Science.gov

Sample records for intestinal peptide stimulates

  1. Vasoactive intestinal peptide stimulates protein phosphorylation in a colonic epithelial cell line

    SciTech Connect

    Cohn, J.A.

    1987-09-01

    The T/sub 84/ colonic epithelial cell line was used to examine protein phosphorylation during neurohumoral stimulation of ion transport. T/sub 84/ cell monolayers grown on collagen-coated filters were mounted in Ussing chambers to measure ion transport stimulated by vasoactive intestinal peptide. Maximal stimulation of active secretion occurred after 8-10 min of stimulation. Protein phosphorylation events accompanying stimulated secretion were detected using two-dimensional gel electrophoresis to resolve phosphoproteins from monolayers previously labeled using /sup 32/P/sub i/. Within 8 min of exposure to vasoactive intestinal peptide, several phosphorylation events were detected, including a two- to fivefold increase in /sup 32/P incorporation into four soluble proteins with apparent molecular weights of 17,000, 18,000, 23,000, and 37,000. The same phosphorylation response occurs in monolayers stimulated by dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP), suggesting that cAMP mediates these intracellular events. This study indicates that changes in protein phosphorylation accompany the secretory action of vasocactive intestinal peptide and suggests that T/sub 84/ cells offer a useful model for studying the possibility that such phosphorylation events regulate enterocyte ion transport.

  2. Vasoactive intestinal peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  3. alpha-Lactalbumin hydrolysate stimulates glucagon-like peptide-2 secretion and small intestinal growth in suckling rats.

    PubMed

    Izumi, Hirohisa; Ishizuka, Satoshi; Inafune, Ayako; Hira, Tohru; Ozawa, Kazuhiro; Shimizu, Takashi; Takase, Mitsunori; Hara, Hiroshi

    2009-07-01

    We investigated whether bovine milk constituents influenced glucagon-like peptide (GLP)-2 secretion and intestinal growth in suckling rats. Male Sprague-Dawley rats (14 d old) received i.g. infusions of a milk protein fraction, a lactose solution, or the cream fraction of milk. The serum concentration of GLP-2, but not GLP-1, markedly increased in rats administered milk protein compared with those given the lactose solution or the cream fraction from 60 to 120 min after administration. In another experiment, both casein (CN) and whey protein isolate stimulated GLP-2 secretion at 120 min after administration, but soy protein and ovalbumin did not. Stimulation of GLP-2 secretion by several milk proteins was similar, including alpha-CN, alpha-lactalbumin (alpha-La), and beta-lactoglobulin, in a separate experiment. A hydrolysate of alpha-La obtained by incubation with protease A extracted from Aspergillus oryzae (LaHPA) caused almost twice the GLP-2 release due to intact alpha-La and other alpha-La hydrolysates. Free amino acid concentrations and molecular size distributions did not differ among alpha-La hydrolysates, including LaHPA. In rat pups reared with milk formulae containing alpha-La or LaHPA, LaHPA significantly promoted small intestinal elongation and increased the number of crypt epithelial cells compared with a formula containing intact alpha-La. LaHPA administration also increased the maltase:lactase activity ratio, a marker of maturation of the intestinal mucosa. In conclusion, milk proteins stimulate GLP-2 secretion and contribute to growth and maturation of the small intestine in suckling rats. PMID:19494023

  4. Effect of different intestinal conditions on the intermolecular interaction between insulin and cell-penetrating peptide penetratin and on its contribution to stimulation of permeation through intestinal epithelium.

