Science.gov

Sample records for intestinal mucosa barrier

  1. Mechanism of acute pancreatitis complicated with injury of intestinal mucosa barrier*

    PubMed Central

    Zhang, Xi-ping; Zhang, Jie; Song, Qiao-ling; Chen, Han-qin

    2007-01-01

    Acute pancreatitis (AP) is a common acute abdomen in clinic with a rapid onset and dangerous pathogenetic condition. AP can cause an injury of intestinal mucosa barrier, leading to translocation of bacteria or endotoxin through multiple routes, bacterial translocation (BT), gutorigin endotoxaemia, and secondary infection of pancreatic tissue, and then cause systemic inflammatory response syndrome (SIRS) or multiple organ dysfunction syndrome (MODS), which are important factors influencing AP’s severity and mortality. Meanwhile, the injury of intestinal mucosa barrier plays a key role in AP’s process. Therefore, it is clinically important to study the relationship between the injury of intestinal mucosa barrier and AP. In addition, many factors such as microcirculation disturbance, ischemical reperfusion injury, excessive release of inflammatory mediators and apoptosis may also play important roles in the damage of intestinal mucosa barrier. In this review, we summarize studies on mechanisms of AP. PMID:18257123

  2. Restoration of barrier function in injured intestinal mucosa.

    PubMed

    Blikslager, Anthony T; Moeser, Adam J; Gookin, Jody L; Jones, Samuel L; Odle, Jack

    2007-04-01

    Mucosal repair is a complex event that immediately follows acute injury induced by ischemia and noxious luminal contents such as bile. In the small intestine, villous contraction is the initial phase of repair and is initiated by myofibroblasts that reside immediately beneath the epithelial basement membrane. Subsequent events include crawling of healthy epithelium adjacent to the wound, referred to as restitution. This is a highly regulated event involving signaling via basement membrane integrins by molecules such as focal adhesion kinase and growth factors. Interestingly, however, ex vivo studies of mammalian small intestine have revealed the importance of closure of the interepithelial tight junctions and the paracellular space. The critical role of tight junction closure is underscored by the prominent contribution of the paracellular space to measures of barrier function such as transepithelial electrical resistance. Additional roles are played by subepithelial cell populations, including neutrophils, related to their role in innate immunity. The net result of reparative mechanisms is remarkably rapid closure of mucosal wounds in mammalian tissues to prevent the onset of sepsis. PMID:17429041

  3. Effects of Probiotics on Intestinal Mucosa Barrier in Patients With Colorectal Cancer after Operation

    PubMed Central

    Liu, Dun; Jiang, Xiao-Ying; Zhou, Lan-Shu; Song, Ji-Hong; Zhang, Xuan

    2016-01-01

    Abstract Many studies have found that probiotics or synbiotics can be used in patients with diarrhea or inflammatory bowel disease for the prevention and treatment of some pathologies by improving gastrointestinal barrier function. However, there are few studies availing the use of probiotics in patients with colorectal cancer. To lay the foundation for the study of nutritional support in colorectal cancer patients, a meta-analysis has been carried out to assess the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation. To estimate the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation, a meta-analysis of randomized controlled trials has been conducted. Databases including PubMed, Ovid, Embase, the Cochrane Central Register of Controlled Trials, and the China National Knowledge Infrastructure have been searched to identify suitable studies. Stata 12.0 was used for statistical analysis, and sensitivity analysis was also conducted. Six indicators were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Ratios of lactulose to mannitol (L/M) and Bifidobacterium to Escherichia (B/E), occludin, bacterial translocation, and levels of secretory immunoglobulin A (SIgA), interleukin-6 (IL-6), and C-reactive protein (CRP) were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Seventeen studies including 1242 patients were selected for meta-analysis, including 5 English studies and 12 Chinese studies. Significant effects were found in ratios of L/M (standardized mean difference = 3.83, P = 0.001) and B/E (standardized mean difference = 3.91, P = 0.000), occludin (standardized mean difference = 4.74, P = 0.000), bacterial translocation (standardized mean difference = 3.12, P = 0.002), and levels of SIgA (standardized mean

  4. Pathways and Progress in Improving Drug Delivery through the Intestinal Mucosa and Blood-Brain Barriers

    PubMed Central

    Laksitorini, Marlyn; Prasasty, Vivitri D.; Kiptoo, Paul K.; Siahaan, Teruna J.

    2015-01-01

    One of the major hurdles in developing therapeutic agents is the difficulty in delivering drugs through the intestinal mucosa and blood-brain barriers (BBB). The goal here is to describe the general structures of the biological barriers and the strategies to enhance drug delivery across these barriers. Prodrug methods used to improve drug penetration via the transcellular pathway have been successfully developed, and some prodrugs have been used to treat patients. The use of transporters to improve absorption of some drugs (e.g., antiviral agents) has also been successful in treating patients. Other methods, including (a) blocking the efflux pumps to improve transcellular delivery and (b) modulation of cell-cell adhesion in the intercellular junctions to improve paracellular delivery across biological barriers are still in the investigational stage. PMID:25418271

  5. A coculture model mimicking the intestinal mucosa reveals a regulatory role for myofibroblasts in immune-mediated barrier disruption.

    PubMed

    Willemsen, L E M; Schreurs, C C H M; Kroes, H; Spillenaar Bilgen, E J; Van Deventer, S J H; Van Tol, E A F

    2002-10-01

    The pathogenesis of Crohn's disease involves a mucosal inflammatory response affecting the barrier function of the gut. Myofibroblasts directly underlining the intestinal epithelium may have a regulatory role in immune-mediated barrier disruption. A coculture system of T84 epithelial and CCD-18Co myofibroblasts was established in order to mimic the in situ spatial interactions between these cell types and to evaluate their role in barrier: integrity. Lamina propria mononuclear cells (LPMC) were introduced in co- and monocultures. Effects of immune cells on barrier integrity was determined by measuring resistance and permeability for macromolecules. Introduction of LPMC in both culture systems caused a time-dependent decrease in barrier integrity. This was found to be less pronounced in cocultures indicating a regulatory role for mesenchymal cells. The effects were also found to depend on the route of LPMC stimulation. Additional analyses suggested that the regulatory role of myofibroblasts in barrier integrity involves production of growth factors. PMID:12395905

  6. Intestinal barrier: Molecular pathways and modifiers.

    PubMed

    Jeon, Min Kyung; Klaus, Christina; Kaemmerer, Elke; Gassler, Nikolaus

    2013-11-15

    The gastrointestinal tract is frequently challenged by pathogens/antigens contained in food and water and the intestinal epithelium must be capable of rapid regeneration in the event of tissue damage. Disruption of the intestinal barrier leads to a number of immune-mediated diseases, including inflammatory bowel disease, food allergy, and celiac disease. The intestinal mucosa is composed of different types of epithelial cells in specific barrier functions. Epithelial cells control surface-associated bacterial populations without disrupting the intestinal microflora that is crucial for host health. They are also capable of modulating mucosal immune system, and are thus essential in maintaining homeostasis in the gut. Thus, the regulation of intestinal epithelial homeostasis is crucial for the maintenance of the structure of the mucosa and the defensive barrier functions. Recent studies have demonstrated that multiple molecular pathways are involved in the regulation of intestinal epithelial cell polarity. These include the Wnt, Notch, Hippo, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog pathways, most of which were identified in lower organisms where they play important roles during embryogenesis. These pathways are also used in adult organisms to regulate multiple self-renewing organs. Understanding the interactions between these molecular mechanisms and intestinal barrier function will therefore provide important insight into the pathogenesis of intestinal-based immune-mediated diseases. PMID:24244877

  7. Cell volume regulation in goldfish intestinal mucosa.

    PubMed

    Groot, J A

    1981-11-01

    1. Ion and water content of goldfish intestinal mucosa, stripped free from muscular layers were measured under various incubation conditions. 2. Ouabain induces an increase in cation content that is electrically compensated for by chloride. The increase in solute content is accompanied by an increase in water content. 3. When extracellular chloride is partially replaced by sulphate, ouabain does induce cell shrinkage. 4. Anoxia induces a rapid increase in cell volume that is restored by oxygenation of the incubation solution. Ouabain prevents the restoration of volume. 5. It is concluded that the classical ouabain-sensitive Na/K pump participates in the maintenance of cellular volume. We suggest that the constancy in volume after ouabain poisoning as is reported for many tissues might be due to a low chloride conductance of its membranes. 6. Anisotonic media (range: 0.6-1.2 isotonicity), made by variation on mannitol concentration, induce changes in cell water content that deviates from the simplified van't Hoff equation by about 10%. No change in water content after the initial increase was found. 7. We conclude that goldfish enterocytes do not possess a mechanism for rapid volume readjustment. PMID:7322833

  8. The quantitative assessment of normal canine small intestinal mucosa.

    PubMed

    Hart, I R; Kidder, D E

    1978-09-01

    Quanitative methods of assessing the architecture of small intestinal mucosa have been applied to biopsy material from normal dogs. Mucosal samples taken from four predetermined sites show that there are significant quantitative differences between the various levels of the small bowel. Animals of one year of age and older show no correlation between age or weight and mucosal dimensions. The significance of these findings, in relation to examination of biopsy material from cases of clinical small intestinal disease, is discussed. PMID:364574

  9. Increased apoptosis in gastric mucosa adjacent to intestinal metaplasia

    PubMed Central

    van Grieken, N C T; Meijer, G A; zur Hausen, A; Meuwissen, S G M; Baak, J P A; Kuipers, E J

    2003-01-01

    Background: The biological processes involved in the development of gastric mucosal atrophy and intestinal metaplasia are still incompletely understood. Reports testing the hypothesis that apoptosis leads to atrophy have yielded conflicting results. The availability of new antibodies for the detection of apoptotic cells in tissue sections has facilitated the analysis of the role of apoptosis in the gastritis–atrophy–intestinal metaplasia sequence. Methods: Archival material from 40 gastric resection specimens with normal mucosa (n = 5), chronic active gastritis (n = 17), or intestinal metaplasia (n = 18) was studied. Immunohistochemistry was performed using antibodies directed against cleaved cytokeratin 18 and active caspase 3. Slides were scored on a 0–3 scale for the presence of apoptotic cells. Results: Normal gastric mucosa contained low numbers of apoptotic cells at the surface epithelium (mean score, 0.20). This number was significantly increased in cases with chronic gastritis (mean score, 1.06) and in those with intestinal metaplasia (mean score, 2.56). Within the intestinal metaplasia cases, 44 different foci of intestinal metaplasia were identified. In 39 of these 44 areas, concentrations of apoptotic cells were seen immediately adjacent to the foci of intestinal metaplasia, but not in the metaplastic epithelium itself. Conclusions: Apoptosis is uncommon in normal gastric mucosa. Chronic inflammation and intestinal metaplasia are associated with increased apoptosis, but occur mainly at the mucosal surface and not in the deeper layers. These findings do not support the concept that apoptosis underlies the loss of gastric glands and leads to atrophy, but the observed concentration of apoptotic epithelial cells adjacent to foci of intestinal metaplasia could be related to heterogeneity of epithelial damage, causing apoptosis, to which intestinal metaplasia is a response. PMID:12719456

  10. Dosimetry Model for Radioactivity Localized to Intestinal Mucosa

    SciTech Connect

    Fisher, Darrell R.; Rajon, Didier; Breitz, Hazel B.; Goris, Michael L.; Bolch, Wesley E.; Knox, Susan J.

    2004-06-30

    This paper provides a new model for calculating radiation absorbed dose to the full thickness of the small and large intestinal walls, and to the mucosal layers. The model was used to estimate the intestinal radiation doses from yttrium-90-labeled-DOTA-biotin binding to NR-LU-10-streptavidin in patients. We selected model parameters from published data and observations and used the model to calculate energy absorbed fractions using the EGS4 radiation transport code. We determined the cumulated 90Y activity in the small and large intestines of patients from gamma camera images and calculated absorbed doses to the mucosal layer and to the whole intestinal wall. The mean absorbed dose to the wall of the small intestine was 16.2 mGy/MBq (60 cGy/mCi) administered from 90Y localized in the mucosa and 70 mGy/MBq (260 cGy/mCi) to the mucosal layer within the wall. Doses to the large intestinal wall and to the mucosa of the large intestine were lower than those for small intestine by a factor of about 2.5. These doses are greater by factors of about 5 to 6 than those that would have been calculated using the standard MIRD models that assume the intestinal activity is in the bowel contents. The specific uptake of radiopharmaceuticals in mucosal tissues may lead to dose-related intestinal toxicities. Tissue dosimetry at the sub-organ level is useful for better understanding intestinal tract radiotoxicity and associated dose-response relationships.

  11. Scap is required for sterol synthesis and crypt growth in intestinal mucosa[S

    PubMed Central

    McFarlane, Matthew R.; Cantoria, Mary Jo; Linden, Albert G.; January, Brandon A.; Liang, Guosheng; Engelking, Luke J.

    2015-01-01

    SREBP cleavage-activating protein (Scap) is an endoplasmic reticulum membrane protein required for cleavage and activation of sterol regulatory element-binding proteins (SREBPs), which activate the transcription of genes in sterol and fatty acid biosynthesis. Liver-specific loss of Scap is well tolerated; hepatic synthesis of sterols and fatty acids is reduced, but mice are otherwise healthy. To determine whether Scap loss is tolerated in the intestine, we generated a mouse model (Vil-Scap−) in which tamoxifen-inducible Cre-ERT2, a fusion protein of Cre recombinase with a mutated ligand binding domain of the human estrogen receptor, ablates Scap in intestinal mucosa. After 4 days of tamoxifen, Vil-Scap− mice succumb with a severe enteropathy and near-complete collapse of intestinal mucosa. Organoids grown ex vivo from intestinal crypts of Vil-Scap− mice are readily killed when Scap is deleted by 4-hydroxytamoxifen. Death is prevented when culture medium is supplemented with cholesterol and oleate. These data show that, unlike the liver, the intestine requires Scap to sustain tissue integrity by maintaining the high levels of lipid synthesis necessary for proliferation of intestinal crypts. PMID:25896350

  12. The Effect of Peritoneal Air Exposure on Intestinal Mucosal Barrier

    PubMed Central

    Bao, Jun; Tan, Shanjun; Yu, Wenkui; Lin, Zhiliang; Dong, Yi; Chen, Qiyi; Shi, Jialiang; Duan, Kaipeng; Bai, Xiaowu; Xu, Lin; Li, Jieshou

    2014-01-01

    Background. Damage of the intestinal mucosa barrier may result in intestinal bacterial and endotoxin translocation, leading to local and systemic inflammation. The present study was designed to investigate whether peritoneal air exposure induces damage of intestinal mucosal barrier. Methods. Sprague-Dawley rats (weighing 210 to 230 g) were randomized into five groups (6/group): a control group, a sham group, and three exposure groups with peritoneal air exposure for 1, 2, and 3 h, respectively. At 24 h after surgery, blood and terminal ileum were sampled. The serum D-lactate levels were determined using an ELISA kit. The intestinal permeability was determined by measuring the intestinal clearance of FITC-dextran (FD4). The histopathological changes in terminal ileum were also assessed. Results. Compared with the controls, peritoneal air exposure caused an increase in both serum D-lactate level and intestinal FD4 clearance, which were proportional to the length of peritoneal air exposure and correlated to Chiu's scores, indices for intestinal mucosal injury. Edema and inflammatory cells were also observed in mucosa and submucosa of ileum in three exposure groups. Conclusions. Peritoneal air exposure could induce damage to the intestinal mucosal barrier, which is proportional to the time length of peritoneal air exposure. PMID:25210511

  13. Effect of dietary fat on the small intestinal mucosa.

    PubMed

    Maxton, D G; Cynk, E U; Jenkins, A P; Thompson, R P

    1989-09-01

    The presence of food within the small intestinal lumen promotes mucosal cell proliferation. To define the trophic role of triglycerides, three groups of eight female Wistar rats were isocalorically fed for four weeks with either Vivonex, or Vivonex with 50% calorie substitution with an essential fatty acid mixture, or Vivonex with 50% calorie substitution with a saturated fatty acid mixture. Although Vivonex caused greater body weight gain, both essential fatty acids and saturated fatty acids increased small intestinal weight, mucosal weight, protein and DNA overall, and in each of three intestinal segments (proximal, middle and distal), compared with Vivonex. Mucosal indices were similar for essential fatty acids and saturated fatty acids. These results show that triglycerides, regardless of essential fatty acid content, are trophic to the rat small intestinal mucosa. PMID:2806993

  14. Differences in reactive hyperemia between the intestinal mucosa and muscularis.

    PubMed

    Shepherd, A P; Riedel, G L

    1984-12-01

    In a previous study of regional intestinal blood flow by laser-Doppler velocimetry, we noted that the mucosa displayed reactive hyperemia following arterial occlusion but that the muscularis did not. Therefore, to determine whether this observation is generally valid, we compared responses of the mucosa and muscularis externa to arterial occlusion. We measured total blood flow to isolated loops of canine small bowel with an electromagnetic flow probe on the supply artery; blood flow either in the mucosa or in the muscularis was measured by laser-Doppler velocimetry. Mucosal and total blood flow consistently showed reactive hyperemia in response to a 60-s occlusion, but the muscularis did not. To determine whether metabolic rate influenced reactive hyperemia, we increased enteric oxygen uptake by placing 5% bile and transportable solutes in the lumen; these agents increased oxygen consumption by 36%. After a 60-s occlusion, the durations of both total and mucosal reactive hyperemia were significantly prolonged by increased metabolic rate. Similarly, the payback-to-debt ratios in both total and mucosal blood flows were significantly increased at elevated metabolic rate. These data support the conclusions that reactive hyperemia occurs more frequently and has a greater magnitude in the mucosa compared with the muscularis and both total and mucosal reactive hyperemia are strongly influenced by the preocclusive oxygen demand. These findings therefore constitute further evidence that metabolic factors contribute to reactive hyperemia in the intestinal circulation. PMID:6391202

  15. Acylation of lysolecithin in the intestinal mucosa of rats

    PubMed Central

    Subbaiah, P. V.; Sastry, P. S.; Ganguly, J.

    1970-01-01

    1. The presence of an active acyl-CoA–lysolecithin (1-acylglycerophosphorylcholine) acyltransferase was demonstrated in rat intestinal mucosa. 2. ATP and CoA were necessary for the incorporation of free [1-14C]oleic acid into lecithin (phosphatidylcholine). 3. The reaction was about 20 times as fast with [1-14C]oleoyl-CoA as with free oleic acid, CoA and ATP. 4. With 1-acylglycerophosphorylcholine as the acceptor, both oleic acid and palmitic acid were incorporated into the β-position of lecithin; the incorporation of palmitic acid was 60% of that of oleic acid. 5. Of the various analogues of lysolecithin tested as acyl acceptors from [1-14C]oleoyl CoA, a lysolecithin with a long-chain fatty acid at the 1-position was most efficient. 6. The enzyme was mostly present in the brush-border-free particulate fraction of the intestinal mucosa. 7. Of the various tissues of rats tested for the activity, intestinal mucosa was found to be the most active, with testes, liver, kidneys and spleen following it in decreasing order. PMID:5484668

  16. Interactions between bacteria and the gut mucosa: Do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include ...

  17. Interactions between bacteria and the gut mucosa: Do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These includ...

  18. Ornithine transcarbamylase and disaccharidase activities in damaged intestinal mucosa of children--diagnosis of hereditary ornithine transcarbamylase deficiency in mucosa.

    PubMed

    Cathelineau, L; Briand, P; Rabier, D; Navarro, J

    1985-12-01

    Ornithine transcarbamylase (OTC) and disaccharidase activities were measured in the intestinal mucosa from 182 children. Sixty-nine had normal mucosa, whereas the others had different degrees of mucosal damage. Brush border disaccharidases are significantly decreased in all degrees of villous atrophy. In contrast, OTC is not affected in moderate atrophy and only slightly decreased in severe atrophy. Consequently, the OTC-to-lactase ratio increases with the degree of atrophy and permits discrimination between normal and damaged mucosa. The assay of OTC activity in intestinal mucosa for the diagnosis of hereditary deficiency in male hemizygote patients generally provides nonambiguously low results, whereas in heterozygote females the amount of residual activity is in the range of the results found in damaged mucosa. PMID:4067786

  19. Do Antimicrobial Peptides and Complement Collaborate in the Intestinal Mucosa?

    PubMed Central

    Kopp, Zoë A.; Jain, Umang; Van Limbergen, Johan; Stadnyk, Andrew W.

    2015-01-01

    It is well understood that multiple antimicrobial peptides (AMPs) are constitutively deployed by the epithelium to bolster the innate defenses along the entire length of the intestines. In addition to this constitutive/homeostatic production, AMPs may be inducible and levels changed during disease. In contrast to this level of knowledge on AMP sources and roles in the intestines, our understanding of the complement cascade in the healthy and diseased intestines is rudimentary. Epithelial cells make many complement proteins and there is compelling evidence that complement becomes activated in the lumen. With the common goal of defending the host against microbes, the opportunities for cross-talk between these two processes is great, both in terms of actions on the target microbes but also on regulating the synthesis and secretion of the alternate family of molecules. This possibility is beginning to become apparent with the finding that colonic epithelial cells possess anaphylatoxin receptors. There still remains much to be learned about the possible points of collaboration between AMPs and complement, for example, whether there is reciprocal control over expression in the intestinal mucosa in homeostasis and restoring the balance following infection and inflammation. PMID:25688244

  20. The adhesiometer: a simple device to measure adherence of barium sulfate to intestinal mucosa.

    PubMed

    Salomonowitz, E; Frick, M P; Cragg, A H; Lund, G

    1984-04-01

    A simple, inexpensive device assessing barium sulfate adherence to alimentary tract mucosa was tested in an animal study using pigs and dogs. Interaction of gastric, intestinal, and colonic mucosal lining with three different barium preparations was studied. In both pigs and dogs, barium adherence to gastric mucosa was significantly stronger when compared with colonic mucosa. PMID:6608230

  1. Oxytocin evokes a pulsatile PGE2 release from ileum mucosa and is required for repair of intestinal epithelium after injury

    PubMed Central

    Chen, Dawei; Zhao, Junhan; Wang, Haoyi; An, Ning; Zhou, Yuping; Fan, Jiahui; Luo, Junwen; Su, Wenlong; Liu, Chuanyong; Li, Jingxin

    2015-01-01

    We measured the short-circuit current (Isc) in rat ileum mucosa to identify the effect of oxytocin (OT) on mucosal secretion in small intestine. We identified a COX-2-derived pulsatile PGE2 release triggered by OT in rat ileum mucosa. OT receptors (OTR) are expressed in intestine crypt epithelial cells. Notably, OT evoked a dynamic change of [Ca2+]i in ileum crypts, which was responsible for this pulsatile release of PGE2. OT ameliorated 5-FU-, radiation- or DSS- induced injury in vivo, including the improvement of weight loss, reduced villus height and impaired survival of crypt transit-amplifying cells as well as crypt. Moreover, these protective effects of OT against intestinal injury were eliminated by coadministration of a selective inhibitor of PGE2, AH6809. Our findings strongly suggest that OT, a novel and important regulator of intestine mucosa barrier, is required for repair of intestinal epithelium after injury. Considering that OT is an FDA-approved drug, this work reveals a potential novel and safe way to combat or prevent chemo-radiotherapy induced intestine injury or to treat IBD. PMID:26159321

  2. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    PubMed Central

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  3. Interactions Between Bacteria and the Gut Mucosa: Do Enteric Neurotransmitters Acting on the Mucosal Epithelium Influence Intestinal Colonization or Infection?

    PubMed

    Green, Benedict T; Brown, David R

    2016-01-01

    The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include enteric neurons, whose activity is influenced by bacterial pathogens, and their secreted products. Neurotransmitters appear to influence epithelial associations with bacteria in the intestinal lumen. For example, internalization of Salmonella enterica and Escherichia coli O157:H7 into the Peyer's patch mucosa of the small intestine is altered after the inhibition of neural activity with saxitoxin, a neuronal sodium channel blocker. Catecholamine neurotransmitters, such as dopamine and norepinephrine, also alter bacterial internalization in Peyer's patches. In the large intestine, norepinephrine increases the mucosal adherence of E. coli. These neurotransmitter actions are mediated by well-defined catecholamine receptors situated on the basolateral membranes of epithelial cells rather than through direct interactions with luminal bacteria. Investigations of the involvement of neuroepithelial communication in the regulation of interactions between the intestinal mucosa and luminal bacteria will provide novel insights into the mechanisms underlying bacterial colonization and pathogenesis at mucosal surfaces. PMID:26589216

  4. Epidermal Growth Factor and Intestinal Barrier Function.

    PubMed

    Tang, Xiaopeng; Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng; Fang, Rejun

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  5. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  6. Studies on the phospholipases of rat intestinal mucosa

    PubMed Central

    Subbaiah, P. V.; Ganguly, J.

    1970-01-01

    1. Subcellular distribution and characteristics of different phospholipases of rat intestinal mucosa were studied. 2. The presence of free fatty acid was necessary for the maximal hydrolysis of lecithin (phosphatidylcholine), but there was no accumulation of lysolecithin (1 or 2-acylglycerophosphorylcholine);lysolecithin accumulated when the reaction was carried out in the presence of sodium deoxycholate and at or above pH8.0. 3. The fatty acid-activated phospholipase B as well as lysolecithinase showed optimum activity at pH6.5, whereas for the phospholipase A it was about pH8.6. 4. The bulk of the phospholipase A was present in the microsomal fraction, whereas the phospholipase B and lysolecithinase activities were distributed between the microsomal and soluble fractions of the mucosal homogenate. 5. Phospholipase A was equally distributed between the brush border and brush-border-free particulate fraction, with the brush border having highest specific activity, whereas the other two activities were distributed between the brush-border-free particulate and soluble fractions. 6. Various treatments showed marked differences between the phospholipase A and phospholipase B activities, but not between phospholipase B and lysolecithinase activities. 7. By using (β[1-14C]-oleoyl) lecithin it was shown that the mucosal phospholipase A was specific for the β-ester linkage of the lecithin molecule. PMID:5484667

  7. The role of immunomodulators on intestinal barrier homeostasis in experimental models.

    PubMed

    Andrade, Maria Emília Rabelo; Araújo, Raquel Silva; de Barros, Patrícia Aparecida Vieira; Soares, Anne Danieli Nascimento; Abrantes, Fernanda Alves; Generoso, Simone de Vasconcelos; Fernandes, Simone Odília Antunes; Cardoso, Valbert Nascimento

    2015-12-01

    The intestinal epithelium is composed of specialized epithelial cells that form a physical and biochemical barrier to commensal and pathogenic microorganisms. However, dysregulation of the epithelial barrier function can lead to increased intestinal permeability and bacterial translocation across the intestinal mucosa, which contributes to local and systemic immune activation. The increase in these parameters is associated with inflammatory bowel disease, physical exercise under heat stress, intestinal obstruction, ischemia, and mucositis, among other conditions. Lately, there has been growing interest in immunomodulatory nutrients and probiotics that can regulate host immune and inflammatory responses and possibly restore the intestinal barrier. Immunomodulators such as amino acids (glutamine, arginine, tryptophan, and citrulline), fatty acids (short-chain and omega-3 fatty acids and conjugated linoleic acids), and probiotics (Bifidobacterium, Saccharomyces, and Lactobacillus) have been reported in the literature. Here, we review the critical roles of immunomodulatory nutrients in supporting gut barrier integrity and function. PMID:25660317

  8. Nutritional Keys for Intestinal Barrier Modulation

    PubMed Central

    De Santis, Stefania; Cavalcanti, Elisabetta; Mastronardi, Mauro; Jirillo, Emilio; Chieppa, Marcello

    2015-01-01

    The intestinal tract represents the largest interface between the external environment and the human body. Nutrient uptake mostly happens in the intestinal tract, where the epithelial surface is constantly exposed to dietary antigens. Since inflammatory response toward these antigens may be deleterious for the host, a plethora of protective mechanisms take place to avoid or attenuate local damage. For instance, the intestinal barrier is able to elicit a dynamic response that either promotes or impairs luminal antigens adhesion and crossing. Regulation of intestinal barrier is crucial to control intestinal permeability whose increase is associated with chronic inflammatory conditions. The cross talk among bacteria, immune, and dietary factors is able to modulate the mucosal barrier function, as well as the intestinal permeability. Several nutritional products have recently been proposed as regulators of the epithelial barrier, even if their effects are in part contradictory. At the same time, the metabolic function of the microbiota generates new products with different effects based on the dietary content. Besides conventional treatments, novel therapies based on complementary nutrients are now growing. Fecal therapy has been recently used for the clinical treatment of refractory Clostridium difficile infection instead of the classical antibiotic therapy. In the present review, we will outline the epithelial response to nutritional components derived from dietary intake and microbial fermentation focusing on the consequent effects on the integrity of the epithelial barrier. PMID:26697008

  9. Functional changes of intestinal mucosal barrier in surgically critical patients

    PubMed Central

    Guo, Yuan-yuan; Liu, Mu-lin; He, Xian-di; Jiang, Cong-qiao; Liu, Rui-lin

    2010-01-01

    and iFABP P<0.05). CONCLUSION: The plasma concentrations of endotoxin, DAO, D-lactate, and intestinal fatty-acid binding protein (iFABP) could reflect a better function of the intestinal mucosa barrier in surgically critical ill patients. PMID:25214969

  10. Protective effects of bifidobacterial adhesin on intestinal mucosa of stressed male rats via modulation of inflammation

    PubMed Central

    Shu, Xiao-Liang; Yu, Tin-Tin; Kang, Kai; Xu, Han; Lei, Tao

    2014-01-01

    This study aimed to assess BA impact on inflammation markers and repair of intestinal mucosa. Forty-eight rats were randomly divided into stress (n = 24) and BA (n = 24) groups. Stress was induced by fettering in all animals, fed enterally with 125.4 kJ/kg/d and 0.2 g/kg/d nitrogen. Then, rats were treated for 8 days with 5 mg/kg/d BA (BA group) or 5 mg/kg/d saline (Stress group). Levels of NF-κB, IL-10, TNF-α, and IFN-γ were measured at different time points, in plasma and intestinal mucosa samples. Changes in intestinal mucosa morphology were observed by electron microscopy. Plasma and/or mucosal levels of NF-κB, TNF-α, and IFN-γ were significantly higher in both groups after stress induction (P < 0.05). These high levels persisted in control animals throughout the experiment, and were significantly reduced in the BA group, 3 and 8 days after stress induction (P < 0.05). Interestingly, IL-10 levels were increased after BA treatment (P < 0.05). At day 8, ileal mucosal villi and crypt structure were significantly restored in the BA group. Bifidobacterial adhesin plays a role in repairing intestinal mucosa injury after stress by regulating the release of inflammatory mediators in the intestinal mucosa. PMID:25031756

  11. Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation.

    PubMed

    Wang, Lirui; Fouts, Derrick E; Stärkel, Peter; Hartmann, Phillipp; Chen, Peng; Llorente, Cristina; DePew, Jessica; Moncera, Kelvin; Ho, Samuel B; Brenner, David A; Hooper, Lora V; Schnabl, Bernd

    2016-02-10

    Approximately half of all deaths from liver cirrhosis, the tenth leading cause of mortality in the United States, are related to alcohol use. Chronic alcohol consumption is accompanied by intestinal dysbiosis and bacterial overgrowth, yet little is known about the factors that alter the microbial composition or their contribution to liver disease. We previously associated chronic alcohol consumption with lower intestinal levels of the antimicrobial-regenerating islet-derived (REG)-3 lectins. Here, we demonstrate that intestinal deficiency in REG3B or REG3G increases numbers of mucosa-associated bacteria and enhances bacterial translocation to the mesenteric lymph nodes and liver, promoting the progression of ethanol-induced fatty liver disease toward steatohepatitis. Overexpression of Reg3g in intestinal epithelial cells restricts bacterial colonization of mucosal surfaces, reduces bacterial translocation, and protects mice from alcohol-induced steatohepatitis. Thus, alcohol appears to impair control of the mucosa-associated microbiota, and subsequent breach of the mucosal barrier facilitates progression of alcoholic liver disease. PMID:26867181

  12. Intestinal inflammation and mucosal barrier function.

    PubMed

    Sánchez de Medina, Fermín; Romero-Calvo, Isabel; Mascaraque, Cristina; Martínez-Augustin, Olga

    2014-12-01

    Intestinal mucosal barrier function is the capacity of the intestine to provide adequate containment of luminal microorganisms and molecules while preserving the ability to absorb nutrients. The central element is the epithelial layer, which physically separates the lumen and the internal milieu and is in charge of vectorial transport of ions, nutrients, and other substances. The secretion of mucus-forming mucins, sIgA, and antimicrobial peptides reinforces the mucosal barrier on the extraepithelial side, while a variety of immune cells contributes to mucosal defense in the inner side. Thus, the mucosal barrier is of physical, biochemical, and immune nature. In addition, the microbiota may be viewed as part of this system because of the mutual influence occurring between the host and the luminal microorganisms. Alteration of the mucosal barrier function with accompanying increased permeability and/or bacterial translocation has been linked with a variety of conditions, including inflammatory bowel disease. Genetic and environmental factors may converge to evoke a defective function of the barrier, which in turn may lead to overt inflammation of the intestine as a result of an exacerbated immune reaction toward the microbiota. According to this hypothesis, inflammatory bowel disease may be both precipitated and treated by either stimulation or downregulation of the different elements of the mucosal barrier, with the outcome depending on timing, the cell type affected, and other factors. In this review, we cover briefly the elements of the barrier and their involvement in functional defects and the resulting phenotype. PMID:25222662

  13. Probiotic bacteria and intestinal epithelial barrier function.

    PubMed

    Ohland, Christina L; Macnaughton, Wallace K

    2010-06-01

    The intestinal tract is a diverse microenvironment where more than 500 species of bacteria thrive. A single layer of epithelium is all that separates these commensal microorganisms and pathogens from the underlying immune cells, and thus epithelial barrier function is a key component in the arsenal of defense mechanisms required to prevent infection and inflammation. The epithelial barrier consists of a dense mucous layer containing secretory IgA and antimicrobial peptides as well as dynamic junctional complexes that regulate permeability between cells. Probiotics are live microorganisms that confer benefit to the host and that have been suggested to ameliorate or prevent diseases including antibiotic-associated diarrhea, irritable bowel syndrome, and inflammatory bowel disease. Probiotics likely function through enhancement of barrier function, immunomodulation, and competitive adherence to the mucus and epithelium. This review summarizes the evidence about effects of the many available probiotics with an emphasis on intestinal barrier function and the mechanisms affected by probiotics. PMID:20299599

  14. The intestinal epithelium as guardian of gut barrier integrity.

    PubMed

    Zhang, Kaiyi; Hornef, Mathias W; Dupont, Aline

    2015-11-01

    A single layer of epithelial cells separates the intestinal lumen from the underlying sterile tissue. It is exposed to a multitude of nutrients and a large number of commensal bacteria. Although the presence of commensal bacteria significantly contributes to nutrient digestion, vitamin synthesis and tissue maturation, their high number represents a permanent challenge to the integrity of the epithelial surface keeping the local immune system constantly on alert. In addition, the intestinal mucosa is challenged by a variety of enteropathogenic microorganisms. In both circumstances, the epithelium actively contributes to maintaining host-microbial homeostasis and antimicrobial host defence. It deploys a variety of mechanisms to restrict the presence of commensal bacteria to the intestinal lumen and to prevent translocation of commensal and pathogenic microorganisms to the underlying tissue. Enteropathogenic microorganisms in turn have learnt to evade the host's immune system and circumvent the antimicrobial host response. In the present article, we review recent advances that illustrate the intense and intimate host-microbial interaction at the epithelial level and improve our understanding of the mechanisms that maintain the integrity of the intestinal epithelial barrier. PMID:26294173

  15. Intestinal barrier in inflammatory bowel disease

    PubMed Central

    Antoni, Lena; Nuding, Sabine; Wehkamp, Jan; Stange, Eduard F

    2014-01-01

    A complex mucosal barrier protects as the first line of defense the surface of the healthy intestinal tract from adhesion and invasion by luminal microorganisms. In this review, we provide an overview about the major components of this protective system as for example an intact epithelium, the synthesis of various antimicrobial peptides (AMPs) and the formation of the mucus layer. We highlight the crucial importance of their correct functioning for the maintenance of a proper intestinal function and the prevention of dysbiosis and disease. Barrier disturbances including a defective production of AMPs, alterations in thickness or composition of the intestinal mucus layer, alterations of pattern-recognition receptors, defects in the process of autophagy as well as unresolved endoplasmic reticulum stress result in an inadequate host protection and are thought to play a crucial role in the pathogenesis of the inflammatory bowel diseases Crohn’s disease and ulcerative colitis. PMID:24574793

  16. Trophic effect of Efamol on the rat small-intestinal mucosa.

    PubMed

    Jenkins, A P; Thompson, R P

    1989-11-01

    1. The hypothesis that triacylglycerols are trophic to the small-intestinal mucosa of the rat was tested by comparing the action of the essential fatty acid-rich oil Efamol with that of glucose. 2. Two groups of nine female Wistar rats were pair-fed Vivonex HN with 50% calorie substitution by glucose or Efamol for 21 days. 3. Body weight gain was greater with glucose than with Efamol, but, despite this, whole gut weight, mucosal weight and mucosal protein were increased by Efamol in all small-intestinal segments. Total mucosal DNA was also increased with a significant change in the middle small-intestinal segment. These changes were associated with an increased crypt cell production rate. 4. Fasting plasma levels of peptidyltyrosyltyrosine ('peptide YY'), but not of enteroglucagon, were significantly elevated in the Efamol-fed group. 5. The data show a trophic effect of Efamol on the rat small-intestinal mucosa. Possible mechanisms are discussed. PMID:2582727

  17. Effects of intestinal mucosal blood flow and motility on intestinal mucosa

    PubMed Central

    Wang, Yan-Bin; Liu, Jing; Yang, Zhao-Xu

    2011-01-01

    AIM: To investigate the role of intestinal mucosal blood flow (IMBF) and motility in the damage of intestinal mucosal barrier in rats with traumatic brain injury. METHODS: Sixty-four healthy male Wistar rats were divided randomly into two groups: traumatic brain injury (TBI) group (n = 32), rats with traumatic brain injury; and control group (n = 32), rats with sham-operation. Each group was divided into four subgroups (n = 8) as 6, 12, 24 and 48 h after operation. Intestinal motility was measured by the propulsion ratio of a semi-solid colored marker (carbon-ink). IMBF was measured with the laser-Doppler technique. Endotoxin and D-xylose levels in plasma were measured to evaluate the change of intestinal mucosal barrier function following TBI. RESULTS: The level of endotoxin was significantly higher in TBI group than in the control group at each time point (0.382 ± 0.014 EU/mL vs 0.102 ± 0.007 EU/mL, 0.466 ± 0.018 EU/mL vs 0.114 ± 0.021 EU/mL, 0.478 ± 0.029 EU/mL vs 0.112 ± 0.018 EU/mL and 0.412 ± 0.036 EU/mL vs 0.108 ± 0.011 EU/mL, P < 0.05). D-xylose concentrations in plasma in TBI group were significantly higher than in the control group (6.68 ± 2.37 mmol/L vs 3.66 ± 1.07 mmol/L, 8.51 ± 2.69 mmol /L vs 3.15 ± 0.95 mmol/L, 11.68 ± 3.24 mmol/L vs 3.78 ± 1.12 mmol/L and 10.23 ± 2.83 mmol/L vs 3.34 ± 1.23 mmol/ L, P < 0.05). The IMBF in TBI group was significantly lower than that in the control group (38.5 ± 2.8 PU vs 45.6 ± 4.6 PU, 25.2 ± 3.1 PU vs 48.2 ± 5.3 PU, 21.5 ± 2.7 PU vs 44.9 ± 2.8 PU, 29. 4 ± 3.8 PU vs 46.7 ± 3.2 PU) (P < 0.05). Significant decelerations of intestinal propulsion ratio in TBI groups were found compared with the control group (0.48% ± 0.06% vs 0.62% ± 0.03%, 0.37% ± 0.05% vs 0.64% ± 0.01%, 0.39% ± 0.07% vs 0.63% ± 0.05% and 0.46% ± 0.03% vs 0.65% ± 0.02%) (P < 0.05). CONCLUSION: The intestinal mucosal permeability is increased obviously in TBI rats. Decrease of intestinal motility and IMBF occur early in TBI

  18. Interactions between the microbiota and the intestinal mucosa.

    PubMed

    Schiffrin, E J; Blum, S

    2002-08-01

    The intestinal microflora can be considered as a postnatally aquired organ composed of a large diversity of bacterial cells that can perform different functions for the host. This organ is highly exposed to environmental influences and thus modulated in its composition and functions by external factors, such as nutrition. Specific components of the intestinal microflora, including lactobacilli and bifidobacteria, have been associated with beneficial effects on the host, such as promotion of gut maturation and integrity, antagonisms against pathogens and immune modulation. In addition, the microflora seem to play a significant role in the maintenance of intestinal immune homeostasis and prevention of inflammation. At the present time, the contribution of intestinal epithlial cell in the first line of defence against pathogenic bacteria and microbial antigens has been recognized, in contrast, the interactions of intestinal epithelial cells with commensal bacteria are less understood. The present work summarizes the increasing scientific attention for mechanisms of the innate immune response of the host to different components of the autochthonous microflora and suggests a potential role for selected probiotic bacteria in the regulation of intestinal inflammation. PMID:12142966

  19. Effect of indigestible saccharides on B lymphocyte response of intestinal mucosa and cecal fermentation in rats.

    PubMed

    Kudoh, K; Shimizu, J; Wada, M; Takita, T; Kanke, Y; Innami, S

    1998-02-01

    The effects of water-soluble and -insoluble indigestible saccharides (IDS) on immune responses of the intestinal tract were studied. Male 4-week-old Sprague Dawley rats were fed for three weeks on diets containing several kinds of IDS at 5%. The results revealed that the proportion of kappa-light chain and IgA-presenting lymphocytes in small intestinal and cecal mucosa differed in increased number depending on the type of IDS. The response of colonic mucosa was not pronounced. The amounts of short-chain fatty acid (SCFA) and lactic acid in the cecal contents of the other test groups except the celfur group tended to be higher than those in the cellulose group, particularly in the lactulose group where many acids showed significant increases. The correlation between the proportion of kappa-light chain and IgA-presenting lymphocytes in the cecal mucosa and lactic acid in the cecal contents was significant, but that between the proportion of both lymphocytes and SCFA was not. Based on the above, we concluded that the oral administration of IDS induces the proliferation of kappa-light chain and IgA-producing B lymphocytes in small intestinal and cecal mucosa, but the degree of response differs depending on the type of IDS. It is thus suggested that IDS are involved in the intestinal immune system of rats. PMID:9591238

  20. Selective culturing of swine gastrointestinal bacteria on substrates simulating the intestinal mucosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many gastrointestinal (GI) microbes are in intimate contact with the host tissues, and characterizing these tissue-associated communities is important for elucidating their role in animal and human health. The GI mucosa is an environment distinct from the intestinal lumen and is covered by a mucus l...

