the intestinal immune system are discussed. PMID:26347740

  16. Arabinogalactan and fructo-oligosaccharides have a different fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME ®).

    PubMed

    Terpend, Kathleen; Possemiers, Sam; Daguet, David; Marzorati, Massimo

    2013-08-01

    Current prebiotics, such as fructo-oligosaccharides (FOS), are limited in their persistence in the distal colon and are predominantly fermented in the proximal colon. In order to identify a potential alternative, the differences in the fermentation profile of arabinogalactan (AG) and FOS have been assessed in the Simulator of the Human Intestinal Microbial Ecosystem. The effect of each product on the composition and activity of the microbial community was analysed during a 3-week treatment period at a dose of 5 g day(-1). While FOS indeed was mainly fermented in the simulated proximal colon, AG was still available for fermentation in the simulated distal colon as shown by pH profiles, size exclusion chromatography and analyses of specific enzymatic activities. As a consequence, the main effect of the products (increase in propionate and butyrate and decrease in ammonium production) occurred in different intestinal areas. DGGE and qPCR analyses confirmed that the main modulation of the microbiota by the two products occurred in different areas of the gut. AG was associated with a statistically significant increase in the concentration of total bacteria, Bacteroidetes, Faecalibacterium prausnitzii, a delayed bifidogenic effect and a decrease of the pathogenic Clostridium perfringens. FOS led to a strong lactobacillogenic effect. PMID:23864575

  17. Comparison of Yacon (Smallanthus sonchifolius) Tuber with Commercialized Fructo-oligosaccharides (FOS) in Terms of Physiology, Fermentation Products and Intestinal Microbial Communities in Rats.

    PubMed

    Utami, Ni Wayan Arya; Sone, Teruo; Tanaka, Michiko; Nakatsu, Cindy H; Saito, Akihiko; Asano, Kozo

    2013-01-01

    The yacon (Smallanthus sonchifolius) tuber was examined with regard to its prebiotic effects compared with commercialized fructo-oligosaccharides (FOS). A feed containing 10% yacon tuber, which is equivalent to 5% commercialized FOS in terms of the amount of fructo-oligosaccharides (GF2, GF3 and GF4), was administrated to rats for 28 days. The yacon diet changed the intestinal microbial communities beginning in the first week, resulting in a twofold greater concentration of cecal short-chain fatty acids (SCFAs). The SCFA composition differed, but the cecal pH in rats fed yacon tuber was equal to that in rats fed FOS. Serum triglycerides were lower in rats fed yacon compared with rats fed FOS and the control diet. Cecal size was greater with the yacon tuber diet compared with the control diet. The abundant fermentation in the intestines created a selective environment for the intestinal microbiota, which included Lactobacillus acidophilus, Bifidobacterium pseudolongum, Bifidobacterium animalis and Barnesiella spp. according to identification with culture-independent analysis, 16S rRNA gene PCR-DGGE combined with cloning and sequencing. Barnesiella spp. and B. pseudolongum were only found in the rats fed the yacon diet, while L. acidophilus and B. animalis were found in abundance in rats fed both the yacon and FOS diets. The genus Barnesiella has not previously been reported to be associated with yacon or FOS fermentation. We concluded that the physiological and microbiological effects of the yacon tuber were different from those of FOS. Differences in cecal size, blood triglycerides and microbial community profiles including their metabolites (SCFAs) between the yacon tuber and FOS were shown to be more greatly affected by the yacon tuber rather than FOS. PMID:24936376

  18. Comparison of Yacon (Smallanthus sonchifolius) Tuber with Commercialized Fructo-oligosaccharides (FOS) in Terms of Physiology, Fermentation Products and Intestinal Microbial Communities in Rats

    PubMed Central

    UTAMI, Ni Wayan Arya; SONE, Teruo; TANAKA, Michiko; NAKATSU, Cindy H; SAITO, Akihiko; ASANO, Kozo

    2013-01-01

    The yacon (Smallanthus sonchifolius) tuber was examined with regard to its prebiotic effects compared with commercialized fructo-oligosaccharides (FOS). A feed containing 10% yacon tuber, which is equivalent to 5% commercialized FOS in terms of the amount of fructo-oligosaccharides (GF2, GF3 and GF4), was administrated to rats for 28 days. The yacon diet changed the intestinal microbial communities beginning in the first week, resulting in a twofold greater concentration of cecal short-chain fatty acids (SCFAs). The SCFA composition differed, but the cecal pH in rats fed yacon tuber was equal to that in rats fed FOS. Serum triglycerides were lower in rats fed yacon compared with rats fed FOS and the control diet. Cecal size was greater with the yacon tuber diet compared with the control diet. The abundant fermentation in the intestines created a selective environment for the intestinal microbiota, which included Lactobacillus acidophilus, Bifidobacterium pseudolongum, Bifidobacterium animalis and Barnesiella spp. according to identification with culture-independent analysis, 16S rRNA gene PCR-DGGE combined with cloning and sequencing. Barnesiella spp. and B. pseudolongum were only found in the rats fed the yacon diet, while L. acidophilus and B. animalis were found in abundance in rats fed both the yacon and FOS diets. The genus Barnesiella has not previously been reported to be associated with yacon or FOS fermentation. We concluded that the physiological and microbiological effects of the yacon tuber were different from those of FOS. Differences in cecal size, blood triglycerides and microbial community profiles including their metabolites (SCFAs) between the yacon tuber and FOS were shown to be more greatly affected by the yacon tuber rather than FOS. PMID:24936376

  19. Intestinal concentrations of free and encapsulated dietary medium-chain fatty acids and effects on gastric microbial ecology and bacterial metabolic products in the digestive tract of piglets.

    PubMed

    Zentek, Jürgen; Buchheit-Renko, Susanne; Männer, Klaus; Pieper, Robert; Vahjen, Wilfried

    2012-02-01

    The influence of low dietary levels of free and encapsulated medium-chain fatty acids on their concentrations in the digesta, the gastric microbial ecology and bacterial metabolic products in the gastrointestinal tract (GIT) in weaned piglets was studied. Starting after weaning, 36 piglets were fed a diet without (Control) or with medium-chain fatty acids uncoated (MCFA) or coated with vegetable fat and lecithin (MCFAc). After 4 weeks, the animals were killed, and digesta from the stomach and different sections of the GIT were collected. The concentrations of caprylic (p < 0.001) and capric (p = 0.001) acids were higher in the stomachs of piglets fed diets MCFA and MCFAc compared to the Control group. The concentrations dropped rapidly along the GIT, regardless of encapsulation, and tended to be higher in groups MCFA and MCFAc compared to the Control. Compared to the Control group, ingestion of diet MCFAc led to an increase in the number of eubacteria (p = 0.001), enterobacteriaceae (p < 0.001), clostridial clusters I (p = 0.001) and IV (p = 0.019), Lactobacillus johnsonii (p < 0.001) and Lactobacillus amylovorus (p = 0.001) in gastric contents. A similar trend was seen with diet MCFA. Relative concentrations of short-chain fatty acids were characterised by lower propionic acid levels (p = 0.045), numerically (p < 0.1) higher acetic, lower n-butyric and i-valeric acid concentrations in the small intestine. Lactic acid concentrations were not significantly changed in the GIT, but ammonia concentrations increased (p < 0.001) in the distal small intestine in the MCFA and MCFAc groups. In conclusion, medium-chain fatty acids affected microbial ecology parameters in the gastric contents and bacterial metabolites in the small intestine. At low dietary levels, medium-chain fatty acids may be regarded as modulators of the gastric microbiota in weaned piglets. PMID:22397093

  20. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection.

    PubMed

    Ruiz-Palacios, Guillermo M; Cervantes, Luz Elena; Ramos, Pilar; Chavez-Munguia, Bibiana; Newburg, David S

    2003-04-18

    The most common cause of infant mortality is diarrhea; the most common cause of bacterial diarrhea is Campylobacter jejuni, which is also the primary cause of motor neuron paralysis. The first step in campylobacter pathogenesis is adherence to intestinal mucosa. We found that such binding was inhibited in vitro by human milk and, with high avidity, by alpha1,2-fucosylated carbohydrate moieties containing the H(O) blood group epitope (Fuc alpha 1,2Gal beta 1,4GlcNAc em leader ). In studies on the mechanism of adherence, campylobacter, which normally does not bind to Chinese hamster ovary cells, bound avidly when the cells were transfected with a human alpha1,2-fucosyltransferase gene that caused overexpression of H-2 antigen; binding was specifically inhibited by H-2 ligands (lectins Ulex europaeus and Lotus tetragonolobus and H-2 monoclonal antibody), H-2 mimetics, and human milk oligosaccharides. Human milk oligosaccharides inhibited campylobacter colonization of mice in vivo and human intestinal mucosa ex vivo. Campylobacter colonization of nursing mouse pups was inhibited if their dams had been transfected with a human alpha1,2-fucosyltransferase gene that caused expression of H(O) antigen in milk. We conclude that campylobacter binding to intestinal H-2 antigen is essential for infection. Milk fucosyloligosaccharides and specific fucosyl alpha1,2-linked molecules inhibit this binding and may represent a novel class of antimicrobial agents. PMID:12562767

  1. Ribosome Inactivation Leads to Attenuation of Intestinal Polymeric Ig Receptor Expression via Differential Regulation of Human Antigen R.

    PubMed

    Do, Kee Hun; Park, Seong-Hwan; Kim, Juil; Yu, Mira; Moon, Yuseok

    2016-08-01

    The polymeric IgR (pIgR) is a central component in the transport of IgA across enterocytes and thereby plays a crucial role in the defense against enteropathogens and in the regulation of circulating IgA levels. The present study was performed to address the novel regulation of pIgR expression in intestinal epithelia undergoing ribosome inactivation. Insults to mucosa that led to ribosome inactivation attenuated pIgR expression in enterocytes. However, IFN regulatory factor-1 (IRF-1) as a central transcription factor of pIgR induction was superinduced by ribosome inactivation in the presence of IFN-γ as a result of mRNA stabilization by the RNA-binding protein HuR. Another important transcription factor for pIgR expression, NF-κB, was marginally involved in suppression of pIgR by ribosome inactivation. In contrast to a positive contribution of HuR in early induction of IRF-1 expression, extended exposure to ribosome inactivation caused nuclear entrapment of HuR, resulting in destabilization of late-phase-induced pIgR mRNA. These HuR-linked differential regulations of pIgR and of IRF-1 led to a reduced mucosal secretion of IgA and, paradoxically, an induction of IRF-1-activated target genes, including colitis-associated IL-7. Therefore, these events can account for ribosome inactivation-related mucosal disorders and provide new insight into interventions for HuR-linked pathogenesis in diverse mucosa-associated diseases, including inflammatory bowel disease and IgA nephritis. PMID:27307561

  2. A comparison of the effect of water-delivered direct fed microbials or organic acids with an in-feed antibiotic on weanling pig growth performance, intestinal morphology, gut microbiota and immune status following a...

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pigs (n=88) weaned at 19 days of age were used in a 14-days experiment to compare the effects of water delivered direct fed microbials (DFM) or a propionic acid (PA) based blend with an in-feed antibiotic on growth performance, intestinal morphology, gut microbiota and immune status following a Salm...

  3. Intestinal epithelial expression of TNFAIP3 results in microbial invasion of the inner mucus layer and induces colitis in IL-10-deficient mice.

    PubMed

    Murphy, Stephen F; Rhee, Lesley; Grimm, Wesley A; Weber, Christopher R; Messer, Jeannette S; Lodolce, James P; Chang, Jonathan E; Bartulis, Sarah J; Nero, Thomas; Kukla, Renata A; MacDougall, Gordon; Binghay, Charles; Kolodziej, Lauren E; Boone, David L

    2014-11-01

    Tumor necrosis factor-induced protein 3 (TNFAIP3; also known as A20) negatively regulates NF-κB and MAPK signals to control inflammatory responses. TNFAIP3 also protects against TNF-induced cell death. Intestinal epithelial cell (IEC) expression of TNFAIP3 improves barrier function and tight junction integrity and prevents dextran sulfate sodium (DSS)-induced IEC death and colitis. We therefore investigated the effects of TNFAIP3 expression in IEC on immune homeostasis in the intestines of immune-compromised mice. Villin-TNFAIP3 (v-TNFAIP3) transgenic mice were interbred with IL-10(-/-) mice (v-TNFAIP3 × IL-10(-/-)) and incidence, onset, and severity of colitis was assessed. v-TNFAIP3 × IL-10(-/-) mice displayed severe, early onset, and highly penetrant colitis that was not observed in IL-10(-/-) or v-TNFAIP3 mice. V-TNFAIP3 mice displayed altered expression of mucosal cytokines, increased numbers of mucosal regulatory T cells, and altered expression of mucosal antimicrobial peptides (AMPs). Microbial colonization of the inner mucus layer of v-TNFAIP3 mice was observed, along with alterations in the microbiome, but this was not sufficient to induce colitis in v-TNFAIP3 mice. The relative sterility of the inner mucus layer observed in wild-type and IL-10(-/-) mice was lost in v-TNFAIP3 × IL-10(-/-) mice. Thus IEC-derived factors, induced by signals that are inhibited by TNFAIP3, suppress the onset of inflammatory bowel disease in IL-10(-/-) mice. Our results indicate that IEC expression of TNFAIP3 alters AMP expression and allows microbial colonization of the inner mucus layer, which activates an IL-10-dependent anti-inflammatory process that is necessary to prevent colitis. PMID:25234043

  4. Intestinal epithelial expression of TNFAIP3 results in microbial invasion of the inner mucus layer and induces colitis in IL-10-deficient mice

    PubMed Central

    Murphy, Stephen F.; Rhee, Lesley; Grimm, Wesley A.; Weber, Christopher R.; Messer, Jeannette S.; Lodolce, James P.; Chang, Jonathan E.; Bartulis, Sarah J.; Nero, Thomas; Kukla, Renata A.; MacDougall, Gordon; Binghay, Charles; Kolodziej, Lauren E.

    2014-01-01

    Tumor necrosis factor-induced protein 3 (TNFAIP3; also known as A20) negatively regulates NF-κB and MAPK signals to control inflammatory responses. TNFAIP3 also protects against TNF-induced cell death. Intestinal epithelial cell (IEC) expression of TNFAIP3 improves barrier function and tight junction integrity and prevents dextran sulfate sodium (DSS)-induced IEC death and colitis. We therefore investigated the effects of TNFAIP3 expression in IEC on immune homeostasis in the intestines of immune-compromised mice. Villin-TNFAIP3 (v-TNFAIP3) transgenic mice were interbred with IL-10−/− mice (v-TNFAIP3 × IL-10−/−) and incidence, onset, and severity of colitis was assessed. v-TNFAIP3 × IL-10−/− mice displayed severe, early onset, and highly penetrant colitis that was not observed in IL-10−/− or v-TNFAIP3 mice. V-TNFAIP3 mice displayed altered expression of mucosal cytokines, increased numbers of mucosal regulatory T cells, and altered expression of mucosal antimicrobial peptides (AMPs). Microbial colonization of the inner mucus layer of v-TNFAIP3 mice was observed, along with alterations in the microbiome, but this was not sufficient to induce colitis in v-TNFAIP3 mice. The relative sterility of the inner mucus layer observed in wild-type and IL-10−/− mice was lost in v-TNFAIP3 × IL-10−/− mice. Thus IEC-derived factors, induced by signals that are inhibited by TNFAIP3, suppress the onset of inflammatory bowel disease in IL-10−/− mice. Our results indicate that IEC expression of TNFAIP3 alters AMP expression and allows microbial colonization of the inner mucus layer, which activates an IL-10-dependent anti-inflammatory process that is necessary to prevent colitis. PMID:25234043

  5. Laxative treatment with polyethylene glycol decreases microbial primary bile salt dehydroxylation and lipid metabolism in the intestine of rats.

    PubMed

    van der Wulp, Mariëtte Y M; Derrien, Muriel; Stellaard, Frans; Wolters, Henk; Kleerebezem, Michiel; Dekker, Jan; Rings, Edmond H H M; Groen, Albert K; Verkade, Henkjan J

    2013-10-01

    Polyethylene glycol (PEG) is a frequently used osmotic laxative that accelerates gastrointestinal transit. It has remained unclear, however, whether PEG affects intestinal functions. We aimed to determine the effect of PEG treatment on intestinal sterol metabolism. Rats were treated with PEG in drinking water (7%) for 2 wk or left untreated (controls). We studied the enterohepatic circulation of the major bile salt (BS) cholate with a plasma stable isotope dilution technique and determined BS profiles and concentrations in bile, intestinal lumen contents, and feces. We determined the fecal excretion of cholesterol plus its intestinally formed metabolites. Finally, we determined the cytolytic activity of fecal water (a surrogate marker of colorectal cancer risk) and the amount and composition of fecal microbiota. Compared with control rats, PEG treatment increased the pool size (+51%; P < 0.01) and decreased the fractional turnover of cholate (-32%; P < 0.01). PEG did not affect the cholate synthesis rate, corresponding with an unaffected fecal primary BS excretion. PEG reduced fecal excretion of secondary BS and of cholesterol metabolites (each P < 0.01). PEG decreased the cytolytic activity of fecal water [54 (46-62) vs. 87 (85-92)% erythrocyte potassium release in PEG-treated and control rats, respectively; P < 0.01]. PEG treatment increased the contribution of Verrucomicrobia (P < 0.01) and decreased that of Firmicutes (P < 0.01) in fecal flora. We concluded that PEG treatment changes the intestinal bacterial composition, decreases the bacterial dehydroxylation of primary BS and the metabolism of cholesterol, and increases the pool size of the primary BS cholate in rats. PMID:23868407

  6. The colonization of a simulator of the human intestinal microbial ecosystem by a probiotic strain fed on a fermented oat bran product: effects on the gastrointestinal microbiota.

    PubMed

    Kontula, P; Jaskari, J; Nollet, L; De Smet, I; von Wright, A; Poutanen, K; Mattila-Sandholm, T

    1998-08-01

    The effects of Lactobacillus-GG-fermented oat bran product on the microbiota and its metabolic activity in the human gut were investigated, using a simulator of the human intestinal microbial ecosystem (SHIME), by analysing the bacterial population, shortchain fatty acids and gas production. In addition, the effects of fermented oat bran supernatant and supernatant samples from reactors 4, 5 and 6 (large intestine) on the growth of Escherichia coli IHE 13047, Enterococcus faecalis VTT E-93203, Lactobacillus rhamnosus VTT E-94522 (Lactobacillus GG) and Lactococcus lactis subsp. lactis VTT E-90414 were monitored to ascertain possible stimulatory/inhibitory effects by an in vitro turbidometric method. Our experiments showed that Lactobacillus GG colonized the SHIME reactor and this colonization could be maintained for several weeks without extra supplementation. Oat bran feeding also favoured the growth of bifidobacteria and caused an increase in the production of acetic, propionic and butyric acid as well as CH4 and CO2. However, the effects of oat bran, either on bacterial populations or on their metabolic activity, were not directly dose-dependent. In turbidometric measurements, the supernatant of fermented oat bran exerted an inhibitory effect of Lactobacillus GG, but stimulated the growth of enterococci. PMID:9763692

  7. Exogenous Control of the Expression of Group I CD1 Molecules Competent for Presentation of Microbial Nonpeptide Antigens to Human T Lymphocytes

    PubMed Central

    Aquino, Angelo; Graziani, Grazia; Franzese, Ornella; Prete, Salvatore P.; Bonmassar, Enzo; Bonmassar, Laura; D'Atri, Stefania

    2011-01-01

    Group I CD1 (CD1a, CD1b, and CD1c) glycoproteins expressed on immature and mature dendritic cells present nonpeptide antigens (i.e., lipid or glycolipid molecules mainly of microbial origin) to T cells. Cytotoxic CD1-restricted T lymphocytes recognizing mycobacterial lipid antigens were found in tuberculosis patients. However, thanks to a complex interplay between mycobacteria and CD1 system, M. tuberculosis possesses a successful tactic based, at least in part, on CD1 downregulation to evade CD1-dependent immunity. On the ground of these findings, it is reasonable to hypothesize that modulation of CD1 protein expression by chemical, biological, or infectious agents could influence host's immune reactivity against M. tuberculosis-associated lipids, possibly affecting antitubercular resistance. This scenario prompted us to perform a detailed analysis of the literature concerning the effect of external agents on Group I CD1 expression in order to obtain valuable information on the possible strategies to be adopted for driving properly CD1-dependent immune functions in human pathology and in particular, in human tuberculosis. PMID:21603161

  8. Hydrolysis of phytic acid by intrinsic plant or supplemented microbial phytase (Aspergillus niger) in the stomach and small intestine of minipigs fitted with re-entrant cannulas.

    PubMed

    Rapp, C; Lantzsch, H J; Drochner, W

    2001-12-01

    Hydrolysis of phytate in the stomach and the small intestine as influenced by intrinsic plant (wheat) and supplemented microbial phytase (A. niger) were investigated with six minipigs (40-50 kg initial BW) fitted with re-entrant-cannulas in the duodenum, 30 cm posterior to the pylorus (animals 1, 4, 5, and 6) and ileocecal re-entrant cannulas, 5 cm prior the ileocecal junction (animals 1, 2, and 3), respectively. Dietary treatments were as follows: (1) diet 1, a corn-based diet (43 U Phytase/kg DM); (2) diet 2, diet 1 supplemented with microbial phytase (818 U/kg DM) and (3) diet 3, a wheat-based diet (1192 U/kg DM). At 0730 and 1930 per animal 350 g diet mixed with 1050 ml de-ionized water were fed. Digesta were collected continuously and completely during 12 h after feeding. Duodenal recovery of dry matter and total phosphorus were 100% in the period between two feedings, irrespective of dietary treatment. In animals fed the wheat-based diet, dry matter left the stomach faster (p < 0.05) during the first hour after feeding than in animals fed the corn-based diets (41.3 vs. 31.0 and 25.8% of intake, respectively). Supplemented microbial phytase did not affect ileal dry matter digestibility of the corn-based diet. In the first hour after feeding, phosphorus concentration of the duodenal digesta of animals fed corn-based diets with or without supplemented microbial phytase (5.86, 6.19 mg total P/g DM) exceeded the dietary level considerably (4.30 and 4.21 mg total P/g DM) indicating a higher solubility of corn than wheat phosphorus in the stomach. Apparent ileal P absorption was higher (p < 0.05) in the wheat-based diet (37.6%) and corn-based diet supplemented with microbial phytase (34.3%) than in the unsupplemented corn-based diet (17.6%). PMID:11906564

  9. Determining the role of a probiotic in the restoration of intestinal microbial balance by molecular and cultural techniques.

    PubMed

    Shoaib, Affhan; Dachang, W; Xin, Y

    2015-01-01

    The human intestine has a vast variety of microorganisms, and their balance is dependent on several factors. Antibiotics affect microfloral balance and allow naturally opportunistic organisms to multiply. Azithromycin is the most widely used macrolide antibiotic, active against a wide number of pathogens including Pseudomonas aeruginosa and Staphylococcus aureus. It is currently used in the treatment of cystic fibrosis patients. The use of probiotics has advantages in gastrointestinal conditions, including infectious diarrhea and imbalance due to antibiotic use. In this research, the effect of azithromycin on the intestinal microbiota of Sprague Dawley rats and the role of Lactobacillus acidophilus in the restoration of the balance by employing molecular and cultural techniques was investigated. PCR with universal primers targeting the V3 region of the 16S rRNA gene followed by DGGE was used to characterize the overall intestinal microbiota composition. Cultivable fecal bacteria count using microbiological media and semi-quantitative PCR with group-specific primers were also utilized to analyze the effects of antibiotic and probiotic on microflora. We found that the total amount of 16S rRNA gene and fecal aerobic bacterial count was reduced following azithromycin administration along with elimination of non-pathogenic Escherichia coli, but it was restored by the use of the probiotic. The results from PCR with group-specific primers showed that Bacteroides sp was present in the control and probiotic groups, but it was nearly eliminated in the antibiotic group. Moreover, semi-quantitative PCR revealed that the numbers of Enterobacteriaceae were nearly the same in the probiotic group and decreased in the antibiotic group, while Bifidobacterium was significantly increased in the probiotic group and decreased in the antibiotic group (P < 0.05) as compared with that in the control group. Azithromycin-induced dysbiosis can result in prolonged deleterious effects on the

  10. An organotypic slice model for ex vivo study of neural, immune, and microbial interactions of mouse intestine

    PubMed Central

    Schwerdtfeger, Luke A.; Ryan, Elizabeth P.

    2015-01-01

    Organotypic tissue slices provide seminatural, three-dimensional microenvironments for use in ex vivo study of specific organs and have advanced investigative capabilities compared with isolated cell cultures. Several characteristics of the gastrointestinal tract have made in vitro models for studying the intestine challenging, such as maintaining the intricate structure of microvilli, the intrinsic enteric nervous system, Peyer's patches, the microbiome, and the active contraction of gut muscles. In the present study, an organotypic intestinal slice model was developed that allows for functional investigation across regions of the intestine. Intestinal tissue slices were maintained ex vivo for several days in a physiologically relevant environment that preserved normal enterocyte structure, intact and proliferating crypt cells, submucosal organization, and muscle wall composure. Cell death was measured by a membrane-impermeable DNA binding indicator, ethidium homodimer, and less than 5% of cells were labeled in all regions of the villi and crypt epithelia at 24 h ex vivo. This tissue slice model demonstrated intact myenteric and submucosal neuronal plexuses and functional interstitial cells of Cajal to the extent that nonstimulated, segmental contractions occurred for up to 48 h ex vivo. To detect changes in physiological responses, slices were also assessed for segmental contractions in the presence and absence of antibiotic treatment, which resulted in slices with lesser or greater amounts of commensal bacteria, respectively. Segmental contractions were significantly greater in slices without antibiotics and increased native microbiota. This model renders mechanisms of neuroimmune-microbiome interactions in a complex gut environment available to direct observation and controlled perturbation. PMID:26680736

  11. The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing

    PubMed Central

    2009-01-01

    Background Recent studies have shown that the fecal microbiota is generally resilient to short-term antibiotic administration, but some bacterial taxa may remain depressed for several months. Limited information is available about the effect of antimicrobials on small intestinal microbiota, an important contributor to gastrointestinal health. The antibiotic tylosin is often successfully used for the treatment of chronic diarrhea in dogs, but its exact mode of action and its effect on the intestinal microbiota remain unknown. The aim of this study was to evaluate the effect of tylosin on canine jejunal microbiota. Tylosin was administered at 20 to 22 mg/kg q 24 hr for 14 days to five healthy dogs, each with a pre-existing jejunal fistula. Jejunal brush samples were collected through the fistula on days 0, 14, and 28 (14 days after withdrawal of tylosin). Bacterial diversity was characterized using massive parallel 16S rRNA gene pyrosequencing. Results Pyrosequencing revealed a previously unrecognized species richness in the canine small intestine. Ten bacterial phyla were identified. Microbial populations were phylogenetically more similar during tylosin treatment. However, a remarkable inter-individual response was observed for specific taxa. Fusobacteria, Bacteroidales, and Moraxella tended to decrease. The proportions of Enterococcus-like organisms, Pasteurella spp., and Dietzia spp. increased significantly during tylosin administration (p < 0.05). The proportion of Escherichia coli-like organisms increased by day 28 (p = 0.04). These changes were not accompanied by any obvious clinical effects. On day 28, the phylogenetic composition of the microbiota was similar to day 0 in only 2 of 5 dogs. Bacterial diversity resembled the pre-treatment state in 3 of 5 dogs. Several bacterial taxa such as Spirochaetes, Streptomycetaceae, and Prevotellaceae failed to recover at day 28 (p < 0.05). Several bacterial groups considered to be sensitive to tylosin increased in their

  12. Identification of the HeLa tumor-associated antigen, p75/150, as intestinal alkaline phosphatase and evidence for its transcriptional regulation.

    PubMed Central

    Latham, K M; Stanbridge, E J

    1990-01-01

    Prior studies identified a cell-surface antigen, p75/150, that exclusively associated with the tumorigenic phenotype of the HeLa parent and the tumorigenic phenotype of the HeLa parent and the tumorigenic segregants of suppressed, nontumorigenic HeLa x human fibroblast cell hybrids. Candidate p75/150 cDNA clones were isolated from a D98/AH.2 (HeLa) cDNA library using oligonucleotide probes derived from p75/150 partial peptide sequence data. A data base search revealed close similarity of p75/150 with intestinal alkaline phosphatase (IAP) [Berger, J., Garantini, E., Hua, J. C. & Udenfriend, S. (1987) Proc. Natl. Acad. Sci. USA 84, 695-698]. We demonstrate that p75/150 is identical to HeLa IAP by the following criteria: (i) 47/49 amino acid identity of p75 peptide sequence with IAP, (ii) restriction maps for the p75/150 candidate cDNA clone and IAP are identical, (iii) partial DNA sequence analysis of p75/150 candidate cDNA clones revealed complete nucleotide identity with IAP, except for a single nucleotide substitution in the 5' untranslated region, (iv) transfection of a p75/150 cDNA expression vector into the nontumorigenic hybrid, CGL1, yielded p75/150 antibody-positive transfectants that also expressed partially heat-resistant alkaline phosphatase activity. Northern blot analysis demonstrated that high levels of HeLa IAP mRNA were expressed in D98/AH.2 and the tumorigenic segregant CGL4; however, no mRNA was detected in CGL1. Nuclear run-on analyses indicate that HeLa IAP mRNA expression in the HeLa x fibroblast hybrids is regulated at the level of transcription initiation. Furthermore, evidence is discussed supporting the involvement of a chromosome 11 tumor suppressor locus in the regulation of HeLa IAP gene expression. Images PMID:2304898

  13. CD69 Is the Crucial Regulator of Intestinal Inflammation: A New Target Molecule for IBD Treatment?

    PubMed Central

    2015-01-01

    CD69 has been identified as an early activation marker of lymphocytes. However, recent work has indicated that CD69 plays an essential role for the regulation of inflammatory processes. Particularly, CD69 is highly expressed by lymphocytes at mucosal sites being constantly exposed to the intestinal microflora (one of the nature's most complex and most densely populated microbial habitats) and food antigens, while only a small number of circulating leukocytes express this molecule. In this review we will discuss the role of CD69 in mucosal tissue and consider CD69 as a potential target for the development of novel treatments of intestinal inflammation. PMID:25759842

  14. Effect of wild-type Shigella species and attenuated Shigella vaccine candidates on small intestinal barrier function, antigen trafficking, and cytokine release.

    PubMed

    Fiorentino, Maria; Levine, Myron M; Sztein, Marcelo B; Fasano, Alessio

    2014-01-01

    Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to

  15. Effect of Bacillus amyloliquefaciens-based Direct-fed Microbial on Performance, Nutrient Utilization, Intestinal Morphology and Cecal Microflora in Broiler Chickens

    PubMed Central

    Lei, Xinjian; Piao, Xiangshu; Ru, Yingjun; Zhang, Hongyu; Péron, Alexandre; Zhang, Huifang

    2015-01-01

    The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM) on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control), and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP), 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30) or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60). Experimental diets were fed in two phases: starter (d 1 to 21) and finisher (d 22 to 42). Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21) and finisher (d 42) phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01) compared with the control group. For the finisher phase and the overall experiment (d 1 to 42) broilers fed diets with the DFM had better body weight gain (BWG) and FCR than that of control (p<0.05). Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP), dry matter (DM) and gross energy during both starter and finisher phases (p<0.05) compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05). The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control group

  16. Interactions between the microbiota and the intestinal mucosa.

    PubMed

    Schiffrin, E J; Blum, S

    2002-08-01

    The intestinal microflora can be considered as a postnatally aquired organ composed of a large diversity of bacterial cells that can perform different functions for the host. This organ is highly exposed to environmental influences and thus modulated in its composition and functions by external factors, such as nutrition. Specific components of the intestinal microflora, including lactobacilli and bifidobacteria, have been associated with beneficial effects on the host, such as promotion of gut maturation and integrity, antagonisms against pathogens and immune modulation. In addition, the microflora seem to play a significant role in the maintenance of intestinal immune homeostasis and prevention of inflammation. At the present time, the contribution of intestinal epithlial cell in the first line of defence against pathogenic bacteria and microbial antigens has been recognized, in contrast, the interactions of intestinal epithelial cells with commensal bacteria are less understood. The present work summarizes the increasing scientific attention for mechanisms of the innate immune response of the host to different components of the autochthonous microflora and suggests a potential role for selected probiotic bacteria in the regulation of intestinal inflammation. PMID:12142966

  17. Relative ileal amino acid flows and microbial counts in intestinal effluents of Goettingen Minipigs and Saddleback pigs are not different.

    PubMed

    Hennig, U; Metges, C C; Berk, A; Tuchscherer, A; Kwella, M

    2004-07-01

    We explored the suitability of Goettingen Minipigs as models to measure ileal AA digestibility and evaluate dietary proteins for conventional pigs. Further, a potential for secondary ileal microbial colonization 5 mo after establishing end-to-end ileorectal anastomosis was investigated. Goettingen Minipigs (BW 18 kg) and Saddleback pigs (BW 27 kg) fitted with end-to-end ileorectal anastomosis were fed six diets based on barley and oilseed meals and three diets based on wheat and milk powder differing in total and ileal digestible lysine. Apparent ileal digestibilities of CP (N x 6.25) and of 20 AA were determined. No differences (P = 0.062 to 0.982) were found in AA apparent ileal digestibilities between breeds. Therefore, Minipigs are a reasonable model to estimate apparent ileal digestibility of AA for evaluation of dietary proteins. However, the apparent ileal digestibility of CP (P = 0.048) was higher in Minipigs than in Saddleback pigs (barley and oilseed meals-based diets 70% vs. 66%; wheat and milk powder-based diets 80% vs. 77%), which is probably due to a smaller contribution of non-AA-nitrogen in the ileal effluent of Goettingen Minipigs. For lysine, the apparent ileal digestibilities (means of both breeds) ranged from 78 to 85% in wheat and milk powder-based, and 70 to 78% in barley and oilseed-based diets. Experimentally derived concentrations of ileally digestible lysine confirmed the values predicted from a published table. Microbial counts were not affected by breed as shown for lactobacilli, with 9.1+/-0.2 and 9.1+/-0.2 (P = 0.977), enterococci with 4.8+/-0.3 and 5.6+/-0.4 (P = 0.162), and yeasts with 4.6+/-0.3 and 4.6+/-0.4 (P = 0.906) log cfu/g effluent for Goettingen Minipigs and Saddleback pigs, respectively. The counts did not change over 5 mo, suggesting that no secondary microbial colonization occurred in pigs with end-to-end ileorectal anastomosis. PMID:15309944

  18. Adding mucins to an in vitro batch fermentation model of the large intestine induces changes in microbial population isolated from porcine feces depending on the substrate.

    PubMed

    Tran, T H T; Boudry, C; Everaert, N; Théwis, A; Portetelle, D; Daube, G; Nezer, C; Taminiau, B; Bindelle, J

    2016-02-01

    Adding mucus to in vitro fermentation models of the large intestine shows that some genera, namely lactobacilli, are dependent on host-microbiota interactions and that they rely on mucosal layers to increase their activity. This study investigated whether this dependence on mucus is substrate dependent and to what extent other genera are impacted by the presence of mucus. Inulin and cellulose were fermented in vitro by a fecal inoculum from pig in the presence or not of mucin beads in order to compare fermentation patterns and bacterial communities. Mucins increased final gas production with inulin and shifted short-chain fatty acid molar ratios (P < 0.001). Quantitative real-time PCR analyses revealed that Lactobacillus spp. and Bifidobacterium spp. decreased with mucins, but Bacteroides spp. increased when inulin was fermented. A more in-depth community analysis indicated that the mucins increased Proteobacteria (0.55 vs 0.25%, P = 0.013), Verrucomicrobia (5.25 vs 0.03%, P = 0.032), Ruminococcaceae, Bacteroidaceae and Akkermansia spp. Proteobacteria (5.67 vs 0.55%, P < 0.001) and Lachnospiraceae (33 vs 10.4%) were promoted in the mucus compared with the broth, while Ruminococcaceae decreased. The introduction of mucins affected many microbial genera and fermentation patterns, but from PCA results, the impact of mucus was independent of the fermentation substrate. PMID:26691596

  19. Microbial Induction of Inflammatory Bowel Disease Associated Gene TL1A (TNFSF15) in Antigen Presenting Cells

    PubMed Central

    Shih, David Q.; Kwan, Lola Y.; Chavez, Valerie; Cohavy, Offer; Gonsky, Rivkah; Chang, Elmer Y.; Chang, Christopher; Elson, Charles O.; Targan, Stephan R.

    2010-01-01

    Summary TL1A is a member of the TNF superfamily and its expression is increased in the mucosa of inflammatory bowel disease (IBD) patients. Neutralizing anti-mouse TL1A Ab attenuates chronic colitis in two T cell driven murine models, suggesting that TL1A is a central modulator of gut mucosal inflammation in IBD. We showed previously that TL1A is induced by immune complexes (IC) via the FcγR signaling pathway. In this study, we report that multiple bacteria, including gram negative organisms (E. coli, E. coli Nissle 1917, S. typhimurium), gram positive organisms (L. monocytogenes, S. epidermidis), partial anaerobes (C. jejuni), and obligate anaerobes (B. thetaiotaomicron, B. breve, Clostridium A4) activate TL1A expression in human APC, including monocytes and monocyte-derived DC. Bacterially induced TL1A mRNA expression correlates with the detection of TL1A protein levels. TL1A induced by bacteria is mediated in part by the TLR signaling pathway and inhibited by downstream blockade of p38 MAPK and NF-κB activation. Microbial induction of TL1A production by human APC potentiated CD4+ T cell effector function by augmenting IFN-γ production. Our findings suggest a role for TL1A in pro-inflammatory APC-T cell interactions and implicate TL1A in host responses to enteric microorganisms. PMID:19839006

  20. Perturbations of mucosal homeostasis through interactions of intestinal microbes with myeloid cells.

    PubMed

    Schey, Regina; Danzer, Claudia; Mattner, Jochen

    2015-02-01

    Mucosal surfaces represent the largest areas of interactions of the host with its environment. Subsequently, the mucosal immune system has evolved complex strategies to maintain the integrity of the host by inducing protective immune responses against pathogenic and tolerance against dietary and commensal microbial antigens within the broad range of molecules the intestinal epithelium is exposed to. Among many other specialized cell subsets, myeloid cell populations - due to their strategic location in the subepithelial lamina propria - are the first ones to scavenge and process these intestinal antigens and to send consecutive signals to other immune and non-immune cell subsets. Thus, myeloid cell populations represent attractive targets for clinical intervention in chronic inflammatory bowel diseases (IBDs) such as ulcerative colitis (UC) and Crohn's disease (CD) as they initiate and modulate inflammatory or regulatory immune response and shape the intestinal T cell pool. Here, we discuss the interactions of the intestinal microbiota with dendritic cell and macrophage populations and review in this context the literature on four promising candidate molecules that are critical for the induction and maintenance of intestinal homeostasis on the one hand, but also for the initiation and propagation of chronic intestinal inflammation on the other. PMID:25466587

  1. Perturbations of mucosal homeostasis through interactions of intestinal microbes with myeloid cells

    PubMed Central

    Schey, Regina; Danzer, Claudia; Mattner, Jochen

    2014-01-01

    Mucosal surfaces represent the largest areas of interactions of the host with its environment. Subsequently, the mucosal immune system has evolved complex strategies to maintain the integrity of the host by inducing protective immune responses against pathogenic and tolerance against dietary and commensal microbial antigens within the broad range of molecules the intestinal epithelium is exposed to. Among many other specialized cell subsets, myeloid cell populations - due to their strategic location in the subepithelial lamina propria - are the first ones to scavenge and process these intestinal antigens and to send consecutive signals to other immune and non-immune cell subsets. Thus, myeloid cell populations represent attractive targets for clinical intervention in chronic inflammatory bowel diseases (IBDs) such as ulcerative colitis (UC) and Crohn's disease (CD) as they initiate and modulate inflammatory or regulatory immune response and shape the intestinal T cell pool. Here, we discuss the interactions of the intestinal microbiota with dendritic cell and macrophage populations and review in this context the literature on four promising candidate molecules that are critical for the induction and maintenance of intestinal homeostasis on the one hand, but also for the initiation and propagation of chronic intestinal inflammation on the other. PMID:25466587

  2. Intestinal Microbial Dysbiosis and Colonic Epithelial Cell Hyperproliferation by Dietary α-Mangostin is Independent of Mouse Strain

    PubMed Central

    Gutierrez-Orozco, Fabiola; Thomas-Ahner, Jennifer M.; Galley, Jeffrey D.; Bailey, Michael T.; Clinton, Steven K.; Lesinski, Gregory B.; Failla, Mark L.

    2015-01-01

    Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that α-mangostin (α-MG), the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary α-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% α-MG for four weeks. Dietary α-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of α-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in α-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary α-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution. PMID:25621505

  3. Intestinal microbial dysbiosis and colonic epithelial cell hyperproliferation by dietary α-mangostin is independent of mouse strain.

    PubMed

    Gutierrez-Orozco, Fabiola; Thomas-Ahner, Jennifer M; Galley, Jeffrey D; Bailey, Michael T; Clinton, Steven K; Lesinski, Gregory B; Failla, Mark L

    2015-01-01

    Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that α-mangostin (α-MG), the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary α-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% α-MG for four weeks. Dietary α-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of α-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in α-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary α-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution. PMID:25621505

  4. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells.

    PubMed

    Iraporda, Carolina; Errea, Agustina; Romanin, David E; Cayet, Delphine; Pereyra, Elba; Pignataro, Omar; Sirard, Jean Claude; Garrote, Graciela L; Abraham, Analía G; Rumbo, Martín

    2015-10-01

    The use of short chain fatty acids to modulate gastrointestinal inflammatory conditions such as ulcerative colitis has produced encouraging results either in animal models or also in clinical trials. Identifying the key cellular and molecular targets of this activity will contribute to establish the appropriate combinations/targeting strategies to maximize the efficacy of anti-inflammatory interventions. In the present work, we evaluated in vitro the interaction of lactate, acetate, propionate and butyrate on cells relevant for innate immune response of the gastrointestinal tract. All molecules tested regulate the production of proinflammatory cytokines by TLR-4 and TLR-5 activated intestinal epithelial cells in a dose response manner. Furthermore SCFAs and lactate modulate cytokine secretion of TLR-activated bone marrow derived macrophages and also TLR-dependent CD40 upregulation in bone marrow derived dendritic in a dose-dependent manner. Butyrate and propionate have been effective at concentrations of 1 to 5mM whereas acetate and lactate produced modulatory effects at concentrations higher than 20-50mM in different assays. Our results indicate that in concentrations similar to found in large bowel lumen, all SCFAs tested and lactate can modulate activity of relevant sentinel cell types activated by TLR signals. Modulatory activity was not inhibited by pertussis toxin treatment indicating that the effects are not related to Gi signaling. The use of these molecules in combined or separately as intervention strategy in conditions where epithelial or myeloid cells are main triggers of the inflammatory situation seems appropriate. PMID:26101138

  5. Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet.

    PubMed

    Heinritz, Sonja N; Weiss, Eva; Eklund, Meike; Aumiller, Tobias; Louis, Sandrine; Rings, Andreas; Messner, Sabine; Camarinha-Silva, Amélia; Seifert, Jana; Bischoff, Stephan C; Mosenthin, Rainer

    2016-01-01

    The intestinal microbiota and its metabolites appear to be an important factor for gastrointestinal function and health. However, research is still needed to further elaborate potential relationships between nutrition, gut microbiota and host's health by means of a suitable animal model. The present study examined the effect of two different diets on microbial composition and activity by using the pig as a model for humans. Eight pigs were equally allotted to two treatments, either fed a low-fat/high-fiber (LF), or a high-fat/low-fiber (HF) diet for 7 weeks. Feces were sampled at day 7 of every experimental week. Diet effects on fecal microbiota were assessed using quantitative real-time PCR, DNA fingerprinting and metaproteomics. Furthermore, fecal short-chain fatty acid (SCFA) profiles and ammonia concentrations were determined. Gene copy numbers of lactobacilli, bifidobacteria (P<0.001) and Faecalibacterium prausnitzii (P<0.05) were higher in the LF pigs, while Enterobacteriaceae were more abundant in the HF pigs (P<0.001). Higher numbers of proteins affiliated to Enterobacteriaceae were also present in the HF samples. Proteins for polysaccharide breakdown did almost exclusively originate from Prevotellaceae. Total and individual fecal SCFA concentrations were higher for pigs of the LF treatment (P<0.05), whereas fecal ammonia concentrations did not differ between treatments (P>0.05). Results provide evidence that beginning from the start of the experiment, the LF diet stimulated beneficial bacteria and SCFA production, especially butyrate (P<0.05), while the HF diet fostered those bacterial groups which have been associated with a negative impact on health conditions. These findings correspond to results in humans and might strengthen the hypothesis that the response of the porcine gut microbiota to a specific dietary modulation is in support of using the pig as suitable animal model for humans to assess diet-gut-microbiota interactions. Data are available via

  6. Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet

    PubMed Central

    Heinritz, Sonja N.; Weiss, Eva; Eklund, Meike; Aumiller, Tobias; Louis, Sandrine; Rings, Andreas; Messner, Sabine; Camarinha-Silva, Amélia; Seifert, Jana; Bischoff, Stephan C.; Mosenthin, Rainer

    2016-01-01

    The intestinal microbiota and its metabolites appear to be an important factor for gastrointestinal function and health. However, research is still needed to further elaborate potential relationships between nutrition, gut microbiota and host’s health by means of a suitable animal model. The present study examined the effect of two different diets on microbial composition and activity by using the pig as a model for humans. Eight pigs were equally allotted to two treatments, either fed a low-fat/high-fiber (LF), or a high-fat/low-fiber (HF) diet for 7 weeks. Feces were sampled at day 7 of every experimental week. Diet effects on fecal microbiota were assessed using quantitative real-time PCR, DNA fingerprinting and metaproteomics. Furthermore, fecal short-chain fatty acid (SCFA) profiles and ammonia concentrations were determined. Gene copy numbers of lactobacilli, bifidobacteria (P<0.001) and Faecalibacterium prausnitzii (P<0.05) were higher in the LF pigs, while Enterobacteriaceae were more abundant in the HF pigs (P<0.001). Higher numbers of proteins affiliated to Enterobacteriaceae were also present in the HF samples. Proteins for polysaccharide breakdown did almost exclusively originate from Prevotellaceae. Total and individual fecal SCFA concentrations were higher for pigs of the LF treatment (P<0.05), whereas fecal ammonia concentrations did not differ between treatments (P>0.05). Results provide evidence that beginning from the start of the experiment, the LF diet stimulated beneficial bacteria and SCFA production, especially butyrate (P<0.05), while the HF diet fostered those bacterial groups which have been associated with a negative impact on health conditions. These findings correspond to results in humans and might strengthen the hypothesis that the response of the porcine gut microbiota to a specific dietary modulation is in support of using the pig as suitable animal model for humans to assess diet-gut-microbiota interactions. Data are available

  7. Intestinal colonization resistance

    PubMed Central

    Lawley, Trevor D; Walker, Alan W

    2013-01-01

    Dense, complex microbial communities, collectively termed the microbiota, occupy a diverse array of niches along the length of the mammalian intestinal tract. During health and in the absence of antibiotic exposure the microbiota can effectively inhibit colonization and overgrowth by invading microbes such as pathogens. This phenomenon is called ‘colonization resistance’ and is associated with a stable and diverse microbiota in tandem with a controlled lack of inflammation, and involves specific interactions between the mucosal immune system and the microbiota. Here we overview the microbial ecology of the healthy mammalian intestinal tract and highlight the microbe–microbe and microbe–host interactions that promote colonization resistance. Emerging themes highlight immunological (T helper type 17/regulatory T-cell balance), microbiota (diverse and abundant) and metabolic (short-chain fatty acid) signatures of intestinal health and colonization resistance. Intestinal pathogens use specific virulence factors or exploit antibiotic use to subvert colonization resistance for their own benefit by triggering inflammation to disrupt the harmony of the intestinal ecosystem. A holistic view that incorporates immunological and microbiological facets of the intestinal ecosystem should facilitate the development of immunomodulatory and microbe-modulatory therapies that promote intestinal homeostasis and colonization resistance. PMID:23240815

  8. The Intestinal Microbiota in Inflammatory Bowel Disease.

    PubMed

    Becker, Christoph; Neurath, Markus F; Wirtz, Stefan

    2015-01-01

    The intestinal microbiota has important metabolic and host-protective functions. Conversely to these beneficial functions, the intestinal microbiota is thought to play a central role in the etiopathogenesis of inflammatory bowel disease (IBD; Crohn's disease and ulcerative colitis), a chronic inflammation of the gut mucosa. Genetic screens and studies in experimental mouse models have clearly demonstrated that IBD can develop due to excessive translocation of bacteria into the bowel wall or dysregulated handling of bacteria in genetically susceptible hosts. In healthy individuals, the microbiota is efficiently separated from the mucosal immune system of the gut by the gut barrier, a single layer of highly specialized epithelial cells, some of which are equipped with innate immune functions to prevent or control access of bacterial antigens to the mucosal immune cells. It is currently unclear whether the composition of the microbial flora or individual bacterial strains or pathogens induces or supports the pathogenesis of IBD. Further research will be necessary to carefully dissect the contribution of individual bacterial species to this disease and to ascertain whether specific modulation of the intestinal microbiome may represent a valuable further option for future therapeutic strategies. PMID:26323629

  9. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation.

    PubMed

    Byrd, Wyatt; Boedeker, Edgar C

    2013-03-15

    Although enterotoxigenic Escherichia coli (ETEC) infections are important causes of infantile and traveler's diarrhea there is no licensed vaccine available for those at-risk. Our goal is to develop a safe, live attenuated ETEC vaccine. We used an attenuated E. coli strain (O157:H7, Δ-intimin, Stx1-neg, Stx2-neg) as a vector (ZCR533) to prepare two vaccine strains, one strain expressing colonization factor antigen I (ZCR533-CFA/I) and one strain expressing CFA/I and a detoxified heat-labile enterotoxin (ZCR533-CFA/I+LThK63) to deliver ETEC antigens to mucosal sites in BALB/c mice. Following intranasal and intragastric immunization with the vaccine strains, serum IgG and IgA antibodies were measured to the CFA/I antigen, however, only serum IgG antibodies were detected to the heat-labile enterotoxin. Intranasal administration of the vaccine strains induced respiratory and intestinal antibody responses to the CFA/I and LT antigens, while intragastric administration induced only intestinal antibody responses with no respiratory antibodies detected to the CFA/I and LT antigens. Mice immunized intranasally with the vaccine strains showed enhanced clearance of wild-type (wt) ETEC bacteria from the lungs. Mice immunized intranasally and intragastrically with the vaccine strains were protected from intestinal colonization following oral challenge with ETEC wt bacteria. Mice immunized intragastrically with the ZCR533-CFA/I+LThK63 vaccine strain had less fluid accumulate in their intestine following challenge with ETEC wt bacteria or with purified LT as compared to the sham mice indicating that the immunized mice were protected from LT-induced intestinal fluid accumulation. Thus, mice intragastrically immunized with the ZCR533-CFA/I+LThK63 vaccine strain were able to effectively neutralize the activity of the LT enterotoxin. However, no difference in intestinal fluid accumulation was detected in the mice immunized intranasally with the vaccine strain as compared to the sham

  10. Intestinal leiomyoma

    MedlinePlus

    Leiomyoma - intestine ... McLaughlin P, Maher MM. The duodenum and small intestine. In: Adam A, Dixon AK, Gillard JH, Schaefer- ... Roline CE, Reardon RF. Disorders of the small intestine. In: Marx JA, Hockberger RS, Walls RM, et ...