    PubMed

    Kamei, Noriyasu; Aoyama, Yukina; Khafagy, El-Sayed; Henmi, Mao; Takeda-Morishita, Mariko

    2015-08-01

    Our recent studies have shown that the coadministration of cell-penetrating peptides (CPPs) is a potential strategy for oral delivery of peptide- and protein-based biopharmaceuticals. The intermolecular interaction between drug and CPP is an essential factor in the effective delivery of these drugs, but the characteristics of the interaction under the conditions of the intestinal lumen remain unknown. In this study, therefore, we examined the characteristics of binding of the amphipathic CPP penetratin to insulin and the efficiency of its enhancement of epithelial insulin transport at different pH and in simulated intestinal fluids (SIFs). The binding between insulin and penetratin was pH dependent and particularly decreased at pH 5.0. In addition, we clarified that the sodium taurocholate (NaTC) present in two types of SIF (fasted-state SIF [FaSSIF] and fed-state SIF [FeSSIF]) affected binding efficiency. However, the permeation of insulin through a Caco-2 cell monolayer was significantly facilitated by coincubation with l- or d-penetratin at various pH values. Moreover, the permeation-stimulating effect of l-penetratin was observed in FaSSIF containing NaTC and lecithin, but not in 3mM NaTC solution, suggesting that the presence of lecithin was the key factor in maintaining the ability of penetratin to enhance the intestinal absorption of biopharmaceuticals. This report describes the essential considerations for in vivo use and clinical application of a CPP-based oral delivery strategy. PMID:25960330

  5. Vasoactive intestinal peptide synergistically stimulates DNA synthesis in mouse 3T3 cells: Role of cAMP, Ca sup 2+ , and protein kinase C

    SciTech Connect

    Zurier, B.B.; Kozma, M.; Sinnett-Smith, J.; Rozengurt, E. )

    1988-05-01

    Vasoactive intestinal peptide synergistically stimulated initiation of DNA synthesis in Swiss 3T3 cells. The peptide stimulated ({sup 3}H)thymidine incorporation in the presence of insulin and either forskolin or an inhibitor of cAMP phosphodiesterase in a concentration-dependent manner. Half-maximal effect was obtained at 1 nM. At mitogenic concentrations, VIP stimulated a marked accumulation (eightfold) of cAMP. In contrast to other growth-promoting neuropeptides, VIP did not induce an increase in cytosolic free Ca{sup 2+} or the activation of protein kinase C. The authors conclude that neuropeptides can modulate long-term cell proliferation through multiple signaling pathways.

  6. Vasoactive intestinal peptide: A potent stimulator of adenosine 3′:5′-cyclic monophosphate accumulation in gut carcinoma cell lines in culture*

    PubMed Central

    Laburthe, M.; Rousset, M.; Boissard, C.; Chevalier, G.; Zweibaum, A.; Rosselin, G.

    1978-01-01

    Vasoactive intestinal peptide (VIP) is a potent and efficient stimulator of adenosine 3′:5′-cyclic monophosphate (cAMP) accumulation in a human colon carcinoma cell line, HT 29. cAMP accumulation is sensitive to a concentration of VIP as low as 3×10-12 M. Maximum VIP-induced cAMP levels were observed with 10-9 M VIP and are about 200 times above the basal levels. Half-maximum cAMP production was obtained at 3×10-10 M VIP. 125I-Labeled VIP was found to bind to HT 29 cells; this binding was competitively inhibited by concentrations of unlabeled VIP between 10-10 and 10-7 M. Half-maximum inhibition of binding was observed with 2×10-9 M VIP. Secretin also stimulated cAMP accumulation in HT 29 cells, but its effectiveness was 1/1000 that of VIP. The other peptides tested at 10-7 M, such as insulin, glucagon, bovine pancreatic polypeptide, somatostatin, octapeptide of cholecystokinin, neurotensin, and substance P, did not stimulate cAMP accumulation. Prostaglandin E1 and catecholamines stimulated cAMP production but were 1/2.3 and 1/5.5 as efficient as VIP, respectively. Another malignant cell line from the gut, the human rectal tumor cell line HRT 18, is also sensitive to VIP. In HRT 18 cells, VIP stimulated cAMP accumulation with a maximal effect at 10-8 M; half-maximum stimulation was observed at about 10-9 M. These results demonstrate the presence of VIP receptors in two malignant human intestinal cell lines (HT 29 and HRT 18) in culture and provide a model for studying the action of VIP on cell proliferation. PMID:208077

  7. Vasoactive intestinal peptide enhanced aromatase activity in the neonatal rat ovary before development of primary follicles or responsiveness to follicle-stimulating hormone

    SciTech Connect

    George, F.W.; Ojeda, S.R.