  1. Recombinant Human Epidermal Growth Factor Accelerates Recovery of Mouse Small Intestinal Mucosa After Radiation Damage

    SciTech Connect

    Lee, Kang Kyoo; Jo, Hyang Jeong; Hong, Joon Pio; Lee, Sang-wook Sohn, Jung Sook; Moon, Soo Young; Yang, Sei Hoon; Shim, Hyeok; Lee, Sang Ho; Ryu, Seung-Hee; Moon, Sun Rock

    2008-07-15

    Purpose: To determine whether systemically administered recombinant human epidermal growth factor (rhEGF) accelerates the recovery of mouse small intestinal mucosa after irradiation. Methods and Materials: A mouse mucosal damage model was established by administering radiation to male BALB/c mice with a single dose of 15 Gy applied to the abdomen. After irradiation, rhEGF was administered subcutaneously at various doses (0.04, 0.2, 1.0, and 5.0 mg/kg/day) eight times at 2- to 3-day intervals. The evaluation methods included histologic changes of small intestinal mucosa, change in body weight, frequency of diarrhea, and survival rate. Results: The recovery of small intestinal mucosa after irradiation was significantly improved in the mice treated with a high dose of rhEGF. In the mice that underwent irradiation without rhEGF treatment, intestinal mucosal ulceration, mucosal layer damage, and severe inflammation occurred. The regeneration of villi was noticeable in mice treated with more than 0.2 mg/kg rhEGF, and the villi recovered fully in mice given more than 1 mg/kg rhEGF. The frequency of diarrhea persisting for more than 3 days was significantly greater in the radiation control group than in the rhEGF-treated groups. Conclusions: Systemic administration of rhEGF accelerates recovery from mucosal damage induced by irradiation. We suggest that rhEGF treatment shows promise for the reduction of small intestinal damage after irradiation.

  2. Metabolism of heme and bilirubin in rat and human small intestinal mucosa.

    PubMed Central

    Hartmann, F; Bissell, D M

    1982-01-01

    Formation of heme, bilirubin, and bilirubin conjugates has been examined in mucosal cells isolated from the rat upper small intestine. Intact, viable cells were prepared by enzymatic dissociation using a combined vascular and luminal perfusion and incubated with an isotopically labeled precursor, delta-amino-[2,3-3H]levulinic acid. Labeled heme and bile pigment were formed with kinetics similar to those exhibited by hepatocytes. Moreover, the newly formed bilirubin was converted rapidly to both mono- and diglucuronide conjugates. In addition, cell-free extracts of small intestinal mucosa from rats or humans exhibited a bilirubin-UDP-glucuronyl transferase activity that was qualitatively similar to that present in liver. The data suggest that the small intestinal mucosa normally contributes to bilirubin metabolism. PMID:6806320

  3. Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo

    PubMed Central

    Troost, Freddy J; van Baarlen, Peter; Lindsey, Patrick; Kodde, Andrea; de Vos, Willem M; Kleerebezem, Michiel; Brummer, Robert-Jan M

    2008-01-01

    Background There is limited knowledge on the extent and dynamics of the mucosal response to commensal and probiotic species in the human intestinal lumen. This study aimed to identify the acute, time-dependent responses of intestinal mucosa to commensal Lactobacillus plantarum WCFS1 in vivo in two placebo-controlled human intervention studies in healthy volunteers. Transcriptional changes in duodenal mucosa upon continuous intraduodenal infusion of L. plantarum WCFS1 for one- and six h, respectively, were studied using oro- and nasogastric intubations with dedicated orogastric catheters and tissue sampling by standard flexible gastroduodenoscopy. Results One- and six-h exposure of small intestinal mucosa to L. plantarum WCFS1 induced differential expression of 669 and 424 gene reporters, respectively. While short-term exposure to L. plantarum WCFS1 inhibited fatty acid metabolism and cell cycle progression, cells switched to a more proliferative phase after prolonged exposure with an overall expression profile characterized by upregulation of genes involved in lipid metabolism, cellular growth and development. Cell death and immune responses were triggered, but cell death-executing genes or inflammatory signals were not expressed. Proteome analysis showed differential expression of several proteins. Only the microsomal protein 'microsomal triglyceride transfer protein' was regulated on both the transcriptional and the protein level in all subjects. Conclusion Overall, this study showed that intestinal exposure to L. plantarum WCFS1 induced consistent, time-dependent transcriptional responses in healthy intestinal mucosa. This extensive exploration of the human response to L. plantarum WCFS1 could eventually provide molecular support for specific or probiotic activity of this strain or species, and exemplifies the strength of the applied technology to identify the potential bio-activity of microbes in the human intestine. PMID:18681965

  4. Effects of psychological stress on small intestinal motility and bacteria and mucosa in mice

    PubMed Central

    Wang, Shao-Xuan; Wu, Wan-Chun

    2005-01-01

    AIM: To investigate the effects of psychological stress on small intestinal motility and bacteria and mucosa in mice, and to explore the relationship between small intestinal dysfunction and small intestinal motility and bacteria and mucosa under psychological stress. METHODS: Sixty mice were randomly divided into psychological stress group and control group. Each group were subdivided into small intestinal motility group (n = 10), bacteria group (n = 10), and D-xylose administered to stomach group (n = 10). An animal model with psychological stress was established housing the mice with a hungry cat in separate layers of a two-layer cage. A semi-solid colored marker (carbon-ink) was used for monitoring small intestinal transit. The proximal small intestine was harvested under sterile condition and processed for quantitation for aerobes (Escherichia coli) and anaerobes (Lactobacilli). The quantitation of bacteria was expressed as log10(colony forming units/g). D-xylose levels in plasma were measured for estimating the damage of small intestinal mucosa. RESULTS: Small intestinal transit was inhibited (39.80±9.50% vs 58.79±11.47%, P<0.01) in mice after psychological stress, compared with the controls. Psychological stress resulted in quantitative alterations in the aerobes (E. coli). There was an increase in the number of E. coli in the proximal small intestinal flora (1.78±0.30 log10(CFU/g) vs 1.37±0.21 log10(CFU/g), P<0.01), and there was decrease in relative proportion of Lactobacilli and E. coli of stressed mice (0.53±0.63 vs 1.14±1.07, P<0.05), while there was no significant difference in the anaerobes (Lactobacilli) between the two groups (2.31±0.70 log10(CFU/g) vs 2.44±0.37 log10(CFU/g), P>0.05). D-xylose concentrations in plasma in psychological stress mice were significantly higher than those in the control group (2.90±0.89 mmol/L vs 0.97±0.33 mmol/L, P<0.01). CONCLUSION: Small intestinal dysfunction under psychological stress may be related to the

  5. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    PubMed Central

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  6. Pleiotropic effects of bombesin and neurotensin on intestinal mucosa: not just trefoil peptides.

    PubMed

    Assimakopoulos, Stelios-F; Scopa, Chrisoula-D; Nikolopoulou, Vassiliki-N; Vagianos, Constantine-E

    2008-06-14

    Bombesin and neurotensin are neuropeptides which exert a wide spectrum of biological actions on gastrointestinal tissues influencing intestinal growth and adaptation, intestinal motility, blood flow, secretion, nutrient absorption and immune response. Based mainly on their well-established potent enterotrophic effect, numerous experimental studies investigated their potential positive effect on the atrophic or injured intestinal mucosa. These peptides proved to be effective mucosa-healing factors, but the potential molecular and cellular mechanisms for this action remained unresolved. In a recently published study (World J Gastroenterol 2008; 14(8): 1222-1230), it was shown that their protective effect on the intestine in experimentally induced inflammatory bowel disease was related to anti-inflammatory, antioxidant and antiapoptotic actions. These results are in close agreement with our previous studies on jaundiced and hepatectomized rats that showed a regulatory effect of bombesin and neurotensin on critical cellular processes such as enterocyte' proliferation and death, oxidative stress and redox equilibrium, tight junctions' formation and function, and inflammatory response. The pleiotropic effects of bombesin and neurotensin on diverse types of intestinal injury may justify their consideration for clinical trials. PMID:18567096

  7. The influence of gut function on lymphoid cell populations in the intestinal mucosa of lambs.

    PubMed Central

    Reynolds, J D; Morris, B

    1983-01-01

    The number and type of lymphoid cells in the intestinal mucosa of lambs change during the first weeks after birth. The influence of gut function on these changes was examined by comparing the evolution of lymphoid cell populations in normal ileum with that in lengths of ileum which had been isolated surgically from the functional intestinal tract of the lamb before birth. The isolated lengths of ileum had a normal blood and nerve supply and they remained healthy throughout a period of at least 2 years, although they did not have a normal histological development. In comparison with normal ileum, the villi of the isolated ileal segments were much smaller and there were many fewer intraepithelial lymphocytes; the lamina propria had significantly fewer lymphocytes than the functional ileum and only a few plasma cells. When isolated ileal segments were reconnected into the intestinal tract after having been isolated from it for 1-3 months, the histology of the mucosa reverted to that of the normal gut, with the same number and types of lymphoid cells. Radiolabelled lymphoblasts collected from intestinal lymph and injected intravenously accumulated to only a small extent in isolated segments of ileum compared with either the normal or the reconnected segments of ileum. This suggested that the paucity of lymphocytes in the mucosa of the isolated segments was due to a reduced extravasation of these cells there. The influence which the gut contents exert on the lymphoid cell population in the mucosa is probably associated with antigenic stimulation but may also be related to other factors concerned in the normal digestive functions of the gut. Images Figure 1 Figure 2 Figure 3 PMID:6862523

  8. Mechanisms of Intestinal Barrier Dysfunction in Sepsis.

    PubMed

    Yoseph, Benyam P; Klingensmith, Nathan J; Liang, Zhe; Breed, Elise R; Burd, Eileen M; Mittal, Rohit; Dominguez, Jessica A; Petrie, Benjamin; Ford, Mandy L; Coopersmith, Craig M

    2016-07-01

    Intestinal barrier dysfunction is thought to contribute to the development of multiple organ dysfunction syndrome in sepsis. Although there are similarities in clinical course following sepsis, there are significant differences in the host response depending on the initiating organism and time course of the disease, and pathways of gut injury vary widely in different preclinical models of sepsis. The purpose of this study was to determine whether the timecourse and mechanisms of intestinal barrier dysfunction are similar in disparate mouse models of sepsis with similar mortalities. FVB/N mice were randomized to receive cecal ligation and puncture (CLP) or sham laparotomy, and permeability was measured to fluoresceinisothiocyanate conjugated-dextran (FD-4) six to 48 h later. Intestinal permeability was elevated following CLP at all timepoints measured, peaking at 6 to 12 h. Tight junction proteins claudin 1, 2, 3, 4, 5, 7, 8, 13, and 15, Junctional Adhesion Molecule-A (JAM-A), occludin, and ZO-1 were than assayed by Western blot, real-time polymerase chain reaction, and immunohistochemistry 12 h after CLP to determine potential mechanisms underlying increases in intestinal permeability. Claudin 2 and JAM-A were increased by sepsis, whereas claudin-5 and occludin were decreased by sepsis. All other tight junction proteins were unchanged. A further timecourse experiment demonstrated that alterations in claudin-2 and occludin were detectable as early as 1 h after the onset of sepsis. Similar experiments were then performed in a different group of mice subjected to Pseudomonas aeruginosa pneumonia. Mice with pneumonia had an increase in intestinal permeability similar in timecourse and magnitude to that seen in CLP. Similar changes in tight junction proteins were seen in both models of sepsis although mice subjected to pneumonia also had a marked decrease in ZO-1 not seen in CLP. These results indicate that two disparate, clinically relevant models of sepsis

  9. Protective effect of bone marrow mesenchymal stem cells in intestinal barrier permeability after heterotopic intestinal transplantation

    PubMed Central

    Zhang, Wen; Shen, Zhong-Yang; Song, Hong-Li; Yang, Yang; Wu, Ben-Juan; Fu, Nan-Nan; Liu, Tao

    2014-01-01

    AIM: To explore the protective effect of bone marrow mesenchymal stem cells (BM MSCs) in the small intestinal mucosal barrier following heterotopic intestinal transplantation (HIT) in a rat model. METHODS: BM MSCs were isolated from male Lewis rats by density gradient centrifugation, cultured, and analyzed by flow cytometry. The HIT models were divided into a non-rejection group, saline-treated rejection group (via penile vein), and BM MSC–treated group (via penile vein). Intestinal mucosal barrier injury was estimated by diamine oxidase (DAO) and D-lactic acid (D-LA) expression levels. Tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), interleukin-10 (IL-10), and transforming growth factor-β (TGF-β) were detected by enzyme-linked immunosorbent assay. Ultrastructural change of tight junctions (TJs) was observed under transmission electron microscope. Expression levels of the TJ proteins occludin and zona occludens (ZO)-1, affected by the inflammatory factors, were measured using real-time polymerase chain reaction and Western blotting. RESULTS: The pathological score at each time point after surgery indicated significantly less serious injury in the BM MSCs-treated group than in the rejection group (P < 0.05). In the former, graft levels of DAO and D-LA were reduced, and TNF-α and INF-γ production was inhibited (at day 7: 10.6473 ± 0.0710 vs 17.2128 ± 0.4991, P < 0.05; 545.1506 ± 31.9416 vs 810.2637 ± 25.1175, P < 0.05). IL-10 and TGF-β production was increased greatly (at day 7: 125.7773 ± 4.7719 vs 80.3756 ± 2.5866, P < 0.05; 234.5273 ± 9.3980 vs 545.1506 ± 31.9416, P < 0.05). There was increased expression of occludin and ZO-1 protein (at day 7: 0.2674 ± 0.0128 vs 0.1352 ± 0.0142, P < 0.05; at day 5: 0.7189 ± 0.0289 vs 0.4556 ± 0.0242, P < 0.05) and mRNA (at day 7: 0.3860 ± 0.0254 vs 0.1673 ± 0.0369, P < 0.05; at day 5: 0.5727 ± 0.0419 vs 0.3598 ± 0.0242, P < 0.05). CONCLUSION: BM MSCs can improve intestinal barrier permeability

  10. The nature of the natural killer (NK) cell of human intestinal mucosa and mesenteric lymph node.

    PubMed Central

    Gibson, P R; Jewell, D P

    1985-01-01

    The relationship of the mononuclear cell (MNC) from human intestinal mucosa and mesenteric lymph node mediating anti-K-562 activity with that of peripheral blood has been assessed. Depletion of macrophages did not alter the measured cytotoxicity confirming that the effector cells were lymphocytes. Complement lysis of Leu 7 and Leu 11b coated cells reduced intestinal natural killer (NK) activity by a similar degree to that of peripheral blood but mesenteric lymph node NK activity was affected to a lesser extent. The response in NK activity of mucosal and nodal MNC to short incubation with lymphoblastoid interferon was similar to that for peripheral blood MNC. Twenty-four hours incubation of MNC with low concentrations of purified interleukin-2 (IL-2) consistently augmented intestinal and nodal NK activity but failed to augment that of peripheral blood MNC. No differences between the inhibitory effects of cAMP and prostaglandin E2 on NK activity from the three sites were seen. In addition, inhibition of cyclo-oxygenase activity with indomethacin had no effect on NK activity of intestinal and peripheral blood MNC while the lipoxygenase inhibitor, nordihydroguaiaretic acid, suppressed intestinal and peripheral blood NK activity similarly. In conclusion, anti-K-562 activity by intestinal MNC is mediated by NK cells with similar phenotypic and functional properties to those of peripheral blood. However, the increased sensitivity of mucosal NK cells to IL-2 suggests that higher proportions of NK cell precursors may be present in intestinal MNC populations. PMID:2412737

  11. Inflammation and specialized intestinal metaplasia of cardiac mucosa is a manifestation of gastroesophageal reflux disease.

    PubMed Central

    Oberg, S; Peters, J H; DeMeester, T R; Chandrasoma, P; Hagen, J A; Ireland, A P; Ritter, M P; Mason, R J; Crookes, P; Bremner, C G

    1997-01-01

    OBJECTIVE: The purpose of the study was to test the hypothesis that cardiac mucosa, carditis, and specialized intestinal metaplasia at an endoscopically normal-appearing cardia are manifestations of gastroesophageal reflux disease. SUMMARY BACKGROUND DATA: In the absence of esophageal mucosal injury, the diagnosis of gastroesophageal reflux disease currently rests on 24-hour pH monitoring. Histologic examination of the esophagus is not useful. The recent identification of specialized intestinal metaplasia at the cardia, along with the observation that it occurs in inflamed cardiac mucosa, led the authors to focus on the type and condition of the mucosa at the gastroesophageal junction and its relation to gastroesophageal reflux disease. METHODS: Three hundred thirty-four consecutive patients with symptoms of foregut disease, no evidence of columnar-lined esophagus, and no history of gastric or esophageal surgery were evaluated by 1) endoscopic biopsies above, at, and below the gastroesophageal junction; 2) esophageal motility; and 3) 24-hour esophageal pH monitoring. The patients were divided into groups depending on the histologic presence of cardiac epithelium with and without inflammation or associated intestinal metaplasia. Markers of gastroesophageal reflux disease were compared between groups (i.e., lower esophageal sphincter characteristics, esophageal acid exposure, the presence of endoscopic erosive esophagitis, and hiatal hernia). RESULTS: When cardiac epithelium was found, it was inflamed in 96% of the patients. The presence of cardiac epithelium and carditis was associated with deterioration of lower esophageal sphincter characteristics and increased esophageal acid exposure. Esophagitis occurred more commonly in patients with carditis whose sphincter, on manometry, was structurally defective. Specialized intestinal metaplasia at the cardia was only seen in inflamed cardiac mucosa, and its prevalence increased both with increasing acid exposure and with

  12. Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease

    PubMed Central

    Ricanek, Petr; Lunde, Lisa K; Frye, Stephan A; Støen, Mari; Nygård, Ståle; Morth, Jens P; Rydning, Andreas; Vatn, Morten H; Amiry-Moghaddam, Mahmood; Tønjum, Tone

    2015-01-01

    Objectives The aim of this study was to investigate the relationship between aquaporin (AQP) water channel expression and the pathological features of early untreated inflammatory bowel disease (IBD) in humans. Methods Patients suspected to have IBD on the basis of predefined symptoms, including abdominal pain, diarrhea, and/or blood in stool for more than 10 days, were examined at the local hospital. Colonoscopy with biopsies was performed and blood samples were taken. Patients who did not meet the diagnostic criteria for IBD and who displayed no evidence of infection or other pathology in the gut were included as symptomatic non-IBD controls. AQP1, 3, 4, 5, 7, 8, and 9 messenger RNA (mRNA) levels were quantified in biopsies from the distal ileum and colon by quantitative real-time polymerase chain reaction. Protein expression of selected AQPs was assessed by confocal microscopy. Through multiple alignments of the deduced amino acid sequences, the putative three-dimensional structures of AQP1, 3, 7, and 8 were modeled. Results AQP1, 3, 7, and 8 mRNAs were detected in all parts of the intestinal mucosa. Notably, AQP1 and AQP3 mRNA levels were reduced in the ileum of patients with Crohn’s disease, and AQP7 and AQP8 mRNA levels were reduced in the ileum and the colon of patients with ulcerative colitis. Immunofluorescence confocal microscopy showed localization of AQP3, 7, and 8 at the mucosal epithelium, whereas the expression of AQP1 was mainly confined to the endothelial cells and erythrocytes. The reduction in the level of AQP3, 7, and 8 mRNA was confirmed by immunofluorescence, which also indicated a reduction of apical immunolabeling for AQP8 in the colonic surface epithelium and crypts of the IBD samples. This could indicate loss of epithelial polarity in IBD, leading to disrupted barrier function. Conclusion AQPs 1 and 8 and the aquaglyceroporins AQPs 3 and 7 are the AQPs predominantly expressed in the lower intestinal tract of humans. Their expression is

  13. Hormone-sensitive lipase is a cholesterol esterase of the intestinal mucosa.

    PubMed

    Grober, Jacques; Lucas, Stéphanie; Sörhede-Winzell, Maria; Zaghini, Isabelle; Mairal, Aline; Contreras, Juan-Antonio; Besnard, Philippe; Holm, Cecilia; Langin, Dominique

    2003-02-21

    The identity of the enzymes responsible for lipase and cholesterol esterase activities in the small intestinal mucosa is not known. Because hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters, we sought to determine whether HSL could be involved. HSL mRNA and protein were detected in all segments of the small intestine by Northern and Western blot analyses, respectively. Immunocytochemistry experiments revealed that HSL was expressed in the differentiated enterocytes of the villi and was absent in the undifferentiated cells of the crypt. Diacylglycerol lipase and cholesterol esterase activities were found in the different segments. Analysis of gut from HSL-null mice showed that diacylglycerol lipase activity was unchanged in the duodenum and reduced in jejunum. Neutral cholesterol esterase activity was totally abolished in duodenum, jejunum, and ileum of HSL-null mice. Analysis of HSL mRNA structure showed two types of transcripts expressed in equal amounts with alternative 5'-ends transcribed from two exons. This work demonstrates that HSL is expressed in the mucosa of the small intestine. The results also reveal that the enzyme participates in acylglycerol hydrolysis in jejunal enterocytes and cholesteryl ester hydrolysis throughout the small intestine. PMID:12482847

  14. Intestinal mucosa in diabetes: synthesis of total proteins and sucrase-isomaltase

    SciTech Connect

    Olsen, W.A.; Perchellet, E.; Malinowski, R.L.

    1986-06-01

    The effects of insulin deficiency on nitrogen metabolism in muscle and liver have been extensively studied with recent in vivo demonstration of impaired protein synthesis in rats with streptozotocin-induced diabetes. Despite the significant contribution of small intestinal mucosa to overall protein metabolism, the effect of insulin deficiency on intestinal protein synthesis have not been completely defined. The authors studied the effects of streptozotocin-induced diabetes on total protein synthesis by small intestinal mucosa and on synthesis of a single enzyme protein of the enterocyte brush-border membrane sucrase-isomaltase. They used the flood-dose technique to minimize the difficulties of measuring specific radioactivity of precursor phenylalanine and determined incorporation into mucosal proteins and sucrase-isomaltase 20 min after injection of the labeled amino acid. Diabetes did not alter mucosal mass as determined by weight and content of protein and DNA during the 5 days after injection of streptozotocin. Increased rates of sucrase-isomaltase synthesis developed beginning on day 3, and those of total protein developed on day 5. Thus intestinal mucosal protein synthesis is not an insulin-sensitive process.

  15. Serum anti-tissue transglutaminase antibodies detected during febrile illness may not be produced by the intestinal mucosa.

    PubMed

    De Leo, Luigina; Quaglia, Sara; Ziberna, Fabiana; Vatta, Serena; Martelossi, Stefano; Maschio, Massimo; Not, Tarcisio

    2015-03-01

    Anti-transglutaminase antibodies are the diagnostic marker of celiac disease, and are considered to be synthesized only by intestinal B-lymphocytes. During an infectious disease, these antibodies are transiently detected in serum. We show that these infection-triggered antibodies may not originate in the intestinal mucosa and are not an indication of celiac disease. PMID:25722272

  16. Characterization and distribution of alpha 2-adrenergic receptors in the human intestinal mucosa.

    PubMed Central

    Valet, P; Senard, J M; Devedjian, J C; Planat, V; Salomon, R; Voisin, T; Drean, G; Couvineau, A; Daviaud, D; Denis, C

    1993-01-01

    The subtype and the expression of the alpha 2-adrenergic receptor were investigated in the normal mucosa from human intestine by means of radioligand binding, RNase mapping, and measurement of adenylate cyclase activity. The study of the binding of the alpha 2-adrenergic antagonist, [3H]RX821002, to epithelial cell membranes indicated the existence of a single class of noninteracting sites displaying a high affinity for the radioligand (Kd = 1.1 +/- 0.5 nM). The rank order of potency of antagonists to inhibit [3H]RX821002 binding (RX821002 > yohimbine = rauwolscine > phentolamine approximately idazoxan >> chlorpromazine > prazosin) suggested that the receptor is of the alpha 2A subtype. A conclusion which is confirmed by the fact that only alpha 2C10 transcripts were found in the human intestine mucosa. Competition curves with (-)-norepinephrine demonstrated that 60% of the receptor population exhibited high affinity for agonists. This high-affinity state was abolished by the addition of GTP plus Na+ or by prior treatment of the membranes with pertussis toxin indicating it corresponded to G protein-coupled receptors. [32P]ADP-ribosylation and immunoblotting experiments identified two pertussis toxin-sensitive G proteins corresponding to Gi2 and Gi3. The study of the distribution of the receptor indicated that (a) the proximal colon is the intestine segment exhibiting the highest receptor density and (b) the receptor is predominantly expressed in crypts and is preferentially located in the basolateral membrane of the polarized cell. The distribution of the receptor along the crypt-surface axis of the colon mucosa can be correlated with a higher level of alpha 2C10-specific mRNA and a higher efficiency of UK14304 to inhibit adenylate cyclase in crypt cells. Images PMID:8098045

  17. Evaluation of different pig oral mucosa sites as permeability barrier models for drug permeation studies.

    PubMed

    Franz-Montan, Michelle; Serpe, Luciano; Martinelli, Claudia Cristina Maia; da Silva, Camila Batista; Santos, Cleiton Pita Dos; Novaes, Pedro Duarte; Volpato, Maria Cristina; de Paula, Eneida; Lopez, Renata Fonseca Vianna; Groppo, Francisco Carlos

    2016-01-01

    The objective of the present study was to investigate the influence of preparation and storage conditions on the histology and permeability of different parts of porcine oral mucosa used for in vitro studies of transbuccal formulations. Fresh and frozen (-20°C and -80°C, with or without cryoprotectant) epithelia of porcine palatal, gingival, dorsum of the tongue, and buccal mucosa were submitted for histological analyses to determine the effects of storage conditions on barrier integrity. Permeation of lidocaine hydrochloride (used as a hydrophilic model drug) across fresh and previously frozen oral epithelium was measured in order to evaluate the barrier function. Histological evaluation demonstrated that the oral epithelium was successfully separated from the connective tissue, except for gingival mucosa. After storage under different conditions, all tissues presented desquamation of superficial layers and spherical spaces induced by the freezing process. The permeability of lidocaine hydrochloride varied among the fresh oral mucosa and generally increased after freezing. In conclusion, fresh epithelium from the buccal and dorsum of the tongue mucosa should be used for in vitro studies investigating hydrophilic drug transport when these are the desired clinical application sites. However, when the palate is the target site, both fresh and frozen (for up to 4weeks, without addition of cryoprotectant) samples could be used. The addition of glycerol as a cryoprotectant should be avoided due to increased lidocaine hydrochloride permeability. PMID:26435216

  18. [Decreased intraepithelial lymphocytes in the intestinal mucosa in children with malnutrition and parasitic infections].

    PubMed

    Gendrel, D; Richard-Lenoble, D; Kombila, M; Nardou, M; Gahouma, D; Barbet, J P; Walter, P

    1992-02-01

    In Gabon, 15 children aged 13 to 36 months admitted for malnutrition with chronic diarrhea underwent a small bowel biopsy for detection of parasites in the duodenal contents and histologic evaluation of the intestinal mucosa. In every case, intraepithelial lymphocyte counts (IELC) were under the lower limit of normal for children and adults, regardless of whether or not parasites were found. Partial villous atrophy was a consistent finding. Proportion of lymphocytes among intraepithelial cells was 7.4% in the 6 children with no parasitic infection, 7.9% in the children with giardiasis, and 8.1% in the children with strongyloidiasis. Appropriate treatment of the parasitic infections was quickly followed by resolution of the diarrhea in the nine patients with demonstrable intestinal parasites. These data should be compared with the well documented lymphocyte function anomalies associated with protein-calory malnutrition. The fall in IELC and lack of response to local anigenic stimulations are features of malnutrition. PMID:1580534

  19. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    PubMed Central

    Onal, Ozkan; Yetisir, Fahri; Sarer, A. Ebru Salman; Zeybek, N. Dilara; Onal, C. Oztug; Yurekli, Banu; Celik, H. Tugrul; Sirma, Ayse; Kılıc, Mehmet

    2015-01-01

    Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF) intraperitoneally (ip) for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR) group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD), catalase (CAT), glutathioneperoxidase (GSH-Px), malondyaldehide (MDA), and protein carbonyl (PCO) were analyzed in tissue samples. Total oxidant status (TOS), and total antioxidant capacity (TAC) were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy prevented

  20. Regeneration of the intestinal mucosa in Eimeria and E. Coli challenged broilers supplemented with amino acids.

    PubMed

    Gottardo, E T; Prokoski, K; Horn, D; Viott, A D; Santos, T C; Fernandes, J I M

    2016-05-01

    The aim of this study was to evaluate the regeneration of the intestinal mucosa in Eimeria and E. coli challenged broilers supplemented with glutamine, arginine, and threonine. Six hundred male broilers at one d of age from the Cobb strain were utilized. The design was completely randomized using a 2×3 factorial design (unchallenged and challenged and 3 diets). A commercial diet was used as a control and 2 other diets were formulated with glutamine (1.5 and 3% Aminogut®), arginine (1 and 2% L-Arginine), and threonine (1 and 2% L-threonine). The animals that consumed diets supplemented with amino acids presented better (P<0.05) feed conversion in the period from one to 42 d of age. The ability of cell proliferation and the villus:crypt ratio in response to enteric challenge were greater (P<0.05) for broilers that received diets supplemented with amino acids. High levels of amino acids in the experimental feeds reflected in greater protein levels in poultry house litter, and they did not interfere with ammonia production. The supplementation of diets with trophic amino acids can positively contribute to the regeneration and proliferation of the intestinal mucosa in broilers and to the maintenance of zootechnical performance when submitted to enteric challenges. PMID:26846258

  1. Supplementation of glutamine and vitamin E on the morphometry of the intestinal mucosa in broiler chickens.

    PubMed

    Murakami, A E; Sakamoto, M I; Natali, M R M; Souza, L M G; Franco, J R G

    2007-03-01

    The objective of this experiment was to evaluate the influence of Gln and vitamin E (VE) supplementation in the diet of broiler chickens (Cobb-Vantress) on the morphometry of the intestinal mucosa. The design was completely randomized in a 2 x 3 (VE x periods of administering Gln) factorial arrangement. The levels of VE used were 10 and 500 mg/kg of diet and 3 periods of administering (1%) Gln-supplemented starter diet (for the first 7 or 14 d of life or for no added Gln), totaling 6 treatments with 5 replicates of 50 birds per experimental unit. In the growth period (d 22 to 41 posthatch), the treatments consisted only in the respective levels of VE. On d 7, 14, 21, and 41 posthatch, 2 birds per replicate were killed, and samples of the duodenum, jejunum, and ileum were subsequently removed, fixed in Bouin solution, and later embedded in paraffin and stained with hematoxylin-eosin. The parameters analyzed were villus height and crypt depth. An ANOVA was applied to the obtained data, and the means were compared using Tukey's test (5% significance level). Greater development was observed in the duodenum, followed by the jejunum and ileum. On 41 d of life, diets with 10 mg of VE/kg supplemented with Gln (for the first 7 d of life) provided better development of the intestinal mucosa in broiler chickens. PMID:17297160

  2. Influence of pH upon the activity of glycosidases and proteinases of intestinal mucosa, chyme and microbiota in fish.

    PubMed

    Kuz'mina, V V; Skvortsova, E G; Zolotareva, G V; Sheptitskiy, V A

    2011-09-01

    It is shown that amylolytic and proteolytic activity of the intestinal mucosa, the chyme and the intestinal flora in the fishes, zander Zander lucioperca (L.), perch Perca fluviatilis L., bream Abramis brama (L.) and roach Rutilus rutilus (L.), belonging according to their feeding habits to different ecological groups at the same pH values as well as in the pH range from 5.0 to 10.0 considerably varies. The glycosidase pH optimum of the mucosa and intestinal microbiota is 7.0, whereas that of the chyme varies from 6.0 (in roach) to 8.0 (in bream). pH optimum of the mucosa proteinases in all fish species is 10.0, whereas that of the chyme and the bacterial flora can be observed in all the range of pH values. PMID:21082240

  3. Pharmaceutical drugs supporting regeneration of small-intestinal mucosa severely damaged by ionizing radiation in mice

    PubMed Central

    Ishihara, Hiroshi; Tanaka, Izumi; Yakumaru, Haruko; Tanaka, Mika; Yokochi, Kazuko; Akashi, Makoto

    2013-01-01

    Accidental exposure of the abdomen to high-dose radiation leads to severe consequences initiated by disruption of the mucosa in the small intestine. Therapeutic options are limited, even though various treatments have been investigated, particularly in the field of regenerative therapy. In order to identify readily available treatment methods, we included several current pharmaceutical drugs, for which the clinical trials have already been completed, in tests on mice that had undergone severe mucosal damage by radiation. The drugs were injected into mice 24 h after exposure to 15.7 Gy X-rays. The effects of the drugs on the damaged mucosa of the small intestine were evaluated using early regeneration indices [the expression of c-myb mRNA, and proliferation of epithelial cells in the form of microcolonies (MCs) by Days 4 and 5 post-irradiation] and the survival rate of the mice. Enhancement of mucosal regeneration at Day 4 (c-myb: P < 0.01, MC: P < 0.05) and improvement of the survival rate (P < 0.05) were observed when a clinical dose of gonadotropin, a stimulator of androgen, was injected. Similarly, a clinical dose of thiamazole (which prevents secretion of thyroid hormone) stimulated mucosal growth by Day 5 (c-myb: P < 0.01, MC: P < 0.05) and also improved the survival rate (P < 0.05). The nonclinical drugs histamine and high-dose octreotide (a growth hormone antagonist) also gave significant survival-enhancing benefits (P < 0.01 and P < 0.05, respectively). These results can be used to construct therapeutic programs and applied in various experimental studies to control the regeneration of damaged mucosa. PMID:23728323

  4. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury.

    PubMed

    Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K; Cario, Elke

    2009-08-14

    Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair. PMID:19528242

  5. IBD Candidate Genes and Intestinal Barrier Regulation

    PubMed Central

    McCole, Declan F.

    2015-01-01

    Technological advances in the large scale analysis of human genetics have generated profound insights into possible genetic contributions to chronic diseases including the inflammatory bowel diseases (IBDs), Crohn’s disease and ulcerative colitis. To date, 163 distinct genetic risk loci have been associated with either Crohn’s disease or ulcerative colitis, with a substantial degree of genetic overlap between these 2 conditions. Although many risk variants show a reproducible correlation with disease, individual gene associations only affect a subset of patients, and the functional contribution(s) of these risk variants to the onset of IBD is largely undetermined. Although studies in twins have demonstrated that the development of IBD is not mediated solely by genetic risk, it is nevertheless important to elucidate the functional consequences of risk variants for gene function in relevant cell types known to regulate key physiological processes that are compromised in IBD. This article will discuss IBD candidate genes that are known to be, or are suspected of being, involved in regulating the intestinal epithelial barrier and several of the physiological processes presided over by this dynamic and versatile layer of cells. This will include assembly and regulation of tight junctions, cell adhesion and polarity, mucus and glycoprotein regulation, bacterial sensing, membrane transport, epithelial differentiation, and restitution. PMID:25215613

  6. The effects of enteral ghrelin administration on the remodeling of the small intestinal mucosa in neonatal piglets.

    PubMed

    Słupecka, Monika; Woliński, Jarosław; Pierzynowski, Stefan G

    2012-02-10

    Ghrelin is a multifunctional peptide produced predominantly in the stomach, however substantial amounts have also been found in colostrum and milk. The aim of the study was to investigate the effect of exogenous ghrelin, administered intra-gastrically, on the processes of mitosis, apoptosis, autophagy, crypt fission and changes in histometry of the small intestine mucosa in neonatal pigs, fed with a milk formula. Three groups (n=6) of piglets were used in the study. The pigs were fed either milk formula (C7) or milk formula together with ghrelin, administered via a stomach tube (7.5 μg/kg body weight (BW), (LG)) and 15 μg/kg BW (HG), every 8h for 6 days. Compared to the control group (C7), feeding milk formula supplemented with ghrelin resulted in significant changes in the small intestinal morphometry and mucosa histometry. The observed changes were dependent on the dosage of hormone and the part of intestine investigated. Administration of ghrelin via the stomach tube (HG) significantly influenced epithelial cell renewal. Moreover, we demonstrated that autophagy is involved in the small intestine mucosa remodeling and ghrelin may be an important factor for its regulation. In conclusion, we found that enteral ghrelin influences the gut mucosa remodeling in a dose-related manner in the early postnatal period. Moreover in neonates, stomach activity does not interfere with the action of ghrelin in the small intestine. PMID:22137939

  7. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins

    PubMed Central

    Xiao, Lan; Rao, Jaladanki N.; Cao, Shan; Liu, Lan; Chung, Hee Kyoung; Zhang, Yun; Zhang, Jennifer; Liu, Yulan; Gorospe, Myriam; Wang, Jian-Ying

    2016-01-01

    Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs. PMID:26680741

  8. Beyond the Intestinal Celiac Mucosa: Diagnostic Role of Anti-TG2 Deposits, a Systematic Review

    PubMed Central

    Gatti, Simona; Rossi, Matilde; Alfonsi, Simona; Mandolesi, Alessandra; Cobellis, Giovanni; Catassi, Carlo

    2014-01-01

    Aim: To review the existing literature on the role and significance of intestinal transglutaminase 2 immunoglobulin A deposits (TG2 deposits) in patients with overt celiac disease (CD), potential celiac disease (PCD), and other autoimmune or gluten-related conditions. Methods: We conducted a systematic review of studies published in English, evaluating presence and characteristics of TG2 deposits in subjects with overt CD, PCD, gluten-related diseases [dermatitis herpetiformis (DH), gluten-ataxia (GA)], autoimmune disorders (type-1 diabetes), and other conditions. Studies were identified through a MEDLINE search (1950–2013). Results: Twenty-three studies were included in the review. Eleven studies were performed in children. Overall TG2 deposits were present in 100% of adults with overt CD, while in children prevalence ranged from 73.2 to 100%. Six studies with an established definition of PCD were considered, prevalence of deposits ranging from 64.7 to 100%. A single study followed-up PCD patients with repeated biopsies and identified presence of intestinal deposits as the best marker to reveal progression toward villous atrophy. Two studies investigated presence of deposits in DH, reporting prevalence between 63 and 79%. A single study documented TG2 deposits in 100% of patients with GA. In children with type-1 diabetes (T1D), positivity of intestinal TG2 deposits ranged from 25 to 78%. Conclusion: Transglutaminase 2 IgA deposits seem to be a constant feature in overt CD patients and are frequently detectable in other gluten-related conditions (DH and GA). The vast majority of PCD patients express TG2 deposits at the intestinal level, but no sufficient data are available to exactly define their prognostic role as a marker of evolution toward overt CD. The frequent finding of TG2 deposits in the intestinal mucosa of patients with T1D is an interesting observation deserving further evaluation. PMID:25705622

  9. In vitro behavior of human intestinal mucosa. The influence of acetyl choline on ion transport.

    PubMed Central

    Isaacs, P E; Corbett, C L; Riley, A K; Hawker, P C; Turnberg, L A

    1976-01-01

    The possibility that the autonomic nervous system may influence the function of intestinal mucosa was investigated by assessing the effect of acetyl choline on ion transport in human intestine. Isolated pieces of stripped ileal mucosa were mounted in Perspex flux-chambers and bathed in isotonic glucose Ringer's solution. Acetyl choline caused a rise in mean potential difference (8.8-12.3 mV, P less than 0.002) and short circuit current (287.7-417.2 muA-cm-2, P less than 0.01) (n = 12), observable at a concentration of 0.01 mM and maximal at 0.1 mM. This effect was enhanced by neostigmine and blocked by atropine. Isotopic flux determinations revealed a change from a small mean net Cl absorption (58) to a net Cl secretion (-4.3mueq-cm-2-h-1P less than 0.001) due predominantly to an increase in the serosal to mucosal unidirectional flux of Cl (10.63-14.35 mueq-cm-2-h-1P less than 0.05) and a smaller reduction in the mucosal to serosal flux (11.22 to 10.02 mueq-cm-2-h-1P less than 0.05). Unidirectional and net Na transport was unaffected. A similar electrical and ion transport response was observed in a single study of two pieces of jejunal mucosa. In the absence of glucose net chloride secretion was produced and again an insignificant effect on net sodium transport was noted. Acetyl choline did not provoke a sustained effect on mucosal cyclic adenine nucleotide levels although a short-lived cyclic adenine nucleotide response was seen in some tissues 20-30 s after drug addition. These studies demonstrate that acetyl choline does influence human intestinal ion transport by stimulating chloride secretion and suggest a possible mechanism by which the parasympathetic nervous system could be concerned in the control of ion transport. Images PMID:182722

  10. Immunoregulatory function of human intestinal mucosa lymphoid cells: evidence for enhanced suppressor cell activity in inflammatory bowel disease.