  11. Intestinal Cancer

    MedlinePlus

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  12. TREATMENT OF LONG-EVANS RATS WITH A DEFINED MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS IMPACTS INTESTINAL MICROBIAL METABOLISM.

    EPA Science Inventory

    Water treatment results in the production of numerous halogenated disinfection by-products (DBPs), and has been associated with human colorectal cancer. Because the intestinal microbiota can bioactivate promutagens and procarcinogens, several studies have been done to examine the...

  13. Intestinal microflora and homeostasis of the mucosal immune response: implications for probiotic bacteria?

    PubMed

    Blum, Stephanie; Schiffrin, Eduardo J

    2003-09-01

    The intestinal microflora can be considered a postnatally acquired organ that is composed of a large diversity of bacteria that perform important functions for the host and can be modulated by environmental factors, such as nutrition. Specific components of the intestinal microflora, including lactobacilli and bifidobacteria, have been associated with beneficial effects on the host, such as promotion of gut maturation and integrity, antagonisms against pathogens and immune modulation. Beyond this, the microflora seems to play a significant role in the maintenance of intestinal immune homeostasis and prevention of inflammation. The contribution of the intestinal epithelial cell in the first line of defense against pathogenic bacteria and microbial antigens has been recognized. However, the interactions of intestinal epithelial cells with indigenous bacteria are less well understood. This review will summarize the increasing scientific attention to mechanisms of the innate immune response of the host towards different components of the microflora, and suggest a potential role for selected probiotic bacteria in the regulation of intestinal inflammation. PMID:14503689

  14. Two Japanese cases of dermatitis herpetiformis associated each with lung cancer and autoimmune pancreatitis but showing no intestinal symptom or circulating immunoglobulin A antibodies to any known antigens.

    PubMed

    Shigeta, Mika; Saiki, Minoru; Tsuruta, Daisuke; Ohata, Chika; Ishii, Norito; Ono, Fumitake; Hamada, Takahiro; Dainichi, Teruki; Furumura, Minao; Zone, John J; Karpati, Sarolta; Sitaru, Cassian; Hashimoto, Takashi

    2012-12-01

    Dermatitis herpetiformis (DH) is common in some Caucasian populations but extremely rare in Japanese, probably because of different immunogenetic backgrounds. We report two Japanese DH cases with typical clinical, histological and direct immunofluorescence features. However, no symptom of gluten-sensitive enteropathy was shown. The diagnosis was confirmed by eliminating other autoimmune blistering diseases by indirect immunofluorescence, enzyme-linked immunosorbent assays and immunoblotting. However, circulating immunoglobulin (Ig)A anti-endomysium, reticulin and gliadin antibodies were not detected. IgA antibodies to tissue and epidermal transglutaminases were also negative. One case was associated with lung cancer and the other one with autoimmune pancreatitis. On review of 17 cases of DH reported in Japan over the previous 10 years, including our cases, one case was associated with gluten-sensitive enteropathy, four with malignant neoplasms, two with autoimmune systemic disorders and one with psoriasis. Although our cases were typical of DH in clinical, histopathological and IgA deposit features, they showed different human leukocyte antigen haplotypes, no gluten-sensitive enteropathy and no DH-specific IgA antibodies, including those to epidermal and tissue transglutaminases. These results suggest that studies of unique characteristics in Japanese DH patients should facilitate further understanding of pathogenesis in DH. PMID:22963165

  15. Orally-Induced Intestinal CD4+ CD25+ FoxP3+ Treg Controlled Undesired Responses towards Oral Antigens and Effectively Dampened Food Allergic Reactions

    PubMed Central

    Smaldini, Paola Lorena; Orsini Delgado, María Lucía; Fossati, Carlos Alberto; Docena, Guillermo Horacio

    2015-01-01

    The induction of peripheral tolerance may constitute a disease-modifying treatment for allergic patients. We studied how oral immunotherapy (OIT) with milk proteins controlled allergy in sensitized mice (cholera toxin plus milk proteins) upon exposure to the allergen. Symptoms were alleviated, skin test was negativized, serum specific IgE and IgG1 were abrogated, a substantial reduction in the secretion of IL-5 and IL-13 by antigen-stimulated spleen cells was observed, while IL-13 gene expression in jejunum was down-regulated, and IL-10 and TGF-β were increased. In addition, we observed an induction of CD4+CD25+FoxP3+ cells and IL-10- and TGF-β-producing regulatory T cells in the lamina propria. Finally, transfer experiments confirmed the central role of these cells in tolerance induction. We demonstrated that the oral administration of milk proteins pre- or post-sensitization controlled the Th2-immune response through the elicitation of mucosal IL-10- and TGF-β-producing Tregs that inhibited hypersensitivity symptoms and the allergic response. PMID:26517875

  16. Hydrolysis of phytic acid by intrinsic plant and supplemented microbial phytase (Aspergillus niger) in the stomach and small intestine of minipigs fitted with re-entrant cannulas. 2. Phytase activity.

    PubMed

    Rapp, C; Lantzsch, H J; Drochner, W

    2001-12-01

    Hydrolysis of phytate in the stomach and the small intestine as influenced by intrinsic plant (wheat) and supplemented microbial phytase (A. niger) were investigated with six minipigs (40-50 kg initial BW) fitted with re-entrant cannulas in the duodenum, 30 cm posterior to the pylorus (animals 1, 4, 5, and 6) and ileocecal re-entrant cannulas, 5 cm prior the ileocecal junction (animals 1, 2, and 3), respectively. Dietary treatments were as follows: (1) diet 1, a corn-based diet (43 U phytase/kg DM); (2) diet 2, diet 1 supplemented with microbial phytase (818 U/kg DM) and (3) diet 3, a wheat-based diet (1192 U/kg DM). At 0730 and 1930 per animal 350 g diet mixed with 1050 ml de-ionized water were fed. Digesta were collected continuously and completely during 12 h after feeding. In the duodenal digesta, 70% of the microbial phytase (diet 2) and 45% of the wheat phytase (diet 3) were recovered within 12 h after ingestion of the phytases, whereas only negligible amounts were detected in the digesta of pigs fed the phytase-poor corn-based diet 1. Most phytase activity passed through the stomach within the first hour after feeding. Microbial phytase activity at pH 2.8 was less sensitive to acidic pHs, such as those found in the stomach, than phytase activity at pH 5.3. Phytase activities in the digesta of the distal ileum did not depend either on source or amount of dietary phytase activity. PMID:11906565

  17. Kinetics of Saccharomyces cerevisiae elimination from the intestines of human volunteers and effect of this yeast on resistance to microbial colonization in gnotobiotic mice.

    PubMed Central

    Pecquet, S; Guillaumin, D; Tancrede, C; Andremont, A

    1991-01-01

    When healthy volunteers were given a daily dose of 3 x 10(8) life-dehydrated Saccharomyces cerevisiae cells for 5 days, the volunteers excreted 10(5) living yeast cells per g of feces at first, but the yeast cells disappeared within 5 days of the end of treatment. In gnotobiotic mice, S. cerevisiae administered alone colonized the intestinal tract but did not interfere with previous or subsequent colonization by a variety of potentially enteropathogenic microorganisms. When these microorganisms were present, the intestinal counts of S. cerevisiae were greatly reduced. PMID:1746964

  18. Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model.

    PubMed

    Ribière, Céline; Peyret, Pierre; Parisot, Nicolas; Darcha, Claude; Déchelotte, Pierre J; Barnich, Nicolas; Peyretaillade, Eric; Boucher, Delphine

    2016-01-01

    Gut microbiota dysbiosis are associated with a wide range of human diseases, including inflammatory bowel diseases. The physiopathology of these diseases has multifactorial aetiology in which environmental factors, particularly pollution could play a crucial role. Among the different pollutants listed, Polycyclic Aromatic Hydrocarbons (PAHs) are subject to increased monitoring due to their wide distribution and high toxicity on Humans. Here, we used 16S rRNA gene sequencing to investigate the impact of benzo[a]pyrene (BaP, most toxic PAH) oral exposure on the faecal and intestinal mucosa-associated bacteria in C57BL/6 mice. Intestinal inflammation was also evaluated by histological observations. BaP oral exposure significantly altered the composition and the abundance of the gut microbiota and led to moderate inflammation in ileal and colonic mucosa. More severe lesions were observed in ileal segment. Shifts in gut microbiota associated with moderate inflammatory signs in intestinal mucosa would suggest the establishment of a pro-inflammatory intestinal environment following BaP oral exposure. Therefore, under conditions of genetic susceptibility and in association with other environmental factors, exposure to this pollutant could trigger and/or accelerate the development of inflammatory pathologies. PMID:27503127

  19. Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model

    PubMed Central

    Ribière, Céline; Peyret, Pierre; Parisot, Nicolas; Darcha, Claude; Déchelotte, Pierre J.; Barnich, Nicolas; Peyretaillade, Eric; Boucher, Delphine

    2016-01-01

    Gut microbiota dysbiosis are associated with a wide range of human diseases, including inflammatory bowel diseases. The physiopathology of these diseases has multifactorial aetiology in which environmental factors, particularly pollution could play a crucial role. Among the different pollutants listed, Polycyclic Aromatic Hydrocarbons (PAHs) are subject to increased monitoring due to their wide distribution and high toxicity on Humans. Here, we used 16S rRNA gene sequencing to investigate the impact of benzo[a]pyrene (BaP, most toxic PAH) oral exposure on the faecal and intestinal mucosa-associated bacteria in C57BL/6 mice. Intestinal inflammation was also evaluated by histological observations. BaP oral exposure significantly altered the composition and the abundance of the gut microbiota and led to moderate inflammation in ileal and colonic mucosa. More severe lesions were observed in ileal segment. Shifts in gut microbiota associated with moderate inflammatory signs in intestinal mucosa would suggest the establishment of a pro-inflammatory intestinal environment following BaP oral exposure. Therefore, under conditions of genetic susceptibility and in association with other environmental factors, exposure to this pollutant could trigger and/or accelerate the development of inflammatory pathologies. PMID:27503127

  20. Microbial-induced meprin β cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus

    PubMed Central

    Schütte, André; Ermund, Anna; Becker-Pauly, Christoph; Johansson, Malin E. V.; Rodriguez-Pineiro, Ana M.; Bäckhed, Fredrik; Müller, Stefan; Lottaz, Daniel; Bond, Judith S.; Hansson, Gunnar C.

    2014-01-01

    The mucus that covers and protects the epithelium of the intestine is built around its major structural component, the gel-forming MUC2 mucin. The gel-forming mucins have traditionally been assumed to be secreted as nonattached. The colon has a two-layered mucus system where the inner mucus is attached to the epithelium, whereas the small intestine normally has a nonattached mucus. However, the mucus of the small intestine of meprin β-deficient mice was now found to be attached. Meprin β is an endogenous zinc-dependent metalloprotease now shown to cleave the N-terminal region of the MUC2 mucin at two specific sites. When recombinant meprin β was added to the attached mucus of meprin β-deficient mice, the mucus was detached from the epithelium. Similar to meprin β-deficient mice, germ-free mice have attached mucus as they did not shed the membrane-anchored meprin β into the luminal mucus. The ileal mucus of cystic fibrosis (CF) mice with a nonfunctional cystic fibrosis transmembrane conductance regulator (CFTR) channel was recently shown to be attached to the epithelium. Addition of recombinant meprin β to CF mucus did not release the mucus, but further addition of bicarbonate rendered the CF mucus normal, suggesting that MUC2 unfolding exposed the meprin β cleavage sites. Mucus is thus secreted attached to the goblet cells and requires an enzyme, meprin β in the small intestine, to be detached and released into the intestinal lumen. This process regulates mucus properties, can be triggered by bacterial contact, and is nonfunctional in CF due to poor mucin unfolding. PMID:25114233

  1. Intestinal Malrotation

    MedlinePlus

    ... the intestines don't position themselves normally during fetal development and aren't attached inside properly as a result. The exact reason this occurs is unknown. When a fetus develops in the womb, the intestines start out ...

  2. Intestinal obstruction

    MedlinePlus

    ... of the major causes of intestinal obstruction in infants and children. Causes of paralytic ileus may include: Bacteria or viruses that cause intestinal infections ( gastroenteritis ) Chemical, electrolyte, or mineral imbalances (such as decreased ...

  3. Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets

    PubMed Central

    Chowdhury, Shankar R; King, Dale E; Willing, Benjamin P; Band, Mark R; Beever, Jonathan E; Lane, Adrienne B; Loor, Juan J; Marini, Juan C; Rund, Laurie A; Schook, Lawrence B; Van Kessel, Andrew G; Gaskins, H Rex

    2007-01-01

    Background To gain insight into host-microbe interactions in a piglet model, a functional genomics approach was used to address the working hypothesis that transcriptionally regulated genes associated with promoting epithelial barrier function are activated as a defensive response to the intestinal microbiota. Cesarean-derived germfree (GF) newborn piglets were colonized with adult swine feces, and villus and crypt epithelial cell transcriptomes from colonized and GF neonatal piglets were compared using laser-capture microdissection and high-density porcine oligonucleotide microarray technology. Results Consistent with our hypothesis, resident microbiota induced the expression of genes contributing to intestinal epithelial cell turnover, mucus biosynthesis, and priming of the immune system. Furthermore, differential expression of genes associated with antigen presentation (pan SLA class I, B2M, TAP1 and TAPBP) demonstrated that microbiota induced immune responses using a distinct regulatory mechanism common for these genes. Specifically, gene network analysis revealed that microbial colonization activated both type I (IFNAR) and type II (IFNGR) interferon receptor mediated signaling cascades leading to enhanced expression of signal transducer and activator of transcription 1 (STAT1), STAT2 and IFN regulatory factor 7 (IRF7) transcription factors and the induction of IFN-inducible genes as a reflection of intestinal epithelial inflammation. In addition, activated RNA expression of NF-kappa-B inhibitor alpha (NFκBIA; a.k.a I-kappa-B-alpha, IKBα) and toll interacting protein (TOLLIP), both inhibitors of inflammation, along with downregulated expression of the immunoregulatory transcription factor GATA binding protein-1 (GATA1) is consistent with the maintenance of intestinal homeostasis. Conclusion This study supports the concept that the intestinal epithelium has evolved to maintain a physiological state of inflammation with respect to continuous microbial exposure

  4. Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel.

    PubMed

    Miner-Williams, Warren M; Moughan, Paul J

    2016-06-01

    The intestinal epithelium of adult humans acts as a differentially permeable barrier that separates the potentially harmful contents of the lumen from the underlying tissues. Any dysfunction of this boundary layer that disturbs the homeostatic equilibrium between the internal and external environments may initiate and sustain a biochemical cascade that results in inflammation of the intestine. Key to such dysfunction are genetic, microbial and other environmental factors that, singularly or in combination, result in chronic inflammation that is symptomatic of inflammatory bowel disease (IBD). The aim of the present review is to assess the scientific evidence to support the hypothesis that defective transepithelial transport mechanisms and the heightened absorption of intact antigenic proinflammatory oligopeptides are important contributing factors in the pathogenesis of IBD. PMID:27087106

  5. Intestine Transplant

    MedlinePlus

    ... intestine segment, most intestine transplants involve a whole organ from a deceased donor. In addition, most intestine transplants are performed in ... blood before surgery. I am looking for ... allocation About UNOS Being a living donor Calculator - CPRA Calculator - KDPI Calculator - LAS Calculator - MELD ...

  6. Dedicated immunosensing of the mouse intestinal epithelium facilitated by a pair of genetically coupled lectin-like receptors.

    PubMed

    Leibelt, S; Friede, M E; Rohe, C; Gütle, D; Rutkowski, E; Weigert, A; Kveberg, L; Vaage, J T; Hornef, M W; Steinle, A

    2015-03-01

    The integrity of the intestinal epithelium is constantly surveyed by a peculiar subset of innate-like T lymphocytes embedded in the epithelial cell layer, hence called intestinal intraepithelial lymphocytes (IELs). IELs are thought to act as "first-line" sentinels sensing the state of adjacent epithelial cells via both T-cell receptors and auxiliary receptors. Auxiliary receptors modulating IEL activity include C-type lectin-like receptors encoded in the natural killer gene complex such as NKG2D. Here, we report that the CTLR Nkrp1g is expressed by a subpopulation of mouse CD103(+) IELs allowing immunosensing of the intestinal epithelium through ligation of the genetically coupled CTLR Clr-f that is almost exclusively expressed on differentiated intestinal epithelial cells (IECs). Most of these Nkrp1g-expressing IELs exhibit a γδTCR(bright)Nkg2a(-) phenotype and are intimately associated with the intestinal epithelium. As Clr-f expression strongly inhibits effector functions of Nkrp1g-expressing cells and is upregulated upon poly(I:C) challenge, Clr-f molecules may quench reactivity of these IELs towards the epithelial barrier that is constantly provoked by microbial and antigenic stimuli. Altogether, we here newly characterize a genetically linked C-type lectin-like receptor/ligand pair with a highly restricted tissue expression that apparently evolved to allow for a dedicated immunosurveillance of the mouse intestinal epithelium. PMID:24985083

  7. Immunity to intestinal pathogens: lessons learned from Salmonella

    PubMed Central

    McSorley, Stephen J.

    2014-01-01

    Summary Salmonella are a common source of food or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens. PMID:24942689

  8. Effect of lactulose supplementation on growth performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens.

    PubMed

    Calik, Ali; Ergün, Ahmet

    2015-09-01

    This study investigated the effects of dietary lactulose supplementation on broiler growth performance, intestinal histomorphology, cecal microflora, and cecal short-chain fatty acid (SCFA) concentrations. A total of 245 one-day-old male broiler chickens were randomly assigned to 5 different treatments, with 7 replicates including 7 birds each. The birds received the same basal diet based on corn--soybean meal, and lactulose was included in the diet at 0, 0.2, 0.4, 0.6, or 0.8% at the expense of corn and/or soybean meal. The body weight gain (linear, P=0.027) and feed conversion (linear, P=0.003) from 0 to 21 d showed significant improvement as dietary lactulose was increased from 0.2 to 0.8%. However, dietary lactulose did not affect broiler performance at the end of the experiment (42 d). Furthermore, intestinal measurements and the goblet cell count of broilers fed a lactulose-containing diet differed from those of birds fed a diet that did not contain lactulose. In addition, a significant quadratic response in the Lactobacillus count (P≤0.001) was observed at 42 d on increasing the level of lactulose. The cecal coliform bacterial population was not affected by the dietary treatments. Supplementation with lactulose significantly increased the concentrations of acetate, propionate, butyrate, and total SCFA measured on d 7 and d 42. In conclusion, inclusion of lactulose in the diet can enhance broiler performance and intestinal morphology by selectively stimulating intestinal microflora and increasing cecal SCFA concentrations. PMID:26188035

  9. Mercury methylation by fish intestinal contents

    SciTech Connect

    Rudd, J.W.M.; Furutani, A.; Turner, M.A.

    1980-10-01

    Microbial methylation of mercury is a severe environmental problem. A new radiochemical method was applied to determine the extent of mercury methylation in fish intestines. Fish samples were obtained from two lakes within the severely polluted Wabigoon River system in northwestern Ontario and from nearby non-mercury contaminated lakes. Intestinal contents of six freshwater fish species from both polluted and nonpolluted lakes could methylate mercury. Bacterial activity in the intestinal contents was most likely responsible for this methylation.

  10. Functional expression of double-stranded RNA-dependent protein kinase in rat intestinal epithelial cells.

    PubMed

    Sato, Nagahiro; Morimoto, Hiroyuki; Baba, Ryoko; Nakamata, Junichi; Doi, Yoshiaki; Yamaguchi, Koji

    2010-05-01

    Intestinal epithelial cells (IECs) are exposed to external environment, microbial and viral products, and serve as essential barriers to antigens. Recent studies have shown that IECs express Toll-like receptors (TLRs) and respond to microbial components. The antimicrobial and antiviral barriers consist of many molecules including TLRs. To investigate the further component of this barrier in intestine, we examined the expression of double-stranded RNA-dependent protein kinase (PKR). PKR is a player in the cellular antiviral response and phosphorylates alpha-subunit of the eukaryotic translation initiation factor 2 (eIF-2alpha) to block protein synthesis and induces apoptosis. In this study, we showed that the expression of PKR was restricted to the cytoplasm of absorptive epithelial cells in the intestine of adult rat. We also demonstrated that PKR was expressed in the cultured rat intestinal epithelial cells (IEC-6). The level of PKR protein expression and the activity of alkaline phosphatase (ALP) increased in the cultured IEC-6 cells in a time-dependent manner. Inhibition of PKR by the 2-aminopurine treatment decreased ALP activity in the IEC-6 cells. Treatment of IEC-6 cells with synthetic double-stranded RNA (dsRNA) induced cell death in a dose-dependent manner. The addition of hydrocortisone also provoked suppression of PKR expression and ALP activity. This modulation might be mediated by signal transducers and activators of transcription-1 (STAT-1) protein. We concluded that PKR is expressed in IECs as potent barriers to antigens and is a possible modulator of the differentiation of rat IECs. PMID:20213745

  11. Simultaneous multicolor detection system of the single-molecular microbial antigen by total internal reflection fluorescence microscopy with fluorescent nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Yamamoto, Mayu; Manabe, Noriyoshi; Yasuhara, Masato; Suzuki, Kazuo; Yamamoto, Kenji

    2005-11-01

    Immunological diagnostic methods have been widely performed and showed high performance in molecular and cellular biology, molecular imaging, and medical diagnostics. We have developed novel methods for the fluorescent labeling of several antibodies coupled with fluorescent nanocrystals QDs. In this study we demonstrated that two bacterial toxins, diphtheria toxin and tetanus toxin, were detected simultaneously in the same view field of a cover slip by using directly QD-conjugated antibodies. We have succeeded in detecting bacterial toxins by counting luminescent spots on the evanescent field with using primary antibody conjugated to QDs. In addition, each bacterial toxin in the mixture can be separately detected by single excitation laser with emission band pass filters, and simultaneously in situ pathogen quantification was performed by calculating the luminescent density on the surface of the cover slip. Our results demonstrate that total internal reflection fluorescence microscopy (TIRFM) enables us to distinguish each antigen from mixed samples and can simultaneously quantitate multiple antigens by QD-conjugated antibodies. Bioconjugated QDs could have great potentialities for in practical biomedical applications to develop various high-sensitivity detection systems.

  12. Intestinal transplantation.

    PubMed

    Rege, Aparna; Sudan, Debra

    2016-04-01

    Intestinal transplantation has now emerged as a lifesaving therapeutic option and standard of care for patients with irreversible intestinal failure. Improvement in survival over the years has justified expansion of the indications for intestinal transplantation beyond the original indications approved by Center for Medicare and Medicaid services. Management of patients with intestinal failure is complex and requires a multidisciplinary approach to accurately select candidates who would benefit from rehabilitation versus transplantation. Significant strides have been made in patient and graft survival with several advancements in the perioperative management through timely referral, improved patient selection, refinement in the surgical techniques and better understanding of the immunopathology of intestinal transplantation. The therapeutic efficacy of the procedure is well evident from continuous improvements in functional status, quality of life and cost-effectiveness of the procedure. This current review summarizes various aspects including current practices and evidence based recommendations of intestinal transplantation. PMID:27086894

  13. INTESTINAL TRANSPLANTATION

    PubMed Central

    Tzakis, Andreas G.; Todo, Satoru; Starzl, Thomas E.

    2010-01-01

    Intestinal transplantation is often the only alternative form of treatment for patients dependent on total parenteral nutrition for survival. Although a limited number of intestinal transplantations have been performed, results with FK 506 immunosuppression are comparable to those for other organ transplants. The impact of successful intestinal transplantation on gastroenterology will likely be similar to the impact of kidney and liver transplantation on nephrology and hepatology. PMID:7515221

  14. Intestinal Parasitoses.

    ERIC Educational Resources Information Center

    Lagardere, Bernard; Dumburgier, Elisabeth

    1994-01-01

    Intestinal parasites have become a serious public health problem in tropical countries because of the climate and the difficulty of achieving efficient hygiene. The objectives of this journal issue are to increase awareness of the individual and collective repercussions of intestinal parasites, describe the current conditions of contamination and…

  15. Intestinal Cancer

    MedlinePlus

    ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason Blood in the stool A lump in the abdomen Imaging tests that create pictures of the small ... help diagnose intestinal cancer and show whether it has spread. Surgery is ...

  16. Immunochemical characterization of Ancylostoma caninum antigens.

    PubMed

    Schnieder, T; Kohlmetz, C; Epe, C; Stoye, M

    1996-06-01

    Adult worms of Ancylostoma caninum were dissected and manually separated into cephalic glands, cervical glands, intestine, esophagus and cuticula. These fractions as well as third stage larvae were fractionated with Triton X-114 into water soluble (hydrophilic), Triton soluble (hydrophobic) and unsoluble proteins. These fractions were characterized by immunoblotting with serum from rabbits immunized either with a pool of cervical, cephalic glands and intestine, or the esophagus fraction as well as with sera from percutaneously infected dogs and rabbits. Immunodominant antigens were found that reacted with dog or rabbit post infection sera and could be suited as antigens in serodiagnostic tests. Hidden antigens were found in the several fractions. Those from esophagus and intestine could be vaccine candidates that will be tested in immunization trials. PMID:8688863

  17. Fermented and extruded wheat bran in piglet diets: impact on performance, intestinal morphology, microbial metabolites in chyme and blood lipid radicals.

    PubMed

    Kraler, Manuel; Schedle, Karl; Schwarz, Christiane; Domig, Konrad J; Pichler, Martin; Oppeneder, Alexander; Wetscherek, Wolfgang; Prückler, Michael; Pignitter, Marc; Pirker, Katharina F; Somoza, Veronika; Heine, Daniel; Kneifel, Wolfgang

    2015-01-01

    The aim of the present study was to evaluate the influence of native, fermented and extruded wheat bran on the performance and intestinal morphology of piglets. Additionally, short-chain fatty acids (SCFA), biogenic amines, ammonia, lactic acid, pH as well as E. coli and lactic acid bacterial counts were analysed in digesta samples from three gut sections. Furthermore, the antioxidant potential in blood samples was evaluated based on the lipid radicals formed. For this purpose, 48 newly weaned piglets (28 d old) were allocated to one of the four different dietary treatment groups: no wheat bran (Control), native wheat bran, fermented wheat bran as well as extruded wheat bran. Wheat bran variants were included at 150 g/kg into the diets. All diets were mixed to reach the calculated isonitrogenic nutrient contents. Gut tissue and digesta samples were collected from the proximal jejunum, the terminal ileum and the colon ascendens, blood samples directly at slaughter. Although none of the dietary interventions had an impact on performance parameters, the amount of goblet cells in the ileum was increased upon feeding native and extruded wheat bran, compared to fermented bran (p < 0.05). The E. coli counts in colonic chyme were significantly lower (p < 0.05) in the Control group compared to the groups fed with wheat bran. The concentration of SCFA showed differences for minor compounds (p < 0.05), while linear contrast analyses revealed a reduced concentration of total SCFA in the colon following the feeding of modified wheat bran compared to native wheat bran. This may suggest that several compounds are more easily digested already in the ileum, resulting in a reduced nutrient flow into the large intestine and therefore less unexploited digesta is available as substrate for the microorganisms there. Fermentation also resulted in a significant decrease of methylamine in the colon (p < 0.05), while other biogenic amines in the ileum and colon showed no

  18. Mass Spectrometry and Multiplex Antigen Assays to Assess Microbial Quality and Toxin Production of Staphylococcus aureus Strains Isolated from Clinical and Food Samples

    PubMed Central

    Attien, Paul; Sina, Haziz; Moussaoui, Wardi; Zimmermann-Meisse, Gaëlle; Dadié, Thomas; Keller, Daniel; Riegel, Philippe; Edoh, Vincent; Kotchoni, Simeon O.; Djè, Marcellin; Prévost, Gilles

    2014-01-01

    The aim of our study was to investigate the microbial quality of meat products and on some clinical samples in Abidjan focused on Staphylococcus genus and the toxin production profile of Staphylococcus aureus (S. aureus) isolated. Bacteria were collected from 240 samples of three meat products sold in Abidjan and 180 samples issued from clinical infections. The strains were identified by both microbiological and MALDI-TOF-MS methods. The susceptibility to antibiotics was determined by the disc diffusion method. The production of Panton-Valentine Leukocidin, LukE/D, and epidermolysins was screened using radial gel immunodiffusion. The production of staphylococcal enterotoxins and TSST-1 was screened by a Bio-Plex Assay. We observed that 96/240 of meat samples and 32/180 of clinical samples were contaminated by Staphylococcus. Eleven species were isolated from meats and 4 from clinical samples. Forty-two S. aureus strains were isolated from ours samples. Variability of resistance was observed for most of the tested antibiotics but none of the strains displays a resistance to imipenem and quinolones. We observed that 89% of clinical S. aureus were resistant to methicillin against 58% for those issued from meat products. All S. aureus isolates issued from meat products produce epidermolysins whereas none of the clinical strains produced these toxins. The enterotoxins were variably produced by both clinical and meat product samples. PMID:24987686

  19. Effectiveness of Phytogenic Feed Additive as Alternative to Bacitracin Methylene Disalicylate on Hematological Parameters, Intestinal Histomorphology and Microbial Population and Production Performance of Japanese Quails

    PubMed Central

    Manafi, M.; Hedayati, M.; Khalaji, S.

    2016-01-01

    This study was conducted to evaluate the effects of phytogenic additive and antibiotic growth promoter in laying Japanese quails. One hundred and sixty five quails were divided into three groups of 5 replicates and 11 quails (8 females and 3 males) in each replicate. Treatment 1 was fed control diet, treatment 2 was fed control diet supplemented with 0.05% bacitracin methylene disalicylate as antibiotic growth promoter and treatment 3 was fed control diet supplemented with 0.1% phytogenic feed additive (PFA) for two periods of 3 weeks each from 37 to 42 weeks of age. Results showed that egg production, eggshell strength, eggshell weight, villus height and villus height to crypt depth ratio were significantly (p≤0.05) increased and feed consumption, feed conversion ratio, albumen, Haugh unit, cholesterol, low-density lipoprotein, alanine transaminase, gamma glutamyltransferase, alkaline phosphatase, high-density lipoprotein, triglyceride, number of goblet cell, crypt depth and intestinal bacterial population of Coliforms, Salmonella and E. coli were significantly (p≤0.05) decreased in PFA fed group. It is concluded that addition of PFA containing phytomolecules and organic acids as main ingredients could significantly improve the production parameters and the general health of laying quails as an alternative to antibiotic growth promoters. PMID:27189636

  20. Effectiveness of Phytogenic Feed Additive as Alternative to Bacitracin Methylene Disalicylate on Hematological Parameters, Intestinal Histomorphology and Microbial Population and Production Performance of Japanese Quails.

    PubMed

    Manafi, M; Hedayati, M; Khalaji, S

    2016-09-01

    This study was conducted to evaluate the effects of phytogenic additive and antibiotic growth promoter in laying Japanese quails. One hundred and sixty five quails were divided into three groups of 5 replicates and 11 quails (8 females and 3 males) in each replicate. Treatment 1 was fed control diet, treatment 2 was fed control diet supplemented with 0.05% bacitracin methylene disalicylate as antibiotic growth promoter and treatment 3 was fed control diet supplemented with 0.1% phytogenic feed additive (PFA) for two periods of 3 weeks each from 37 to 42 weeks of age. Results showed that egg production, eggshell strength, eggshell weight, villus height and villus height to crypt depth ratio were significantly (p≤0.05) increased and feed consumption, feed conversion ratio, albumen, Haugh unit, cholesterol, low-density lipoprotein, alanine transaminase, gamma glutamyltransferase, alkaline phosphatase, high-density lipoprotein, triglyceride, number of goblet cell, crypt depth and intestinal bacterial population of Coliforms, Salmonella and E. coli were significantly (p≤0.05) decreased in PFA fed group. It is concluded that addition of PFA containing phytomolecules and organic acids as main ingredients could significantly improve the production parameters and the general health of laying quails as an alternative to antibiotic growth promoters. PMID:27189636

  1. The intestinal microbiome of fish under starvation

    PubMed Central

    2014-01-01

    Background Starvation not only affects the nutritional and health status of the animals, but also the microbial composition in the host’s intestine. Next-generation sequencing provides a unique opportunity to explore gut microbial communities and their interactions with hosts. However, studies on gut microbiomes have been conducted predominantly in humans and land animals. Not much is known on gut microbiomes of aquatic animals and their changes under changing environmental conditions. To address this shortcoming, we determined the microbial gene catalogue, and investigated changes in the microbial composition and host-microbe interactions in the intestine of Asian seabass in response to starvation. Results We found 33 phyla, 66 classes, 130 orders and 278 families in the intestinal microbiome. Proteobacteria (48.8%), Firmicutes (15.3%) and Bacteroidetes (8.2%) were the three most abundant bacteria taxa. Comparative analyses of the microbiome revealed shifts in bacteria communities, with dramatic enrichment of Bacteroidetes, but significant depletion of Betaproteobacteria in starved intestines. In addition, significant differences in clusters of orthologous groups (COG) functional categories and orthologous groups were observed. Genes related to antibiotic activity in the microbiome were significantly enriched in response to starvation, and host genes related to the immune response were generally up-regulated. Conclusions This study provides the first insights into the fish intestinal microbiome and its changes under starvation. Further detailed study on interactions between intestinal microbiomes and hosts under dynamic conditions will shed new light on how the hosts and microbes respond to the changing environment. PMID:24708260

  2. Intestinal steroidogenesis.

    PubMed

    Bouguen, Guillaume; Dubuquoy, Laurent; Desreumaux, Pierre; Brunner, Thomas; Bertin, Benjamin

    2015-11-01

    Steroids are fundamental hormones that control a wide variety of physiological processes such as metabolism, immune functions, and sexual characteristics. Historically, steroid synthesis was considered a function restricted to the adrenals and the gonads. In the past 20 years, a significant number of studies have demonstrated that steroids could also be synthesized or metabolized by other organs. According to these studies, the intestine appears to be a major source of de novo produced glucocorticoids as well as a tissue capable of producing and metabolizing sex steroids. This finding is based on the detection of steroidogenic enzyme expression as well as the presence of bioactive steroids in both the rodent and human gut. Within the intestinal mucosa, the intestinal epithelial cell layer is one of the main cellular sources of steroids. Glucocorticoid synthesis regulation in the intestinal epithelial cells is unique in that it does not involve the classical positive regulator steroidogenic factor-1 (SF-1) but a closely related homolog, namely the liver receptor homolog-1 (LRH-1). This local production of immunoregulatory glucocorticoids contributes to intestinal homeostasis and has been linked to pathophysiology of inflammatory bowel diseases. Intestinal epithelial cells also possess the ability to metabolize sex steroids, notably estrogen; this mechanism may impact colorectal cancer development. In this review, we contextualize and discuss what is known about intestinal steroidogenesis and regulation as well as the key role these functions play both in physiological and pathological conditions. PMID:25560486

  3. Short communication: Modulation of the small intestinal microbial community composition over short-term or long-term administration with Lactobacillus plantarum ZDY2013.

    PubMed

    Xie, Qiong; Pan, Mingfang; Huang, Renhui; Tian, Ximei; Tao, Xueying; Shah, Nagendra P; Wei, Hua; Wan, Cuixiang

    2016-09-01

    The small intestinal (SI) microbiota has an essential role in the maintenance of human health. However, data about the indigenous bacteria in SI as affected by probiotics are limited. In our study, the short-term and long-term effects of a probiotic candidate, Lactobacillus plantarum ZDY2013, on the SI microbiota of C57BL/6J mice were investigated by the Illumina HiSeq (Novogene Bioinformatics Technology Co., Ltd., Tianjin, China) platform targeting the V4 region of the 16S rDNA. A total of 858,011 sequences in 15 samples were read. The α diversity analysis revealed that oral administration with L. plantarum ZDY2013 for 3 wk led to a significant increase in the richness and diversity of the SI bacterial community. Principal coordinate analysis and unweighted pair-group method with arithmetic means analysis showed a clear alteration in the SI microbiota composition after 3 wk of L. plantarum ZDY2013 treatment, although these changes were not found 6 wk after ceasing L. plantarum ZDY2013 administration. Species annotation showed that the dominant phyla in SI microbiota were Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia. Interestingly, operational taxonomic unit cluster analysis showed that administration with L. plantarum ZDY2013 for 3 wk significantly increased the abundance of Proteobacteria, but decreased that of Bacteroidetes. Linear discriminant analysis coupled with effect size identified 18 bacterial taxa (e.g., Ruminococcus spp. and Clostridium spp.) that overgrew in the SI microbiota of the mice administered with L. plantarum ZDY2013 for 3 wk, and most of them belonged to the phyla Bacteroidetes and Proteobacteria. However, only one bacterial taxon (e.g., Nocardioides spp.) was over-represented in the SI microbiota of mice 6 wk after L. plantarum ZDY2013 administration. Overall, this study shows that oral administration with probiotic results in an important but transient alteration in the microbiota of SI. PMID:27320669

  4. Intestinal obstruction

    MedlinePlus

    Obstruction of the bowel may due to: A mechanical cause, which means something is in the way ... lung disease Use of certain medicines, especially narcotics Mechanical causes of intestinal obstruction may include: Adhesions or ...

  5. The Extracellular Calcium-Sensing Receptor in the Intestine: Evidence for Regulation of Colonic Absorption, Secretion, Motility, and Immunity

    PubMed Central

    Tang, Lieqi; Cheng, Catherine Y.; Sun, Xiangrong; Pedicone, Alexandra J.; Mohamadzadeh, Mansour; Cheng, Sam X.

    2016-01-01

    Different from other epithelia, the intestinal epithelium has the complex task of providing a barrier impeding the entry of toxins, food antigens, and microbes, while at the same time allowing for the transfer of nutrients, electrolytes, water, and microbial metabolites. These molecules/organisms are transported either transcellularly, crossing the apical and basolateral membranes of enterocytes, or paracellularly, passing through the space between enterocytes. Accordingly, the intestinal epithelium can affect energy metabolism, fluid balance, as well as immune response and tolerance. To help accomplish these complex tasks, the intestinal epithelium has evolved many sensing receptor mechanisms. Yet, their roles and functions are only now beginning to be elucidated. This article explores one such sensing receptor mechanism, carried out by the extracellular calcium-sensing receptor (CaSR). In addition to its established function as a nutrient sensor, coordinating food digestion, nutrient absorption, and regulating energy metabolism, we present evidence for the emerging role of CaSR in the control of intestinal fluid homeostasis and immune balance. An additional role in the modulation of the enteric nerve activity and motility is also discussed. Clearly, CaSR has profound effects on many aspects of intestinal function. Nevertheless, more work is needed to fully understand all functions of CaSR in the intestine, including detailed mechanisms of action and specific pathways involved. Considering the essential roles CaSR plays in gastrointestinal physiology and immunology, research may lead to a translational opportunity for the development of novel therapies that are based on CaSR's unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators. It is possible that, through targeting of intestinal CaSR with a combination of specific nutrients, oral solutions that are both inexpensive and practical may be

  6. The Extracellular Calcium-Sensing Receptor in the Intestine: Evidence for Regulation of Colonic Absorption, Secretion, Motility, and Immunity.

    PubMed

    Tang, Lieqi; Cheng, Catherine Y; Sun, Xiangrong; Pedicone, Alexandra J; Mohamadzadeh, Mansour; Cheng, Sam X

    2016-01-01

    Different from other epithelia, the intestinal epithelium has the complex task of providing a barrier impeding the entry of toxins, food antigens, and microbes, while at the same time allowing for the transfer of nutrients, electrolytes, water, and microbial metabolites. These molecules/organisms are transported either transcellularly, crossing the apical and basolateral membranes of enterocytes, or paracellularly, passing through the space between enterocytes. Accordingly, the intestinal epithelium can affect energy metabolism, fluid balance, as well as immune response and tolerance. To help accomplish these complex tasks, the intestinal epithelium has evolved many sensing receptor mechanisms. Yet, their roles and functions are only now beginning to be elucidated. This article explores one such sensing receptor mechanism, carried out by the extracellular calcium-sensing receptor (CaSR). In addition to its established function as a nutrient sensor, coordinating food digestion, nutrient absorption, and regulating energy metabolism, we present evidence for the emerging role of CaSR in the control of intestinal fluid homeostasis and immune balance. An additional role in the modulation of the enteric nerve activity and motility is also discussed. Clearly, CaSR has profound effects on many aspects of intestinal function. Nevertheless, more work is needed to fully understand all functions of CaSR in the intestine, including detailed mechanisms of action and specific pathways involved. Considering the essential roles CaSR plays in gastrointestinal physiology and immunology, research may lead to a translational opportunity for the development of novel therapies that are based on CaSR's unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators. It is possible that, through targeting of intestinal CaSR with a combination of specific nutrients, oral solutions that are both inexpensive and practical may be

  7. Immunogenetic control of the intestinal microbiota

    PubMed Central

    Marietta, Eric; Rishi, Abdul; Taneja, Veena

    2015-01-01

    All vertebrates contain a diverse collection of commensal, symbiotic and pathogenic microorganisms, such as bacteria, viruses and fungi, on their various body surfaces, and the ecological community of these microorganisms is referred to as the microbiota. Mucosal sites, such as the intestine, harbour the majority of microorganisms, and the human intestine contains the largest community of commensal and symbiotic bacteria. This intestinal community of bacteria is diverse, and there is a significant variability among individuals with respect to the composition of the intestinal microbiome. Both genetic and environmental factors can influence the diversity and composition of the intestinal bacteria with the predominant environmental factor being diet. So far, studies have shown that diet-dependent differences in the composition of intestinal bacteria can be classified into three groups, called enterotypes. Other environmental factors that can influence the composition include antibiotics, probiotics, smoking and drugs. Studies of monozygotic and dizygotic twins have proven that genetics plays a role. Recently, MHC II genes have been associated with specific microbial compositions in human infants and transgenic mice that express different HLA alleles. There is a growing list of genes/molecules that are involved with the sensing and monitoring of the intestinal lumen by the intestinal immune system that, when genetically altered, will significantly alter the composition of the intestinal microflora. The focus of this review will be on the genetic factors that influence the composition of the intestinal microflora. PMID:25913295

  8. Small Intestine Disorders

    MedlinePlus

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  9. Small intestinal bacterial overgrowth syndrome

    PubMed Central

    Bures, Jan; Cyrany, Jiri; Kohoutova, Darina; Förstl, Miroslav; Rejchrt, Stanislav; Kvetina, Jaroslav; Vorisek, Viktor; Kopacova, Marcela

    2010-01-01

    Human intestinal microbiota create a complex polymicrobial ecology. This is characterised by its high population density, wide diversity and complexity of interaction. Any dysbalance of this complex intestinal microbiome, both qualitative and quantitative, might have serious health consequence for a macro-organism, including small intestinal bacterial overgrowth syndrome (SIBO). SIBO is defined as an increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract. There are several endogenous defence mechanisms for preventing bacterial overgrowth: gastric acid secretion, intestinal motility, intact ileo-caecal valve, immunoglobulins within intestinal secretion and bacteriostatic properties of pancreatic and biliary secretion. Aetiology of SIBO is usually complex, associated with disorders of protective antibacterial mechanisms (e.g. achlorhydria, pancreatic exocrine insufficiency, immunodeficiency syndromes), anatomical abnormalities (e.g. small intestinal obstruction, diverticula, fistulae, surgical blind loop, previous ileo-caecal resections) and/or motility disorders (e.g. scleroderma, autonomic neuropathy in diabetes mellitus, post-radiation enteropathy, small intestinal pseudo-obstruction). In some patients more than one factor may be involved. Symptoms related to SIBO are bloating, diarrhoea, malabsorption, weight loss and malnutrition. The gold standard for diagnosing SIBO is still microbial investigation of jejunal aspirates. Non-invasive hydrogen and methane breath tests are most commonly used for the diagnosis of SIBO using glucose or lactulose. Therapy for SIBO must be complex, addressing all causes, symptoms and complications, and fully individualised. It should include treatment of the underlying disease, nutritional support and cyclical gastro-intestinal selective antibiotics. Prognosis is usually serious, determined mostly by the underlying disease that led to SIBO. PMID:20572300

  10. Ontogeny of Intestinal Epithelial Innate Immune Responses

    PubMed Central

    Hornef, Mathias W.; Fulde, Marcus

    2014-01-01

    Emerging evidence indicates that processes during postnatal development might significantly influence the establishment of mucosal host-microbial homeostasis. Developmental and adaptive immunological processes but also environmental and microbial exposure early after birth might thus affect disease susceptibility and health during adult life. The present review aims at summarizing the current understanding of the intestinal epithelial innate immune system and its developmental and adaptive changes after birth. PMID:25346729

  11. Role of Intestinal Myofibroblasts in HIV-Associated Intestinal Collagen Deposition and Immune Reconstitution following Combination Antiretroviral Therapy

    PubMed Central

    Asmuth, David M; Pinchuk, Irina V; Wu, Jian; Vargas, Gracie; Chen, Xiaoli; Mann, Surinder; Albanese, Anthony; Ma, Zhong-Min; Saroufeem, Ramez; Melcher, Gregory P; Troia-Cancio, Paolo; Torok, Natalie J; Miller, Christopher J; Powell, Don W.

    2015-01-01

    Objective To investigate the potential role of mucosal intestinal myofibroblasts (IMFs) in HIV and associated fibrosis in GALT. Design Profibrotic changes within the secondary lymphoid organs and mucosa has been implicated in failed immune reconstitution following effective cART. Microbial translocation is believed to be sustaining these systemic inflammatory pathways. IMFs are non-professional antigen-presenting cells with both immunoregulatory and mesenchymal functions that are ideally positioned to respond to translocating microbial antigen. Methods Duodenal biopsies obtained from patients naïve to cART underwent trichrome staining and examined for TGF-β expression. Combined immunostaining and second harmonic generation-analysis was used to determine IMF activation and collagen deposition. Confocal microscopy was performed to examine for IMF activation and TLR4 expression. Finally, primary IMF cultures were stimulated with LPS to demonstrate expression of inflammatory biomarkers. Results The expression of the fibrosis-promoting molecule, TGF-β1, is significantly increased in duodenal biopsies from HIV patients naïve to cART and negatively correlated with subsequent peripheral CD4 recovery. The TGFβ1 increases coincided with an increase in collagen deposition in duodenal mucosa in tissue area adjacent to IMFs. We also observed that IMFs expressed TLR4 and had an activated phenotype since they were positive for fibroblast activation protein. Finally, stimulation of IMFs from HIV patients with TLR4 resulted in significantly increased expression of profibrotic molecules, TGF-β1 and IL-6. Conclusions Our data support the hypothesis that activated IMFs may be among the major cells contributing to the profibrotic changes and thus, the establishment and maintenance of systemic inflammation interfering with immune reconstitution in HIV patients. PMID:25784439

  12. Natural Selection Promotes Antigenic Evolvability

    PubMed Central

    Graves, Christopher J.; Ros, Vera I. D.; Stevenson, Brian; Sniegowski, Paul D.; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed ‘cassettes’ that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections

  13. Intestinal Obstruction

    MedlinePlus

    ... the small intestine (duodenum) may be caused by cancer of the pancreas, scarring from an ulcer, or Crohn disease . Rarely, a gallstone, a mass of undigested food, or a collection of parasitic worms may block ... commonly caused by cancer, diverticulitis , or a hard lump of stool (fecal ...

  14. [Malaria and intestinal protozoa].

    PubMed

    Rojo-Marcos, Gerardo; Cuadros-González, Juan

    2016-03-01

    Malaria is life threatening and requires urgent diagnosis and treatment. Incidence and mortality are being reduced in endemic areas. Clinical features are unspecific so in imported cases it is vital the history of staying in a malarious area. The first line treatments for Plasmodium falciparum are artemisinin combination therapies, chloroquine in most non-falciparum and intravenous artesunate if any severity criteria. Human infections with intestinal protozoa are distributed worldwide with a high global morbid-mortality. They cause diarrhea and sometimes invasive disease, although most are asymptomatic. In our environment populations at higher risk are children, including adopted abroad, immune-suppressed, travelers, immigrants, people in contact with animals or who engage in oral-anal sex. Diagnostic microscopic examination has low sensitivity improving with antigen detection or molecular methods. Antiparasitic resistances are emerging lately. PMID:26832999

  15. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis.

    PubMed

    Dubin, Krista; Callahan, Margaret K; Ren, Boyu; Khanin, Raya; Viale, Agnes; Ling, Lilan; No, Daniel; Gobourne, Asia; Littmann, Eric; Huttenhower, Curtis; Pamer, Eric G; Wolchok, Jedd D

    2016-01-01

    The composition of the intestinal microbiota influences the development of inflammatory disorders. However, associating inflammatory diseases with specific microbial members of the microbiota is challenging, because clinically detectable inflammation and its treatment can alter the microbiota's composition. Immunologic checkpoint blockade with ipilimumab, a monoclonal antibody that blocks cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) signalling, is associated with new-onset, immune-mediated colitis. Here we conduct a prospective study of patients with metastatic melanoma undergoing ipilimumab treatment and correlate the pre-inflammation faecal microbiota and microbiome composition with subsequent colitis development. We demonstrate that increased representation of bacteria belonging to the Bacteroidetes phylum is correlated with resistance to the development of checkpoint-blockade-induced colitis. Furthermore, a paucity of genetic pathways involved in polyamine transport and B vitamin biosynthesis is associated with an increased risk of colitis. Identification of these biomarkers may enable interventions to reduce the risk of inflammatory complications following cancer immunotherapy. PMID:26837003

  16. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis

    PubMed Central

    Dubin, Krista; Callahan, Margaret K.; Ren, Boyu; Khanin, Raya; Viale, Agnes; Ling, Lilan; No, Daniel; Gobourne, Asia; Littmann, Eric; Huttenhower, Curtis; Pamer, Eric G.; Wolchok, Jedd D.

    2016-01-01

    The composition of the intestinal microbiota influences the development of inflammatory disorders. However, associating inflammatory diseases with specific microbial members of the microbiota is challenging, because clinically detectable inflammation and its treatment can alter the microbiota's composition. Immunologic checkpoint blockade with ipilimumab, a monoclonal antibody that blocks cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) signalling, is associated with new-onset, immune-mediated colitis. Here we conduct a prospective study of patients with metastatic melanoma undergoing ipilimumab treatment and correlate the pre-inflammation faecal microbiota and microbiome composition with subsequent colitis development. We demonstrate that increased representation of bacteria belonging to the Bacteroidetes phylum is correlated with resistance to the development of checkpoint-blockade-induced colitis. Furthermore, a paucity of genetic pathways involved in polyamine transport and B vitamin biosynthesis is associated with an increased risk of colitis. Identification of these biomarkers may enable interventions to reduce the risk of inflammatory complications following cancer immunotherapy. PMID:26837003

  17. Intestinal barrier: Molecular pathways and modifiers.

    PubMed

    Jeon, Min Kyung; Klaus, Christina; Kaemmerer, Elke; Gassler, Nikolaus

    2013-11-15

    The gastrointestinal tract is frequently challenged by pathogens/antigens contained in food and water and the intestinal epithelium must be capable of rapid regeneration in the event of tissue damage. Disruption of the intestinal barrier leads to a number of immune-mediated diseases, including inflammatory bowel disease, food allergy, and celiac disease. The intestinal mucosa is composed of different types of epithelial cells in specific barrier functions. Epithelial cells control surface-associated bacterial populations without disrupting the intestinal microflora that is crucial for host health. They are also capable of modulating mucosal immune system, and are thus essential in maintaining homeostasis in the gut. Thus, the regulation of intestinal epithelial homeostasis is crucial for the maintenance of the structure of the mucosa and the defensive barrier functions. Recent studies have demonstrated that multiple molecular pathways are involved in the regulation of intestinal epithelial cell polarity. These include the Wnt, Notch, Hippo, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog pathways, most of which were identified in lower organisms where they play important roles during embryogenesis. These pathways are also used in adult organisms to regulate multiple self-renewing organs. Understanding the interactions between these molecular mechanisms and intestinal barrier function will therefore provide important insight into the pathogenesis of intestinal-based immune-mediated diseases. PMID:24244877

  18. [Intestinal endometriosis].