    1987-08-01

    The authors have investigated the factors that regulate aromatase activity in fetal-neonatal rat ovaries. Ovarian aromatase activity (assessed by measuring the amount of /sup 3/H/sub 2/O formed from (1..beta..-/sup 3/H)testosterone) is low prior to birth and increases to values greater than 30 pmol/hr per mg of protein between days 8 and 12 after birth. The appearance of ovarian aromatase coincides with the development of primordial follicles. Fetal-neonatal ovaries maintained in serum-free organ culture do not develop aromatase activity at the expected time. Ovine follicle-stimulating hormone, ovine luteinizing hormone, or their combination failed to induce the enzyme activity in cultured fetal ovaries, whereas follicle-stimulating hormone is effective in preventing the decline in aromatase activity when postnatal day 8 ovaries are placed in culture. In contrast to follicle-stimulating hormone, dibutyryl-cAMP markedly enhances ovarian aromatase in cultured fetal ovaries. Likewise, enhancement of endogenouse cAMP formation with forskolin or cholera toxin caused an increase in enzyme activity within 24 hr. Vasoactive intestinal peptide, a peptide known to occur in ovarian nerves, caused a dose-dependent increase in aromatase activity in fetal ovaries prior to folliculogenesis. Of related peptides tested, only the peptide having N-terminal histidine and C-terminal isoleucine amide was capable of inducing aromatase activity in fetal ovaries. The fact that VIP can induce aromatase activity in fetal rat ovaries prior to follicle formation and prior to responsiveness to follicle-stimulating hormone suggests that this neuropeptide may play a critical role in ovarian differentiation.

  8. Vasoactive intestinal peptide stimulates melanogenesis in B16F10 mouse melanoma cells via CREB/MITF/tyrosinase signaling.

    PubMed

    Yuan, Xing-Hua; Yao, Cheng; Oh, Jang-Hee; Park, Chi-Hyun; Tian, Yu-Dan; Han, Mira; Kim, Ji Eun; Chung, Jin Ho; Jin, Zhe-Hu; Lee, Dong Hun

    2016-08-26

    Vasoactive intestinal peptide (VIP), one of the major skin neuropeptides, has been suggested to have active roles in the pathogenesis of inflammatory skin disorders such as atopic dermatitis and psoriasis, which can commonly cause post-inflammatory hyperpigmentation. However, the effect of VIP on melanogenesis remains unknown. In this study, we showed that the melanin contents, tyrosinase activity, and gene expression of tyrosinase and microphthalmia-associated transcription factor (MITF) were significantly increased by treatment with VIP in B16F10 mouse melanoma cells and the stimulatory melanogenic effect was further examined in human epidermal melanocytes (HEMns). In addition, phosphorylated levels of CRE-binding protein (CREB) and protein kinase A (PKA) were markedly increased after VIP treatment, but not p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), or Akt, indicating the possible PKA-CREB signaling pathway involved in VIP-induced melanogenesis. This result was further verified by the fact that VIP induced increased melanin synthesis, and protein levels of phosphorylated CREB, MITF, tyrosinase were significantly attenuated by H89 (a specific PKA inhibitor). These data suggest that VIP-induced upregulation of tyrosinase through the CREB-MITF signaling pathway plays an important role in finding new treatment strategy for skin inflammatory diseases related pigmentation disorders. PMID:27343558

  9. Administration of insulin-like growth factor-I (IGF-I) peptides for three days stimulates proliferation of the small intestinal epithelium in rats.