    PubMed Central

    Fiocchi, C; Youngman, K R; Farmer, R G

    1983-01-01

    Abnormalities in immune regulation at the gut level may be relevant to the pathogenesis of inflammatory bowel disease, but little is known about the immunoregulatory properties of intestinal mononuclear cells. Therefore, we wished to see if lymphoid cells derived from the lamina propria of surgically resected bowel specimens have any modulatory effect upon the immune response of peripheral blood mononuclear cells from patients with ulcerative colitis or Crohn's disease. When autologous peripheral blood and intestinal lamina propria lymphoid cells were mixed at different ratios and cultured in the presence of phytohaemagglutinin, we were able to show that intestinal mononuclear cells had the capacity to modify the mitogenic response of the cultured cells. These intestinal immunoregulatory cells, when obtained from mucosa affected by inflammatory bowel disease, express a significantly enhanced suppressor cell activity as compared with those from non-inflamed control mucosa. Such suppressor cell activity varies with cell concentration and requires cell proliferation, but it is independent of anatomical origin (small vs large bowel), type of inflammatory bowel disease (ulcerative colitis vs Crohn's disease) or immunosuppressive therapy. These findings point to an important functional difference between inflammatory bowel disease and control intestinal mucosa mononuclear cells. The enhanced suppressor activity of lamina propria mononuclear cells may be associated with impairment of cell-mediated immunity at the gut level. This may be related to the pathogenesis of inflammatory bowel disease by leading to defective intestinal immune regulatory events, which may not be detectable at the peripheral level. PMID:6223862

  11. Sodium butyrate protects the intestinal barrier function in peritonitic mice

    PubMed Central

    Han, Xiaofeng; Song, Huimin; Wang, Yunlei; Sheng, Yingmo; Chen, Jie

    2015-01-01

    Objective: Peritonitis is a commonly seen disease with high morbidity and mortality. It is prevalently considered that the impaired intestinal barrier during peritonitis is the access point of gut microbes into the blood system, and acts as the engine of the following systemic infection. In our previous study, we found that Sodium Butyrate (NaB) was protective on intestinal barrier function. In this study, we aim to evaluate the effects of NaB on overwhelming infection animal models of peritonitis. Methods: Mouse cecal ligation and puncture (CLP) model was used to study the effects of NaB on the intestinal barrier. Experimental animals were fed of NaB by gavage. Post-CLP mortality, gut permeability and intestinal histological alterations were studied. Results: Gastrointestinal NaB pharmacodynamics profiles after medication were studied. Measurements of NaB concentration in chyme showed significantly higher intestinal concentration of NaB in the NaB treated group than that of the control group. CLP-induced mortality was significantly decreased by oral NaB treatments. Gut permeability was largely increased after CLP, which was partially prevented by NaB feeding. Histological study showed that intestinal, especially ileal injury following peritonitis was substantially alleviated by NaB treatments. Moreover, tissue regeneration was also prompted by NaB. Conclusion: NaB has a potential protective effect on intestinal barrier function in peritonitis. PMID:26064302

  12. Catecholamine-Directed Epithelial Cell Interactions with Bacteria in the Intestinal Mucosa.

    PubMed

    Brown, David R

    2016-01-01

    The catecholamines epinephrine, norepinephrine and dopamine are present in or have access to mucous membranes in the digestive, respiratory and genitourinary tracts, which represent the first sites of microbial colonization and infection within the body. Epithelial cells at mucosal surfaces establish and maintain symbiotic microbial communities and serve as the initial cellular point of contact for pathogens with the animal host. These cells express receptors that are capable of detecting and responding to microbe-associated molecular patterns and in most host species express G protein-coupled receptors for catecholamines. Although it is increasingly recognized that substances produced and released from nerves and endocrine cells can exert immuno-modulatory actions at mucosal sites, there have been few investigations focused specifically on the catecholaminergic modulation of interactions between the mucosal epithelium and bacteria or other mucosa-associated microorganisms. The potential biomedical importance of this phenomenon cannot be understated. For example, psychological stress or other conditions that activate the sympathetic nervous system to release epinephrine and norepinephrine may act to produce short-term changes in luminal and mucosal microbial communities or alter the course of a bacterial infection. This chapter will briefly review this developing and important research area of mucosa-microbe interactions with a focus on intestinal host defense. PMID:26589214

  13. Proteome analysis of the macroscopically affected colonic mucosa of Crohn’s disease and intestinal tuberculosis

    PubMed Central

    Rukmangadachar, Lokesh A.; Makharia, Govind K.; Mishra, Asha; Das, Prasenjit; Hariprasad, Gururao; Srinivasan, Alagiri; Gupta, Siddhartha Datta; Ahuja, Vineet; Acharya, Subrat K.

    2016-01-01

    Differentiation between intestinal tuberculosis (ITB) and Crohn’s disease (CD) is challenging in geographical regions where both these diseases are prevalent. There is a need of biomarkers for differentiation between these two disorders. Colonic biopsies from inflamed mucosa of treatment-naive patients with ITB, CD and controls were used for analysis. Protein extracted from biopsies was digested with trypsin and resulting peptides were labeled with iTRAQ reagents. The peptides were subsequently analyzed using LC-MS/MS for identification and quantification. Gene ontology annotation for proteins was analyzed in PANTHER. Validation experiments were done for six differentially expressed proteins using immunohistochemistry. 533 proteins were identified and 241 proteins were quantified from 5 sets of iTRAQ experiments. While 63 were differentially expressed in colonic mucosa of patients with CD and ITB in at least one set of iTRAQ experiment, 11 proteins were differentially expressed in more than one set of experiments. Six proteins used for validation using immunohistochemistry in a larger cohort of patients; none of them however was differentially expressed in patients with ITB and CD. There are differentially expressed proteins in tissue proteome of CD and ITB. Further experiments are required using a larger cohort of homogeneous tissue samples. PMID:26988818

  14. Increased phospholipase A2 and decreased lysophospholipase activity in the small intestinal mucosa after ischaemia and revascularisation.

    PubMed Central

    Otamiri, T; Franzén, L; Lindmark, D; Tagesson, C

    1987-01-01

    The influence of ischaemia and revascularisation on lipid peroxidation and phospholipid metabolism in the rat small intestinal mucosa was investigated. Two hours of total ischaemia followed by five minutes of revascularisation caused not only accumulation of malondialdehyde in the mucosa, but also increased activity of phospholipase A2, decreased activity of lysophospholipase, and increased ratio between lysophosphatidylcholine and phosphatidylcholine. Pretreatment with the phospholipase A2 inhibitor, quinacrine, prevented the increases in mucosal phospholipase A2 activity and lysophosphatidylcholine/phosphatidylcholine ratio after ischaemia and morphological examinations revealed that the mucosa was then also protected against ischaemic injury. These findings point to the possibility that activation of phospholipase A2 and accumulation of lysophosphoglycerides could be involved in mediating the mucosal injury caused by small intestinal ischaemia. Images Fig. 7 PMID:3428670

  15. Regulation of the Intestinal Barrier Function by Host Defense Peptides

    PubMed Central

    Robinson, Kelsy; Deng, Zhuo; Hou, Yongqing; Zhang, Guolong

    2015-01-01

    Intestinal barrier function is achieved primarily through regulating the synthesis of mucins and tight junction (TJ) proteins, which are critical for maintaining optimal gut health and animal performance. An aberrant expression of TJ proteins results in increased paracellular permeability, leading to intestinal and systemic disorders. As an essential component of innate immunity, host defense peptides (HDPs) play a critical role in mucosal defense. Besides broad-spectrum antimicrobial activities, HDPs promotes inflammation resolution, endotoxin neutralization, wound healing, and the development of adaptive immune response. Accumulating evidence has also indicated an emerging role of HDPs in barrier function and intestinal homeostasis. HDP deficiency in the intestinal tract is associated with barrier dysfunction and dysbiosis. Several HDPs were recently shown to enhance mucosal barrier function by directly inducing the expression of multiple mucins and TJ proteins. Consistently, dietary supplementation of HDPs often leads to an improvement in intestinal morphology, production performance, and feed efficiency in livestock animals. This review summarizes current advances on the regulation of epithelial integrity and homeostasis by HDPs. Major signaling pathways mediating HDP-induced mucin and TJ protein synthesis are also discussed. As an alternative strategy to antibiotics, supplementation of exogenous HDPs or modulation of endogenous HDP synthesis may have potential to improve intestinal barrier function and animal health and productivity. PMID:26664984

  16. Claudins, dietary milk proteins, and intestinal barrier regulation.

    PubMed

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. PMID:23282252

  17. FUT1 genetic variants impact protein glycosylation of porcine intestinal mucosa.

    PubMed

    Hesselager, Marianne O; Everest-Dass, Arun V; Thaysen-Andersen, Morten; Bendixen, Emøke; Packer, Nicolle H

    2016-06-01

    A massive use of antibiotics in industrial pig production is a major cause of the rapidly rising bacterial resistance to antibiotics. An enhanced understanding of infectious diseases and of host-microbe interactions has the potential to explore alternative ways to improve pig health and reduce the need for antibiotics. Host-microbe interactions depend on host-expressed glycans and microbe-carrying lectins. In this study, a G > A (nucleotide 307) missense mutation in the porcine α1,2fucosyltransferase 1 gene (FUT1), which has been reported to prevent infections by the common porcine enteric pathogen F18 fimbriated Escherichia coli, provided a unique opportunity to study glycan structures potentially involved in intestinal infections. N- and O-Linked glycans of the intestinal mucosa proteins were characterized in detail using LC-MS/MS. Relative abundances of all glycans were determined and compared between four heterozygous pigs (FUT1-307(A/G)) and four age-matched homozygous pigs from the same 2 litters carrying the missense FUT1 gene constellation (FUT1-307(A/A)). None of the characterized 48 N-linked glycans was found to be regulated by the FUT1 missense mutation, while 11 of the O-linked glycans showed significantly altered abundances between the two genotypes. The overall abundance of H-antigen carrying structures was decreased fivefold, while H-antigen precursors and sialylated structures were relatively more abundant in pigs with the FUT1 missense mutation. These results provide insight into the role of FUT1 on intestinal glycosylation, improve our understanding of how variation in FUT1 can modulate host-microbe interactions, and suggest that the FUT1 genetic variant may help to improve pig gut health. PMID:26858341

  18. Gastrointestinal absorption and metabolism of apple polyphenols ex vivo by the pig intestinal mucosa in the Ussing chamber.

    PubMed

    Deusser, Hannah; Rogoll, Dorothee; Scheppach, Wolfgang; Volk, Antje; Melcher, Ralph; Richling, Elke

    2013-03-01

    Polyphenols contained in food have various positive effects on human health. The absorption and metabolism of polyphenols in the intestinal tract needs to be studied to estimate these effects. The Ussing chamber technique was used to investigate the transport behavior of apple polyphenols through pig small intestinal mucosa, which served as a model for human gastrointestinal mucosa. The identities and concentrations of polyphenols and their metabolites in the half-chambers (luminal and basolateral) within an incubation period of 4 h were determined by HPLC-MS/MS and HPLC-DAD (DAD = diode-array detection). Flux values were also measured. It was found that 5-caffeoylquinic acid and caffeic acid were absorbed and translocated to the basolateral side (1.9 and 3.7%, respectively), but other compounds, including glycosides of phloretin and quercetin, were observed without translocation. A Ussing chamber utilizing pig small intestinal mucosa is a suitable model for assessing the effect of apple polyphenols on mucosal integrity and nutrition absorption across porcine mucosa. PMID:23229958

  19. Myenteric neurons and intestinal mucosa of diabetic rats after ascorbic acid supplementation

    PubMed Central

    de Freitas, Priscila; Natali, Maria Raquel Marçal; Pereira, Renata Virginia Fernandes; Neto, Marcilio Hubner Miranda; Zanoni, Jacqueline Nelisis

    2008-01-01

    AIM: To investigate the effect of ascorbic acid (AA) dietary supplementation on myenteric neurons and epithelial cell proliferation of the jejunum of adult rats with chronic diabetes mellitus. METHODS: Thirty rats at 90 d of age were divided into three groups: Non-diabetic, diabetic and diabetic treated with AA (DA) (1 g/L). After 120 d of treatment with AA the animals were killed. The myenteric neurons were stained for myosin-V and analyzed quantitatively in an area of 11.2 mm2/animal. We further measured the cellular area of 500 neurons per group. We also determined the metaphasic index (MI) of the jejunum mucosa layer of about 2500 cells in the intestinal crypts, as well as the dimensions of 30 villi and 30 crypts/animal. The data area was analyzed using the Olympus BX40 microscope. RESULTS: There was an increase of 14% in the neuronal density (792.6 ± 46.52 vs 680.6 ± 30.27) and 4.4% in the cellular area (303.4 ± 5.19 vs 291.1 ± 6.0) respectively of the diabetic group treated with AA when compared to control diabetic animals. There were no significant differences in MI parameters, villi height or crypt depths among the groups. CONCLUSION: Supplementation with AA in the diabetic animal promoted moderate neuroprotection. There was no observation of alteration of the cellular proliferation of the jejunum mucosa layer of rats with chronic diabetes mellitus with or without supplementation with AA. PMID:19030205

  20. Activation of Immune and Defense Responses in the Intestinal Mucosa by Outer Membrane Vesicles of Commensal and Probiotic Escherichia coli Strains

    PubMed Central

    José Fábrega, María; Aguilera, Laura; Giménez, Rosa; Varela, Encarna; Alexandra Cañas, María; Antolín, María; Badía, Josefa

    2016-01-01

    The influence of microbiota in human health is well-known. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although, there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not well-known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a secretion mechanism of microbial factors, which have an important role in intercellular communication. Here, we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 (EcN) or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i) peripheral blood mononuclear cells (PBMCs) as a model of intestinal barrier disruption, (ii) apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii) colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed. Whereas, both OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells. The activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier. PMID:27242727

  1. Activation of Immune and Defense Responses in the Intestinal Mucosa by Outer Membrane Vesicles of Commensal and Probiotic Escherichia coli Strains.

    PubMed

    José Fábrega, María; Aguilera, Laura; Giménez, Rosa; Varela, Encarna; Alexandra Cañas, María; Antolín, María; Badía, Josefa; Baldomà, Laura

    2016-01-01

    The influence of microbiota in human health is well-known. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although, there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not well-known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a secretion mechanism of microbial factors, which have an important role in intercellular communication. Here, we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 (EcN) or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i) peripheral blood mononuclear cells (PBMCs) as a model of intestinal barrier disruption, (ii) apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii) colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed. Whereas, both OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells. The activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier. PMID:27242727

  2. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease.

    PubMed

    Williams, Benjamin B; Tebbutt, Niall C; Buchert, Michael; Putoczki, Tracy L; Doggett, Karen; Bao, Shisan; Johnstone, Cameron N; Masson, Frederick; Hollande, Frederic; Burgess, Antony W; Scott, Andrew M; Ernst, Matthias; Heath, Joan K

    2015-08-01

    The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Glycoprotein A33 (GPA33) is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33(-/-) mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33(-/-) mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS) to injure the intestinal epithelium. Gpa33(-/-) mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM) followed by two cycles of DSS. In contrast, Gpa33(-/-) mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33(-/-) mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33(-/-) mice provide a valuable model to study the mechanisms linking intestinal

  3. Nonmuscle Myosin IIA Regulates Intestinal Epithelial Barrier in vivo and Plays a Protective Role During Experimental Colitis

    PubMed Central

    Naydenov, Nayden G.; Feygin, Alex; Wang, Dongdong; Kuemmerle, John F.; Harris, Gianni; Conti, Mary Anne; Adelstein, Robert S.; Ivanov, Andrei I.

    2016-01-01

    The actin cytoskeleton is a critical regulator of intestinal mucosal barrier permeability, and the integrity of epithelial adherens junctions (AJ) and tight junctions (TJ). Non muscle myosin II (NM II) is a key cytoskeletal motor that controls actin filament architecture and dynamics. While NM II has been implicated in the regulation of epithelial junctions in vitro, little is known about its roles in the intestinal mucosa in vivo. In this study, we generated a mouse model with an intestinal epithelial-specific knockout of NM IIA heavy chain (NM IIA cKO) and examined the structure and function of normal gut barrier, and the development of experimental colitis in these animals. Unchallenged NM IIA cKO mice showed increased intestinal permeability and altered expression/localization of several AJ/TJ proteins. They did not develop spontaneous colitis, but demonstrated signs of a low-scale mucosal inflammation manifested by prolapses, lymphoid aggregates, increased cytokine expression, and neutrophil infiltration in the gut. NM IIA cKO animals were characterized by a more severe disruption of the gut barrier and exaggerated mucosal injury during experimentally-induced colitis. Our study provides the first evidence that NM IIA plays important roles in establishing normal intestinal barrier, and protection from mucosal inflammation in vivo. PMID:27063635

  4. Chronic Kidney Disease Induced Intestinal Mucosal Barrier Damage Associated with Intestinal Oxidative Stress Injury

    PubMed Central

    Yu, Chao; Wang, Qiang; Zhou, Chunyu; Kang, Xin; Zhao, Shuang; Liu, Shuai; Fu, Huijun; Yu, Zhen; Peng, Ai

    2016-01-01

    Background. To investigate whether intestinal mucosal barrier was damaged or not in chronic kidney disease progression and the status of oxidative stress. Methods. Rats were randomized into two groups: a control group and a uremia group. The uremia rat model was induced by 5/6 kidney resection. In postoperative weeks (POW) 4, 6, 8, and 10, eight rats were randomly selected from each group to prepare samples for assessing systemic inflammation, intestinal mucosal barrier changes, and the status of intestinal oxidative stress. Results. The uremia group presented an increase trend over time in the serum tumor necrosis factor-alpha, interleukin-6 (IL-6) and IL-10, serum D-lactate and diamine oxidase, and intestinal permeability, and these biomarkers were significantly higher than those in control group in POW 8 and/or 10. Chiu's scores in uremia group were also increased over time, especially in POW 8 and 10. Furthermore, the intestinal malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were significantly higher in uremia group when compared with those in control group in POW 8 and/or 10. Conclusions. The advanced chronic kidney disease could induce intestinal mucosal barrier damage and further lead to systemic inflammation. The underlying mechanism may be associated with the intestinal oxidative stress injury. PMID:27493661

  5. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa.

    PubMed

    Vafaei, Seyed Yaser; Esmaeili, Motahareh; Amini, Mohsen; Atyabi, Fatemeh; Ostad, Seyed Naser; Dinarvand, Rassoul

    2016-06-25

    To develop a nanoparticulate drug carrier for targeting of the inflamed intestinal mucosa, amphiphilic hyaluronic acid (HA) conjugates were synthesized, which could form self-assembled nanoparticles (NPs) in aqueous solution and budesonide (BDS) was loaded into the HANPs. Their particle sizes were in the range of 177 to 293nm with negative surface charge. The model of inflammatory CACO-2 cells was utilized to investigate the therapeutic potential of budesonide loaded HA nanocarriers. The highest expression of CD44 receptors was found on inflamed Caco-2 cells, as determined by flow cytometry. FITC-labeled HANPs revealed greater uptake in inflamed CACO-2 cells compared to untreated CACO-2 and CD44-negative cell lines, NIH3T3. BDS loaded HANPs displayed almost no toxicity indicating HANPs are excellent biocompatible nano-carriers. BDS loaded HANPs demonstrated higher anti-inflammatory effect on IL-8 and TNF-α secretion in inflamed cell model compared to the same dose of free drug. These results revealed the promising potential of HA nanoparticles as a targeted drug delivery system for IBD treatment. PMID:27083829

  6. Effects of simulated weightlessness on the intestinal mucosal barrier of rats

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yang, Chun-min; Mao, Gao-ping; Liu, Qing-sen; Guo, Ming-zhou

    2011-07-01

    This study employed a rat tail-suspension model to investigate the effects of simulated weightlessness on the intestinal mucosal barrier. Twenty-four Wistar rats were randomly divided into control (CON), 14-day tail-suspension (SUS-14d), and 21-day tail-suspension (SUS-21d) groups ( n = 8 per group). Expression of occludin and zonula occludins-1 (ZO-1), proteins of the tight junction (TJ), in the intestinal mucosa was measured by immunohistochemical analysis, Western blotting, and mRNA fluorescent quantitation PCR. Plasma concentrations of diamine oxidase (DAO) and D-lactate were determined using an enzymatic spectrophotometric assay. Expression of occludin and ZO-1 was reduced in the SUS-14d and SUS-21d groups as compared to the CON group, with lowest expression observed in the SUS-21d group ( P < 0.01). Examination by transmission electron microscopy (TEM) of the jejunal epithelium revealed increased intercellular space, decreased TJ and desmosome densities, and destruction of microvilli in the SUS-14d and SUS-21d groups. Plasma DAO and D-lactate concentrations in the SUS-21d group were higher than those in SUS-14d group and significantly higher than those in the CON group ( P < 0.01). In all three groups, the expression of occludin and ZO-1 was found to correlate negatively with DAO ( P < 0.01) and D-lactate ( P < 0.01) concentrations. It is concluded that simulated weightless results in down-regulation of expression of TJ proteins in the rat intestinal mucosa. Simulated weightlessness is proposed to increase intestinal permeability through damage to the TJ.

  7. Heat stress: intestinal barrier and immune disruption in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic losses to the livestock industry due to heat stress (HS) are estimated to be greater than $2.0 billion annually. HS morbidity is linked to disruption of normal intestinal tract (IT) absorptive and barrier functions, is often manifested as decreased performance; however, extreme HS can have ...

  8. Moxibustion and Acupuncture Ameliorate Crohn's Disease by Regulating the Balance between Th17 and Treg Cells in the Intestinal Mucosa

    PubMed Central

    Zhao, Chen; Bao, Chunhui; Li, Jing; Zhu, Yifang; Wang, Siyao; Yang, Ling; Shi, Yin; Liu, Huirong; Dou, Chuanzi; Ding, Guanghong; Wang, Xiaomei; Wu, Huangan

    2015-01-01

    Previous studies have demonstrated that acupuncture is beneficial to patients with Crohn's disease (CD), but the mechanism underlying its therapeutic effects remains unclear. To identify the mechanism by which acupuncture treats CD, the balance between Th17 and Treg cells was assessed in CD patients. In this study, Ninety-two CD patients were randomly and equally assigned to a treatment group that were treated with herb-partitioned moxibustion and acupuncture or a control group with wheat bran-partitioned moxibustion and superficial acupuncture. The effect of these treatments on Th17 and Treg cells and their related molecular markers in the intestinal mucosa were detected before (week 0) and after (week 12) treatment. The results suggested that the ratio of Th17 and Treg cells was significantly decreased after treatment and that the levels of IL-17 and RORγt in the intestinal mucosa were obviously reduced, while the expression of FOXP3 was increased after treatment in both groups. In the treatment group, the expression of these molecules was more markedly regulated than the control group. In conclusion, moxibustion and acupuncture have been shown to regulate the ratio of Th17 and Treg cells in the intestinal mucosa of CD patients and restore the balance between these immune cell subsets. PMID:26347488

  9. Antibiotics conspicuously affect community profiles and richness, but not the density of bacterial cells associated with mucosa in the large and small intestines of mice.

    PubMed

    Puhl, Nathan J; Uwiera, Richard R E; Yanke, L Jay; Selinger, L Brent; Inglis, G Douglas

    2012-02-01

    The influence of three antibiotics (bacitracin, enrofloxacin, and neomycin sulfate) on the mucosa-associated enteric microbiota and the intestines of mice was examined. Antibiotics caused conspicuous enlargement of ceca and an increase in overall length of the intestine. However, there were no pathologic changes associated with increased cecal size or length of the intestine. Conspicuous reductions in the richness of mucosa-associated bacteria and changes to community profiles within the small (duodenum, proximal jejunum, middle jejunum, distal jejunum, and ileum) and large (cecum, ascending colon, and descending colon) intestine occurred in mice administered antibiotics. Communities in antibiotic-treated mice were dominated by a limited number of Clostridium-like (i.e. clostridial cluster XIVa) and Bacteroides species. The richness of mucosa-associated communities within the small and large intestine increased during the 14-day recovery period. However, community profiles within the large intestine did not return to baseline (i.e. relative to the control). Although antibiotic administration greatly reduced bacterial richness, densities of mucosa-associated bacteria were not reduced correspondingly. These data showed that the antibiotics, bacitracin, enrofloxacin, and neomycin sulfate, administered for 21 days to mice did not sterilize the intestine, but did impart a tremendous and prolonged impact on mucosa-associated bacterial communities throughout the small and large intestine. PMID:22185696

  10. Effects of ε-viniferin, a dehydrodimer of resveratrol, on transepithelial active ion transport and ion permeability in the rat small and large intestinal mucosa.

    PubMed

    Karaki, Shin-Ichiro; Ishikawa, Junji; Tomizawa, Yuka; Kuwahara, Atsukazu

    2016-05-01

    ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier

  11. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials.

    PubMed

    Susewind, Julia; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Collnot, Eva-Maria; Schneider-Daum, Nicole; Griffiths, Gareth Wyn; Lehr, Claus-Michael

    2016-01-01

    Oral exposure to nanomaterials is a current concern, asking for innovative biological test systems to assess their safety, especially also in conditions of inflammatory disorders. Aim of this study was to develop a 3D intestinal model, consisting of Caco-2 cells and two human immune cell lines, suitable to assess nanomaterial toxicity, in either healthy or diseased conditions. Human macrophages (THP-1) and human dendritic cells (MUTZ-3) were embedded in a collagen scaffold and seeded on the apical side of transwell inserts. Caco-2 cells were seeded on top of this layer, forming a 3D model of the intestinal mucosa. Toxicity of engineered nanoparticles (NM101 TiO2, NM300 Ag, Au) was evaluated in non-inflamed and inflamed co-cultures, and also compared to non-inflamed Caco-2 monocultures. Inflammation was elicited by IL-1β, and interactions with engineered NPs were addressed by different endpoints. The 3D co-culture showed well preserved ultrastructure and significant barrier properties. Ag NPs were found to be more toxic than TiO2 or Au NPs. But once inflamed with IL-1β, the co-cultures released higher amounts of IL-8 compared to Caco-2 monocultures. However, the cytotoxicity of Ag NPs was higher in Caco-2 monocultures than in 3D co-cultures. The naturally higher IL-8 production in the co-cultures was enhanced even further by the Ag NPs. This study shows that it is possible to mimic inflamed conditions in a 3D co-culture model of the intestinal mucosa. The fact that it is based on three easily available human cell lines makes this model valuable to study the safety of nanomaterials in the context of inflammation. PMID:25738417

  12. Effects of Soybean Agglutinin on Intestinal Barrier Permeability and Tight Junction Protein Expression in Weaned Piglets

    PubMed Central

    Zhao, Yuan; Qin, Guixin; Sun, Zewei; Che, Dongsheng; Bao, Nan; Zhang, Xiaodong

    2011-01-01

    This study was developed to provide further information on the intestinal barrier permeability and the tight junction protein expression in weaned piglets fed with different levels of soybean agglutinin (SBA). Twenty-five weaned crossbred barrows (Duroc × Landrace × Yorkshire) were selected and randomly allotted to five groups, each group with five replicates. The piglets in the control group were not fed with leguminous products. 0.05, 0.1, 0.15 and 0.2% SBA was added to the control diet to form four experimental diets, respectively. After the experimental period of 7 days (for each group), all the piglets were anesthetized with excess procaine and slaughtered. The d-lactic acid in plasma and the Ileal mucosa diamine oxidase (DAO) was analyzed to observe the change in the intestinal permeability. The tight junction proteins occludin and ZO-1 in the jejunum tissue distribution and relative expression were detected by immunohistochemistry and Western Blot. The results illustrated that a high dose of SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no significant affects. The contents of DAO, d-lactic acid, occludin or ZO-1, had a linear relationship with the SBA levels (0–0.2%) in diets. The high dose SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no affects. PMID:22272087

  13. Herbal prescription Chang'an II repairs intestinal mucosal barrier in rats with post-inflammation irritable bowel syndrome

    PubMed Central

    Wang, Feng-yun; Su, Min; Zheng, Yong-qiu; Wang, Xiao-ge; Kang, Nan; Chen, Ting; Zhu, En-lin; Bian, Zhao-xiang; Tang, Xu-dong

    2015-01-01

    Aim: The herbal prescription Chang'an II is derived from a classical TCM formula Tong-Xie-Yao-Fang for the treatment of liver-qi stagnation and spleen deficiency syndrome of irritable bowel syndrome (IBS). In this study we investigated the effects of Chang'an II on the intestinal mucosal immune barrier in a rat post-inflammation IBS (PI-IBS) model. Methods: A rat model of PI-IBS was established using a multi-stimulation paradigm including early postnatal sibling deprivation, bondage and intrarectal administration of TNBS. Four weeks after TNBS administration, the rats were treated with Chang'an II (2.85, 5.71 and 11.42 g·kg−1·d−1, ig) for 14 d. Intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores and fecal water content. Open field test and two-bottle sucrose intake test were used to evaluate the behavioral changes. CD4+ and CD8+ cells were counted and IL-1β and IL-4 levels were measured in intestinal mucosa. Transmission electron microscopy was used to evaluate ultrastructural changes of the intestinal mucosal barrier. Results: PI-IBS model rats showed significantly increased AWR reactivity and fecal water content, and decreased locomotor activity and sucrose intake. Chang'an II treatment not only reduced AWR reactivity and fecal water content, but also suppressed the anxiety and depressive behaviors. Ultrastructural study revealed that the gut mucosal barrier function was severely damaged in PI-IBS model rats, whereas Chang'an II treatment relieved intestinal mucosal inflammation and repaired the gut mucosal barrier. Furthermore, PI-IBS model rats showed a significantly reduced CD4+/CD8+ cell ratio in lamina propria and submucosa, and increased IL-1β and reduced IL-4 expression in intestinal mucosa, whereas Chang'an II treatment reversed PI-IBS-induced changes in CD4+/CD8+ cell ratio and expression of IL-1β and IL-4. Conclusion: Chang'an II treatment protects the intestinal mucosa against PI-IBS through anti

  14. Mechanism of intestinal mucosal barrier dysfunction in a rat model of chronic obstructive pulmonary disease: An observational study

    PubMed Central

    Xin, Xiaofeng; Dai, Wei; Wu, Jie; Fang, Liping; Zhao, Ming; Zhang, Pengpeng; Chen, Min

    2016-01-01

    The aim of the present study was to investigate intestinal mucosal barrier dysfunction in a rat model of chronic obstructive pulmonary disease (COPD). Male Sprague Dawley rats (n=40) were evenly randomized into control and COPD groups and the COPD model was established by regulated exposure to cigarette smoke for 6 months. Histopathological changes of the lung and intestinal tissues were detected by hematoxylin and eosin staining. Expression of the tight junction proteins occludin and zona occludens-1 (ZO-1) in the intestinal tissues were analyzed by western blotting, serum diamine oxidase (DAO) activity was detected by spectrophotometry, the urinary lactulose to mannitol ratio (L/M) was evaluated by high performance liquid chromatography, and intestinal tissue secretion of tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-8 were detected by ELISA. Lung histopathology revealed thinned alveolar walls, ruptured alveolar septa, enlarged and deformed alveoli, and the formation of bullae and emphysema due to alveolar fusion in the COPD group, while intestinal histopathology indicated clearly swollen intestines with darkened and gray mucosa, neutrophil infiltration of the intestinal mucosal and regional epithelial shedding. The occludin and ZO-1 expression levels were significantly lower in the COPD group compared with those in the corresponding control group (P<0.05), while the urinary L/M ratio was significantly higher (P<0.05). Furthermore, the serum DAO activity and secretion of TNF-α, IFN-γ and IL-8 in the intestinal tissues were significantly higher in the COPD group than in the control group (each P<0.05). Dysfunctional and structural changes were observed in the intestinal mucosal barrier in COPD model rats, which may be associated with the increased intestinal inflammatory responses. PMID:27588054

  15. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa.

    PubMed

    Bron, Peter A; van Baarlen, Peter; Kleerebezem, Michiel

    2012-01-01

    Probiotic bacteria can modulate immune responses in the host gastrointestinal tract to promote health. The genomics era has provided novel opportunities for the discovery and characterization of bacterial probiotic effector molecules that elicit specific responses in the intestinal system. Furthermore, nutrigenomic analyses of the response to probiotics have unravelled the signalling and immune response pathways which are modulated by probiotic bacteria. Together, these genomic approaches and nutrigenomic analyses have identified several bacterial factors that are involved in modulation of the immune system and the mucosal barrier, and have revealed that a molecular 'bandwidth of human health' could represent a key determinant in an individual's physiological responsiveness to probiotics. These approaches may lead to improved stratification of consumers and to subpopulation-level probiotic supplementation to maintain or improve health, or to reduce the risk of disease. PMID:22101918

  16. Protective Effect of Huoxiang Zhengqi Oral Liquid on Intestinal Mucosal Mechanical Barrier of Rats with Postinfectious Irritable Bowel Syndrome Induced by Acetic Acid

    PubMed Central

    Liu, Yao; Liu, Wei; Peng, Qiu-Xian; Peng, Jiang-Li; Yu, Lin-Zhong; Hu, Jian-Lan

    2014-01-01

    In this study, a rat model with acetic acid-induced PI-IBS was used to study the role of HXZQ oral liquid in repairing the colonic epithelial barrier and reducing intestinal permeability. Pathomorphism of colonic tissue, epithelial ultrastructure, DAO activity in serum, and the protein expression of ZO-1 and occludin were examined to investigate protective effect mechanisms of HXZQ on intestinal mucosa barrier and then present experimental support for its use for prevention and cure of PI-IBS. PMID:25254052

  17. Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery.