    PubMed

    González Rodríguez, C I; Cires, M; Jiménez, F J; Rubio, T

    2008-01-01

    Endometriosis is a chronic, benign gynaecological disorder that is frequent in women of a child-bearing age. It is estimated that there is some degree of endometriosis in as many as 15% of pre-menopausal women, associated with a history of infertility, caesarean antecedents, dysmenorrhoea and abnormality in uterine bleeding. It is believed to be due to the rise of menstrual contents through the Fallopian tubes (retrograde menstruation). In the intestinal affectation, the colon is the segment most frequently affected, above all at the rectosigmoidal level. The clinical features are unspecific, with abdominal pain the most frequent and/or pelvic pain of a cholic type that coincides with, or is exacerbated by, menstruation. Differential diagnosis includes intestinal inflammatory disease, diverticulitis, ischemic colitis and neoplastic processes, with the definitive diagnosis being anatomopathological. With respect to treatment, this will depend on the clinical features and the age of the patient, as well as her wishes with regard to pregnancy. PMID:18953367

  19. INTESTINAL OBSTRUCTION

    PubMed Central

    Cole, Warren H.

    1950-01-01

    Despite improvements in knowledge of the pathologic physiology of intestinal obstruction, the introduction of gastrointestinal decompression, and more effective antibiotics, obstruction remains a serious disease with a high mortality rate. Although the diagnosis is often obscure, it can usually be made with a fair degree of accuracy by the history alone; pain is fairly constant and characteristically is of a cramping type simulated by very few other lesions. Distention is present in low lesions but absent in high lesions; on the contrary, vomiting is minimal in low lesions but prominent in high lesions. Visible peristaltic waves are almost pathognomonic of intestinal obstruction. Increased peristaltic sounds, as noted by auscultation, are extremely helpful in diagnosis; they are absent in paralytic ileus. Although intestinal obstruction is a surgical lesion, it must be remembered that in the type produced by adhesions the obstruction can be relieved by gastrointestinal decompression in 80 to 90 per cent of cases. Operation is usually indicated a short time after relief because of the probability of recurrence. In practically all other types of obstruction decompression is indicated only while the patient is being prepared for operation. Obviously any type of strangulation demands early operation. Strangulation can usually be diagnosed, particularly if it develops while the patient is under observation. Increase in pain, muscle spasm and pulse rate are important indications of development of strangulation. Dehydration and electrolytic imbalance are produced almost universally in high obstruction. Usually, it is unwise to wait until these two deficiencies are corrected before operation is undertaken, but correction must be well under way at the time of operation. Resections should be avoided in the presence of intestinal obstruction, but obviously will be necessary in strangulation. Operative technique must be expert and carried out with minimal trauma. Postoperative

  20. Intestinal spirochaetosis

    PubMed Central

    Lee, F. D.; Kraszewski, A.; Gordon, J.; Howie, J. G. R.; McSeveney, D.; Harland, W. A.

    1971-01-01

    An abnormal condition of the large intestine is described in which the surface epithelium is infested by short spirochaetes. Diagnosis can be made by light microscopy. A review of 14 cases diagnosed by rectal biopsy and 62 cases involving the appendix shows no consistent symptom complex. The possible significance is discussed. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 1 PMID:5548558

  1. Small intestinal ischemia and infarction

    MedlinePlus

    ... small intestine; Atherosclerosis - small intestine; Hardening of the arteries - small intestine ... Embolus: Blood clots can block one of the arteries supplying the intestine. People who have had a ...

  2. Mucosal immune responses following oral immunisation of pigs with fimbrial antigens of enterotoxigenic E. coli.

    PubMed

    Cox, Eric; Snoeck, Veerle; Verdonck, Frank; Goddeeris, Bruno

    2003-01-01

    The intestinal mucosal immune system can discriminate actively between harmful pathogens and harmless food antigens resulting in different immune responses namely IgA production and oral tolerance, respectively. Whereas particulate antigen (microorganisms) can induce an IgA response, soluble antigen often leads to tolerance. Recently, it has been demonstrated that F4 fimbrial antigens of enterotoxigenic E. coli (F4 ETEC) can be used to immunise piglets. Oral administration of soluble F4 to F4R+ piglets (pigs with a receptor for these fimbriae (F4R+) on their small intestinal villous enterocytes) results in an intestinal mucosal immune response that completely protects the piglets against a challenge infection. In F4R- pigs, such an intestinal mucosal immune response does not occur. However, a priming of the systemic immune system can be seen similar to the priming in pigs fed with the same dose of a food antigen, suggesting that F4 in F4R- pigs behaves as a food antigen. These results indicate that a receptor-mediated mechanism is involved in the induction of a protective intestinal mucosal immune response using soluble antigen. However, oral administration of soluble F18 fimbriae of verotoxigenic E. coli to F18R+ piglets could not induce a similar protective immune response. So the type of the receptor and/or the nature of the antigen seem to be important to obtain an intestinal IgA response. PMID:24757806

  3. Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality

    PubMed Central

    Clark, Rebecca I.; Salazar, Anna; Yamada, Ryuichi; Fitz-Gibbon, Sorel; Morselli, Marco; Alcaraz, Jeanette; Rana, Anil; Rera, Michael; Pellegrini, Matteo; Ja, William W.; Walker, David W.

    2015-01-01

    Summary Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals. PMID:26321641

  4. Gastric mucous neck cell and intestinal goblet cell phenotypes in gastric adenocarcinoma.

    PubMed Central

    Hughes, N R; Bhathal, P S

    1997-01-01

    AIM: To investigate the phenotype of cells comprising diffuse and intestinal-type gastric cancers using monoclonal antibodies to two antigens. One antigen (designated D10) is characteristic of gastric mucous neck cells, cardiac glands, pyloric glands, and Brunner's glands. The second antigen (designated 17NM) is specific to the mucous vacuole of intestinal goblet cells. METHODS: Thirty two gastrectomy specimens with adenocarcinoma were studied. Serial paraffin sections were stained immunohistochemically for D10 and 17NM and histochemically for acid and neutral mucins. The cancers were classified histologically as of either diffuse or intestinal type according to Lauren. RESULTS: Of 15 diffuse-type gastric carcinomas, 11 showed the majority of cancer cells staining for D10 while four were typical signet ring cell cancers staining predominantly for 17NM; five tumours displayed both phenotypes with the two phenotypes segregated in different areas of the tumours. In contrast, of 16 intestinal-type cancers, six expressed 17NM, three D10, five neither antigen, and two expressed both antigens. One indeterminate-type cancer expressed both antigens. The staining of individual cells for D10 and 17NM was mutually exclusive in both diffuse and intestinal types. In contrast to the diffuse cancers, intestinal-type cancers typically expressed either antigen only in occasional small groups of cells and individual cells. CONCLUSIONS: In disease, the gastric stem cell can assume the capacity of the duodenal stem cell for divergent differentiation into either intestinal goblet cells (for example, as in intestinal metaplasia) or Brunner's gland cells (for example, as in pyloric gland/Brunner's gland metaplasia). With neoplastic transformation, this potential for divergent differentiation is maintained and gives rise to diffuse-type cancers that display either the D10 phenotype, the 17NM phenotype, or the clonal expression of both phenotypes. In the more cell cohesive (intestinal

  5. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile

    PubMed Central

    Bezirtzoglou, Eugenia Elefterios Venizelos

    2012-01-01

    Cytochromes P450 (CYPs) enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80%) followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450) cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status. PMID:23990816

  6. Large intestine (colon) (image)

    MedlinePlus

    The large intestine is the portion of the digestive system most responsible for absorption of water from the indigestible ... the ileum (small intestine) passes material into the large intestine at the cecum. Material passes through the ...

  7. Hydrolysis of phytic acid by intrinsic plant and supplemented microbial phytase (Aspergillus niger) in the stomach and small intestine of minipigs fitted with re-entrant cannulas. 3. Hydrolysis of phytic acid (IP6) and occurrence of hydrolysis products (IP5, IP4, IP3 and IP2).

    PubMed

    Rapp, C; Lantzsch, H J; Drochner, W

    2001-12-01

    Hydrolysis of phytate in the stomach and the small intestine as influenced by intrinsic plant (wheat) and supplemented microbial phytase (Aspergillus niger) were investigated with six minipigs (40-50 kg initial body weight) fitted with re-entrant cannulas in the duodenum, 30 cm posterior to the pylorus (animals 1, 4, 5 and 6) and ileocecal re-entrant cannulas, 5 cm prior the ileocecal junction (animals 1, 2 and 3), respectively. Dietary treatments were as follows: (1) diet 1, a corn-based diet [43 U phytase/kg dry matter (DM)]; (2) diet 2, diet 1 supplemented with microbial phytase (818 U/kg DM); and (3) diet 3, a wheat-based diet (1192 U/kg DM). At 07 30 h and 19 30 h, each animal was fed 350 g diet mixed with 1050 ml de-ionized water. Digesta were collected continuously and completely during a 12-h period after feeding. Mean hydrolysis rates of IP6 in the stomach as measured at the proximal duodenum of animals 1, 4, 5 and 6 were 9.0, 77.2 and 66.2% for diet 1, 2 and 3, respectively. Microbial phytase was much more effective in phytate hydrolysis than wheat phytase. Mean IP6 hydrolysis rates of the respective diets in the stomach and small intestine as measured at the distal ileum of animals 1, 2 and 3 were 19.0, 62.6 and 64.6% and were lower than treatment means of the stomach only. Differences existed between experimental animals with respect to their ability to hydrolyse IP6 in the stomach independent of the presence and source of dietary phytase. Considerable amounts of hydrolysis products occurred in both the duodenal and ileal digesta when diets 2 and 3 were fed; however, only traces were determined after ingestion of diet 1. Independent of dietary treatment, four IP5 isomers were detected, but in different amounts. PMID:11906566

  8. Antigenic sites in carcinoembryonic antigen.

    PubMed

    Hammarstrom, S; Shively, J E; Paxton, R J; Beatty, B G; Larsson, A; Ghosh, R; Bormer, O; Buchegger, F; Mach, J P; Burtin, P

    1989-09-01

    The epitope reactivities of 52 well-characterized monoclonal antibodies (Mabs) against carcinoembryonic antigen from 11 different research groups were studied using competitive solid-phase immunoassays. About 60% of all possible combinations of Mabs as inhibitors and as the primary binding antibody were investigated. The inhibition data were analyzed by a specially developed computer program "EPITOPES" which measures concordance and discordance in inhibition patterns between Mabs. The analysis showed that 43 of the 52 Mabs (83%) could be classified into one of five essentially noninteracting epitope groups (GOLD 1-5) containing between four and 15 Mabs each. The epitopes recognized by the Mabs belonging to groups 1 to 5 were peptide in nature. With one or two possible exceptions non-classifiable Mabs were either directed against carbohydrate epitopes (4 Mabs) or were inactive in the tests used. Within epitope groups GOLD 1, 4, and 5 two partially overlapping subgroups were distinguished. Mabs with a high degree of carcinoembryonic antigen specificity generally belonged to epitope groups GOLD 1 and 3. PMID:2474375

  9. Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin.

    PubMed Central

    Campbell, B J; Finnie, I A; Hounsell, E F; Rhodes, J M

    1995-01-01

    Increased binding of the lectin peanut agglutinin is a common feature in epithelial malignancy and hyperplasia. This may have considerable functional importance in the intestine by allowing interaction between the epithelium and mitogenic lectins of dietary or microbial origin. Peanut agglutinin binds the disaccharide Thomsen-Friedenreich (TF, T or core 1) blood group antigen, Gal beta (1-3) GalNAc alpha-, but is not totally specific for this site. Consequently, there has been controversy about the presence of this structure in colon cancer; studies with anti-TF monoclonal antibodies have failed to detect it. We have examined the presence of TF antigen in colonic mucus glycoprotein (mucin) using endo-alpha-N-acetylgalactosaminidase (O-Glycanase), which specifically catalyzes the hydrolysis of TF antigen from glycoconjugates. Samples of adenocarcinoma, inflammatory bowel disease (ulcerative colitis), and normal mucin were treated with O-glycanase, the liberated disaccharide was separated from the glycoprotein and analyzed using dual CarboPac PA-100 column high performance anion-exchange chromatography coupled with pulsed amperometric detection. O-Glycanase treatment released increased amounts of TF antigen from both colonic adenocarcinoma (8.0 +/- 3.9 ng/micrograms protein, n = 11; P < 0.0001 ANOVA) and ulcerative colitis mucin (3.3 +/- 0.3 ng/micrograms protein, n = 5; P = 0.04) compared with mucin samples from histologically normal mucosa distant from carcinoma (1.5 +/- 1.1 ng/micrograms protein, n = 9). However, after mild acid treatment to remove sialic acids and fucose, releasable TF antigen was increased in all nine of these histologically normal mucin samples (5.5 +/- 2.6 ng/micrograms protein, P < 0.0002). We conclude that TF antigen is an oncofetal antigen which is expressed in colon cancer, but is concealed by further glycosylation (sialylation and/or fucosylation) in the normal colonic mucosa. PMID:7860740

  10. Intestinal capillariasis.

    PubMed Central

    Cross, J H

    1992-01-01

    Intestinal capillariasis caused by Capillaria philippinensis appeared first in the Philippines and subsequently in Thailand, Japan, Iran, Egypt, and Taiwan, but most infections occur in the Philippines and Thailand. As established experimentally, the life cycle involves freshwater fish as intermediate hosts and fish-eating birds as definitive hosts. Embryonated eggs from feces fed to fish hatch and grow as larvae in the fish intestines. Infective larvae fed to monkeys, Mongolian gerbils, and fish-eating birds develop into adults. Larvae become adults in 10 to 11 days, and the first-generation females produce larvae. These larvae develop into males and egg-producing female worms. Eggs pass with the feces, reach water, embryonate, and infect fish. Autoinfection is part of the life cycle and leads to hyperinfection. Humans acquire the infection by eating small freshwater fish raw. The parasite multiplies, and symptoms of diarrhea, borborygmus, abdominal pain, and edema develop. Chronic infections lead to malabsorption and hence to protein and electrolyte loss, and death results from irreversible effects of the infection. Treatment consists of electrolyte replacement and administration of an antidiarrheal agent and mebendazole or albendazole. Capillariasis philippinensis is considered a zoonotic disease of migratory fish-eating birds. The eggs are disseminated along flyways and infect the fish, and when fish are eaten raw, the disease develops. Images PMID:1576584

  11. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function

    PubMed Central

    Graves, Christina L.; Harden, Scott W.; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J.; Wallet, Shannon M.

    2015-01-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. PMID:25193428

  12. Administration of a Polyphenol-Enriched Feed to Farmed Sea Bass (Dicentrarchus labrax L.) Modulates Intestinal and Spleen Immune Responses

    PubMed Central

    Magrone, Thea; Fontana, Sergio; Laforgia, Flavia; Dragone, Teresa; Jirillo, Emilio; Passantino, Letizia

    2016-01-01

    Farmed fish are exposed to a continuous antigenic pressure by microbial and environmental agents, which may lead to a condition of chronic inflammation. In view of the notion that polyphenols, largely contained in fruits and vegetables, are endowed with antioxidant and anti-inflammatory activities, farmed sea bass (Dicentrarchus labrax L.) have been administered with red grape polyphenol-enriched feed. Polyphenols were extracted from the seeds of Canosina Nero di Troia Vitis vinifera and mixed with conventional feed at two different concentrations (100 and 200 mg/kg, resp.). Fish samples collected at days 223 and 273, respectively, were evaluated for intestinal and spleen cytokine release as well as for spleen macrophage (MØ) and melanomacrophage center (MMC) areas and distribution. Data will show that in treated fish decrease of intestinal interleukin- (IL-) 1β and IL-6 and increase of splenic interferon- (IFN-) γ occur. On the other hand, in the spleen reduction of MØ number seems to parallel increase in MMCs. Collectively, these data suggest that polyphenol-administered sea bass generate lower levels of intestinal proinflammatory cytokines, while producing larger amounts of spleen IFN-γ, as an expression of a robust and protective adaptive immune response. Increase of MMCs corroborates the evidence for a protective spleen response induced by feed enriched with polyphenols. PMID:26779301

  13. Administration of a Polyphenol-Enriched Feed to Farmed Sea Bass (Dicentrarchus labrax L.) Modulates Intestinal and Spleen Immune Responses.

    PubMed

    Magrone, Thea; Fontana, Sergio; Laforgia, Flavia; Dragone, Teresa; Jirillo, Emilio; Passantino, Letizia

    2016-01-01

    Farmed fish are exposed to a continuous antigenic pressure by microbial and environmental agents, which may lead to a condition of chronic inflammation. In view of the notion that polyphenols, largely contained in fruits and vegetables, are endowed with antioxidant and anti-inflammatory activities, farmed sea bass (Dicentrarchus labrax L.) have been administered with red grape polyphenol-enriched feed. Polyphenols were extracted from the seeds of Canosina Nero di Troia Vitis vinifera and mixed with conventional feed at two different concentrations (100 and 200 mg/kg, resp.). Fish samples collected at days 223 and 273, respectively, were evaluated for intestinal and spleen cytokine release as well as for spleen macrophage (MØ) and melanomacrophage center (MMC) areas and distribution. Data will show that in treated fish decrease of intestinal interleukin- (IL-) 1β and IL-6 and increase of splenic interferon- (IFN-) γ occur. On the other hand, in the spleen reduction of MØ number seems to parallel increase in MMCs. Collectively, these data suggest that polyphenol-administered sea bass generate lower levels of intestinal proinflammatory cytokines, while producing larger amounts of spleen IFN-γ, as an expression of a robust and protective adaptive immune response. Increase of MMCs corroborates the evidence for a protective spleen response induced by feed enriched with polyphenols. PMID:26779301

  14. Regulation of Intestinal Immune System by Dendritic Cells

    PubMed Central

    Ko, Hyun-Jeong

    2015-01-01

    Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell. PMID:25713503

  15. Immunostimulatory complexes containing Eimeria tenella antigens and low toxicity plant saponins induce antibody response and provide protection from challenge in broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunostimulating complexes (ISCOMs) are unique multimolecular structures formed by encapsulating antigens, lipids and triterpene saponins and are one of the most successful antigen delivery systems for microbial antigens. In the current study, both the route of administration and the antigen conce...

  16. Cutaneous lymphocyte antigen expression on human effector B cells depends on the site and on the nature of antigen encounter.

    PubMed

    Kantele, Anu; Savilahti, Erkki; Tiimonen, Heidi; Iikkanen, Katja; Autio, Soile; Kantele, Jussi M

    2003-12-01

    In contrast to T cells, information on skin-homing B cells expressing the cutaneous lymphocyte antigen (CLA) is sparse. CLA expression on human B cells was investigated among circulating immunoglobulin-secreting cells (ISC) and among antigen-specific antibody-secreting cells (ASC) elicited by parenteral, oral or rectal primary immunization, or by parenteral or oral secondary immunization with Salmonella typhi Ty21a. CLA expression was examined by combining cell sorting with an enzyme-linked immunospot assay. Among all ISC, the proportion of CLA(+) cells was 13-21%. Parenteral immunization induced antigen-specific ASC of which 13% were CLA(+), while oral and rectal immunizations were followed by only 1% of CLA(+) ASC (p<0.001). Oral re-immunization was followed by an up-regulation of CLA (34-48%) regardless of the route of priming. Parenteral re-immunization elicited ASC of which 9-14% were CLA(+). In conclusion, the expression of CLA on human effector B cells depends on the site of antigen encounter: intestinal stimulation elicits cells with no CLA, while parenteral encounter elicits significant numbers of CLA(+) cells. Even though primary antigen encounter in the intestine failed to stimulate CLA expression, up-regulation of CLA was found upon intestinal antigen re-encounter. These findings may be of relevance in the pathogenesis of some cutaneous disorders. PMID:14635035

  17. [First part: the intestinal microbiota].

    PubMed

    Capurso, Lucio

    2016-06-01

    The human gastrointestinal tract contains a large number of commensal (non pathogenic) and pathogenic microbial species that have co-evolved with the human genome and differ in composition and function based on their location, as well as age, sex, race/ethnicity, and diet of their host and we can in fact consider the human body as a mix of human and bacterial cells. It is now evident that the large intestine is much more than an organ for waste material and absorption of water, salts and drugs, and indeed has a very important impact on human health, for a major part related to the specific composition of the complex microbial community in the colon. In man, the large gut receives material from the ileum which has already been digested and the contents are then mixed and retained for 6-12 hours in the caecum and right colon. Thus, the large intestine is an open system, with nutrients flowing in the caecum, and bacteria, their metabolic products, and undigested foodstuffs being excreted as faeces. The anaerobic brakdown of carbohydrate and protein by bacteria is known conventionally as fermentation. In man the major end products are the short-chain fatty acids (SCFA) acetate, propionate, butirate, the gases H2 and CO2, ammonia, amines, phenols and energy, which the bacteria use for growth and the maintenance of cellular function. The microbiota is also an important factor in the development of the immune response. The interaction between the gastrointestinal tract and resident microbiota is well balanced in healthy individuals, but its breakdown can lead to intestinal and extraintestinal disease. PMID:27362717

  18. The equine intestinal microbiome.

    PubMed

    Costa, Marcio C; Weese, J Scott

    2012-06-01

    The equine intestinal tract contains a complex microbial population (microbiota) that plays an important role in health and disease. Despite the undeniable importance of a 'normal' microbiota, understanding of the composition and function of this population is currently limited. As methods to characterize the microbiota and its genetic makeup (the microbiome) have evolved, the composition and complexity of this population are starting to be revealed. As is befitting a hindgut fermenter, members of the Firmicutes phylum appear to predominate, yet there are significant populations of numerous other phyla. The microbiome appears to be profoundly altered in certain disease states, and better understanding of these alterations may offer hope for novel preventive and therapeutic measures. The development and increasing availability of next generation sequencing and bioinformatics methods offer a revolution in microbiome evaluation and it is likely that significant advances will be made in the near future. Yet, proper use of these methods requires further study of basic aspects such as optimal testing protocols, the relationship of the fecal microbiome to more proximal locations where disease occurs, normal intra- and inter-horse variation, seasonal variation, and similar factors. PMID:22626511

  19. [Intestinal dysbacteriosis promotes intestinal intraepithelial T lymphocyte activation and proinflammatory cytokine secretion in mice].

    PubMed

    Luo, Xia; Luo, Shuang; Zheng, Yanyi; Wen, Ruyan; Deng, Xiangliang; Zhou, Lian

    2016-08-01

    Objective To study the effect of intestinal dysbacteriosis on mouse intestinal intraepithelial T lymphocytes (iIELs). Methods The intestinal dysbacteriosis was induced in mice by oral administration of ceftriaxone sodium. The iIELs were digested with ethylene diaminetetraacetic acid (EDTA) and DL-dithiothreitol (DTT). The phenotype of iIELs and the proportions of subsets of T cells were detected by flow cytometry; the concentrations of cytokines (IL-2, IL-6, IFN-γ) in the intestine were examined by ELISA; the intestinal bacteria were analyzed with selective medium and PCR. Results Compared with the control group, intestinal commensal bacteria in mice were significantly reduced after the administration of ceftriaxone sodium, but fungi and yeasts increased. The proportions of T cell subgroups in ilELs changed, in which the proportion of TCR γδ(+)T cells significantly increased, and the activated CD3(+)T, CD8(+)T and TCR γδ(+)T cells increased. The concentrations of IL-2, IL-6 and IFN-γ were significantly raised in the intestine. Conclusion The dysbacteriosis results in the decrease of commensal bacteria, the increase of the fungus, the damage of microbial barrier, the more activated T cells in ilELs and the promotion of proinflammatory cytokine secretion in the gut. This is probably one of the reasons for inflammatory bowel disease caused by dysbacteriosis. PMID:27412931

  20. Tipping elements in the human intestinal ecosystem

    PubMed Central

    Lahti, Leo; Salojärvi, Jarkko; Salonen, Anne; Scheffer, Marten; de Vos, Willem M.

    2014-01-01

    The microbial communities living in the human intestine can have profound impact on our well-being and health. However, we have limited understanding of the mechanisms that control this complex ecosystem. Here, based on a deep phylogenetic analysis of the intestinal microbiota in a thousand western adults, we identify groups of bacteria that exhibit robust bistable abundance distributions. These bacteria are either abundant or nearly absent in most individuals, and exhibit decreased temporal stability at the intermediate abundance range. The abundances of these bimodally distributed bacteria vary independently, and their abundance distributions are not affected by short-term dietary interventions. However, their contrasting alternative states are associated with host factors such as ageing and overweight. We propose that the bistable groups reflect tipping elements of the intestinal microbiota, whose critical transitions may have profound health implications and diagnostic potential. PMID:25003530

  1. Obesity, fatty liver disease and intestinal microbiota

    PubMed Central

    Arslan, Nur

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder that is increasing in prevalence with the worldwide epidemic of obesity. NAFLD is the hepatic manifestation of the metabolic syndrome. The term NAFLD describes a spectrum of liver pathology ranges from simple steatosis to steatosis with inflammation nonalcoholic steatohepatitis and even cirrhosis. Metabolic syndrome and NAFLD also predict hepatocellular carcinoma. Many genetic and environmental factors have been suggested to contribute to the development of obesity and NAFLD, but the exact mechanisms are not known. Intestinal ecosystem contains trillions of microorganisms including bacteria, Archaea, yeasts and viruses. Several studies support the relationship between the intestinal microbial changes and obesity and also its complications, including insulin resistance and NAFLD. Given that the gut and liver are connected by the portal venous system, it makes the liver more vulnerable to translocation of bacteria, bacterial products, endotoxins or secreted cytokines. Altered intestinal microbiota (dysbiosis) may stimulate hepatic fat deposition through several mechanisms: regulation of gut permeability, increasing low-grade inflammation, modulation of dietary choline metabolism, regulation of bile acid metabolism and producing endogenous ethanol. Regulation of intestinal microbial ecosystem by diet modifications or by using probiotics and prebiotics as a treatment for obesity and its complications might be the issue of further investigations. PMID:25469013

  2. Vasoactive intestinal peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  3. Rotavirus antigen test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003349.htm Rotavirus antigen test To use the sharing features on this page, please enable JavaScript. The rotavirus antigen test detects rotavirus in the feces. This ...

  4. Diagnosis and treatment of small intestinal bacterial overgrowth.

    PubMed

    Ponziani, Francesca Romana; Gerardi, Viviana; Gasbarrini, Antonio

    2016-01-01

    A huge number of bacteria are hosted in the gastrointestinal tract, following a gradient increasing towards the colon. Gastric acid secretion and intestinal clearance provide the qualitative and quantitative partitioning of intestinal bacteria; small intestinal bacteria overgrowth (SIBO) occurs when these barrier mechanisms fail. Diagnosis of SIBO is challenging due to the low specificity of symptoms, the frequent association with other diseases of the gastrointestinal tract and the absence of optimal objective diagnostic tests. The therapeutic approach to SIBO is oriented towards resolving predisposing conditions, and is supported by antibiotic treatment to restore the normal small intestinal microflora and by modifications of dietary habits for symptomatic relief. In the near future, metagenomics and metabolomics will help to overcome the uncertainties of SIBO diagnosis and the pitfalls of therapeutic management, allowing the design of a personalized strategy based on the direct insight into the small intestinal microbial community. PMID:26636484

  5. Intestinal Microbiota in Inflammatory Bowel Disease and Carcinogenesis: Implication for Therapeutics.

    PubMed

    Bruner, S D; Jobin, C

    2016-06-01

    Trillions of bacteria inhabit our intestine, forming a community called the microbiota, whose contributions are essential to maintain host homeostasis. Disruption of this normal microbial-host communication network has deleterious consequences for the host and is associated with intestinal pathologies such as inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Here we present key concepts and mechanisms by which bacteria may participate in intestinal pathology, and discuss possible means to therapeutically target the microbiome. PMID:26850686

  6. Mouse models of intestinal inflammation and cancer.

    PubMed

    Westbrook, Aya M; Szakmary, Akos; Schiestl, Robert H

    2016-09-01

    Chronic inflammation is strongly associated with approximately one-fifth of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here, we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn's disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With

  7. Transcriptional Modulation of Intestinal Innate Defense/Inflammation Genes by Preterm Infant Microbiota in a Humanized Gnotobiotic Mouse Model

    PubMed Central

    Lu, Lei; Yu, Yueyue; Guo, Yuee; Wang, Yunwei; Chang, Eugene B.; Claud, Erika C.

    2015-01-01

    Background and Aims It is known that postnatal functional maturation of the small intestine is facilitated by microbial colonization of the gut. Preterm infants exhibit defects in gut maturation, weak innate immunity against intestinal infection and increased susceptibility to inflammatory disorders, all of which may be related to the inappropriate microbial colonization of their immature intestines. The earliest microbes to colonize the preterm infant gut encounter a naïve, immature intestine. Thus this earliest microbiota potentially has the greatest opportunity to fundamentally influence intestinal development and immune function. The aim of this study was to characterize the effect of early microbial colonization on global gene expression in the distal small intestine during postnatal gut development. Methods Gnotobiotic mouse models with experimental colonization by early (prior to two weeks of life) intestinal microbiota from preterm human infants were utilized. Microarray analysis was used to assess global gene expression in the intestinal epithelium. Results and Conclusion Multiple intestinal genes involved in metabolism, cell cycle regulation, cell-cell or cell-extracellular matrix communication, and immune function are developmental- and intestinal microbiota- regulated. Using a humanized gnotobiotic mouse model, we demonstrate that certain early preterm infant microbiota from prior to 2 weeks of life specifically induce increased NF-κB activation and a phenotype of increased inflammation whereas other preterm microbiota specifically induce decreased NF-κB activation. These fundamental differences correlate with altered clinical outcomes and suggest the existence of optimal early microbial communities to improve health outcomes. PMID:25928420

  8. Vertebrate Intestinal Endoderm Development

    PubMed Central

    Spence, Jason R.; Lauf, Ryan; Shroyer, Noah F.

    2010-01-01

    The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes. PMID:21246663

  9. Hepatic Injury in Nonalcoholic Steatohepatitis Contributes to Altered Intestinal Permeability

    PubMed Central

    Luther, Jay; Garber, John J.; Khalili, Hamed; Dave, Maneesh; Bale, Shyam Sundhar; Jindal, Rohit; Motola, Daniel L.; Luther, Sanjana; Bohr, Stefan; Jeoung, Soung Won; Deshpande, Vikram; Singh, Gurminder; Turner, Jerrold R.; Yarmush, Martin L.; Chung, Raymond T.; Patel, Suraj J.

    2015-01-01

    BACKGROUND & AIMS Emerging data suggest that changes in intestinal permeability and increased gut microbial translocation contribute to the inflammatory pathway involved in nonalcoholic steatohepatitis (NASH) development. Numerous studies have investigated the association between increased intestinal permeability and NASH. Our meta-analysis of this association investigates the underlying mechanism. METHODS A meta-analysis was performed to compare the rates of increased intestinal permeability in patients with NASH and healthy controls. To further address the underlying mechanism of action, we studied changes in intestinal permeability in a diet-induced (methionine-and-choline-deficient; MCD) murine model of NASH. In vitro studies were also performed to investigate the effect of MCD culture medium at the cellular level on hepatocytes, Kupffer cells, and intestinal epithelial cells. RESULTS Nonalcoholic fatty liver disease (NAFLD) patients, and in particular those with NASH, are more likely to have increased intestinal permeability compared with healthy controls. We correlate this clinical observation with in vivo data showing mice fed an MCD diet develop intestinal permeability changes after an initial phase of liver injury and tumor necrosis factor-α (TNFα) induction. In vitro studies reveal that MCD medium induces hepatic injury and TNFα production yet has no direct effect on intestinal epithelial cells. Although these data suggest a role for hepatic TNFα in altering intestinal permeability, we found that mice genetically resistant to TNFα-myosin light chain kinase (MLCK)–induced intestinal permeability changes fed an MCD diet still develop increased permeability and liver injury. CONCLUSIONS Our clinical and experimental results strengthen the association between intestinal permeability increases and NASH and also suggest that an early phase of hepatic injury and inflammation contributes to altered intestinal permeability in a fashion independent of TNF

  10. Establishment of Intestinal Bacteriology

    PubMed Central

    MITSUOKA, Tomotari

    2014-01-01

    Research on intestinal bacteria began around the end of the 19th century. During the last 5 decades of the 20th century, research on the intestinal microbiota made rapid progress. At first, in my work, I first developed a method of comprehensive analysis of the intestinal microbiota, and then I established classification and identification methods for intestinal anaerobes. Using these methods I discovered a number of ecological rules governing the intestinal microbiota and the role of the intestinl microbiota in health and disease. Moreover, using germfree animals, it was proven that the intestinal microbiota has a role in carcinogenesis and aging in the host. Thus, a new interdisciplinary field, “intestinal bacteriology” was established. PMID:25032084

  11. Early intestinal growth and development in poultry.

    PubMed

    Lilburn, M S; Loeffler, S

    2015-07-01

    While there are many accepted "facts" within the field of poultry science that are in truth still open for discussion, there is little debate with respect to the tremendous genetic progress that has been made with commercial broilers and turkeys (Havenstein et al., 2003, 2007). When one considers the changes in carcass development in poultry meat strains, these genetic "improvements" have not always been accompanied by correlated changes in other physiological systems and this can predispose some birds to developmental anomalies (i.e. ascites; Pavlidis et al., 2007; Wideman et al., 2013). Over the last decade, there has been increased interest in intestinal growth/health as poultry nutritionists have attempted to adopt new approaches to deal with the broader changes in the overall nutrition landscape. This landscape includes not only the aforementioned genetic changes but also a raft of governmental policies that have focused attention on the environment (phosphorus and nitrogen excretion), consumer pressure on the use of antibiotics, and renewable biofuels with its consequent effects on ingredient costs. Intestinal morphology has become a common research tool for assessing nutritional effects on the intestine but it is only one metric among many that can be used and histological results can often be interpreted in a variety of ways. This study will address the broader body of research on intestinal growth and development in commercial poultry and will attempt to integrate the topics of the intestinal: microbial interface and the role of the intestine as an immune tissue under the broad umbrella of intestinal physiology. PMID:25910905

  12. Gut Microbiome: Westernization and the Disappearance of Intestinal Diversity.

    PubMed

    Segata, Nicola

    2015-07-20

    The environment shapes our intestinal microbiome. By contrasting the gut microbiomes of African hunter-gatherer and European subjects, a new study reveals that urbanization is associated with a loss of microbial organisms and genes. What will be the consequences of the lost biodiversity in the sanitized, western-diet world? PMID:26196489

  13. Immune and genetic gardening of the intestinal microbiome

    PubMed Central

    Jacobs, Jonathan P.; Braun, Jonathan

    2014-01-01

    The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to nonpathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility. PMID:24613921

  14. Diet and the Intestinal Microbiome: Associations, Functions, and Implications for Health and Disease

    PubMed Central

    Albenberg, Lindsey G.; Wu, Gary D.

    2014-01-01

    The mutual relationship between the intestinal microbiota and its mammalian host is influenced by diet. Consumption of various nutrients affects the structure of the microbial community and provides substrates for microbial metabolism. The microbiota can produce small molecules that are absorbed by the host and affect many important physiological processes. Age-dependent and societal differences in the intestinal microbiota could result from differences in diet. Examples include differences in the intestinal microbiota of breast- vs formula-fed infants, or differences in microbial richness in individuals consuming an agrarian plant-based vs a Western diet, which is high in meat and fat. We review how diet affects the structure and metabolome of the human intestinal microbiome, and may contribute to health or pathogenesis of disorders such as coronary vascular disease and inflammatory bowel diseases. PMID:24503132

  15. Diet and the intestinal microbiome: associations, functions, and implications for health and disease.

    PubMed

    Albenberg, Lindsey G; Wu, Gary D

    2014-05-01

    The mutual relationship between the intestinal microbiota and its mammalian host is influenced by diet. Consumption of various nutrients affects the structure of the microbial community and provides substrates for microbial metabolism. The microbiota can produce small molecules that are absorbed by the host and affect many important physiological processes. Age-dependent and societal differences in the intestinal microbiota could result from differences in diet. Examples include differences in the intestinal microbiota of breastfed vs formula-fed infants or differences in microbial richness in people who consume an agrarian plant-based vs a Western diet, which is high in meat and fat. We review how diet affects the structure and metabolome of the human intestinal microbiome and may contribute to health or the pathogenesis of disorders such as coronary vascular disease and inflammatory bowel disease. PMID:24503132

  16. Toll-like receptor signaling and regulation of intestinal immunity.

    PubMed

    Kamdar, Karishma; Nguyen, Vivien; DePaolo, R William

    2013-04-01

    The intestine is a complex organ that must maintain tolerance to innocuous food antigens and commensal microbiota while being also able to mount inflammatory responses against invading pathogenic microorganisms. The ability to restrain tolerogenic responses while permitting inflammatory responses requires communication between commensal bacteria, intestinal epithelial cells and immune cells. Disruption or improper signaling between any of these factors may lead to uncontrolled inflammation and the development of inflammatory diseases. Toll-like receptors (TLR) recognize conserved molecular motifs of microorganisms and, not surprisingly, are important for maintaining tolerance to commensal microbiota, as well as inducing inflammation against pathogens. Perturbations in individual TLR signaling can lead to a number of different outcomes and illustrate a system of regulation within the intestine in which each TLR plays a largely non-redundant role in mucosal immunity. This review will discuss recent findings on the roles of individual TLRs and intestinal homeostasis. PMID:23334153

  17. Intestinal lymphangiectasia in children

    PubMed Central

    Isa, Hasan M.; Al-Arayedh, Ghadeer G.; Mohamed, Afaf M.

    2016-01-01

    Intestinal lymphangiectasia (IL) is a rare disease characterized by dilatation of intestinal lymphatics. It can be classified as primary or secondary according to the underlying etiology. The clinical presentations of IL are pitting edema, chylous ascites, pleural effusion, acute appendicitis, diarrhea, lymphocytopenia, malabsorption, and intestinal obstruction. The diagnosis is made by intestinal endoscopy and biopsies. Dietary modification is the mainstay in the management of IL with a variable response. Here we report 2 patients with IL in Bahrain who showed positive response to dietary modification. PMID:26837404

  18. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism.

    PubMed

    He, Xuan; Slupsky, Carolyn M

    2014-12-01

    There is growing awareness that intestinal microbiota alters the energy harvesting capacity of the host and regulates metabolism. It has been postulated that intestinal microbiota are able to degrade unabsorbed dietary components and transform xenobiotic compounds. The resulting microbial metabolites derived from the gastrointestinal tract can potentially enter the circulation system, which, in turn, affects host metabolism. Yet, the metabolic capacity of intestinal microbiota and its interaction with mammalian metabolism remains largely unexplored. Here, we review a metabolic pathway that integrates the microbial catabolism of methionine with mammalian metabolism of methanethiol (MT), dimethyl sulfide (DMS), and dimethyl sulfoxide (DMSO), which together provide evidence that supports the microbial origin of dimethyl sulfone (DMSO2) in the human metabolome. Understanding the pathway of DMSO2 co-metabolism expends our knowledge of microbial-derived metabolites and motivates future metabolomics-based studies on ascertaining the metabolic consequences of intestinal microbiota on human health, including detoxification processes and sulfur xenobiotic metabolism. PMID:25245235

  19. Relationship between intestinal microbiota and colorectal cancer

    PubMed Central

    Cipe, Gokhan; Idiz, Ufuk Oguz; Firat, Deniz; Bektasoglu, Huseyin

    2015-01-01

    The human gastrointestinal tract hosts a complex and vast microbial community with up to 1011-1012 microorganisms colonizing the colon. The gut microbiota has a serious effect on homeostasis and pathogenesis through a number of mechanisms. In recent years, the relationship between the intestinal microbiota and sporadic colorectal cancer has attracted much scientific interest. Mechanisms underlying colonic carcinogenesis include the conversion of procarcinogenic diet-related factors to carcinogens and the stimulation of procarcinogenic signaling pathways in luminal epithelial cells. Understanding each of these mechanisms will facilitate future studies, leading to the development of novel strategies for the diagnosis, treatment, and prevention of colorectal cancer. In this review, we discuss the relationship between colorectal cancer and the intestinal microbiota. PMID:26483877

  20. Intestinal transport and metabolism of bile acids

    PubMed Central

    Dawson, Paul A.; Karpen, Saul J.

    2015-01-01

    In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150

  1. The Intestinal Microbiota in Health and Disease

    PubMed Central

    Young, Vincent B.

    2013-01-01

    Purpose of review The indigenous gut microbiota has been shown to be a key player in maintaining gastrointestinal homeostasis. This review discusses some of the recent work that reveals how the gut microbiome helps establish and protect intestinal health and how disturbances in this microbial community can lead to disease states. Recent findings The use of culture-independent methods has greatly improved our ability to determine the structure and function of the gut microbiome. The gut microbiota has critical interactions with the host immune system and metabolism with bilateral influences shaping both the host and the microbiome. Alterations in the gut microbiome are associated with a variety of disease states but we are only now beginning to understand the mechanisms by which this occurs. Summary Understanding how the gut microbiome contributes to intestinal health should lead to novel preventative strategies and therapies for a variety of gastrointestinal conditions. PMID:22080827

  2. [The biliary intestinal obstruction].

    PubMed

    Demetrashvili, Z M; Asatiani, G A; Nemsadze, G Sh; Kenchadze, G Z

    2012-01-01

    The successful experience of treatment of 3 patients with biliary intestinal obstruction is depicted. The most informative means of diagnostics was the multispiral computed tomography. Authors state, that the volume of the operation should include only the liquidation of the intestinal obstruction. The simultaneous biliodigestive fistulae closure should be performed only in rare situations. PMID:22678540

  3. Suppression by Trypanosoma brucei of anaphylaxis-mediated ion transport in the small intestine of rats.

    PubMed Central

    Gould, S S; Castro, G A

    1994-01-01

    The hypothesis that failure of hosts infected with Trypanosoma brucei to express type 1 hypersensitivity is related to this parasite's ability to down-regulate IgE production, and not to an innate lack of allergenicity of T. brucei antigens, was tested by studying anaphylaxis-induced changes in net epithelial ion transport in rats. Transport changes were quantified electrophysiologically in vitro, as a change in transmural short-circuit current when sensitized intestine was challenged with homologous antigen. Rats injected parenterally with trypanosome antigen elicited intestinal anaphylaxis in response to antigenic challenge, whereas the intestine of rats infected with T. brucei failed to respond. Infection with T. brucei also suppressed the anaphylactic response in rats sensitized to and challenged with ovalbumin and T. spiralis-derived antigens. In these cases suppression was related to the ability of T. brucei to block production of IgE, and not to the physiological failure of the epithelial response. However, in rats sensitized by infection with T. spiralis, neither the anaphylactic response nor IgE production were inhibited by T. brucei. Furthermore, intestinal mastocytosis normally associated with trichinosis was unaffected by the trypanosome infection. Results support the conclusion that the failure to express anaphylaxis in T. brucei-infected rats is due to the inhibition of IgE production and not to the lack of allergenicity of trypanosome antigens. PMID:8206518

  4. Transcutaneous antigen delivery system

    PubMed Central

    Lee, Mi-Young; Shin, Meong-Cheol; Yang, Victor C.

    2013-01-01

    Transcutaneous immunization refers to the topical application of antigens onto the epidermis. Transcutaneous immunization targeting the Langerhans cells of the skin has received much attention due to its safe, needle-free, and noninvasive antigen delivery. The skin has important immunological functions with unique roles for antigen-presenting cells such as epidermal Langerhans cells and dermal dendritic cells. In recent years, novel vaccine delivery strategies have continually been developed; however, transcutaneous immunization has not yet been fully exploited due to the penetration barrier represented by the stratum corneum, which inhibits the transport of antigens and adjuvants. Herein we review recent achievements in transcutaneous immunization, focusing on the various strategies for the enhancement of antigen delivery and vaccination efficacy. [BMB Reports 2013; 46(1): 17-24] PMID:23351379

  5. Microbial ecosystems therapeutics: a new paradigm in medicine?

    PubMed

    Petrof, E O; Claud, E C; Gloor, G B; Allen-Vercoe, E

    2013-03-01

    Increasing evidence indicates that the complex microbial ecosystem of the human intestine plays a critical role in protecting the host against disease. This review discusses gut dysbiosis (here defined as a state of imbalance in the gut microbial ecosystem, including overgrowth of some organisms and loss of others) as the foundation for several diseases, and the applicability of refined microbial ecosystem replacement therapies as a future treatment modality. Consistent with the concept of a 'core' microbiome encompassing key functions required for normal intestinal homeostasis, 'Microbial Ecosystem Therapeutics' (MET) would entail replacing a dysfunctional, damaged ecosystem with a fully developed and healthy ecosystem of 'native' intestinal bacteria. Its application in treating Clostridium difficile infection is discussed and possible applications to other diseases such as ulcerative colitis, obesity, necrotising enterocolitis, and regressive-type autism are reviewed. Unlike conventional probiotic therapies that are generally limited to a single strain or at most a few strains of bacteria 'Microbial Ecosystem Therapeutics' would utilise whole bacterial communities derived directly from the human gastrointestinal tract. By taking into account the intrinsic needs of the entire microbial ecosystem, MET would emphasise the rational design of healthy, resilient and robust microbial communities that could be used to maintain or restore human health. More than simply a new probiotic treatment, this emerging paradigm in medicine may lead to novel strategies in treating and managing a wide variety of human diseases. PMID:23257018

  6. Engineering of Isogenic Cells Deficient for MR1 with a CRISPR/Cas9 Lentiviral System: Tools To Study Microbial Antigen Processing and Presentation to Human MR1-Restricted T Cells.

    PubMed

    Laugel, Bruno; Lloyd, Angharad; Meermeier, Erin W; Crowther, Michael D; Connor, Thomas R; Dolton, Garry; Miles, John J; Burrows, Scott R; Gold, Marielle C; Lewinsohn, David M; Sewell, Andrew K

    2016-08-01

    The nonclassical HLA molecule MHC-related protein 1 (MR1) presents metabolites of the vitamin B synthesis pathways to mucosal-associated invariant T (MAIT) cells and other MR1-restricted T cells. This new class of Ags represents a variation on the classical paradigm of self/non-self discrimination because these T cells are activated through their TCR by small organic compounds generated during microbial vitamin B2 synthesis. Beyond the fundamental significance, the invariant nature of MR1 across the human population is a tantalizing feature for the potential development of universal immune therapeutic and diagnostic tools. However, many aspects of MR1 Ag presentation and MR1-restricted T cell biology remain unknown, and the ubiquitous expression of MR1 across tissues and cell lines can be a confounding factor for experimental purposes. In this study, we report the development of a novel CRISPR/Cas9 genome editing lentiviral system and its use to efficiently disrupt MR1 expression in A459, THP-1, and K562 cell lines. We generated isogenic MR1(-/-) clonal derivatives of the A549 lung carcinoma and THP-1 monocytic cell lines and used these to study T cell responses to intracellular pathogens. We confirmed that MAIT cell clones were unable to respond to MR1(-/-) clones infected with bacteria whereas Ag presentation by classical and other nonclassical HLAs was unaffected. This system represents a robust and efficient method to disrupt the expression of MR1 and should facilitate investigations into the processing and presentation of MR1 Ags as well as into the biology of MAIT cells. PMID:27307560

  7. Engineering of Isogenic Cells Deficient for MR1 with a CRISPR/Cas9 Lentiviral System: Tools To Study Microbial Antigen Processing and Presentation to Human MR1-Restricted T Cells

    PubMed Central

    Lloyd, Angharad; Meermeier, Erin W.; Crowther, Michael D.; Connor, Thomas R.; Dolton, Garry; Miles, John J.; Burrows, Scott R.; Gold, Marielle C.; Lewinsohn, David M.

    2016-01-01

    The nonclassical HLA molecule MHC-related protein 1 (MR1) presents metabolites of the vitamin B synthesis pathways to mucosal-associated invariant T (MAIT) cells and other MR1-restricted T cells. This new class of Ags represents a variation on the classical paradigm of self/non-self discrimination because these T cells are activated through their TCR by small organic compounds generated during microbial vitamin B2 synthesis. Beyond the fundamental significance, the invariant nature of MR1 across the human population is a tantalizing feature for the potential development of universal immune therapeutic and diagnostic tools. However, many aspects of MR1 Ag presentation and MR1-restricted T cell biology remain unknown, and the ubiquitous expression of MR1 across tissues and cell lines can be a confounding factor for experimental purposes. In this study, we report the development of a novel CRISPR/Cas9 genome editing lentiviral system and its use to efficiently disrupt MR1 expression in A459, THP-1, and K562 cell lines. We generated isogenic MR1−/− clonal derivatives of the A549 lung carcinoma and THP-1 monocytic cell lines and used these to study T cell responses to intracellular pathogens. We confirmed that MAIT cell clones were unable to respond to MR1−/− clones infected with bacteria whereas Ag presentation by classical and other nonclassical HLAs was unaffected. This system represents a robust and efficient method to disrupt the expression of MR1 and should facilitate investigations into the processing and presentation of MR1 Ags as well as into the biology of MAIT cells. PMID:27307560

  8. Intestinal Epithelium and Autophagy: Partners in Gut Homeostasis

    PubMed Central

    Randall-Demllo, Sarron; Chieppa, Marcello; Eri, Rajaraman

    2013-01-01

    One of the most significant challenges of cell biology is to understand how each type of cell copes with its specific workload without suffering damage. Among the most intriguing questions concerns intestinal epithelial cells in mammals; these cells act as a barrier between the internally protected region and the external environment that is exposed constantly to food and microbes. A major process involved in the processing of microbes is autophagy. In the intestine, through multiple, complex signaling pathways, autophagy including macroautophagy and xenophagy is pivotal in mounting appropriate intestinal immune responses and anti-microbial protection. Dysfunctional autophagy mechanism leads to chronic intestinal inflammation, such as inflammatory bowel disease (IBD). Studies involving a number of in vitro and in vivo mouse models in addition to human clinical studies have revealed a detailed role for autophagy in the generation of chronic intestinal inflammation. A number of genome-wide association studies identified roles for numerous autophagy genes in IBD, especially in Crohn’s disease. In this review, we will explore in detail the latest research linking autophagy to intestinal homeostasis and how alterations in autophagy pathways lead to intestinal inflammation. PMID:24137160

  9. Controlling Salmonella infection in weanling pigs through water delivery of direct-fed microbials or organic acids; Part I. Effects on growth performance, microbial populations and immune status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pigs (n=88) weaned at 19 ± 2 d of age were used in a 14 d study to evaluate the effects of water-delivered direct-fed microbials (DFM) or organic acids on immune status, Salmonella infection and shedding, and intestinal microbial populations following a Salmonella Typhimurium challenge. Pigs were ch...