    PubMed

    Russo, Ilaria; Luciani, Alessandro; De Cicco, Paola; Troncone, Edoardo; Ciacci, Carolina

    2012-01-01

    Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB), which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia coli (EC-LPS) in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2) mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa. PMID:22412931

  18. Nano-hydroxyapatite–thermally denatured small intestine sub-mucosa composites for entheses applications

    PubMed Central

    Perla, Venu; Webster, Thomas J

    2006-01-01

    The objective of the present in vitro study was to estimate the adhesion strength of nanometer crystalline hydroxyapatite (HA)–small intestine sub-mucosa (SIS) composites on model implant surfaces. Techniques of thermal denaturation (60°C, 20 min) of SIS were used to enhance the adhesion strength of entheses materials to underlying implants. Specifically, results indicated that the adhesion strength of thermally denatured SIS was 2–3 times higher than that for normal unheated SIS. In addition, aqua-sonicated, hydrothermally treated nano-HA dispersions enhanced the adhesion strength of SIS on implant surfaces. Importantly, results of the present study demonstrated that human skeletal muscle cell (hSkMC) numbers were not affected by thermally denaturing SIS in nano-HA composite coatings; however, they increased on aqua-sonicated nano-HA/SIS composites compared with SIS alone. Interestingly, thermally denatured SIS that contained aqua-sonicated, hydrothermally treated nano-HA decreased human osteoblasts (hOBs) numbers compared with respective unheated composites; all other composites when thermally denatured did not influence hOB numbers. Results also showed that the number of hOBs increased on nano-HA/SIS composites compared with SIS composites alone. Human mesenchymal stem cell (hMSC) numbers were not affected by the presence of nano-HA in SIS composites. For these reasons, the collective results of this in vitro study demonstrated a technique to increase the coating strength of entheses coatings on implant surfaces (using thermally denatured SIS and aqua-sonicated, hydrothermally prepared nano-HA) while, at the same time, supporting cell functions important for entheses regeneration. PMID:17717975

  19. The hog intestinal mucosa acylase I: subcellular localization, isolation, kinetic studies and biological function.

    PubMed

    Giardina, T; Biagini, A; Dalle Ore, F; Ferre, E; Reynier, M; Puigserver, A

    1997-05-01

    The soluble acylase I (N-acylamino acid amidohydrolase, EC 3.5.1.14) from hog intestinal mucosa was 11,000-fold purified for the first time using a new four-step procedure involving an immunoaffinity chromatography. The resulting protein, which had an isoelectric point of 5.2 and a M(r) of 90,000 was composed of two apparently identical N-acylated polypeptide chains. Its amino acid composition was comparable to that of hog kidney acylase I. The enzyme had a pH optimum at 8.0 and required Zn2+ or Co2+. The optimal temperature for the acylase reaction was 40 degrees C and the activation energy of thermodenaturation was estimated at 260 kJ mol-1. The enzyme was strongly inhibited when preincubated with chelating agents, by diethyl pyrocarbonate under histidine-modifying conditions as well as by sulfhydryl compounds. The reaction of the purified enzyme with the synthetic substrate furylacryloyl-L-methionine was partly characterized as follows: Km = 0.22 +/- 0.03 mM, kcat = 128.0 +/- 17.8 s-1 and kcat/Km = 5.8 +/- 1.6 x 10(5) M-1 s-1. The L-stereoisomer of methionine competitively inhibited the enzyme reaction with a Ki of 3.4 +/- 0.2 mM. It is suggested that acylase I might not only be involved in the catabolism of intracellular N-acylated protein but also be responsible for the biological utilization of N-acylated food proteins. PMID:9258435

  20. Epigenetic control of intestinal barrier function and inflammation in zebrafish

    PubMed Central

    Marjoram, Lindsay; Alvers, Ashley; Deerhake, M. Elizabeth; Bagwell, Jennifer; Mankiewicz, Jamie; Cocchiaro, Jordan L.; Beerman, Rebecca W.; Willer, Jason; Sumigray, Kaelyn D.; Katsanis, Nicholas; Rawls, John F.; Goll, Mary G.; Bagnat, Michel

    2015-01-01

    The intestinal epithelium forms a barrier protecting the organism from microbes and other proinflammatory stimuli. The integrity of this barrier and the proper response to infection requires precise regulation of powerful immune homing signals such as tumor necrosis factor (TNF). Dysregulation of TNF leads to inflammatory bowel diseases (IBD), but the mechanism controlling the expression of this potent cytokine and the events that trigger the onset of chronic inflammation are unknown. Here, we show that loss of function of the epigenetic regulator ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1) in zebrafish leads to a reduction in tnfa promoter methylation and the induction of tnfa expression in intestinal epithelial cells (IECs). The increase in IEC tnfa levels is microbe-dependent and results in IEC shedding and apoptosis, immune cell recruitment, and barrier dysfunction, consistent with chronic inflammation. Importantly, tnfa knockdown in uhrf1 mutants restores IEC morphology, reduces cell shedding, and improves barrier function. We propose that loss of epigenetic repression and TNF induction in the intestinal epithelium can lead to IBD onset. PMID:25730872

  1. Epigenetic control of intestinal barrier function and inflammation in zebrafish.

    PubMed

    Marjoram, Lindsay; Alvers, Ashley; Deerhake, M Elizabeth; Bagwell, Jennifer; Mankiewicz, Jamie; Cocchiaro, Jordan L; Beerman, Rebecca W; Willer, Jason; Sumigray, Kaelyn D; Katsanis, Nicholas; Tobin, David M; Rawls, John F; Goll, Mary G; Bagnat, Michel

    2015-03-01

    The intestinal epithelium forms a barrier protecting the organism from microbes and other proinflammatory stimuli. The integrity of this barrier and the proper response to infection requires precise regulation of powerful immune homing signals such as tumor necrosis factor (TNF). Dysregulation of TNF leads to inflammatory bowel diseases (IBD), but the mechanism controlling the expression of this potent cytokine and the events that trigger the onset of chronic inflammation are unknown. Here, we show that loss of function of the epigenetic regulator ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1) in zebrafish leads to a reduction in tnfa promoter methylation and the induction of tnfa expression in intestinal epithelial cells (IECs). The increase in IEC tnfa levels is microbe-dependent and results in IEC shedding and apoptosis, immune cell recruitment, and barrier dysfunction, consistent with chronic inflammation. Importantly, tnfa knockdown in uhrf1 mutants restores IEC morphology, reduces cell shedding, and improves barrier function. We propose that loss of epigenetic repression and TNF induction in the intestinal epithelium can lead to IBD onset. PMID:25730872

  2. Enteral feeding and its impact on the gut immune system and intestinal mucosal barrier.

    PubMed

    Szefel, Jarosław; Kruszewski, Wiesław J; Buczek, Tomasz

    2015-01-01

    Enteral feeding is the preferred method of nutritional therapy. Mucosal lack of contact with nutrients leads do lymphoid tissue atrophy, immune system functional decline, and intensification in bacterial translocation. Currently, it is assumed that microbiome is one of the body organs that has a significant impact on health. The composition of microbiome is not affected by age, sex, or place of residence, although it changes rapidly after diet modification. The composition of the microbiome is determined by enterotype, which is specific for each organism. It has a significant impact on the risk of diabetes, cancer, atherosclerosis, and other diseases. This review gathers data on interaction between gut-associated lymphoid tissue, mucosa-associated lymphoid tissue, microbiome, and the intestinal mucosal barrier. Usually, the information on the aforementioned is scattered in specialist-subject magazines such as gastroenterology, microbiology, genetics, biochemistry, and others. PMID:26557936

  3. Enteral feeding and its impact on the gut immune system and intestinal mucosal barrier

    PubMed Central

    Kruszewski, Wiesław J.; Buczek, Tomasz

    2015-01-01

    Enteral feeding is the preferred method of nutritional therapy. Mucosal lack of contact with nutrients leads do lymphoid tissue atrophy, immune system functional decline, and intensification in bacterial translocation. Currently, it is assumed that microbiome is one of the body organs that has a significant impact on health. The composition of microbiome is not affected by age, sex, or place of residence, although it changes rapidly after diet modification. The composition of the microbiome is determined by enterotype, which is specific for each organism. It has a significant impact on the risk of diabetes, cancer, atherosclerosis, and other diseases. This review gathers data on interaction between gut-associated lymphoid tissue, mucosa-associated lymphoid tissue, microbiome, and the intestinal mucosal barrier. Usually, the information on the aforementioned is scattered in specialist-subject magazines such as gastroenterology, microbiology, genetics, biochemistry, and others. PMID:26557936

  4. Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics.

    PubMed

    Pastorelli, Luca; De Salvo, Carlo; Mercado, Joseph R; Vecchi, Maurizio; Pizarro, Theresa T

    2013-01-01

    The gut mucosa is constantly challenged by a bombardment of foreign antigens and environmental microorganisms. As such, the precise regulation of the intestinal barrier allows the maintenance of mucosal immune homeostasis and prevents the onset of uncontrolled inflammation. In support of this concept, emerging evidence points to defects in components of the epithelial barrier as etiologic factors in the pathogenesis of inflammatory bowel diseases (IBDs). In fact, the integrity of the intestinal barrier relies on different elements, including robust innate immune responses, epithelial paracellular permeability, epithelial cell integrity, as well as the production of mucus. The purpose of this review is to systematically evaluate how alterations in the aforementioned epithelial components can lead to the disruption of intestinal immune homeostasis, and subsequent inflammation. In this regard, the wealth of data from mouse models of intestinal inflammation and human genetics are pivotal in understanding pathogenic pathways, for example, that are initiated from the specific loss of function of a single protein leading to the onset of intestinal disease. On the other hand, several recently proposed therapeutic approaches to treat human IBD are targeted at enhancing different elements of gut barrier function, further supporting a primary role of the epithelium in the pathogenesis of chronic intestinal inflammation and emphasizing the importance of maintaining a healthy and effective intestinal barrier. PMID:24062746

  5. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding

    PubMed Central

    Marchiando, Amanda M.; Shen, Le; Graham, W. Vallen; Edelblum, Karen L.; Duckworth, Carrie A.; Guan, Yanfang; Montrose, Marshall H.; Turner, Jerrold R.; Watson, Alastair J.M.

    2011-01-01

    BACKGROUND & AIMS Tumor necrosis factor (TNF) increases intestinal epithelial cell shedding and apoptosis, potentially challenging the barrier between the gastrointestinal lumen and internal tissues. We investigated the mechanism of tight junction remodeling and barrier maintenance, as well as the roles of cytoskeletal regulatory molecules during TNF-induced shedding. METHODS We studied wild-type and transgenic mice that express the fluorescent-tagged proteins enhanced green fluorescent protein–occludin or monomeric red fluorescent protein1–ZO-1. After injection of high doses of TNF (7.5µg, i.p.), laparotomies were performed and segments of small intestine were opened to visualize the mucosa by video confocal microscopy. Pharmacologic inhibitors and knockout mice were used to determine the roles of caspase activation, actomyosin, and microtubule remodeling and membrane trafficking in epithelial shedding. RESULTS Changes detected included redistribution of the tight junction proteins ZO-1 and occluding to lateral membranes of shedding cells. These proteins ultimately formed a funnel around the shedding cell that defined the site of barrier preservation. Claudins, E-cadherin, F-actin, myosin II, Rho-associated kinase (ROCK), and myosin light chain kinase (MLCK) were also recruited to lateral membranes. Caspase activity, myosin motor activity, and microtubules were required to initiate shedding, whereas completion of the process required microfilament remodeling and ROCK, MLCK, and dynamin II activities. CONCLUSIONS Maintenance of the epithelial barrier during TNF-induced cell shedding is a complex process that involves integration of microtubules, microfilaments, and membrane traffic to remove apoptotic cells. This process is accompanied by redistribution of apical junctional complex proteins to form intercellular barriers between lateral membranes and maintain mucosal function. PMID:21237166

  6. The feed contaminant deoxynivalenol affects the intestinal barrier permeability through inhibition of protein synthesis.

    PubMed

    Awad, Wageha A; Zentek, Jürgen

    2015-06-01

    Deoxynivalenol (DON) has critical health effects if the contaminated grains consumed by humans or animals. DON can have negative effects on the active transport of glucose and amino acids in the small intestine of chickens. As the underlying mechanisms are not fully elucidated, the present study was performed to delineate more precisely the effects of cycloheximide (protein synthesis inhibitor, CHX) and DON on the intestinal absorption of nutrients. This was to confirm whether DON effects on nutrient absorption are due to an inhibition of protein synthesis. Changes in ion transport and barrier function were assessed by short-circuit current (Isc) and transepithelial ion conductance (Gt) in Ussing chambers. Addition of D-glucose or L-glutamine to the luminal side of the isolated mucosa of the jejunum increased (P < 0.001) the Isc compared with basal conditions in the control tissues. However, the Isc was not increased by the glucose or glutamine addition after pre-incubation of tissues with DON or CHX. Furthermore, both DON and CHX reduced Gt, indicating that the intestinal barrier is compromised and consequently induced a greater impairment of the barrier function. The remarkable similarity between the activity of CHX and DON on nutrient uptake is consistent with their common ability to inhibit protein synthesis. It can be concluded that the decreases in transport activity by CHX was evident in this study using the chicken as experimental model. Similarly, DON has negative effects on the active transport of some nutrients, and these can be explained by its influence on protein synthesis. PMID:24888376

  7. Enteropathogenic E. coli: breaking the intestinal tight junction barrier

    PubMed Central

    Singh, Anand Prakash; Aijaz, Saima

    2016-01-01

    Enteropathogenic E. coli (EPEC) causes acute intestinal infections in infants in the developing world. Infection typically spreads through contaminated food and water and leads to severe, watery diarrhea. EPEC attaches to the intestinal epithelial cells and directly injects virulence factors which modulate multiple signaling pathways leading to host cell dysfunction. However, the molecular mechanisms that regulate the onset of diarrhea are poorly defined. A major target of EPEC is the host cell tight junction complex which acts as a barrier and regulates the passage of water and solutes through the paracellular space. In this review, we focus on the EPEC effectors that target the epithelial barrier, alter its functions and contribute to leakage through the tight junctions. PMID:27239268

  8. Vasoactive Intestinal Polypeptide Promotes Intestinal Barrier Homeostasis and Protection Against Colitis in Mice

    PubMed Central

    Wu, Xiujuan; Conlin, Victoria S.; Morampudi, Vijay; Ryz, Natasha R.; Nasser, Yasmin; Bhinder, Ganive; Bergstrom, Kirk S.; Yu, Hong B.; Waterhouse, Chris C. M.; Buchan, Allison M. J.; Popescu, Oana E.; Gibson, William T.; Waschek, James A.; Vallance, Bruce A.; Jacobson, Kevan

    2015-01-01

    Inflammatory bowel disease is a chronic gastrointestinal inflammatory disorder associated with changes in neuropeptide expression and function, including vasoactive intestinal peptide (VIP). VIP regulates intestinal vasomotor and secretomotor function and motility; however, VIP’s role in development and maintenance of colonic epithelial barrier homeostasis is unclear. Using VIP deficient (VIPKO) mice, we investigated VIP’s role in epithelial barrier homeostasis, and susceptibility to colitis. Colonic crypt morphology and epithelial barrier homeostasis were assessed in wildtype (WT) and VIPKO mice, at baseline. Colitic responses were evaluated following dinitrobenzene sulfonic acid (DNBS) or dextran-sodium sulfate (DSS) exposure. Mice were also treated with exogenous VIP. At baseline, VIPKO mice exhibited distorted colonic crypts, defects in epithelial cell proliferation and migration, increased apoptosis, and altered permeability. VIPKO mice also displayed reduced goblet cell numbers, and reduced expression of secreted goblet cell factors mucin 2 and trefoil factor 3. These changes were associated with reduced expression of caudal type homeobox 2 (Cdx2), a master regulator of intestinal function and homeostasis. DNBS and DSS-induced colitis were more severe in VIPKO than WT mice. VIP treatment rescued the phenotype, protecting VIPKO mice against DSS colitis, with results comparable to WT mice. In conclusion, VIP plays a crucial role in the development and maintenance of colonic epithelial barrier integrity under physiological conditions and promotes epithelial repair and homeostasis during colitis. PMID:25932952

  9. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus

    PubMed Central

    Mao, Xiangbing; Gu, Changsong; Hu, Haiyan; Tang, Jun; Chen, Daiwen; Yu, Bing; He, Jun; Yu, Jie; Luo, Junqiu; Tian, Gang

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function

  10. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus.

    PubMed

    Mao, Xiangbing; Gu, Changsong; Hu, Haiyan; Tang, Jun; Chen, Daiwen; Yu, Bing; He, Jun; Yu, Jie; Luo, Junqiu; Tian, Gang

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function

  11. Effect of wild-type Shigella species and attenuated Shigella vaccine candidates on small intestinal barrier function, antigen trafficking, and cytokine release.

    PubMed

    Fiorentino, Maria; Levine, Myron M; Sztein, Marcelo B; Fasano, Alessio

    2014-01-01

    Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to

  12. Enteral Nutrient Deprivation in Patients Leads to a Loss of Intestinal Epithelial Barrier Function

    PubMed Central

    Ralls, Matthew W.; Demehri, Farokh R.; Feng, Yongjia; Woods Ignatoski, Kathleen M.; Teitelbaum, Daniel H.

    2014-01-01

    Objective To investigate the effect of nutrient withdrawal on human intestinal epithelial barrier function (EBF). We hypothesized that unfed mucosa results in decreased EBF. This was tested in a series of surgical small intestinal resection specimens. Design Small bowel specifically excluding inflamed tissue, was obtained from pediatric patients (aged 2 days to 19 years) undergoing intestinal resection. EBF was assessed in Ussing chambers for transepithelial resistance (TER) and passage of FITC-Dextran (4kD). Tight junction and adherence junction proteins were imaged with immunofluorescence staining. Expression of Toll like receptors (TLR) and inflammatory cytokines were measured in loop ileostomy takedowns in a second group of patients. Results Because TER increased with patient age (p<0.01), results were stratified into infant versus teenage groups. Fed bowel had significantly greater TER versus unfed bowel (p<0.05) in both age populations. Loss of EBF was also observed by an increase in FITC-Dextran permeation in nutrient-deprived segments (p<0.05). Immunofluorescence staining showed marked declines in intensity of ZO-1, occludin, Ecadherin and Claudin-4 in unfed intestinal segments, as well as a loss of structural formation of tight junctions. Analysis of cytokine and TLR expression showed significant increases in TNF-α and TLR4 in unfed segments of bowel compared to fed segments from the same individual. Conclusion EBF declined in unfed segments of human small bowel. This work represents the first direct examination of EBF from small bowel derived from nutrient-deprived humans and may explain the increased infectious complications seen in patients not receiving enteral feeds. PMID:25704423

  13. Inactivation of corticosteroids in intestinal mucosa by 11 beta-hydroxysteroid: NADP oxidoreductase (EC 1. 1. 1. 146)

    SciTech Connect

    Burton, A.F.; Anderson, F.H.

    1983-10-01

    Activity of the enzyme 11 beta-hydroxysteroid:NADP oxidoreductase (EC 1.1.1.146) in human intestinal mucosa was determined by incubating scraped mucosa with /sup 3/H-cortisone and /sup 14/C-cortisol; these steroids were then extracted, separated chromatographically, and the radioactivity assayed to determine simultaneously both reductase and dehydrogenase activities. This was the only significant metabolic alteration which the substrate underwent. Only two cases had slight (5 and 13%) reductase activity. In 35 patients, 16 male and 19 female, including seven cases of Crohn's disease, three ulcerative colitis, five diverticulitis, two undergoing surgery for repair of injuries and 18 for carcinoma of colon or rectum, cortisol was converted to cortisone in 15 min with a wide range of values distributed uniformly up to 85% dehydrogenation, with a mean of 42%. When tissue homogenates were fortified with coenzymes, excess NADPH lowered dehydrogenase activity 81%; excess NADP increased dehydrogenase activity 2-fold in three cases. It is possible that a value is characteristic of an individual but perhaps more likely enzyme activity varies with metabolic events involving changes in the coenzyme levels in mucosa, and a random sampling might be expected to yield such a distribution of values. In any event, where activity is high most of the cortisol is inactivated within minutes. It is suggested that synthetic corticoids which escape such metabolic alteration might, except during pregnancy, prove superior in the treatment of conditions such as inflammatory bowel disease.

  14. Anemonin improves intestinal barrier restoration and influences TGF-β1 and EGFR signaling pathways in LPS-challenged piglets.

    PubMed

    Xiao, Kan; Cao, Shu Ting; Jiao, Le Fei; Lin, Fang Hui; Wang, Li; Hu, Cai Hong

    2016-07-01

    The present study was aimed at investigating whether dietary anemonin could alleviate LPS-induced intestinal injury and improve intestinal barrier restoration in a piglet model. Eighteen 35-d-old pigs were randomly assigned to three treatment groups (control, LPS and LPS+anemonin). The control and LPS groups were fed a basal diet, and the LPS + anemonin group received the basal diet + 100 mg anemonin/kg diet. After 21 d of feeding, the LPS- and anemonin-treated piglets received i.p. administration of LPS; the control group received saline. At 4 h post-injection, jejunum samples were collected. The results showed that supplemental anemonin increased villus height and transepithelial electrical resistance, and decreased crypt depth and paracellular flux of dextran (4 kDa) compared with the LPS group. Moreover, anemonin increased tight junction claudin-1, occludin and ZO-1 expression in the jejunal mucosa, compared with LPS group. Anemonin also decreased TNF-α, IL-6, IL-8 and IL-1β mRNA expression. Supplementation with anemonin also increased TGF-β1 mRNA and protein expression, Smad4 and Smad7 mRNA expressions, and epidermal growth factor and epidermal growth factor receptor (EGFR) mRNA expression in the jejunal mucosa. These findings suggest that dietary anemonin attenuates LPS-induced intestinal injury by improving mucosa restoration, alleviating intestinal inflammation and influencing TGF-β1 canonical Smads and EGFR signaling pathways. PMID:27189428

  15. Intestinal barrier function in neonatal foals: options for improvement.

    PubMed

    Vendrig, Johannes C; Fink-Gremmels, Johanna

    2012-07-01

    Gastrointestinal defence in the new-born is limited in comparison to adults, due to an immature epithelial barrier function and deficits in both innate and adaptive immune responses. Consequently, neonates (including foals) are at increased risk of disturbance to mucosal homeostasis during initial intestinal colonisation that may lead to excessive inflammation and bacterial translocation into the bloodstream, resulting in septicaemia. Bacterial recognition by Pattern Recognition Receptors (PRRs) and their downstream regulation of cytokine release have been shown to be pivotal for gastrointestinal mucosal homeostasis and the development of a functional intestinal barrier. Evidence suggests that selective PRR agonists limit the inflammatory responses and improve epithelial barrier function. Milk, and in particular colostrum, contain a broad array of oligosaccharides which seem to act as PRR agonists. This class of compounds forms a source for new dietary formulas that may orchestrate gut colonisation by the commensal flora in the early phase of life and so reduce the risks of inflammation and pathogen invasion. PMID:22377327

  16. A new role for reticulon-4B/NOGO-B in the intestinal epithelial barrier function and inflammatory bowel disease.

    PubMed

    Rodríguez-Feo, Juan Antonio; Puerto, Marta; Fernández-Mena, Carolina; Verdejo, Cristina; Lara, José Manuel; Díaz-Sánchez, María; Álvarez, Emilio; Vaquero, Javier; Marín-Jiménez, Ignacio; Bañares, Rafael; Menchén, Luis

    2015-06-15

    Inflammatory bowel disease (IBD) is characterized by an impaired intestinal barrier function. We aimed to investigate the role of reticulon-4B (RTN-4B/NOGO-B), a structural protein of the endoplasmic reticulum, in intestinal barrier function and IBD. We used immunohistochemistry, confocal microscopy, real-time PCR, and Western blotting to study tissue distribution and expression levels of RTN-4B/NOGO-B in control and IBD samples from mouse and humans. We also targeted RTN-4B/NOGO-B using siRNAs in cultured human intestinal epithelial cell (IECs). Epithelial barrier permeability was assessed by transepithelial electrical resistance (TEER) measurement. RTN-4B/NOGO-B is expressed in the intestine mainly by IECs. Confocal microscopy revealed a colocalization of RTN-4B, E-cadherin, and polymerized actin fibers in tissue and cultured IECs. RTN-4B mRNA and protein expression were lower in the colon of IL-10(-/-) compared with wild-type mice. Colocalization of RTN-4B/E-cadherin/actin was reduced in the colon of IL-10(-/-) mice. Analysis of endoscopic biopsies from IBD patients showed a significant reduction of RTN-4B/NOGO-B expression in inflamed mucosa compared with control. Treatment of IECs with H2O2 reduced TEER values and triggered phosphorylation of RTN-4B in serine 107 residues as well as downregulation of RTN-4B expression. Acute RTN-4B/NOGO-B knockdown by siRNAs resulted in a decreased TEER values and reduction of E-cadherin and α-catenin expression and in the amount of F-actin-rich filaments in IECs. Epithelial RTN-4B/NOGO-B was downregulated in human and experimental IBD. RTN-4B participates in the intestinal epithelial barrier function, most likely via its involvement in E-cadherin, α-catenin expression, and actin cytoskeleton organization at sites of cell-to-cell contacts. PMID:25907690

  17. Electrophysiology of flounder intestinal mucosa. I. Conductance properties of the cellular and paracellular pathways.

    PubMed

    Halm, D R; Krasny, E J; Frizzell, R A

    1985-06-01

    We evaluated the conductances for ion flow across the cellular and paracellular pathways of flounder intestine using microelectrode techniques and ion-replacement studies. Apical membrane conductance properties are dominated by the presence of Ba-sensitive K channels. An elevated mucosal solution K concentration, [K]m, depolarized the apical membrane potential (psi a) and, at [K]m less than 40 mM, the K dependence of psi a was abolished by 1-2 mM mucosal Ba. The basolateral membrane displayed Cl conductance behavior, as evidenced by depolarization of the basolateral membrane potential (psi b) with reduced serosal Cl concentrations, [Cl]s. psi b was unaffected by changes in [K]s or [Na]s. From the effect of mucosal Ba on transepithelial K selectivity, we estimated that paracellular conductance (Gp) normally accounts for 96% of transepithelial conductance (Gt). The high Gp attenuates the contribution of the cellular pathway to psi t while permitting the apical K and basolateral Cl conductances to influence the electrical potential differences across both membranes. Thus, psi a and psi b (approximately 60 mV, inside negative) lie between the equilibrium potentials for K (76 mV) and Cl (40 mV), thereby establishing driving forces for K secretion across the apical membrane and Cl absorption across the basolateral membrane. Equivalent circuit analysis suggests that apical conductance (Ga approximately equal to 5 mS/cm2) is sufficient to account for the observed rate of K secretion, but that basolateral conductance (Gb approximately equal to 1.5 mS/cm2) would account for only 50% of net Cl absorption. This, together with our failure to detect a basolateral K conductance, suggests that Cl absorption across this barrier involves KCl co-transport. PMID:2410537

  18. The role of intestinal epithelial barrier function in the development of NEC

    PubMed Central

    Halpern, Melissa D; Denning, Patricia W

    2015-01-01

    The intestinal epithelial barrier plays an important role in maintaining host health. Breakdown of intestinal barrier function is known to play a role in many diseases such as infectious enteritis, idiopathic inflammatory bowel disease, and neonatal inflammatory bowel diseases. Recently, increasing research has demonstrated the importance of understanding how intestinal epithelial barrier function develops in the premature neonate in order to develop strategies to promote its maturation. Optimizing intestinal barrier function is thought to be key to preventing neonatal inflammatory bowel diseases such as necrotizing enterocolitis. In this review, we will first summarize the key components of the intestinal epithelial barrier, what is known about its development, and how this may explain NEC pathogenesis. Finally, we will review what therapeutic strategies may be used to promote optimal development of neonatal intestinal barrier function in order to reduce the incidence and severity of NEC. PMID:25927016

  19. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease

    PubMed Central

    Williams, Benjamin B.; Tebbutt, Niall C.; Buchert, Michael; Putoczki, Tracy L.; Doggett, Karen; Bao, Shisan; Johnstone, Cameron N.; Masson, Frederick; Hollande, Frederic; Burgess, Antony W.; Scott, Andrew M.; Ernst, Matthias; Heath, Joan K.

    2015-01-01

    ABSTRACT The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Glycoprotein A33 (GPA33) is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33−/− mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33−/− mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS) to injure the intestinal epithelium. Gpa33−/− mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM) followed by two cycles of DSS. In contrast, Gpa33−/− mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33−/− mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33−/− mice provide a valuable model to study the mechanisms linking

  20. Food Derived Bioactive Peptides and Intestinal Barrier Function

    PubMed Central

    Martínez-Augustin, Olga; Rivero-Gutiérrez, Belén; Mascaraque, Cristina; Sánchez de Medina, Fermín

    2014-01-01

    A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF) whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action. PMID:25501338

  1. No holes barred: Invasion of the intestinal mucosa by Mycobacterium avium subspecies paratuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The infection biology of Mycobacterium avium subspecies paratuberculosis (MAP) has recently crystalized with added details surrounding intestinal invasion. The involvement of pathogen-derived effector proteins such as the major membrane protein, oxidoreductase and fibronectin attachment proteins hav...

  2. Laminin α5 influences the architecture of the mouse small intestinal mucosa

    PubMed Central

    Mahoney, Zhen X.; Stappenbeck, Thaddeus S.; Miner, Jeffrey H.

    2008-01-01

    Summary The mammalian intestine displays two distinct patterns of mucosal organization. The small intestine contains mucosal epithelial invaginations called crypts of Lieberkühn that are continuous with evaginations into the lumen called villi. The colon also contains crypts, but its epithelial surface is lined by flat surface cuffs. The epithelial cells of both organs communicate with the underlying mesenchyme through a basement membrane that is composed of a variety of extracellular matrix proteins, including members of the laminin family. The basement membranes of the small intestine and colon contain distinct laminin subtypes; notably, the villus basement membrane is rich in laminin α5. Here we show that diminution of laminin α5 in a mouse model led to a compensatory deposition of colonic laminins that resulted in a transformation from a small intestinal to a colonic mucosal architecture. The alteration in mucosal architecture was associated with reduced levels of nuclear p27Kip1, a cell cycle regulator, and altered intestinal epithelial cell proliferation, migration, and differentiation. Our results suggest that laminin α5 plays a crucial role in establishing and maintaining the specific mucosal pattern of the mouse small intestine. PMID:18628307

  3. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa.

    PubMed

    Salzman, Nita H; Underwood, Mark A; Bevins, Charles L

    2007-04-01

    Mucosal surfaces are colonized by a diverse and dynamic microbiota. Much investigation has focused on bacterial colonization of the intestine, home to the vast majority of this microbiota. Experimental evidence has highlighted that these colonizing microbes are essential to host development and homeostasis, but less is known about host factors that may regulate the composition of this ecosystem. While evidence shows that IgA has a role in shaping this microbiota, it is likely that effector molecules of the innate immune system are also involved. One hypothesis is that gene-encoded antimicrobial peptides, key elements of innate immunity throughout nature, have an essential role in this regulation. These effector molecules characteristically have activity against a broad spectrum of bacteria and other microbes. At mucosal surfaces, antimicrobial peptides may affect the numbers and/or composition of the colonizing microbiota. In humans and other mammals, defensins are a predominant class of antimicrobial peptides. In the small intestine, Paneth cells (specialized secretory epithelial cells) produce high quantities of defensins and several other antibiotic peptides and proteins. Data from murine models indicate that Paneth cell defensins play a pivotal role in defense from food and water-borne pathogens in the intestinal lumen. Recent studies in humans provide evidence that reduced Paneth cell defensin expression may be a key pathogenic factor in ileal Crohn's disease, a subgroup of inflammatory bowel disease (IBD), and changes in the colonizing microbiota may mediate this pathogenic mechanism. It is also possible that low levels of Paneth cell defensins, characteristic of normal intestinal development, may predispose premature neonates to necrotizing enterocolitis (NEC) through similar close links with the composition of the intestinal microbiota. Future studies to further define mechanisms by which defensins and other host factors regulate the composition of the

  4. Stimulation of butyrate production in the large intestine of weaning piglets by dietary fructooligosaccharides and its influence on the histological variables of the large intestinal mucosa.

    PubMed

    Tsukahara, Takamitsu; Iwasaki, Yoshie; Nakayama, Keizo; Ushida, Kazunari

    2003-12-01

    Fructooligosaccharides (FOS) reach the large intestine and are fermented into short-chain fatty acids (SCFA), lactate, and carbon dioxide. As the major energy source for the epithelial cells of the large intestine, n-butyrate stimulates the proliferation of cells as well as mineral and water absorption from the lumen. We examined the effect of dietary FOS supplementation on luminal SCFA production and its influence on the morphometrical variables of mucosa of the large intestine in commercially available pigs. Six weaning piglets were used. After 7 d of adaptation, three pigs were given a test diet containing FOS (10%) ad libitum for 10 d. The other three remained on the basal diet and were used as controls. At the end of the experiment, their large intestines were removed, and the cecum, gyri centripetales, gyri centrifugales, and rectum were separated. The contents of each portion were collected and measured for SCFA concentration, pH, and moisture. A micrometer was used to measure the crypt depth. The numbers of epithelial and mitotic cells in the crypt columns were also counted. The concentration of SCFA was significantly higher in piglets fed FOS than in the controls. The concentration of n-butyrate was markedly stimulated by FOS. The number of epithelial. mitotic, and mucin-containing cells was higher in piglets fed FOS than in the controls. Accordingly, the crypt depth was larger in the FOS-fed piglets. The luminal n-butyrate concentration showed a significantly positive correlation with the crypt depth and the number of epithelial, mitotic, and mucin-containing cells. PMID:14974732

  5. Effect of hypokinesia on invertase activity of the mucosa of the small intestine

    NASA Technical Reports Server (NTRS)

    Abdusattarov, A.

    1980-01-01

    The effect of prolonged hypokinesia on the enzyme activity of the middle portion of the small intestine was investigated. Eighty-four mongrel white male rats weighing 170-180 g were divided into two equal groups. The experimental group were maintained in single cages under 30 days of hypokinetic conditions and the control animals were maintained under ordinary laboratory conditions. It is concluded that rates of invertase formation and its inclusion in the composition if the cellular membrane, if judged by the enzyme activity studied in sections of the small intestine, are subject to phase changes in the course of prolonged hypokinesia.

  6. Elevated IL-23R Expression and Foxp3+Rorgt+ Cells in Intestinal Mucosa During Acute and Chronic Colitis.

    PubMed

    Yang, Jiayin; Xu, Lili

    2016-01-01

    BACKGROUND IL-23/IL-23R signaling plays a pivotal role during the course of inflammatory bowel diseases (IBD). However, the underlying mechanisms are poorly characterized. Foxp3+ regulatory T cells are critical in the maintenance of gut immune homeostasis and therefore are important in preventing the development of IBD. This study was performed to clarify the association between IL-23/IL-23R signaling and Foxp3+ regulatory T cells in colitis. MATERIAL AND METHODS Acute and chronic mouse colitis models were established by administering mice DSS in drinking water. IL-23R, IL-23, IL-I7, and IFN-γ expression level, as well as regulatory T cell, Th17-, and Th1-related transcription factors Foxp3, RORgt, and T-bet were assayed by real-time PCR. The frequency of Foxp3+ RORγt+ cells in a Foxp3+ cell population in colon mucosa during acute and chronic colitis was evaluated through flow cytometry. The signaling pathway mediated by IL-23R in the colon mucosa from acute colitis mice and chronic colitis mice was monitored by Western blot analysis. RESULTS We detected elevated IL-23R, IL-23, and IFN-γ expression in colon mucosa during acute and chronic colitis and found increased IL-17 in acute colitis mice. Transcription factors Foxp3 and T-bet were elevated in colon mucosa during acute and chronic colitis. Phosphorylation of Stat3 was greatly enhanced, indicating the activation of IL-23R function in colitis mice. The percentage of Foxp3+ T cells in acute and chronic colitis mice was comparable to control mice, but there was a 2-fold increase of Foxp3+ RORγt+ cells among the Foxp3+ cell population in acute and chronic colitis mice compared to control mice. CONCLUSIONS These findings indicate that the induction of Foxp3+ RORgt+ T cells could be enhanced during inflammation in the intestine where IL-23R expression is greatly induced. Our study highlights the importance of IL-23R expression level and the instability of Foxp3+ regulatory T cells in the development of

  7. Improved Gene Delivery to Intestinal Mucosa by Adenoviral Vectors Bearing Subgroup B and D Fibers

    PubMed Central

    Lecollinet, S.; Gavard, F.; Havenga, M. J. E.; Spiller, O. B.; Lemckert, A.; Goudsmit, J.; Eloit, M.; Richardson, J.

    2006-01-01

    A major obstacle to successful oral vaccination is the lack of antigen delivery systems that are both safe and highly efficient. Conventional replication-incompetent adenoviral vectors, derived from human adenoviruses of subgroup C, are poorly efficient in delivering genetic material to differentiated intestinal epithelia. To date, 51 human adenovirus serotypes have been identified and shown to recognize different cellular receptors with different tissue distributions. This natural diversity was exploited in the present study to identify suitable adenoviral vectors for efficient gene delivery to the human intestinal epithelium. In particular, we compared the capacities of a library of adenovirus type 5-based vectors pseudotyped with fibers of several human serotypes for transduction, binding, and translocation toward the basolateral pole in human and murine tissue culture models of differentiated intestinal epithelia. In addition, antibody-based inhibition was used to gain insight into the molecular interactions needed for efficient attachment. We found that vectors differing merely in their fiber proteins displayed vastly different capacities for gene transfer to differentiated human intestinal epithelium. Notably, vectors bearing fibers derived from subgroup B and subgroup D serotypes transduced the apical pole of human epithelium with considerably greater efficiency than a subgroup C vector. Such efficiency was correlated with the capacity to use CD46 or sialic acid-containing glycoconjugates as opposed to CAR as attachment receptors. These results suggest that substantial gains could be made in gene transfer to digestive epithelium by exploiting the tropism of existing serotypes of human adenoviruses. PMID:16501084

  8. In vitro permeation of mesembrine alkaloids from Sceletium tortuosum across porcine buccal, sublingual, and intestinal mucosa.

    PubMed

    Shikanga, Emmanuel A; Hamman, Josias H; Chen, Weiyang; Combrinck, Sandra; Gericke, Nigel; Viljoen, Alvaro M

    2012-02-01

    Sceletium tortuosum is an indigenous South African plant that has traditionally been used for its mood-enhancing properties. Recently, products containing S. tortuosum have become increasingly popular and are commonly administered as tablets, capsules, teas, decoctions, or tinctures, while traditionally the dried plant material has been masticated. This study evaluated the in vitro permeability of the four major S. tortuosum alkaloids (i.e., mesembrine, mesembrenone, mesembrenol, and mesembranol) across porcine intestinal, sublingual, and buccal tissues in their pure form and in the form of three different crude plant extracts, namely water, methanol, and an acid-base alkaloid-enriched extract. The permeability of mesembrine across intestinal tissue was higher than that of the highly permeable reference compound caffeine (which served as a positive control for membrane permeability) both in its pure form, as well as in the form of crude extracts. The intestinal permeability of mesembranol was similar to that of caffeine, while those of mesembrenol and mesembrenone were lower than that of caffeine, but much higher than that of the poorly permeable reference compound atenolol (which served as a negative control for membrane permeability). In general, the permeabilities of the alkaloids were lower across the sublingual and the buccal tissues than across the intestinal tissue. However, comparing the transport of the alkaloids with that of the reference compounds, there are indications that transport across the membranes of the oral cavity may contribute considerably to the overall bioavailability of the alkaloids, depending on pre-systemic metabolism, when the plant material is chewed and kept in the mouth for prolonged periods. The results from this study confirmed the ability of the alkaloids of S. tortuosum in purified or crude extract form to permeate across intestinal, buccal, and sublingual mucosal tissues. PMID:22105579

  9. Distinct adhesion of probiotic strain Lactobacillus casei ATCC 393 to rat intestinal mucosa.

    PubMed

    Saxami, Georgia; Ypsilantis, Petros; Sidira, Marianthi; Simopoulos, Constantinos; Kourkoutas, Yiannis; Galanis, Alex

    2012-08-01

    Adhesion to the intestine represents a critical parameter for probiotic action. In this study, the adhesion ability of Lactobacillus casei ATCC 393 to the gastrointestinal tract of Wistar rats was examined after single and daily administration of fermented milk containing either free or immobilized cells on apple pieces. The adhesion of the probiotic cells at the large intestine (cecum and colon) was recorded at levels ≥6 logCFU/g (suggested minimum levels for conferring a probiotic effect) following daily administration for 7 days by combining microbiological and strain-specific multiplex PCR analysis. Single dose administration resulted in slightly reduced counts (5 logCFU/g), while they were lower at the small intestine (duodenum, jejunum, ileum) (≤3 logCFU/g), indicating that adhesion was a targeted process. Of note, the levels of L. casei ATCC 393 were enhanced in the cecal and colon fluids both at single and daily administration of immobilized cells (6 and 7 logCFU/g, respectively). The adhesion of the GI tract was transient and thus daily consumption of probiotic products containing the specific strain is suggested as an important prerequisite for retaining its levels at an effective concentration. PMID:22554894

  10. Evaluation of the mRNA and Protein Expressions of Nutritional Biomarkers in the Gastrointestinal Mucosa of Patients with Small Intestinal Disorders.

    PubMed

    Nakamura, Masanao; Hirooka, Yoshiki; Watanabe, Osamu; Yamamura, Takeshi; Funasaka, Kohei; Ohno, Eizaburo; Miyahara, Ryoji; Kawashima, Hiroki; Shimoyama, Yoshie; Goto, Hidemi

    2016-01-01

    Objective The objectives of this study were to investigate the mRNA and protein expression of biomarkers related to absorption in the small intestinal mucosa of humans and determine the relationships between small intestinal diseases and nutrition. Methods The study subjects consisted of patients scheduled to undergo double-balloon endoscopy (DBE) or total colonoscopy for suspected gastrointestinal disorder in a clinical practice. Biopsies were taken from apparently normal mucosa in the visible areas of 6 parts of the intestines from the duodenum to the colon. The mRNA expression of specific biomarkers (SGLT1, SGLT5, GIP, GLP, LAT1, LAT2, and NPC1L1) in the mucosa was compared among three patient groups: Inflammation, Tumor, and Control. Results Sixty-six patients participated in this study. Both routes of DBE were performed in 20 patients, in whom biopsy samples were obtained from the mucosa for all sections. There were no remarkable differences in the mRNA expression levels among the 3 groups. However, SGLT1, GIP, GLP, and NPC1L1 exhibited specific distribution patterns. The expression levels of GIP and NPC1L1 were highest in the upper jejunum, but were extremely low in the terminal ileum and colon. A comparison of the mRNA expression profile in each intestinal section revealed that the SGLT1 mRNA expression in the Tumor group and the GIP mRNA expression in the Inflammation group were significantly higher than the corresponding levels in the Control group in the upper jejunum. Conclusion The gastrointestinal mucosa of patients with small bowel diseases can maintain proper nutrient absorption, except in the upper jejunum. PMID:27522989

  11. Secreted adhesion molecules of Strongyloides venezuelensis are produced by oesophageal glands and are components of the wall of tunnels constructed by adult worms in the host intestinal mucosa.