  10. Potentially conflicting selective forces that shape the vls antigenic variation system in Borrelia burgdorferi

    PubMed Central

    Zhou, Wei; Brisson, Dustin

    2014-01-01

    Changing environmental conditions present an evolutionary challenge for all organisms. The environment of microbial pathogens, including the adaptive immune responses of the infected host, changes rapidly and is lethal to the pathogen lineages that cannot quickly adapt. The dynamic immune environment creates strong selective pressures favoring microbial pathogen lineages with antigenic variation systems that maximize the antigenic divergence among expressed antigenic variants. However, divergence among expressed antigens may be constrained by other molecular features such as the efficient expression of functional proteins. We computationally examined potential conflicting selection pressures on antigenic variation systems using the vls antigenic variation system in Borrelia burgdorferi as a model system. The vls system alters the sequence of the expressed antigen by recombining gene fragments from unexpressed but divergent ‘cassettes’ into the expression site, vlsE. The in silico analysis of natural and altered cassettes from seven lineages in the B. burgdorferi sensu lato species complex revealed that sites that are polymorphic among unexpressed cassettes, as well as the insertion/deletion mutations, are organized to maximize divergence among the expressed antigens within the constraints of translational ability and high translational efficiency. This study provides empirical evidence that conflicting selection pressures on antigenic variation systems can limit the potential antigenic divergence in order to maintain proper molecular function. PMID:24837669

  11. Oral immunisation of pigs with fimbrial antigens of enterotoxigenic E. coli: an interesting model to study mucosal immune mechanisms.

    PubMed

    Cox, Eric; Van der Stede, Yves; Verdonck, Frank; Snoeck, Veerle; Van den Broeck, Wim; Goddeeris, Bruno

    2002-09-10

    The intestinal mucosal immune system can discriminate actively between harmful pathogenic agents and harmless food antigens resulting in different immune responses namely IgA production and oral tolerance, respectively. Recently, a pig model has been developed for studying intestinal mucosal immune responses in which F4 fimbrial antigens of enterotoxigenic Escherichia coli (F4 ETEC) are used as oral antigens. A unique feature of this model is that soluble F4 antigens can be administered to pigs which have a receptor for this fimbriae (F4R(+)) on their small intestinal villous enterocytes and pigs which do not have this receptor (F4R(-)). Oral administration of F4 to the F4R(+) pigs results in an intestinal mucosal immune response that completely protects the pigs against a challenge infection. In F4R(-) pigs such an intestinal mucosal immune response does not occur. However, a priming of the systemic immune system can be seen similar to the priming in pigs fed with the same dose of a food antigen, suggesting that F4 in F4R(-) pigs behaves as a food antigen. The fact that different mucosal immune responses can be induced with soluble F4, makes it an interesting model to study mucosal immune mechanisms in the pig. PMID:12072248

  12. Intestinal adaptation after massive intestinal resection

    PubMed Central

    Weale, A; Edwards, A; Bailey, M; Lear, P

    2005-01-01

    Patients with short bowel syndrome require long term parenteral nutrition support. However, after massive intestinal resection the intestine undergoes adaptation and nutritional autonomy may be obtained. Given that the complications of parenteral nutrition may be life threatening or result in treatment failure and the need for intestinal transplantation, a more attractive option is to wean patients off nutrition support by optimising the adaptive process. The article examines the evidence that after extensive small bowel resection adaptation occurs in humans and focuses on the factors that influence adaptation and the strategies that have been used to optimise this process. The review is based on an English language Medline search with secondary references obtained from key articles. There is evidence that adaptation occurs in humans. Adaptation is a complex process that results in response to nutrient and non-nutrient stimuli. Successful and reproducible strategies to improve adaptation remain elusive despite an abundance of experimental data. Nevertheless given the low patient survival and quality of life associated with other treatments for irreversible intestinal failure it is imperative that clinical research continues into the optimisation of the adaptation. PMID:15749794

  13. Early life establishment of site-specific microbial communities in the gut

    PubMed Central

    Romano-Keeler, Joann; Moore, Daniel J; Wang, Chunlin; Brucker, Robert M; Fonnesbeck, Christopher; Slaughter, James C; Li, Haijing; Curran, Danielle P; Meng, Shufang; Correa, Hernan; Lovvorn III, Harold N; Tang, Yi-Wei; Bordenstein, Seth; George Jr, Alfred L; Weitkamp, Jörn-Hendrik

    2014-01-01

    Fecal sampling is widely utilized to define small intestinal tissue-level microbial communities in healthy and diseased newborns. However, this approach may lead to inaccurate assessments of disease or therapeutics in newborns because of the assumption that the taxa in the fecal microbiota are representative of the taxa present throughout the gastrointestinal tract. To assess the stratification of microbes in the newborn gut and to evaluate the probable shortcoming of fecal sampling in place of tissue sampling, we simultaneously compared intestinal mucosa and fecal microbial communities in 15 neonates undergoing intestinal resections. We report three key results. First, when the site of fecal and mucosal samples are further apart, their microbial communities are more distinct, as indicated by low mean Sørensen similarity indices for each patient's fecal and tissue microbiota. Second, two distinct niches (intestinal mucosa and fecal microbiota) are evident by principal component analyses, demonstrating the critical role of sample source in defining microbial composition. Finally, in contrast to adult studies, intestinal bacterial diversity was higher in tissue than in fecal samples. This study represents an unprecedented map of the infant microbiota from intestinal mucosa and establishes discernable biogeography throughout the neonatal gastrointestinal tract. Our results question the reliance on fecal microbiota as a proxy for the developing intestinal microbiota. Additionally, the robust intestinal tissue-level bacterial diversity we detected at these early ages may contribute to the maturation of mucosal immunity. PMID:24637795

  14. Extra intestinal manifestations and complications in inflammatory bowel disease.

    PubMed

    Marineaţă, Anca; Rezuş, Elena; Mihai, Cătălina; Prelipcean, Cristina Cijevschi

    2014-01-01

    Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), doesn't affect only the intestinal tract, but also involve other organs such as: eyes, skin, joints, liver and biliary tracts, kidneys, lungs, vascular system. It is difficult to differentiate the true extraintestinal manifestations from secondary extraintestinal complications. The pathogenetic autoimmune mechanisms include genetic susceptibility, antigenic display of autoantigen, aberrant self-recognition and immunopathogenetic autoantibodies against organ-specific cellular antigens shared by colon and extra-colonic organs. An important role is owned by microbes due to molecular mimicry. This paper reviews the frequency, clinical presentation and therapeutic implications of extraintestinal symptoms in inflammatory bowel diseases. PMID:25076688

  15. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-03-19

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  16. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-05-15

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  17. Regulation of protein synthesis and autophagy in activated dendritic cells: implications for antigen processing and presentation.

    PubMed

    Argüello, Rafael J; Reverendo, Marisa; Gatti, Evelina; Pierre, Philippe

    2016-07-01

    Antigenic peptides presented in the context of major histocompatibility complex (MHC) molecules originate from the degradation of both self and non-self proteins. T cells can therefore recognize at the surface of surveyed cells, the self-peptidome produced by the cell itself (mostly inducing tolerance) or immunogenic peptides derived from exogenous origins. The initiation of adaptive immune responses by dendritic cells (DCs), through the antigenic priming of naïve T cells, is associated to microbial pattern recognition receptors engagement. Activation of DCs by microbial product or inflammatory cytokines initiates multiple processes that maximize DC capacity to present exogenous antigens and stimulate T cells by affecting major metabolic and membrane traffic pathways. These include the modulation of protein synthesis, the regulation of MHC and co-stimulatory molecules transport, as well as the regulation of autophagy, that, all together promote exogenous antigen presentation while limiting the display of self-antigens by MHC molecules. PMID:27319340

  18. Consumption of Rice Bran Increases Mucosal Immunoglobulin A Concentrations and Numbers of Intestinal Lactobacillus spp.

    PubMed Central

    Henderson, Angela J.; Kumar, Ajay; Barnett, Brittany; Dow, Steven W.

    2012-01-01

    Abstract Gut-associated lymphoid tissue maintains mucosal homeostasis by combating pathogens and inducing a state of hyporesponsiveness to food antigens and commensal bacteria. Dietary modulation of the intestinal immune environment represents a novel approach for enhancing protective responses against pathogens and inflammatory diseases. Dietary rice bran consists of bioactive components with disease-fighting properties. Therefore, we conducted a study to determine the effects of whole dietary rice bran intake on mucosal immune responses and beneficial gut microbes. Mice were fed a 10% rice bran diet for 28 days. Serum and fecal samples were collected throughout the study to assess total immunoglobulin A (IgA) concentrations. Tissue samples were collected for cellular immune phenotype analysis, and concentrations of native gut Lactobacillus spp. were enumerated in the fecal samples. We found that dietary rice bran induced an increase in total IgA locally and systemically. In addition, B lymphocytes in the Peyer's patches of mice fed rice bran displayed increased surface IgA expression compared with lymphocytes from control mice. Antigen-presenting cells were also influenced by rice bran, with a significant increase in myeloid dendritic cells residing in the lamina propria and mesenteric lymph nodes. Increased colonization of native Lactobacillus was observed in rice bran–fed mice compared with control mice. These findings suggest that rice bran–induced microbial changes may contribute to enhanced mucosal IgA responses, and we conclude that increased rice bran consumption represents a promising dietary intervention to modulate mucosal immunity for protection against enteric infections and induction of beneficial gut bacteria. PMID:22248178

  19. Pediatric intestinal motility disorders

    PubMed Central

    Gfroerer, Stefan; Rolle, Udo

    2015-01-01

    Pediatric intestinal motility disorders affect many children and thus not only impose a significant impact on pediatric health care in general but also on the quality of life of the affected patient. Furthermore, some of these conditions might also have implications for adulthood. Pediatric intestinal motility disorders frequently present as chronic constipation in toddler age children. Most of these conditions are functional, meaning that constipation does not have an organic etiology, but in 5% of the cases, an underlying, clearly organic disorder can be identified. Patients with organic causes for intestinal motility disorders usually present in early infancy or even right after birth. The most striking clinical feature of children with severe intestinal motility disorders is the delayed passage of meconium in the newborn period. This sign is highly indicative of the presence of Hirschsprung disease (HD), which is the most frequent congenital disorder of intestinal motility. HD is a rare but important congenital disease and the most significant entity of pediatric intestinal motility disorders. The etiology and pathogenesis of HD have been extensively studied over the last several decades. A defect in neural crest derived cell migration has been proven as an underlying cause of HD, leading to an aganglionic distal end of the gut. Numerous basic science and clinical research related studies have been conducted to better diagnose and treat HD. Resection of the aganglionic bowel remains the gold standard for treatment of HD. Most recent studies show, at least experimentally, the possibility of a stem cell based therapy for HD. This editorial also includes rare causes of pediatric intestinal motility disorders such as hypoganglionosis, dysganglionosis, chronic intestinal pseudo-obstruction and ganglioneuromatosis in multiple endocrine metaplasia. Underlying organic pathologies are rare in pediatric intestinal motility disorders but must be recognized as early as

  20. Pediatric intestinal motility disorders.

    PubMed

    Gfroerer, Stefan; Rolle, Udo

    2015-09-01

    Pediatric intestinal motility disorders affect many children and thus not only impose a significant impact on pediatric health care in general but also on the quality of life of the affected patient. Furthermore, some of these conditions might also have implications for adulthood. Pediatric intestinal motility disorders frequently present as chronic constipation in toddler age children. Most of these conditions are functional, meaning that constipation does not have an organic etiology, but in 5% of the cases, an underlying, clearly organic disorder can be identified. Patients with organic causes for intestinal motility disorders usually present in early infancy or even right after birth. The most striking clinical feature of children with severe intestinal motility disorders is the delayed passage of meconium in the newborn period. This sign is highly indicative of the presence of Hirschsprung disease (HD), which is the most frequent congenital disorder of intestinal motility. HD is a rare but important congenital disease and the most significant entity of pediatric intestinal motility disorders. The etiology and pathogenesis of HD have been extensively studied over the last several decades. A defect in neural crest derived cell migration has been proven as an underlying cause of HD, leading to an aganglionic distal end of the gut. Numerous basic science and clinical research related studies have been conducted to better diagnose and treat HD. Resection of the aganglionic bowel remains the gold standard for treatment of HD. Most recent studies show, at least experimentally, the possibility of a stem cell based therapy for HD. This editorial also includes rare causes of pediatric intestinal motility disorders such as hypoganglionosis, dysganglionosis, chronic intestinal pseudo-obstruction and ganglioneuromatosis in multiple endocrine metaplasia. Underlying organic pathologies are rare in pediatric intestinal motility disorders but must be recognized as early as

  1. Microbial prevalence in domestic humidifiers.

    PubMed Central

    Burge, H A; Solomon, W R; Boise, J R

    1980-01-01

    The prevalence of viable thermophilic bacteria and actinomycetes and mesophilic fungi was examined in 145 samples from 110 domestic humidifiers. A total of 72 and 43% of furnace and console humidifier samples, respectively, contained viable thermophilic bacteria, whereas 60 and 72% of these samples produced mesophilic fungal growth. Thermophilic actinomycetes were recovered from seven humidifier samples. Efforts to detect thermophilic actinomycete antigens in 15 humidifier fluid samples were not successful. Antifoulants added to humidifier fluid reservoirs had no apparent effect on microbial frequency. Airborne microbial recoveries did not reflect patterns of humidifier contamination with respect to either kinds or numbers of microorganisms in 20 homes in which volumetric air samples were obtained during humidifier operation. PMID:7377779

  2. Recognition of Microbial Glycolipids by Natural Killer T Cells

    PubMed Central

    Zajonc, Dirk M.; Girardi, Enrico

    2015-01-01

    T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell

  3. Breath Testing for Small Intestinal Bacterial Overgrowth: Should We Bother?

    PubMed

    Pimentel, Mark

    2016-03-01

    The hydrogen breath test is based on following breath hydrogen levels after the administration of a carbohydrate (most commonly lactulose) to a patient with suspected small intestinal bacterial overgrowth. The test is based on the interaction between the administered carbohydrate and the intestinal bacteria. The resulting fermentation produces hydrogen. A positive breath test is based on a breath hydrogen rise prior to the expected arrival time in the highly microbial cecum. Despite renewed enthusiasm for breath testing in recent years due to associations with conditions such as irritable bowel syndrome, breath testing poses many challenges. In this argument against breath testing, several pitfalls that complicate breath testing will be described. PMID:26902227

  4. Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation.

    PubMed

    Luettig, J; Rosenthal, R; Barmeyer, C; Schulzke, J D

    2015-01-01

    The epithelial tight junction determines the paracellular water and ion movement in the intestine and also prevents uptake of larger molecules, including antigens, in an uncontrolled manner. Claudin-2, one of the 27 mammalian claudins regulating that barrier function, forms a paracellular channel for small cations and water. It is typically expressed in leaky epithelia like proximal nephron and small intestine and provides a major pathway for the paracellular transport of sodium, potassium, and fluid. In intestinal inflammation (Crohn's disease, ulcerative colitis), immune-mediated diseases (celiac disease), and infections (HIV enteropathy), claudin-2 is upregulated in small and large intestine and contributes to diarrhea via a leak flux mechanism. In parallel to that upregulation, other epithelial and tight junctional features are altered and the luminal uptake of antigenic macromolecules is enhanced, for which claudin-2 may be partially responsible through induction of tight junction strand discontinuities. PMID:25838982

  5. Intestinal pseudo-obstruction

    MedlinePlus

    ... syndrome). Special diets often do not work. However, vitamin B12 and other vitamin supplements should be used for ... JM, Blackshaw LA. Small intestinal motor and sensory function and dysfunction. In: Feldman M, Friedman LS, Brandt ...

  6. Intestinal obstruction repair

    MedlinePlus

    ... organs in the body Formation of scar tissue ( adhesions ) Heart attack or stroke Infection, including the lungs, ... Saunders; 2010:chap 119. Read More Abdomen - swollen Adhesion Colostomy Cyst Intestinal obstruction Intussusception - children Large bowel ...

  7. Intestinal mucosal adaptation

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2006-01-01

    Intestinal failure is a condition characterized by malnutrition and/or dehydration as a result of the inadequate digestion and absorption of nutrients. The most common cause of intestinal failure is short bowel syndrome, which occurs when the functional gut mass is reduced below the level necessary for adequate nutrient and water absorption. This condition may be congenital, or may be acquired as a result of a massive resection of the small bowel. Following resection, the intestine is capable of adaptation in response to enteral nutrients as well as other trophic stimuli. Identifying factors that may enhance the process of intestinal adaptation is an exciting area of research with important potential clinical applications. PMID:16937429

  8. Microbial translocation in the pathogenesis of HIV infection and AIDS.

    PubMed

    Marchetti, Giulia; Tincati, Camilla; Silvestri, Guido

    2013-01-01

    In pathogenic simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) infections, the translocation of microbial products from the gastrointestinal (GI) tract to portal and systemic circulation has been proposed as a major driver of the chronic immune activation that is associated with disease progression. Consistently, microbial translocation is not present in nonpathogenic SIV infections of natural host species. In vivo studies demonstrated that HIV/SIV-associated microbial translocation results from a series of immunopathological events occurring at the GI mucosa: (i) early and severe mucosal CD4(+) depletion, (ii) mucosal immune hyperactivation/persistent inflammation; (iii) damage to the integrity of the intestinal epithelium with enterocyte apoptosis and tight junction disruption; and (iv) subverted the gut microbiome, with a predominance of opportunistic bacteria. Direct in situ evidence of microbial translocation has been provided for SIV-infected rhesus macaques showing translocated microbial products in the intestinal lamina propria and distant sites. While the mechanisms by which microbial translocation causes immune activation remain controversial, a key pathogenic event appears to be innate immunity activation via Toll-like receptors and other pathogen recognition receptors. Accumulating clinical observations suggest that microbial translocation might affect HIV disease progression, response to therapy, and non-AIDS comorbidities. Given its detrimental effect on overall immunity, several interventions to prevent/block microbial translocation are currently under investigation as novel therapeutic agents for HIV/AIDS. PMID:23297256

  9. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum

    PubMed Central

    Hsieh, Chen-Yu; Osaka, Toshifumi; Moriyama, Eri; Date, Yasuhiro; Kikuchi, Jun; Tsuneda, Satoshi

    2015-01-01

    Epithelial barrier dysfunction has been implicated as one of the major contributors to the pathogenesis of inflammatory bowel disease. The increase in intestinal permeability allows the translocation of luminal antigens across the intestinal epithelium, leading to the exacerbation of colitis. Thus, therapies targeted at specifically restoring tight junction barrier function are thought to have great potential as an alternative or supplement to immunology-based therapies. In this study, we screened Bifidobacterium, Enterococcus, and Lactobacillus species for beneficial microbes to strengthen the intestinal epithelial barrier, using the human intestinal epithelial cell line (Caco-2) in an in vitro assay. Some Bifidobacterium and Lactobacillus species prevented epithelial barrier disruption induced by TNF-α, as assessed by measuring the transepithelial electrical resistance (TER). Furthermore, live Bifidobacterium species promoted wound repair in Caco-2 cell monolayers treated with TNF-α for 48 h. Time course 1H-NMR-based metabonomics of the culture supernatant revealed markedly enhanced production of acetate after 12 hours of coincubation of B. bifidum and Caco-2. An increase in TER was observed by the administration of acetate to TNF-α-treated Caco-2 monolayers. Interestingly, acetate-induced TER-enhancing effect in the coculture of B. bifidum and Caco-2 cells depends on the differentiation stage of the intestinal epithelial cells. These results suggest that Bifidobacterium species enhance intestinal epithelial barrier function via metabolites such as acetate. PMID:25780093

  10. Intestinal ascariasis at pediatric emergency room in a developed country.

    PubMed

    Umetsu, Shuichiro; Sogo, Tsuyoshi; Iwasawa, Kentaro; Kondo, Takeo; Tsunoda, Tomoyuki; Oikawa-Kawamoto, Manari; Komatsu, Haruki; Inui, Ayano; Fujisawa, Tomoo

    2014-10-14

    Ascaris lumbricoides infection is rare among children in developed countries. Although large numbers of adult Ascaris in the small intestine can cause various abdominal symptoms, this infection remains asymptomatic until the number of worms in the intestine considerably increases in most cases. Ascaris causing bilious vomiting suggesting ileus is rare, especially in developed countries. A 6-year-old boy who lived in Japan, presented with abdominal colic, bilious vomiting at the pediatric emergency room. He appeared pale, and had no abdominal distention, tenderness, palpable abdominal mass, or findings of dehydration. He experienced bilious vomiting again during a physical examination. Laboratory tests showed mild elevation of white blood cells and C-reactive protein levels. Antigens of adenovirus, rotavirus, and norovirus were not detected from his stool, and stool culture showed normal flora. Ultrasonography showed multiple, round-shaped structures within the small intestine, and a tubular structure in a longitudinal scan of the small intestine. Capsule endoscopy showed a moving worm of Ascaris in the jejunum. Intestinal ascariasis should be considered as a cause of bilious vomiting in children, even at the emergency room in industrial countries. Ultrasound examination and capsule endoscopy are useful for diagnosis of pediatric intestinal ascariasis. PMID:25320546

  11. Epithelial tight junctions in intestinal inflammation.

    PubMed

    Schulzke, Joerg D; Ploeger, Svenja; Amasheh, Maren; Fromm, Anja; Zeissig, Sebastian; Troeger, Hanno; Richter, Jan; Bojarski, Christian; Schumann, Michael; Fromm, Michael

    2009-05-01

    The epithelium in inflamed intestinal segments of patients with Crohn's disease is characterized by a reduction of tight junction strands, strand breaks, and alterations of tight junction protein content and composition. In ulcerative colitis, epithelial leaks appear early due to micro-erosions resulting from upregulated epithelial apoptosis and in addition to a prominent increase of claudin-2. Th1-cytokine effects by interferon-gamma in combination with TNFalpha are important for epithelial damage in Crohn's disease, while interleukin-13 (IL-13) is the key effector cytokine in ulcerative colitis stimulating apoptosis and upregulation of claudin-2 expression. Focal lesions caused by apoptotic epithelial cells contribute to barrier disturbance in IBD by their own conductivity and by confluence toward apoptotic foci or erosions. Another type of intestinal barrier defect can arise from alpha-hemolysin harboring E. coli strains among the physiological flora, which can gain pathologic relevance in combination with proinflammatory cytokines under inflammatory conditions. On the other hand, intestinal barrier impairment can also result from transcellular antigen translocation via an initial endocytotic uptake into early endosomes, and this is intensified by proinflammatory cytokines as interferon-gamma and may thus play a relevant role in the onset of IBD. Taken together, barrier defects contribute to diarrhea by a leak flux mechanism (e.g., in IBD) and can cause mucosal inflammation by luminal antigen uptake. Immune regulation of epithelial functions by cytokines may cause barrier dysfunction not only by tight junction impairments but also by apoptotic leaks, transcytotic mechanisms, and mucosal gross lesions. PMID:19538319

  12. Analyzing Antigen Recognition by Natural Killer T Cells

    PubMed Central

    Zeissig, Sebastian; Olszak, Torsten; Melum, Espen; Blumberg, Richard S.

    2013-01-01

    Natural Killer T (NKT) cells are a subset of T lymphocytes that recognize a wide variety of lipid antigens presented by CD1 molecules. NKT cells exhibit rapid activation after recognition of cognate antigens, secrete abundant amounts of T helper (Th) 1, Th2, and Th17 cytokines within hours of activation and shape the immune response through subsequent activation of dendritic, NK, T and B cells. NKT cells therefore play central roles in antimicrobial and anticancer immunity and in modulation of various autoimmune disorders. Consequently, recent research has focused on the discovery of microbial and self-antigens involved in NKT cell activation. In this chapter, we discuss different strategies for studying antigen recognition by NKT cells including CD1d tetramer-based approaches and in vitro assays characterizing NKT cell activation in response to lipid antigen presentation. While toll-like receptor (TLR) agonists and cytokines such as IL-12 are critical for NKT cell activation in vivo, particularly in the context of microbial infection, methods for detection of TLR- and cytokine-dependent NKT cell activation will not be discussed in this section. PMID:23329514

  13. Claudins in intestines

    PubMed Central

    Lu, Zhe; Ding, Lei; Lu, Qun; Chen, Yan-Hua

    2013-01-01

    Intestines are organs that not only digest food and absorb nutrients, but also provide a defense barrier against pathogens and noxious agents ingested. Tight junctions (TJs) are the most apical component of the junctional complex, providing one form of cell-cell adhesion in enterocytes and playing a critical role in regulating paracellular barrier permeability. Alteration of TJs leads to a number of pathophysiological diseases causing malabsorption of nutrition and intestinal structure disruption, which may even contribute to systemic organ failure. Claudins are the major structural and functional components of TJs with at least 24 members in mammals. Claudins have distinct charge-selectivity, either by tightening the paracellular pathway or functioning as paracellular channels, regulating ions and small molecules passing through the paracellular pathway. In this review, we have discussed the functions of claudin family members, their distribution and localization in the intestinal tract of mammals, their alterations in intestine-related diseases and chemicals/agents that regulate the expression and localization of claudins as well as the intestinal permeability, which provide a therapeutic view for treating intestinal diseases. PMID:24478939

  14. Study of human microecology by mass spectrometry of microbial markers.

    PubMed

    Osipov, G A; Verkhovtseva, N V

    2011-03-01

    This review shows that mass spectrometry of microbial markers (MSMM) permits simultaneous in situ determination of more than one hundred microbial fatty acids in clinical, biotechnological or environmental samples, without precultivation and use of biochemical test materials and primers. Unprecedented information about the quantity of anaerobes and uncultivated aerobes, as well as actinobacteria, yeasts, viruses and microscopic fungi in one sample has provided a full understanding of microbial etiology in clinical conditions of patients. The study of intestine dysbiosis has confirmed the hypothesis about the nosological specificity of changes in the intestinal microbiota. It has been proven that infectious processes are polymicrobial. Measurements have shown that anaerobes dominate in number and functional activities in inflammation. The division of microbes into pathogenic and non- pathogenic is artificial. All microbes living in a human body simultaneously stay in both forms. Lactobacilli and bifidobacteria appear as agents of septic conditions and endocarditis. МSММ data confirm that anaerobes of Clostridium, Eubacterium, Propionibacterium, as well as actinobacteria of Streptomyces, Nocardia, Rhodococcus are mixed infection dominants. The data testify translocation of these microbes in inflammation loci from the intestine. Quantitative comparison of concentration of markers in the inflamed organ and blood proves reproduction of microorganisms in this locus. The current hypothesis is confirmed that the goal of translocation is not only infection, but also a biofilm formation similar to intestines, which stimulate local immunity, protection from local pathogens and restoration of the damaged tissues. Quantification using GC-MS revealed that the influence of antibiotics on the normal intestine's microbiota are not as dramatic as believed. Growth-promoting effects are the most important benefits of probiotic applications. The probiotic essence is not the

  15. Immune responses towards intestinal bacteria--current concepts and future perspectives.

    PubMed

    Duchmann, R; Neurath, M; Märker-Hermann, E; Meyer Zum Büschenfelde, K H

    1997-05-01

    The intestinal mucosa constitutes an important barrier as it separates each individual from a large array of antigens within the bowel lumen. These luminal antigens may either be derived from pathogens or may be derived from harmless constituents such as ingested food or the normal intestinal flora. The dichotomy of potentially harmful and potentially harmless antigens encountered by the mucosal immune system poses the important task that, with regard to bacteria-derived antigens, the gut associated immune system is required to mount an efficient host defense against pathogenic bacteria but to maintain at the same time the regulatory control mechanisms which protect the human organism from hyperresponsiveness, and thus chronic inflammation, towards antigens from the normal intestinal flora. In the present review, we discuss variable host and bacterial factors which are likely to determine whether the immune response to pathogenic or normal intestinal bacteria will have beneficial or detrimental consequences for the human organism. Using infections with the prototype enteropathogens V. cholerae and enteropathogenic E. coli (ETEC), Y. enterocolitica induced reactive arthritis (ReA) and in more detail, inflammatory bowel diseases (IBD) as exemplary clinical situations, we review current hypotheses of how bacteria or their products are encountered by cellular components of the specific immune system and how this may relate to disease pathogenesis and the development of new treatment strategies. PMID:9188147

  16. Autism spectrum disorders and intestinal microbiota

    PubMed Central

    De Angelis, Maria; Francavilla, Ruggiero; Piccolo, Maria; De Giacomo, Andrea; Gobbetti, Marco

    2015-01-01

    Through extensive microbial-mammalian co-metabolism, the intestinal microbiota have evolved to exert a marked influence on health and disease via gut-brain-microbiota interactions. In this addendum, we summarize the findings of our recent study on the fecal microbiota and metabolomes of children with pervasive developmental disorder–not otherwise specified (PDD-NOS) or autism (AD) compared with healthy children (HC). Children with PDD-NOS or AD have altered fecal microbiota and metabolomes (including neurotransmitter molecules). We hypothesize that the degree of microbial alteration correlates with the severity of the disease since fecal microbiota and metabolomes alterations were higher in children with PDD-NOS and, especially, AD compared to HC. Our study indicates that the levels of free amino acids (FAA) and volatile organic compounds (VOC) differ in AD subjects compared to children with PDD-NOS, who are more similar to HC. Finally, we propose a new perspective on the implications for the interaction between intestinal microbiota and AD. PMID:25835343

  17. Interferon Tau Affects Mouse Intestinal Microbiota and Expression of IL-17

    PubMed Central

    Ren, Wenkai; Chen, Shuai; Zhang, Liwen; Liu, Gang; Hussain, Tarique; Hao, Xiao; Yin, Jie; Duan, Jielin; Wu, Guoyao; Bazer, Fuller W.

    2016-01-01

    This study was conducted to explore the effects of interferon tau (IFNT) on the intestinal microbiota and expression of interleukin 17 (IL-17) in the intestine of mice. IFNT supplementation increased microbial diversity in the jejunum and ileum but decreased microbial diversity in the feces. IFNT supplementation influenced the composition of the intestinal microbiota as follows: (1) decreasing the percentage of Firmicutes and increasing Bacteroidetes in the jejunum and ileum; (2) enhancing the percentage of Firmicutes but decreasing Bacteroidetes in the colon and feces; (3) decreasing Lactobacillus in the jejunum and ileum; (4) increasing the percentage of Blautia, Bacteroides, Alloprevotella, and Lactobacillus in the colon; and (5) increasing the percentage of Lactobacillus, Bacteroides, and Allobaculum, while decreasing Blautia in the feces. Also, IFNT supplementation decreased the expression of IL-17 in the intestines of normal mice and of an intestinal pathogen infected mice. In conclusion, IFNT supplementation modulates the intestinal microbiota and intestinal IL-17 expression, indicating the applicability of IFNT to treat the intestinal diseases involving IL-17 expression and microbiota. PMID:27610003

  18. Interferon Tau Affects Mouse Intestinal Microbiota and Expression of IL-17.

    PubMed

    Ren, Wenkai; Chen, Shuai; Zhang, Liwen; Liu, Gang; Hussain, Tarique; Hao, Xiao; Yin, Jie; Duan, Jielin; Tan, Bie; Wu, Guoyao; Bazer, Fuller W; Yin, Yulong

    2016-01-01

    This study was conducted to explore the effects of interferon tau (IFNT) on the intestinal microbiota and expression of interleukin 17 (IL-17) in the intestine of mice. IFNT supplementation increased microbial diversity in the jejunum and ileum but decreased microbial diversity in the feces. IFNT supplementation influenced the composition of the intestinal microbiota as follows: (1) decreasing the percentage of Firmicutes and increasing Bacteroidetes in the jejunum and ileum; (2) enhancing the percentage of Firmicutes but decreasing Bacteroidetes in the colon and feces; (3) decreasing Lactobacillus in the jejunum and ileum; (4) increasing the percentage of Blautia, Bacteroides, Alloprevotella, and Lactobacillus in the colon; and (5) increasing the percentage of Lactobacillus, Bacteroides, and Allobaculum, while decreasing Blautia in the feces. Also, IFNT supplementation decreased the expression of IL-17 in the intestines of normal mice and of an intestinal pathogen infected mice. In conclusion, IFNT supplementation modulates the intestinal microbiota and intestinal IL-17 expression, indicating the applicability of IFNT to treat the intestinal diseases involving IL-17 expression and microbiota. PMID:27610003

  19. Immunomodulatory roles of the carcinoembryonic antigen family of glycoproteins.

    PubMed

    Shao, Ling; Allez, Matthieu; Park, Mee-Sook; Mayer, Lloyd

    2006-08-01

    One of the most remarkable aspects of the immune system is its ability to fashion an immune response most appropriate to the activating stimulus. Although the immune system possesses a number of adaptations to accomplish this, an important theme is local immune regulation by site-specific expression of receptors and ligands. One family of molecules that is gaining attention as modulators of the immune system is the carcinoembryonic antigen cell-adhesion molecule family (CEACAM). Functionally, the carcinoembryonic antigen family can mediate cell-cell contact, host-pathogen interactions, and immune regulation. For example, biliary glycoprotein (CEACAM1) can have direct activity on T cells, leading to the inhibition of helper or cytotoxic T cell function. The expression of carcinoembryonic antigen (CEACAM5) on intestinal epithelial cells is involved in the activation of populations of regulatory CD8(+) T cells, while a distinct subset of regulatory CD8+ T cells is activated by nonspecific cross-reacting antigen (CEACAM6) on placental trophoblasts. Interestingly, the function and phenotype of these cells depend upon the specific member of the carcinoembryonic antigen family expressed, as well as the antigen-presenting molecule with which it associates. Thus, these glycoproteins comprise a family of molecules whose functions can depend on their nature and context. PMID:17057200

  20. Integrative inflammasome activity in the regulation of intestinal mucosal immune responses.

    PubMed

    Elinav, E; Henao-Mejia, J; Flavell, R A

    2013-01-01

    The mammalian intestinal tract harbors a vast and diverse ecosystem of microbes that are separated from the sterile host milieu by a single layer of epithelial cells. While this bio-geographical configuration is critical for host biological processes, it imposes a risk for microbial penetration and life-threatening systemic invasion. Inflammasomes are cytosolic multi-protein platforms that sense both microbial and damage-associated molecular patterns and initiate a potent innate immune anti-microbial response. In this review, we will highlight the role of inflammasomes in the orchestration and regulation of the intestinal immune response, focusing on the roles of inflammasomes in maintenance of intestinal homeostasis, enteric infection, auto-inflammation, and tumorigenesis. We highlight the centrality of inflammasome signaling in the complex cross-talk between host mucosal immune arms and the environment, in particular the microflora, with emphasis on the spatial and temporal integration of inflammasome activation with signals from other innate signaling platforms. PMID:23212196

  1. [Establishment of the intestinal microflora in neonates].

    PubMed

    Campeotto, Florence; Waligora-Dupriet, Anne-Judith; Doucet-Populaire, Florence; Kalach, Nicolas; Dupont, Christophe; Butel, Marie-José

    2007-05-01

    The intestinal microbiota is a complex ecosystem harbouring about 10(14) micro-organisms composed of nearly 400 hundred species. It plays various important functions in the gut, including metabolic, flora, barrier and stimulation of the intestinal immune system. Most studies have been based on culture, but more recent molecular biology techniques have provided complementary information. The formation of this ecosystem begins rapidly in the newborn; it is sterile at birth and is based on contact with the maternal flora and the surrounding environment. Although little is known about the factors leading to the development of bacteria, numerous external factors will affect the microbial succession: mode of delivery, environmental conditions, type of feeding, gestational age, and antibiotics. Recent data report a delay in intestinal colonization especially of enteric maternal bacteria. Which may be due to strict hygiene measures during birth. The clinical impact of these variations is not known but they could lead to lack of barrier flora or poor immune system stimulation in the gut. Modulation of gut microbiota in neonates with infant formulas containing either probiotics, prebiotics or non viable bacterias and their metabolites, or nucleotides is discussed. PMID:17541346

  2. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health.

    PubMed

    Landete, J M; Arqués, J; Medina, M; Gaya, P; de Las Rivas, B; Muñoz, R

    2016-08-17

    Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual. PMID:25848676

  3. The Intestinal Microbiome in Bariatric Surgery Patients

    PubMed Central

    Peat, Christine M.; Kleiman, Susan C.; Bulik, Cynthia M.; Carroll, Ian M.

    2016-01-01

    With nearly 39% of the worldwide adult population classified as obese, much of the globe is facing a serious public health challenge. Increasing rates of obesity, coupled with the failure of many behavioral and pharmacological interventions, have contributed to a rise in popularity of bariatric surgery as a treatment for obesity. Surgery-mediated weight loss was initially thought to be a direct result of mechanical alterations causing restriction and calorie malabsorption. However, the mounting evidence suggests that indirect factors influence the accumulation and storage of fat in patients that have undergone this procedure. Given the established impact the intestinal microbiota has on adiposity, it is likely that this complex enteric microbial community contributes to surgery-mediated weight loss and maintenance of weight loss post-surgery. In this review, we discuss the physiological and psychological traits exhibited by bariatric surgery candidates that can be influenced by the intestinal microbiota. Additionally, we detail the studies that investigated the impact of bariatric surgery on the intestinal microbiota in humans and mouse models of this procedure. PMID:26426680

  4. The Intestinal Microbiome in Bariatric Surgery Patients.

    PubMed

    Peat, Christine M; Kleiman, Susan C; Bulik, Cynthia M; Carroll, Ian M

    2015-11-01

    With nearly 39% of the worldwide adult population classified as obese, much of the globe is facing a serious public health challenge. Increasing rates of obesity, coupled with the failure of many behavioural and pharmacological interventions, have contributed to a rise in popularity of bariatric surgery as a treatment for obesity. Surgery-mediated weight loss was initially thought to be a direct result of mechanical alterations causing restriction and calorie malabsorption. However, the mounting evidence suggests that indirect factors influence the accumulation and storage of fat in patients that have undergone this procedure. Given the established impact the intestinal microbiota has on adiposity, it is likely that this complex enteric microbial community contributes to surgery-mediated weight loss and maintenance of weight loss postsurgery. In this review, we discuss the physiological and psychological traits exhibited by bariatric surgery candidates that can be influenced by the intestinal microbiota. Additionally, we detail the studies that investigated the impact of bariatric surgery on the intestinal microbiota in humans and mouse models of this procedure. PMID:26426680

  5. The Intestinal Microbiota in Metabolic Disease

    PubMed Central

    Woting, Anni; Blaut, Michael

    2016-01-01

    Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA) is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet–host–microbe interactions. PMID:27058556

  6. The Intestinal Microbiota in Metabolic Disease.

    PubMed

    Woting, Anni; Blaut, Michael

    2016-01-01

    Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA) is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet-host-microbe interactions. PMID:27058556

  7. [Intestinal obstruction during pregnancy].

    PubMed

    Stukan, Maciej; Kruszewski Wiesław, Janusz; Dudziak, Mirosław; Kopiejć, Arkadiusz; Preis, Krzysztof

    2013-02-01

    This is a review of literature concerning intestinal obstruction in pregnant women. Approximately 50-90% and 30% of pregnant women, respectively suffer from nausea and vomiting, mostly during the first trimester. There is also increased risk of constipation. During the perioperative period, the administration of tocolytics should be considered only in women showing symptoms of a threatening premature delivery. Intensive hydration should be ordered to sustain uterine blood flow. The incidence of intestinal obstruction during pregnancy is estimated at 1:1500-1:66431 pregnancies and is diagnosed in II and III trimester in most cases. However, it can also occur in the I trimester (6%) or puerperium. Symptoms of intestinal obstruction in pregnancy include: abdominal pains (98%), vomiting (82%), constipation (30%). Abdominal tenderness on palpation is found in 71% and abnormal peristalsis in 55% of cases. The most common imaging examination in the diagnosis of intestinal obstruction is the abdominal X-ray. However ionizing radiation may have a harmful effect on the fetus, especially during the first trimester. X-ray is positive for intestinal obstruction in 82% of pregnant women. Ultrasonography and magnetic resonance imaging are considered safe and applicable during pregnancy. Intestinal obstruction in pregnant women is mostly caused by: adhesions (54.6%), intestinal torsion (25%), colorectal carcinoma (3.7%), hernia (1.4%), appendicitis (0.5%) and others (10%). Adhesive obstruction occurs more frequently in advanced pregnancy (6% - I trimester 28% - II trimester; 45% - III trimester 21% - puerperium). Treatment should begin with conservative procedures. Surgical treatment may be necessary in cases where the pain turns from recurrent into continuous, with tachycardia, pyrexia and a positive Blumberg sign. If symptoms of fetal anoxia are observed, a C-section should be carried out before surgical intervention. The extent of surgical intervention depends on the

  8. The intestine is a blender

    NASA Astrophysics Data System (ADS)

    Yang, Patricia; Lamarca, Morgan; Kravets, Victoria; Hu, David

    According to the U.S. Department of Health and Human Services, digestive disease affects 60 to 70 million people and costs over 140 billion annually. Despite the significance of the gastrointestinal tract to human health, the physics of digestion remains poorly understood. In this study, we ask a simple question: what sets the frequency of intestinal contractions? We measure the frequency of intestinal contractions in rats, as a function of distance down the intestine. We find that intestines Contract radially ten times faster than longitudinally. This motion promotes mixing and, in turn, absorption of food products by the intestinal wall. We calculate viscous dissipation in the intestinal fluid to rationalize the relationship between frequency of intestinal contraction and the viscosity of the intestinal contents. Our findings may help to understand the evolution of the intestine as an ideal mixer.

  9. The intestine is a blender

    NASA Astrophysics Data System (ADS)

    Yang, Patricia; Lamarca, Morgan; Hu, David

    2015-11-01

    According to the U.S. Department of Health and Human Services, digestive disease affects 60 to 70 million people and costs over 140 billion annually. Despite the significance of the gastrointestinal tract to human health, the physics of digestion remains poorly understood. In this study, we ask a simple question: what sets the frequency of intestinal contractions? We measure the frequency of intestinal contractions in rats, as a function of distance down the intestine. We find that intestines contract radially ten times faster than longitudinally. This motion promotes mixing and, in turn, absorption of food products by the intestinal wall. We calculate viscous dissipation in the intestinal fluid to rationalize the relationship between frequency of intestinal contraction and the viscosity of the intestinal contents. Our findings may help to understand the evolution of the intestine as an ideal mixer.

  10. Activation-Induced TIM-4 Expression Identifies Differential Responsiveness of Intestinal CD103+ CD11b+ Dendritic Cells to a Mucosal Adjuvant

    PubMed Central

    Schmidt, Alfonso J.; Ronchese, Franca

    2016-01-01

    Macrophage and dendritic cell (DC) populations residing in the intestinal lamina propria (LP) are highly heterogeneous and have disparate yet collaborative roles in the promotion of adaptive immune responses towards intestinal antigen. Under steady-state conditions, macrophages are efficient at acquiring antigen but are non-migratory. In comparison, intestinal DC are inefficient at antigen uptake but migrate to the mesenteric lymph nodes (mLN) where they present antigen to T cells. Whether such distinction in the roles of DC and macrophages in the uptake and transport of antigen is maintained under immunostimulatory conditions is less clear. Here we show that the scavenger and phosphatidylserine receptor T cell Immunoglobulin and Mucin (TIM)-4 is expressed by the majority of LP macrophages at steady-state, whereas DC are TIM-4 negative. Oral treatment with the mucosal adjuvant cholera toxin (CT) induces expression of TIM-4 on a proportion of CD103+ CD11b+ DC in the LP. TIM-4+ DC selectively express high levels of co-stimulatory molecules after CT treatment and are detected in the mLN a short time after appearing in the LP. Importantly, intestinal macrophages and DC expressing TIM-4 are more efficient than their TIM-4 negative counterparts at taking up apoptotic cells and soluble antigen ex vivo. Taken together, our results show that CT induces phenotypic changes to migratory intestinal DC that may impact their ability to take up local antigens and in turn promote the priming of mucosal immunity. PMID:27379516

  11. Intestinal and multivisceral transplantation

    PubMed Central

    Meira, Sérgio Paiva; Guardia, Bianca Della; Evangelista, Andréia Silva; Matielo, Celso Eduardo Lourenço; Neves, Douglas Bastos; Pandullo, Fernando Luis; Felga, Guilherme Eduardo Gonçalves; Alves, Jefferson André da Silva; Curvelo, Lilian Amorim; Diaz, Luiz Gustavo Guedes; Rusi, Marcela Balbo; Viveiros, Marcelo de Melo; de Almeida, Marcio Dias; Epstein, Marina Gabrielle; Pedroso, Pamella Tung; Salvalaggio, Paolo; Meirelles, Roberto Ferreira; Rocco, Rodrigo Andrey; de Almeida, Samira Scalso; de Rezende, Marcelo Bruno

    2015-01-01

    Intestinal transplantation has shown exceptional growth over the past 10 years. At the end of the 1990’s, intestinal transplantation moved out of the experimental realm to become a routine practice in treating patients with severe complications related to total parenteral nutrition and intestinal failure. In the last years, several centers reported an increasing improvement in survival outcomes (about 80%), during the first 12 months after surgery, but long-term survival is still a challenge. Several advances led to clinical application of transplants. Immunosuppression involved in intestinal and multivisceral transplantation was the biggest gain for this procedure in the past decade due to tacrolimus, and new inducing drugs, mono- and polyclonal anti-lymphocyte antibodies. Despite the advancement of rigid immunosuppression protocols, rejection is still very frequent in the first 12 months, and can result in long-term graft loss. The future of intestinal transplantation and multivisceral transplantation appears promising. The major challenge is early recognition of acute rejection in order to prevent graft loss, opportunistic infections associated to complications, post-transplant lymphoproliferative disease and graft versus host disease; and consequently, improve results in the long run. PMID:25993080

  12. Pathways of Antigen Processing

    PubMed Central

    Blum, Janice S.; Wearsch, Pamela A.; Cresswell, Peter

    2014-01-01

    T cell recognition of antigen presenting cells depends on their expression of a spectrum of peptides bound to Major Histocompatibility Complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced. PMID:23298205

  13. Microbial Metabolomics

    PubMed Central

    Tang, Jane

    2011-01-01

    Microbial metabolomics constitutes an integrated component of systems biology. By studying the complete set of metabolites within a microorganism and monitoring the global outcome of interactions between its development processes and the environment, metabolomics can potentially provide a more accurate snap shot of the actual physiological state of the cell. Recent advancement of technologies and post-genomic developments enable the study and analysis of metabolome. This unique contribution resulted in many scientific disciplines incorporating metabolomics as one of their “omics” platforms. This review focuses on metabolomics in microorganisms and utilizes selected topics to illustrate its impact on the understanding of systems microbiology. PMID:22379393

  14. Microbial biotechnology.

    PubMed

    Demain, A L

    2000-01-01

    For thousands of years, microorganisms have been used to supply products such as bread, beer and wine. A second phase of traditional microbial biotechnology began during World War I and resulted in the development of the acetone-butanol and glycerol fermentations, followed by processes yielding, for example, citric acid, vitamins and antibiotics. In the early 1970s, traditional industrial microbiology was merged with molecular biology to yield more than 40 biopharmaceutical products, such as erythropoietin, human growth hormone and interferons. Today, microbiology is a major participant in global industry, especially in the pharmaceutical, food and chemical industries. PMID:10631778

  15. Regulation of Intestinal Immune Responses through TLR Activation: Implications for Pro- and Prebiotics.

    PubMed

    de Kivit, Sander; Tobin, Mary C; Forsyth, Christopher B; Keshavarzian, Ali; Landay, Alan L

    2014-01-01

    The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs) are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC) and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g., inflammatory bowel disease), irritable bowel syndrome (IBS), allergic gastroenteritis (e.g., eosinophilic gastroenteritis and allergic IBS), and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLRs play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation. PMID:24600450

  16. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics.

    PubMed

    Costello, Cait M; Sorna, Rachel M; Goh, Yih-Lin; Cengic, Ivana; Jain, Nina K; March, John C

    2014-07-01

    Biomimetic in vitro intestinal models are becoming useful tools for studying host-microbial interactions. In the past, these models have typically been limited to simple cultures on 2-D scaffolds or Transwell inserts, but it is widely understood that epithelial cells cultured in 3-D environments exhibit different phenotypes that are more reflective of native tissue, and that different microbial species will preferentially adhere to select locations along the intestinal villi. We used a synthetic 3-D tissue scaffold with villous features that could support the coculture of epithelial cell types with select bacterial populations. Our end goal was to establish microbial niches along the crypt-villus axis in order to mimic the natural microenvironment of the small intestine, which could potentially provide new insights into microbe-induced intestinal disorders, as well as enabling targeted probiotic therapies. We recreated the surface topography of the small intestine by fabricating a biodegradable and biocompatible villous scaffold using poly lactic-glycolic acid to enable the culture of Caco-2 with differentiation along the crypt-villus axis in a similar manner to native intestines. This was then used as a platform to mimic the adhesion and invasion profiles of both Salmonella and Pseudomonas, and assess the therapeutic potential of Lactobacillus and commensal Escherichia coli in a 3-D setting. We found that, in a 3-D environment, Lactobacillus is more successful at displacing pathogens, whereas Nissle is more effective at inhibiting pathogen adhesion. PMID:24798584

  17. 3-D Intestinal Scaffolds for Evaluating the Therapeutic Potential of Probiotics

    PubMed Central

    2015-01-01

    Biomimetic in vitro intestinal models are becoming useful tools for studying host–microbial interactions. In the past, these models have typically been limited to simple cultures on 2-D scaffolds or Transwell inserts, but it is widely understood that epithelial cells cultured in 3-D environments exhibit different phenotypes that are more reflective of native tissue, and that different microbial species will preferentially adhere to select locations along the intestinal villi. We used a synthetic 3-D tissue scaffold with villous features that could support the coculture of epithelial cell types with select bacterial populations. Our end goal was to establish microbial niches along the crypt–villus axis in order to mimic the natural microenvironment of the small intestine, which could potentially provide new insights into microbe-induced intestinal disorders, as well as enabling targeted probiotic therapies. We recreated the surface topography of the small intestine by fabricating a biodegradable and biocompatible villous scaffold using poly lactic-glycolic acid to enable the culture of Caco-2 with differentiation along the crypt–villus axis in a similar manner to native intestines. This was then used as a platform to mimic the adhesion and invasion profiles of both Salmonella and Pseudomonas, and assess the therapeutic potential of Lactobacillus and commensal Escherichia coli in a 3-D setting. We found that, in a 3-D environment, Lactobacillus is more successful at displacing pathogens, whereas Nissle is more effective at inhibiting pathogen adhesion. PMID:24798584

  18. Establishment of a biochemically active intestinal ecosystem in ex-germfree rats.

    PubMed Central

    Midtvedt, T; Carlstedt-Duke, B; Höverstad, T; Midtvedt, A C; Norin, K E; Saxerholt, H

    1987-01-01

    A time course study for the establishment of some biochemical microbial intestinal functions was undertaken in ex-germfree rats conventionalized, i.e., colonized with conventional flora, in three different ways: untreated (group 1); contact with visitor rats (group 2); inoculated with intestinal contents from conventional rats (group 3). The first two groups of rats were inoculated with the intestinal contents from conventional rats after being out of the germfree isolators for 4 weeks. The biochemical parameters studied were degradation of mucin, inactivation of tryptic activity, conversion of cholesterol to coprostanol and of bilirubin to urobilinogen, degradation of beta-aspartylglycine, and formation of short-chain fatty acids. The results showed that the way in which the microbes were introduced and the microbial biochemical functions themselves were of importance. In several cases, social contacts, i.e., contact with visitor rats, were just as effective for the functionally adequate establishment of microbial intestinal functions as was inoculation with intestinal contents from conventional rats. Some of the biochemical parameters studied were established after a few days, whereas the establishment of others was markedly delayed. When inoculated after 4 weeks, all rats in the first two groups were colonized with conventional flora within 1 week. The results indicate that the model system described is suitable when studying buildup mechanisms in intestinal ecosystem(s). PMID:3124742

  19. Lipid antigens in immunity

    PubMed Central

    Dowds, C. Marie; Kornell, Sabin-Christin

    2014-01-01

    Lipids are not only a central part of human metabolism but also play diverse and critical roles in the immune system. As such, they can act as ligands of lipid-activated nuclear receptors, control inflammatory signaling through bioactive lipids such as prostaglandins, leukotrienes, lipoxins, resolvins, and protectins, and modulate immunity as intracellular phospholipid- or sphingolipid-derived signaling mediators. In addition, lipids can serve as antigens and regulate immunity through the activation of lipid-reactive T cells, which is the topic of this review. We will provide an overview of the mechanisms of lipid antigen presentation, the biology of lipid-reactive T cells, and their contribution to immunity. PMID:23999493

  20. The intestinal epithelium as guardian of gut barrier integrity.

    PubMed

    Zhang, Kaiyi; Hornef, Mathias W; Dupont, Aline

    2015-11-01

    A single layer of epithelial cells separates the intestinal lumen from the underlying sterile tissue. It is exposed to a multitude of nutrients and a large number of commensal bacteria. Although the presence of commensal bacteria significantly contributes to nutrient digestion, vitamin synthesis and tissue maturation, their high number represents a permanent challenge to the integrity of the epithelial surface keeping the local immune system constantly on alert. In addition, the intestinal mucosa is challenged by a variety of enteropathogenic microorganisms. In both circumstances, the epithelium actively contributes to maintaining host-microbial homeostasis and antimicrobial host defence. It deploys a variety of mechanisms to restrict the presence of commensal bacteria to the intestinal lumen and to prevent translocation of commensal and pathogenic microorganisms to the underlying tissue. Enteropathogenic microorganisms in turn have learnt to evade the host's immune system and circumvent the antimicrobial host response. In the present article, we review recent advances that illustrate the intense and intimate host-microbial interaction at the epithelial level and improve our understanding of the mechanisms that maintain the integrity of the intestinal epithelial barrier. PMID:26294173

  1. [Small intestine bacterial overgrowth].