    PubMed

    Maruyama, H; El-Malky, M; Kumagai, T; Ohta, N

    2003-02-01

    The parasitic female of Strongyloides venezuelensis keeps invading the epithelial layer of the host intestinal mucosa. Upon invasion, it adheres to the surface of the intestinal epithelial cells with adhesion molecules secreted from the mouth. It has been demonstrated that S. venezuelensis are expelled from the intestine because mucosal mast cells inhibit the attachment of adult worms to the mucosal surface. In the present study, we generated specific antibodies against secreted adhesion molecules to investigate their function in vivo, because these molecules have been demonstrated only in vitro in spite of the importance in the infection processes. A mouse monoclonal antibody specific to S. venezuelensis adhesion molecules inhibited the attachment of adult worms to plastic dishes and the binding of adhesion molecules to rat intestinal epithelial cells. Immunohistochemical study revealed that adhesion molecules were produced by oesophageal glands and were continuously secreted in vivo to line the wall of the tunnels formed by adult worms in the intestinal mucosa. Our findings indicate that adhesion molecules play essential roles in the infection processes of S. venezuelensis in the host intestine. PMID:12636354

  12. Mechanisms and anticarcinogenic effects of diet-related apoptosis in the intestinal mucosa.

    PubMed

    Johnson, I T

    2001-12-01

    There is now ample epidemiological evidence to show that the wide international variations in the incidence of both adenomatous polyps and colo-rectal cancer are linked to diet, but the mechanisms through which particular dietary constituents influence the onset of neoplasia are poorly understood. The crypt epithelial cells of the human gastrointestinal mucosa are amongst the most rapidly proliferating tissues in the body, and those of the colorectum are particularly vulnerable to neoplasia. Within the crypt, continuous division of basally localized stem cells gives rise to daughter cells that may divide once or twice again, before differentiating and migrating to the mucosal surface. The majority of nascent crypt epithelial cells differentiate, become senescent and are shed into the gut lumen, but a small proportion die by apoptosis soon after cell division. Various lines of evidence suggest that these pathways of programmed cell death provide a protective mechanism against induction of neoplasia by removing genetically damaged stem cells before they can divide further and give rise to precancerous lesions. There is evidence that the short-chain fatty acid butyrate and several different classes of food constituents, including some polyunsaturated fatty acids, flavonoids and glucosinolate breakdown products, can regulate the processes of cell proliferation and death in vitro, and in colorectal crypts in vivo. All three classes of food components suppress the emergence of aberrant crypt foci in animal models of carcinogenesis. The cellular mechanisms underlying these phenomena, and their possible significance for human health, are discussed. PMID:19087425

  13. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions

    PubMed Central

    2009-01-01

    Background Emerging evidences suggest that enteric glial cells (EGC), a major constituent of the enteric nervous system (ENS), are key regulators of intestinal epithelial barrier (IEB) functions. Indeed EGC inhibit intestinal epithelial cells (IEC) proliferation and increase IEB paracellular permeability. However, the role of EGC on other important barrier functions and the signalling pathways involved in their effects are currently unknown. To achieve this goal, we aimed at identifying the impact of EGC upon IEC transcriptome by performing microarray studies. Results EGC induced significant changes in gene expression profiling of proliferating IEC after 24 hours of co-culture. 116 genes were identified as differentially expressed (70 up-regulated and 46 down-regulated) in IEC cultured with EGC compared to IEC cultured alone. By performing functional analysis of the 116 identified genes using Ingenuity Pathway Analysis, we showed that EGC induced a significant regulation of genes favoring both cell-to-cell and cell-to-matrix adhesion as well as cell differentiation. Consistently, functional studies showed that EGC induced a significant increase in cell adhesion. EGC also regulated genes involved in cell motility towards an enhancement of cell motility. In addition, EGC profoundly modulated expression of genes involved in cell proliferation and cell survival, although no clear functional trend could be identified. Finally, important genes involved in lipid and protein metabolism of epithelial cells were shown to be differentially regulated by EGC. Conclusion This study reinforces the emerging concept that EGC have major protective effects upon the IEB. EGC have a profound impact upon IEC transcriptome and induce a shift in IEC phenotype towards increased cell adhesion and cell differentiation. This concept needs to be further validated under both physiological and pathophysiological conditions. PMID:19883504

  14. Development of a Multicellular Three-dimensional Organotypic Model of the Human Intestinal Mucosa Grown Under Microgravity.

    PubMed

    Salerno-Goncalves, Rosangela; Fasano, Alessio; Sztein, Marcelo B

    2016-01-01

    Because cells growing in a three-dimensional (3-D) environment have the potential to bridge many gaps of cell cultivation in 2-D environments (e.g., flasks or dishes). In fact, it is widely recognized that cells grown in flasks or dishes tend to de-differentiate and lose specialized features of the tissues from which they were derived. Currently, there are mainly two types of 3-D culture systems where the cells are seeded into scaffolds mimicking the native extracellular matrix (ECM): (a) static models and (b) models using bioreactors. The first breakthrough was the static 3-D models. 3-D models using bioreactors such as the rotating-wall-vessel (RWV) bioreactors are a more recent development. The original concept of the RWV bioreactors was developed at NASA's Johnson Space Center in the early 1990s and is believed to overcome the limitations of static models such as the development of hypoxic, necrotic cores. The RWV bioreactors might circumvent this problem by providing fluid dynamics that allow the efficient diffusion of nutrients and oxygen. These bioreactors consist of a rotator base that serves to support and rotate two different formats of culture vessels that differ by their aeration source type: (1) Slow Turning Lateral Vessels (STLVs) with a co-axial oxygenator in the center, or (2) High Aspect Ratio Vessels (HARVs) with oxygenation via a flat, silicone rubber gas transfer membrane. These vessels allow efficient gas transfer while avoiding bubble formation and consequent turbulence. These conditions result in laminar flow and minimal shear force that models reduced gravity (microgravity) inside the culture vessel. Here we describe the development of a multicellular 3-D organotypic model of the human intestinal mucosa composed of an intestinal epithelial cell line and primary human lymphocytes, endothelial cells and fibroblasts cultured under microgravity provided by the RWV bioreactor. PMID:27500889

  15. Ultrastructural development of the small intestinal mucosa in the embryo and turkey poult: A light and electron microscopy study.

    PubMed

    Bohórquez, D V; Bohórquez, N E; Ferket, P R

    2011-04-01

    The potential for growth and feed efficiency in turkey poults directly correlates with the early development of the intestinal epithelium. Although the metabolic aspects of enteric maturation have been studied, little is known about the ultrastructural development of the enteric epithelium in the turkey embryo and poult. Hence, the objective of this study was to document the morphological and ultrastructural development of the jejunum mucosa in turkeys, from 15 d of incubation (embryonic day; E) to 12 d posthatch. Intestinal samples from 4 embryos or poults were collected and analyzed by light and electron microscopy (transmission and scanning). In addition, amniotic fluid volume was determined in 6 eggs from E15 to E25. Longitudinal previllus ridges at E15 gradually formed zigzag patterns that led to the formation of 2 parallel lines of mature villi by E25. The volume of amniotic fluid was rapidly depleted as the embryo swallowed it between E19 and E25. During this period, a major increase occurs in villus height, the apical end of epithelial cells is gradually tightened by the junctional complex, and mature goblet cells are visible at the apical end of villi. Villus height steadily increases until reaching a plateau at 8 d. Villi morphology shifts gradually from finger-like projections before hatch to leaf-like projections by 12 d. At this age, the enteric epithelium is in intimate association with microbes such as segmented filamentous bacteria. The profound morphological adaptations of the turkey gut epithelium in response to amniotic fluid swallowing before hatch, and dietary factors and bacteria after hatch, demonstrate the plasticity of the enteric epithelium at this time. Hence, the supplementation of enteric modulators before hatch (in ovo feeding) and after hatch has the potential to shape gut maturation and enhance the growth performance of turkey poults. PMID:21406371

  16. Femtosecond laser ablation of porcine intestinal mucosa: potential autologous transplant for segmental cystectomy

    NASA Astrophysics Data System (ADS)

    Higbee, Russell G.; Irwin, Bryan S.; Nguyen, Michael N.; Zhang, Yuanyuan; Warren, William L.

    2005-04-01

    Nearly 80% of patients with newly diagnosed bladder cancer present with superficial bladder tumors (confined to the bladder lining such as transitional cell carcinoma [90%], squamous cell carcinoma [6-8%], and adenocarcinoma[2%]) in stages Ta, Tis, or T1. Segmental cystectomy is one surgical treatment for patients who have a low-grade invasive tumor. Transposition of small intestine is a viable surgical treatment option. Success of the transplantation is also dependent upon removal of the entire SI mucosal layer. A Clark Spitfire Ti:Sapphire laser operating at 775 nm and 1 kHz repetition rate, was used to investigate the damage induced to fresh cadaveric porcine small intestinal mucosal epithelium. The laser was held constant at a focal spot diameter of 100 μm using a 200 mm focal point lens, with a power output maximum of 257 mW. A high resolution motorized X-Y-Z stage translated the SI tissue through the beam at 500 μm/sec with a line spacing of 50 μm. This produced a 50% overlap in the laser etching for each pass over a 1 cm x 1.5 cm grid. To determine if the mucosal lining of the SI was adequately removed, the targeted area was covered with 1% fluorescein solution for 30 seconds and then rinsed with phosphate buffered saline. Fluorescein staining was examined under UV illumination, to determine the initial degree of mucosal removal. Tissues were fixed and processed for light and scanning electron microscopy by standard protocols. Brightfield light microscopy of hematoxylin and eosin stained 4 μm thick cross sections, scanning electron microscopy were examined to determine the degree of mucosal tissue removal. Clear delineation of the submucosal layer by fluorescein staining was also observed. The Ti:Sapphire laser demonstrated precise, efficient removal of the mucosal epithelium with minimal submucosal damage.

  17. Oxidative Stress Markers in Intestinal Mucosa of Tunisian Inflammatory Bowel Disease Patients

    PubMed Central

    Bouzid, Dorra; Gargouri, Bochra; Mansour, Riadh Ben; Amouri, Ali; Tahri, Nabil; Lassoued, Saloua; Masmoudi, Hatem

    2013-01-01

    Background/Aims: Inflammatory bowel diseases (IBDs), Crohn's disease (CrD) and ulcerative colitis (UC), are chronic gastrointestinal inflammatory disorders. The precise etiology of IBD remains unclear, and it is thought that interactions among various factors, including, genetic factors, the host immune system and environmental factors, cause disruption of intestinal homeostasis, leading to dysregulated inflammatory responses of the gut. As inflammation is intimately related to formation of reactive intermediates, including, reactive oxygen species, oxidative stress has been proposed as a mechanism underlying the pathophysiology of IBD. The purpose of this study is to examine the lipid peroxidation, protein oxidation and anti-oxidative profile in Tunisian IBD. Materials and Methods: Malondialdehyde (MDA), conjugated dienes (CD), protein thiol levels, as well as the catalase (CAT) activity were evaluated in intestinal biopsies of 17 patients affected by IBD (12 CrD and 5 UC) and 12 healthy control individuals. Results: Oxidative stress was confirmed in these two types of disease biopsies as compared to controls. MDA and CD levels were significantly increased in both UC and CrD patients’ biopsies as compared to controls’ biopsies (P < 0.001). CAT activity was similar in UC and CrD biopsies’ and was not significantly increased in IBD patients’ biopsies compared with controls’ biopsies (P > 0.05). Anon-significant decrease in thiol (SH) level was observed in both UC and CrD patients’ biopsies compared with controls’ biopsies (P > 0.05). Conclusion: Increased levels of MDA and CD in IBD patients’ biopsies underline the implication of oxidative stress in the physiopathology of IBD. PMID:23680711

  18. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress.

    PubMed

    Tong, Ling-Chang; Wang, Yue; Wang, Zhi-Bin; Liu, Wei-Ye; Sun, Sheng; Li, Ling; Su, Ding-Feng; Zhang, Li-Chao

    2016-01-01

    Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7-14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway. PMID:27574508

  19. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress

    PubMed Central

    Tong, Ling-chang; Wang, Yue; Wang, Zhi-bin; Liu, Wei-ye; Sun, Sheng; Li, Ling; Su, Ding-feng; Zhang, Li-chao

    2016-01-01

    Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7–14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway. PMID:27574508

  20. Intestinal Epithelial Barrier Disruption through Altered Mucosal MicroRNA Expression in Human Immunodeficiency Virus and Simian Immunodeficiency Virus Infections

    PubMed Central

    Gaulke, Christopher A.; Porter, Matthew; Han, Yan-Hong; Sankaran-Walters, Sumathi; Grishina, Irina; George, Michael D.; Dang, Angeline T.; Ding, Shou-Wei; Jiang, Guochun; Korf, Ian

    2014-01-01

    ABSTRACT Epithelial barrier dysfunction during human immunodeficiency virus (HIV) infection has largely been attributed to the rapid and severe depletion of CD4+ T cells in the gastrointestinal (GI) tract. Although it is known that changes in mucosal gene expression contribute to intestinal enteropathy, the role of small noncoding RNAs, specifically microRNA (miRNA), has not been investigated. Using the simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV pathogenesis, we investigated the effect of viral infection on miRNA expression in intestinal mucosa. SIV infection led to a striking decrease in the expression of mucosal miRNA compared to that in uninfected controls. This decrease coincided with an increase in 5′-3′-exoribonuclease 2 protein and alterations in DICER1 and Argonaute 2 expression. Targets of depleted miRNA belonged to molecular pathways involved in epithelial proliferation, differentiation, and immune response. Decreased expression of several miRNA involved in maintaining epithelial homeostasis in the gut was localized to the proliferative crypt region of the intestinal epithelium. Our findings suggest that SIV-induced decreased expression of miRNA involved in epithelial homeostasis, disrupted expression of miRNA biogenesis machinery, and increased expression of XRN2 are involved in the development of epithelial barrier dysfunction and gastroenteropathy. IMPORTANCE MicroRNA (miRNA) regulate the development and function of intestinal epithelial cells, and many viruses disrupt normal host miRNA expression. In this study, we demonstrate that SIV and HIV disrupt expression of miRNA in the small intestine during infection. The depletion of several key miRNA is localized to the proliferative crypt region of the gut epithelium. These miRNA are known to control expression of genes involved in inflammation, cell death, and epithelial maturation. Our data indicate that this disruption might be caused by altered expression of mi

  1. Induction of Sd(a)-sialomucin and sulfated H-sulfomucin in mouse small intestinal mucosa by infection with parasitic helminth.

    PubMed

    Tsubokawa, Daigo; Ishiwata, Kenji; Goso, Yukinobu; Yokoyama, Takuya; Kanuka, Hirotaka; Ishihara, Kazuhiko; Nakamura, Takeshi; Tsuji, Naotoshi

    2015-06-01

    Mucin is a major component of mucus on gastrointestinal mucosa. Mucin alteration in the host is considered to be the principal event for expulsion of intestinal helminths. However, it is unclear what mucin alterations are induced by various helminth infections. In this study, the alterations of mouse small intestinal mucin after infection with two nematodes, Nippostrongylus brasiliensis and Heligmosomoides polygyrus, which parasitize the jejunal epithelium, and a cestode, Vampirolepis nana, which parasitizes the ileal epithelium, were examined biochemically and histologically using two anti-mucin monoclonal antibodies (mAbs), HCM31 and PGM34, which recognize Sd(a) antigen, NeuAcα2-3(GalNAcβ1-4)Galβ1-4GlcNAcβ-, and sulphated H type 2 antigen, Fucα1-2Galβ1-4GlcNAc(6SO₃H)β-, respectively. The goblet cell mucins that reacted with HCM31 increased conspicuously on the jejunal mucosa concurrently with expulsion of N. brasiliensis. Increased levels of HCM31-reactive mucins were observed in the jejunal mucosa after H. polygyrus infection, despite the ongoing parasitism. Goblet cell mucins that reacted with PGM34 increased on the ileal mucosa during V. nana parasitism. Small intestinal goblet cells reacting with the two mAbs were not observed in non-infected mice, although sialomucins and sulfomucins were abundantly present. Additionally, the number of ileal goblet cells that reacted with the two mAbs was increased at the time of expulsion of heterophyid trematode. These results indicate that the type of specific acidic mucins expressed after infection varies among species of intestinal helminth, and, furthermore, that the relationship with worm expulsion is also different. PMID:25819298

  2. Biliary tract external drainage protects against intestinal barrier injury in hemorrhagic shock rats

    PubMed Central

    Wang, Lu; Zhao, Bing; Chen, Ying; Ma, Li; Chen, Er-Zhen; Mao, En-Qiang

    2015-01-01

    AIM: To investigate the effects of biliary tract external drainage (BTED) on intestinal barrier injury in rats with hemorrhagic shock (HS). METHODS: BTED was performed via cannula insertion into the bile duct of rats. HS was induced by drawing blood from the femoral artery at a rate of 1 mL/min until a mean arterial pressure (MAP) of 40 ± 5 mmHg was achieved. That MAP was maintained for 60 min. A total of 99 Sprague-Dawley rats were randomized into a sham group, an HS group and an HS + BTED group. Nine rats in the sham group were sacrificed 0.5 h after surgery. Nine rats in each of the HS and HS + BTED groups were sacrificed 0.5 h, 1 h, 2 h, 4 h and 6 h after resuscitation. Plasma tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and lipopolysaccharide (LPS) levels were analyzed using enzyme-linked immunosorbent assay. Plasma D-lactate levels were analyzed using colorimetry. The expression levels of occludin and claudin-1 in the ileum were analyzed using Western blot and immunohistochemistry. Histology of the ileum was evaluated by hematoxylin and eosin staining. RESULTS: Plasma TNF-α levels in the HS + BTED group decreased significantly compared with the HS group at 1 h and 6 h after resuscitation (P < 0.05). Plasma IL-6 levels in the HS + BTED group decreased significantly compared with the HS group at 0.5 h, 1 h and 2 h after resuscitation (P < 0.05). Plasma D-lactate and LPS levels in the HS + BTED group decreased significantly compared with the HS group at 6 h after resuscitation (P < 0.05). The expression levels of occludin in the HS + BTED group increased significantly compared with the HS group at 4 h and 6 h after resuscitation (P < 0.05). The expression levels of claudin-1 in the HS + BTED group increased significantly compared with the HS group at 6 h after resuscitation (P < 0.05). Phenomena of putrescence and desquamation of epithelial cells in the ileal mucosa were attenuated in the HS + BTED group. Ileal histopathologic scores in the HS

  3. Impeded establishment of the infective stage of Trichinella in the intestinal mucosa of mice by passive transfer of an IgA monoclonal antibody.

    PubMed

    Inaba, Takashi; Sato, Hiroshi; Kamiya, Haruo

    2003-11-01

    Our previous study showed that the IgA monoclonal antibody (mAb) HUSM-Tb1 forms immunoprecipitates on the cuticular surface of infective larvae of Trichinella britovi, and that intraperitoneal injection of this mAb to mice 5 hr before challenge infection confers a high level of protection against intestinal T. britovi. The same treatment produced a similar effect in BALB/c mice inoculated orally with Trichinella pseudospiralis larvae, indicating that the effects may be seen upon most members of the genus Trichinella. Worms recovered from the intestinal mucosa at 1 hr after challenge infection with T. pseudospiralis was few in mice passively immunized with the mAb, whereas a substantial number of worms were recovered from the mucosa of control groups. These results suggest that the IgA mAb impedes establishment of infective Trichinella worms in the intestinal mucosa. Trichinella worms inoculated orally into BALB/c mice vaccinated with ultraviolet-irradiated muscle larvae 3 weeks earlier were expelled between days 4 and 7 after challenge infection. Although the mAb HUSM-Tb1 originated from the mesenteric lymph node cells of mice vaccinated repeatedly with such irradiated larvae, IgA-mediated expulsion does not seem to play an important role in this vaccination model. PMID:14665753

  4. Impact of Toxoplasma gondii on Dendritic Cell Subset Function in the Intestinal Mucosa.

    PubMed

    Cohen, Sara B; Denkers, Eric Y

    2015-09-15

    The function of mucosal dendritic cell (DC) subsets in immunity and inflammation is not well understood. In this study, we define four DC subsets present within the lamina propria and mesenteric lymph node compartments based on expression of CD103 and CD11b. Using IL-12p40 YFP (Yet40) reporter mice, we show that CD103(+)CD11b(-) mucosal DCs are primary in vivo sources of IL-12p40; we also identified CD103(-)CD11b(-) mucosal DCs as a novel population producing this cytokine. Infection was preferentially found in CD11b(+) DCs that were negative for CD103. Lamina propria DCs containing parasites were negative for IL-12p40. Instead, production of the cytokine was strictly a property of noninfected cells. We also show that vitamin A metabolism, as measured by ALDH activity, was preferentially found in CD103(+)CD11b(+) DC and was strongly downregulated in all mucosal DC subsets during infection. Finally, overall apoptosis of lamina propria DC subsets was increased during infection. Combined, these results highlight the ability of intestinal Toxoplasma infection to alter mucosal DC activity at both the whole population level and at the level of individual subsets. PMID:26283477

  5. Element concentrations in the intestinal mucosa of the mouse as measured by X-ray microanalysis.

    PubMed

    von Zglinicki, T; Roomans, G M

    1989-06-01

    Subcellular ion distribution in villus, crypt, Paneth and smooth muscle cells of the mouse small intestine under resting conditions was investigated by X-ray microanalysis of ultrathin cryosections. In addition, the mass distribution was estimated by measuring the optical transmission of the compartments in transmission electron micrographs. Each cell type is characterized by a special composition in terms of the major monovalent ions Na, K, and Cl. In particular, among crypt epithelial cells, those cells containing small secretion granula (termed crypt A cells) also display cytoplasmic ion concentrations significantly different from crypt epithelial cells lacking secretion granula (crypt B cells). Monovalent ion concentrations in the cytoplasm of Paneth cells, muscle cells, and crypt epithelial cells lacking secretion granula are higher than expected from osmotic considerations. Hence, significant binding of ions to cytoplasmic polyelectrolytes is assumed in these cells. There are gradients of dry mass and K concentration from the luminal to the basal side of the cell, both in crypt and in villus cells. The terminal web in these cells is rich in Na and Cl. The elemental composition of the large, dark secretion granula in Paneth cells is similar to that of the small dark granula in crypt cells. However, the two morphologically different types of granula within the Paneth cells have a significantly different elemental composition, which might reflect maturation of secretion granula. PMID:2814397

  6. WISP1 Is Increased in Intestinal Mucosa and Contributes to Inflammatory Cascades in Inflammatory Bowel Disease

    PubMed Central

    Zhang, Qi; Zhang, Cuiping; Li, Xiaoyu; Yu, Yanan; Liang, Kun; Shan, Xinzhi; Zhao, Kun; Niu, Qinghui; Tian, Zibin

    2016-01-01

    Inflammatory bowel disease (IBD) is mainly characterized by intestinal tissue damage, which is caused by excessive autoimmune responses poorly controlled by corresponding regulatory mechanisms. WISP1, which belongs to the CCN protein family, is a secreted matricellular protein regulating several inflammatory pathways, such as Wnt/β-catenin pathway, and has been reported in several diseases including cancer. Here we examined the expression, regulatory mechanisms, and functions of WISP1 in IBD. WISP1 mRNA and protein expression was upregulated in colonic biopsies and lamina propria mononuclear cells (LPMC) of IBD patients compared with those of healthy controls. Tumor necrosis factor- (TNF-) α induced WISP1 expression in LPMC from healthy controls. Consistently, WISP1 mRNA expression was downregulated in colonic biopsies from IBD patients who had achieved clinical remission with infliximab (IFX). Furthermore, WISP1 expression was also found to be increased in colons from 2,4,6-trinitrobenzenesulfonic acid- (TNBS-) induced mice compared with those from control mice. Further studies confirmed that administration of rWISP1 could aggravate TNBS-induced colitis in vivo. Therefore, we concluded that WISP1 is increased in IBD and contributes to the proinflammatory cascades in the gut. PMID:27403031

  7. Diversion of intestinal flow decreases the numbers of interleukin 4 secreting and interferon γ secreting T lymphocytes in small bowel mucosa

    PubMed Central

    Schmit, A; Van Gossum, A; Carol, M; Houben, J; Mascart, F

    2000-01-01

    BACKGROUND/AIMS—The intestinal immune system faces large amounts of antigens, and its regulation is tightly balanced by cytokines. In this study, the effect of intestinal flow diversion on spontaneous secretion of interleukin (IL)-4 and interferon (IFN)- γ was analysed.
METHODS—Eight patients (two with Crohn's disease, four with ulcerative colitis, and two with previous colon cancer) carrying a double lumen small bowel stoma after a total colectomy procedure were included in the study. For each patient, eight biopsy samples were taken endoscopically from both the diverted and non-diverted part of the small bowel. Intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) were isolated separately and assayed for numbers of cells spontaneously secreting IL-4 and/or IFN-γ by an ELISPOT technique.
RESULTS—Compared with the non-diverted mucosa, a significant decrease in the number of spontaneously IFN-γ secreting CD3 lymphocytes was observed in the diverted small bowel mucosa among both IELs (p = 0.008) and LPLs (p = 0.007). The same results, although less significant, were obtained for IL-4, especially in LPLs (p = 0.01).
CONCLUSION—The intestinal content influences the spontaneous secretion of IFN-γ and IL-4 by intestinal lymphocytes. These results could help to elucidate the anti-inflammatory role of split ileostomy in patients suffering from inflammatory bowel diseases.


Keywords: intestine; T lymphocytes; mucosa; interleukin-4; interferon-γ; ELISPOT PMID:10601053

  8. Hydrolyzed porcine mucosa in broiler diets: effects on growth performance, nutrient retention, and histomorphology of the small intestine.

    PubMed

    Frikha, M; Mohiti-Asli, M; Chetrit, C; Mateos, G G

    2014-02-01

    The effect of including hydrolyzed porcine mucosa sprayed into soybean meal (HPM) in the diet was studied in broilers. In experiment 1 (pen study), 1,080 one-day-old chicks were used in a completely randomized design with 8 treatments arranged as a 4 × 2 factorial with 4 levels of HPM (0, 2.5, 5.0, and 7.5%) and 2 levels of Lys (1.23 and 1.38%). From d 1 to 22, HPM inclusion quadratically improved BW gain (BWG, P < 0.01) and feed conversion ratio (FCR, P < 0.01). From d 1 to 8, birds fed 1.38% Lys had higher BWG (P < 0.05) and better FCR (P < 0.05) than birds fed 1.23% Lys but only a trend (P < 0.08) for improved BWG was detected from d 1 to 22. From d 22 to 37, a period in which all birds received a common finisher diet, growth performance was not affected by the previous starter diet. In experiment 2 (battery study), birds were fed for 37 d the same diets used in the starter period of experiment 1. Broilers fed HPM had higher BWG (linear, P < 0.05; Quadratic, P < 0.05) than birds fed control diet, and birds fed 1.38% Lys had higher BWG (P < 0.01) than birds fed 1.23% Lys. From d 1 to 22, BWG (P < 0.05) and ADFI (P < 0.01) increased quadratically and FCR improved linearly (P < 0.05) with HPM inclusion. Also in this period, BWG was higher at the higher Lys level (P < 0.01). Diet did not affect intestinal histomorphology of broilers on d 8 or nutrient retention on d 22. We conclude that the inclusion of 2.5 to 5% HPM in the diet improved growth performance of broilers from d 1 to 22. An increase in Lys from 1.23 to 1.38% improved growth performance up to 15 d of age, but not thereafter. Diet did not affect villus histomorphology or nutrient retention of the small intestine. PMID:24570462

  9. ClC-2 regulation of intestinal barrier function: Translation of basic science to therapeutic target.

    PubMed

    Jin, Younggeon; Blikslager, Anthony T

    2015-01-01

    The ClC-2 chloride channel is a member of the voltage-gated chloride channel family. ClC-2 is involved in various physiological processes, including fluid transport and secretion, regulation of cell volume and pH, maintaining the membrane potential of the cell, cell-to-cell communication, and tissue homeostasis. Recently, our laboratory has accumulated evidence indicating a critical role of ClC-2 in the regulation of intestinal barrier function by altering inter-epithelial tight junction composition. This review will detail the role of ClC-2 in intestinal barrier function during intestinal disorders, including experimental ischemia/reperfusion injury and dextran sodium sulfate (DSS)-induced inflammatory bowel disease. Details of pharmacological manipulation of ClC-2 via prostone agonists will also be provided in an effort to show the potential therapeutic relevance of ClC-2 regulation, particularly during intestinal barrier disruption. PMID:26716076

  10. Effect of orally administered betel leaf (Piper betle Linn.) on digestive enzymes of pancreas and intestinal mucosa and on bile production in rats.

    PubMed

    Prabhu, M S; Platel, K; Saraswathi, G; Srinivasan, K

    1995-10-01

    The influence of two varieties of betel leaf (Piper betle Linn.) namely, the pungent Mysore and non-pungent Ambadi, was examined on digestive enzymes of pancreas and intestinal mucosa and on bile secretion in experimental rats. The betel leaves were administered orally at two doses which were either comparable to human consumption level or 5 times this. The results indicated that while these betel leaves do not influence bile secretion and composition, they have a significant stimulatory influence on pancreatic lipase activity. Besides, the Ambadi variety of betel leaf has a positive stimulatory influence on intestinal digestive enzymes, especially lipase, amylase and disaccharidases. A slight lowering in the activity of these intestinal enzymes was seen when Mysore variety of betel leaf was administered, and this variety also had a negative effect on pancreatic amylase. Further, both the betel leaf varieties have shown decreasing influence on pancreatic trypsin and chymotrypsin activities. PMID:8575807

  11. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions

    PubMed Central

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Background: Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. Methods: C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). Results and conclusions: The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions. PMID:24966910

  12. Mice lacking myosin IXb, an inflammatory bowel disease susceptibility gene, have impaired intestinal barrier function and superficial ulceration in the ileum.

    PubMed

    Hegan, Peter S; Chandhoke, Surjit K; Barone, Christina; Egan, Marie; Bähler, Martin; Mooseker, Mark S

    2016-04-01

    Genetic studies have implicated MYO9B, which encodes myosin IXb (Myo9b), a motor protein with a Rho GTPase activating domain (RhoGAP), as a susceptibility gene for inflammatory bowel disease (IBD). Moreover, we have recently shown that knockdown of Myo9b in an intestinal epithelial cell line impairs wound healing and barrier function. Here, we investigated whether mice lacking Myo9b have impaired intestinal barrier function and features of IBD. Myo9b knock out (KO) mice exhibit impaired weight gain and fecal occult blood (indicator of gastrointestinal bleeding), and increased intestinal epithelial cell apoptosis could be detected along the entire intestinal axis. Histologic analysis revealed intestinal mucosal damage, most consistently observed in the ileum, which included superficial ulceration and neutrophil infiltration. Focal lesions contained neutrophils and ultrastructural examination confirmed epithelial discontinuity and the deposition of extracellular matrix. We also observed impaired mucosal barrier function in KO mice. Transepithelial electrical resistance of KO ileum is >3 fold less than WT ileum. The intestinal mucosa is also permeable to high molecular weight dextran, presumably due to the presence of mucosal surface ulcerations. There is loss of tight junction-associated ZO-1, decreased lateral membrane associated E-cadherin, and loss of terminal web associated cytokeratin filaments. Consistent with increased Rho activity in the KO, there is increased subapical expression of activated myosin II (Myo2) based on localization of phosphorylated Myo2 regulatory light chain. Except for a delay in disease onset in the KO, no difference in dextran sulfate sodium-induced colitis and lethality was observed between wild-type and Myo9b KO mice. © 2016 Wiley Periodicals, Inc. PMID:26972322

  13. Effects of intraepithelial lymphocyte-derived cytokines on intestinal mucosal barrier function.

    PubMed

    Qiu, Yuan; Yang, Hua

    2013-10-01

    The mucosal surface of the gastrointestinal tract directly interacts with the mucosal lumen, which is continuously exposed to foreign antigens. Specialized intraepithelial lymphocytes (IELs), located between the basolateral surfaces of the epithelial cells, are important as the first line of defense against microbes as well as for their role in the maintenance of epithelial barrier homeostasis. Although IELs are mainly composed of T cells, they are phenotypically and functionally distinct from T cells in peripheral blood or the spleen. Not only are IELs stimulated by the antigens of the intestinal lumen but are they also stimulated by regulatory immune cells. The integrity of the intestinal mucosal barrier is closely tied to the IEL function. Cytokines produced by IELs modulate the cellular functions that trigger the downstream signaling pathways and mediate the barrier homeostasis. In this review, we will address the broad spectrum of cytokines that are derived from IELs and the functional regulation of these cytokines on the intestinal barrier. PMID:23692551

  14. Nivalenol Has a Greater Impact than Deoxynivalenol on Pig Jejunum Mucosa in Vitro on Explants and in Vivo on Intestinal Loops

    PubMed Central

    Cheat, Sophal; Gerez, Juliana R.; Cognié, Juliette; Alassane-Kpembi, Imourana; Bracarense, Ana Paula F. L.; Raymond-Letron, Isabelle; Oswald, Isabelle P.; Kolf-Clauw, Martine

    2015-01-01

    The mycotoxins deoxynivalenol (DON) and nivalenol (NIV), worldwide cereal contaminants, raise concerns for animal and human gut health, following contaminated food or feed ingestion. The impact of DON and NIV on intestinal mucosa was investigated after acute exposure, in vitro and in vivo. The histological changes induced by DON and NIV were analyzed after four-hour exposure on pig jejunum explants and loops, two alternative models. On explants, dose-dependent increases in the histological changes were induced by DON and NIV, with a two-fold increase in lesion severity at 10 µM NIV. On loops, NIV had a greater impact on the mucosa than DON. The overall proliferative cells showed 30% and 13% decrease after NIV and DON exposure, respectively, and NIV increased the proliferative index of crypt enterocytes. NIV also increased apoptosis at the top of villi and reduced by almost half the proliferative/apoptotic cell ratio. Lamina propria cells (mainly immune cells) were more sensitive than enterocytes (epithelial cells) to apoptosis induced by NIV. Our results demonstrate a greater impact of NIV than DON on the intestinal mucosa, both in vitro and in vivo, and highlight the need of a specific hazard characterization for NIV risk assessment. PMID:26035490

  15. Nivalenol has a greater impact than deoxynivalenol on pig jejunum mucosa in vitro on explants and in vivo on intestinal loops.

    PubMed

    Cheat, Sophal; Gerez, Juliana R; Cognié, Juliette; Alassane-Kpembi, Imourana; Bracarense, Ana Paula F L; Raymond-Letron, Isabelle; Oswald, Isabelle P; Kolf-Clauw, Martine

    2015-06-01

    The mycotoxins deoxynivalenol (DON) and nivalenol (NIV), worldwide cereal contaminants, raise concerns for animal and human gut health, following contaminated food or feed ingestion. The impact of DON and NIV on intestinal mucosa was investigated after acute exposure, in vitro and in vivo. The histological changes induced by DON and NIV were analyzed after four-hour exposure on pig jejunum explants and loops, two alternative models. On explants, dose-dependent increases in the histological changes were induced by DON and NIV, with a two-fold increase in lesion severity at 10 µM NIV. On loops, NIV had a greater impact on the mucosa than DON. The overall proliferative cells showed 30% and 13% decrease after NIV and DON exposure, respectively, and NIV increased the proliferative index of crypt enterocytes. NIV also increased apoptosis at the top of villi and reduced by almost half the proliferative/apoptotic cell ratio. Lamina propria cells (mainly immune cells) were more sensitive than enterocytes (epithelial cells) to apoptosis induced by NIV. Our results demonstrate a greater impact of NIV than DON on the intestinal mucosa, both in vitro and in vivo, and highlight the need of a specific hazard characterization for NIV risk assessment. PMID:26035490

  16. MyD88 adaptor-like (Mal) functions in the epithelial barrier and contributes to intestinal integrity via protein kinase C.

    PubMed

    Corr, S C; Palsson-McDermott, E M; Grishina, I; Barry, S P; Aviello, G; Bernard, N J; Casey, P G; Ward, J B J; Keely, S J; Dandekar, S; Fallon, P G; O'Neill, L A J

    2014-01-01

    MyD88 adapter-like (Mal)-deficient mice displayed increased susceptibility to oral but not intraperitoneal infection with Salmonella Typhimurium. Bone marrow chimeras demonstrated that mice with Mal-deficient non-hematopoietic cells were more susceptible to infection, indicating a role for Mal in non-myeloid cells. We observed perturbed barrier function in Mal(-/-) mice, as indicated by reduced electrical resistance and increased mucosa blood permeability following infection. Altered expression of occludin, Zonula occludens-1, and claudin-3 in intestinal epithelia from Mal(-/-) mice suggest that Mal regulates tight junction formation, which may in part contribute to intestinal integrity. Mal interacted with several protein kinase C (PKC) isoforms in a Caco-2 model of intestinal epithelia and inhibition of Mal or PKC increased permeability and bacterial invasion via a paracellular route, while a pan-PKC inhibitor increased susceptibility to oral infection in mice. Mal signaling is therefore beneficial to the integrity of the intestinal barrier during infection. PMID:23612054

  17. Antimicrobial peptide Cathelicidin-BF prevents intestinal barrier dysfunction in a mouse model of endotoxemia.

    PubMed

    Song, Deguang; Zong, Xin; Zhang, Haiwen; Wang, Tenghao; Yi, Hongbo; Luan, Chao; Wang, Yizhen

    2015-03-01

    Intestinal barrier functions are altered during the development of sepsis. Cathelicidin antimicrobial peptides, such as LL-37 and mCRAMP, can protect animals against intestinal barrier dysfunction. Cathelicidin-BF (C-BF), a new cathelicidin peptide purified from the venom of the snake Bungarus fasciatus, has been shown to have both antimicrobial and anti-inflammatory properties. This study investigated whether C-BF pretreatment could protect the intestinal barrier against dysfunction in a mouse model of endotoxemia, induced by intraperitoneal injection of LPS (10mg/kg). Mice were treated with low or high dose C-BF before treatment with LPS, and samples were collected 5h after LPS treatment. C-BF reduced LPS induced intestinal histological damage and gut permeability to 4 KD Fluorescein-isothiocyanate-conjugated dextran. Pretreatment with C-BF prevented LPS induced intestinal tight junction disruption and epithelial cell apoptosis. Moreover, C-BF down regulated the expression and secretion of TNF-α, a process involving the NF-κB signaling pathway. C-BF also reduced LPS induced TNF-α expression through the NF-κB signaling pathway in mouse RAW 264.7 macrophages. These findings indicate that C-BF can prevent gut barrier dysfunction induced by LPS, suggesting that C-BF may be used to develop a prophylactic agent for intestinal injury in endotoxemia. PMID:25639228

  18. Probing the immune and healing response of murine intestinal mucosa by time-lapse 2-photon microscopy of laser-induced lesions with real-time dosimetry

    PubMed Central

    Orzekowsky-Schroeder, Regina; Klinger, Antje; Freidank, Sebastian; Linz, Norbert; Eckert, Sebastian; Hüttmann, Gereon; Gebert, Andreas; Vogel, Alfred

    2014-01-01

    Gut mucosa is an important interface between body and environment. Immune response and healing processes of murine small intestinal mucosa were investigated by intravital time-lapse two-photon excited autofluorescence microscopy of the response to localized laser-induced damage. Epithelial lesions were created by 355-nm, 500-ps pulses from a microchip laser that produced minute cavitation bubbles. Size and dynamics of these bubbles were monitored using a novel interferometric backscattering technique with 80 nm resolution. Small bubbles (< 2.5 µm maximum radius) merely resulted in autofluorescence loss of the target cell. Larger bubbles (7-25 µm) affected several cells and provoked immigration of immune cells (polymorphonuclear leucocytes). Damaged cells were expelled into the lumen, and the epithelium healed within 2 hours by stretching and migration of adjacent epithelial cells. PMID:25360369

  19. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers.

    PubMed

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  20. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    PubMed Central

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  1. Evaluation of intestinal absorption enhancement and local mucosal toxicity of two promoters. I. Studies in isolated rat and human colonic mucosae.