    PubMed

    Leung Ki, E L; Roduit, J; Delarive, J; Guyot, J; Michetti, P; Dorta, G

    2010-01-27

    Small intestine bacterial overgrowth (SIBO) is a condition characterised by nutrient malabsorption and excessive bacteria in the small intestine. It typically presents with diarrhea, flatulence and a syndrome of malabsorption (steatorrhea, macrocytic anemia). However, it may be asymptomatic in the eldery. A high index of suspicion is necessary in order to differentiate SIBO from other similar presenting disorders such as coeliac disease, lactose intolerance or the irritable bowel syndrome. A search for predisposing factor is thus necessary. These factors may be anatomical (stenosis, blind loop), or functional (intestinal hypomotility, achlorydria). The hydrogen breath test is the most frequently used diagnostic test although it lacks standardisation. The treatment of SIBO consists of eliminating predisposing factors and broad-spectrum antibiotic therapy. PMID:20214190

  2. Small Intestinal Infections.

    PubMed

    Munot, Khushboo; Kotler, Donald P

    2016-06-01

    Small intestinal infections are extremely common worldwide. They may be bacterial, viral, or parasitic in etiology. Most are foodborne or waterborne, with specific etiologies differing by region and with diverse pathophysiologies. Very young, very old, and immune-deficient individuals are the most vulnerable to morbidity or mortality from small intestinal infections. There have been significant advances in diagnostic sophistication with the development and early application of molecular diagnostic assays, though these tests have not become mainstream. The lack of rapid diagnoses combined with the self-limited nature of small intestinal infections has hampered the development of specific and effective treatments other than oral rehydration. Antibiotics are not indicated in the absence of an etiologic diagnosis, and not at all in the case of some infections. PMID:27168147

  3. How Is Small Intestine Adenocarcinoma Staged?

    MedlinePlus

    ... small intestine adenocarcinoma, by stage How is small intestine adenocarcinoma staged? Staging is a process that tells ... distant m etastasis (M). T categories for small intestine adenocarcinoma T categories of small intestine cancer describe ...

  4. Assessment of intestinal malabsorption.

    PubMed

    Nikaki, K; Gupte, G L

    2016-04-01

    Significant efforts have been made in the last decade to either standardize the available tests for intestinal malabsorption or to develop new, more simple and reliable techniques. The quest is still on and, unfortunately, clinical practice has not dramatically changed. The investigation of intestinal malabsorption is directed by the patient's history and baseline tests. Endoscopy and small bowel biopsies play a major role although non-invasive tests are favored and often performed early on the diagnostic algorithm, especially in paediatric and fragile elderly patients. The current clinically available methods and research tools are summarized in this review article. PMID:27086887

  5. Small Intestinal Bacterial Overgrowth

    PubMed Central

    Dukowicz, Andrew C.; Levine, Gary M.

    2007-01-01

    Small intestinal bacterial overgrowth (SIBO), defined as excessive bacteria in the small intestine, remains a poorly understood disease. Initially thought to occur in only a small number of patients, it is now apparent that this disorder is more prevalent than previously thought. Patients with SIBO vary in presentation, from being only mildly symptomatic to suffering from chronic diarrhea, weight loss, and malabsorption. A number of diagnostic tests are currently available, although the optimal treatment regimen remains elusive. Recently there has been renewed interest in SIBO and its putative association with irritable bowel syndrome. In this comprehensive review, we will discuss the epidemiology, pathogenesis, clinical manifestations, diagnosis, and treatment of SIBO. PMID:21960820

  6. ENCYSTATION AND EXPRESSION OF CYST ANTIGENS BY 'GIARDIA LAMBLIA' IN VITRO

    EPA Science Inventory

    The cyst form of Giardia lamblia is responsible for transmission of giardiasis, a major waterborne intestinal disease. These studies demonstrate for the first time expression of cyst antigens and encystation of G. lamblia in vitro by both morphologic and immunologic criteria. The...

  7. Small intestine contrast injection (image)

    MedlinePlus

    ... and throat, through the stomach into the small intestine. When in place, contrast dye is introduced and ... means of demonstrating whether or not the small intestine is normal when abnormality is suspected.

  8. Small intestine aspirate and culture

    MedlinePlus

    ... ency/article/003731.htm Small intestine aspirate and culture To use the sharing features on this page, please enable JavaScript. Small intestine aspirate and culture is a lab test to check for infection ...

  9. Antigen detection systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissue using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular methodology is chosen ...

  10. Antigen smuggling in tuberculosis.

    PubMed

    Hudrisier, Denis; Neyrolles, Olivier

    2014-06-11

    The importance of CD4 T lymphocytes in immunity to M. tuberculosis is well established; however, how dendritic cells activate T cells in vivo remains obscure. In this issue of Cell Host & Microbe, Srivastava and Ernst (2014) report a mechanism of antigen transfer for efficient activation of antimycobacterial T cells. PMID:24922567

  11. Antigen detection systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissues or other specimens, using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular m...

  12. [Interactions between the monogastric animal gut microbiota and the intestinal immune function--a review].

    PubMed

    Yang, Lina; Bian, Gaorui; Zhu, Weiyun

    2014-05-01

    The large numbers of microorganisms that inhabit mammalian gastro-intestine have a highly coevolved relationship with the host's health in nutrition, immunity and other aspects. There is a complex relationship between microbiota and immune system. Although they can inhibit the pathogens invade epithelial tissue, many of these microbes have functions that are critical for stimulating host intestinal immune cells such as Tregs cells, Th17 cells differentiation. However, the disorder of the intestinal flora can cause bacterial translocation, intestinal barrier dysfunction. The mammalian immune system plays an essential role in maintaining homeostasis with resident microbial communities, though secreting a variety of immune effector cytokines such as MUC, sIgA, ITF, RegIIIgamma, and alpha-defensins. Here, we review the composition of intestinal flora on simple stomach animal and the interactions between resident microbes and the immune function. PMID:25199246

  13. Nod2: a key regulator linking microbiota to intestinal mucosal immunity

    PubMed Central

    Biswas, Amlan; Petnicki-Ocwieja, Tanja; Kobayashi, Koichi S.

    2012-01-01

    The human intestine harbors a large number of bacteria that are constantly interacting with the intestinal immune system, eliciting non-pathological basal level immune responses. Increasing evidence points to dysbiosis of microbiota in the intestine as an underlying factor in inflammatory bowel disease susceptibility. Loss of function mutations in NOD2 are among the stronger genetic factors linked to ileal Crohn’s disease. Indeed, Nod2 is a key regulator of microbiota in the intestine, as microflora in the terminal ileum is dysregulated in Nod2-deficient mice. Nod2 is highly expressed in Paneth cells, which are responsible for the regulation of ileal microflora by anti-microbial compounds, and Nod2-deficient ileal intestinal epithelia are unable to kill bacteria efficiently. It is therefore likely that NOD2 mutations in Crohn’s disease may increase disease susceptibility by altering interactions between ileal microbiota and mucosal immunity. PMID:21861185

  14. Aspergillus antigen skin test (image)

    MedlinePlus

    The aspergillus antigen skin test determines whether or not a person has been exposed to the mold aspergillus. It is performed by injecting an aspergillus antigen under the skin with a needle. After 48 ...

  15. NLRC4-driven interleukin-1β production discriminates between pathogenic and commensal bacteria and promotes host intestinal defense

    PubMed Central

    Franchi, Luigi; Kamada, Nobuhiko; Nakamura, Yuumi; Burberry, Aaron; Kuffa, Peter; Suzuki, Shiho; Shaw, Michael H.; Kim, Yun-Gi; Núñez, Gabriel

    2012-01-01

    Intestinal phagocytes transport oral antigens and promote immune tolerance, but their role in innate immune responses remains unclear. Here we report that intestinal phagocytes are anergic to Toll-like receptor ligands or commensals, but constitutively express pro-interleukin-1β (proIL-1β). Upon infection with pathogenic Salmonella or Pseudomonas, intestinal phagocytes produce mature IL-1β through the NLRC4 inflammasome, but not tumor necrosis factor or IL-6. Mice deficient in NLRC4 or IL-1 receptor on a Balb/c background were highly susceptible to orogastric but not intraperitoneal infection with Salmonella. Increased lethality was preceded by impaired expression of endothelial adhesion molecules, lower neutrophil recruitment, and poor intestinal pathogen clearance. Thus, NLRC4-dependent IL-1β production by intestinal phagocytes represents a specific response discriminating pathogenic from commensal bacteria and contributes to host defense in the intestine. PMID:22484733

  16. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense.

    PubMed

    Franchi, Luigi; Kamada, Nobuhiko; Nakamura, Yuumi; Burberry, Aaron; Kuffa, Peter; Suzuki, Shiho; Shaw, Michael H; Kim, Yun-Gi; Núñez, Gabriel

    2012-05-01

    Intestinal phagocytes transport oral antigens and promote immune tolerance, but their role in innate immune responses remains unclear. Here we found that intestinal phagocytes were anergic to ligands for Toll-like receptors (TLRs) or commensals but constitutively expressed the precursor to interleukin 1β (pro-IL-1β). After infection with pathogenic Salmonella or Pseudomonas, intestinal phagocytes produced mature IL-1β through the NLRC4 inflammasome but did not produce tumor necrosis factor (TNF) or IL-6. BALB/c mice deficient in NLRC4 or the IL-1 receptor were highly susceptible to orogastric but not intraperitoneal infection with Salmonella. That enhanced lethality was preceded by impaired expression of endothelial adhesion molecules, lower neutrophil recruitment and poor intestinal pathogen clearance. Thus, NLRC4-dependent production of IL-1β by intestinal phagocytes represents a specific response that discriminates pathogenic bacteria from commensal bacteria and contributes to host defense in the intestine. PMID:22484733

  17. The impact of intestinal inflammation on the nutritional environment of the gut microbiota

    PubMed Central

    Faber, Franziska; Bäumler, Andreas J.

    2014-01-01

    The intestinal epithelium is a single cell barrier separating a sterile mucosal tissue from a large microbial community dominated by obligate anaerobic bacteria, which inhabit the gut lumen. To maintain mucosal integrity, any breach in the epithelial barrier needs to be met with an inflammatory host response designed to repel microbial intruders from the tissue, protect the mucosal surface and repair injuries to the epithelium. In addition, inflammation induces mechanisms of nutritional immunity, which limit the availability of metals in the intestinal lumen, thereby imposing new selective forces on microbial growth. However, the inflammatory host response also has important side effects. A by-product of producing reactive oxygen and nitrogen species aimed at eradicating microbial intruders is the luminal generation of exogenous electron acceptors. The presence of these electron acceptors creates a new metabolic niche that is filled by facultative anaerobic bacteria. Here we review the changes in microbial nutrient utilization that accompany intestinal inflammation and the consequent changes in the composition of gut-associated microbial communities. PMID:24803011

  18. Intestinal volvulus in cetaceans.

    PubMed

    Begeman, L; St Leger, J A; Blyde, D J; Jauniaux, T P; Lair, S; Lovewell, G; Raverty, S; Seibel, H; Siebert, U; Staggs, S L; Martelli, P; Keesler, R I

    2013-07-01

    Intestinal volvulus was recognized as the cause of death in 18 cetaceans, including 8 species of toothed whales (suborder Odontoceti). Cases originated from 11 institutions from around the world and included both captive (n = 9) and free-ranging (n = 9) animals. When the clinical history was available (n = 9), animals consistently demonstrated acute dullness 1 to 5 days prior to death. In 3 of these animals (33%), there was a history of chronic gastrointestinal illness. The pathological findings were similar to those described in other animal species and humans, and consisted of intestinal volvulus and a well-demarcated segment of distended, congested, and edematous intestine with gas and bloody fluid contents. Associated lesions included congested and edematous mesentery and mesenteric lymph nodes, and often serofibrinous or hemorrhagic abdominal effusion. The volvulus involved the cranial part of the intestines in 85% (11 of 13). Potential predisposing causes were recognized in most cases (13 of 18, 72%) but were variable. Further studies investigating predisposing factors are necessary to help prevent occurrence and enhance early clinical diagnosis and management of the condition. PMID:23150643

  19. Congenital intestinal atresia.

    PubMed

    Davenport, M; Bianchi, A

    1990-09-01

    Surgery for infants with intestinal atresia has evolved along with the development of specialized neonatal surgical units. This once fatal condition now carries a better than 85% chance of survival and an excellent long-term prognosis. Recent advances in bowel preservation techniques have reduced morbidity and improved gut function in both the long and the short term. PMID:2257399

  20. Small Intestine Cancer Treatment

    MedlinePlus

    ... small intestine cancer include unexplained weight loss and abdominal pain. These and other signs and symptoms may be ... doctor if you have any of the following: Pain or cramps in the middle of the abdomen. Weight loss with no known reason. A lump ...

  1. Mucosal and systemic immunity to intestinal reovirus infection in aged mice.

    PubMed

    Fulton, Jonathan R; Cuff, Christopher F

    2004-09-01

    Systemic immunity is progressively impaired in aging, predisposing to morbidity and mortality from neoplasia and infectious disease. However, the effect of aging on mucosal immunity is controversial. To assess intestinal immunity in aging, young and aged mice were orally exposed to reovirus or cholera toxin (CT) and specific antibody and reovirus-specific cytotoxic T-cell (CTL) responses were assessed. As previously reported, aged mice immunized orally with CT mounted diminished intestinal IgA responses to CT compared to young mice. In contrast, aged mice yielded two to three-fold more reovirus-specific IgA-producing cells in the Peyers's patches (PP) compared to young mice, and higher titers of reovirus-specific IgA in fragment culture supernatants. Cytotoxicity and CTL frequencies from aged mice were not different from those of young mice. Together, these results suggest a diminished potential for systemic and intestinal immunity to orally applied protein antigens in aging, but an intact ability to respond to intestinal virus infection. Infection with a replicating virus may induce inflammatory mediators and innate immune factors that potentiate the priming of mucosal immunity; overcoming aging related deficits otherwise observed following oral immunization with non-replicating antigens, and suggests the importance of antigen replication to antigen-specific immunotherapy strategies in the elderly. PMID:15489051

  2. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity

    PubMed Central

    Chng, Song Hui; Kundu, Parag; Dominguez-Brauer, Carmen; Teo, Wei Ling; Kawajiri, Kaname; Fujii-Kuriyama, Yoshiaki; Mak, Tak Wah; Pettersson, Sven

    2016-01-01

    Diet and microbiome derived indole derivatives are known to activate the ligand induced transcription factor, the Aryl hydrocarbon Receptor (AhR). While the current understanding of AhR biology has confirmed its role in mucosal lymphocytes, its function in intestinal antigen presenting cells (APCs) is poorly understood. Here, we report that Cre-mediated deletion of AhR in CD11c-expressing cells in C57/BL6 mice is associated with altered intestinal epithelial morphogenesis in vivo. Moreover, when co-cultured with AhR-deficient DCs ex vivo, intestinal organoids showed reduced SRY (sex determining region Y)-box 9 and increased Mucin 2 expression, which correlates with reduced Paneth cells and increased goblet cell differentiation, similar to the data obtained in vivo. Further, characterization of intestinal APC subsets, devoid of AhR, revealed an expression pattern associated with aberrant intrinsic Wnt pathway regulation. At a functional level, the loss of AhR in APCs resulted in a dysfunctional epithelial barrier, associated with a more aggressive chemically induced colitis compared to wild type animals. Our results are consistent with a model whereby the AhR signalling pathway may participate in the regulation of innate immunity through intestinal epithelium development and mucosal immunity. PMID:27068235

  3. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity.

    PubMed

    Chng, Song Hui; Kundu, Parag; Dominguez-Brauer, Carmen; Teo, Wei Ling; Kawajiri, Kaname; Fujii-Kuriyama, Yoshiaki; Mak, Tak Wah; Pettersson, Sven

    2016-01-01

    Diet and microbiome derived indole derivatives are known to activate the ligand induced transcription factor, the Aryl hydrocarbon Receptor (AhR). While the current understanding of AhR biology has confirmed its role in mucosal lymphocytes, its function in intestinal antigen presenting cells (APCs) is poorly understood. Here, we report that Cre-mediated deletion of AhR in CD11c-expressing cells in C57/BL6 mice is associated with altered intestinal epithelial morphogenesis in vivo. Moreover, when co-cultured with AhR-deficient DCs ex vivo, intestinal organoids showed reduced SRY (sex determining region Y)-box 9 and increased Mucin 2 expression, which correlates with reduced Paneth cells and increased goblet cell differentiation, similar to the data obtained in vivo. Further, characterization of intestinal APC subsets, devoid of AhR, revealed an expression pattern associated with aberrant intrinsic Wnt pathway regulation. At a functional level, the loss of AhR in APCs resulted in a dysfunctional epithelial barrier, associated with a more aggressive chemically induced colitis compared to wild type animals. Our results are consistent with a model whereby the AhR signalling pathway may participate in the regulation of innate immunity through intestinal epithelium development and mucosal immunity. PMID:27068235

  4. Leukocyte Trafficking to the Small Intestine and Colon.

    PubMed

    Habtezion, Aida; Nguyen, Linh P; Hadeiba, Husein; Butcher, Eugene C

    2016-02-01

    Leukocyte trafficking to the small and large intestines is tightly controlled to maintain intestinal immune homeostasis, mediate immune responses, and regulate inflammation. A wide array of chemoattractants, chemoattractant receptors, and adhesion molecules expressed by leukocytes, mucosal endothelium, epithelium, and stromal cells controls leukocyte recruitment and microenvironmental localization in intestine and in the gut-associated lymphoid tissues (GALTs). Naive lymphocytes traffic to the gut-draining mesenteric lymph nodes where they undergo antigen-induced activation and priming; these processes determine their memory/effector phenotypes and imprint them with the capacity to migrate via the lymph and blood to the intestines. Mechanisms of T-cell recruitment to GALT and of T cells and plasmablasts to the small intestine are well described. Recent advances include the discovery of an unexpected role for lectin CD22 as a B-cell homing receptor GALT, and identification of the orphan G-protein-coupled receptor 15 (GPR15) as a T-cell chemoattractant/trafficking receptor for the colon. GPR15 decorates distinct subsets of T cells in mice and humans, a difference in species that could affect translation of the results of mouse colitis models to humans. Clinical studies with antibodies to integrin α4β7 and its vascular ligand mucosal vascular addressin cell adhesion molecule 1 are proving the value of lymphocyte trafficking mechanisms as therapeutic targets for inflammatory bowel diseases. In contrast to lymphocytes, cells of the innate immune system express adhesion and chemoattractant receptors that allow them to migrate directly to effector tissue sites during inflammation. We review the mechanisms for innate and adaptive leukocyte localization to the intestinal tract and GALT, and discuss their relevance to human intestinal homeostasis and inflammation. PMID:26551552

  5. [Escherichia coli Nissle 1917 as safe vehicles for intestinal immune targeted therapy--a review].

    PubMed

    Xia, Pengpeng; Zhu, Jun; Zhu, Guoqiang

    2013-06-01

    It is difficult to stimulate efficient gut mucosal immune response to intestinal infection. This article critically reviews the research progressin Escherichia coli strain Nisslel917 ( EcN) actingas a safe vehicle for the intestinal mucosal immunity, to restore gastrointestinal disorder and relieve ulcerative colitis. EcN is an orally administered probiotics, combining the excellent colonization and non-immunogenic character, and can be an ideal live vector candidate. This strain could be a tumor-targeted delivery of TAT-Apoptin fusion gene to colorectal cancer. In the treatment of ulcerative colitis and Crohn's disease, the recombinant strain of EcN can be used as a target therapeutics for defensins presenting. Genetically modified EcN could be an ideal carrier organism for gut-focused in situ synthesis and expression of specific localized antigen delivery into the intestine, and stimulate specific mucosal immune response. In vitro trial demonstrated that intestinal recombinant E. coli Nissle-HA110-120 has the potential to stimulate antigen specific response, but EcN itself does not induce mucosal immune response and influence peripheral tolerance to self-antigen. At the same time, there are evidences that EcN is safe. Recombinant E. coli Nissle-HA110-120 does not migrate, clonally expand and activate specific CD4+ T cells, neither in healthy mice nor in other animals with acute colitis, even when the intestinal epithelium suffer from inflammation and the barrier function of the epithelial layer being destroyed. PMID:24028055

  6. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease

    PubMed Central

    Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E.; Matteoli, Gianluca

    2015-01-01

    One of the main tasks of the immune system is to discriminate and appropriately react to “danger” or “non-danger” signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation. PMID:26635804

  7. The Human Intestinal Microbiome: A New Frontier of Human Biology

    PubMed Central

    Hattori, Masahira; Taylor, Todd D.

    2009-01-01

    To analyze the vast number and variety of microorganisms inhabiting the human intestine, emerging metagenomic technologies are extremely powerful. The intestinal microbes are taxonomically complex and constitute an ecologically dynamic community (microbiota) that has long been believed to possess a strong impact on human physiology. Furthermore, they are heavily involved in the maturation and proliferation of human intestinal cells, helping to maintain their homeostasis and can be causative of various diseases, such as inflammatory bowel disease and obesity. A simplified animal model system has provided the mechanistic basis for the molecular interactions that occur at the interface between such microbes and host intestinal epithelia. Through metagenomic analysis, it is now possible to comprehensively explore the genetic nature of the intestinal microbiome, the mutually interacting system comprising the host cells and the residing microbial community. The human microbiome project was recently launched as an international collaborative research effort to further promote this newly developing field and to pave the way to a new frontier of human biology, which will provide new strategies for the maintenance of human health. PMID:19147530

  8. Immune-epithelial crosstalk at the intestinal surface.

    PubMed

    Wittkopf, Nadine; Neurath, Markus F; Becker, Christoph

    2014-03-01

    The intestinal tract is one of the most complex organs of the human body. It has to exercise various functions including food and water absorption, as well as barrier and immune regulation. These functions affect not only the gut itself, but influence the overall health of the organism. Diseases involving the gastrointestinal tract such as inflammatory bowel disease and colorectal cancer therefore severely affect the patient's quality of life and can become life-threatening. Intestinal epithelial cells (IECs) play an important role in intestinal inflammation, infection, and cancer development. IECs not only constitute the first barrier in the gut against the lumen, they also constantly signal information about the gut lumen to immune cells, thereby influencing their behaviour. In contrast, by producing various antimicrobial peptides, IECs shape the microbial community within the gut. IECs also respond to cytokines and other mediators of immune cells in the lamina propria. Interactions between epithelial cells and immune cells in the intestine are responsible for gut homeostasis, and modulations of this crosstalk have been reported in studies of gut diseases. This review discusses the wide field of immune-epithelial interactions and shows the importance of immune-epithelial crosstalk in the intestine to gut homeostasis and the overall health status. PMID:24469679

  9. [Influence of dietary factors on microbial protein synthesis in the rumen].

    PubMed

    Vérité, R; Durand, M; Jouany, J P

    1986-01-01

    The effect of dietary factors (usually controlled in practice) on microbial protein synthesis is reviewed using in vivo experiments. Attention is drawn on the necessity to clearly distinguish variations in microbial growth efficiency from those of intestinal flow of microbial protein and to consider simultaneously variations in feed protein degradation. In practice, the relationship between microbial protein synthesis and energy intake depends mainly on diet composition and the nature of the forage. Microbial protein flow to the intestine, relative to energy intake, is lower with high concentrate diets (when given in restricted amounts), with silages and with antibiotic supplements. This flow is increased by some forage processing (such as dehydration and alkali treatments), by natural or induced defaunation, and occasionally by increased feeding frequency (when intake is restricted) and buffer and vitamin supplements. However, with some factors such as feeding frequency and antibiotics supplementation, these variations are partly counterbalanced by reverse effects on feed protein degradation. PMID:3517986

  10. Feasibility of using an isolated intestinal segment as an artificial organ for enzyme replacement therapy.

    PubMed

    Shelt, D; Walton, D; Sato, P

    1982-01-01

    Guinea pigs fed an ascorbic acid-deficient diet develop scurvy because of the absence of the enzyme L-gulonolactone oxidase. In theory if this enzyme is provided and its substrate L-gulonolactone is present at adequate concentrations ascorbic acid will be synthesized and the development of scurvy prevented. Using this model we tested whether a viable segment of intestine could be used to contain the administered enzyme and act as an artificial organ for the production of ascorbic acid. A surgical procedure was developed to prepare an externalized pouch of intestine with its circulation left intact. When enzyme is inserted in this intestinal bag it is not toxic and not antigenic in some animals, whereas, enzyme injected intraperitoneally is clearly antigenic. Synthesis of ascorbic acid by this artificial organ could not, however, be detected by elevation of plasma concentrations of the vitamin. PMID:7104431

  11. Effects of intraepithelial lymphocyte-derived cytokines on intestinal mucosal barrier function.

    PubMed

    Qiu, Yuan; Yang, Hua

    2013-10-01

    The mucosal surface of the gastrointestinal tract directly interacts with the mucosal lumen, which is continuously exposed to foreign antigens. Specialized intraepithelial lymphocytes (IELs), located between the basolateral surfaces of the epithelial cells, are important as the first line of defense against microbes as well as for their role in the maintenance of epithelial barrier homeostasis. Although IELs are mainly composed of T cells, they are phenotypically and functionally distinct from T cells in peripheral blood or the spleen. Not only are IELs stimulated by the antigens of the intestinal lumen but are they also stimulated by regulatory immune cells. The integrity of the intestinal mucosal barrier is closely tied to the IEL function. Cytokines produced by IELs modulate the cellular functions that trigger the downstream signaling pathways and mediate the barrier homeostasis. In this review, we will address the broad spectrum of cytokines that are derived from IELs and the functional regulation of these cytokines on the intestinal barrier. PMID:23692551

  12. Telomere components as potential therapeutic targets for treating microbial pathogen infections

    PubMed Central

    Li, Bibo

    2012-01-01

    In a number of microbial pathogens that undergoes antigenic variation to evade the host’s immune attack, genes encoding surface antigens are located at subtelomeric loci, and recent studies have revealed that telomere components play important roles in regulation of surface antigen expression in several of these pathogens, indicating that telomeres play critical roles in microbial pathogen virulence regulation. Importantly, although telomere protein components and their functions are largely conserved from protozoa to mammals, telomere protein homologs in microbial pathogens and humans have low sequence homology. Therefore, pathogen telomere components are potential drug targets for therapeutic approaches because first, most telomere proteins are essential for pathogens’ survival, and second, disruption of pathogens’ antigenic variation mechanism would facilitate host’s immune system to clear the infection. PMID:23125966

  13. Cancer testis antigen and immunotherapy

    PubMed Central

    Krishnadas, Deepa Kolaseri; Bai, Fanqi; Lucas, Kenneth G

    2013-01-01

    The identification of cancer testis (CT) antigens has been an important advance in determining potential targets for cancer immunotherapy. Multiple previous studies have shown that CT antigen vaccines, using both peptides and dendritic cell vaccines, can elicit clinical and immunologic responses in several different tumors. This review details the expression of melanoma antigen family A, 1 (MAGE-A1), melanoma antigen family A, 3 (MAGE-A3), and New York esophageal squamous cell carcinoma-1 (NY-ESO-1) in various malignancies, and presents our current understanding of CT antigen based immunotherapy.

  14. Glycan complexity dictates microbial resource allocation in the large intestine.

    PubMed

    Rogowski, Artur; Briggs, Jonathon A; Mortimer, Jennifer C; Tryfona, Theodora; Terrapon, Nicolas; Lowe, Elisabeth C; Baslé, Arnaud; Morland, Carl; Day, Alison M; Zheng, Hongjun; Rogers, Theresa E; Thompson, Paul; Hawkins, Alastair R; Yadav, Madhav P; Henrissat, Bernard; Martens, Eric C; Dupree, Paul; Gilbert, Harry J; Bolam, David N

    2015-01-01

    The structure of the human gut microbiota is controlled primarily through the degradation of complex dietary carbohydrates, but the extent to which carbohydrate breakdown products are shared between members of the microbiota is unclear. We show here, using xylan as a model, that sharing the breakdown products of complex carbohydrates by key members of the microbiota, such as Bacteroides ovatus, is dependent on the complexity of the target glycan. Characterization of the extensive xylan degrading apparatus expressed by B. ovatus reveals that the breakdown of the polysaccharide by the human gut microbiota is significantly more complex than previous models suggested, which were based on the deconstruction of xylans containing limited monosaccharide side chains. Our report presents a highly complex and dynamic xylan degrading apparatus that is fine-tuned to recognize the different forms of the polysaccharide presented to the human gut microbiota. PMID:26112186

  15. Glycan complexity dictates microbial resource allocation in the large intestine

    PubMed Central

    Rogowski, Artur; Briggs, Jonathon A.; Mortimer, Jennifer C.; Tryfona, Theodora; Terrapon, Nicolas; Lowe, Elisabeth C.; Baslé, Arnaud; Morland, Carl; Day, Alison M.; Zheng, Hongjun; Rogers, Theresa E.; Thompson, Paul; Hawkins, Alastair R.; Yadav, Madhav P.; Henrissat, Bernard; Martens, Eric C.; Dupree, Paul; Gilbert, Harry J.; Bolam, David N.

    2015-01-01

    The structure of the human gut microbiota is controlled primarily through the degradation of complex dietary carbohydrates, but the extent to which carbohydrate breakdown products are shared between members of the microbiota is unclear. We show here, using xylan as a model, that sharing the breakdown products of complex carbohydrates by key members of the microbiota, such as Bacteroides ovatus, is dependent on the complexity of the target glycan. Characterization of the extensive xylan degrading apparatus expressed by B. ovatus reveals that the breakdown of the polysaccharide by the human gut microbiota is significantly more complex than previous models suggested, which were based on the deconstruction of xylans containing limited monosaccharide side chains. Our report presents a highly complex and dynamic xylan degrading apparatus that is fine-tuned to recognize the different forms of the polysaccharide presented to the human gut microbiota. PMID:26112186

  16. Glycan complexity dictates microbial resource allocation in the large intestine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The structure of the human gut microbiota, which impacts on the health of the host, is controlled by complex dietary carbohydrates and members of the Bacteroidetes phylum are the major contributors to the degradation of complex dietary carbohydrates. The extent to which complex dietary carbohydrates...

  17. Anaerobic respiration of Escherichia coli in the mouse intestine.

    PubMed

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  18. The Ets Transcription Factor Spi-B Is Essential for the Differentiation of Intestinal Microfold (M) Cells

    PubMed Central

    Kanaya, Takashi; Hase, Koji; Takahashi, Daisuke; Fukuda, Shinji; Hoshino, Katsuaki; Sasaki, Izumi; Hemmi, Hiroaki; Knoop, Kathryn A; Kumar, Nachiket; Sato, Mayuko; Katsuno, Tatsuro; Yokosuka, Osamu; Toyooka, Kiminori; Nakai, Kumiko; Sakamoto, Ayako; Kitahara, Yuuki; Jinnohara, Toshi; McSorley, Stephen J; Kaisho, Tsuneyasu; Williams, Ifor R; Ohno, Hiroshi

    2012-01-01

    Intestinal microfold (M) cells are an enigmatic lineage of intestinal epithelial cells that initiate mucosal immune responses by uptake and transcytosis of luminal antigens. The mechanisms of M-cell differentiation are poorly understood as the rarity of these cells has hampered analysis. Exogenous RANKL administration can synchronously activate M-cell differentiation in mice. Here we show the Ets transcription factor Spi-B was induced early during M-cell differentiation. Absence of Spi-B silenced the expression of multiple M-cell markers and prevented the differentiation of M cells in mice. Oral antigen-specific T cell activation was significantly impaired in the intestine of Spib−/− mice. Our study demonstrates that intestinal M-cell lineage commitment requires Spi-B as a candidate master regulator. PMID:22706340

  19. Age-associated modifications of intestinal permeability and innate immunity in human small intestine.

    PubMed

    Man, Angela L; Bertelli, Eugenio; Rentini, Silvia; Regoli, Mari; Briars, Graham; Marini, Mario; Watson, Alastair J M; Nicoletti, Claudio

    2015-10-01

    The physical and immunological properties of the human intestinal epithelial barrier in aging are largely unknown. Ileal biopsies from young (7-12 years), adult (20-40 years) and aging (67-77 years) individuals not showing symptoms of gastrointestinal (GI) pathologies were used to assess levels of inflammatory cytokines, barrier integrity and cytokine production in response to microbial challenges. Increased expression of interleukin (IL)-6, but not interferon (IFN)γ, tumour necrosis factor (TNF)-α and IL-1β was observed during aging; further analysis showed that cluster of differentiation (CD)11c(+) dendritic cells (DCs) are one of the major sources of IL-6 in the aging gut and expressed higher levels of CD40. Up-regulated production of IL-6 was accompanied by increased expression of claudin-2 leading to reduced transepithelial electric resistance (TEER); TEER could be restored in in vitro and ex vivo cultures by neutralizing anti-IL-6 antibody. In contrast, expression of zonula occludens-1 (ZO-1), occludin and junctional-adhesion molecule-A1 did not vary with age and overall permeability to macromolecules was not affected. Finally, cytokine production in response to different microbial stimuli was assessed in a polarized in vitro organ culture (IVOC). IL-8 production in response to flagellin declined progressively with age although the expression and distribution of toll-like receptor (TLR)-5 on intestinal epithelial cells (IECs) remained unchanged. Also, flagellin-induced production of IL-6 was less pronounced in aging individuals. In contrast, TNF-α production in response to probiotics (VSL#3) did not decline with age; however, in our experimental model probiotics did not down-regulate the production of IL-6 and expression of claudin-2. These data suggested that aging affects properties of the intestinal barrier likely to impact on age-associated disturbances, both locally and systemically. PMID:25948052

  20. Rapid Diagnosis of Intestinal Parasitic Protozoa, with a Focus on Entamoeba histolytica

    PubMed Central

    Singh, Anjana; Houpt, Eric; Petri, William A.

    2009-01-01

    Entamoeba histolytica is an invasive intestinal pathogenic parasitic protozoan that causes amebiasis. It must be distinguished from Entamoeba dispar and E. moshkovskii, nonpathogenic commensal parasites of the human gut lumen that are morphologically identical to E. histolytica. Detection of specific E. histolytica antigens in stools is a fast, sensitive technique that should be considered as the method of choice. Stool real-time PCR is a highly sensitive and specific technique but its high cost make it unsuitable for use in endemic areas where there are economic constraints. Serology is an important component of the diagnosis of intestinal and especially extraintestinal amebiasis as it is a sensitive test that complements the detection of the parasite antigens or DNA. Circulating Gal/GalNac lectin antigens can be detected in the serum of patients with untreated amoebic liver abscess. On the horizon are multiplex real-time PCR assays which permit the identification of multiple enteropathogens with high sensitivity and specificity. PMID:19584941

  1. Exposure to food allergens through inflamed skin promotes intestinal food allergy via the TSLP-basophil axis

    PubMed Central

    Noti, Mario; Kim, Brian S.; Siracusa, Mark C.; Rak, Gregory D.; Kubo, Masato; Moghaddam, Amin E.; Sattentau, Quentin A.; Comeau, Michael R.; Spergel, Jonathan M.; Artis, David

    2014-01-01

    Background Exposure to food allergens through a disrupted skin barrier has been recognized as a potential factor in the increasing prevalence of food allergy. Objective To test the immunological mechanisms by which epicutaneous sensitization to food allergens predisposes to intestinal food allergy. Methods Mice were epicutaneously sensitized with ovalbumin (OVA) or peanut on an atopic dermatitis-like skin lesion followed by intragastric antigen challenge. Antigen-specific serum IgE levels and Th2 cytokine responses were measured by ELISA. Expression of type-2 cytokines and mast cell proteases in the intestine were measured by real-time PCR. Accumulation of basophils in the skin and mast cells in the intestine was examined by flow cytometry. In vivo basophil depletion was achieved by diphtheria toxin treatment of Baso-DTR mice. For cell transfer studies, the basophil population was expanded in vivo by hydrodynamic tail vein injection of thymic stromal lymphopoietin cDNA plasmid. Results Sensitization to food allergens through an atopic dermatitis-like skin lesion is associated with an expansion of TSLP-elicited basophils in the skin that promote antigen-specific Th2 cytokine responses, elevated antigen-specific serum IgE levels and the accumulation of mast cells in the intestine promoting the development of intestinal food allergy. Critically, disruption of TSLP responses or depletion of basophils reduced the susceptibility to intestinal food allergy while transfer of TSLP-elicited basophils into intact skin promoted disease. Conclusion Epicutaneous sensitization on a disrupted skin barrier is associated with the accumulation of TSLP-elicited basophils that are necessary and sufficient to promote antigen-induced intestinal food allergy. PMID:24560412

  2. Probiotic Bacillus pumilus SE5 shapes the intestinal microbiota and mucosal immunity in grouper Epinephelus coioides.

    PubMed

    Yang, Hong-Ling; Xia, Han-Qin; Ye, Yi-Dan; Zou, Wen-Chao; Sun, Yun-Zhang

    2014-09-30

    The health benefits of probiotics are thought to occur, at least in part, through an improved intestinal microbial balance in fish, although the molecular mechanisms whereby probiotics modulate the intestinal microbiota by means of activation of mucosal immunity are rarely explored. In this study, the effects of viable and heat-inactivated probiotic Bacillus pumilus SE5 on the intestinal dominant microbial community and mucosal immune gene expression were evaluated. The fish were fed for 60 d with 3 different diets: control (without probiotic), and diets T1 and T2 supplemented with 1.0 × 10⁸ cells g⁻¹ viable and heat-inactivated B. pumilus SE5, respectively. Upregulated expression of TLR1, TLR2 and IL-8, but not MyD88 was observed in fish fed the viable probiotic, while elevated expression of TLR2, IL-8 and TGF-β1, but not MyD88 was observed in fish fed the heat-inactivated B. pumilus SE5. The induced activation of intestinal mucosal immunity, especially the enhanced expression of antibacterial epinecidin-1, was consistent with the microbial data showing that several potentially pathogenic bacterial species such as Psychroserpens burtonensis and Pantoea agglomerans were suppressed by both the viable and heat-inactivated probiotic B. pumilus SE5. These results lay the foundation for future studies on the molecular interactions between probiotics, intestinal microbiota and mucosal immunity in fish. PMID:25266899

  3. Microbial effects

    SciTech Connect

    Lamborg, M.R.; Hardy, R.W.F.; Paul, E.A.

    1983-01-01

    The postulated doubling of atmospheric CO/sub 2/ is not likely to have direct effect on soil microbial activity because during the growing season, the concentration of CO/sub 2/ in the soil atmosphere is already ten to fifty times higher than existing atmospheric CO/sub 2/. Based on all available experimental information, it is estimated that a doubling of atmospheric CO/sub 2/ will cause an increase in primary productivity of 10 to 40% depending on locale. The increase in biomass will, in turn, produce a limitation of available soil nutrients, especially nitrogen and phosphorus. Increased organic carbon together with nitrogen and/or phosphorus limitation will result in a preferential increase in nitrogen fixation and mycorrhizal activities as the expedient means for supplying required nutrients to sustain the predicted increase in primary productivity. Therefore, increased emphasis should be placed on fundamental research related to soil microbiology with special reference to nitrogen-fixing, nitrifying and denitrifying bacteria, and to the mycorrhizal fungi. 111 references, 2 figures.

  4. Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut.

    PubMed

    Yin, Jinbao; Zhang, Xu-Xiang; Wu, Bing; Xian, Qiming

    2015-12-01

    Antibiotics have been widely used for disease prevention and treatment of the human and animals, and for growth promotion in animal husbandry. Antibiotics can disturb the intestinal microbial community, which play a fundamental role in animals' health. Misuse or overuse of antibiotics can result in increase and spread of microbial antibiotic resistance, threatening human health and ecological safety. In this study, we used Illumina Hiseq sequencing, (1)H nuclear magnetic resonance spectroscopy and metagenomics approaches to investigate intestinal microbial community shift and antibiotic resistance alteration of the mice drinking the water containing tetracycline hydrochloride (TET). Two-week TET administration caused reduction of gut microbial diversity (from 194 to 89 genera), increase in Firmicutes abundance (from 24.9 to 39.8%) and decrease in Bacteroidetes abundance (from 69.8 to 51.2%). Metagenomic analysis showed that TET treatment affected the intestinal microbial functions of carbohydrate, ribosomal, cell wall/membrane/envelope and signal transduction, which is evidenced by the alteration in the metabolites of mouse serum. Meanwhile, in the mouse intestinal microbiota, TET treatment enhanced the abundance of antibiotic resistance genes (ARGs) (from 307.3 to 1492.7 ppm), plasmids (from 425.4 to 3235.1 ppm) and integrons (from 0.8 to 179.6 ppm) in mouse gut. Our results indicated that TET administration can disturb gut microbial community and physiological metabolism of mice, and increase the opportunity of ARGs and mobile genetic elements entering into the environment with feces discharge. PMID:26423395

  5. PARSING THE ALLOCHTHONOUS FROM THE AUTOCHTHONOUS FUNGAL BIOTA IN THE POULTRY INTESTINE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Examination of intestinal microbial communities is complicated by the presence of both autochthonous (natively colonizing) and allochthonous (transient) taxa. To examine community dynamics in poultry ceca an experiment was performed in which day-old turkeys were housed in isolators on raised wire f...

  6. The Cystic Fibrosis Intestine

    PubMed Central

    De Lisle, Robert C.; Borowitz, Drucy

    2013-01-01

    The clinical manifestations of cystic fibrosis (CF) result from dysfunction of the cystic fibrosis transmembrane regulator protein (CFTR). The majority of people with CF have a limited life span as a consequence of CFTR dysfunction in the respiratory tract. However, CFTR dysfunction in the gastrointestinal (GI) tract occurs earlier in ontogeny and is present in all patients, regardless of genotype. The same pathophysiologic triad of obstruction, infection, and inflammation that causes disease in the airways also causes disease in the intestines. This article describes the effects of CFTR dysfunction on the intestinal tissues and the intraluminal environment. Mouse models of CF have greatly advanced our understanding of the GI manifestations of CF, which can be directly applied to understanding CF disease in humans. PMID:23788646

  7. Elenoside increases intestinal motility

    PubMed Central

    Navarro, E; Alonso, SJ; Navarro, R; Trujillo, J; Jorge, E

    2006-01-01

    AIM: To study the effects of elenoside, an arylnaph-thalene lignan from Justicia hyssopifolia, on gastro-intestinal motility in vivo and in vitro in rats. METHODS: Routine in vivo experimental assessments were catharsis index, water percentage of boluses, intestinal transit, and codeine antagonism. The groups included were vehicle control (propylene glycol-ethanol-plant oil-tween 80), elenoside (i.p. 25 and 50 mg/kg), cisapride (i.p. 10 mg/kg), and codeine phosphate (intragastric route, 50 mg/kg). In vitro approaches used isolated rat intestinal tissues (duodenum, jejunum, and ileum). The effects of elenoside at concentrations of 3.2 x 10-4, 6.4 x 10-4 and 1.2 x 10-3 mol/L, and cisapride at 10-6 mol/L were investigated. RESULTS: Elenoside in vivo produced an increase in the catharsis index and water percentage of boluses and in the percentage of distance traveled by a suspension of activated charcoal. Codeine phosphate antagonized the effect of 25 mg/kg of elenoside. In vitro, elenoside in duodenum, jejunum and ileum produced an initial decrease in the contraction force followed by an increase. Elenoside resulted in decreased intestinal frequency in duodenum, jejunum, and ileum. The in vitro and in vivo effects of elenoside were similar to those produced by cisapride. CONCLUSION: Elenoside is a lignan with an action similar to that of purgative and prokinetics drugs. Elenoside, could be an alternative to cisapride in treatment of gastrointestinal diseases as well as a preventive therapy for the undesirable gastrointestinal effects produced by opioids used for mild to moderate pain. PMID:17131476

  8. Alcohol and the Intestine

    PubMed Central

    Patel, Sheena; Behara, Rama; Swanson, Garth R.; Forsyth, Christopher B.; Voigt, Robin M.; Keshavarzian, Ali

    2015-01-01

    Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches. PMID:26501334

  9. Intestinal folate absorption

    PubMed Central

    Strum, Williamson; Nixon, Peter F.; Bertino, Joseph B.; Binder, Henry J.

    1971-01-01

    Intestinal absorption of the monoglutamate form of the principal dietary and circulating folate compound, 5-methyltetrahydrofolic acid (5-MTHF), was studied in the rat utilizing a synthetic highly purified radiolabeled diastereoisomer. Chromatography confirmed that the compound was not altered after transfer from the mucosa to the serosa. Accumulation against a concentration gradient was not observed in duodenal, jejunal, or ileal segments at 5-MTHF concentration from 0.5 to 500 nmoles/liter. Unidirectional transmural flux determination also did not indicate a significant net flux. Mucosal to serosal transfer of 5-MTHF was similar in all segments of the intestine and increased in a linear fashion with increased initial mucosal concentrations. Further, no alteration in 5-MTHF transfer was found when studied in the presence of metabolic inhibitors or folate compounds. These results indicate that 5-MTHF is not absorbed by the rat small intestine by a carrier-mediated system and suggest that 5-MTHF transfer most likely represents diffusion. Images PMID:5564397

  10. Dysbiosis in intestinal inflammation: Cause or consequence.

    PubMed

    Buttó, Ludovica F; Haller, Dirk

    2016-08-01

    The intestinal microbiota encompasses hundreds of bacterial species that constitute a relatively stable ecosystem. Alteration in the microbiota composition may arise from infections, immune defects, metabolic alterations, diet or antibiotic treatment. Dysbiosis is considered as an alteration in microbiota community structure and/or function, capable of causing/driving a detrimental distortion of microbe-host homeostasis. A variety of pathologies are associated with changes in the community structure and function of the gut microbiota, suggesting a link between dysbiosis and disease etiology. With an emphasis in this review on inflammatory bowel diseases (IBD), the non-trivial question is whether dysbiosis is the cause or consequence of inflammation. It is important to understand whether changes in microbial ecosystems are causally linked to the pathology and to what extend disease risk is predicable based on characteristic changes in community structure and/or function. Local changes in tissue integrity associated with focal areas of inflammation may result in the selection of a dysbiotic bacterial community associated with the propagation of a disease phenotype. This review outlines the role of dysbiosis in intestinal inflammation with particular focus on IBD-relevant gnotobiotic mouse models, the factors implicated in the development of dysbiosis and the means available to investigate dysbiosis in the context of human diseases. PMID:27012594

  11. Effect of Gamma radiation on microbial population of natural casings

    NASA Astrophysics Data System (ADS)

    Trigo, M. J.; Fraqueza, M. J.

    1998-06-01

    The high microbial load of fresh and dry natural casings increases the risk of meat product contamination with pathogenic microorganisms, agents of foodborn diseases. The aim of this work is to evaluate the killing effect of gamma radiation of the resident microbial population of pork and beef casings, to improve their hygiene and safety. Portions of fresh pork (small intestines and colon) and dry beef casings were irradiated in a Cobalt 60 source with with absorbed doses of 1,2,5 and 10 kGy. The D 10 values of total aerobic microorganisms in the pork casings were 1.65 kGy for colon and 1.54 kGy for small intestine. The D 10 value found in beef dry casings (small intestine) was 10.17 kGy. Radurization with 5 kGy was able to reduce, at least, 6 logs the coliform bacteria in pork casings. The killing effect over faecal Streptococci was 4 logs for pork fresh casings and 2 logs for beef dry casings. Gamma radiation with 5 kGy proved to be a convenient method to reduce substantially the microbial population of pork fresh casings. Otherwise, the microbial population of beef dry casings still resisted to 10 kGy.

  12. DNA Double-Strand Breaks and Telomeres Play Important Roles in Trypanosoma brucei Antigenic Variation

    PubMed Central

    2015-01-01

    Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo antigenic variation, Trypanosoma brucei (a kinetoplastid), which causes human African trypanosomiasis, Plasmodium falciparum (an apicomplexan), which causes malaria, Pneumocystis jirovecii (a fungus), which causes pneumonia, and Borrelia burgdorferi (a bacterium), which causes Lyme disease, also express their major surface antigens from loci next to the telomere. Except for Plasmodium, DNA recombination-mediated gene conversion is a major pathway for surface antigen switching in these pathogens. In the last decade, more sophisticated molecular and genetic tools have been developed in T. brucei, and our knowledge of functions of DNA recombination in antigenic variation has been greatly advanced. VSG is the major surface antigen in T. brucei. In subtelomeric VSG expression sites (ESs), VSG genes invariably are flanked by a long stretch of upstream 70-bp repeats. Recent studies have shown that DNA double-strand breaks (DSBs), particularly those in 70-bp repeats in the active ES, are a natural potent trigger for antigenic variation in T. brucei. In addition, telomere proteins can influence VSG switching by reducing the DSB amount at subtelomeric regions. These findings will be summarized and their implications will be discussed in this review. PMID:25576484

  13. The human milk oligosaccharide 2'-fucosyllactose augments the adaptive response to extensive intestinal.

    PubMed

    Mezoff, Ethan A; Hawkins, Jennifer A; Ollberding, Nicholas J; Karns, Rebekah; Morrow, Ardythe L; Helmrath, Michael A

    2016-03-15

    Intestinal resection resulting in short bowel syndrome (SBS) carries a heavy burden of long-term morbidity, mortality, and cost of care, which can be attenuated with strategies that improve intestinal adaptation. SBS infants fed human milk, compared with formula, have more rapid intestinal adaptation. We tested the hypothesis that the major noncaloric human milk oligosaccharide 2'-fucosyllactose (2'-FL) contributes to the adaptive response after intestinal resection. Using a previously described murine model of intestinal adaptation, we demonstrated increased weight gain from 21 to 56 days (P < 0.001) and crypt depth at 56 days (P < 0.0095) with 2'-FL supplementation after ileocecal resection. Furthermore, 2'-FL increased small bowel luminal content microbial alpha diversity following resection (P < 0.005) and stimulated a bloom in organisms of the genus Parabacteroides (log2-fold = 4.1, P = 0.035). Finally, transcriptional analysis of the intestine revealed enriched ontologies and pathways related to antimicrobial peptides, metabolism, and energy processing. We conclude that 2'-FL supplementation following ileocecal resection increases weight gain, energy availability through microbial community modulation, and histological changes consistent with improved adaptation. PMID:26702137

  14. Effects of Bacillus subtilis-based direct-fed microbials on growth performance, immune characteristics and resistance against experimental coccidiosis in broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present experiment was conducted to study the effects of dietary Bacillus-based direct-fed microbials (DFMs) on cytokine expression patterns, intestinal intraepithelial lymphocyte (IEL) subpopulation, splenocyte proliferation, macrophage functions and resistance against experimental coccidiosis ...