    PubMed

    Maher, Sam; Kennelly, Rory; Bzik, Victoria A; Baird, Alan W; Wang, Xuexuan; Winter, Desmond; Brayden, David J

    2009-11-01

    The effects of two absorption promoters, (sodium caprate (C(10)) and melittin), on intestinal permeability and viability were measured in intact rat and human colonic epithelia mounted in Ussing chambers. Apical-side addition of C(10) (10 mM) and melittin (10-50 microM) rapidly reduced the transepithelial electrical resistance (TEER) and increased the apparent permeability coefficient (Papp) of [(14)C]-mannitol and FITC-dextran-4 kDa (FD4) across colonic mucosae from both species. Effects of C(10) on flux were greater than those of melittin at the concentrations selected. C(10) irreversibly decreased TEER, but the effects of melittin were partially reversible. Enhanced permeability of polar sugars (0.18-70 kDa) in colonic mucosae with C(10) was accompanied by significant release of lactate dehydrogenase (LDH) from the luminal surface as well as by inhibition of electrogenic chloride secretion induced by the muscarinic agonist, carbachol (0.1-10 microM). Although melittin did not alter electrogenic chloride secretion in rat or human colonic mucosae, it caused leakage of LDH from rat tissue. Gross histology and electron microscopy of rat and human colonic mucosae demonstrated that each permeation enhancer can induce colonic epithelial damage at concentrations required to increase marker fluxes. C(10) led to more significant mucosal damage than melittin, characterised by sloughing and mucosal erosion. Overall, these results indicate that while C(10) and melittin increase transport of paracellular flux markers across isolated human and rat colonic mucosae in vitro, these effects are associated with some cytotoxicity. PMID:19737613

  2. Candida albicans infection leads to barrier breakdown and a MAPK/NF-κB mediated stress response in the intestinal epithelial cell line C2BBe1.

    PubMed

    Böhringer, Michael; Pohlers, Susann; Schulze, Sylvie; Albrecht-Eckardt, Daniela; Piegsa, Judith; Weber, Michael; Martin, Ronny; Hünniger, Kerstin; Linde, Jörg; Guthke, Reinhard; Kurzai, Oliver

    2016-07-01

    Intestinal epithelial cells (IEC) form a tight barrier to the gut lumen. Paracellular permeability of the intestinal barrier is regulated by tight junction proteins and can be modulated by microorganisms and other stimuli. The polymorphic fungus Candida albicans, a frequent commensal of the human mucosa, has the capacity of traversing this barrier and establishing systemic disease within the host. Infection of polarized C2BBe1 IEC with wild-type C. albicans led to a transient increase of transepithelial electric resistance (TEER) before subsequent barrier disruption, accompanied by a strong decline of junctional protein levels and substantial, but considerably delayed cytotoxicity. Time-resolved microarray-based transcriptome analysis of C. albicans challenged IEC revealed a prominent role of NF-κB and MAPK signalling pathways in the response to infection. Hence, we inferred a gene regulatory network based on differentially expressed NF-κB and MAPK pathway components and their predicted transcriptional targets. The network model predicted activation of GDF15 by NF-κB was experimentally validated. Furthermore, inhibition of NF-κB activation in C. albicans infected C2BBe1 cells led to enhanced cytotoxicity in the epithelial cells. Taken together our study identifies NF-κB activation as an important protective signalling pathway in the response of epithelial cells to C. albicans. PMID:26752615

  3. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    SciTech Connect

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-05-15

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  4. [Barrier- and autophagic functions of the intestinal epithelia: role of disturbances in the pathogenesis of Crohn's disease].

    PubMed

    Lapis, Károly

    2010-10-01

    Crohn's disease is a widely known debilitating chronic inflammatory disease, mostly affecting terminal ileum and/or colon. Epidemiological, familial and twin studies suggest that genetic factors play an important role in susceptibility to the disease. Clinical observations suggest that ill-defined environmental factors also play a part. Advances in molecular genotyping technology, statistical methodologies, bioinformatics and the combined use of them in genome wide scanning and association studies resulted in the identification of more than 30 susceptibility genes and loci associated with Crohn's disease and revealed and highlighted a number of new previously unsuspected pathways playing a role in the pathogenesis of Crohn's disease. Close association of the disease with polymorphisms in the genes encoding the pattern recognition receptors particularly the NOD2 protein, the Wnt pathway transcription factor Tcf4 (also known as TCFL2) and the autophagic regulator ATG16L1 have been found. The polymorphisms involved are associated with decreased defensin production (defensin deficiency) which can lead to changes in the composition of the commensal microbial flora, defects in the intestinal barrier functions and bacterial invasion of the mucosa. Other recently recognized consequences of the polymorphisms involving the genes encoding NOD2 and ATG16L1 proteins are that the truncated NOD2 protein is unable to induce autophagy and this protein, just like the ATG16L1 T300A mutant protein, leads to failure adequately to destroy phagocytosed bacteria. The consequence is persisting low level infection, chronic intestinal inflammation, tissue injury and the clinical symptoms of the disease. Thus, Crohn's disease can be seen to be caused by defects in the innate immune defense, in particular defects in bacterial processing and clearance. The accumulated evidence suggests that Crohn's disease is associated with an exaggerated adaptive immune response to the persisting intestinal

  5. Yersinia enterocolitica Affects Intestinal Barrier Function in the Colon.

    PubMed

    Hering, Nina A; Fromm, Anja; Kikhney, Judith; Lee, In-Fah M; Moter, Annette; Schulzke, Jörg D; Bücker, Roland

    2016-04-01

    Infection with Yersinia enterocolitica causes acute diarrhea in early childhood. A mouse infection model presents new findings on pathological mechanisms in the colon. Symptoms involve diarrhea with watery feces and weight loss that have their functional correlates in decreased transepithelial electrical resistance and increased fluorescein permeability. Y. enterocolitica was present within the murine mucosa of both ileum and colon. Here, the bacterial insult was of focal nature and led to changes in tight junction protein expression and architecture. These findings are in concordance with observations from former cell culture studies and suggest a leak flux mechanism of diarrhea. PMID:26621910

  6. Effects of l-carnitine and/or maize distillers dried grains with solubles in diets of gestating and lactating sows on the intestinal barrier functions of their offspring.

    PubMed

    Wei, Bingdong; Nie, Shaoping; Meng, Qingwei; Qu, Zhe; Shan, Anshan; Chen, Zhihui

    2016-08-01

    The objective of this study was to investigate the effects of l-carnitine and/or maize distillers dried grains with solubles (DDGS) in diets of gestating and lactating sows on the intestinal barrier functions of their offspring. The experiment was designed as a 2×2 factorial with two dietary treatments (soyabean meal v. DDGS) and two l-carnitine levels (0 v. 100 mg/kg in gestating diets and 0 v. 200 mg/kg in lactating diets). Sows (Landrace×Large White) with an average parity of 4·2 with similar body weight were randomly assigned to four groups of thirty each. Dietary supplementation with l-carnitine increased the total superoxide dismutase activity but decreased the concentration of malondialdehyde of the jejunal mucosa in newborn piglets and weaning piglets on day 21. Dietary supplementation with l-carnitine decreased the concentrations of IL-1β, IL-12 and TNF-α in the jejunal mucosa of newborn piglets and decreased the concentrations of IL-6 and TNF-α in the jejunal mucosa of weaning piglets on day 21. There was an interaction between dietary treatment and l-carnitine on the bacterial numbers of total eubacteria in the digesta of caecum in weaning piglets on day 21. Bacterial numbers of total eubacteria in weaning piglets on day 21 were significantly increased by l-carnitine only in soyabean meal diet, but there was no significant effect of l-carnitine in DDGS-based diet. Dietary supplementation with l-carnitine increased the bacterial numbers of Lactobacillus spp. and bifidobacteria spp. in the digesta of caecum in weaning piglets on day 21. Dietary supplementation with l-carnitine in sows affected the expression of tight junction proteins (claudin 1, zonula occludens-1 (ZO-1) and occludin) in the jejunal mucosa of their offspring by increasing the expression of ZO-1 mRNA in the jejunal mucosa of newborn piglets, and by increasing the expression of ZO-1 and occludin mRNA in the jejunal mucosa of weaning piglets on day 21. In conclusion, dietary

  7. Intestinal barrier: A gentlemen’s agreement between microbiota and immunity

    PubMed Central

    Caricilli, Andrea Moro; Castoldi, Angela; Câmara, Niels Olsen Saraiva

    2014-01-01

    Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host’s adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine, specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses. The diversity and the composition of the microbiota, thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junction proteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review, we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier. PMID:24891972

  8. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction

    PubMed Central

    Katzenberger, Rebeccah J; Chtarbanova, Stanislava; Rimkus, Stacey A; Fischer, Julie A; Kaur, Gulpreet; Seppala, Jocelyn M; Swanson, Laura C; Zajac, Jocelyn E; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood–brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction. DOI: http://dx.doi.org/10.7554/eLife.04790.001 PMID:25742603

  9. Effects of acute intra-abdominal hypertension on multiple intestinal barrier functions in rats

    PubMed Central

    Leng, Yuxin; Yi, Min; Fan, Jie; Bai, Yu; Ge, Qinggang; Yao, Gaiqi

    2016-01-01

    Intra-abdominal hypertension (IAH) is a common and serious complication in critically ill patients for which there is no well-defined treatment strategy. Here, we explored the effect of IAH on multiple intestinal barriers and discussed whether the alteration in microflora provides clues to guide the rational therapeutic treatment of intestinal barriers during IAH. Using a rat model, we analysed the expression of tight junction proteins (TJs), mucins, chemotactic factors, and Toll-like receptor 4 (TLR4) by immunohistochemistry. We also analysed the microflora populations using 16S rRNA sequencing. We found that, in addition to enhanced permeability, acute IAH (20 mmHg for 90 min) resulted in significant disturbances to mucosal barriers. Dysbiosis of the intestinal microbiota was also induced, as represented by decreased Firmicutes (relative abundance), increased Proteobacteria and migration of Bacteroidetes from the colon to the jejunum. At the genus level, Lactobacillus species and Peptostreptococcaceae incertae sedis were decreased, whereas levels of lactococci remained unchanged. Our findings outline the characteristics of IAH-induced barrier changes, indicating that intestinal barriers might be treated to alleviate IAH, and the microflora may be an especially relevant target. PMID:26980423

  10. Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora.

    PubMed Central

    Johansson, M L; Molin, G; Jeppsson, B; Nobaek, S; Ahrné, S; Bengmark, S

    1993-01-01

    In vivo colonization by different Lactobacillus strains on human intestinal mucosa of healthy volunteers was studied together with the effect of Lactobacillus administration on different groups of indigenous bacteria. A total of 19 test strains were administered in fermented oatmeal soup containing 5 x 10(6) CFU of each strain per ml by using a dose of 100 ml of soup per day for 10 days. Biopsies were taken from both the upper jejunum and the rectum 1 day before administration was started and 1 and 11 days after administration was terminated. The administration significantly increased the Lactobacillus counts on the jejunum mucosa, and high levels remained 11 days after administration was terminated. The levels of streptococci increased by 10- to 100-fold in two persons, and the levels of sulfite-reducing clostridia in the jejunum decreased by 10- to 100-fold in three of the volunteers 1 day after administration was terminated. In recta, the anaerobic bacterium counts and the gram-negative anaerobic bacterium counts decreased significantly by the end of administration. Furthermore, a decrease in the number of members of the Enterobacteriaceae by 1,000-fold was observed on the rectal mucosa of two persons. Randomly picked Lactobacillus isolates were identified phenotypically by API 50CH tests and genotypically by the plasmid profiles of strains and by restriction endonuclease analysis of chromosomal DNAs.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8439146

  11. LIGHT signals directly to intestinal epithelia to cause barrier dysfunction via cytoskeletal and endocytic mechanisms

    PubMed Central

    Schwarz, Brad T.; Wang, Fengjun; Shen, Le; Clayburgh, Daniel R.; Su, Liping; Wang, Yingmin; Fu, Yang-Xin; Turner, Jerrold R.

    2009-01-01

    BACKGROUND & AIMS LIGHT (lymphotoxin-like inducible protein that competes with glycoprotein D for herpes virus entry on T cells) is a TNF core family member that regulates T cell activation and causes experimental inflammatory bowel disease. Additional data suggest that LIGHT may be involved in the pathogenesis of human inflammatory bowel disease. The aim of this study was to determine if LIGHT was capable of signaling directly to intestinal epithelia and to define the mechanisms and consequences of such signaling. METHODS The effects of LIGHT and interferon-γ (IFN-γ) on barrier function, cytoskeletal regulation, and tight junction structure were assessed in mice and intestinal epithelial monolayers. RESULTS LIGHT induced barrier loss in cultured epithelia via myosin II regulatory light chain (MLC) phosphorylation; both barrier loss and MLC phosphorylation were reversed by MLC kinase (MLCK) inhibition. IFN-γ pretreatment, which induced lymphotoxin β receptor (LTβR) expression, was required for these effects and neither barrier dysfunction nor intestinal epithelial MLC phosphorylation occurred in LTβR-knockout mice. In cultured monolayers, endocytosis of the tight junction protein occludin correlated with barrier loss. Internalized occludin co-localized with caveolin-1. LIGHT-induced occludin endocytosis and barrier loss were both prevented by inhibition of caveolar endocytosis. CONCLUSIONS T cell-derived LIGHT activates intestinal epithelial LTβR to disrupt barrier function. This requires MLCK activation and caveolar endocytosis. These data suggest a novel role for LIGHT in disease pathogenesis and suggest that inhibition of MLCK-dependent caveolar endocytosis may represent an approach to restoring barrier function in inflammatory bowel disease. PMID:17570213

  12. Barrier function of the nasal mucosa in health and type-2 biased airway diseases.

    PubMed

    Zhang, N; Van Crombruggen, K; Gevaert, E; Bachert, C

    2016-03-01

    The mucosal lining of the upper airways represents the outer surface of the body to the ambient air and its contents and is prepared for it as the first line of defense. Apart from the well-described physical barrier and the mucociliary clearance, a variety of systems, including the airway microbiome, antimicrobial proteins, damage-associated molecular patterns, innate lymphoid cells, epithelial-derived cytokines and chemokines, and finally the adaptive immune system, as well as eosinophils as newly appreciated defense cells form different levels of protection against and response to any possible intruder. Of interest especially for allergic airway disease, mucosal germs might not just elicit a classical Th1/Th17-biased inflammatory response, but may directly induce a type-2 mucosal inflammation. Innovative therapeutic interventions may be possible at different levels also; however, whether modulations of the innate or adaptive immune responses will finally be more successful, and how the correction of the adaptive immune response might impact on the innate side, will be determined in the near future. PMID:26606240

  13. Electroacupuncture at Bilateral Zusanli Points (ST36) Protects Intestinal Mucosal Immune Barrier in Sepsis.

    PubMed

    Zhu, Mei-Fei; Xing, Xi; Lei, Shu; Wu, Jian-Nong; Wang, Ling-Cong; Huang, Li-Quan; Jiang, Rong-Lin

    2015-01-01

    Sepsis results in high morbidity and mortality. Immunomodulation strategies could be an adjunctive therapy to treat sepsis. Acupuncture has also been used widely for many years in China to treat sepsis. However, the underlying mechanisms are not well-defined. We demonstrated here that EA preconditioning at ST36 obviously ameliorated CLP-induced intestinal injury and high permeability and reduced the mortality of CLP-induced sepsis rats. Moreover, electroacupuncture (EA) pretreatment exerted protective effects on intestinal mucosal immune barrier by increasing the concentration of sIgA and the percentage of CD3+, γ/δ, and CD4+ T cells and the ratio of CD4+/CD8+ T cells. Although EA at ST36 treatments immediately after closing the abdomen in the CLP procedure with low-frequency or high-frequency could not reduce the mortality of CLP-induced sepsis in rats, these EA treatments could also significantly improve intestinal injury index in rats with sepsis and obviously protected intestinal mucosal immune barrier. In conclusion, our findings demonstrated that EA at ST36 could improve intestinal mucosal immune barrier in sepsis induced by CLP, while the precise mechanism underlying the effects needs to be further elucidated. PMID:26346309

  14. Anthrax lethal toxin disrupts intestinal barrier function and causes systemic infections with enteric bacteria.

    PubMed

    Sun, Chen; Fang, Hui; Xie, Tao; Auth, Roger D; Patel, Nayana; Murray, Patrick R; Snoy, Philip J; Frucht, David M

    2012-01-01

    A variety of intestinal pathogens have virulence factors that target mitogen activated protein kinase (MAPK) signaling pathways, including Bacillus anthracis. Anthrax lethal toxin (LT) has specific proteolytic activity against the upstream regulators of MAPKs, the MAPK kinases (MKKs). Using a murine model of intoxication, we show that LT causes the dose-dependent disruption of intestinal epithelial integrity, characterized by mucosal erosion, ulceration, and bleeding. This pathology correlates with an LT-dependent blockade of intestinal crypt cell proliferation, accompanied by marked apoptosis in the villus tips. C57BL/6J mice treated with intravenous LT nearly uniformly develop systemic infections with commensal enteric organisms within 72 hours of administration. LT-dependent intestinal pathology depends upon its proteolytic activity and is partially attenuated by co-administration of broad spectrum antibiotics, indicating that it is both a cause and an effect of infection. These findings indicate that targeting of MAPK signaling pathways by anthrax LT compromises the structural integrity of the mucosal layer, serving to undermine the effectiveness of the intestinal barrier. Combined with the well-described immunosuppressive effects of LT, this disruption of the intestinal barrier provides a potential mechanism for host invasion via the enteric route, a common portal of entry during the natural infection cycle of Bacillus anthracis. PMID:22438953

  15. Zinc’s impact on intestinal barrier function and zinc trafficking during coccidial caccine challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to evaluate the effects of Zn supplementation on intestinal barrier function and Zn trafficking, three dietary regimens were formulated: a basal corn/SBM diet formulated with a Zn-free vitamin/mineral premix (Basal), and two Zn regimens formulated to provide 90 mg/kg total dietary Zn from ...

  16. Probiotics Prevent Intestinal Barrier Dysfunction in Acute Pancreatitis in Rats via Induction of Ileal Mucosal Glutathione Biosynthesis

    PubMed Central

    Lutgendorff, Femke; Nijmeijer, Rian M.; Sandström, Per A.; Trulsson, Lena M.; Magnusson, Karl-Eric; Timmerman, Harro M.; van Minnen, L. Paul; Rijkers, Ger T.; Gooszen, Hein G.; Akkermans, Louis M. A.; Söderholm, Johan D.

    2009-01-01

    Background During acute pancreatitis (AP), oxidative stress contributes to intestinal barrier failure. We studied actions of multispecies probiotics on barrier dysfunction and oxidative stress in experimental AP. Methodology/Principal Findings Fifty-three male Spraque-Dawley rats were randomly allocated into five groups: 1) controls, non-operated, 2) sham-operated, 3) AP, 4) AP and probiotics and 5) AP and placebo. AP was induced by intraductal glycodeoxycholate infusion and intravenous cerulein (6 h). Daily probiotics or placebo were administered intragastrically, starting five days prior to AP. After cerulein infusion, ileal mucosa was collected for measurements of E. coli K12 and 51Cr-EDTA passage in Ussing chambers. Tight junction proteins were investigated by confocal immunofluorescence imaging. Ileal mucosal apoptosis, lipid peroxidation, and glutathione levels were determined and glutamate-cysteine-ligase activity and expression were quantified. AP-induced barrier dysfunction was characterized by epithelial cell apoptosis and alterations of tight junction proteins (i.e. disruption of occludin and claudin-1 and up-regulation of claudin-2) and correlated with lipid peroxidation (r>0.8). Probiotic pre-treatment diminished the AP-induced increase in E. coli passage (probiotics 57.4±33.5 vs. placebo 223.7±93.7 a.u.; P<0.001), 51Cr-EDTA flux (16.7±10.1 vs. 32.1±10.0 cm/s10−6; P<0.005), apoptosis, lipid peroxidation (0.42±0.13 vs. 1.62±0.53 pmol MDA/mg protein; P<0.001), and prevented tight junction protein disruption. AP-induced decline in glutathione was not only prevented (14.33±1.47 vs. 8.82±1.30 nmol/mg protein, P<0.001), but probiotics even increased mucosal glutathione compared with sham rats (14.33±1.47 vs. 10.70±1.74 nmol/mg protein, P<0.001). Glutamate-cysteine-ligase activity, which is rate-limiting in glutathione biosynthesis, was enhanced in probiotic pre-treated animals (probiotics 2.88±1.21 vs. placebo 1.94±0.55 nmol/min/mg protein; P<0

  17. Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation.

    PubMed

    Luettig, J; Rosenthal, R; Barmeyer, C; Schulzke, J D

    2015-01-01

    The epithelial tight junction determines the paracellular water and ion movement in the intestine and also prevents uptake of larger molecules, including antigens, in an uncontrolled manner. Claudin-2, one of the 27 mammalian claudins regulating that barrier function, forms a paracellular channel for small cations and water. It is typically expressed in leaky epithelia like proximal nephron and small intestine and provides a major pathway for the paracellular transport of sodium, potassium, and fluid. In intestinal inflammation (Crohn's disease, ulcerative colitis), immune-mediated diseases (celiac disease), and infections (HIV enteropathy), claudin-2 is upregulated in small and large intestine and contributes to diarrhea via a leak flux mechanism. In parallel to that upregulation, other epithelial and tight junctional features are altered and the luminal uptake of antigenic macromolecules is enhanced, for which claudin-2 may be partially responsible through induction of tight junction strand discontinuities. PMID:25838982

  18. Effect of Polysaccharides from Acanthopanax senticosus on Intestinal Mucosal Barrier of Escherichia coli Lipopolysaccharide Challenged Mice.

    PubMed

    Han, Jie; Xu, Yunhe; Yang, Di; Yu, Ning; Bai, Zishan; Bian, Lianquan

    2016-01-01

    To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) in preventing lipopolysaccharide (LPS)-induced intestinal injury, 18 mice (at 5 wk of age) were assigned to three groups with 6 replicates of one mouse each. Mice were administrated by oral gavage with or without ASPS (300 mg/kg body weight) for 14 days and were injected with saline or LPS at 15 days. Intestinal samples were collected at 4 h post-challenge. The results showed that ASPS ameliorated LPS-induced deterioration of digestive ability of LPS-challenged mice, indicated by an increase in intestinal lactase activity (45%, p<0.05), and the intestinal morphology, as proved by improved villus height (20.84%, p<0.05) and villus height:crypt depth ratio (42%, p<0.05), and lower crypt depth in jejunum (15.55%, p<0.05), as well as enhanced intestinal tight junction proteins expression involving occludin-1 (71.43%, p<0.05). ASPS also prevented intestinal inflammation response, supported by decrease in intestinal inflammatory mediators including tumor necrosis factor α (22.28%, p<0.05) and heat shock protein (HSP70) (77.42%, p<0.05). In addition, intestinal mucus layers were also improved by ASPS, as indicated by the increase in number of goblet cells (24.89%, p<0.05) and intestinal trefoil peptide (17.75%, p<0.05). Finally, ASPS facilitated mRNA expression of epidermal growth factor (100%, p<0.05) and its receptor (200%, p<0.05) gene. These results indicate that ASPS can prevent intestinal mucosal barrier injury under inflammatory conditions, which may be associated with up-regulating gene mRNA expression of epidermal growth factor and its receptor. PMID:26732337

  19. Effect of Polysaccharides from Acanthopanax senticosus on Intestinal Mucosal Barrier of Escherichia coli Lipopolysaccharide Challenged Mice

    PubMed Central

    Han, Jie; Xu, Yunhe; Yang, Di; Yu, Ning; Bai, Zishan; Bian, Lianquan

    2016-01-01

    To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) in preventing lipopolysaccharide (LPS)-induced intestinal injury, 18 mice (at 5 wk of age) were assigned to three groups with 6 replicates of one mouse each. Mice were administrated by oral gavage with or without ASPS (300 mg/kg body weight) for 14 days and were injected with saline or LPS at 15 days. Intestinal samples were collected at 4 h post-challenge. The results showed that ASPS ameliorated LPS-induced deterioration of digestive ability of LPS-challenged mice, indicated by an increase in intestinal lactase activity (45%, p<0.05), and the intestinal morphology, as proved by improved villus height (20.84%, p<0.05) and villus height:crypt depth ratio (42%, p<0.05), and lower crypt depth in jejunum (15.55%, p<0.05), as well as enhanced intestinal tight junction proteins expression involving occludin-1 (71.43%, p<0.05). ASPS also prevented intestinal inflammation response, supported by decrease in intestinal inflammatory mediators including tumor necrosis factor α (22.28%, p<0.05) and heat shock protein (HSP70) (77.42%, p<0.05). In addition, intestinal mucus layers were also improved by ASPS, as indicated by the increase in number of goblet cells (24.89%, p<0.05) and intestinal trefoil peptide (17.75%, p<0.05). Finally, ASPS facilitated mRNA expression of epidermal growth factor (100%, p<0.05) and its receptor (200%, p<0.05) gene. These results indicate that ASPS can prevent intestinal mucosal barrier injury under inflammatory conditions, which may be associated with up-regulating gene mRNA expression of epidermal growth factor and its receptor. PMID:26732337

  20. Hydroxyethyl Starch (HES 130/0.4) Impairs Intestinal Barrier Integrity and Metabolic Function: Findings from a Mouse Model of the Isolated Perfused Small Intestine

    PubMed Central

    Dombrowsky, Heike; Zitta, Karina; Bein, Berthold; Krause, Thorsten; Goldmann, Torsten; Frerichs, Inez; Steinfath, Markus; Weiler, Norbert; Albrecht, Martin

    2015-01-01

    Background The application of hydroxyethyl starch (HES) for volume resuscitation is controversially discussed and clinical studies have suggested adverse effects of HES substitution, leading to increased patient mortality. Although, the intestine is of high clinical relevance and plays a crucial role in sepsis and inflammation, information about the effects of HES on intestinal function and barrier integrity is very scarce. We therefore evaluated the effects of clinically relevant concentrations of HES on intestinal function and barrier integrity employing an isolated perfused model of the mouse small intestine. Methods An isolated perfused model of the mouse small intestine was established and intestines were vascularly perfused with a modified Krebs-Henseleit buffer containing 3% Albumin (N=7) or 3% HES (130/0.4; N=7). Intestinal metabolic function (galactose uptake, lactate-to-pyruvate ratio), edema formation (wet-to-dry weight ratio), morphology (histological and electron microscopical analysis), fluid shifts within the vascular, lymphatic and luminal compartments, as well as endothelial and epithelial barrier permeability (FITC-dextran translocation) were evaluated in both groups. Results Compared to the Albumin group, HES perfusion did not significantly change the wet-to-dry weight ratio and lactate-to-pyruvate ratio. However, perfusing the small intestine with 3% HES resulted in a significant loss of vascular fluid (p<0.01), an increased fluid accumulation in the intestinal lumen (p<0.001), an enhanced translocation of FITC-dextran from the vascular to the luminal compartment (p<0.001) and a significantly impaired intestinal galactose uptake (p<0.001). Morphologically, these findings were associated with an aggregation of intracellular vacuoles within the intestinal epithelial cells and enlarged intercellular spaces. Conclusion A vascular perfusion with 3% HES impairs the endothelial and epithelial barrier integrity as well as metabolic function of the small

  1. GUCY2C opposes systemic genotoxic tumorigenesis by regulating AKT-dependent intestinal barrier integrity.

    PubMed

    Lin, Jieru Egeria; Snook, Adam Eugene; Li, Peng; Stoecker, Brian Arthur; Kim, Gilbert Won; Magee, Michael Sullivan; Garcia, Alex Vladimir Mejia; Valentino, Michael Anthony; Hyslop, Terry; Schulz, Stephanie; Waldman, Scott Arthur

    2012-01-01

    The barrier separating mucosal and systemic compartments comprises epithelial cells, annealed by tight junctions, limiting permeability. GUCY2C recently emerged as an intestinal tumor suppressor coordinating AKT1-dependent crypt-villus homeostasis. Here, the contribution of GUCY2C to barrier integrity opposing colitis and systemic tumorigenesis is defined. Mice deficient in GUCY2C (Gucy2c(-/-)) exhibited barrier hyperpermeability associated with reduced junctional proteins. Conversely, activation of GUCY2C in mice reduced barrier permeability associated with increased junctional proteins. Further, silencing GUCY2C exacerbated, while activation reduced, chemical barrier disruption and colitis. Moreover, eliminating GUCY2C amplified, while activation reduced, systemic oxidative DNA damage. This genotoxicity was associated with increased spontaneous and carcinogen-induced systemic tumorigenesis in Gucy2c(-/-) mice. GUCY2C regulated barrier integrity by repressing AKT1, associated with increased junction proteins occludin and claudin 4 in mice and Caco2 cells in vitro. Thus, GUCY2C defends the intestinal barrier, opposing colitis and systemic genotoxicity and tumorigenesis. The therapeutic potential of this observation is underscored by the emerging clinical development of oral GUCY2C ligands, which can be used for chemoprophylaxis in inflammatory bowel disease and cancer. PMID:22384056

  2. Binding Studies on Isolated Porcine Small Intestinal Mucosa and in vitro Toxicity Studies Reveal Lack of Effect of C. perfringens Beta-Toxin on the Porcine Intestinal Epithelium

    PubMed Central

    Roos, Simone; Wyder, Marianne; Candi, Ahmet; Regenscheit, Nadine; Nathues, Christina; van Immerseel, Filip; Posthaus, Horst

    2015-01-01

    Beta-toxin (CPB) is the essential virulence factor of C. perfringens type C causing necrotizing enteritis (NE) in different hosts. Using a pig infection model, we showed that CPB targets small intestinal endothelial cells. Its effect on the porcine intestinal epithelium, however, could not be adequately investigated by this approach. Using porcine neonatal jejunal explants and cryosections, we performed in situ binding studies with CPB. We confirmed binding of CPB to endothelial but could not detect binding to epithelial cells. In contrast, the intact epithelial layer inhibited CPB penetration into deeper intestinal layers. CPB failed to induce cytopathic effects in cultured polarized porcine intestinal epithelial cells (IPEC-J2) and primary jejunal epithelial cells. C. perfringens type C culture supernatants were toxic for cell cultures. This, however, was not inhibited by CPB neutralization. Our results show that, in the porcine small intestine, CPB primarily targets endothelial cells and does not bind to epithelial cells. An intact intestinal epithelial layer prevents CPB diffusion into underlying tissue and CPB alone does not cause direct damage to intestinal epithelial cells. Additional factors might be involved in the early epithelial damage which is needed for CPB diffusion towards its endothelial targets in the small intestine. PMID:25860161

  3. Tuning the inflammatory response to silver nanoparticles via quercetin in Caco-2 (co-)cultures as model of the human intestinal mucosa.

    PubMed

    Martirosyan, Alina; Grintzalis, Konstantinos; Polet, Madeleine; Laloux, Laurie; Schneider, Yves-Jacques

    2016-06-24

    Interaction of nanoparticles with food matrix components may cause unpredictable health complications. Using an improved Caco-2 cell-based in vitro (co-)culture model the potential of quercetin as one of the major food flavonoids to alter the effect of silver nanoparticles (Ag-NPs) <20 nm in the human intestinal mucosa at real life concentrations was investigated. Ag-NPs (15-90 μg/ml) decreased cell viability and reduced thiol groups, induced oxidative/nitrosative stress and lipid peroxidation and led to activity changes of various antioxidant enzymes after 3h exposure. The contribution of Ag(+) ions within the concentrations released from nanoparticles was shown to be less important, compared to Ag-NPs. While leading to inflammatory response in the intestines, Ag-NPs, paradoxically, also showed a potential anti-infammatory effect manifested in down-regulated IL-8 levels. Quercetin, co-administered with Ag-NPs, led to a reduction of cytotoxicity, oxidative stress, and recovered metabolic activity of Caco-2 cells, suggesting the protective effects of this flavonoid against the harmful effect of Ag-NPs. Quercetin not only alleviated the effect of Ag-NPs on the gastrointestinal cells, but also demonstrated a potential to serve as a tool for reversible modulation of intestinal permeability. PMID:27113704

  4. Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats.

    PubMed

    Braniste, Viorica; Jouault, Aurore; Gaultier, Eric; Polizzi, Arnaud; Buisson-Brenac, Claire; Leveque, Mathilde; Martin, Pascal G; Theodorou, Vassilia; Fioramonti, Jean; Houdeau, Eric

    2010-01-01

    Bisphenol A (BPA), a chemical estrogen widely used in the food-packaging industry and baby bottles, is recovered in human fluids (0.1-10 nM). Recent studies have reported that BPA is hormonally active at low doses, emphasizing the debate of a risk for human health. Estrogen receptors are expressed in the colon, and although the major route of BPA exposure is food, the effects on gut have received no attention. We first examined the endocrine disrupting potency of BPA on colonic paracellular permeability (CPP), experimental colitis, and visceral sensitivity in ovariectomized rats orally exposed to 5 mg/kg/d BPA (i.e., the no observed adverse effect level), 50 microg/kg/d BPA (i.e., tolerable daily intake), or lower doses. BPA dose-dependently decreased basal CPP, with a half-maximal inhibitory dose of 5.2 microg/kg/d, 10-fold below the tolerable daily intake. This correlated with an increase in epithelial tight junction sealing, also observed in Caco-2 cells exposed to 10 nM BPA. When ovariectomized rats were fed with BPA at the no observed adverse effect level, the severity of colitis was reduced, whereas the same dose increased pain sensitivity to colorectal stimuli. We then examined the impact of perinatal exposure to BPA on intestinal permeability and inflammatory response in the offspring. In female rats, but not in male rats, perinatal BPA evoked a decrease of CPP in adulthood, whereas the proinflammatory response of colonic mucosa was strengthened. This study first demonstrates that the xenoestrogen BPA at reference doses influences intestinal barrier function and gut nociception. Moreover, perinatal exposure promotes the development of severe inflammation in adult female offspring only. PMID:20018722

  5. High therapeutic efficacy of Cathelicidin-WA against postweaning diarrhea via inhibiting inflammation and enhancing epithelial barrier in the intestine

    PubMed Central

    Yi, Hongbo; Zhang, Lin; Gan, Zhenshun; Xiong, Haitao; Yu, Caihua; Du, Huahua; Wang, Yizhen

    2016-01-01

    Diarrhea is a leading cause of death among young mammals, especially during weaning. Here, we investigated the effects of Cathelicidin-WA (CWA) on diarrhea, intestinal morphology, inflammatory responses, epithelial barrier and microbiota in the intestine of young mammals during weaning. Piglets with clinical diarrhea were selected and treated with saline (control), CWA or enrofloxacin (Enro) for 4 days. Both CWA and Enro effectively attenuated diarrhea. Compared with the control, CWA decreased IL-6, IL-8 and IL-22 levels and reduced neutrophil infiltration into the jejunum. CWA inhibited inflammation by down-regulating the TLR4-, MyD88- and NF-κB-dependent pathways. Additionally, CWA improved intestinal morphology by increasing villus and microvillus heights and enhancing intestinal barrier function by increasing tight junction (TJ) protein expression and augmenting wound-healing ability in intestinal epithelial cells. CWA also improved microbiota composition and increased short-chain fatty acid (SCFA) levels in feces. By contrast, Enro not only disrupted the intestinal barrier but also negatively affected microbiota composition and SCFA levels in the intestine. In conclusion, CWA effectively attenuated inflammation, enhanced intestinal barrier function, and improved microbiota composition in the intestines of weaned piglets. These results suggest that CWA could be an effective and safe therapy for diarrhea or other intestinal diseases in young mammals. PMID:27181680

  6. High therapeutic efficacy of Cathelicidin-WA against postweaning diarrhea via inhibiting inflammation and enhancing epithelial barrier in the intestine.

    PubMed

    Yi, Hongbo; Zhang, Lin; Gan, Zhenshun; Xiong, Haitao; Yu, Caihua; Du, Huahua; Wang, Yizhen

    2016-01-01

    Diarrhea is a leading cause of death among young mammals, especially during weaning. Here, we investigated the effects of Cathelicidin-WA (CWA) on diarrhea, intestinal morphology, inflammatory responses, epithelial barrier and microbiota in the intestine of young mammals during weaning. Piglets with clinical diarrhea were selected and treated with saline (control), CWA or enrofloxacin (Enro) for 4 days. Both CWA and Enro effectively attenuated diarrhea. Compared with the control, CWA decreased IL-6, IL-8 and IL-22 levels and reduced neutrophil infiltration into the jejunum. CWA inhibited inflammation by down-regulating the TLR4-, MyD88- and NF-κB-dependent pathways. Additionally, CWA improved intestinal morphology by increasing villus and microvillus heights and enhancing intestinal barrier function by increasing tight junction (TJ) protein expression and augmenting wound-healing ability in intestinal epithelial cells. CWA also improved microbiota composition and increased short-chain fatty acid (SCFA) levels in feces. By contrast, Enro not only disrupted the intestinal barrier but also negatively affected microbiota composition and SCFA levels in the intestine. In conclusion, CWA effectively attenuated inflammation, enhanced intestinal barrier function, and improved microbiota composition in the intestines of weaned piglets. These results suggest that CWA could be an effective and safe therapy for diarrhea or other intestinal diseases in young mammals. PMID:27181680

  7. Escherichia coli challenge and one type of smectite alter intestinal barrier of pigs

    PubMed Central

    2013-01-01

    An experiment was conducted to determine how an E. coli challenge and dietary clays affect the intestinal barrier of pigs. Two groups of 32 pigs (initial BW: 6.9 ± 1.0 kg) were distributed in a 2 × 4 factorial arrangement of a randomized complete block design (2 challenge treatments: sham or E. coli, and 4 dietary treatments: control, 0.3% smectite A, 0.3% smectite B and 0.3% zeolite), with 8 replicates total. Diarrhea score, growth performance, goblet cell size and number, bacterial translocation from intestinal lumen to lymph nodes, intestinal morphology, and relative amounts of sulfo and sialo mucins were measured. The E. coli challenge reduced performance, increased goblet cell size and number in the ileum, increased bacterial translocation from the intestinal lumen to the lymph nodes, and increased ileal crypt depth. One of the clays (smectite A) tended to increase goblet cell size in ileum, which may indicate enhanced protection. In conclusion, E. coli infection degrades intestinal barrier integrity but smectite A may enhance it. PMID:24359581

  8. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    SciTech Connect

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-06-15

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [{sup 3}H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [{sup 3}H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-{kappa}B, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  9. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    PubMed Central

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  10. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer.