  15. Oral PEG 15-20 protects the intestine against radiation : role of lipid rafts.

    SciTech Connect

    Valuckaite, V.; Zaborina, O.; Long, J.; Hauer-Jensen, M.; Wang, J.; Holbrook, C.; Zaborin, A.; Drabik, K.; Katdare, M.; Mauceri, H.; Weichselbaum, R.; Firestone, M. A.; Lee, K. Y.; Chang, E. B.; Matthews, J.; Alverdy, J. C.; Materials Science Division; Univ. of Chicago; Univ. of Arkansas

    2009-12-01

    Intestinal injury following abdominal radiation therapy or accidental exposure remains a significant clinical problem that can result in varying degrees of mucosal destruction such as ulceration, vascular sclerosis, intestinal wall fibrosis, loss of barrier function, and even lethal gut-derived sepsis. We determined the ability of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect the intestine against the early and late effects of radiation in mice and rats and to determine its mechanism of action by examining cultured rat intestinal epithelia. Rats were exposed to fractionated radiation in an established model of intestinal injury, whereby an intestinal segment is surgically placed into the scrotum and radiated daily. Radiation injury score was decreased in a dose-dependent manner in rats gavaged with 0.5 or 2.0 g/kg per day of PEG 15-20 (n = 9-13/group, P < 0.005). Complementary studies were performed in a novel mouse model of abdominal radiation followed by intestinal inoculation with Pseudomonas aeruginosa (P. aeruginosa), a common pathogen that causes lethal gut-derived sepsis following radiation. Mice mortality was decreased by 40% in mice drinking 1% PEG 15-20 (n = 10/group, P < 0.001). Parallel studies were performed in cultured rat intestinal epithelial cells treated with PEG 15-20 before radiation. Results demonstrated that PEG 15-20 prevented radiation-induced intestinal injury in rats, prevented apoptosis and lethal sepsis attributable to P. aeruginosa in mice, and protected cultured intestinal epithelial cells from apoptosis and microbial adherence and possible invasion. PEG 15-20 appeared to exert its protective effect via its binding to lipid rafts by preventing their coalescence, a hallmark feature in intestinal epithelial cells exposed to radiation.

  16. Environmental and lifestyle influences on disorders of the large and small intestine: implications for treatment.

    PubMed

    Hall, Emily H; Crowe, Sheila E

    2011-01-01

    There is growing evidence that many aspects of our lifestyle and the environment we now live in contribute to the development of disease. The luminal digestive tract is a clear target of the influence of dietary components, alcohol, microbial organisms, and other ingested materials. External factors including obesity, lack of physical exercise, and tobacco consumption also impact diseases of the luminal gastrointestinal (GI) tract. A growing understanding of the microbiome which forms an integral part of the human organism indicates that this is another important external force that impacts human health and disease. The luminal GI tract conditions that arise, at least in part, from these external factors range from malignancies (squamous cell esophageal cancer, Barrett's esophagus and associated esophageal adenocarcinoma, gastric cancer, and colorectal cancer), idiopathic inflammatory disorders such as inflammatory bowel diseases, and post-infectious syndromes including post-infectious irritable bowel syndrome, post-infectious dyspepsia and other functional GI disorders. Of particular interest, given their increase in prevalence in much of the world, are immune-mediated conditions in which food antigens are the driving force behind disease development. These entities include celiac disease, eosinophilic esophagitis, and food allergies. Celiac disease is a prime example of a condition mediated by dietary factors whose pathogenesis has only recently been determined, providing opportunities for developing treatment options beyond the gluten-free diet. While a genetic basis for this disease clearly exists, it is believed that environmental factors such as an increase in gluten in the human diet account for its rising prevalence, now roughly 1% of genetically susceptible populations in all continents. Proposed therapeutic strategies span from preventing disease by modulating the time of gluten introduction in infants, to reducing exposure to gluten by developing strains

  17. Phasic study of intestinal homeostasis disruption in experimental intestinal obstruction

    PubMed Central

    Yu, Xiang-Yang; Zou, Chang-Lin; Zhou, Zhen-Li; Shan, Tao; Li, Dong-Hua; Cui, Nai-Qiang

    2014-01-01

    AIM: To investigate the phasic alteration of intestinal homeostasis in an experimental model of intestinal obstruction. METHODS: A rabbit model of intestinal obstruction was established by transforming parts of an infusion set into an in vivo pulled-type locking clamp and creating a uniform controllable loop obstruction in the mesenteric non-avascular zone 8 cm from the distal end of the ileum. The phasic alteration of intestinal homeostasis was studied after intestinal obstruction. The changes in goblet cells, intraepithelial lymphocytes, lamina propria lymphocytes, and intestinal epithelium were quantified from periodic acid-Schiff-stained sections. Ornithine decarboxylase (ODC) activity and serum citrulline levels were measured by high-performance liquid chromatography. Claudin 1 mRNA expression was examined by real-time polymerase chain reaction analysis. Intestinal microorganisms, wet/dry weight ratios, pH values, and endotoxin levels were determined at multiple points after intestinal obstruction. Furthermore, the number and ratio of CD3+, CD4+ and CD8+ T cells were determined by flow cytometry, and secretory IgA levels were measured with an enzyme-linked immunosorbent assay. RESULTS: A suitable controllable rabbit model of intestinal obstruction was established. Intestinal obstruction induced goblet cell damage and reduced cell number. Further indicators of epithelial cell damage were observed as reduced serum citrulline levels and claudin 1 gene expression, and a transient increase in ODC activity. In addition, the wet/dry weight ratio and pH of the intestinal lumen were also dramatically altered. The ratio of Bacillus bifidus and enterobacteria was reversed following intestinal obstruction. The number and area of Peyer’s patches first increased then sharply decreased after the intestinal obstruction, along with an alteration in the ratio of CD4/CD8+ T cells, driven by an increase in CD3+ and CD8+ T cells and a decrease in CD4+ T cells. The number of

  18. Human leucocyte antigens in tympanosclerosis.

    PubMed

    Dursun, G; Acar, A; Turgay, M; Calgüner, M

    1997-02-01

    This study was designed to evaluate the association between certain HLA antigens and tympanosclerosis. The serum concentrations of HLA antigens were measured by a microlymphocytotoxicity technique in patients with tympanosclerosis and compared with a healthy control group. The serum levels of HLA-B35 and -DR3 were significantly higher in the patients with tympanosclerosis. This result suggests that certain types of HLA antigens may play an important role as an indicator or mediator in the pathogenesis of tympanosclerosis. PMID:9088683

  19. How to make an intestine

    PubMed Central

    Wells, James M.; Spence, Jason R.

    2014-01-01

    With the high prevalence of gastrointestinal disorders, there is great interest in establishing in vitro models of human intestinal disease and in developing drug-screening platforms that more accurately represent the complex physiology of the intestine. We will review how recent advances in developmental and stem cell biology have made it possible to generate complex, three-dimensional, human intestinal tissues in vitro through directed differentiation of human pluripotent stem cells. These are currently being used to study human development, genetic forms of disease, intestinal pathogens, metabolic disease and cancer. PMID:24496613

  20. Intestinal microbiota and diet in IBS: causes, consequences, or epiphenomena?

    PubMed

    Rajilić-Stojanović, Mirjana; Jonkers, Daisy M; Salonen, Anne; Hanevik, Kurt; Raes, Jeroen; Jalanka, Jonna; de Vos, Willem M; Manichanh, Chaysavanh; Golic, Natasa; Enck, Paul; Philippou, Elena; Iraqi, Fuad A; Clarke, Gerard; Spiller, Robin C; Penders, John

    2015-02-01

    Irritable bowel syndrome (IBS) is a heterogeneous functional disorder with a multifactorial etiology that involves the interplay of both host and environmental factors. Among environmental factors relevant for IBS etiology, the diet stands out given that the majority of IBS patients report their symptoms to be triggered by meals or specific foods. The diet provides substrates for microbial fermentation, and, as the composition of the intestinal microbiota is disturbed in IBS patients, the link between diet, microbiota composition, and microbial fermentation products might have an essential role in IBS etiology. In this review, we summarize current evidence regarding the impact of diet and the intestinal microbiota on IBS symptoms, as well as the reported interactions between diet and the microbiota composition. On the basis of the existing data, we suggest pathways (mechanisms) by which diet components, via the microbial fermentation, could trigger IBS symptoms. Finally, this review provides recommendations for future studies that would enable elucidation of the role of diet and microbiota and how these factors may be (inter)related in the pathophysiology of IBS. PMID:25623659

  1. Intestinal Microbiota And Diet in IBS: Causes, Consequences, or Epiphenomena?

    PubMed Central

    Rajilić-Stojanović, Mirjana; Jonkers, Daisy M; Salonen, Anne; Hanevik, Kurt; Raes, Jeroen; Jalanka, Jonna; de Vos, Willem M; Manichanh, Chaysavanh; Golic, Natasa; Enck, Paul; Philippou, Elena; Iraqi, Fuad A; Clarke, Gerard; Spiller, Robin C; Penders, John

    2015-01-01

    Irritable bowel syndrome (IBS) is a heterogeneous functional disorder with a multifactorial etiology that involves the interplay of both host and environmental factors. Among environmental factors relevant for IBS etiology, the diet stands out given that the majority of IBS patients report their symptoms to be triggered by meals or specific foods. The diet provides substrates for microbial fermentation, and, as the composition of the intestinal microbiota is disturbed in IBS patients, the link between diet, microbiota composition, and microbial fermentation products might have an essential role in IBS etiology. In this review, we summarize current evidence regarding the impact of diet and the intestinal microbiota on IBS symptoms, as well as the reported interactions between diet and the microbiota composition. On the basis of the existing data, we suggest pathways (mechanisms) by which diet components, via the microbial fermentation, could trigger IBS symptoms. Finally, this review provides recommendations for future studies that would enable elucidation of the role of diet and microbiota and how these factors may be (inter)related in the pathophysiology of IBS. PMID:25623659

  2. Gut Microbial Metabolites Fuel Host Antibody Responses.

    PubMed

    Kim, Myunghoo; Qie, Yaqing; Park, Jeongho; Kim, Chang H

    2016-08-10

    Antibody production is a metabolically demanding process that is regulated by gut microbiota, but the microbial products supporting B cell responses remain incompletely identified. We report that short-chain fatty acids (SCFAs), produced by gut microbiota as fermentation products of dietary fiber, support host antibody responses. In B cells, SCFAs increase acetyl-CoA and regulate metabolic sensors to increase oxidative phosphorylation, glycolysis, and fatty acid synthesis, which produce energy and building blocks supporting antibody production. In parallel, SCFAs control gene expression to express molecules necessary for plasma B cell differentiation. Mice with low SCFA production due to reduced dietary fiber consumption or microbial insufficiency are defective in homeostatic and pathogen-specific antibody responses, resulting in greater pathogen susceptibility. However, SCFA or dietary fiber intake restores this immune deficiency. This B cell-helping function of SCFAs is detected from the intestines to systemic tissues and conserved among mouse and human B cells, highlighting its importance. PMID:27476413

  3. Novel antigen delivery systems.

    PubMed

    Trovato, Maria; De Berardinis, Piergiuseppe

    2015-08-12

    Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies for making vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a non-pathogenic prokaryotic organism: the "E2 scaffold" of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus. PMID:26279977

  4. Intestinal transplantation: living related.

    PubMed

    Pollard, S G

    1997-01-01

    The use of live donors in intestinal transplantation could potentially both reduce the severity of rejection responses against this highly immunogenic organ by better tissue matching and also reduce cold ischaemia times. These two advantages over cadaveric grafts could preserve mucosal integrity and reduce the risk of systemic sepsis from bacterial translocation. The disadvantages of live donation are the inherent risk to the donor and the compromise of using a shorter graft. Although only a handful of such cases have been performed, the success rate has been high and this is a therapeutic modality which should be explored further. PMID:9536535

  5. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation.

    PubMed

    Yang, Gang; Xu, Zhenjiang; Tian, Xiangli; Dong, Shuanglin; Peng, Mo

    2015-02-27

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota. PMID:25640843

  6. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation.

    PubMed

    Kabat, Agnieszka M; Harrison, Oliver J; Riffelmacher, Thomas; Moghaddam, Amin E; Pearson, Claire F; Laing, Adam; Abeler-Dörner, Lucie; Forman, Simon P; Grencis, Richard K; Sattentau, Quentin; Simon, Anna Katharina; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD); however, it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4(+) T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterized by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3(+) Treg cells. Specific ablation of Atg16l1 in Foxp3(+) Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders. PMID:26910010

  7. Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets.

    PubMed

    Liu, Hong; Zhang, Jiang; Zhang, Shihai; Yang, Fengjuan; Thacker, Phil A; Zhang, Guolong; Qiao, Shiyan; Ma, Xi

    2014-01-29

    The present study was conducted to evaluate the effects of early administration of Lactobacillus fermentum I5007 on intestinal development and microbial composition in the gastrointestinal tract using a neonatal piglet model. Full-term 4 day old piglets, fed with milk replacer, were divided into a control group (given placebo of 0.1% peptone water) and a L. fermentum I5007 group (dosed daily with 6 × 10(9) CFU/mL L. fermentum I5007). The experiment lasted 14 days. On day 14, a significant increase in the jejunum villous height (583 ± 33 vs 526 ± 18) and increases in the concentrations of butyrate (7.55 ± 0.55 vs 5.33 ± 0.39) and branched chain fatty acids in the colonic digesta were observed in piglets in the L. fermentum I5007 treatment (P < 0.05). mRNA expression of IL-1β (1.29 ± 0.29 vs. 0.62 ± 0.07) in the ileum were lower after 14 days of treatment with L. fermentum I5007. Denaturing gradient gel electrophoresis (DGGE) revealed that L. fermentum I5007 affected the colonic microbial communities on day 14 and, in particular, reduced numbers of Clostridium sp. L. fermentum I5007 play a positive role in gut development in neonatal piglets by modulating microbial composition, intestinal development, and immune status. L. fermentum I5007 may be useful as a probiotic for application in neonatal piglets. PMID:24404892

  8. A Deregulated Intestinal Cell Cycle Program Disrupts Tissue Homeostasis without Affecting Longevity in Drosophila*

    PubMed Central

    Petkau, Kristina; Parsons, Brendon D.; Duggal, Aashna; Foley, Edan

    2014-01-01

    Recent studies illuminate a complex relationship between the control of stem cell division and intestinal tissue organization in the model system Drosophila melanogaster. Host and microbial signals drive intestinal proliferation to maintain an effective epithelial barrier. Although it is widely assumed that proliferation induces dysplasia and shortens the life span of the host, the phenotypic consequences of deregulated intestinal proliferation for an otherwise healthy host remain unexplored. To address this question, we genetically isolated and manipulated the cell cycle programs of adult stem cells and enterocytes. Our studies revealed that cell cycle alterations led to extensive cell death and morphological disruptions. Despite the extensive tissue damage, we did not observe an impact on longevity, suggesting a remarkable degree of plasticity in intestinal function. PMID:25170078

  9. A deregulated intestinal cell cycle program disrupts tissue homeostasis without affecting longevity in Drosophila.

    PubMed

    Petkau, Kristina; Parsons, Brendon D; Duggal, Aashna; Foley, Edan

    2014-10-10

    Recent studies illuminate a complex relationship between the control of stem cell division and intestinal tissue organization in the model system Drosophila melanogaster. Host and microbial signals drive intestinal proliferation to maintain an effective epithelial barrier. Although it is widely assumed that proliferation induces dysplasia and shortens the life span of the host, the phenotypic consequences of deregulated intestinal proliferation for an otherwise healthy host remain unexplored. To address this question, we genetically isolated and manipulated the cell cycle programs of adult stem cells and enterocytes. Our studies revealed that cell cycle alterations led to extensive cell death and morphological disruptions. Despite the extensive tissue damage, we did not observe an impact on longevity, suggesting a remarkable degree of plasticity in intestinal function. PMID:25170078

  10. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells.

    PubMed

    Lotz, Michael; Gütle, Dominique; Walther, Sabrina; Ménard, Sandrine; Bogdan, Christian; Hornef, Mathias W

    2006-04-17

    The role of innate immune recognition by intestinal epithelial cells (IECs) in vivo is ill-defined. Here, we used highly enriched primary IECs to analyze Toll-like receptor (TLR) signaling and mechanisms that prevent inappropriate stimulation by the colonizing microflora. Although the lipopolysaccharide (LPS) receptor complex TLR4/MD-2 was present in fetal, neonatal, and adult IECs, LPS-induced nuclear factor kappaB (NF-kappaB) activation and chemokine (macrophage inflammatory protein 2 [MIP-2]) secretion was only detected in fetal IECs. Fetal intestinal macrophages, in contrast, were constitutively nonresponsive to LPS. Acquisition of LPS resistance was paralleled by a spontaneous activation of IECs shortly after birth as illustrated by phosphorylation of IkappaB-alpha and nuclear translocation of NF-kappaB p65 in situ as well as transcriptional activation of MIP-2. Importantly, the spontaneous IEC activation occurred in vaginally born mice but not in neonates delivered by Caesarean section or in TLR4-deficient mice, which together with local endotoxin measurements identified LPS as stimulatory agent. The postnatal loss of LPS responsiveness of IECs was associated with a posttranscriptional down-regulation of the interleukin 1 receptor-associated kinase 1, which was essential for epithelial TLR4 signaling in vitro. Thus, unlike intestinal macrophages, IECs acquire TLR tolerance immediately after birth by exposure to exogenous endotoxin to facilitate microbial colonization and the development of a stable intestinal host-microbe homeostasis. PMID:16606665

  11. Microbial mineral recovery

    SciTech Connect

    Ehrlich, H.L.; Brierly, C.L.

    1989-01-01

    This book presents the scientific basis for using microbial biomass to remove metals from solution. Reports on current and potential microbial technology, including bioleaching of ores, bio-benefication of ores and fossil fuels, metal recovery from solution, and microbial EOR. Examines how microorganisms used in these technologies might improve through genetic engineering.

  12. Comparison between intestinal and non-mucosal immune functions of rainbow trout, Oncorhynchus mykiss.

    PubMed

    Martin, Eve; Verlhac Trichet, Viviane; Legrand-Frossi, Christine; Frippiat, Jean-Pol

    2012-12-01

    Since mucosal surfaces represent major portals of entry for pathogens, its associated immune system is important to protect the organism. In this paper, we compared at the cellular and molecular levels intestinal leukocyte suspensions with their head kidney (HK) or peripheral blood (PBL) counterparts to highlight characteristics of intestinal immune functions in healthy rainbow trout. These studies show that intestinal phagocytes are less activated by yeast cells but when they are activated they can ingest as many yeast cells as their HK counterparts. A natural cytotoxic activity could be detected which is twice higher in intestinal than in HK leukocyte preparations. This natural cytotoxic activity is correlated with the expression of transcripts encoding the natural killer enhancement factor (NKEF). Intestinal leukocytes did not respond to an in vitro mitogenic stimulation performed under classical culture conditions. And finally, a high expression of CD8α transcripts was observed in gut leukocyte preparations, suggesting that the intestine could contain a high proportion of T cells expressing the αα homodimeric form of CD8. This kind of comparison on nonimmunized fish provides better knowledge on basal immune functions in the intestine to, analyze later on, immune responses induced by an antigenic stimulation. PMID:23026718

  13. Gamma/delta intraepithelial lymphocytes in the mouse small intestine.

    PubMed

    Ogata, Masaki; Itoh, Tsunetoshi

    2016-09-01

    Although many studies of intraepithelial lymphocytes (IELs) have been reported, most of them have focused on αβ-IELs; little attention has been paid to γδ-IELs. The function of γδ-IELs remains largely unclear. In this article, we briefly review a number of reports on γδ-IELs, especially those in the small intestine, along with our recent studies. We found that γδ-IELs are the most abundant (comprising >70 % of the) IELs in the duodenum and the jejunum, implying that it is absolutely necessary to investigate the function(s) of γδ-IELs when attempting to delineate the in vivo defense system of the small intestine. Intraperitoneal injection of anti-CD3 mAb stimulated the γδ-IELs and caused rapid degranulation of them. Granzyme B released from their granules induced DNA fragmentation of duodenal and jejunal epithelial cells (paracrine) and of the IELs themselves (autocrine). However, perforin (Pfn) was not detected, and DNA fragmentation was induced even in Pfn-knockout mice; our system was therefore found to present a novel type of in vivo Pfn-independent DNA fragmentation. We can therefore consider γδ-IELs to be a novel type of large granular lymphocyte without Pfn. Fragmented DNA was repaired in the cells, indicating that DNA fragmentation alone cannot be regarded as an unambiguous marker of cell death or apoptosis. Finally, since the response was so rapid and achieved without the need for accessory cells, it seems that γδ-IELs respond readily to various stimuli, are activated only once, and die 2-3 days after activation in situ without leaving their site. Taken together, these results suggest that γδ-IELs are not involved in the recognition of specific antigen(s) and are not involved in the resulting specific killing or exclusion of the relevant antigen(s). PMID:27056578

  14. [INTESTINAL TRANSPLANTATION IN PEDIATRICS

    PubMed

    Alarcón M, Pedro; Alarcón M, Jorge

    1997-01-01

    Intestinal Transplantation used to be an utopia in Medicine, and this was mainly due to the factor that the surgical technique was not the best at the beginning. When this was perfectioned, the next obstacle for the adequate progress of this surgery was the limited availability of anti-rejection drugs due to the fact that Ciclosporine has been and still is a drug of relative effectiveness. With the discovery of new anti-rejection drugs and with a best knowledge of the concomitant liver transplantation roll on the prognosis of these patients, it was possible to get in this decade, specifically in the last 2 years, extraordinary results; for example, from 170 pacients who underwent intestinal transplantation around the world, more than half were done by the University of Pittsburg. This university reported a survival of 62%. But, this percentage has been improved even more, the University of Miami reported a survival of 70% through the use of corticoides and two powerful anti-rejection drugs: FK-506 and Mycophelate. PMID:12219105

  15. Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication

    PubMed Central

    Kristoff, Jan; Haret-Richter, George; Ma, Dongzhu; Ribeiro, Ruy M.; Xu, Cuiling; Cornell, Elaine; Stock, Jennifer L.; He, Tianyu; Mobley, Adam D.; Ross, Samantha; Trichel, Anita; Wilson, Cara; Tracy, Russell; Landay, Alan; Apetrei, Cristian; Pandrea, Ivona

    2014-01-01

    Damage to the intestinal mucosa results in the translocation of microbes from the intestinal lumen into the circulation. Microbial translocation has been proposed to trigger immune activation, inflammation, and coagulopathy, all of which are key factors that drive HIV disease progression and non-HIV comorbidities; however, direct proof of a causal link is still lacking. Here, we have demonstrated that treatment of acutely SIV-infected pigtailed macaques with the drug sevelamer, which binds microbial lipopolysaccharide in the gut, dramatically reduces immune activation and inflammation and slightly reduces viral replication. Furthermore, sevelamer administration reduced coagulation biomarkers, confirming the contribution of microbial translocation in the development of cardiovascular comorbidities in SIV-infected nonhuman primates. Together, our data suggest that early control of microbial translocation may improve the outcome of HIV infection and limit noninfectious comorbidities associated with AIDS. PMID:24837437

  16. Stool Test: H. Pylori Antigen

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Stool Test: H. Pylori Antigen KidsHealth > For Parents > Stool Test: H. Pylori Antigen Print A A A Text Size ... en español Muestra de materia fecal: antígeno de H. pylori What It Is Helicobacter pylori ( H. pylori ) ...

  17. A recombinant attenuated Salmonella enterica Serovar Typhimurium vaccine encoding Eimeria acervulina antigen offers protection against E. acervulina challenge.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccidiosis is a ubiquitous disease caused by several distinct species of intestinal protozoan parasite Eimeria spp.. Cell-mediated immunity (CMI) is critically important for protection against Eimeria, thus our approach utilizes bacterial Type Three Secretion System (TTSS) to deliver an antigen di...

  18. Multiple intestinal 'loops' provide an in vivo model to analyse multiple mucosal immune responses.

    PubMed

    Gerdts, V; Uwiera, R R; Mutwiri, G K; Wilson, D J; Bowersock, T; Kidane, A; Babiuk, L A; Griebel, P J

    2001-10-01

    Mucosal immunity plays an important role in preventing disease but the induction of protective mucosal immune responses remains a significant challenge. We describe a novel in vivo model to analyze the induction of multiple mucosal immune responses in the small intestine. A sterile segment of intestine ('intestinal-segment'; 2-3 m long) was surgically prepared in the jejunum of 4-6-month-old lambs. This 'intestinal-segment' was then subdivided into consecutive segments, designated as 'loops' (15-20 cm long), that included a Peyer's patch (PP), or 'interspaces' (15-70 cm long), that lacked a visible PP. All 'loops' were sterile when collected 1-4 weeks post-surgery and there was no macroscopic or histological evidence of altered lymph or blood flow. Flow cytometric analysis of cells isolated from PP, mucosal epithelium (IEL) and the lamina propria (LPL) revealed no significant alterations in the cell populations present in 'loop' tissues. The functional integrity of M-cell antigen uptake in sterile intestinal 'loops' was evaluated by comparing the immune response induced by varying doses of soluble versus particulate porcine serum albumin (PSA formulated in alginate microspheres). A dose-dependent, PSA-specific antibody-secreting cell response was restricted to PP present in 'loops' injected with particulate PSA. These observations suggested that PP present in sterile 'loops' were functional and this conclusion was confirmed by detecting cholera toxin-specific antibody-secreting cells and secreted antibody in PP and intestinal contents, respectively, of immunized 'loops.' Thus, each 'loop' provided an independent site to analyze antigen-uptake and the induction of mucosal immune responses by a variety of antigen or vaccine formulations. PMID:11516752

  19. Novel antigen delivery systems

    PubMed Central

    Trovato, Maria; Berardinis, Piergiuseppe De

    2015-01-01

    Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies for making vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a non-pathogenic prokaryotic organism: the “E2 scaffold” of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus. PMID:26279977

  20. PROSTATE SPECIFIC MEMBRANE ANTIGEN-BASED IMAGING

    PubMed Central

    Osborne, Joseph R.; Akhtar, Naveed H.; Vallabhajosula, Shankar; Anand, Alok; Deh, Kofi; Tagawa, Scott T.

    2012-01-01

    SUMMARY Prostate cancer (PC) is the most common non-cutaneous malignancy affecting men in North America. Despite significant efforts, conventional imaging of PC does not contribute to patient management as much as imaging performed for other common cancers. Given the lack of specificity in conventional imaging techniques, one possible solution is to screen for PC specific antigenic targets and generate agents able to specifically bind. Prostate specific membrane antigen (PSMA) is over-expressed in PC tissue, with low levels of expression in the small intestine, renal tubular cells and salivary gland. The first clinical agent for targeting PSMA was 111In-capromab, involving an antibody recognizing the internal domain of PSMA. The second- and third-generation humanized PSMA binding antibodies have the potential to overcome some of the limitations inherent to capromab pendetide i.e. inability to bind to live PC cells. One example is the humanized monoclonal antibody J591 (Hu mAb J591) that was developed primarily for therapeutic purposes but also has interesting imaging characteristics including the identification of bone metastases in PC. The major disadvantage of use of mAb for imaging is slow target recognition and background clearance in an appropriate timeframe for diagnostic imaging. Urea-based compounds such as small molecule inhibitors may also present promising agents for PC imaging with SPECT and PET. Two such small-molecule inhibitors targeting PSMA, MIP-1072 and MIP-1095, have exhibited high affinity for PSMA. The uptake of 123I-MIP-1072 and 123I-MIP-1095 in PC xenografts have imaged successfully with favorable properties amenable to human trials. While advances in conventional imaging will continue, Ab and small molecule imaging exemplified by PSMA targeting have the greatest potential to improve diagnostic sensitivity and specificity. PMID:22658884

  1. Radioimmunoassays of hidden viral antigens

    SciTech Connect

    Neurath, A.R.; Strick, N.; Baker, L.; Krugman, S.

    1982-07-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis B virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure.

  2. Dietary microbial phytase exerts mixed effects on the gut health of tilapia: a possible reason for the null effect on growth promotion.

    PubMed

    Hu, Jun; Ran, Chao; He, Suxu; Cao, Yanan; Yao, Bin; Ye, Yuantu; Zhang, Xuezhen; Zhou, Zhigang

    2016-06-01

    The present study evaluated the effects of dietary microbial phytase on the growth and gut health of hybrid tilapia (Oreochromis niloticus ♀×Oreochromis aureus ♂), focusing on the effect on intestinal histology, adhesive microbiota and expression of immune-related cytokine genes. Tilapia were fed either control diet or diet supplemented with microbial phytase (1000 U/kg). Each diet was randomly assigned to four groups of fish reared in cages (3×3×2 m). After 12 weeks of feeding, weight gain and feed conversion ratio of tilapia were not significantly improved by dietary microbial phytase supplementation. However, significantly higher level of P content in the scales, tighter and more regular intestinal mucosa folds were observed in the microbial phytase group and the microvilli density was significantly increased. The adhesive gut bacterial communities were strikingly altered by microbial phytase supplementation (0·41intestinal inflammation and stress status were observed in the fish fed diet supplemented with microbial phytase, as indicated by the up-regulated intestinal expressions of the cytokine genes (tnf-α and tgf-β) and hsp70. In addition, the gut microvilli height was significantly decreased in the phytase group. These results indicate that dietary microbial phytase may exert mixed effects on hybrid tilapia, and can guide our future selection of phytases as aquafeed additives - that is, eliminating those that can stimulate intestinal inflammation. PMID:27080419

  3. The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster

    PubMed Central

    Wong, Adam C. N.; Vanhove, Audrey S.; Watnick, Paula I.

    2016-01-01

    ABSTRACT All higher organisms negotiate a truce with their commensal microbes and battle pathogenic microbes on a daily basis. Much attention has been given to the role of the innate immune system in controlling intestinal microbes and to the strategies used by intestinal microbes to overcome the host immune response. However, it is becoming increasingly clear that the metabolisms of intestinal microbes and their hosts are linked and that this interaction is equally important for host health and well-being. For instance, an individual's array of commensal microbes can influence their predisposition to chronic metabolic diseases such as diabetes and obesity. A better understanding of host–microbe metabolic interactions is important in defining the molecular bases of these disorders and could potentially lead to new therapeutic avenues. Key advances in this area have been made using Drosophila melanogaster. Here, we review studies that have explored the impact of both commensal and pathogenic intestinal microbes on Drosophila carbohydrate and lipid metabolism. These studies have helped to elucidate the metabolites produced by intestinal microbes, the intestinal receptors that sense these metabolites, and the signaling pathways through which these metabolites manipulate host metabolism. Furthermore, they suggest that targeting microbial metabolism could represent an effective therapeutic strategy for human metabolic diseases and intestinal infection. PMID:26935105

  4. Benchtop Antigen Detection Technique using Nanofiltration and Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2009-01-01

    The designed benchtop technique is primed to detect bacteria and viruses from antigenic surface marker proteins in solutions, initially water. This inclusive bio-immunoassay uniquely combines nanofiltration and near infrared (NIR) dyes conjugated to antibodies to isolate and distinguish microbial antigens, using laser excitation and spectrometric analysis. The project goals include detecting microorganisms aboard the International Space Station, space shuttle, Crew Exploration Vehicle (CEV), and human habitats on future Moon and Mars missions, ensuring astronaut safety. The technique is intended to improve and advance water contamination testing both commercially and environmentally as well. Lastly, this streamlined technique poses to greatly simplify and expedite testing of pathogens in complex matrices, such as blood, in hospital and laboratory clinics.

  5. Fine-tuning of the mucosal barrier and metabolic systems using the diet-microbial metabolite axis.

    PubMed

    Nagai, Motoyoshi; Obata, Yuuki; Takahashi, Daisuke; Hase, Koji

    2016-08-01

    The human intestinal microbiota has profound effects on human physiology, including the development and maintenance of the host immune and metabolic systems. Under physiological conditions, the intestinal microbiota maintains a symbiotic relationship with the host. Abnormalities in the host-microbe relationship, however, have been implicated in multiple disorders such as inflammatory bowel diseases (IBDs), metabolic syndrome, and autoimmune diseases. There is a close correlation between dietary factors and the microbial composition in the gut. Long-term dietary habits influence the composition of the gut microbial community and consequently alter microbial metabolic activity. The diet-microbiota axis plays a vital role in the regulation of the host immune system, at least partly through altering microbial metabolism. In this review, we will describe the current findings regarding how dietary factors and microbial metabolites regulate the host immune system. PMID:27133028

  6. Microbial Biotransformations of Bile Acids as Detected by Electrospray Mass Spectrometry123

    PubMed Central

    Hagey, Lee R.; Krasowski, Matthew D.

    2013-01-01

    Many current experiments investigating the effects of diet, dietary supplements, and pre- and probiotics on the intestinal environments do not take into consideration the potential for using bile salts as markers of environmental change. Intestinal bacteria in vertebrates can metabolize bile acids into a number of different structures, with deamidation, hydroxyl group oxidation, and hydroxyl group elimination. Fecal bile acids are readily available to sample and contain a considerable structural complexity that directly relates to intestinal morphology, bile acid residence time in the intestine, and the species of microbial forms in the intestinal tract. Here we offer a classification scheme that can serve as an initial guide to interpret the different bile acid patterns expressed in vertebrate feces. PMID:23319120

  7. Microbial perturbations and modulation in conditions associated with malnutrition and malabsorption.

    PubMed

    Jonkers, Daisy M A E

    2016-04-01

    The intestinal microbiota is a complex ecosystem, which can be considered an accessory organ. It involves complex microbe-microbe and host-microbe interactions with indispensable functions for the human host with regard to the intestinal epithelium and barrier function, the innate and adaptive immune system, and its large metabolic capacity. Saccharolytic fermentation results in the production of short chain fatty acids, which exert an array of beneficial effects, while proteolytic fermentation leads to an increase in potentially harmful metabolites. In addition, numerous other microbial metabolites are being produced with various intestinal as well as extra-intestinal effects. Their generation depends on the composition of the microbiota as well as the availability of substrates, which both vary along the GI tract. Diet impacts the intestinal microbiota composition and activity in early infancy as well as in adults. Microbial perturbations have been demonstrated in subjects with under-nutrition and/or malabsorption. The bidirectional interactions between the microbiome, nutrient availability and GI function, can contribute to a vicious circle, further impairing health outcome in conditions associated with malnutrition and/or malabsorption. Integrated multivariate approaches are needed to further unravel the complex interaction between microbiome, diet and host factors, as well as possible modulation thereof by prebiotics or probiotics. The present overview will briefly outline the composition and function of the intestinal microbiota, its association with nutrient intake and availability, and will address the role of the intestinal microbiota in malnutrition and malabsorption. PMID:27086883

  8. Intestinal APCs of the endogenous nanomineral pathway fail to express PD-L1 in Crohn’s disease

    PubMed Central

    Robertson, Jack; Haas, Carolin T.; Pele, Laetitia C.; Monie, Tom P.; Charalambos, Charles; Parkes, Miles; Hewitt, Rachel E.; Powell, Jonathan J.

    2016-01-01

    Crohn’s disease is a chronic inflammatory condition most commonly affecting the ileum and colon. The aetiology of Crohn’s disease is complex and may include defects in peptidoglycan recognition, and/or failures in the establishment of intestinal tolerance. We have recently described a novel constitutive endogenous delivery system for the translocation of nanomineral-antigen-peptidoglycan (NAP) conjugates to antigen presenting cells (APCs) in intestinal lymphoid patches. In mice NAP conjugate delivery to APCs results in high surface expression of the immuno-modulatory molecule programmed death receptor ligand 1 (PD-L1). Here we report that NAP conjugate positive APCs in human ileal tissues from individuals with ulcerative colitis and intestinal carcinomas, also have high expression of PD-L1. However, NAP-conjugate positive APCs in intestinal tissue from patients with Crohn’s disease show selective failure in PD-L1 expression. Therefore, in Crohn’s disease intestinal antigen taken up by lymphoid patch APCs will be presented without PD-L1 induced tolerogenic signalling, perhaps initiating disease. PMID:27226337

  9. Intestinal APCs of the endogenous nanomineral pathway fail to express PD-L1 in Crohn's disease.

    PubMed

    Robertson, Jack; Haas, Carolin T; Pele, Laetitia C; Monie, Tom P; Charalambos, Charles; Parkes, Miles; Hewitt, Rachel E; Powell, Jonathan J

    2016-01-01

    Crohn's disease is a chronic inflammatory condition most commonly affecting the ileum and colon. The aetiology of Crohn's disease is complex and may include defects in peptidoglycan recognition, and/or failures in the establishment of intestinal tolerance. We have recently described a novel constitutive endogenous delivery system for the translocation of nanomineral-antigen-peptidoglycan (NAP) conjugates to antigen presenting cells (APCs) in intestinal lymphoid patches. In mice NAP conjugate delivery to APCs results in high surface expression of the immuno-modulatory molecule programmed death receptor ligand 1 (PD-L1). Here we report that NAP conjugate positive APCs in human ileal tissues from individuals with ulcerative colitis and intestinal carcinomas, also have high expression of PD-L1. However, NAP-conjugate positive APCs in intestinal tissue from patients with Crohn's disease show selective failure in PD-L1 expression. Therefore, in Crohn's disease intestinal antigen taken up by lymphoid patch APCs will be presented without PD-L1 induced tolerogenic signalling, perhaps initiating disease. PMID:27226337

  10. Immunological control of drug absorption from the gastrointestinal tract: the mechanism whereby intestinal anaphylaxis interferes with the intestinal absorption of bromthymol blue in the rat.

    PubMed

    Yamamoto, A; Utsumi, E; Sakane, T; Hamaura, T; Nakamura, J; Hashida, M; Sezaki, H

    1986-05-01

    Rats were immunized intraperitoneally with ovalbumin and the disappearance of bromthymol blue (BTB) from the intestinal lumen, its accumulation in the tissue, and its net absorption were examined by means of an in-situ recirculation technique during local anaphylaxis. The disappearance of BTB from the intestinal lumen and its net absorption were significantly reduced, but there was no significant effect on its accumulation in the tissue. The pH value of the luminal solution and the perfusate volume were not influenced by intraluminal challenge with the antigen in ovalbumin-immunized rats. In addition, no significant effect was observed on intestinal permeability to BTB in the in-vitro everted sac technique. The intestinal blood flow, measured by a hydrogen clearance method, was not reduced significantly by the intraluminal exposure to antigen. There was enhanced Evans Blue leakage and mucus release in the perfusate after intraluminal challenge with ovalbumin in ovalbumin-immunized rats, but not in non-immunized rats. A significant increase of BTB binding with macromolecular substances in the perfusate was observed during the local anaphylaxis. These findings suggest that the decreased absorption of BTB is due to the interaction with the macromolecular substances in the perfusate during local anaphylaxis. PMID:2872311

  11. [Antigenic response against PPD and antigen 60 in tubercular patients: single antigen versus the combined test].

    PubMed

    Máttar, S; Broquetas, J M; Gea, J; Aran, X; el-Banna, N; Sauleda, J; Torres, J M

    1992-05-01

    We analyze serum samples from 70 patients with pulmonary tuberculosis and 50 healthy individuals. The antigenic activity (IgG) against protein purified antigen (PPD) and antigen 60 (A60) from M. tuberculosis. Thirteen patients were also HIV infected, and three patients had AIDS defined by the presence of disseminated tuberculosis. The test using antigen alone showed a 77% sensitivity and 74% specificity when PPD is used. When A60 was used, both values improved (81% sensitivity, 94% specificity). The use of a combined test (PPD and A60) improves the sensitivity (89%) but reduces the specificity (82%). The HIV infected patients showed similar responses to those of other patients. The combined use of different antigens might be useful for diagnosing tuberculosis. PMID:1390996

  12. Autophagy and Intestinal Homeostasis

    PubMed Central

    Patel, Khushbu K.; Stappenbeck, Thaddeus S.

    2013-01-01

    Nutrient absorption is the basic function that drives mammalian intestinal biology. To facilitate nutrient uptake, the host’s epithelial barrier is composed of a single layer of cells. This constraint is problematic, as a design of this type can be easily disrupted. The solution during the course of evolution was to add numerous host defense mechanisms that can help prevent local and systemic infection. These mechanisms include specialized epithelial cells that produce a physiochemical barrier overlying the cellular barrier, robust and organized adaptive and innate immune cells, and the ability to mount an inflammatory response that is commensurate with a specific threat level. The autophagy pathway is a critical cellular process that strongly influences all these functions. Therefore, a fundamental understanding of the components of this pathway and their influence on inflammation, immunity, and barrier function will facilitate our understanding of homeostasis in the gastrointestinal tract. PMID:23216414

  13. Autophagy and intestinal homeostasis.

    PubMed

    Patel, Khushbu K; Stappenbeck, Thaddeus S

    2013-01-01

    Nutrient absorption is the basic function that drives mammalian intestinal biology. To facilitate nutrient uptake, the host's epithelial barrier is composed of a single layer of cells. This constraint is problematic, as a design of this type can be easily disrupted. The solution during the course of evolution was to add numerous host defense mechanisms that can help prevent local and systemic infection. These mechanisms include specialized epithelial cells that produce a physiochemical barrier overlying the cellular barrier, robust and organized adaptive and innate immune cells, and the ability to mount an inflammatory response that is commensurate with a specific threat level. The autophagy pathway is a critical cellular process that strongly influences all these functions. Therefore, a fundamental understanding of the components of this pathway and their influence on inflammation, immunity, and barrier function will facilitate our understanding of homeostasis in the gastrointestinal tract. PMID:23216414

  14. Antigenic relationship and functional properties of Yersinia porins.

    PubMed

    Vostrikova, P; Likhatskaya, G N; Novikova, D; Solovyeva, T F

    2001-01-01

    We have studied the molecular structure and functional properties of major pore-forming proteins isolated as peptidoglycan (PG)-protein complexes from four Yersinia species (Y. intermedia, Y. enterocolitica, Y. kristensenii and Y. frederiksenii) cultured as various temperatures. Despite the close antigenic relationship, Yersinia porins revealed different functional properties. When reconstituted in model membranes, the PG-protein complexes induced conductance which was different for the "cold" (grown at 6-8 degrees C) and "warm" (grown at 37 degrees C) variants of microbial cultures. We conclude that the functional state of Yersinia porins in the outer membrane depends on the cultivation temperature. PMID:11497105

  15. Development of Functional Microfold (M) Cells from Intestinal Stem Cells in Primary Human Enteroids

    PubMed Central

    Rouch, Joshua D.; Scott, Andrew; Lei, Nan Ye; Solorzano-Vargas, R. Sergio; Wang, Jiafang; Hanson, Elaine M.; Kobayashi, Masae; Lewis, Michael; Stelzner, Matthias G.; Dunn, James C. Y.; Eckmann, Lars; Martín, Martín G.

    2016-01-01

    Background & Aims Intestinal microfold (M) cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer’s patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs), and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting. Methods Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium. Results Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2) in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells. Conclusions Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium

  16. Villous B Cells of the Small Intestine Are Specialized for Invariant NK T Cell Dependence1

    PubMed Central

    Velázquez, Peter; Wei, Bo; McPherson, Michael; Mendoza, Lesley Marie A.; Nguyen, Sandra L.; Turovskaya, Olga; Kronenberg, Mitchell; Huang, Tiffany T.; Schrage, Matthew; Lobato, Lynn N.; Fujiwara, Daisuke; Brewer, Sarah; Arditi, Moshe; Cheng, Genhong; Sartor, R. Balfour; Newberry, Rodney D.; Braun, Jonathan

    2009-01-01

    B cells are important in mucosal microbial homeostasis through their well-known role in secretory IgA production and their emerging role in mucosal immunoregulation. Several specialized intraintestinal B cell compartments have been characterized, but the nature of conventional B cells in the lamina propria is poorly understood. In this study, we identify a B cell population predominantly composed of surface IgM+IgD+cells residing in villi of the small intestine and superficial lamina propria of the large intestine, but distinct from the intraepithelial compartment or organized intestinal lymphoid structures. Small intestinal (villous) B cells are diminished in genotypes that alter the strength of BCR signaling (Bruton tyrosine kinasexid, Gαi2−/−), and in mice lacking cognate BCR specificity. They are not dependent on enteric microbial sensing, because they are abundant in mice that are germfree or genetically deficient in TLR signaling. However, villous B cells are reduced in the absence of invariant NK T cells (Jα18−/− or CD1d−/− mice). These findings define a distinct population of conventional B cells in small intestinal villi, and suggest an immunologic link between CD1-restricted invariant NK T cells and this B cell population. PMID:18354186

  17. Altering the antigenicity of proteins.

    PubMed Central

    Alexander, H; Alexander, S; Getzoff, E D; Tainer, J A; Geysen, H M; Lerner, R A

    1992-01-01

    To better understand the binding interaction between antigen and antibody we need to distinguish protein residues critical to the binding energy and mechanism from residues merely localized in the interface. By analyzing the binding of monoclonal antibodies to recombinant wild-type and mutant myohemerythrin (MHr) proteins, we were able to test the role of individual critical residues at the highly antigenic site MHr-(79-84), within the context of the folded protein. The results directly show the existence of antigenically critical residues, whose mutations significantly reduce antibody binding to the folded protein, thus verifying peptide-based assignments of these critical residues and demonstrating the ability of buried side chains to influence antigenicity. Taken together, these results (i) distinguish the antigenic surface from the solvent-exposed protein surface before binding, (ii) support a two-stage interaction mechanism allowing inducible changes in protein antigens by antibody binding, and (iii) show that protein antigenicity can be significantly reduced by alteration of single critical residues without destroying biological activity. Images PMID:1373498

  18. Metabolism of isoflavones, lignans and prenylflavonoids by intestinal bacteria: producer phenotyping and relation with intestinal community.

    PubMed

    Possemiers, Sam; Bolca, Selin; Eeckhaut, Ellen; Depypere, Herman; Verstraete, Willy

    2007-08-01

    Many studies have investigated the importance of the intestinal bacterial activation of individual phytoestrogens. However, human nutrition contains different phytoestrogens and the final exposure depends on the microbial potential to activate all different groups within each individual. In this work, interindividual variations in the bacterial activation of the different phytoestrogens were assessed. Incubation of feces from 100 individuals using SoyLife EXTRA, LinumLife EXTRA and isoxanthohumol suggested that individuals could be separated into high, moderate and low O-desmethylangolensin (O-DMA), equol, enterodiol (END), enterolactone (ENL) or 8-prenylnaringenin producers, but that the metabolism of isoflavones, lignans and prenylflavonoids follows separate, independent pathways. However, O-DMA and equol production correlated negatively, whereas a positive correlation was found between END and ENL production. In addition, END production correlated negatively with Clostridium coccoides-Eubacterium rectale counts. Furthermore, O-DMA production was correlated with the abundance of methanogens, whereas equol production correlated with sulfate-reducing bacteria, indicating that the metabolic fate of daidzein may be related to intestinal H(2) metabolism. PMID:17506823

  19. Tissue engineering the small intestine.

    PubMed

    Spurrier, Ryan G; Grikscheit, Tracy C

    2013-04-01

    Short bowel syndrome (SBS) results from the loss of a highly specialized organ, the small intestine. SBS and its current treatments are associated with high morbidity and mortality. Production of tissue-engineered small intestine (TESI) from the patient's own cells could restore normal intestinal function via autologous transplantation. Improved understanding of intestinal stem cells and their niche have been coupled with advances in tissue engineering techniques. Originally described by Vacanti et al of Massachusetts General Hospital, TESI has been produced by in vivo implantation of organoid units. Organoid units are multicellular clusters of epithelium and mesenchyme that may be harvested from native intestine. These clusters are loaded onto a scaffold and implanted into the host omentum. The scaffold provides physical support that permits angiogenesis and vasculogenesis of the developing tissue. After a period of 4 weeks, histologic analyses confirm the similarity of TESI to native intestine. TESI contains a differentiated epithelium, mesenchyme, blood vessels, muscle, and nerve components. To date, similar experiments have proved successful in rat, mouse, and pig models. Additional experiments have shown clinical improvement and rescue of SBS rats after implantation of TESI. In comparison with the group that underwent massive enterectomy alone, rats that had surgical anastomosis of TESI to their shortened intestine showed improvement in postoperative weight gain and serum B12 values. Recently, organoid units have been harvested from human intestinal samples and successfully grown into TESI by using an immunodeficient mouse host. Current TESI production yields approximately 3 times the number of cells initially implanted, but improvements in the scaffold and blood supply are being developed in efforts to increase TESI size. Exciting new techniques in stem cell biology and directed cellular differentiation may generate additional sources of autologous intestinal

  20. [Colonic microbial biocenosis in rheumatoid arthritis].

    PubMed

    Gul'neva, M Iu; Noskov, S M

    2011-01-01

    The aim of the work was to study colonic microbial biocenosis and colonizing ability of opportunistic bacteria in 32 patients with rheumatoid arthritis (RA) and 30 healthy subjects. RA was diagnosed based on the American Rheumatism Association criteria (1987). Qualitative and quantitative composition of the microflora was detected by a bacteriological method. StatSoft Statistics 6.0 was used to treat the data obtained. RA was associated with significant modification of the intestinal flora, viz. decrease in lactobacteria and significant increase of enterococci, clostridia, colibacteria showing reduced enzymatic activity, and opportunistic species. Also, symbiotic relationships between microorganisms altered. The fraction of bifidobacteria, bacteroids, and lactopositive colibacteria reduced while the abundance of opportunistic enterobacteria and staphylococci was elevated. Opportunistic Enterobacteriaceae were present in urine and nasal mucosa which suggested their translocation from the intestines. It is concluded that changes in intestinal microflora and colonization by opportunistic bacteria enhance the risk of development of co-morbid conditions in patients with RA. PMID:21932563

  1. Intestinal nematodes: biology and control.

    PubMed

    Epe, Christian

    2009-11-01

    A variety of nematodes occur in dogs and cats. Several nematode species inhabit the small and large intestines. Important species that live in the small intestine are roundworms of the genus Toxocara (T canis, T cati) and Toxascaris (ie, T leonina), and hookworms of the genus Ancylostoma (A caninum, A braziliense, A tubaeforme) or Uncinaria (U stenocephala). Parasites of the large intestine are nematodes of the genus Trichuris (ie, whipworms, T vulpis). After a comprehensive description of their life cycle and biology, which are indispensable for understanding and justifying their control, current recommendations for nematode control are presented and discussed thereafter. PMID:19932365

  2. Megacystis microcolon intestinal hypoperistalsis syndrome

    PubMed Central

    Hiradfar, Mehran; Shojaeian, Reza; Dehghanian, Paria; Hajian, Sara

    2013-01-01

    Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a multisystemic disorder in which impaired intestinal motor activity causes recurrent symptoms of intestinal obstruction in the absence of mechanical occlusion, associated with bladder distention without distal obstruction of the urinary tract. MMIHS and prune belly syndrome may overlap in most of the clinical features and discrimination of these two entities is important because the prognosis, management and consulting with parents are completely different. MMIHS outcome is very poor and in this article we present two neonates with MMIHS that both died in a few days. PMID:23729700

  3. Megacystis microcolon intestinal hypoperistalsis syndrome.

    PubMed

    Hiradfar, Mehran; Shojaeian, Reza; Dehghanian, Paria; Hajian, Sara

    2013-01-01

    Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a multisystemic disorder in which impaired intestinal motor activity causes recurrent symptoms of intestinal obstruction in the absence of mechanical occlusion, associated with bladder distention without distal obstruction of the urinary tract. MMIHS and prune belly syndrome may overlap in most of the clinical features and discrimination of these two entities is important because the prognosis, management and consulting with parents are completely different. MMIHS outcome is very poor and in this article we present two neonates with MMIHS that both died in a few days. PMID:23729700

  4. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation

    SciTech Connect

    Yang, Gang; Xu, Zhenjiang; Tian, Xiangli; Dong, Shuanglin; Peng, Mo

    2015-02-27

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota. - Highlights: • Dietary β-glucan supplementation increases the abundance of Rhodobacteraceae and Verrucomicrobiaceae in the intestine. • Dietary β-glucan supplementation changes the topological roles of OTUs in the ecological network. • Dietary β-glucan supplementation has a positive impact on the immune response of intestine of sea cucumber.

  5. Antigen Retrieval Immunohistochemistry

    PubMed Central

    Shi, Shan-Rong; Shi, Yan; Taylor, Clive R.

    2011-01-01

    As a review for the 20th anniversary of publishing the antigen retrieval (AR) technique in this journal, the authors intend briefly to summarize developments in AR-immunohistochemistry (IHC)–based research and diagnostics, with particular emphasis on current challenges and future research directions. Over the past 20 years, the efforts of many different investigators have coalesced in extending the AR approach to all areas of anatomic pathology diagnosis and research and further have led to AR-based protein extraction techniques and tissue-based proteomics. As a result, formalin-fixed paraffin-embedded (FFPE) archival tissue collections are now seen as a literal treasure of materials for clinical and translational research to an extent unimaginable just two decades ago. Further research in AR-IHC is likely to focus on tissue proteomics, developing a more efficient protocol for protein extraction from FFPE tissue based on the AR principle, and combining the proteomics approach with AR-IHC to establish a practical, sophisticated platform for identifying and using biomarkers in personalized medicine. PMID:21339172

  6. An enzyme-linked immunosorbent assay for the detection of Entamoeba histolytica antigens in faecal material.

    PubMed

    Grundy, M S; Voller, A; Warhurst, D

    1987-01-01

    This paper describes a method for the detection of Entamoeba histolytica antigens in stool samples using a multi-layer ELISA. The method is sensitive and specific, showing no interference with other intestinal parasites, e.g. E. coli, E. hartmanni, Endolimax nana, Iodamoeba buetschlii, Hymenolepis nana, Giardia lamblia, Trichomonas and Ascaris. The method provides a rapid and simple screening assay for E. histolytica infections and should assist in diagnosis and epidemiological studies of the disease. PMID:2895514

  7. Detection of an Antigenic Group 2 Coronavirus in an Adult Alpaca with Enteritis▿

    PubMed Central

    Genova, Suzanne G.; Streeter, Robert N.; Simpson, Katharine M.; Kapil, Sanjay

    2008-01-01

    Antigenic group 2 coronavirus was detected in a fecal sample of an adult alpaca by reverse transcription-PCR. The presence of alpaca coronavirus (ApCoV) in the small intestine was demonstrated by immune histochemistry with an antinucleocapsid monoclonal antibody that reacts with group 2 coronaviruses. Other common causes of diarrhea in adult camelids were not detected. We conclude that nutritional stress may have predisposed the alpaca to severe ApCoV infection. PMID:18716008

  8. Insect's intestinal organ for symbiont sorting.

    PubMed

    Ohbayashi, Tsubasa; Takeshita, Kazutaka; Kitagawa, Wataru; Nikoh, Naruo; Koga, Ryuichi; Meng, Xian-Ying; Tago, Kanako; Hori, Tomoyuki; Hayatsu, Masahito; Asano, Kozo; Kamagata, Yoichi; Lee, Bok Luel; Fukatsu, Takema; Kikuchi, Yoshitomo

    2015-09-15

    Symbiosis has significantly contributed to organismal adaptation and diversification. For establishment and maintenance of such host-symbiont associations, host organisms must have evolved mechanisms for selective incorporation, accommodation, and maintenance of their specific microbial partners. Here we report the discovery of a previously unrecognized type of animal organ for symbiont sorting. In the bean bug Riptortus pedestris, the posterior midgut is morphologically differentiated for harboring specific symbiotic bacteria of a beneficial nature. The sorting organ lies in the middle of the intestine as a constricted region, which partitions the midgut into an anterior nonsymbiotic region and a posterior symbiotic region. Oral administration of GFP-labeled Burkholderia symbionts to nymphal stinkbugs showed that the symbionts pass through the constricted region and colonize the posterior midgut. However, administration of food colorings revealed that food fluid enters neither the constricted region nor the posterior midgut, indicating selective symbiont passage at the constricted region and functional isolation of the posterior midgut for symbiosis. Coadministration of the GFP-labeled symbiont and red fluorescent protein-labeled Escherichia coli unveiled selective passage of the symbiont and blockage of E. coli at the constricted region, demonstrating the organ's ability to discriminate the specific bacterial symbiont from nonsymbiotic bacteria. Transposon mutagenesis and screening revealed that symbiont mutants in flagella-related genes fail to pass through the constricted region, highlighting that both host's control and symbiont's motility are involved in the sorting process. The blocking of food flow at the constricted region is conserved among diverse stinkbug groups, suggesting the evolutionary origin of the intestinal organ in their common ancestor. PMID:26324935

  9. Microbial Properties Database Editor Tutorial

    EPA Science Inventory

    A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbial-relevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pat...

  10. Analysis of gene–environment interactions in postnatal development of the mammalian intestine

    PubMed Central

    Rakoff-Nahoum, Seth; Kong, Yong; Kleinstein, Steven H.; Subramanian, Sathish; Ahern, Philip P.; Gordon, Jeffrey I.; Medzhitov, Ruslan

    2015-01-01

    Unlike mammalian embryogenesis, which takes place in the relatively predictable and stable environment of the uterus, postnatal development can be affected by a multitude of highly variable environmental factors, including diet, exposure to noxious substances, and microorganisms. Microbial colonization of the intestine is thought to play a particularly important role in postnatal development of the gastrointestinal, metabolic, and immune systems. Major changes in environmental exposure occur right after birth, upon weaning, and during pubertal maturation into adulthood. These transitions include dramatic changes in intestinal contents and require appropriate adaptations to meet changes in functional demands. Here, we attempt to both characterize and provide mechanistic insights into postnatal intestinal ontogeny. We investigated changes in global intestinal gene expression through postnatal developmental transitions. We report profound alterations in small and large intestinal transcriptional programs that accompany both weaning and puberty in WT mice. Using myeloid differentiation factor 88 (MyD88)/TIR-domain-containing adapter-inducing interferon-β (TRIF) double knockout littermates, we define the role of toll-like receptors (TLRs) and interleukin (IL)-1 receptor family member signaling in postnatal gene expression programs and select ontogeny-specific phenotypes, such as vascular and smooth muscle development and neonatal epithelial and mast cell homeostasis. Metaanalysis of the effect of the microbiota on intestinal gene expression allowed for mechanistic classification of developmentally regulated genes by TLR/IL-1R (TIR) signaling and/or indigenous microbes. We find that practically every aspect of intestinal physiology is affected by postnatal transitions. Developmental timing, microbial colonization, and TIR signaling seem to play distinct and specific roles in regulation of gene-expression programs throughout postnatal development. PMID:25691701

  11. Small intestinal ischemia and infarction

    MedlinePlus

    ... the bowel are reconnected. In some cases, a colostomy or ileostomy is needed. The blockage of arteries ... Intestinal infarction may require a colostomy or ileostomy, which may be ... is common in these cases. People who have a large amount ...

  12. Intestinal Failure (Short Bowel Syndrome)

    MedlinePlus

    ... while increasing enteral nutrition. Pre-digested and hypoallergenic formulas improve intestinal absorption, and extra vitamins and minerals are often added. These formulas are usually given slowly by a feeding tube ...

  13. Intestinal Stem Cells: Got Calcium?

    PubMed

    Nászai, Máté; Cordero, Julia B

    2016-02-01

    Calcium ions are well-known intracellular signalling molecules. A new study identifies local cytoplasmic calcium as a central integrator of metabolic and proliferative signals in Drosophila intestinal stem cells. PMID:26859268

  14. Chronic intestinal pseudo-obstruction

    PubMed Central

    Antonucci, Alexandra; Fronzoni, Lucia; Cogliandro, Laura; Cogliandro, Rosanna F; Caputo, Carla; Giorgio, Roberto De; Pallotti, Francesca; Barbara, Giovanni; Corinaldesi, Roberto; Stanghellini, Vincenzo

    2008-01-01

    Chronic intestinal pseudo-obstruction (CIPO) is a severe digestive syndrome characterized by derangement of gut propulsive motility which resembles mechanical obstruction, in the absence of any obstructive process. Although uncommon in clinical practice, this syndrome represents one of the main causes of intestinal failure and is characterized by high morbidity and mortality. It may be idiopathic or secondary to a variety of diseases. Most cases are sporadic, even though familial forms with either dominant or recessive autosomal inheritance have been described. Based on histological features intestinal pseudo-obstruction can be classified into three main categories: neuropathies, mesenchymopathies, and myopathies, according on the predominant involvement of enteric neurones, interstitial cells of Cajal or smooth muscle cells, respectively. Treatment of intestinal pseudo-obstruction involves nutritional, pharmacological and surgical therapies, but it is often unsatisfactory and the long-term outcome is generally poor in the majority of cases. PMID:18494042

  15. Why Microbial Communities?

    ScienceCinema

    Fredrickson, Jim (PNNL)

    2012-02-29

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Fredrickson introduces the symposium by defining microbial communities and describing their scientific relevance as they relate to solving problems in energy, climate, and sustainability.

  16. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment.

    PubMed

    Gao, Yingli; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2016-08-01

    Antigen uptake is a critical process for activation of the immune system, and therefore the ability to enhance antigen uptake is a primary consideration in the development of an immersion vaccination of fish. In the present work, flounders (Paralichthys olivaceus) were immersed in three hyperosmotic solutions with 40, 50 and 60‰ salinities, then transferred into seawater of normal salinity (i.e. 30‰) containing formalin-inactivated Edwardsiella tarda for 30 min. The antigen uptake in vaccinated flounder was determined using an absolute quantitative PCR (qPCR). The results showed significantly higher antigen uptake in the tissues of flounders immersed in solutions with 50‰ and 60‰ salinity compared to the control group directly immersed in vaccine (DI) (P < 0.05), and the highest amount of antigen was detected in flounders immersed in the 50‰ salinity solution, whereas there was no significant difference in antigen uptake between the 40‰ salinity group and the DI group (P > 0.05). A rapid and significant increase in antigen uptake was detected in the mucosal-associated tissues including the gill, skin and intestine (P < 0.05) compared with the spleen, kidney and liver. Antigen uptake in the gill and skin both peaked at 30 min post immersion, which was significantly higher than the levels of uptake measured in the other tissues (P < 0.05), and then quickly declined. In contrast, antigen uptake in the spleen, kidney and liver gradually increased 3 h post immersion (hpi). The expression profiles of four antigen presentation-related immune genes (MHC Iα, MHC IIα, CD4-1 and CD8α) were investigated after immersion. These four genes showed a significantly stronger response in the immersed flounders exposed to 50‰ salinity compared with the DI group (P < 0.05). In the mucosal-associated tissues, the expression of MHC Iα and CD8α genes peaked at 24 hpi, while the expression of MHC IIα and CD4-1 genes showed up-regulation in the gill and skin

  17. Emerging roles for antigen presentation in establishing host-microbiome symbiosis.

    PubMed

    Bessman, Nicholas J; Sonnenberg, Gregory F

    2016-07-01

    Trillions of beneficial bacteria inhabit the intestinal tract of healthy mammals from birth. Accordingly, mammalian hosts have evolved a series of complementary and redundant pathways to limit pathologic immune responses against these bacteria, while simultaneously protecting against enteric pathogen invasion. These pathways can be generically responsive to the presence of any commensal bacteria and innate in nature, as for IL-22-related pathways. Alternatively, specific bacterial antigens can drive a distinct set of adaptive immune cell responses, including IgA affinity maturation and secretion, and a recently described pathway of intestinal selection whereby MHCII(+) ILC3 deletes commensal bacteria-reactive CD4 T cells. These pathways can either promote or inhibit colonization by specific subsets of commensal bacteria, and cooperatively maintain intestinal homeostasis. In this review, we will highlight recent developments in understanding how these diverse pathways complement each other to cooperatively shape the symbiotic relationship between commensal bacteria and mammalian hosts. PMID:27319348

  18. Effect of stress on Salmonella, coliforms and lactobacilli in different portions of the intestinal tract of swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farm animals are exposed to a variety of stressors during their lives. However, very little is known about the effect of stress on intestinal microbial populations. Therefore, two experiments were conducted to investigate the effect of common stressors (feed withdrawal, transportation, and lairage) ...

  19. Epithelial Microvilli Establish an Electrostatic Barrier to Microbial Adhesion

    PubMed Central

    Bennett, Kaila M.; Walker, Sharon L.

    2014-01-01

    Microvilli are membrane extensions on the apical surface of polarized epithelia, such as intestinal enterocytes and tubule and duct epithelia. One notable exception in mucosal epithelia is M cells, which are specialized for capturing luminal microbial particles; M cells display a unique apical membrane lacking microvilli. Based on studies of M cell uptake under different ionic conditions, we hypothesized that microvilli may augment the mucosal barrier by providing an increased surface charge density from the increased membrane surface and associated glycoproteins. Thus, electrostatic charges may repel microbes from epithelial cells bearing microvilli, while M cells are more susceptible to microbial adhesion. To test the role of microvilli in bacterial adhesion and uptake, we developed polarized intestinal epithelial cells with reduced microvilli (“microvillus-minus,” or MVM) but retaining normal tight junctions. When tested for interactions with microbial particles in suspension, MVM cells showed greatly enhanced adhesion and uptake of particles compared to microvillus-positive cells. This preference showed a linear relationship to bacterial surface charge, suggesting that microvilli resist binding of microbes by using electrostatic repulsion. Moreover, this predicts that pathogen modification of electrostatic forces may contribute directly to virulence. Accordingly, the effacement effector protein Tir from enterohemorrhagic Escherichia coli O157:H7 expressed in epithelial cells induced a loss of microvilli with consequent enhanced microbial binding. These results provide a new context for microvillus function in the host-pathogen relationship, based on electrostatic interactions. PMID:24778113

  20. Stability of Reference Gene Expression After Porcine Sapelovirus Infection in Porcine Intestinal Epithelial Cells.

    PubMed

    Huang, Yong; Chen, Yabing; Sun, Huan; Lan, Daoliang

    2016-01-01

    Intestinal epithelial cells, which serve as the first physical barrier to protect intestinal tract from external antigens, have an important role in the local innate immunity. Screening of reference genes that have stable expression levels after viral infection in porcine intestinal epithelial cells is critical for ensuring the reliability of the expression analysis on anti-infection genes in porcine intestinal epithelial cells. In this study, nine common reference genes in pigs, including ACTB, B2M, GAPDH, HMBS, SDHA, HPRT1, TBP, YWHAZ, and RPL32, were chosen as the candidate reference genes. Porcine sapelovirus (PSV) was used as a model virus to infect porcine intestinal epithelial cell line (IPEC-J2). The expression stability of the nine genes was assessed by the geNorm, NormFinder, and BestKeeper software. Moreover, RefFinder program was used to evaluate the analytical results of above three softwares, and a relative expression experiment of selected target gene was used to verify the analysis results. The comprehensive results indicated that the gene combination of TBP and RPL32 has the most stable expression, which could be considered as an appropriate reference gene for research on gene expression after PSV infection in IPEC-J2cells. The results provided essential data for expression analysis of anti-infection genes in porcine intestinal epithelial cells. PMID:27092424

  1. Intestinal involvement is not sufficient to explain hypertransaminasemia in celiac disease?

    PubMed

    Peláez-Luna, Mario; Schmulson, Max; Robles-Díaz, Guillermo

    2005-01-01

    Chronic unexplained hypertransaminasemia is an isolated clinical manifestation of celiac disease (CD) and lacks of a clear physiopathological explanation. Since CD and tropical sprue (TS) have similar intestinal functional and histological pattern of injury and that an increased inflammatory response has been reported to occur in patients with irritable bowel syndrome (IBS), liver involvement might be expected to occur either in TS or IBS. However, according to author's prior observations, the frequency of hypertransaminasemia is significantly higher in CD than in TS and IBS-diarrhea predominant patients (IBS-D). Thus, based on current knowledge, intestinal mucosal damage, increased intestinal permeability and/or an active intestinal inflammatory response do not completely explain liver damage in CD. We hypothesize that other factors, unique to CD not present in TS or IBS-D, like gluten toxicity and the presence of tissular transglutaminase (tTG) an auto-antigen with pro-inflammatory and remodeling properties, act in addition to intestinal mucosal injury and account to hypertransaminasemia in CD. Further research focusing on the mechanisms of gluten and tTG hepatic toxicity, and/or the characterization of the expression, secretion and enteral-hepatic transport of certain pro-inflammatory cytokines is needed, to understand the possible links between intestinal and liver disorders seen in CD. PMID:16023789

  2. Aptamer-targeted Antigen Delivery

    PubMed Central

    Wengerter, Brian C; Katakowski, Joseph A; Rosenberg, Jacob M; Park, Chae Gyu; Almo, Steven C; Palliser, Deborah; Levy, Matthew

    2014-01-01

    Effective therapeutic vaccines often require activation of T cell-mediated immunity. Robust T cell activation, including CD8 T cell responses, can be achieved using antibodies or antibody fragments to direct antigens of interest to professional antigen presenting cells. This approach represents an important advance in enhancing vaccine efficacy. Nucleic acid aptamers present a promising alternative to protein-based targeting approaches. We have selected aptamers that specifically bind the murine receptor, DEC205, a C-type lectin expressed predominantly on the surface of CD8α+ dendritic cells (DCs) that has been shown to be efficient at facilitating antigen crosspresentation and subsequent CD8+ T cell activation. Using a minimized aptamer conjugated to the model antigen ovalbumin (OVA), DEC205-targeted antigen crosspresentation was verified in vitro and in vivo by proliferation and cytokine production by primary murine CD8+ T cells expressing a T cell receptor specific for the major histocompatibility complex (MHC) I-restricted OVA257–264 peptide SIINFEKL. Compared with a nonspecific ribonucleic acid (RNA) of similar length, DEC205 aptamer-OVA-mediated antigen delivery stimulated strong proliferation and production of interferon (IFN)-γ and interleukin (IL)-2. The immune responses elicited by aptamer-OVA conjugates were sufficient to inhibit the growth of established OVA-expressing B16 tumor cells. Our results demonstrate a new application of aptamer technology for the development of effective T cell-mediated vaccines. PMID:24682172

  3. Comparative Analysis of Gingival Tissue Antigen Presentation Pathways in Aging and Periodontitis

    PubMed Central

    Gonzalez, O.A.; Novak, M.J.; Kirakodu, S.; Orraca, L.; Chen, K.C.; Strom-berg, A.; Gonzalez-Martinez, J.; Ebersole, J. L.

    2014-01-01

    Aim Gingival tissues of periodontitis lesions contribute to local elevations in mediators, including both specific T cell and antibody immune responses to oral bacterial antigens. Thus, antigen processing and presentation activities must exist in these tissues to link antigen-presenting cells with adaptive immunity. We hypothesized that alterations in the transcriptome of antigen processing and presentation genes occur in aging gingival tissues and that periodontitis enhances these differences reflecting tissues less capable of immune resistance to oral pathogens. Materials and Methods Rhesus monkeys (n=34) from 3–23 years of age were examined. A buccal gingival sample from healthy or periodontitis sites were obtained, total RNA isolated, and microarray analysis was used to describe the transcriptome. Results The results demonstrated increased transcription of genes related to the MHC class II and negative regulation of NK cells with aging in healthy gingival tissues. In contrast, both adult and aging periodontitis tissues showed decreased transcription of genes for MHC class II antigens, coincident with up-regulation of MHC class I-associated genes. Conclusion These transcriptional changes suggest a response of healthy aging tissues through the class II pathway (i.e., endocytosed antigens) and altered responses in periodontitis that could reflect host-associated self-antigens or targeting cytosolic intra-cellular microbial pathogens. PMID:24304139

  4. Microbial Cryptotopes are Prominent Targets of B-cell Immunity

    PubMed Central

    Rieder, Franz J. J.; Biebl, Julia; Kastner, Marie-Theres; Schneider, Martina; Jungbauer, Christof; Redlberger-Fritz, Monika; Britt, William J.; Kundi, Michael; Steininger, Christoph

    2016-01-01

    B-cell recognition of microbial antigens may be limited by masking of epitopes within three-dimensional structures (cryptotopes). Here we report that unmasking of cryptotopes by unfolding whole cytomegalovirus (CMV) antigen preparations with the chaotropic reagent Urea and probing with immune sera from healthy individuals (n = 109) increased ELISA signals by 36% in comparison to folded CMV antigens (P < 0.001). ELISA signals increased also significantly upon unfolding of S. aureus or E. coli antigens, whereas unfolded influenza H1N1 or respiratory syncitial virus antigens yielded reduced or unchanged reactivity in comparison to folded ones, respectively. Blocking of CMV cryptotope-specific Abs by incubation of an immunoglobuline preparation and three sera with unfolded CMV antigens enhanced clearly the neutralizing capacity of this immunoglobuline preparation against CMV infection. Thus, B-cell immunity frequently targets cryptotopes on CMV but these Abs are non-neutralizing, may reduce the neutralizing effectiveness of pathogen-specific Abs, and increase during immune maturation following primary CMV infection. The observation of functional consequences of Abs specific for cryptotopes may open whole new avenues to a better understanding of the humoral immune response to CMV and development of more effective vaccines and immunoglobuline preparations. PMID:27539094

  5. Microbial Cryptotopes are Prominent Targets of B-cell Immunity.

    PubMed

    Rieder, Franz J J; Biebl, Julia; Kastner, Marie-Theres; Schneider, Martina; Jungbauer, Christof; Redlberger-Fritz, Monika; Britt, William J; Kundi, Michael; Steininger, Christoph

    2016-01-01

    B-cell recognition of microbial antigens may be limited by masking of epitopes within three-dimensional structures (cryptotopes). Here we report that unmasking of cryptotopes by unfolding whole cytomegalovirus (CMV) antigen preparations with the chaotropic reagent Urea and probing with immune sera from healthy individuals (n = 109) increased ELISA signals by 36% in comparison to folded CMV antigens (P < 0.001). ELISA signals increased also significantly upon unfolding of S. aureus or E. coli antigens, whereas unfolded influenza H1N1 or respiratory syncitial virus antigens yielded reduced or unchanged reactivity in comparison to folded ones, respectively. Blocking of CMV cryptotope-specific Abs by incubation of an immunoglobuline preparation and three sera with unfolded CMV antigens enhanced clearly the neutralizing capacity of this immunoglobuline preparation against CMV infection. Thus, B-cell immunity frequently targets cryptotopes on CMV but these Abs are non-neutralizing, may reduce the neutralizing effectiveness of pathogen-specific Abs, and increase during immune maturation following primary CMV infection. The observation of functional consequences of Abs specific for cryptotopes may open whole new avenues to a better understanding of the humoral immune response to CMV and development of more effective vaccines and immunoglobuline preparations. PMID:27539094

  6. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans

    PubMed Central

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-01-01

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota. PMID:26852926

  7. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    PubMed Central

    Moore, Aimee M.; Munck, Christian; Sommer, Morten O. A.; Dantas, Gautam

    2011-01-01

    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation, and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique, used for decades to study environmental microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host. PMID:22022321

  8. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans.

    PubMed

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-01-01

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota. PMID:26852926

  9. Antimicrobial Proteins in Intestine and Inflammatory Bowel Diseases

    PubMed Central

    2014-01-01

    Mucosal surface of the intestinal tract is continuously exposed to a large number of microorganisms. To manage the substantial microbial exposure, epithelial surfaces produce a diverse arsenal of antimicrobial proteins (AMPs) that directly kill or inhibit the growth of microorganisms. Thus, AMPs are important components of innate immunity in the gut mucosa. They are frequently expressed in response to colonic inflammation and infection. Expression of many AMPs, including human β-defensin 2-4 and cathelicidin, is induced in response to invasion of pathogens or enteric microbiota into the mucosal barrier. In contrast, some AMPs, including human α-defensin 5-6 and human β-defensin 1, are constitutively expressed without microbial contact or invasion. In addition, specific AMPs are reported to be associated with inflammatory bowel disease (IBD) due to altered expression of AMPs or development of autoantibodies against AMPs. The advanced knowledge for AMPs expression in IBD can lead to its potential use as biomarkers for disease activity. Although the administration of exogenous AMPs as therapeutic strategies against IBD is still at an early stage of development, augmented induction of endogenous AMPs may be another interesting future research direction for the protective and therapeutic purposes. This review discusses new advances in our understanding of how intestinal AMPs protect against pathogens and contribute to pathophysiology of IBD. PMID:25349560

  10. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal grains are often included in equine diets. Sugars and starch in grains can be digested and absorbed in the small intestine, but a high proportion of grain in the diet can allow starch to reach the hindgut, disturbing the microbial ecology. Streptococci and lactobacilli both catabolize starch ...

  11. Microbial Communities in Pre-Columbian Coprolites

    PubMed Central

    Santiago-Rodriguez, Tasha M.; Narganes-Storde, Yvonne M.; Chanlatte, Luis; Crespo-Torres, Edwin; Toranzos, Gary A.; Jimenez-Flores, Rafael; Hamrick, Alice; Cano, Raul J.

    2013-01-01

    The study of coprolites from earlier cultures represents a great opportunity to study an “unaltered” composition of the intestinal microbiota. To test this, pre-Columbian coprolites from two cultures, the Huecoid and Saladoid, were evaluated for the presence of DNA, proteins and lipids by cytochemical staining, human and/or dog-specific Bacteroides spp. by PCR, as well as bacteria, fungi and archaea using Terminal Restriction Fragment analyses. DNA, proteins and lipids, and human-specific Bacteroides DNA were detected in all coprolites. Multidimensional scaling analyses resulted in spatial arrangements of microbial profiles by culture, further supported by cluster analysis and ANOSIM. Differences between the microbial communities were positively correlated with culture, and SIMPER analysis indicated 68.8% dissimilarity between the Huecoid and Saladoid. Proteobacteria, Bacteroidetes and methanogens were found in all coprolite samples. Propionebacteria, Shewanella and lactic acid bacteria dominated in the Huecoid samples, while Acidobacteria, and peptococci were dominant in Saladoid samples. Yeasts, including Candida albicans and Crypotococcus spp. were found in all samples. Basidiomycetes were the most notable fungi in Huecoid samples while Ascomycetes predominated in Saladoid samples, suggesting differences in dietary habits. Our study provides an approach for the study of the microbial communities of coprolite samples from various cultures. PMID:23755194

  12. Microbial communities in pre-columbian coprolites.

    PubMed

    Santiago-Rodriguez, Tasha M; Narganes-Storde, Yvonne M; Chanlatte, Luis; Crespo-Torres, Edwin; Toranzos, Gary A; Jimenez-Flores, Rafael; Hamrick, Alice; Cano, Raul J

    2013-01-01

    The study of coprolites from earlier cultures represents a great opportunity to study an "unaltered" composition of the intestinal microbiota. To test this, pre-Columbian coprolites from two cultures, the Huecoid and Saladoid, were evaluated for the presence of DNA, proteins and lipids by cytochemical staining, human and/or dog-specific Bacteroides spp. by PCR, as well as bacteria, fungi and archaea using Terminal Restriction Fragment analyses. DNA, proteins and lipids, and human-specific Bacteroides DNA were detected in all coprolites. Multidimensional scaling analyses resulted in spatial arrangements of microbial profiles by culture, further supported by cluster analysis and ANOSIM. Differences between the microbial communities were positively correlated with culture, and SIMPER analysis indicated 68.8% dissimilarity between the Huecoid and Saladoid. Proteobacteria, Bacteroidetes and methanogens were found in all coprolite samples. Propionebacteria, Shewanella and lactic acid bacteria dominated in the Huecoid samples, while Acidobacteria, and peptococci were dominant in Saladoid samples. Yeasts, including Candida albicans and Crypotococcus spp. were found in all samples. Basidiomycetes were the most notable fungi in Huecoid samples while Ascomycetes predominated in Saladoid samples, suggesting differences in dietary habits. Our study provides an approach for the study of the microbial communities of coprolite samples from various cultures. PMID:23755194

  13. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation.

    PubMed

    Izcue, Ana; Coombes, Janine L; Powrie, Fiona

    2006-08-01

    The gastrointestinal (GI) tract is the main interface where the body encounters exogenous antigens. It is crucial that the local response here is tightly regulated to avoid an immune reaction against dietary antigens and commensal flora while still mounting an efficient defense against pathogens. Faults in establishing intestinal tolerance can lead to disease, inducing local and often also systemic inflammation. Studies in human as well as in animal models suggest a role for regulatory T cells (Tregs) in maintaining intestinal homeostasis. Transfer of Tregs can not only prevent the development of colitis in animal models but also cure established disease, acting both systemically and at the site of inflammation. In this review, we discuss the major regulatory pathways, including transforming growth factor-beta (TGF-beta), interleukin-10 (IL-10), and cytotoxic T-lymphocyte antigen-4 (CTLA-4), and their role in Treg-mediated control of systemic and mucosal responses. In addition, we give an overview of the known mechanisms of lymphocyte migration to the intestine and discuss how CD103 expression can influence the balance between regulatory and effector T cells. Further understanding of the factors that control the activity of Tregs in different immune compartments may facilitate the design of strategies to target regulation in a tissue-specific way. PMID:16903919

  14. CD11c(+) monocyte/macrophages promote chronic Helicobacter hepaticus-induced intestinal inflammation through the production of IL-23.

    PubMed

    Arnold, I C; Mathisen, S; Schulthess, J; Danne, C; Hegazy, A N; Powrie, F

    2016-03-01

    In inflammatory bowel diseases, a breakdown in host microbial interactions accompanies sustained activation of immune cells in the gut. Functional studies suggest a key role for interleukin-23 (IL-23) in orchestrating intestinal inflammation. IL-23 can be produced by various mononuclear phagocytes (MNPs) following acute microbial stimulation, but little is known about the key cellular sources of IL-23 that drive chronic intestinal inflammation. Here we have addressed this question using a physiological model of bacteria-driven colitis. By combining conditional gene ablation and gene expression profiling, we found that IL-23 production by CD11c(+) MNPs was essential to trigger intestinal immunopathology and identified MHCII(+) monocytes and macrophages as the major source of IL-23. Expression of IL-23 by monocytes was acquired during their differentiation in the intestine and correlated with the expression of major histocompatibility complex class II (MHCII) and CD64. In contrast, Batf3-dependent CD103(+) CD11b(-) dendritic cells were dispensable for bacteria-induced colitis in this model. These studies reinforce the pathogenic role of monocytes in dysregulated responses to intestinal bacteria and identify production of IL-23 as a key component of this response. Further understanding of the functional sources of IL-23 in diverse forms of intestinal inflammation may lead to novel therapeutic strategies aimed at interrupting IL-23-driven immune pathology. PMID:26242598

  15. Guardians of the Gut – Murine Intestinal Macrophages and Dendritic Cells

    PubMed Central

    Gross, Mor; Salame, Tomer-Meir; Jung, Steffen

    2015-01-01

    Intestinal mononuclear phagocytes find themselves in a unique environment, most prominently characterized by its constant exposure to commensal microbiota and food antigens. This anatomic setting has resulted in a number of specializations of the intestinal mononuclear phagocyte compartment that collectively contribute the unique steady state immune landscape of the healthy gut, including homeostatic innate lymphoid cells, B, and T cell compartments. As in other organs, macrophages and dendritic cells (DCs) orchestrate in addition the immune defense against pathogens, both in lymph nodes and mucosa-associated lymphoid tissue. Here, we will discuss origins and functions of intestinal DCs and macrophages and their respective subsets, focusing largely on the mouse and cells residing in the lamina propria. PMID:26082775

  16. Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine

    PubMed Central

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2014-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  17. Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing

    PubMed Central

    Berry, David; Stecher, Bärbel; Schintlmeister, Arno; Reichert, Jochen; Brugiroux, Sandrine; Wild, Birgit; Wanek, Wolfgang; Richter, Andreas; Rauch, Isabella; Decker, Thomas; Loy, Alexander; Wagner, Michael

    2013-01-01

    The animal and human intestinal mucosa secretes an assortment of compounds to establish a physical barrier between the host tissue and intestinal contents, a separation that is vital for health. Some pathogenic microorganisms as well as members of the commensal intestinal microbiota have been shown to be able to break down these secreted compounds. Our understanding of host-compound degradation by the commensal microbiota has been limited to knowledge about simplified model systems because of the difficulty in studying the complex intestinal ecosystem in vivo. In this study, we introduce an approach that overcomes previous technical limitations and allows us to observe which microbial cells in the intestine use host-derived compounds. We added stable isotope-labeled threonine i.v. to mice and combined fluorescence in situ hybridization with high-resolution secondary ion mass spectrometry imaging to characterize utilization of host proteins by individual bacterial cells. We show that two bacterial species, Bacteroides acidifaciens and Akkermansia muciniphila, are important host-protein foragers in vivo. Using gnotobiotic mice we show that microbiota composition determines the magnitude and pattern of foraging by these organisms, demonstrating that a complex microbiota is necessary in order for this niche to be fully exploited. These results underscore the importance of in vivo studies of intestinal microbiota, and the approach presented in this study will be a powerful tool to address many other key questions in animal and human microbiome research. PMID:23487774

  18. Increased production of intestinal immunoglobulins in Syntenin-1-deficient mice.

    PubMed

    Tamura, Kentaro; Ikutani, Masashi; Yoshida, Taketoshi; Tanaka-Hayashi, Ayumi; Yanagibashi, Tsutomu; Inoue, Ran; Nagai, Yoshinori; Adachi, Yuichi; Miyawaki, Toshio; Takatsu, Kiyoshi; Mori, Hisashi

    2015-05-01

    Syntenin-1 is an intracellular PDZ protein that binds multiple proteins and regulates protein trafficking, cancer metastasis, exosome production, synaptic formation, and IL-5 signaling. However, the functions of Syntenin-1 have not yet been clearly characterized in detail, especially in vivo. In this study, we generated a Syntenin-1 knock out (KO) mouse strain and analyzed the role(s) of Syntenin-1 in IL-5 signaling, because the direct interaction of Syntenin-1 with the cytoplasmic domain of the IL-5 receptor α subunit and the regulation of IL-5 signaling by Syntenin-1 have been reported. Unexpectedly, the number of IL-5-responding cells was normal and the levels of fecal immunoglobulins were rather higher in the Syntenin-1 KO mice. We also found that IgA and IgM production of splenic B cells stimulated in vitro was increased in Syntenin-1 KO mice. In addition, we showed that a distribution of intestinal microbial flora was influenced in Syntenin-1 KO mice. Our data indicate that Syntenin-1 negatively regulates the intestinal immunoglobulin production and has a function to maintain the intestinal homeostasis in vivo. The analysis of Syntenin-1 KO mice may provide novel information on not only mucosal immunity but also other functions of Syntenin-1 such as cancer metastasis and neural development. PMID:25543283

  19. Diversity of human small intestinal Streptococcus and Veillonella populations.

    PubMed

    van den Bogert, Bartholomeus; Erkus, Oylum; Boekhorst, Jos; de Goffau, Marcus; Smid, Eddy J; Zoetendal, Erwin G; Kleerebezem, Michiel

    2013-08-01

    Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed abundant populations of Streptococcus spp. most affiliated with S. salivarius, S. thermophilus, and S. parasanguinis, as well as Veillonella spp. affiliated with V. atypica, V. parvula, V. dispar, and V. rogosae. Relative abundances varied per subject and time of sampling. Streptococcus and Veillonella isolates were cultured using selective media from ileostoma effluent samples collected at two time points from a single subject. The richness of the Streptococcus and Veillonella isolates was assessed at species and strain level by 16S rRNA gene sequencing and genetic fingerprinting, respectively. A total of 160 Streptococcus and 37 Veillonella isolates were obtained. Genetic fingerprinting differentiated seven Streptococcus lineages from ileostoma effluent, illustrating the strain richness within this ecosystem. The Veillonella isolates were represented by a single phylotype. Our study demonstrated that the small intestinal Streptococcus populations displayed considerable changes over time at the genetic lineage level because only representative strains of a single Streptococcus lineage could be cultivated from ileostoma effluent at both time points. PMID:23614882

  20. Galacto-oligosaccharides and Colorectal Cancer: Feeding our Intestinal Probiome

    PubMed Central

    Bruno-Barcena, Jose M.; Azcarate-Peril, M. Andrea

    2014-01-01

    Prebiotics are ingredients selectively fermented by the intestinal microbiota that promote changes in the microbial community structure and/or their metabolism, conferring health benefits to the host. Studies show that β (1–4) galacto-oligosaccharides [β (1–4) GOS], lactulose and fructo-oligosaccharides increase intestinal concentration of lactate and short chain fatty acids, and stool frequency and weight, and they decrease fecal concentration of secondary bile acids, fecal pH, and nitroreductase and β-glucuronidase activities suggesting a clear role in colorectal cancer (CRC) prevention. This review summarizes research on prebiotics bioassimilation, specifically β (1–4) GOS, and their potential role in CRC. We also evaluate research that show that the impact of prebiotics on host physiology can be direct or through modulation of the gut intestinal microbiome, specifically the probiome (autochtonous beneficial bacteria), we present studies on a potential role in CRC progression to finally describe the current state of β (1–4) GOS generation for industrial production. PMID:25584074

  1. Immunological screening of a glycoprotein antigen expressed by Zajdela ascites hepatoma cells on normal rat tissues and tumour cells.

    PubMed

    Nato, F; Goulut, C; Mirshahi, M; Bourrillon, R

    1991-10-01

    Expression of the glycoprotein MII2 antigen originally identified in Zajdela ascites hepatoma cells was investigated in several normal rat tissues and in more or less differentiated tumours using biochemical and immunological approaches. SDS-polyacrylamide gel electrophoresis followed by fluorography or immunoblotting with an antiserum raised against the purified MII2 antigen revealed that this antigen was absent from normal liver cells. ELISA assays, indirect immunofluorescence and immunoprecipitation experiments using the same antiserum showed that this glycoprotein was not expressed in various normal tissues such as liver, spleen, lung, pancreas, intestine and stomach, but it was unexpectedly detected in kidney and thymic tissues. However, the molecular weight of the antigens immunoprecipitated from kidney and thymus was lower than the one of MII2 (Mr of 60,000 versus 110,000-160,000 for purified MII2). No staining was observed in embryonic rat liver at 10 and 20 days of development. Moreover, this antigen was present on the surface of Morris hepatoma 7777, another rapidly proliferating and poorly differentiated hepatocellular carcinoma. In contrast, this antigen was not detected on the surface of in vitro Zajdela hepatoma cells (ZHC) or of partially differentiated hepatomas (Faza) which have recovered some hepatic functions. In addition, the MII2 antigen was found on the human non-hepatic HT-29 tumour cell line, under its undifferentiated form (HT-29 G+ subline). The possible relationships between the expression of this antigen and both the malignant transformation process and the differentiation process are discussed. PMID:1656518

  2. Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage.

    PubMed

    Schwab, Lukas; Goroncy, Luise; Palaniyandi, Senthilnathan; Gautam, Sanjivan; Triantafyllopoulou, Antigoni; Mocsai, Attila; Reichardt, Wilfried; Karlsson, Fridrik J; Radhakrishnan, Sabarinath V; Hanke, Kathrin; Schmitt-Graeff, Annette; Freudenberg, Marina; von Loewenich, Friederike D; Wolf, Philipp; Leonhardt, Franziska; Baxan, Nicoleta; Pfeifer, Dietmar; Schmah, Oliver; Schönle, Anne; Martin, Stefan F; Mertelsmann, Roland; Duyster, Justus; Finke, Jürgen; Prinz, Marco; Henneke, Philipp; Häcker, Hans; Hildebrandt, Gerhard C; Häcker, Georg; Zeiser, Robert

    2014-06-01

    Acute graft-versus-host disease (GVHD) considerably limits wider usage of allogeneic hematopoietic cell transplantation (allo-HCT). Antigen-presenting cells and T cells are populations customarily associated with GVHD pathogenesis. Of note, neutrophils are the largest human white blood cell population. The cells cleave chemokines and produce reactive oxygen species, thereby promoting T cell activation. Therefore, during an allogeneic immune response, neutrophils could amplify tissue damage caused by conditioning regimens. We analyzed neutrophil infiltration of the mouse ileum after allo-HCT by in vivo myeloperoxidase imaging and found that infiltration levels were dependent on the local microbial flora and were not detectable under germ-free conditions. Physical or genetic depletion of neutrophils reduced GVHD-related mortality. The contribution of neutrophils to GVHD severity required reactive oxygen species (ROS) because selective Cybb (encoding cytochrome b-245, beta polypeptide, also known as NOX2) deficiency in neutrophils impairing ROS production led to lower levels of tissue damage, GVHD-related mortality and effector phenotype T cells. Enhanced survival of Bcl-xL transgenic neutrophils increased GVHD severity. In contrast, when we transferred neutrophils lacking Toll-like receptor-2 (TLR2), TLR3, TLR4, TLR7 and TLR9, which are normally less strongly activated by translocating bacteria, into wild-type C57BL/6 mice, GVHD severity was reduced. In humans, severity of intestinal GVHD strongly correlated with levels of neutrophils present in GVHD lesions. This study describes a new potential role for neutrophils in the pathogenesis of GVHD in both mice and humans. PMID:24836575

  3. Can Attention to the Intestinal Microbiota Improve Understanding and Treatment of Anorexia Nervosa?

    PubMed Central

    Carr, Jacquelyn; Kleiman, Susan C.; Bulik, Cynthia M.; Bulik-Sullivan, Emily C.; Carroll, Ian M.

    2016-01-01

    Summary Anorexia nervosa (AN) is characterized by severe dietary restriction or other weight loss behaviors and exhibits the highest mortality rate of any psychiatric disorder. Therapeutic renourishment in AN is founded primarily on clinical opinion and guidelines, with a weak evidence base. Genetic factors do not fully account for the etiology of AN, and non-genetic factors that contribute to the onset and persistence of this disease warrant investigation. Compelling evidence that the intestinal microbiota regulates adiposity and metabolism, and more recently, anxiety behavior, provides a strong rationale for exploring the role of this complex microbial community in the onset, maintenance of, and recovery from AN. This review explores the relationship between the intestinal microbiota and AN and a potential role for this enteric microbial community as a therapy for this severe illness. PMID:27003627

  4. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism.

    PubMed

    Wahlström, Annika; Sayin, Sama I; Marschall, Hanns-Ulrich; Bäckhed, Fredrik

    2016-07-12

    The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids, is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host. Conversely, bile acids can modulate gut microbial composition both directly and indirectly through activation of innate immune genes in the small intestine. Thus, host metabolism can be affected through microbial modifications of bile acids, which lead to altered signaling via bile acid receptors, but also by altered microbiota composition. PMID:27320064

  5. Potential role of the intestinal microbiota in programming health and disease.

    PubMed

    Goulet, Olivier

    2015-08-01

    The composition of the microbiota varies according to prenatal events, delivery methods, infant feeding, infant care environment, and antibiotic use. Postnatal gut function and immune development are largely influenced by the intestinal microbiota. Emerging evidence has shown that early microbiota colonization may influence the occurrence of later diseases (microbial programming). The vast majority of microbial species (commensals) give rise to symbiotic host-bacterial interactions that are fundamental for human health. However, changes in the composition of the gut microbiota (dysbiosis) may be associated with several clinical conditions, including obesity and metabolic diseases, autoimmune diseases and allergy, acute and chronic intestinal inflammation, irritable bowel syndrome (IBS), allergic gastroenteritis (e.g., eosinophilic gastroenteritis and allergic IBS), and necrotizing enterocolitis. Based on recent advances, modulation of gut microbiota with probiotics, prebiotics, or fermented dairy products has been suggested as a treatment of, or prevention for, different disorders such as IBS, infectious diarrhea, allergic disease, and necrotizing enterocolitis. PMID:26175488

  6. Can attention to the intestinal microbiota improve understanding and treatment of anorexia nervosa?

    PubMed

    Carr, Jacquelyn; Kleiman, Susan C; Bulik, Cynthia M; Bulik-Sullivan, Emily C; Carroll, Ian M

    2016-01-01

    Anorexia nervosa (AN) is characterized by severe dietary restriction or other weight loss behaviors and exhibits the highest mortality rate of any psychiatric disorder. Therapeutic renourishment in AN is founded primarily on clinical opinion and guidelines, with a weak evidence base. Genetic factors do not fully account for the etiology of AN, and non-genetic factors that contribute to the onset and persistence of this disease warrant investigation. Compelling evidence that the intestinal microbiota regulates adiposity and metabolism, and more recently, anxiety behavior, provides a strong rationale for exploring the role of this complex microbial community in the onset, maintenance of, and recovery from AN. This review explores the relationship between the intestinal microbiota and AN and a potential role for this enteric microbial community as a therapy for this severe illness. PMID:27003627

  7. Biofilms: A microbial home

    PubMed Central

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms. PMID:21976832

  8. Inflight microbial analysis technology

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Brown, Harlan D.

    1987-01-01

    This paper provides an assessment of functional characteristics needed in the microbial water analysis system being developed for Space Station. Available technology is reviewed with respect to performing microbial monitoring, isolation, or identification functions. An integrated system composed of three different technologies is presented.

  9. Microbial surface thermodynamics and applications.

    PubMed

    Strevett, Keith A; Chen, Gang

    2003-06-01

    Microbial surface thermodynamics is the reflection of microbial physicochemical and biological characteristics and it bridges micro-scale structures with macro-scale biological functions. Microbial surface thermodynamics is theoretically based on colloid surface thermodynamics using the classical theory of colloidal stability, Derjauin-Landau-Verwey-Overbeek (DLVO) theory. An extended DLVO theory is applied to for the hydration forces not considered in the classical DLVO theory. Herein, a review of current application of microbial surface thermodynamic theory is presented. Microbial surface thermodynamic theory is the fundamental theory in interpreting microbial hydrophilicity or hydrophobicity, microbial attachment, and microbial biofilm development. PMID:12837508

  10. Interleukin (IL)-21 promotes intestinal IgA response to microbiota.

    PubMed

    Cao, A T; Yao, S; Gong, B; Nurieva, R I; Elson, C O; Cong, Y

    2015-09-01

    Commensal microbiota-specific T helper type 17 (Th17) cells are enriched in the intestines, which can convert into T follicular helper (Tfh) in Peyer's patches, and are crucial for production of intestinal immunoglobulin A (IgA) against microbiota; however, the role of Th17 and Tfh cytokines in regulating the mucosal IgA response to enteric microbiota is still not completely known. In this study, we found that intestinal IgA was impaired in mice deficient in interleukin (IL)-17 or IL-21 signaling. IL-21, but not IL-17, is able to augment B-cell differentiation to IgA(+) cells as mediated by transforming growth factor β1 (TGFβ1) and accelerate IgA class switch recombination (CSR). IL-21 and retinoic acid (RA) induce IgA(+) B-cell development and IgA production and drives autocrine TGFβ1 production to initiate IgA CSR. Repletion of T-cell-deficient TCRβxδ(-/-) mice with Th17 cells specific for commensal bacterial antigen increased the levels of IgA(+) B cells and IgA production in the intestine, which was blocked by neutralizing IL-21. Thus IL-21 functions to strongly augment IgA production under intestinal environment. Furthermore, IL-21 promotes intestinal B-cell homing through α4β7 expression, alone or with TGFβ and RA. Together, IL-21 from microbiota-specific Th17 and/or Tfh cells contributes to robust intestinal IgA levels by enhancing IgA(+) CSR, IgA production and B-cell trafficking into the intestine. PMID:25586558

  11. Interleukin (IL)-21 promotes intestinal IgA response to microbiota

    PubMed Central

    Cao, Anthony T.; Yao, Suxia; Gong, Bin; Nurieva, Roza I.; Elson, Charles O.; Cong, Yingzi

    2014-01-01

    Commensal microbiota-specific Th17 cells are enriched in the intestines, which can convert into Tfh in Peyer’s patches, and are crucial for production of intestinal IgA against microbiota, however, the role of Th17 and Tfh cytokines in regulating the mucosal IgA response to enteric microbiota is still not completely known. In this study, we found that intestinal IgA was impaired in mice deficient in IL-17 or IL-21 signaling. IL-21, but not IL-17, is able to augment B cell differentiation to IgA+ cells as mediated by TGFβ1, and accelerate IgA class switch recombination (CSR). IL-21 and retinoic acid (RA) induce IgA+ B cell development and IgA production, and drives autocrine TGFβ1 production to initiate IgA CSR. Repletion of T cell-deficient TCRβxδ−/− mice with Th17 cells specific for commensal bacterial antigen, increased levels of IgA+ B cells and IgA production in the intestine, which was blocked by neutralizing IL-21. Thus, IL-21 functions to strongly augment IgA production under intestinal environment. Furthermore, IL-21 promotes intestinal B cell homing through α4β7 expression, alone or with TGFβ and RA. Together, IL-21 from microbiota-specific Th17 and/or Tfh cells contributes to robust intestinal IgA levels by enhancing IgA+ CSR, IgA production, and B cell trafficking into the intestine. PMID:25586558

  12. Synthetic microbial communities☆

    PubMed Central

    Großkopf, Tobias; Soyer, Orkun S

    2014-01-01

    While natural microbial communities are composed of a mix of microbes with often unknown functions, the construction of synthetic microbial communities allows for the generation of defined systems with reduced complexity. Used in a top-down approach, synthetic communities serve as model systems to ask questions about the performance and stability of microbial communities. In a second, bottom-up approach, synthetic microbial communities are used to study which conditions are necessary to generate interaction patterns like symbiosis or competition, and how higher order community structure can emerge from these. Besides their obvious value as model systems to understand the structure, function and evolution of microbial communities as complex dynamical systems, synthetic communities can also open up new avenues for biotechnological applications. PMID:24632350

  13. Composition and function of the undernourished neonatal mouse intestinal microbiome.

    PubMed

    Preidis, Geoffrey A; Ajami, Nadim J; Wong, Matthew C; Bessard, Brooke C; Conner, Margaret E; Petrosino, Joseph F

    2015-10-01

    Undernutrition remains one of the key global health challenges facing children today. Distinct microbial profiles have been associated with obesity and undernutrition, although mechanisms behind these associations are unknown. We sought to understand how protein-energy undernutrition alters the microbiome and to propose mechanisms by which these alterations influence the malnourished phenotype. Outbred CD1 neonatal mice were undernourished by timed separation from lactating dams, while control animals nursed ad libitum. 16S rRNA gene sequencing and compositional analysis identified microbes from luminal contents of ileum, cecum and colon, while whole metagenome shotgun sequencing identified microbial gene content. Our results suggest that the most important determinant of microbiome composition is body compartment; communities derived from ileum are distinct from those from cecum and colon as observed by phylogenetic clustering analysis. However, within each compartment, microbiota from undernourished and control mice cluster separately. At the phylum level, undernourished mice harbor more Verrucomicrobia and less Bacteroidetes in the distal intestine; these changes are driven by an increase in Akkermansia muciniphila and decreases in Bacteroides and Alistipes. Undernourished mice have an overall loss of microbial community richness and diversity and are deficient in multiple microbial genetic pathways including N-glycan, inositol phosphate and one-carbon metabolism. Losses in these microbial genes may confer less efficient extraction of energy from nondigestible dietary components including glycans and phytates, whereas epigenetic alterations provide a means of persistently altering metabolism even after adequate nutrition is restored. Thus, the microbiome of an undernourished host may perpetuate states of poor nutrition via multiple mechanisms. PMID:26070414

  14. Early-Life Environmental Variation Affects Intestinal Microbiota and Immune Development in New-Born Piglets

    PubMed Central

    Zhang, Ling-li; Vastenhouw, Stéphanie A.; Heilig, Hans G. H. J.; Smidt, Hauke; Rebel, Johanna M. J.; Smits, Mari A.