    PubMed

    Fasano, Alessio

    2011-01-01

    The primary functions of the gastrointestinal tract have traditionally been perceived to be limited to the digestion and absorption of nutrients and to electrolytes and water homeostasis. A more attentive analysis of the anatomic and functional arrangement of the gastrointestinal tract, however, suggests that another extremely important function of this organ is its ability to regulate the trafficking of macromolecules between the environment and the host through a barrier mechanism. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier, with its intercellular tight junctions, controls the equilibrium between tolerance and immunity to non-self antigens. Zonulin is the only physiological modulator of intercellular tight junctions described so far that is involved in trafficking of macromolecules and, therefore, in tolerance/immune response balance. When the finely tuned zonulin pathway is deregulated in genetically susceptible individuals, both intestinal and extraintestinal autoimmune, inflammatory, and neoplastic disorders can occur. This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by reestablishing the zonulin-dependent intestinal barrier function. This review is timely given the increased interest in the role of a "leaky gut" in the pathogenesis of several pathological conditions targeting both the intestine and extraintestinal organs. PMID:21248165

  11. Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction

    PubMed Central

    Li, Yu-Meng; Wang, Hai-Bin; Zheng, Jin-Guang; Bai, Xiao-Dong; Zhao, Zeng-Kai; Li, Jing-Yuan; Hu, Sen

    2015-01-01

    AIM: To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome. METHODS: Sprague-Dawley rats were randomly divided into four groups: sham with administration of normal saline (SS group); sham with administration of DMSO (SD group); zymosan with administration of normal saline (ZS group); and zymosan with administration of DMSO (ZD group). Each group contained three subgroups according to 4 h, 8 h, and 24 h after surgery. At 4 h, 8 h, and 24 h after intraperitoneal injection of zymosan (750 mg/kg), the levels of intestinal inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-10] and oxides (myeloperoxidase, malonaldehyde, and superoxide dismutase) were examined. The levels of diamine oxidase (DAO) in plasma and intestinal mucosal blood flow (IMBF) were determined. Intestinal injury was also evaluated using an intestinal histological score and apoptosis of intestinal epithelial cells was determined by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The intestinal epithelial tight junction protein, ZO-1, was observed by immunofluorescence. RESULTS: DMSO decreased TNF-α and increased IL-10 levels in the intestine compared with the ZS group at the corresponding time points. The activity of intestinal myeloperoxidase in the ZS group was higher than that in the ZD group 24 h after zymosan administration (P < 0.05). DMSO decreased the content of malondialdehyde (MDA) and increased the activity of superoxide dehydrogenase (SOD) 24 h after zymosan administration. The IMBF was lowest at 24 h and was 49.34% and 58.26% in the ZS group and ZD group, respectively (P < 0.05). DMSO alleviated injury in intestinal villi, and the gut injury score was significantly lower than the ZS group (3.6 ± 0.2 vs 4.2 ± 0.3, P < 0.05). DMSO decreased the level of DAO in plasma compared with the ZS

  12. Partial Enteral Nutrition Mitigated Ischemia/Reperfusion-Induced Damage of Rat Small Intestinal Barrier

    PubMed Central

    Wu, Chao; Wang, Xinying; Jiang, Tingting; Li, Chaojun; Zhang, Li; Gao, Xuejin; Tian, Feng; Li, Ning; Li, Jieshou

    2016-01-01

    Background and Aims: This study was designed to investigate a relatively optimum dose of partial enteral nutrition (PEN) which effectively attenuates intestinal barrier dysfunction initiated by ischemia/reperfusion injury (IRI). Methods: In experiment 1, 60 male Sprague-Dawley (SD) rats were subjected to intestinal IRI and assigned to six groups according to the different proportion of EN administrations: namely total parenteral nutrition (TPN or 0%EN), 10%EN, 20%EN, 40%EN, 60%EN, and total enteral nutrition (TEN or 100%) groups, the deficits of intraluminal calorie were supplemented by PN. In experiment 2, 50 male SD rats were subjected to intestinal IRI and divided into five groups based on the results of experiment 1: TPN, TEN, 20%EN, TPN plus pretreatment with NF-κB antagonist 30 min before IRI (TPN+PDTC), and TPN plus pretreatment with HIF-1α antagonist 30 min before IRI (TPN+YC-1) groups. Results: In experiment 1, previous IRI combined with subsequent EN shortage disrupted the structure of intestinal epithelial cell and tight junctions (TJs). While 20% dose of EN had an obviously protective effect on these detrimental consequences. In experiment 2, compared with TPN only, 20%EN exerted a significant protection of barrier function of intestinal epithelium. Analogous results were observed when TPN combined with specific NF-κB/HIF-1α inhibitors (PDTC and YC-1). Meanwhile, the expression of NF-κB/HIF-1α had a similar trend among the groups. Conclusions: Our findings indicate that 20%EN is the minimally effective dosage of EN which promotes the recovery of intestinal barrier function after IRI in a rat model. Furthermore, we discreetly speculate that this benefit is, at least partly, related to NF-κB/HIF-1α pathway expression. PMID:27548209

  13. Impaired function of the intestinal barrier in a novel sub-health rat model

    PubMed Central

    FENG, SISI; LIU, WEIDONG; ZUO, SHENGNAN; XIE, TINGYAN; DENG, HUI; ZHANG, QIUHUAN; ZHONG, BAIYUN

    2016-01-01

    Sub-health is a state featuring a deterioration in physiological function between health and illness, and the sub-health condition has surfaced as life-threatening in humans. The aim of the present study was to establish a sub-health model in rats, and investigate the function of the intestinal barrier in the sub-health rats and rats following intervention. To establish a sub-health model, the rats were subjected to a high-fat and sugar diet, motion restriction and chronic stress. Their serum glucose and triglyceride levels, immune function and adaptability were then measured. The levels of diamine oxidase and D-lactic acid in the plasma were analyzed as markers of the intestinal permeability. The protein and mRNA expression levels of anti-apoptotic YWHAZ in the colonic tissue was detected using immunohistochemical and reverse transcription-quantitative polymerase chain reaction analyses In the present study, the sub-health rat model was successfully established, and sub-health factors increased the intestinal permeability and reduced the expression of YWHAZ. Providing sub-health rats with normal living conditions did not improve the function of the intestinal barrier. In conclusion, the results of the present study demonstrated that intestinal disorders in the sub-health rat model may result from the damage caused by reduce intestinal barrier function as well as the decreased expression levels of YWHAZ. Additionally, rats in the sub-health condition did not recover following subsequent exposure to normal living conditions, suggesting that certain exercises or medical intervention may be necessary to improve sub-health symptoms. PMID:26957295

  14. Casein glycomacropeptide in the diet may reduce Escherichia coli attachment to the intestinal mucosa and increase the intestinal lactobacilli of early weaned piglets after an enterotoxigenic E. coli K88 challenge.

    PubMed

    Gustavo Hermes, Rafael; Molist, Francesc; Francisco Pérez, José; Gómez de Segura, Arantza; Ywazaki, Mauro; Davin, Roger; Nofrarías, Miquel; Korhonen, Timo K; Virkola, Ritva; Martín-Orúe, Susana María

    2013-03-28

    Casein glycomacropeptide (CGMP), a glycoprotein originating during cheese manufacture, has shown promising effects by promoting the growth of some beneficial bacteria in vitro, although its activity has not been well explored. The present study was designed to evaluate the effects of CGMP against enterotoxigenic Escherichia coli (ETEC) K88 in vitro (Trial 1) and in vivo (Trial 2). In Trial 1, increasing concentrations of CGMP (0, 0.5, 1.5 or 2.5 mg/ml) were tested regarding its ability to block the attachment of ETEC K88 to ileal mucosa tissues obtained from piglets. Increasing the concentration of CGMP resulted in a gradual decrease in ETEC K88 attachment to the epithelial surface. In Trial 2, seventy-two piglets were distributed in a 2 × 2 factorial combination including or omitting CGMP in the diet (control diet v. CGMP) and challenged or not with ETEC K88 (yes v. no). Inclusion of CGMP increased crude protein, ammonia and isoacid concentrations in colon digesta. CGMP also increased lactobacilli numbers in ileum and colon digesta, and reduced enterobacteria counts in mucosa scrapings and the percentage of villi with E. coli adherence measured by fluorescence in situ hybridisation. The inclusion of CGMP in the diets of challenged animals also prevented the increase of enterobacteria in ileal digesta. We can conclude that CGMP may improve gut health by diminishing the adhesion of ETEC K88 to the intestinal mucosa, by increasing the lactobacilli population in the intestine and by reducing the overgrowth of enterobacteria in the digestive tract of piglets after an ETEC K88 challenge. PMID:22850079

  15. Experimental diabetes induces an early change in the level of the G-protein subunit, alpha i2, in rat intestinal mucosa.

    PubMed

    Lacombe, C R; Viallard, V P; Schaak, S A; Paris, H J

    1996-12-01

    This study was undertaken to investigate the consequences of diabetes on Gi-protein expression and alpha 2-adrenergic receptivity in rat intestinal mucosa. Experimental diabetes was induced by treatment with streptozotocin. Quantification of alpha i-subunits by immunoblotting demonstrated that the level of the G alpha i2 but not the G alpha i3 subunit was markedly decreased in jejunum and colon membranes from diabetic rats as compared to controls. Parallel assessment of sympathetic innervation was performed by determination of norepinephrine content, measurement of tyrosine hydroxylase and monoamine oxidase activities, and quantification of alpha 2-adrenergic receptors in the different segments. At this stage of diabetes (6 weeks after streptozotocin injection), none of these parameters was significantly modified. Consequently, the decrease in G alpha i2 amount appears to be independent of the neuropathy describe in later stages of diabetes. PMID:8985652

  16. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats

    PubMed Central

    Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun

    2015-01-01

    AIM: To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. METHODS: Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14th day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. RESULTS: In the rat model, jaundice was obvious, and the rats’ activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01). CONCLUSION: GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin. PMID:25593463

  17. Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol.

    PubMed

    Gu, Min Jeong; Song, Sun Kwang; Lee, In Kyu; Ko, Seongyeol; Han, Seung Eun; Bae, Suhan; Ji, Sang Yun; Park, Byung-Chul; Song, Ki-Duk; Lee, Hak-Kyo; Han, Seung Hyun; Yun, Cheol-Heui

    2016-01-01

    Intestinal barrier is the first line of defense inside the body and comprises intercellular tight junction (TJ) proteins that regulate paracellular permeability. Deoxynivalenol (DON), a fungal metabolite often found in the contaminated food of domestic animals, is known to impair intestinal barrier function and may be involved in intestinal inflammation. Unlike in humans and mice, the importance of Toll-like receptor (TLR) 2 expressed in porcine intestinal epithelial cells is largely unclear. Therefore, the aim of the present study was to investigate whether TLR2 stimulation enhances intestinal barrier function and protects against DON exposure. We found that the cells treated with TLR2 ligands decreased the epithelial barrier permeability and enhanced TJ protein expression in intestinal porcine epithelial cells (IPEC-J2). In addition, pretreatment with TLR2 ligand, including Pam3CSK4 (PCSK) and lipoteichoic acid from Bacillus subtilis, prevented DON-induced barrier dysfunction by increasing the expression of TJ proteins via the PI3K-Akt-dependent pathway. It is likely that the DON-disrupted intestinal barrier caused biological changes of immune cells in the lamina propria. Thus, we conducted co-culture of differentiated IPEC-J2 cells in the upper well together with peripheral blood mononuclear cells in the bottom well and found that apical TLR2 stimulation of IPEC-J2 cells could alleviate the reduction in cell survival and proliferation of immune cells. Conclusively, TLR2 signaling on intestinal epithelial cells may enhance intestinal barrier function and prevent DON-induced barrier dysfunction of epithelial cells. PMID:26857454

  18. Early weaning stress impairs development of mucosal barrier function in the porcine intestine

    PubMed Central

    Smith, Feli; Clark, Jessica E.; Overman, Beth L.; Tozel, Christena C.; Huang, Jennifer H.; Rivier, Jean E. F.; Blisklager, Anthony T.

    2010-01-01

    Early life stress is a predisposing factor for the development of chronic intestinal disorders in adult life. Here, we show that stress associated with early weaning in pigs leads to impaired mucosal barrier function. Early weaning (15- to 21-day weaning age) resulted in sustained impairment in intestinal barrier function, as indicated by reductions in jejunal transepithelial electrical resistance and elevations in mucosal-to-serosal flux of paracellular probes [3H]mannitol and [14C]inulin measured at 5 and 9 wk of age, compared with that shown in late-weaned pigs (23- to 28-day weaning age). Elevated baseline short-circuit current was observed in jejunum from early-weaned pigs and was shown to be mediated via enhanced Cl− secretion. Jejunal barrier dysfunction in early-weaned pigs coincided with increased lamina propria immune cell density particularly mucosal mast cells. The mast cell stabilizer drug sodium cromoglycolate ameliorated barrier dysfunction and hypersecretion in early-weaned pigs, demonstrating an important role of mast cells. Furthermore, activation of mast cells ex vivo with c48/80 and corticotrophin-releasing factor (CRF) in pig jejunum mounted in Ussing chambers induced barrier dysfunction and elevations in short-circuit current that were inhibited with mast cell protease inhibitors. Experiments in which selective CRF receptor antagonists were administered to early-weaned pigs revealed that CRF receptor 1 (CRFr1) activation mediates barrier dysfunction and hypersecretion, whereas CRFr2 activation may be responsible for novel protective properties in the porcine intestine in response to early life stress. PMID:19926814

  19. Fucoidan enhances intestinal barrier function by upregulating the expression of claudin-1

    PubMed Central

    Iraha, Atsushi; Chinen, Hiroshi; Hokama, Akira; Yonashiro, Takumi; Kinjo, Tetsu; Kishimoto, Kazuto; Nakamoto, Manabu; Hirata, Tetsuo; Kinjo, Nagisa; Higa, Futoshi; Tateyama, Masao; Kinjo, Fukunori; Fujita, Jiro

    2013-01-01

    AIM: To evaluate the protective effects of fucoidan on oxidative stress-induced barrier disruption in human intestinal epithelial cells. METHODS: In Caco-2 cell monolayer models, the disruption of barrier function by oxidative stress is mediated by H2O2. The integrity of polarized Caco-2 cell monolayers was determined by measuring the transepithelial resistance (TER) and permeability was estimated by measuring the paracellular transport of FITC-labeled 4-kDa dextran (FD4). The protective effects of fucoidan on epithelial barrier functions on polarized Caco-2 cell monolayers were evaluated by TER and FD4 flux. The expression of tight junction (TJ) proteins was assessed using reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence staining. RESULTS: Without H2O2 treatment, fucoidan significantly increased the TER compared to control (P < 0.05), indicating a direct enhancement of intestinal epithelial barrier function. Next, H2O2 disrupted the epithelial barrier function in a time-dependent manner. Fucoidan prevented the H2O2-induced destruction in a dose-dependent manner. Fucoidan significantly decreased H2O2-induced FD4 flux (P < 0.01), indicating the prevention of disruption in paracellular permeability. RT-PCR showed that Caco-2 cells endogenously expressed claudin-1 and -2, and occludin and that H2O2 reduced the mRNA expression of these TJ proteins. Treatment with fucoidan attenuated the reduction in the expressions of claudin-1 and claudin-2 but not occludin. Immunofluorescence staining revealed that the expression of claudin-1 was intact and high on the cell surface. H2O2 disrupted the integrity of claudin-1. Treatment with fucoidan dramatically attenuated the expression of claudin-1. CONCLUSION: Fucoidan enhanced intestinal epithelial barrier function by upregulating the expression of claudin-1. Thus, fucoidan may be an appropriate therapy for the treatment of inflammatory bowel diseases. PMID:24023493

  20. Trophic and cytoprotective nutrition for intestinal adaptation, mucosal repair, and barrier function.

    PubMed

    Ziegler, Thomas R; Evans, Mary E; Fernández-Estívariz, Concepción; Jones, Dean P

    2003-01-01

    Intestinal epithelial cell turnover (proliferation, migration, differentiation, and apoptosis) and gut barrier functions are dynamic processes that are markedly affected by nutritional status, the route of feeding, and the adequacy of specific nutrients in the diet. Emerging studies are defining potential therapeutic roles for specific nutrients and diet-derived compounds (including arginine, glutamate, glutamine, glutathione, glycine, vitamin A, zinc, and specific lipids) in gut mucosal turnover, repair, adaptation after massive bowel resection, and barrier function. The role and regulation of endogenous bowel flora in generating short-chain fatty acids from diet-derived fiber and other diet-derived compounds and the effects of these agents on gut function are increasingly being elucidated. Results of these investigations should define new nutritional methods for trophic and cytoprotective effects on the intestine in conditions such as inflammatory bowel disease, malnutrition, and short bowel syndrome. PMID:12626687

  1. Hypoxia-Inducible Factor 1–Dependent Induction of Intestinal Trefoil Factor Protects Barrier Function during Hypoxia

    PubMed Central

    Furuta, Glenn T.; Turner, Jerrold R.; Taylor, Cormac T.; Hershberg, Robert M.; Comerford, Katrina; Narravula, Sailaja; Podolsky, Daniel K.; Colgan, Sean P.

    2001-01-01

    Mucosal organs such as the intestine are supported by a rich and complex underlying vasculature. For this reason, the intestine, and particularly barrier-protective epithelial cells, are susceptible to damage related to diminished blood flow and concomitant tissue hypoxia. We sought to identify compensatory mechanisms that protect epithelial barrier during episodes of intestinal hypoxia. Initial studies examining T84 colonic epithelial cells revealed that barrier function is uniquely resistant to changes elicited by hypoxia. A search for intestinal-specific, barrier-protective factors revealed that the human intestinal trefoil factor (ITF) gene promoter bears a previously unappreciated binding site for hypoxia-inducible factor (HIF)-1. Hypoxia resulted in parallel induction of ITF mRNA and protein. Electrophoretic mobility shift assay analysis using ITF-specific, HIF-1 consensus motifs resulted in a hypoxia-inducible DNA binding activity, and loading cells with antisense oligonucleotides directed against the α chain of HIF-1 resulted in a loss of ITF hypoxia inducibility. Moreover, addition of anti-ITF antibody resulted in a loss of barrier function in epithelial cells exposed to hypoxia, and the addition of recombinant human ITF to vascular endothelial cells partially protected endothelial cells from hypoxia-elicited barrier disruption. Extensions of these studies in vivo revealed prominent hypoxia-elicited increases in intestinal permeability in ITF null mice. HIF-1–dependent induction of ITF may provide an adaptive link for maintenance of barrier function during hypoxia. PMID:11342587

  2. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    PubMed

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function. PMID:26966939

  3. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    PubMed Central

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A.; Topping, David L.

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health. PMID:27164138

  4. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling.

    PubMed

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A; Topping, David L

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health. PMID:27164138

  5. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease.

    PubMed

    Zimmerman, Noah P; Vongsa, Rebecca A; Wendt, Michael K; Dwinell, Michael B

    2008-07-01

    Chemokines, a large family of small chemoattractive cytokines, and their receptors play an integral role in the regulation of the immune response and homeostasis. The ability of chemokines to attract specific populations of immune cells sets them apart from other chemoattractants. Chemokines produced within the gastrointestinal mucosa are critical players in directing the balance between physiological and pathophysiological inflammation in health, inflammatory bowel disease (IBD), and the progression to colon cancer. In addition to the well-characterized role of chemokines in directed trafficking of immune cells to the gut mucosa, the expression of chemokine receptors on the cells of the epithelium makes them active participants in the chemokine signaling network. Recent findings demonstrate an important role for chemokines and chemokine receptors in epithelial barrier repair and maintenance as well as an intricate involvement in limiting metastasis of colonic carcinoma. Increased recognition of the association between barrier defects and inflammation and the subsequent progression to cancer in IBD thus implicates chemokines as key regulators of mucosal homeostasis and disease pathogenesis. PMID:18452220

  6. Detection of a fluorescent-labeled avidin-nucleic acid nanoassembly by confocal laser endomicroscopy in the microvasculature of chronically inflamed intestinal mucosa

    PubMed Central

    Buda, Andrea; Facchin, Sonia; Dassie, Elisa; Casarin, Elisabetta; Jepson, Mark A; Neumann, Helmut; Hatem, Giorgia; Realdon, Stefano; D’Incà, Renata; Sturniolo, Giacomo Carlo; Morpurgo, Margherita

    2015-01-01

    Inflammatory bowel diseases are chronic gastrointestinal pathologies causing great discomfort in both children and adults. The pathogenesis of inflammatory bowel diseases is not yet fully understood and their diagnosis and treatment are often challenging. Nanoparticle-based strategies have been tested in local drug delivery to the inflamed colon. Here, we have investigated the use of the novel avidin-nucleic acid nanoassembly (ANANAS) platform as a potential diagnostic carrier in an experimental model of inflammatory bowel diseases. Fluorescent- labeled ANANAS nanoparticles were administered to mice with chemically induced chronic inflammation of the large intestine. Localization of mucosal nanoparticles was assessed in vivo by dual-band confocal laser endomicroscopy. This technique enables characterization of the mucosal microvasculature and crypt architecture at subcellular resolution. Intravascular nanoparticle distribution was observed in the inflamed mucosa but not in healthy controls, demonstrating the utility of the combination of ANANAS and confocal laser endomicroscopy for highlighting intestinal inflammatory conditions. The specific localization of ANANAS in inflamed tissues supports the potential of this platform as a targeted carrier for bioactive moieties in the treatment of inflammatory bowel disease. PMID:25609952

  7. SPARC (secreted protein acidic and rich in cysteine) of the intestinal nematode Strongyloides ratti is involved in mucosa-associated parasite-host interaction.

    PubMed

    Anandarajah, Emmanuela M; Ditgen, Dana; Hansmann, Jan; Erttmann, Klaus D; Liebau, Eva; Brattig, Norbert W

    2016-06-01

    The secreted protein acidic and rich in cysteine (SPARC), found in the excretory/secretory products of Strongyloides ratti, is most strongly expressed in parasitic females. Since SPARC proteins are involved in the modulation of cell-matrix interactions, a role of the secreted S. ratti SPARC (Sr-SPARC) in the manifestation of the parasite in the host's intestine is postulated. The full-length cDNA of Sr-SPARC was identified and the protein was recombinantly expressed. The purified protein was biologically active, able to bind calcium, and to attach to mucosa-associated human cells. Addition of Sr-SPARC to an in vitro mucosal three-dimensional-cell culture model led to a time-dependent release of the cytokines TNF-α, IL-22, IL-10 and TSLP. Of importance, exposure with Sr-SPARC fostered wound closure in an intestinal epithelial cell model. Here, we demonstrate for the first time that SPARC released from the nematode is a multifunctional protein affecting the mucosal immune system. PMID:27268729

  8. Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier

    PubMed Central

    Gouyer, Valérie; Dubuquoy, Laurent; Robbe-Masselot, Catherine; Neut, Christel; Singer, Elisabeth; Plet, Ségolène; Geboes, Karel; Desreumaux, Pierre; Gottrand, Frédéric; Desseyn, Jean-Luc

    2015-01-01

    A weakening of the gut mucous barrier permits an increase in the access of intestinal luminal contents to the epithelial cells, which will trigger the inflammatory response. In inflammatory bowel diseases, there is an inappropriate and ongoing activation of the immune system, possibly because the intestinal mucus is less protective against the endogenous microflora. General strategies aimed at improving the protection of the intestinal epithelium are still missing. We generated a transgenic mouse that secreted a molecule consisting of 12 consecutive copies of a mucin domain into its intestinal mucus, which is believed to modify the mucus layer by establishing reversible interactions. We showed that the mucus gel was more robust and that mucin O-glycosylation was altered. Notably, the gut epithelium of transgenic mice housed a greater abundance of beneficial Lactobacillus spp. These modifications were associated with a reduced susceptibility of transgenic mice to chemically induced colitis. Furthermore, transgenic mice cleared faster Citrobacter rodentium bacteria which were orally given and mice were more protected against bacterial translocation induced by gavage with adherent–invasive Escherichia coli. Our data show that delivering the mucin CYS domain into the gut lumen strengthens the intestinal mucus blanket which is impaired in inflammatory bowel diseases. PMID:25974250

  9. Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier.

    PubMed

    Gouyer, Valérie; Dubuquoy, Laurent; Robbe-Masselot, Catherine; Neut, Christel; Singer, Elisabeth; Plet, Ségolène; Geboes, Karel; Desreumaux, Pierre; Gottrand, Frédéric; Desseyn, Jean-Luc

    2015-01-01

    A weakening of the gut mucous barrier permits an increase in the access of intestinal luminal contents to the epithelial cells, which will trigger the inflammatory response. In inflammatory bowel diseases, there is an inappropriate and ongoing activation of the immune system, possibly because the intestinal mucus is less protective against the endogenous microflora. General strategies aimed at improving the protection of the intestinal epithelium are still missing. We generated a transgenic mouse that secreted a molecule consisting of 12 consecutive copies of a mucin domain into its intestinal mucus, which is believed to modify the mucus layer by establishing reversible interactions. We showed that the mucus gel was more robust and that mucin O-glycosylation was altered. Notably, the gut epithelium of transgenic mice housed a greater abundance of beneficial Lactobacillus spp. These modifications were associated with a reduced susceptibility of transgenic mice to chemically induced colitis. Furthermore, transgenic mice cleared faster Citrobacter rodentium bacteria which were orally given and mice were more protected against bacterial translocation induced by gavage with adherent-invasive Escherichia coli. Our data show that delivering the mucin CYS domain into the gut lumen strengthens the intestinal mucus blanket which is impaired in inflammatory bowel diseases. PMID:25974250

  10. Mycotoxins Deoxynivalenol and Fumonisins Alter the Extrinsic Component of Intestinal Barrier in Broiler Chickens.

    PubMed

    Antonissen, Gunther; Van Immerseel, Filip; Pasmans, Frank; Ducatelle, Richard; Janssens, Geert P J; De Baere, Siegrid; Mountzouris, Konstantinos C; Su, Shengchen; Wong, Eric A; De Meulenaer, Bruno; Verlinden, Marc; Devreese, Mathias; Haesebrouck, Freddy; Novak, Barbara; Dohnal, Ilse; Martel, An; Croubels, Siska

    2015-12-23

    Deoxynivalenol (DON) and fumonisins (FBs) are secondary metabolites produced by Fusarium fungi that frequently contaminate broiler feed. The aim of this study was to investigate the impact of DON and/or FBs on the intestinal barrier in broiler chickens, more specifically on the mucus layer and antioxidative response to oxidative stress. One-day-old broiler chicks were divided into four groups, each consisting of eight pens of seven birds each, and were fed for 15 days either a control diet, a DON-contaminated diet (4.6 mg DON/kg feed), a FBs-contaminated diet (25.4 mg FB1 + FB2/kg feed), or a DON+FBs-contaminated diet (4.3 mg DON and 22.9 mg FB1 + FB2/kg feed). DON and FBs affected the duodenal mucus layer by suppressing intestinal mucin (MUC) 2 gene expression and altering the mucin monosaccharide composition. Both mycotoxins decreased gene expression of the intestinal zinc transporter (ZnT)-1 and regulated intracellular methionine homeostasis, which are both important for preserving the cell's critical antioxidant activity. Feeding a DON- and/or FBs-contaminated diet, at concentrations close to the European Union maximum guidance levels (5 mg DON and 20 mg FB1 + FB2/kg feed) changes the intestinal mucus layer and several intestinal epithelial antioxidative mechanisms. PMID:26632976

  11. Adaptive HIV-Specific B Cell-Derived Humoral Immune Defenses of the Intestinal Mucosa in Children Exposed to HIV via Breast-Feeding

    PubMed Central

    Moussa, Sandrine; Jenabian, Mohammad-Ali; Gody, Jean Chrysostome; Léal, Josiane; Grésenguet, Gérard; Le Faou, Alain; Bélec, Laurent

    2013-01-01

    Background We evaluated whether B cell-derived immune defenses of the gastro-intestinal tract are activated to produce HIV-specific antibodies in children continuously exposed to HIV via breast-feeding. Methods Couples of HIV-1-infected mothers (n = 14) and their breastfed non HIV-infected (n = 8) and HIV-infected (n = 6) babies, and healthy HIV-negative mothers and breastfed babies (n = 10) as controls, were prospectively included at the Complexe Pédiatrique of Bangui, Central African Republic. Immunoglobulins (IgA, IgG and IgM) and anti-gp160 antibodies from mother’s milk and stools of breastfed children were quantified by ELISA. Immunoaffinity purified anti-gp160 antibodies were characterized functionally regarding their capacity to reduce attachment and/or infection of R5- and X4- tropic HIV-1 strains on human colorectal epithelial HT29 cells line or monocyte-derived-macrophages (MDM). Results The levels of total IgA and IgG were increased in milk of HIV-infected mothers and stools of HIV-exposed children, indicating the activation of B cell-derived mucosal immunity. Breast milk samples as well as stool samples from HIV-negative and HIV-infected babies exposed to HIV by breast-feeding, contained high levels of HIV-specific antibodies, mainly IgG antibodies, less frequently IgA antibodies, and rarely IgM antibodies. Relative ratios of excretion by reference to lactoferrin calculated for HIV-specific IgA, IgG and IgM in stools of HIV-exposed children were largely superior to 1, indicating active production of HIV-specific antibodies by the intestinal mucosa. Antibodies to gp160 purified from pooled stools of HIV-exposed breastfed children inhibited the attachment of HIV-1NDK on HT29 cells by 63% and on MDM by 77%, and the attachment of HIV-1JRCSF on MDM by 40%; and the infection of MDM by HIV-1JRCSF by 93%. Conclusions The intestinal mucosa of children exposed to HIV by breast-feeding produces HIV-specific antibodies harbouring in vitro major

  12. Methotrexate administration induces differential and selective protein tyrosine nitration and cysteine nitrosylation in the subcellular organelles of the small intestinal mucosa of rats.

    PubMed

    Natarajan, Kasthuri; Abraham, Premila

    2016-05-01

    Gastrointestinal toxicity is one of the most frequent dose limiting side effects of methotrexate (MTX), a commonly used chemotherapeutic drug. Peroxynitrite (PON) overproduction is reported to contribute to MTX induced gastrointestinal mucositis. However, the consequence of PON overproduction i.e. protein tyrosine nitration and protein cysteine nitrosylation, the subcellular distribution of these modified proteins and their molecular weights have not been investigated yet. Mucositis was induced in Wistar rats by the administration of 3 consecutive i.p. injections of MTX. Tyrosine nitrated proteins and cysteine nitrosylated proteins were determined in the subcellular organelles fractions of mucosa using immunoprecipitation and western blot. The proteins in the subcellular fractions were separated by 1D electrophoresis, and probed with anti -nitrotyrosine antibody and anti-nitrosocysteine antibody. After MTX treatment, a general increase in protein tyrosine nitration as well as a change in the spectrum of proteins that underwent nitration was observed. The relative densities of the 3 nitrotyrosine protein adducts were as follows: Mitochondria > cytosol > microsomes > nucleus. In the mitochondrial fraction increased nitration of 12 kDa, 25 kDa 29Kda, 47 kDa, and 62Kda proteins, in the cytosol increased nitration of 12 kDa, 19 kDa, 45 kDa, and 60 kDa proteins and in the nuclear fraction increased nitration of 17 kDa, 35 kDa, and 58 kDa proteins was observed. On the other hand, MTX treatment resulted to a general decrease in protein cysteine nitrosylation in all the subcellular fractions. These results suggest that MTX induced, PON mediated small intestinal injury is mediated by differential nitration and nitrosylation of proteins in the subcellular organelles with increased protein tyrosine nitration and decreased cysteine nitrosylation. In addition MTX treatment results in selective nitration and nitrosylation of proteins in the intestinal mucosa. This

  13. Spatial Localization and Binding of the Probiotic Lactobacillus farciminis to the Rat Intestinal Mucosa: Influence of Chronic Stress

    PubMed Central

    Raymond, Arthur; Mercade-Loubière, Myriam; Salvador-Cartier, Christel; Ringot, Bélinda; Léonard, Renaud; Fourquaux, Isabelle; Ait-Belgnaoui, Afifa; Loubière, Pascal; Théodorou, Vassilia; Mercier-Bonin, Muriel

    2015-01-01

    The present study aimed at detecting the exogenously applied probiotic Lactobacillus farciminis in rats, after exposure to IBS-like chronic stress, based on 4-day Water Avoidance Stress (WAS). The presence of L. farciminis in both ileal and colonic mucosal tissues was demonstrated by FISH and qPCR, with ileum as the preferential niche, as for the SFB population. A different spatial distribution of the probiotic was observed: in the ileum, bacteria were organized in micro-colonies more or less close to the epithelium whereas, in the colon, they were mainly visualized far away from the epithelium. When rats were submitted to WAS, the L. farciminis population substantially decreased in both intestinal regions, due to a stress-induced increase in colonic motility and defecation, rather than a modification of bacterial binding to the intestinal mucin Muc2. PMID:26367538

  14. Activation of muscarinic cholinoceptor ameliorates tumor necrosis factor-α-induced barrier dysfunction in intestinal epithelial cells.

    PubMed

    Khan, Md Rafiqul Islam; Uwada, Junsuke; Yazawa, Takashi; Islam, Md Tariqul; Krug, Susanne M; Fromm, Michael; Karaki, Shin-ichiro; Suzuki, Yuichi; Kuwahara, Atsukazu; Yoshiki, Hatsumi; Sada, Kiyonao; Muramatsu, Ikunobu; Anisuzzaman, Abu Syed Md; Taniguchi, Takanobu

    2015-11-30

    Impaired intestinal barrier function is one of the critical issues in inflammatory bowel diseases. The aim of this study is to investigate muscarinic cholinoceptor (mAChR)-mediated signaling for the amelioration of cytokine-induced barrier dysfunction in intestinal epithelium. Rat colon challenged with TNF-α and interferon γ reduced transepithelial electrical resistance (TER). This barrier injury was attenuated by muscarinic stimulation. In HT-29/B6 intestinal epithelial cells, muscarinic stimulation suppressed TNF-α-induced activation of NF-κB signaling and barrier disruption. Finally, muscarinic stimulation promoted the shedding of TNFR1, which would be a mechanism for the attenuation of TNF-α/NF-κB signaling and barrier disruption via mAChR. PMID:26519558

  15. Gliadin intake alters the small intestinal mucosa in indomethacin-treated HLA-DQ8 transgenic mice.

    PubMed

    Mazzarella, Giuseppe; Bergamo, Paolo; Maurano, Francesco; Luongo, Diomira; Rotondi Aufiero, Vera; Bozzella, Giuseppina; Palmieri, Gianna; Troncone, Riccardo; Auricchio, Salvatore; David, Chella; Rossi, Mauro

    2014-08-01

    Celiac disease (CD) is an enteropathy caused by the ingestion of wheat gluten in genetically susceptible individuals. A complete understanding of the pathogenic mechanisms in CD has been hindered because of the lack of adequate in vivo models. In the present study, we explored the events after the intragastric administration of gliadin and of the albumin/globulin fraction from wheat in human leukocyte antigen-DQ8 transgenic mice (DQ8 mice) treated with indomethacin, an inhibitor of cyclooxygenases (COXs). After 10 days of treatment, mice showed a significant reduction of villus height, increased crypt depth, increased number of lamina propria-activated macrophages, and high basal interferon-γ secretion in mesenteric lymph nodes, all of which were specifically related to gliadin intake, whereas the albumin/globulin fraction of wheat was unable to induce similar changes. Cotreatment with NS-398, a specific inhibitor of COX-2, also induced the intestinal lesion. Enteropathy onset was further characterized by high levels of oxidative stress markers, similar to CD. Biochemical assessment of the small intestine revealed the specific activation of matrix metalloproteinases 2 and 9, high caspase-3 activity, and a significant increase of tissue transglutaminase protein levels associated with the intestinal lesion. Notably, after 30 days of treatment, enteropathic mice developed serum antibodies toward gliadin (IgA) and tissue transglutaminase (IgG). We concluded that gliadin intake in combination with COX inhibition caused a basal inflammatory status and an oxidative stress condition in the small intestine of DQ8 mice, thus triggering the mucosal lesion and, subsequently, an antigen-specific immunity. PMID:24924747

  16. Effect of fermented oatmeal soup on the cholesterol level and the Lactobacillus colonization of rat intestinal mucosa.

    PubMed

    Molin, G; Andersson, R; Ahrné, S; Lönner, C; Marklinder, I; Johansson, M L; Jeppsson, B; Bengmark, S

    1992-04-01

    Rats were fed with freeze-dried oatmeal soup fermented by six different Lactobacillus strains from rat and man; the formula is intended for enteral feeding. The serum cholesterol levels after 10 d were lower for rats eating oatmeal as compared to a commercial product, Biosorb Sond. Colonizing ability of the administered strains were evaluated in vivo. Only Lactobacillus reuteri R21c were able to, effectively, colonizing the mucosa; it represented about 30% of the Lactobacillus population 24 d after termination of the administration. L. reuteri R21c was easily recognized by the ability to produce a yellow pigment on agar plates. The identity was confirmed by carbohydrate fermentations (API 50CH), plasmid pattern and endonuclease restriction analysis of the chromosomal DNA. PMID:1519914

  17. Role of regenerating gene I in claudin expression and barrier function in the small intestine.

    PubMed

    Kitayama, Yoshitaka; Fukui, Hirokazu; Hara, Ken; Eda, Hirotsugu; Kodani, Mio; Yang, Mo; Sun, Chao; Yamagishi, Hidetsugu; Tomita, Toshihiko; Oshima, Tadayuki; Watari, Jiro; Takasawa, Shin; Miwa, Hiroto

    2016-07-01

    We have recently shown that loss of the regenerating gene (Reg) I causes susceptibility to nonsteroidal anti-inflammatory drug-induced gastrointestinal damage. However, the mechanism by which Reg I plays a protective role against this pathophysiological condition is unclear. Here, we investigated whether Reg I plays roles in the induction of tight junction proteins and mucosal barrier function in the small intestine. The small-intestinal permeability was evaluated in Reg I-deficient mice by FITC-dextran and transepithelial electrical resistance (TEER) assay. The effect of REG Iα on TEER, claudins expression, and intracellular signaling was examined using Caco2 cells in vitro. Small-intestinal expression of claudins 3 and 4 was investigated in Reg I-deficient mice in vivo. REG I deficiency significantly decreased the expression of claudin 3 in the small-intestinal epithelium. When mice were treated with indomethacin, the serum level of FITC-dextran in Reg I knockout mice was significantly higher than that in wild-type (WT) mice. The level of small-intestinal TEER was significantly decreased in Reg I knockout mice compared with WT mice under normal condition. REG Iα stimulation significantly enhanced the level of TEER in Caco2 cells. Treatment with REG Iα enhanced the expression of claudins 3 and 4 and promoted Sp1, Akt, and ERK phosphorylation in Caco2 cells, whereas these effects were attenuated by treatment with anti-REG Iα antibody. Reg I may play a role in the maintenance of mucosal barrier function by inducing tight junction proteins such as claudins 3 and 4. PMID:27055226

  18. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage.

    PubMed

    Catanzaro, Daniela; Rancan, Serena; Orso, Genny; Dall'Acqua, Stefano; Brun, Paola; Giron, Maria Cecilia; Carrara, Maria; Castagliuolo, Ignazio; Ragazzi, Eugenio; Caparrotta, Laura; Montopoli, Monica

    2015-01-01

    Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD), however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM) use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER) and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin) immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS) generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE) and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA), were tested at 0.1-10 μg/ml and 0.027 μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study elucidates the

  19. THE ROLE OF MIR-212 AND INOS IN ALCOHOL-INDUCED INTESTINAL BARRIER DYSFUNCTION AND STEATOHEPATITIS

    PubMed Central

    Tang, Yueming; Zhang, Lijuan; Forsyth, Christopher B.; Shaikh, Maliha; Song, Shiwen; Keshavarzian, Ali

    2015-01-01

    Background Alcoholic liver disease (ALD) is commonly associated with intestinal barrier dysfunction. Alcohol-induced dysregulation of intestinal tight junction (TJ) proteins, such as Zonula Occludens-1 (ZO-1), plays an important role in alcohol-induced gut leakiness. However, the mechanism of alcohol-induced disruption of TJ proteins is not well established. The goal of this study was to elucidate this mechanism by studying the role of MicroRNA 212 (miR-212) and inducible nitric oxide synthase (iNOS) in alcohol-induced gut leakiness. Methods The permeability of the Caco-2 monolayer was assessed by transepithelial electrical resistance (TER) and flux of fluorescein sulfonic acid (FSA). miR-212 was measured by real time PCR. The wild type, iNOS knockout, and miR-212 knockdown mice were fed with alcohol diet (29% of total calories, 4.5% v/v) for 8 weeks. The LNA-anti-miR-212 was used to inhibit miR-212 expression in mice. The alcohol-induced intestinal permeability, miR-212 expression and liver injuries in mice were measured. Results Our in vitro monolayer and in vivo mice studies showed that: (1) alcohol-induced over-expression of the intestinal miR-212 and intestinal hyperpermeability is prevented by using miR-212 knock-down techniques; and (2). iNOS is upregulated in the intestine by alcohol and that iNOS signaling is required for alcohol-induced miR-212 over-expression, ZO-1 disruption, gut leakiness and steatohepatis. Conclusions These studies thus support a novel miR-212 mechanism for alcohol-induced gut leakiness and a potential target that could be exploited for therapeutic intervention to prevent leaky gut and liver injury in alcoholics. PMID:26207424

  20. Nickel-Related Intestinal Mucositis in IBS-Like Patients: Laser Doppler Perfusion Imaging and Oral Mucosa Patch Test in Use.

    PubMed

    Borghini, Raffaele; Puzzono, Marta; Rosato, Edoardo; Di Tola, Marco; Marino, Mariacatia; Greco, Francesca; Picarelli, Antonio

    2016-09-01

    Nickel (Ni) is often the trigger of irritable bowel syndrome (IBS)-like gastrointestinal disorders: its ingestion may cause allergic contact mucositis, identifiable by means of oral mucosa patch test (omPT). OmPT effectiveness has been proven, but it is still an operator-dependent method. Laser Doppler perfusion imaging (LDPI) was tested to support omPT in Ni allergic contact mucositis diagnosis. Group A: 22 patients with intestinal/systemic symptoms related to the ingestion of Ni-containing foods. Group B: 12 asymptomatic volunteers. Ni-related symptoms and their severity were tested by a questionnaire. All patients underwent Ni omPT with clinical evaluation at baseline (T0), after 30 min (T1), after 2 h (T2), and after 24-48 h (T3). LDPI was performed to evaluate the mean mucosal perfusion at T0, T1, and T2. Statistical analysis was performed by ANOVA test and Bonferroni multiple-comparison test. All 22 Ni-sensitive patients (group A) presented oral mucosa hyperemia and/or edema at T2. Eight out of the same 22 patients presented a local delayed vesicular reaction at T3 (group A1), unlike the remaining 14 out of 22 patients (group A2). All 12 patients belonging to control group B did not show any alteration. The mean mucosal perfusion calculated with LDPI showed an increase in both subgroups A1 and A2. In group B, no significant perfusion variations were observed. LDPI may support omPT for diagnostic purposes in Ni allergic contact mucositis. This also applies to symptomatic Ni-sensitive patients without aphthous stomatitis after 24-48 h from omPT and that could risk to miss the diagnosis. PMID:26899317

  1. Intestinal hypoperfusion contributes to gut barrier failure in severe acute pancreatitis.

    PubMed

    Rahman, Sakhawat H; Ammori, Basil J; Holmfield, John; Larvin, Michael; McMahon, Michael J

    2003-01-01

    Intestinal barrier failure and subsequent bacterial translocation have been implicated in the development of organ dysfunction and septic complications associated with severe acute pancreatitis. Splanchnic hypoperfusion and ischemia/reperfusion injury have been postulated as a cause of increased intestinal permeability. The urinary concentration of intestinal fatty acid binding protein (IFABP) has been shown to be a sensitive marker of intestinal ischemia, with increased levels being associated with ischemia/reperfusion. The aim of the current study was to assess the relationship between excretion of IFABP in urine, gut mucosal barrier failure (intestinal hyperpermeability and systemic exposure to endotoxemia), and clinical severity. Patients with a clinical and biochemical diagnosis of acute pancreatitis were studied within 72 hours of onset of pain. Polyethylene glycol probes of 3350 kDa and 400 kDa were administered enterally, and the ratio of the percentage of retrieval of each probe after renal excretion was used as a measure of intestinal macromolecular permeability. Collected urine was also used to determine the IFABP concentration (IFABP-c) and total IFABP (IFABP-t) excreted over the 24-hour period, using an enzyme-linked immunosorbent assay technique. The systemic inflammatory response was estimated from peak 0 to 72-hour plasma C-reactive protein levels, and systemic exposure to endotoxins was measured using serum IgM endotoxin cytoplasmic antibody (EndoCAb) levels. The severity of the attack was assessed on the basis of the Atlanta criteria. Sixty-one patients with acute pancreatitis (severe in 19) and 12 healthy control subjects were studied. Compared to mild attacks, severe attacks were associated with significantly higher urinary IFABP-c (median 1092 pg/ml vs. 84 pg/ml; P < 0.001) and IFABP-t (median 1.14 microg vs. 0.21 microg; P = 0.003). Furthermore, the control group had significantly lower IFABP-c (median 37 pg/ml; P = 0.029) and IFABP-t (median

  2. Ursodeoxycholic acid ameliorates experimental ileitis counteracting intestinal barrier dysfunction and oxidative stress.

    PubMed

    Bernardes-Silva, Carlos Felipe; Damião, Adérson O M C; Sipahi, Aytan M; Laurindo, Francisco R M; Iriya, Kiyoshi; Lopasso, Fabio P; Buchpiguel, Carlos A; Lordello, Maria Laura L; Agostinho, Carmem L O; Laudanna, Antonio A

    2004-10-01

    The aim of this study was to evaluate the effect of ursodeoxycholic acid (UDCA) on intestinal permeability (IP) and reactive oxygen species (ROS) generation in indomethacin-induced enteropathy, a well-known experimental model of Crohn's disease. Seventy-eight male Wistar rats were randomly assigned to receive indomethacin, indomethacin + UDCA, or vehicles. Indomethacin induced a significant increase in the fraction of urinary excretion of 51Cr-EDTA following oral administration (7.9 +/- 1.3 vs 2.3 +/- 0.2%; P < 0.05) and lucigenin-amplified chemiluminescence in intestinal fragments ex vivo (10.1 +/- 1.9 vs 2.6 +/- 0.4 cpm x 10(3)/mg; P < 0.05) compared to controls. UDCA significantly reversed these effects (P < 0.05), without being incorporated in biliary bile acid composition (HPLC analysis). These findings support a local protective effect of UDCA in experimental ileitis by the modulation of intestinal barrier dysfunction and oxidative stress. In short, they provide insights into mechanisms of action of UDCA in intestinal inflammation and a new perspective on the treatment of Crohn's disease. PMID:15573906

  3. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria

    PubMed Central

    Yu, Qinghua; Yuan, Lixia; Deng, Jun; Yang, Qian

    2015-01-01

    Pathogens invade intestinal mucosal barrier through phagocytosis of antigen presenting cells (dendritic cell, microfold cells), or through the invasion into the intestinal epithelial directly. Some pathogens could damage the cell junction between epithelial cells and use the paracellular pathway as an entrance to invade. Moreover, some Lactobacillus could inhibit the adhesion of the pathogens and protect the integrity of the cell junction and mucosal barrier. This research focused on the potential therapeutic effect of Lactobacillus fructosus (L. fructosus) C2 to attenuate ETEC K88 or S. typhimurium SL1344 induced changes to mucosal barrier. The results demonstrated that treatment of polarized Caco-2 cells with L. fructosus C2 reduced the permeation of dextran, and expression of IL-8, p-ERK, and p-JNK when cells were infected with pathogenic bacteria. The findings indicated that L. fructosus C2 exerted a protective effect against the damage to the integrity of Caco-2 cells by ETEC or S. typhimurium infection. PMID:25859435

  4. Checkpoint Kinase 1 Activation Enhances Intestinal Epithelial Barrier Function via Regulation of Claudin-5 Expression

    PubMed Central

    Watari, Akihiro; Hasegawa, Maki; Yagi, Kiyohito; Kondoh, Masuo

    2016-01-01

    Several stressors are known to influence epithelial tight junction (TJ) integrity, but the association between DNA damage and TJ integrity remains unclear. Here we examined the effects of daunorubicin and rebeccamycin, two anti-tumor chemicals that induce DNA damage, on TJ integrity in human intestinal epithelial cells. Daunorubicin and rebeccamycin dose-dependently enhanced transepithelial electrical resistance (TER) and decreased flux of the 4 kDa FITC-dextran in Caco-2 cell monolayer. Daunorubicin- or rebeccamycin-induced enhancement of the TJ barrier function partly rescued attenuation of the barrier function by the inflammatory cytokines TNF-α and IFN-γ. Daunorubicin and rebeccamycin increased claudin-5 expression and the product was distributed in the actin cytoskeleton fraction, which was enriched with TJ proteins. Caffeine, which is an inhibitor of ataxia telangiectasia mutated protein (ATM) and ataxia telangiectasia mutated and Rad3-related protein (ATR), and the Chk1 inhibitor inhibited the TER increases induced by daunorubicin and rebeccamycin, whereas a Chk2 inhibitor did not. Treatment with Chk1 siRNA also significantly inhibited the TER increases. Induction of claudin-5 expression was inhibited by Chk1 inhibitor and by siRNA treatment. Our results suggest that Chk1 activation by daunorubicin and rebeccamycin induced claudin-5 expression and enhanced TJ barrier function in Caco-2 cell monolayer, which suggests a link between DNA damage and TJ integrity in the human intestine. PMID:26727128

  5. Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel.

    PubMed

    Miner-Williams, Warren M; Moughan, Paul J

    2016-06-01

    The intestinal epithelium of adult humans acts as a differentially permeable barrier that separates the potentially harmful contents of the lumen from the underlying tissues. Any dysfunction of this boundary layer that disturbs the homeostatic equilibrium between the internal and external environments may initiate and sustain a biochemical cascade that results in inflammation of the intestine. Key to such dysfunction are genetic, microbial and other environmental factors that, singularly or in combination, result in chronic inflammation that is symptomatic of inflammatory bowel disease (IBD). The aim of the present review is to assess the scientific evidence to support the hypothesis that defective transepithelial transport mechanisms and the heightened absorption of intact antigenic proinflammatory oligopeptides are important contributing factors in the pathogenesis of IBD. PMID:27087106

  6. Methyl donor deficiency affects small-intestinal differentiation and barrier function in rats.

    PubMed

    Bressenot, Aude; Pooya, Shabnam; Bossenmeyer-Pourie, Carine; Gauchotte, Guillaume; Germain, Adeline; Chevaux, Jean-Baptiste; Coste, Florence; Vignaud, Jean-Michel; Guéant, Jean-Louis; Peyrin-Biroulet, Laurent

    2013-02-28

    Dietary methyl donors and their genetic determinants are associated with Crohn's disease risk. We investigated whether a methyl-deficient diet (MDD) may affect development and functions of the small intestine in rat pups from dams subjected to the MDD during gestation and lactation. At 1 month before pregnancy, adult females were fed with either a standard food or a diet without vitamin B12, folate and choline. A global wall hypotrophy was observed in the distal small bowel (MDD animals 0·30 mm v. controls 0·58 mm; P< 0·001) with increased crypt apoptosis (3·37 v. 0·4%; P< 0·001), loss of enterocyte differentiation in the villus and a reduction in intestinal alkaline phosphatase production. Cleaved caspase-3 immunostaining (MDD animals 3·37% v. controls 0·4%, P< 0·001) and the Apostain labelling index showed increased crypt apoptosis (3·5 v. 1·4%; P= 0·018). Decreased proliferation was observed in crypts of the proximal small bowel with a reduced number of minichromosome maintenance 6 (MDD animals 52·83% v. controls 83·17%; P= 0·048) and proliferating cell nuclear antigen-positive cells (46·25 v. 59 %; P= 0·05). This lack of enterocyte differentiation in the distal small bowel was associated with an impaired expression of β-catenin and a decreased β-catenin-E-cadherin interaction. The MDD affected the intestinal barrier in the proximal small bowel by decreasing Paneth cell number after immunostaining for lysosyme (MDD animals 8·66% v. controls 21·66%) and by reducing goblet cell number and mucus production after immunostaining for mucin-2 (crypts 8·66 v. 15·33%; villus 7 v. 17%). The MDD has dual effects on the small intestine by producing dramatic effects on enterocyte differentiation and barrier function in rats. PMID:22794784

  7. Stress-induced breakdown of intestinal barrier function in the rat: reversal by wood creosote.

    PubMed

    Kuge, Tomoo; Greenwood-Van Meerveld, Beverley; Sokabe, Masahiro

    2006-07-24

    Our previous studies demonstrated that wood creosote (Seirogan) inhibits intestinal secretion and normalizes the transport of electrolytes and water in rats subjected to restraint stress. The goal of the present study was to examine whether wood creosote has a protective effect against stress-induced breakdown of intestinal barrier function. F-344 rats were subjected to 90-min water avoidance stress (WAS) with wood creosote (30 mg/kg) or vehicle administered intragastrically 30 min prior to WAS. Sham stressed rats received wood creosote or vehicle treatment but did not experience the WAS. All rats were euthanized at the end of the WAS or sham-stress and the jejunum and colon were isolated. Epithelial transport was studied in modified Ussing chambers. Spontaneous secretion was assessed by electrophysiological measurement of the short circuit current (I(sc)) while electrical conductance (G) was calculated from the potential difference (PD) and I(sc) using Ohm's law. Intestinal permeability was defined by the mucosal-to-serosal flux of horseradish peroxidase (HRP). WAS significantly elevated basal I(sc) and G and increased epithelial permeability to HRP in the jejunum but not in the colon. Wood creosote resulted in a significant reduction of the stress-induced increase in I(sc), G and the mucosal-to-serosal flux of HRP compared to the vehicle-treated group. Wood creosote caused no significant effects in sham-stressed rats. The results suggest that oral administration of wood creosote may prevent stress-induced diarrhea by preventing aversive effects on small intestinal secretion and barrier function. PMID:16643959

  8. Evidence for carrier-mediated uptake and efflux of sugars at the serosal side of the rat intestinal mucosa in vitro.

    PubMed Central

    Bronk, J R; Ingham, P A

    1976-01-01

    A modification of the everted sac technique is described which allows several sacs to be prepared rapidly and simultaneously from the same segment of rat intestine. 2. A method has been developed for comparing the transport of two sugars by measuring changes in the ratios of their concentrations as they pass across the intestinal wall. 3. With this method significant differences were observed between the D-[3H]galactose and L-[14C]glucose ratios in the mucosal epithelium, the serosal tissue and the serosal compartment. These results indicate that both the efflux of galactose from the serosal side of the mucosal epithelium and the uptake of the sugar into the mucosa are carrier-mediated processes. 4. The mediated efflux of galactose at the serosal side of the epithelial layer is inhibited by the presence of phlorizin on the mucosal side and to some extent by any reduction in the mucosal Na+ concentration. Both of these treatments inhibited galactose uptake at the brush border. Serosal efflux of the sugar appeared to be saturated at high concentrations of D-galactose. 5. Pre-treatment of the sacs with mercuric chloride considerably reduced D-galactose uptake from the luminal side, but did not affect its efflux relative to L-glucose at the serosal side of the mucosal epithelium. 6. Carrier-mediated sugar uptake into the mucosal epithelium from the serosal side was also examined. The role of the bidirectional, carrier-mediated sugar transport processes at the serosal pole of the mucosal epithelial cell in transintestinal transport is discussed. PMID:1255529

  9. CXCR4 Antagonist AMD3100 Modulates Claudin Expression and Intestinal Barrier Function in Experimental Colitis

    PubMed Central

    Xia, Xian-Ming; Wang, Fang-Yu; Zhou, Ju; Hu, Kai-Feng; Li, Su-Wen; Zou, Bing-Bing

    2011-01-01

    Ulcerative colitis is a gastrointestinal disorder characterized by local inflammation and impaired epithelial barrier. Previous studies demonstrated that CXC chemokine receptor 4 (CXCR4) antagonists could reduce colonic inflammation and mucosal damage in dextran sulfate sodium (DSS)-induced colitis. Whether CXCR4 antagonist has action on intestinal barrier and the possible mechanism, is largely undefined. In the present study, the experimental colitis was induced by administration of 5% DSS for 7 days, and CXCR4 antagonist AMD3100 was administered intraperitoneally once daily during the study period. For in vitro study, HT-29/B6 colonic cells were treated with cytokines or AMD3100 for 24 h until assay. DSS-induced colitis was characterized by morphologic changes in mice. In AMD3100-treated mice, epithelial destruction, inflammatory infiltration, and submucosal edema were markedly reduced, and the disease activity index was also significantly decreased. Increased intestinal permeability in DSS-induced colitis was also significantly reduced by AMD3100. The expressions of colonic claudin-1, claudin-3, claudin-5, claudin-7 and claudin-8 were markedly decreased after DSS administration, whereas colonic claudin-2 expression was significantly decreased. Treatment with AMD3100 prevented all these changes. However, AMD3100 had no influence on claudin-3, claudin-5, claudin-7 and claudin-8 expression in HT-29/B6 cells. Cytokines as TNF-α, IL-6, and IFN-γ increased apoptosis and monolayer permeability, inhibited the wound-healing and the claudin-3, claudin-7 and claudin-8 expression in HT-29/B6 cells. We suggest that AMD3100 acted on colonic claudin expression and intestinal barrier function, at least partly, in a cytokine-dependent pathway. PMID:22073304

  10. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    SciTech Connect

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Lee, Seung-Sook; Park, Sunhoo

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudins were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.

  11. Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers.

    PubMed

    Akiyama, Takuya; Oishi, Kenji; Wullaert, Andy

    2016-01-01

    Endoplasmic reticulum (ER) stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs) with intestinal disorders including inflammatory bowel diseases. However, the mechanisms linking the outcomes of ER stress in IECs to intestinal disease have not been clarified. In this study, we investigated the impact of ER stress on intestinal epithelial barrier function using human colon carcinoma-derived Caco-2 monolayers. Tunicamycin-induced ER stress decreased the trans-epithelial electrical resistance of Caco-2 monolayers, concomitant with loss of cellular plasma membrane integrity. Epithelial barrier disruption in Caco-2 cells after ER stress was not caused by caspase- or RIPK1-dependent cell death but was accompanied by lysosomal rupture and up-regulation of the ER stress markers Grp78, sXBP1 and Chop. Interestingly, several bifidobacteria species inhibited tunicamycin-induced ER stress and thereby diminished barrier disruption in Caco-2 monolayers. Together, these results showed that ER stress compromises the epithelial barrier function of Caco-2 monolayers and demonstrate beneficial impacts of bifidobacteria on ER stress in IECs. Our results identify epithelial barrier loss as a potential link between ER stress and intestinal disease development, and suggest that bifidobacteria could exert beneficial effects on this phenomenon. PMID:27611782

  12. Intestine.

    PubMed

    Smith, J M; Skeans, M A; Horslen, S P; Edwards, E B; Harper, A M; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    Intestine and intestine-liver transplant plays an important role in the treatment of intestinal failure, despite decreased morbidity associated with parenteral nutrition. In 2014, 210 new patients were added to the intestine transplant waiting list. Among prevalent patients on the list at the end of 2014, 65% were waiting for an intestine transplant and 35% were waiting for an intestine-liver transplant. The pretransplant mortality rate decreased dramatically over time for all age groups. Pretransplant mortality was highest for adult candidates, at 22.1 per 100 waitlist years compared with less than 3 per 100 waitlist years for pediatric candidates, and notably higher for candidates for intestine-liver transplant than for candidates for intestine transplant without a liver. Numbers of intestine transplants without a liver increased from a low of 51 in 2013 to 67 in 2014. Intestine-liver transplants increased from a low of 44 in 2012 to 72 in 2014. Short-gut syndrome (congenital and other) was the main cause of disease leading to both intestine and intestine-liver transplant. Graft survival improved over the past decade. Patient survival was lowest for adult intestine-liver recipients and highest for pediatric intestine recipients. PMID:26755265

  13. Studies on the physiological and structural characteristics of rat intestinal mucosa. Mitochondrial structural changes during amino acid absorption.

    PubMed

    Jasper, D K; Bronk, J R

    1968-08-01

    Sections from mucosal strips and rings of rat jejunum were studied with the light microscope and the electron microscope before and after incubation in a modified Krebs bicarbonate Ringer. Various additions were made to the incubation medium, and their effects on both the structure and the respiratory activity of the mucosal tissue were noted. In those cases in which an amino acid mixture was added, there was a pronounced increase in the rate of respiration. When strips of intestine were used, the presence of the amino acid mixture more than doubled the rate of oxygen consumption. Along with the increased levels of respiration there was a sharp rise in the percentage of mitochondria assuming a condensed ultrastructural conformation. The amino acid mixture did not cause the condensation of jejunal mitochondria if glucose was included in the incubation medium or if 2,4-dinitrophenol was present. The evidence suggests that a high proportion of the jejunal mitochondria assumes a condensed conformation in response to an increased energy demand. Apparently glucose can prevent the amino acid mixture from increasing the energy drain on the oxidative processes in these cells. Although a high rate of respiration was obtained in the presence of dinitrophenol, the studies indicated that mitochondrial condensation was only associated with a high rate of coupled oxidative phosphorylation. PMID:5664204

  14. Immunohistochemical and electron microscopic study of interaction of Yersinia enterocolitica serotype O8 with intestinal mucosa during experimental enteritis.

    PubMed Central

    Hanski, C; Kutschka, U; Schmoranzer, H P; Naumann, M; Stallmach, A; Hahn, H; Menge, H; Riecken, E O

    1989-01-01

    The experimental infection of mice with Yersinia enterocolitica serotype O8 was investigated in a quantitative and histological study. The course of bacterial penetration and spreading was precisely determined by immunohistochemical staining. After oral administration, the bacteria passed the epithelial barrier of the ileum and spread into the lamina propria. By preference they entered Peyer's patches, which were about 1,000 times more heavily colonized than the surrounding epithelium of a comparable surface area. The bacteria proliferated in the follicles, from which they spread into the lamina propria of the villi. At either site most of the bacteria multiplied extracellularly, with only a small percentage observed to be present within the phagocytes. The bacteria did not appear to be able to pass the intact basement membrane; hence, the integrity of the basement membrane is likely to play a role in determining the route of entry and limit of spread of Y. enterocolitica infection. Images PMID:2917779

  15. Nitric oxide attenuates hydrogen peroxide-induced barrier disruption and protein tyrosine phosphorylation in monolayers of intestinal epithelial cell.

    PubMed

    Katsube, Takanori; Tsuji, Hideo; Onoda, Makoto

    2007-06-01

    The intestinal epithelium provides a barrier to the transport of harmful luminal molecules into the systemic circulation. A dysfunctional epithelial barrier is closely associated with the pathogenesis of a variety of intestinal and systemic disorders. We investigated here the effects of nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) on the barrier function of a human intestinal epithelial cell line, Caco-2. When treated with H(2)O(2), Caco-2 cell monolayers grown on permeable supports exhibited several remarkable features of barrier dysfunction as follows: a decrease in transepithelial electrical resistance, an increase in paracellular permeability to dextran, and a disruption of the intercellular junctional localization of the scaffolding protein ZO-1. In addition, an induction of tyrosine phosphorylation of numerous cellular proteins including ZO-1, E-cadherin, and beta-catenin, components of tight and adherens junctions, was observed. On the other hand, combined treatment of Caco-2 monolayers with H(2)O(2) and an NO donor (NOC5 or NOC12) relieved the damage to the barrier function and suppressed the protein tyrosine phosphorylation induced by H(2)O(2) alone. These results suggest that NO protects the barrier function of intestinal epithelia from oxidative stress by modulating some intracellular signaling pathways of protein tyrosine phosphorylation in epithelial cells. PMID:17451824

  16. Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis

    PubMed Central

    Khounlotham, Manirath; Kim, Wooki; Peatman, Eric; Nava, Porfirio; Medina-Contreras, Oscar; Addis, Caroline; Koch, Stefan; Fournier, Benedicte; Nusrat, Asma; Denning, Timothy L.; Parkos, Charles A.

    2012-01-01

    SUMMARY Mice lacking Junctional Adhesion Molecule A (JAM-A, encoded by F11r) exhibit enhanced intestinal epithelial permeability, bacterial translocation, and elevated colonic lymphocyte numbers, yet do not develop colitis. To investigate the contribution of adaptive immune compensation in response to increased intestinal epithelial permeability, we examined the susceptibility of F11r-/-Rag1-/- mice to acute colitis. Although negligible contributions of adaptive immunity in F11r-/-Rag1-/- mice were observed, F11r-/-Rag1-/- mice exhibited increased microflora-dependent colitis. Elimination of T cell subsets and cytokine analyses revealed a protective role for TGF-β-producing CD4+ T cells in F11r-/- mice. Additionally, loss of JAM-A resulted in elevated mucosal and serum IgA that was dependent upon CD4+ T cells and TGF-β. Absence of IgA in F11r+/+Igha-/- mice did not affect disease whereas F11r-/-Igha-/- mice displayed markedly increased susceptibility to acute injury induced colitis. These data establish a role for adaptive immune mediated protection from acute colitis under conditions of intestinal epithelial barrier compromise. PMID:22981539

  17. Probiotic-derived polyphosphate improves the intestinal barrier function through the caveolin-dependent endocytic pathway.

    PubMed

    Tanaka, Kazuyuki; Fujiya, Mikihiro; Konishi, Hiroaki; Ueno, Nobuhiro; Kashima, Shin; Sasajima, Junpei; Moriichi, Kentaro; Ikuta, Katsuya; Tanabe, Hiroki; Kohgo, Yutaka

    2015-11-20

    Probiotics exhibit beneficial functions for host homeostasis maintenance. We herein investigated the mechanism by which Lactobacillus brevis-derived poly P exhibited a beneficial function. Immunostaining indicated that poly P was captured in the plasma membrane via integrin β1 in Caco2/bbe cells. The uptake of poly P was reduced by the inhibition of integrin β1 as well as caveolin-1, a major component of lipid rafts. The function of poly P, including the induction of HSP27 and enhancement of the intestinal barrier function, was suppressed by the inhibition of caveolin-1, illustrating that the function of poly P was mediated by the endocytic pathway. High-throughput sequencing revealed that poly P induced tumor necrosis factor alpha-induced protein 3, which contributes to cytoprotection, including upregulation of the intestinal barrier function. The present study demonstrates a novel host-probiotic interaction through the uptake of bacterial substance into host cells, which is distinct from pattern recognition receptor pathways. PMID:26459590

  18. Low Dosage of Chitosan Supplementation Improves Intestinal Permeability and Impairs Barrier Function in Mice.

    PubMed

    Guan, Guiping; Wang, Hongbing; Peng, Hanhui; Li, Guanya

    2016-01-01

    The purpose of this study was to explore relationships between low dose dietary supplementation with chitosan (COS) and body weight, feed intake, intestinal barrier function, and permeability in mice. Twenty mice were randomly assigned to receive an unadulterated control diet (control group) or a dietary supplementation with 30 mg/kg dose of chitosan (COS group) for two weeks. Whilst no significant differences were found between the conditions for body weight or food and water intake, mice in the COS group had an increased serum D-lactate content (P < 0.05) and a decreased jejunal diamine oxidase (DAO) activity (P < 0.05). Furthermore, mice in COS group displayed a reduced expression of occludin and ZO-1 (P < 0.05) and a reduced expression of occludin in the ileum (P < 0.05). The conclusion drawn from these findings showed that although 30 mg/kg COS-supplemented diet had no effect on body weight or feed intake in mice, this dosage may compromise intestinal barrier function and permeability. This research will contribute to the guidance on COS supplements. PMID:27610376

  19. Low Dosage of Chitosan Supplementation Improves Intestinal Permeability and Impairs Barrier Function in Mice

    PubMed Central

    Peng, Hanhui; Li, Guanya

    2016-01-01

    The purpose of this study was to explore relationships between low dose dietary supplementation with chitosan (COS) and body weight, feed intake, intestinal barrier function, and permeability in mice. Twenty mice were randomly assigned to receive an unadulterated control diet (control group) or a dietary supplementation with 30 mg/kg dose of chitosan (COS group) for two weeks. Whilst no significant differences were found between the conditions for body weight or food and water intake, mice in the COS group had an increased serum D-lactate content (P < 0.05) and a decreased jejunal diamine oxidase (DAO) activity (P < 0.05). Furthermore, mice in COS group displayed a reduced expression of occludin and ZO-1 (P < 0.05) and a reduced expression of occludin in the ileum (P < 0.05). The conclusion drawn from these findings showed that although 30 mg/kg COS-supplemented diet had no effect on body weight or feed intake in mice, this dosage may compromise intestinal barrier function and permeability. This research will contribute to the guidance on COS supplements. PMID:27610376

  20. Protective effect of salvianolic acid B on NASH rat liver through restoring intestinal mucosal barrier function

    PubMed Central

    Wang, Ying-Chun; Jin, Qing-Mei; Kong, Wei-Zong; Chen, Juan

    2015-01-01

    Aim: To investigate the effect of Salvianolic acid B (Sal B) on the disease progress of NASH and change of intestinal barrier function. Methods: Sixty Sprague-Dawley (SD) rats were randomly divided into control group, model group and treated group, with the former given normal diet and the latter 2 groups rats fed high-fat diet. In treated group, rats were infused through the stomach with 1 mg/ml Sal B every day at a dose of 20 mL/kg body weight. All animals were killed at the 24th week and plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), endotoxin (ET) and diamine oxdase (DAO) were analyzed using the blood samples. The histopathology of liver was observed by H&E staining. The expression changes of tight junction protein occludin and ZO-1 were analyzed by immunocytochemistry. Ultrastructural morphology of small intestinal tissues was investigated by transmission electron microscopy. Results: Plasma levels of ALT, AST, TG, TC, ET and DAO were significantly higher in model group than those in both control group and group treated with Sal B. In model group, vacuolated swelling of the cytoplasm with aggregates of chronic inflammatory cells was observed in the liver tissue but not in Sal B-treated group. NAFLD Activity Score in the treated group was significantly lower than that in model group. Immunohistochemical staining showed that Sal B administration recovered the expression of occludin and ZO-1, which was downregulated in the model group. Transmission electron microscopy analysis demonstrated that cell surface microvilli and major intercellular junctional complex including tight junction, gap junction and adherens junction were restored in Sal B-treated group. Conclusion: Sal B exerted protective function against high-fat diet-induced liver damage by restoring healthy barrier function of intestine in NASH rat model. PMID:26191218

  1. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa.

    PubMed

    Sellin, Mikael E; Müller, Anna A; Felmy, Boas; Dolowschiak, Tamas; Diard, Médéric; Tardivel, Aubry; Maslowski, Kendle M; Hardt, Wolf-Dietrich

    2014-08-13

    The gut mucosal epithelium separates the host from the microbiota, but enteropathogens such as Salmonella Typhimurium (S.Tm) can invade and breach this barrier. Defenses against such acute insults remain incompletely understood. Using a murine model of Salmonella enterocolitis, we analyzed mechanisms limiting pathogen loads in the epithelium during early infection. Although the epithelium-invading S.Tm replicate initially, this intraepithelial replicative niche is restricted by expulsion of infected enterocytes into the lumen. This mechanism is compromised if inflammasome components (NAIP1-6, NLRC4, caspase-1/-11) are deleted, or ablated specifically in the epithelium, resulting in ∼100-fold higher intraepithelial loads and accelerated lymph node colonization. Interestingly, the cytokines downstream of inflammasome activation, interleukin (IL)-1α/β and IL-18, appear dispensable for epithelial restriction of early infection. These data establish the role of an epithelium-intrinsic inflammasome, which drives expulsion of infected cells to restrict the pathogen's intraepithelial proliferation. This may represent a general defense mechanism against mucosal infections. PMID:25121751

  2. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model

    PubMed Central

    Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P < 0.01). Compared with the LPS group, bifidobacterium significantly decreased the production of IL-6 and TNF-α (P < 0.01) and suppressed zonulin release (P < 0.05). In addition, bifidobacterium pretreatment up-regulated occludin, claudin-3 and ZO-1 expression (P < 0.01) and also preserved these proteins localization at TJ compared with the LPS group. In the in vivo study, bifidobacterium decreased the incidence of NEC from 88 to 47% (P < 0.05) and reduced the severity in the NEC model. Increased levels of IL-6 and TNF-α in the ileum of NEC rats were normalized in bifidobacterium treated rats (P < 0.05). Moreover, administration of bifidobacterium attenuated the increase in intestinal permeability (P < 0.01), decreased the levels of serum zonulin (P < 0.05), normalized the expression and localization of TJ proteins in the ileum compared with animals with NEC. We concluded that bifidobacterium may protect against

  3. The role of hypoxia in intestinal inflammation.

    PubMed

    Shah, Yatrik M

    2016-12-01

    Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the intestine. IBD is a multifactorial disorder, and IBD-associated genes are critical in innate immune response, inflammatory response, autophagy, and epithelial barrier integrity. Moreover, epithelial oxygen tension plays a critical role in intestinal inflammation and resolution in IBD. The intestines have a dynamic and rapid fluctuation in cellular oxygen tension, which is dysregulated in IBD. Intestinal epithelial cells have a steep oxygen gradient where the tips of the villi are hypoxic and the oxygenation increases at the base of the villi. IBD results in heightened hypoxia throughout the mucosa. Hypoxia signals through a well-conserved family of transcription factors, where hypoxia-inducible factor (HIF)-1α and HIF-2α are essential in maintaining intestinal homeostasis. In inflamed mucosa, HIF-1α increases barrier protective genes, elicits protective innate immune responses, and activates an antimicrobial response through the increase in β-defensins. HIF-2α is essential in maintaining an epithelial-elicited inflammatory response and the regenerative and proliferative capacity of the intestine following an acute injury. HIF-1α activation in colitis leads to a protective response, whereas chronic activation of HIF-2α increases the pro-inflammatory response, intestinal injury, and cancer. In this mini-review, we detail the role of HIF-1α and HIF-2α in intestinal inflammation and injury and therapeutic implications of targeting HIF signaling in IBD. PMID:26812949

  4. Microbiota and pathogen 'pas de deux': setting up and breaking down barriers to intestinal infection.

    PubMed

    McKenney, Elizabeth S; Kendall, Melissa M

    2016-07-01

    The gut microbiota plays essential roles in human health and disease. In this review, we focus on the role of the intestinal microbiota in promoting resistance to infection by bacterial pathogens as well as how pathogens overcome this barrier. We discuss how the resident microbiota restricts growth and colonization of invading pathogens by limiting availability of nutrients and through generation of a hostile environment. Additionally, we examine how microbiota-derived signaling molecules interfere with bacterial virulence. In turn, we discuss how pathogens exploit non-competitive metabolites to replicate in vivo as well as to precisely control virulence and cause disease. This bacterial two step of creating and overcoming challenges important in preventing and establishing infection highlights the complexities of elucidating interactions between the commensal bacteria and pathogens. Better understanding of microbiota-pathogen interplay will have significant implications for developing novel therapeutics to treat infectious diseases. PMID:27252177

  5. The methionine precursor DL-2-hydroxy-(4-methylthio)butanoic acid protects intestinal epithelial barrier function.

    PubMed

    Martín-Venegas, Raquel; Brufau, M Teresa; Guerrero-Zamora, Ana Maria; Mercier, Yves; Geraert, Pierre-André; Ferrer, Ruth

    2013-12-01

    DL-2-hydroxy-(4-methylthio)butanoic acid (HMTBA) is a source of dietary methionine (Met) that is widely used in poultry nutrition. We have previously shown that HMTBA is preferentially diverted to the transsulfuration pathway, which gives antioxidant metabolites such as taurine and glutathione. Therefore, here we hypothesize that this Met source can protect epithelial barrier function in an in vitro model of intestinal inflammation of Caco-2 cells. The results show that HMTBA prevents the increase in paracellular permeability induced by H2O2 or tumour necrosis factor-α. This effect can be attributed to the increased production of taurine and reduced glutathione. Similar results were obtained for DL-Met, although the protective role of the amino acid was less pronounced than that of the hydroxy analogue. In conclusion, the diversion to the transsulfuration pathway means that this Met precursor is of greater value than previously thought, due to its capacity to improve intestinal homeostasis and the quality of poultry products destined for human consumption. PMID:23870881

  6. Oral Typhoid Vaccination With Live-Attenuated Salmonella Typhi Strain Ty21a Generates Ty21a-Responsive and Heterologous Influenza Virus–Responsive CD4+ and CD8+ T Cells at the Human Intestinal Mucosa

    PubMed Central

    Pennington, Shaun H.; Thompson, Ameeka L.; Wright, Adam K. A.; Ferreira, Daniela M.; Jambo, Kondwani C.; Wright, Angela D.; Faragher, Brian; Gilmour, Jill W.; Gordon, Stephen B.; Gordon, Melita A.

    2016-01-01

    Background. Oral vaccination with live-attenuated Salmonella Typhi strain Ty21a is modestly efficacious, but the mechanisms of protection are currently unknown. While humoral and cellular immune responses are well described in peripheral blood, the cellular response at the intestinal mucosa has never been directly assessed. Methods. We vaccinated healthy adults with Ty21a and assessed humoral and cellular immunity in vaccinated volunteers and controls after 18 days. Immunoglobulin levels were assessed in peripheral blood by an enzyme-linked immunosorbent assay. Cellular responses were assessed in peripheral blood and at the duodenal and colonic mucosa by flow cytometry. Results. We demonstrate the generation of Ty21a-responsive and heterologous influenza virus–responsive CD4+ and CD8+ T cells at the duodenal mucosa. All duodenal responses were consistently correlated, and no responses were observed at the colonic mucosa. Peripheral anti-lipopolysaccharide immunoglobulin G and immunoglobulin A responses were significantly correlated with duodenal responses. The assessment of integrin β7 expression intensity among peripheral and duodenal T-cell subsets revealed varied capacities for mucosal homing and residence. Conclusions. The breadth of duodenal cellular responses was not reflected peripherally. The direct evaluation of mucosal immune defense may yield functional correlates of protection and could provide insight into mechanisms that may be manipulated to enhance vaccine immunogenicity. PMID:26810369

  7. Intestinal and Blood-Brain Barrier Permeability of Ginkgolides and Bilobalide: In Vitro and In Vivo Approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study intestinal and blood brain barrier (BBB) transport of ginkgolides A, B, C, J and bilobalide, isolated from Ginkgo biloba (Family-Ginkgoaceae), was evaluated in Caco-2 and MDR1-MDCK cell monolayer models. Transepithelial transport was examined for 2 hours in both absorptive and secretor...

  8. CRF Induces Intestinal Epithelial Barrier Injury via the Release of Mast Cell Proteases and TNF-α

    PubMed Central

    Overman, Elizabeth L.; Rivier, Jean E.; Moeser, Adam J.

    2012-01-01

    Background and Aims Psychological stress is a predisposing factor in the onset and exacerbation of important gastrointestinal diseases including irritable bowel syndrome (IBS) and the inflammatory bowel diseases (IBD). The pathophysiology of stress-induced intestinal disturbances is known to be mediated by corticotropin releasing factor (CRF) but the precise signaling pathways remain poorly understood. Utilizing a porcine ex vivo intestinal model, the aim of this study was to investigate the mechanisms by which CRF mediates intestinal epithelial barrier disturbances. Methodology Ileum was harvested from 6–8 week-old pigs, mounted on Ussing Chambers, and exposed to CRF in the presence or absence of various pharmacologic inhibitors of CRF-mediated signaling pathways. Mucosal-to-serosal flux of 4 kDa-FITC dextran (FD4) and transepithelial electrical resistance (TER) were recorded as indices of intestinal epithelial barrier function. Results Exposure of porcine ileum to 0.05–0.5 µM CRF increased (p<0.05) paracellular flux compared with vehicle controls. CRF treatment had no deleterious effects on ileal TER. The effects of CRF on FD4 flux were inhibited with pre-treatment of tissue with the non-selective CRF1/2 receptor antagonist Astressin B and the mast cell stabilizer sodium cromolyn (10−4 M). Furthermore, anti-TNF-α neutralizing antibody (p<0.01), protease inhibitors (p<0.01) and the neural blocker tetrodotoxin (TTX) inhibited CRF-mediated intestinal barrier dysfunction. Conclusion These data demonstrate that CRF triggers increases in intestinal paracellular permeability via mast cell dependent release of TNF-α and proteases. Furthermore, CRF-mast cell signaling pathways and increases in intestinal permeability require critical input from the enteric nervous system. Therefore, blocking the deleterious effects of CRF may address the enteric signaling of mast cell degranulation, TNFα release, and protease secretion, hallmarks of IBS and IBD. PMID:22768175

  9. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway.

    PubMed

    Segawa, Shuichi; Fujiya, Mikihiro; Konishi, Hiroaki; Ueno, Nobuhiro; Kobayashi, Naoyuki; Shigyo, Tatsuro; Kohgo, Yutaka

    2011-01-01

    Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P), a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg) improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK. PMID:21858054

  10. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery.

    PubMed

    Neves, Ana Rute; Queiroz, Joana Fontes; Costa Lima, Sofia A; Figueiredo, Francisco; Fernandes, Rui; Reis, Salette

    2016-02-01

    Oral administration is the preferred route for drug delivery and nanosystems represent a promising tool for protection and transport of hardly soluble, chemically unstable and poorly permeable drugs through the intestinal barrier. In the present work, we have studied lipid nanoparticles cellular uptake, internalization pathways and transcytosis routes through Caco-2 cell monolayers. Both lipid nanosystems presented similar size (∼180nm) and surface charge (-30mV). Nanostructured lipid carriers showed a higher cellular uptake and permeability across the barrier, but solid lipid nanoparticles could enter cells faster than the former. The internalization of lipid nanoparticles occurs mainly through a clathrin-mediated endocytosis mechanism, although caveolae-mediated endocytosis is also involved in the uptake. Both lipid nanoparticles were able to cross the intestinal barrier by a preferential transcellular route. This work contributed to a better knowledge of the developed nanosystems for the oral delivery of a wide spectrum of drugs. PMID:26550783