    2014-01-01

    Background Early-life environmental variation affects gut microbial colonization and immune competence development; however, the timing and additional specifics of these processes are unknown. The impact of early-life environmental variations, as experienced under real life circumstances, on gut microbial colonization and immune development has not been studied extensively so far. We designed a study to investigate environmental variation, experienced early after birth, to gut microbial colonization and intestinal immune development. Methodology/Principal Findings To investigate effects of early-life environmental changes, the piglets of 16 piglet litters were divided into 3 groups per litter and experimentally treated on day 4 after birth. During the course of the experiment, the piglets were kept with their mother sow. Group 1 was not treated, group 2 was treated with an antibiotic, and group 3 was treated with an antibiotic and simultaneously exposed to several routine, but stressful management procedures, including docking, clipping and weighing. Thereafter, treatment effects were measured at day 8 after birth in 16 piglets per treatment group by community-scale analysis of gut microbiota and genome-wide intestinal transcriptome profiling. We observed that the applied antibiotic treatment affected the composition and diversity of gut microbiota and reduced the expression of a large number of immune-related processes. The effect of management procedures on top of the use of an antibiotic was limited. Conclusions/Significance We provide direct evidence that different early-life conditions, specifically focusing on antibiotic treatment and exposure to stress, affect gut microbial colonization and intestinal immune development. This reinforces the notion that the early phase of life is critical for intestinal immune development, also under regular production circumstances. PMID:24941112

  15. Intestinal failure: Pathophysiological elements and clinical diseases

    PubMed Central

    Ding, Lian-An; Li, Jie-Shou

    2004-01-01

    There are two main functions of gastrointestinal tract, digestion and absorption, and barrier function. The latter has an important defensive effect, which keeps the body away from the invading and damaging of bacteria and endotoxin. It maintains the systemic homeostasis. Intestinal dysfunction would happen when body suffers from diseases or harmful stimulations. The lesser dysfunction of GI tract manifests only disorder of digestion and absorption, whereas the more serious intestinal disorders would harm the intestinal protective mechanism, or intestinal barrier function, and bacterial/endotoxin translocation, of intestinal failure (IF) would ensue. This review disscussed the theory of the intestinal failure, aiming at attracting recognition and valuable comments by clinicians. PMID:15052668

  16. Primary intestinal lymphangiectasia (Waldmann's disease).

    PubMed

    Vignes, Stéphane; Bellanger, Jérôme

    2008-01-01

    Primary intestinal lymphangiectasia (PIL) is a rare disorder characterized by dilated intestinal lacteals resulting in lymph leakage into the small bowel lumen and responsible for protein-losing enteropathy leading to lymphopenia, hypoalbuminemia and hypogammaglobulinemia. PIL is generally diagnosed before 3 years of age but may be diagnosed in older patients. Prevalence is unknown. The main symptom is predominantly bilateral lower limb edema. Edema may be moderate to severe with anasarca and includes pleural effusion, pericarditis or chylous ascites. Fatigue, abdominal pain, weight loss, inability to gain weight, moderate diarrhea or fat-soluble vitamin deficiencies due to malabsorption may also be present. In some patients, limb lymphedema is associated with PIL and is difficult to distinguish lymphedema from edema. Exsudative enteropathy is confirmed by the elevated 24-h stool alpha1-antitrypsin clearance. Etiology remains unknown. Very rare familial cases of PIL have been reported. Diagnosis is confirmed by endoscopic observation of intestinal lymphangiectasia with the corresponding histology of intestinal biopsy specimens. Videocapsule endoscopy may be useful when endoscopic findings are not contributive. Differential diagnosis includes constrictive pericarditis, intestinal lymphoma, Whipple's disease, Crohn's disease, intestinal tuberculosis, sarcoidosis or systemic sclerosis. Several B-cell lymphomas confined to the gastrointestinal tract (stomach, jejunum, midgut, ileum) or with extra-intestinal localizations were reported in PIL patients. A low-fat diet associated with medium-chain triglyceride supplementation is the cornerstone of PIL medical management. The absence of fat in the diet prevents chyle engorgement of the intestinal lymphatic vessels thereby preventing their rupture with its ensuing lymph loss. Medium-chain triglycerides are absorbed directly into the portal venous circulation and avoid lacteal overloading. Other inconsistently effective

  17. Acquired causes of intestinal malabsorption.

    PubMed

    van der Heide, F

    2016-04-01

    This review focuses on the acquired causes, diagnosis, and treatment of intestinal malabsorption. Intestinal absorption is a complex process that depends on many variables, including the digestion of nutrients within the intestinal lumen, the absorptive surface of the small intestine, the membrane transport systems, and the epithelial absorptive enzymes. Acquired causes of malabsorption are classified by focussing on the three phases of digestion and absorption: 1) luminal/digestive phase, 2) mucosal/absorptive phase, and 3) transport phase. Most acquired diseases affect the luminal/digestive phase. These include short bowel syndrome, extensive small bowel inflammation, motility disorders, and deficiencies of digestive enzymes or bile salts. Diagnosis depends on symptoms, physical examination, and blood and stool tests. There is no gold standard for the diagnosis of malabsorption. Further testing should be based on the specific clinical context and the suspected underlying disease. Therapy is directed at nutritional support by enteral or parenteral feeding and screening for and supplementation of deficiencies in vitamins and minerals. Early enteral feeding is important for intestinal adaptation in short bowel syndrome. Medicinal treatment options for diarrhoea in malabsorption include loperamide, codeine, cholestyramine, or antibiotics. PMID:27086886

  18. Modulators of intestinal alkaline phosphatase.

    PubMed

    Bobkova, Ekaterina V; Kiffer-Moreira, Tina; Sergienko, Eduard A

    2013-01-01

    Small molecule modulators of phosphatases can lead to clinically useful drugs and serve as invaluable tools to study functional roles of various phosphatases in vivo. Here, we describe lead discovery strategies for identification of inhibitors and activators of intestinal alkaline phosphatases. To identify isozyme-selective inhibitors and activators of the human and mouse intestinal alkaline phosphatases, ultrahigh throughput chemiluminescent assays, utilizing CDP-Star as a substrate, were developed for murine intestinal alkaline phosphatase (mIAP), human intestinal alkaline phosphatase (hIAP), human placental alkaline phosphatase (PLAP), and human tissue-nonspecific alkaline phosphatase (TNAP) isozymes. Using these 1,536-well assays, concurrent HTS screens of the MLSMR library of 323,000 compounds were conducted for human and mouse IAP isozymes monitoring both inhibition and activation. This parallel screening approach led to identification of a novel inhibitory scaffold selective for murine intestinal alkaline phosphatase. SAR efforts based on parallel testing of analogs against different AP isozymes generated a potent inhibitor of the murine IAP with IC50 of 540 nM, at least 65-fold selectivity against human TNAP, and >185 selectivity against human PLAP. PMID:23860652

  19. Management of pediatric intestinal failure.

    PubMed

    Kaufman, S S; Matsumoto, C S

    2015-08-01

    Intestinal failure (IF) is defined as the state of the intestinal tract where the function is below the minimum required for the absorption of macronutrients, water, and electrolytes. The etiology may be a multitude of causes, but short bowel syndrome (SBS) remains the most common. The successful management and prognosis of SBS in infants and children depends a multitude of variables such as length, quality, location, and anatomy of the remaining intestine. Prognosis, likewise, depends on these factors, but also is dependent on the clinical management of these patients. Strategies for a successful outcome and the success of therapeutic interventions are dependent upon understanding each individual's remaining intestinal function. Medical intervention success is defined by a graduated advancement of enteral nutrition (EN) and a reduction of parenteral nutrition (PN). Complications of IF and PN include progressive liver disease, bacterial overgrowth, dysmotility, renal disease, catheter related bloodstream infections, and loss of venous access. Surgical interventions such as bowel lengthening procedures show promise in carefully selected patients. Intestinal transplantation is reserved for those infants and children suffering from life-threatening complications of PN. PMID:25752806

  20. Intestinal Microbiota Metabolism and Atherosclerosis

    PubMed Central

    Liu, Tian-Xing; Niu, Hai-Tao; Zhang, Shu-Yang

    2015-01-01

    Objective: This review aimed to summarize the relationship between intestinal microbiota metabolism and cardiovascular disease (CVD) and to propose a novel CVD therapeutic target. Data Sources: This study was based on data obtained from PubMed and EMBASE up to June 30, 2015. Articles were selected using the following search terms: “Intestinal microbiota”, “trimethylamine N-oxide (TMAO)”, “trimethylamine (TMA)”, “cardiovascular”, and “atherosclerosis”. Study Selection: Studies were eligible if they present information on intestinal microbiota metabolism and atherosclerosis. Studies on TMA-containing nutrients were also included. Results: A new CVD risk factor, TMAO, was recently identified. It has been observed that several TMA-containing compounds may be catabolized by specific intestinal microbiota, resulting in TMA release. TMA is subsequently converted to TMAO in the liver. Several preliminary studies have linked TMAO to CVD, particularly atherosclerosis; however, the details of this relationship remain unclear. Conclusions: Intestinal microbiota metabolism is associated with atherosclerosis and may represent a promising therapeutic target with respect to CVD management. PMID:26481750

  1. Intestinal circulation during inhalation anesthesia

    SciTech Connect

    Tverskoy, M.; Gelman, S.; Fowler, K.C.; Bradley, E.L.

    1985-04-01

    This study was designed to evaluate the influence of inhalational agents on the intestinal circulation in an isolated loop preparation. Sixty dogs were studied, using three intestinal segments from each dog. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mmHg. A mixture of /sub 86/Rb and 9-microns spheres labeled with /sup 141/Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A very strong and significant correlation was found between rubidium clearance and microsphere entrapment (r = 0.97, P less than 0.0001). Nitrous oxide anesthesia was accompanied by a higher vascular resistance (VR), lower flow (F), rubidium clearance (Cl-Rb), and microspheres entrapment (Cl-Sph) than pentobarbital anesthesia, indicating that the vascular bed in the intestinal segment was constricted and flow (total and nutritive) decreased. Halothane, enflurane, and isoflurane anesthesia were accompanied by a much lower arteriovenous oxygen content difference (AVDO/sub 2/) and oxygen uptake than pentobarbital or nitrous oxide. Compared with pentobarbital, enflurane anesthesia was not accompanied by marked differences in VR, F, Cl-Rb, and Cl-Sph; halothane at 2 MAC decreased VR and increased F and Cl-Rb while isoflurane increased VR and decreased F. alpha-Adrenoceptor blockade with phentolamine (1 mg . kg-1) abolished isoflurane-induced vasoconstriction, suggesting that the increase in VR was mediated via circulating catecholamines.

  2. Sonography of the small intestine

    PubMed Central

    Nylund, Kim; Ødegaard, Svein; Hausken, Trygve; Folvik, Geir; Lied, Gülen Arslan; Viola, Ivan; Hauser, Helwig; Gilja, Odd-Helge

    2009-01-01

    In the last two decades, there has been substantial development in the diagnostic possibilities for examining the small intestine. Compared with computerized tomography, magnetic resonance imaging, capsule endoscopy and double-balloon endoscopy, ultrasonography has the advantage of being cheap, portable, flexible and user- and patient-friendly, while at the same time providing the clinician with image data of high temporal and spatial resolution. The method has limitations with penetration in obesity and with intestinal air impairing image quality. The flexibility ultrasonography offers the examiner also implies that a systematic approach during scanning is needed. This paper reviews the basic scanning techniques and new modalities such as contrast-enhanced ultrasound, elastography, strain rate imaging, hydrosonography, allergosonography, endoscopic sonography and nutritional imaging, and the literature on disease-specific findings in the small intestine. Some of these methods have shown clinical benefit, while others are under research and development to establish their role in the diagnostic repertoire. However, along with improved overall image quality of new ultrasound scanners, these methods have enabled more anatomical and physiological changes in the small intestine to be observed. Accordingly, ultrasound of the small intestine is an attractive clinical tool to study patients with a range of diseases. PMID:19294761

  3. [Studies of changes in human intestinal micro-biocenosis in health and in disease].

    PubMed

    Nesvizhkiĭ, Iu V

    2003-01-01

    The paper contains the generalized many-year research conducted by staff of the chair for microbiology (including virology and immunology) aimed at describing the universal principles related with forming an inter-individual diversity of gastric-and-intestinal micro-biocenosis. The research demonstrated a high dependence of qualitative and quantitative parameters of the analyzed biotope on various-genesis factors. It was established that the nature of violations in the gastric-and-intestinal micro-biocenosis is not dependent on peculiarities of an influencing pathogenetic factor, and its difference is related only with quantitative and qualitative (specific) changes in the microbial composition. The marked feature makes it possible to regard the gastric-and-intestinal micro-biocenosis as a non-specific indicator of the condition of a macro-organism and that of the environmental quality. PMID:12608086

  4. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II - contemporary contextual research.

    PubMed

    Bested, Alison C; Logan, Alan C; Selhub, Eva M

    2013-01-01

    In recent years there has been a renewed interest concerning the ways in which the gastrointestinal tract - its functional integrity and microbial residents - might influence human mood (e.g. depression) and behavioral disorders. Once a hotbed of scientific interest in the early 20th century, this area lay dormant for decades, in part due to its association with the controversial term 'autointoxication'. Here we review contemporary findings related to intestinal permeability, small intestinal bacterial overgrowth, lipopolysaccharide endotoxin (LPS) exposure, D-lactic acid, propionic acid, and discuss their relevance to microbiota and mental health. In addition, we include the context of modern dietary habits as they relate to depression, anxiety and their potential interaction with intestinal microbiota. PMID:23497633

  5. Isolated Lymphoid Follicles are Dynamic Reservoirs for the Induction of Intestinal IgA

    PubMed Central

    Knoop, Kathryn A.; Newberry, Rodney D.

    2012-01-01

    IgA is one of the most important molecules in the regulation of intestinal homeostasis. Peyer’s patches have been traditionally recognized as sites for the induction of intestinal IgA responses, however more recent studies demonstrate that isolated lymphoid follicles (ILFs) can perform this function as well. ILF development is dynamic, changing in response to the luminal microbial burden, suggesting that ILFs play an important role providing an expandable reservoir of compensatory IgA inductive sites. However, in situations of immune dysfunction, ILFs can over-develop in response to uncontrollable enteric flora, resulting in ILF hyperplasia. The ability of ILFs to expand and respond to help control the enteric flora makes this dynamic reservoir an important arm of IgA inductive sites in intestinal immunity. PMID:22566964

  6. Intestinal hormones and growth factors: Effects on the small intestine

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2009-01-01

    There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In partI, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids. PMID:19152442

  7. Megacystis-microcolon-intestinal hypoperistalsis syndrome: evidence of intestinal myopathy.

    PubMed

    Rolle, Udo; O'Briain, Sean; Pearl, Richard H; Puri, Prem

    2002-01-01

    We investigated small- and large-bowel specimens of three newborn infants presenting with the clinical and radiological symptoms of megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS). Conventional histological staining revealed marked thinning of the longitudinal muscle layer. Electron-microscopic investigations showed typical "central core" vacuolic degeneration of smooth-muscle-cells combined with proliferation of col lagen fibres. The expression of alpha-smooth-muscle actin was absent or markedly reduced in the circular and longitudinal muscle layers and muscularis mucosae compared to the normal controls. These findings suggest that the intestinal obstruction in MMIHS is due to an abnormality of the smooth-muscle cells. PMID:11793054

  8. Associations between gut microbial colonization in early life and respiratory outcomes in cystic fibrosis

    PubMed Central

    Hoen, Anne G.; Li, Jing; Moulton, Lisa A.; O’Toole, George A.; Housman, Molly L.; Koestler, Devin C.; Guill, Margaret F.; Moore, Jason H.; Hibberd, Patricia L.; Morrison, Hilary G.; Sogin, Mitchell L.; Karagas, Margaret R.; Madan, Juliette C.

    2015-01-01

    Objective To examine patterns of microbial colonization of the respiratory and intestinal tracts in early life in infants with cystic fibrosis (CF) and their associations with breastfeeding and clinical outcomes. Study design A comprehensive, prospective longitudinal analysis of the upper respiratory and intestinal microbiota in a cohort of infants and young children with CF followed from birth was performed. Genus-level microbial community composition was characterized using 16S-targeted pyrosequencing, and relationships with exposures and outcomes were assessed using linear mixed-effects models, time-to-event analysis and principal components analysis. Results Sequencing of 120 samples from 13 subjects collected from birth to 34 months revealed relationships between breastfeeding, microbial diversity in the respiratory and intestinal tracts and the timing of onset of respiratory complications, including exacerbations and colonization with Pseudomonas aeruginosa. Fluctuations in the abundance of specific bacterial taxa preceeded clinical outcomes, including a significant decrease in bacteria of the genus Parabacteroides within the intestinal tract prior to the onset of chronic P. aeruginosa colonization. Specific assemblages of bacteria in intestinal samples, but not respiratory samples, were associated with CF exacerbation in early life, indicating that the intestinal microbiome may play a role in lung health. Conclusion Our findings relating breastfeeding to respiratory outcomes, gut diversity to prolonged periods of health, and specific bacterial communities in the gut prior to respiratory complications in CF highlight a connection between the intestinal microbiome and health and point to potential opportunities for antibiotic or probiotic interventions. Further studies in larger cohorts validating these findings are needed. PMID:25818499

  9. Induction of antigen-specific regulatory T cells in the liver-draining celiac lymph node following oral antigen administration.

    PubMed

    Hultkrantz, Susanne; Ostman, Sofia; Telemo, Esbjörn

    2005-11-01

    Regulatory T cells are induced by oral administration of an antigen, but the physiological requirements and localization of the inductive sites are largely unknown. Using an adoptive transfer system of cells transgenic for ovalbumin T-cell receptor (OVA TCR tg), we found that antigen-specific CD4+ T cells were activated in the liver-draining celiac lymph node (CLN) shortly after ovalbumin feeding, and that a significantly higher proportion of the T cells in the CLN developed into the putative regulatory phenotype [co-expressing CD25 with the glucocortico-induced tumour necrosis factor (TNF) receptor family related gene (GITR), cytotoxic T-lymphocyte antigen (CTLA)-4 and CD103] than in Peyer's patches, the mesenteric and peripheral lymph nodes and the spleen. In addition, a particularly high level of expression of CD103 on the OVA-specific T cells in the CLN may favour homing to the epithelium of the intestine. While equally suppressive, OVA tg T cells isolated from the CLN of OVA-fed DO11.10 mice were less dependent on transforming growth factor (TGF)-beta for suppression than cells isolated from the peripheral and mesenteric lymph nodes, which indicates the involvement of an additional suppressive mechanism. The expression of FoxP3 was not up-regulated in any of the lymph node compartments studied. Our phenotypic and functional findings suggest that the induction of regulatory T cells in the CLN may be relevant in the control of the immune response to dietary antigens. PMID:16236126

  10. The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis

    PubMed Central

    van Vliet, Michel J.; Harmsen, Hermie J. M.; de Bont, Eveline S. J. M.; Tissing, Wim J. E.

    2010-01-01

    Mucositis, also referred to as mucosal barrier injury, is one of the most debilitating side effects of radiotherapy and chemotherapy treatment. Clinically, mucositis is associated with pain, bacteremia, and malnutrition. Furthermore, mucositis is a frequent reason to postpone chemotherapy treatment, ultimately leading towards a higher mortality in cancer patients. According to the model introduced by Sonis, both inflammation and apoptosis of the mucosal barrier result in its discontinuity, thereby promoting bacterial translocation. According to this five-phase model, the intestinal microbiota plays no role in the pathophysiology of mucositis. However, research has implicated a prominent role for the commensal intestinal microbiota in the development of several inflammatory diseases like inflammatory bowel disease, pouchitis, and radiotherapy-induced diarrhea. Furthermore, chemotherapeutics have a detrimental effect on the intestinal microbial composition (strongly decreasing the numbers of anaerobic bacteria), coinciding in time with the development of chemotherapy-induced mucositis. We hypothesize that the commensal intestinal microbiota might play a pivotal role in chemotherapy-induced mucositis. In this review, we propose and discuss five pathways in the development of mucositis that are potentially influenced by the commensal intestinal microbiota: 1) the inflammatory process and oxidative stress, 2) intestinal permeability, 3) the composition of the mucus layer, 4) the resistance to harmful stimuli and epithelial repair mechanisms, and 5) the activation and release of immune effector molecules. Via these pathways, the commensal intestinal microbiota might influence all phases in the Sonis model of the pathogenesis of mucositis. Further research is needed to show the clinical relevance of restoring dysbiosis, thereby possibly decreasing the degree of intestinal mucositis. PMID:20523891

  11. Epithelial IL-22RA1-Mediated Fucosylation Promotes Intestinal Colonization Resistance to an Opportunistic Pathogen

    PubMed Central

    Pham, Tu Anh N.; Clare, Simon; Goulding, David; Arasteh, Julia M.; Stares, Mark D.; Browne, Hilary P.; Keane, Jacqueline A.; Page, Andrew J.; Kumasaka, Natsuhiko; Kane, Leanne; Mottram, Lynda; Harcourt, Katherine; Hale, Christine; Arends, Mark J.; Gaffney, Daniel J.; Dougan, Gordon; Lawley, Trevor D.

    2014-01-01

    Summary Our intestinal microbiota harbors a diverse microbial community, often containing opportunistic bacteria with virulence potential. However, mutualistic host-microbial interactions prevent disease by opportunistic pathogens through poorly understood mechanisms. We show that the epithelial interleukin-22 receptor IL-22RA1 protects against lethal Citrobacter rodentium infection and chemical-induced colitis by promoting colonization resistance against an intestinal opportunistic bacterium, Enterococcus faecalis. Susceptibility of Il22ra1−/− mice to C. rodentium was associated with preferential expansion and epithelial translocation of pathogenic E. faecalis during severe microbial dysbiosis and was ameloriated with antibiotics active against E. faecalis. RNA sequencing analyses of primary colonic organoids showed that IL-22RA1 signaling promotes intestinal fucosylation via induction of the fucosyltransferase Fut2. Additionally, administration of fucosylated oligosaccharides to C. rodentium-challenged Il22ra1−/− mice attenuated infection and promoted E. faecalis colonization resistance by restoring the diversity of anaerobic commensal symbionts. These results support a model whereby IL-22RA1 enhances host-microbiota mutualism to limit detrimental overcolonization by opportunistic pathogens. PMID:25263220

  12. HORSE SPECIES SYMPOSIUM: Canine intestinal microbiology and metagenomics: From phylogeny to function.

    PubMed

    Guard, B C; Suchodolski, J S

    2016-06-01

    Recent molecular studies have revealed a complex microbiota in the dog intestine. Convincing evidence has been reported linking changes in microbial communities to acute and chronic gastrointestinal inflammation, especially in canine inflammatory bowel disease (IBD). The most common microbial changes observed in intestinal inflammation are decreases in the bacterial phyla Firmicutes (i.e., Lachnospiraceae, Ruminococcaceae, and ) and Bacteroidetes, with concurrent increases in Proteobacteria (i.e., ). Due to the important role of microbial-derived metabolites for host health, it is important to elucidate the metabolic consequences of gastrointestinal dysbiosis and physiological pathways implicated in specific disease phenotypes. Metagenomic studies have used shotgun sequencing of DNA as well as phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) to characterize functional changes in the bacterial metagenome in gastrointestinal disease. Furthermore, wide-scale and untargeted measurements of metabolic products derived by the host and the microbiota in intestinal samples allow a better understanding of the functional alterations that occur in gastrointestinal disease. For example, changes in bile acid metabolism and tryptophan catabolism recently have been reported in humans and dogs. Also, metabolites associated with the pentose phosphate pathway were significantly altered in chronic gastrointestinal inflammation and indicate the presence of oxidative stress in dogs with IBD. This review focuses on the advancements made in canine metagenomics and metabolomics and their implications in understanding gastrointestinal disease as well as the development of better treatment approaches. PMID:27285902

  13. Methodological issues in the study of intestinal microbiota in irritable bowel syndrome.

    PubMed

    Taverniti, Valentina; Guglielmetti, Simone

    2014-07-21

    Irritable bowel syndrome (IBS) is an intestinal functional disorder with the highest prevalence in the industrialized world. The intestinal microbiota (IM) plays a role in the pathogenesis of IBS and is not merely a consequence of this disorder. Previous research efforts have not revealed unequivocal microbiological signatures of IBS, and the experimental results are contradictory. The experimental methodologies adopted to investigate the complex intestinal ecosystem drastically impact the quality and significance of the results. Therefore, to consider the methodological aspects of the research on IM in IBS, we reviewed 29 relevant original research articles identified through a PubMed search using three combinations of keywords: "irritable bowel syndrome + microflora", "irritable bowel syndrome + microbiota" and "irritable bowel syndrome + microbiome". For each study, we reviewed the quality and significance of the scientific evidence obtained with respect to the experimental method adopted. The data obtained from each study were compared with all considered publications to identify potential inconsistencies and explain contradictory results. The analytical revision of the studies referenced in the present review has contributed to the identification of microbial groups whose relative abundance significantly alters IBS, suggesting that these microbial groups could be IM signatures for this syndrome. The identification of microbial biomarkers in the IM can be advantageous for the development of new diagnostic tools and novel therapeutic strategies for the treatment of different subtypes of IBS. PMID:25083056

  14. Methodological issues in the study of intestinal microbiota in irritable bowel syndrome

    PubMed Central

    Taverniti, Valentina; Guglielmetti, Simone

    2014-01-01

    Irritable bowel syndrome (IBS) is an intestinal functional disorder with the highest prevalence in the industrialized world. The intestinal microbiota (IM) plays a role in the pathogenesis of IBS and is not merely a consequence of this disorder. Previous research efforts have not revealed unequivocal microbiological signatures of IBS, and the experimental results are contradictory. The experimental methodologies adopted to investigate the complex intestinal ecosystem drastically impact the quality and significance of the results. Therefore, to consider the methodological aspects of the research on IM in IBS, we reviewed 29 relevant original research articles identified through a PubMed search using three combinations of keywords: “irritable bowel syndrome + microflora”, “irritable bowel syndrome + microbiota” and “irritable bowel syndrome + microbiome”. For each study, we reviewed the quality and significance of the scientific evidence obtained with respect to the experimental method adopted. The data obtained from each study were compared with all considered publications to identify potential inconsistencies and explain contradictory results. The analytical revision of the studies referenced in the present review has contributed to the identification of microbial groups whose relative abundance significantly alters IBS, suggesting that these microbial groups could be IM signatures for this syndrome. The identification of microbial biomarkers in the IM can be advantageous for the development of new diagnostic tools and novel therapeutic strategies for the treatment of different subtypes of IBS. PMID:25083056

  15. Surface antigens of smooth brucellae.

    PubMed

    Diaz, R; Jones, L M; Leong, D; Wilson, J B

    1968-10-01

    Surface antigens of smooth brucellae were extracted by ether-water, phenol-water, trichloroacetic acid, and saline and examined by immunoelectrophoresis and gel diffusion with antisera from infected and immunized rabbits. Ether-water extracts of Brucella melitensis contained a lipopolysaccharide protein component, which was specific for the surface of smooth brucellae and was correlated with the M agglutinogen of Wilson and Miles, a polysaccharide protein component devoid of lipid which was not restricted to the surface of smooth brucellae and was not correlated with the smooth agglutinogen (component 1), and several protein components which were associated with internal antigens of rough and smooth brucellae. Immunoelectrophoretic analysis of ether-water extracts of B. abortus revealed only two components, a lipopolysaccharide protein component, which was correlated with the A agglutinogen, and component 1. Component 1 from B. melitensis and B. abortus showed identity in gel diffusion tests, whereas component M from B. melitensis and component A from B. abortus showed partial identity with unabsorbed antisera and no cross-reactions with monospecific sera. Attempts to prepare monospecific sera directly by immunization of rabbits with cell walls or ether-water extracts were unsuccessful. Absorption of antisera with heavy fraction of ether-water extracts did not always result in monospecific sera. It was concluded (as has been described before) that the A and M antigens are present on a single antigenic complex, in different proportions depending upon the species and biotype, and that this component is a lipopolysaccharide protein complex of high molecular weight that diffuses poorly through agar gel. Components 1, A, and M were also demonstrated in trichloroacetic acid and phenol-water extracts. With all extracts, B. melitensis antigen showed greater diffusibility in agar than B. abortus antigens. After mild acid hydrolysis, B. abortus ether-water extract was able

  16. Characterisation of Sarcoptes scabiei antigens.

    PubMed

    Hejduk, Gloria; Hofstätter, Katja; Löwenstein, Michael; Peschke, Roman; Miller, Ingrid; Joachim, Anja

    2011-02-01

    In pig herds, the status of Sarcoptes scabiei infections is routinely monitored by serodiagnosis. Crude antigen for ELISA is usually prepared from S. scabiei var. canis or other variations and may lead to variations in the outcome of different tests, making assay standardisation difficult. This study was performed to investigate the antigen profiles of S. scabiei, including differences between hydrophilic and more hydrophobic protein fractions, by Western blotting with sera from pigs with defined infection status. Potential cross-reactivity among S. scabiei (var. canis, suis and bovis), Dermatophagoides farinae and Tyrophagus putrescentiae was also analysed. Hydrophobic S. scabiei antigens were detectable in the range of 40-50 kDa, whilst the hydrophilic fraction showed no specific antigenicity. In the hydrophobic fractions of D. farinae and T. putrescentiae, two major protein fractions in a similar size range could be identified, but no cross-reactivity with Sarcoptes-positive sera was detectable. However, examination of the hydrophilic fractions revealed cross-reactivity between Sarcoptes-positive sera and both the house dust mite and the storage mite in the range of 115 and 28/38 kDa. Specific bands in the same range (42 and 48 kDa) could be detected in blots from hydrophobic fractions of all three tested variations of S. scabiei (var. canis, bovis and suis). These results show that there are considerable differences in mange antibody reactivity, including reactions with proteins from free-living mites, which may interfere with tests based on hydrophilic antigens. Further refinement of antigen and the use of specific hydrophobic proteins could improve ELISA performance and standardisation. PMID:20865427

  17. Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals

    PubMed Central

    Shaffiey, Shahab A; Jia, Hongpeng; Keane, Timothy; Costello, Cait; Wasserman, Deena; Quidgley, Maria; Dziki, Jenna; Badylak, Stephen; Sodhi, Chhinder P; March, John C; Hackam, David J

    2016-01-01

    Aims To investigate the growth and differentiation of intestinal stem cells on a novel tubular scaffold in vitro and in vivo. Methods Intestinal progenitor cells from mice or humans were cultured with myofibroblasts, macrophages and/or bacteria, and evaluated in mice via omental implantation. Mucosal regeneration was evaluated in dogs after rectal mucosectomy followed by scaffold implantation. Results Intestinal progenitor cells differentiated into crypt-villi structures on the scaffold. Differentiation and scaffold coverage was enhanced by coculture with myofibroblasts, macrophages and probiotic bacteria, while the implanted scaffolds enhanced mucosal regeneration in the dog rectum. Conclusion Intestinal stem cell growth and differentiation on a novel tubular scaffold is enhanced through addition of cellular and microbial components, as validated in mice and dogs. PMID:26395928

  18. Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis

    PubMed Central

    Li, Ming; Liang, Pin; Li, Zhenzhen; Wang, Ying; Zhang, Guobin; Gao, Hongwei; Wen, Shu; Tang, Li

    2015-01-01

    Fecal microbiota transplantation (FMT) is a promising therapy, despite some reports of adverse side effects. Bacterial consortia transplantation (BCT) for targeted restoration of the intestinal ecosystem is considered a relatively safe and simple procedure. However, no systematic research has assessed the effects of FMT and BCT on immune responses of intestinal mucosal barrier in patients. We conducted complementary studies in animal models on the effects of FMT and BCT, and provide recommendations for improving the clinical outcomes of these treatments. To establish the dysbiosis model, male BALB/c mice were treated with ceftriaxone intra-gastrically for 7 days. After that, FMT and BCT were performed on ceftriaxone-treated mice for 3 consecutive days to rebuild the intestinal ecosystem. Post-FMT and post-BCT changes of the intestinal microbial community and mucosal barrier functions were investigated and compared. Disruption of intestinal microbial homeostasis impacted the integrity of mucosal epithelial layer, resulting in increased intestinal permeability. These outcomes were accompanied by overexpression of Muc2, significant decrease of SIgA secretion, and overproduction of defensins and inflammatory cytokines. After FMT and BCT, the intestinal microbiota recovered quickly, this was associated with better reconstruction of mucosal barriers and re-establishment of immune networks compared with spontaneous recovery (SR). Although based on a short-term study, our results suggest that FMT and BCT promote the re-establishment of intestinal microbial communities in mice with antibiotic-induced dysbiosis, and contribute to the temporal and spatial interactions between microbiota and mucosal barriers. The effects of BCT are comparable to that of FMT, especially in normalizing the intestinal levels of Muc2, SIgA, and defensins. PMID:26217323

  19. Intestinal SGLT1 in metabolic health and disease.

    PubMed

    Lehmann, Anders; Hornby, Pamela J

    2016-06-01

    The Na(+)-glucose cotransporter 1 (SGLT1/SLC5A1) is predominantly expressed in the small intestine. It transports glucose and galactose across the apical membrane in a process driven by a Na(+) gradient created by Na(+)-K(+)-ATPase. SGLT2 is the major form found in the kidney, and SGLT2-selective inhibitors are a new class of treatment for type 2 diabetes mellitus (T2DM). Recent data from patients treated with dual SGLT1/2 inhibitors or SGLT2-selective drugs such as canagliflozin (SGLT1 IC50 = 663 nM) warrant evaluation of SGLT1 inhibition for T2DM. SGLT1 activity is highly dynamic, with modulation by multiple mechanisms to ensure maximal uptake of carbohydrates (CHOs). Intestinal SGLT1 inhibition lowers and delays the glucose excursion following CHO ingestion and augments glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) secretion. The latter is likely due to increased glucose exposure of the colonic microbiota and formation of metabolites such as L cell secretagogues. GLP-1 and PYY secretion suppresses food intake, enhances the ileal brake, and has an incretin effect. An increase in colonic microbial production of propionate could contribute to intestinal gluconeogenesis and mediate positive metabolic effects. On the other hand, a threshold of SGLT1 inhibition that could lead to gastrointestinal intolerability is unclear. Altered Na(+) homeostasis and increased colonic CHO may result in diarrhea and adverse gastrointestinal effects. This review considers the potential mechanisms contributing to positive metabolic and negative intestinal effects. Compounds that inhibit SGLT1 must balance the modulation of these mechanisms to achieve therapeutic efficacy for metabolic diseases. PMID:27012770

  20. [Farmer's lung antigens in Germany].

    PubMed

    Sennekamp, J; Joest, M; Sander, I; Engelhart, S; Raulf-Heimsoth, M

    2012-05-01

    Recent studies suggest that besides the long-known farmer's lung antigen sources Saccharopolyspora rectivirgula (Micropolyspora faeni), Thermoactinomyces vulgaris, and Aspergillus fumigatus, additionally the mold Absidia (Lichtheimia) corymbifera as well as the bacteria Erwinia herbicola (Pantoea agglomerans) and Streptomyces albus may cause farmer's lung in Germany. In this study the sera of 64 farmers with a suspicion of farmer's lung were examined for the following further antigens: Wallemia sebi, Cladosporium herbarum, Aspergillus versicolor, and Eurotium amstelodami. Our results indicate that these molds are not frequent causes of farmer's lung in Germany. PMID:22477566

  1. The Intestinal Absorption of Folates

    PubMed Central

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I. David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  2. The intestinal absorption of folates.

    PubMed

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  3. Candida utilis and Chlorella vulgaris Counteract Intestinal Inflammation in Atlantic Salmon (Salmo salar L.)

    PubMed Central

    Grammes, Fabian; Reveco, Felipe Eduardo; Romarheim, Odd Helge; Landsverk, Thor; Mydland, Liv Torunn; Øverland, Margareth

    2013-01-01

    Intestinal inflammation, caused by impaired intestinal homeostasis, is a serious condition in both animals and humans. The use of conventional extracted soybean meal (SBM) in diets for Atlantic salmon and several other fish species is known to induce enteropathy in the distal intestine, a condition often referred to as SBM induced enteropathy (SBMIE). In the present study, we investigated the potential of different microbial ingredients to alleviate SBMIE in Atlantic salmon, as a model of feed-induced inflammation. The dietary treatments consisted of a negative control based on fish meal (FM), a positive control based on 20% SBM, and four experimental diets combining 20% SBM with either one of the three yeasts Candida utilis (CU), Kluyveromyces marxianus (KM), Saccharomyces cerevisiae (SC) or the microalgae Chlorella vulgaris (CV). Histopathological examination of the distal intestine showed that all fish fed the SC or SBM diets developed characteristic signs of SBMIE, while those fed the FM, CV or CU diets showed a healthy intestine. Fish fed the KM diet showed intermediate signs of SBMIE. Corroborating results were obtained when measuring the relative length of PCNA positive cells in the crypts of the distal intestine. Gene set enrichment analysis revealed decreased expression of amino acid, fat and drug metabolism pathways as well as increased expression of the pathways for NOD-like receptor signalling and chemokine signalling in both the SC and SBM groups while CV and CU were similar to FM and KM was intermediate. Gene expression of antimicrobial peptides was reduced in the groups showing SBMIE. The characterisation of microbial communities using PCR-DGGE showed a relative increased abundance of Firmicutes bacteria in fish fed the SC or SBM diets. Overall, our results show that both CU and CV were highly effective to counteract SBMIE, while KM had less effect and SC had no functional effects. PMID:24386162

  4. The several elements of intestinal innate immune system at the beginning of the life of broiler chicks.

    PubMed

    Eren, U; Kum, S; Nazligul, A; Gules, O; Aka, E; Zorlu, S; Yildiz, M

    2016-07-01

    Functional capacity of digestive system and intestinal adaptive immunity are immature at hatching of broiler chicks. Therefore, intestinal innate immunity after hatching is vital to young chicks. The purpose of this study was to investigate expression and tissue distributions of several elements of the innate immune system (i.e., TLR2, TLR4, CD83, and MHC class II expressing cells) in the intestine of one-day-old chicks. For this purpose, ileum and cecum were examined the under different conditions, which included the control and 1, 3, 6, 12, or 24 h after injection of lipopolysaccharide (LPS) and phosphate buffered saline. The findings indicated that regardless of the antigenic stimulation, Toll-like receptor (TLR) 2 and TLR4 expressing cells were present in the intestinal tissues of one-day-old chicks. We noticed that the intestinal segments have different TLR expression levels after LPS stimulation. Dendritic cells were identified, and they left the intestinal tissue after LPS treatment. MHC class II molecules were diffusely present in both the ileum and cecum. This study demonstrates that the intestinal tissue of one-day-old chicks has remarkable defensive material, including histological properties and several elements of the innate immune system. Microsc. Res. Tech. 79:604-614, 2016. © 2016 Wiley Periodicals, Inc. PMID:27115541

  5. Microbiome Heterogeneity Characterizing Intestinal Tissue and Inflammatory Bowel Disease Phenotype.

    PubMed

    Tyler, Andrea D; Kirsch, Richard; Milgrom, Raquel; Stempak, Joanne M; Kabakchiev, Boyko; Silverberg, Mark S

    2016-04-01

    Inflammatory bowel disease has been associated with differential abundance of numerous organisms when compared to healthy controls (HCs); however, few studies have investigated variability in the microbiome across intestinal locations and how this variability might be related to disease location and phenotype. In this study, we have analyzed the microbiome of a large cohort of individuals recruited at Mount Sinai Hospital in Toronto, Canada. Biopsies were taken from subjects with Crohn's disease, ulcerative colitis, and HC, and also individuals having undergone ileal pouch-anal anastomosis for treatment of ulcerative colitis or familial adenomatous polyposis. Microbial 16S rRNA was sequenced using the Illumina MiSeq platform. We observed a great deal of variability in the microbiome characterizing different sampling locations. Samples from pouch and afferent limb were comparable in microbial composition. When comparing sigmoid and terminal ileum samples, more differences were observed. The greatest number of differentially abundant microbes was observed when comparing either pouch or afferent limb samples to sigmoid or terminal ileum. Despite these differences, we were able to observe modest microbial variability between inflammatory bowel disease phenotypes and HCs, even when controlling for sampling location and additional experimental factors. Most detected associations were observed between HCs and Crohn's disease, with decreases in specific genera in the families Ruminococcaceae and Lachnospiraceae characterizing tissue samples from individuals with Crohn's disease. This study highlights important considerations when analyzing the composition of the microbiome and also provides useful insight into differences in the microbiome characterizing these seemingly related phenotypes. PMID:26954709

  6. Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus

    PubMed Central

    Hevia, Arancha; Milani, Christian; López, Patricia; Cuervo, Adriana; Arboleya, Silvia; Duranti, Sabrina; Turroni, Francesca; González, Sonia; Suárez, Ana; Gueimonde, Miguel; Ventura, Marco

    2014-01-01

    ABSTRACT Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disease in humans and is characterized by the presence of hyperactive immune cells and aberrant antibody responses to nuclear and cytoplasmic antigens, including characteristic anti–double-stranded DNA antibodies. We performed a cross-sectional study in order to determine if an SLE-associated gut dysbiosis exists in patients without active disease. A group of 20 SLE patients in remission, for which there was strict inclusion and exclusion criteria, was recruited, and we used an optimized Ion Torrent 16S rRNA gene-based analysis protocol to decipher the fecal microbial profiles of these patients and compare them with those of 20 age- and sex-matched healthy control subjects. We found diversity to be comparable based on Shannon’s index. However, we saw a significantly lower Firmicutes/Bacteroidetes ratio in SLE individuals (median ratio, 1.97) than in healthy subjects (median ratio, 4.86; P < 0.002). A lower Firmicutes/Bacteroidetes ratio in SLE individuals was corroborated by quantitative PCR analysis. Notably, a decrease of some Firmicutes families was also detected. This dysbiosis is reflected, based on in silico functional inference, in an overrepresentation of oxidative phosphorylation and glycan utilization pathways in SLE patient microbiota. PMID:25271284

  7. Characterization of moose intestinal glycosphingolipids.

    PubMed

    Johansson, Miralda Madar; Dedic, Benjamin; Lundholm, Klara; Branzell, Filip Berner; Barone, Angela; Benktander, John; Teneberg, Susann

    2015-08-01

    As a part of a systematic investigation of the species-specific expression of glycosphingolipids, acid and non-acid glycosphingolipids were isolated from three small intestines and one large intestine of the moose (Alces alces). The glycosphingolipids were characterized by binding of monoclonal antibodies, lectins and bacteria in chromatogram binding assays, and by mass spectrometry. The non-acid fractions were complex mixtures, and all had glycosphingolipids belonging to the lacto- and neolactoseries (lactotriaosylceramide, lactotetraosylceramide, neolactotetraosylceramide, Galα3-Le(x) hexaosylceramide, and lacto-neolactohexaosylceramide), globo-series (globotriaosylceramide and globotetraosylceramide), and isogloboseries (isoglobotriaosylceramide). Penta- and heptaglycosylceramides with terminal Galili determinants were also characterized. Furthermore, glycosphingolipids with terminal blood group O determinants (H triaosylceramide, H type 2 pentaosylceramide, H type 1 penta- and heptaosylceramide) were characterized in two of the moose small intestines, and in the one large intestine, while the third small intestine had glycosphingolipids with terminal blood group A determinants (A tetraosylceramide, A type 1 hexa- and octaosylceramide, A dodecaosylceramide). The acid glycosphingolipid fractions of moose small and large intestine contained sulfatide, and the gangliosides GM3, GD3, GD1a, GD1b, and also NeuGc and NeuAc variants of the Sd(a) ganglioside and the sialyl-globopenta/SSEA-4 ganglioside. In humans, the NeuAc-globopenta/SSEA-4 ganglioside is a marker of embryonic and adult stem cells, and is also expressed in several human cancers. This is the first time sialyl-globopentaosylceramide/SSEA-4 has been characterized in a fully differentiated normal tissue, and also the first time NeuGc-globopentaosylceramide has been characterized. PMID:26104834

  8. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    PubMed Central

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  9. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health.

    PubMed

    Ha, Connie W Y; Lam, Yan Y; Holmes, Andrew J

    2014-11-28

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  10. Expansion of Microbial Forensics.

    PubMed

    Schmedes, Sarah E; Sajantila, Antti; Budowle, Bruce

    2016-08-01

    Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes. PMID:26912746

  11. Radiation-induced intestinal pseudoobstruction

    SciTech Connect

    Perino, L.E.; Schuffler, M.D.; Mehta, S.J.; Everson, G.T.

    1986-10-01

    A case of intestinal pseudoobstruction occurring 30 yr after radiation therapy is described. Mechanical causes of obstruction were excluded by laparotomy. Histology of full-thickness sections of the small bowel revealed vascular ectasia and sclerosis, serosal fibrosis, neuronal proliferation within the submucosa, and degeneration of the muscle fibers of the circular layer of the muscularis propria. On the basis of the clinical and histologic findings we conclude that, in this patient, intestinal pseudoobstruction was due to muscular and neuronal injury from abdominal irradiation.

  12. Megacystis microcolon intestinal hypoperistalsis syndrome.

    PubMed

    Makhija, P S; Magdalene, K F; Babu, M K

    1999-01-01

    Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a rare cause of intestinal obstruction mainly affecting female neonates. We present a case of a newborn female infant with a history of abdominal distension, bilious vomiting and decreased urine output. Barium enema showed a microcolon. Patient died soon after admission and the autopsy revealed a shortened bowel, a microcolon with abundant ganglion cells in the myenteric plexus, and an enlarged urinary bladder. An interesting finding in this case was the presence of enlarged nerve bundles containing several large ganglion cells on the lateral wall of the cervix. The salient clinical and autopsy findings in this case are presented. PMID:10798164

  13. Megacystis microcolon intestinal hypoperistalsis syndrome.

    PubMed

    Puri, Prem; Shinkai, Masato

    2005-02-01

    Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a rare and the most severe form of functional intestinal obstruction in the newborn. The major features of this congenital and usually lethal anomaly are abdominal distension, bile-stained vomiting, and absent or decreased bowel peristalsis. Abdominal distension is a consequence of the distended, unobstructed urinary bladder with or without upper urinary tract dilation. Most patients with MMIHS are not able to void spontaneously. This article reviews the pathogenesis of MMIHS as well as the clinical, radiological, surgical and histological findings in all reported cases of this syndrome. PMID:15770589

  14. General Information about Small Intestine Cancer

    MedlinePlus

    ... Small Intestine Cancer Treatment (PDQ®)–Patient Version General Information About Small Intestine Cancer Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  15. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines.

    PubMed

    Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun

    2016-01-01

    Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination. PMID:26624805

  16. [Detection of T-antigen in colorectal adenocarcinoma and polyps].

    PubMed

    Xu, S; Lu, Y; Wang, Q

    1995-10-01

    Galactose oxidase method was employed to detect the beta-D-Gal (1-->3) -D-Gal NAc residue of T-antigen present in the large intestinal mucus of 156 subjects. The positive rates of the test were 84.4%, 29.1%, and 7.2% in the mucus samples obtained from 32 patients with colorectal adenocarcinomas, 55 with polyps and 69 controls respectively. Chi-square test demonstrated that there were significant differences between the group of carcinoma and control (P < 0.001) as well as between also polyp and control (P < 0.01). The test had a high sensitivity (84.4%) and specificity (92.8%) in the diagnosis of colorectal cancer and may be used as a practical mass screening test for colorectal neoplasms. PMID:8731834

  17. Population dynamics of microbial communities in the zebrafish gut

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Hampton, Jennifer; Rolig, Annah; Wiles, Travis; Guillemin, Karen; Parthasarathy, Raghuveer

    2015-03-01

    The vertebrate intestine is home to a diverse microbial community, which plays a crucial role in the development and health of its host. Little is known about the population dynamics and spatial structure of this ecosystem, including mechanisms of growth and interactions between species. We have constructed an experimental model system with which to explore these issues, using initially germ-free larval zebrafish inoculated with defined communities of fluorescently tagged bacteria. Using light sheet fluorescence microscopy combined with computational image analysis we observe and quantify the entire bacterial community of the intestine during the first 24 hours of colonization, during which time the bacterial population grows from tens to tens of thousands of bacteria. We identify both individual bacteria and clusters of bacteria, and quantify the growth rate and spatial distribution of these distinct subpopulations. We find that clusters of bacteria grow considerably faster than individuals and are located in specific regions of the intestine. Imaging colonization by two species reveals spatial segregation and competition. These data and their analysis highlight the importance of spatial organization in the establishment of gut microbial communities, and can provide inputs to physical models of real-world ecological dynamics.

  18. A Mutant Library Approach to Identify Improved Meningococcal Factor H Binding Protein Vaccine Antigens

    PubMed Central

    Konar, Monica; Rossi, Raffaella; Walter, Helen; Pajon, Rolando; Beernink, Peter T.

    2015-01-01

    Factor H binding protein (FHbp) is a virulence factor used by meningococci to evade the host complement system. FHbp elicits bactericidal antibodies in humans and is part of two recently licensed vaccines. Using human complement Factor H (FH) transgenic mice, we previously showed that binding of FH decreased the protective antibody responses to FHbp vaccination. Therefore, in the present study we devised a library-based method to identify mutant FHbp antigens with very low binding of FH. Using an FHbp sequence variant in one of the two licensed vaccines, we displayed an error-prone PCR mutant FHbp library on the surface of Escherichia coli. We used fluorescence-activated cell sorting to isolate FHbp mutants with very low binding of human FH and preserved binding