    PubMed Central

    Steeb, C B; Trahair, J F; Read, L C

    1995-01-01

    It has previously been shown that longterm administration of insulin-like growth factor-I (IGF-I) or the analogue Long R3 IGF-I (LR3IGF-I) selectively stimulate growth of the gastrointestinal tract in gut resected, dexamethasone treated, and normal rats. In this study, the short-term effects of IGF-I administration on intestinal proliferation have been investigated. Female rats (110 g, five-six/group) were infused for three days with 2.5 mg/kg/day of either IGF-I or LR3IGF-I and compared with vehicle treated or untreated control rats. LR3IGF-I but not IGF-I increased body weight and wet tissue weight of the small and large intestine (+20%), compared with controls. Tissue weight responses were independent of food intake and were reflected in the histology of the tissue. In LR3IGF-I treated animals, duodenal and ileal crypts length were increased by 13 and 22%, respectively, associated with an increase in crypt cell number. No such histological changes were seen in IGF-I treated rats. Tritiated thymidine labelling indices were significantly increased after administration of either IGF-I or LR3IGF-I (up to 14%) in both the duodenum and ileum. In IGF-I treated rats, increased nuclear labelling was not associated with an increase in the crypt compartment. In contrast, LR3IGF-I induced proportional increments in thymidine labelling and crypt size, suggesting that LR3IGF-I is not only more potent than the native peptide but also induced proliferative events more rapidly. In the colon, the thymidine labelling index was low, however, a non-significant increase in the number of cells labelled with thymidine was seen. These results suggest that within a three day treatment period intestinal mitogenesis is more advanced in animals treated with LR3IGF-I. The differences in proliferative response between the two peptides may be accounted for by variations in pharmacokinetics, clearance rates, and interactions with circulating and tissue specific binding proteins. PMID:8549937

  10. Administration of insulin-like growth factor-I (IGF-I) peptides for three days stimulates proliferation of the small intestinal epithelium in rats.

    PubMed

    Steeb, C B; Trahair, J F; Read, L C

    1995-11-01

    It has previously been shown that longterm administration of insulin-like growth factor-I (IGF-I) or the analogue Long R3 IGF-I (LR3IGF-I) selectively stimulate growth of the gastrointestinal tract in gut resected, dexamethasone treated, and normal rats. In this study, the short-term effects of IGF-I administration on intestinal proliferation have been investigated. Female rats (110 g, five-six/group) were infused for three days with 2.5 mg/kg/day of either IGF-I or LR3IGF-I and compared with vehicle treated or untreated control rats. LR3IGF-I but not IGF-I increased body weight and wet tissue weight of the small and large intestine (+20%), compared with controls. Tissue weight responses were independent of food intake and were reflected in the histology of the tissue. In LR3IGF-I treated animals, duodenal and ileal crypts length were increased by 13 and 22%, respectively, associated with an increase in crypt cell number. No such histological changes were seen in IGF-I treated rats. Tritiated thymidine labelling indices were significantly increased after administration of either IGF-I or LR3IGF-I (up to 14%) in both the duodenum and ileum. In IGF-I treated rats, increased nuclear labelling was not associated with an increase in the crypt compartment. In contrast, LR3IGF-I induced proportional increments in thymidine labelling and crypt size, suggesting that LR3IGF-I is not only more potent than the native peptide but also induced proliferative events more rapidly. In the colon, the thymidine labelling index was low, however, a non-significant increase in the number of cells labelled with thymidine was seen. These results suggest that within a three day treatment period intestinal mitogenesis is more advanced in animals treated with LR3IGF-I. The differences in proliferative response between the two peptides may be accounted for by variations in pharmacokinetics, clearance rates, and interactions with circulating and tissue specific binding proteins. PMID:8549937

  11. Vasoactive intestinal peptide (VIP) differentially affects inflammatory immune responses in human monocytes infected with viable Salmonella or stimulated with LPS.

    PubMed

    Askar, Basim; Ibrahim, Hiba; Barrow, Paul; Foster, Neil

    2015-09-01

    We compared the effect of VIP on human blood monocytes infected with Salmonella typhimurium 4/74 or stimulated with LPS. VIP (10(-7)M) increased monocyte viability by 24% and 9% when cultured for 24h with 4/74 or Salmonella LPS (100ng/ml), respectively. Significantly increased (P<0.05) numbers of 4/74 were also recovered from monocytes co-cultured with VIP after 6h post-infection (pi) and this remained high after 24h pi. Both 4/74 and LPS increased (P<0.05) the concentration of TNF-α, IL-1β and IL-6 measured in monocyte supernatants. However, LPS induced this effect more rapidly while, with the exception of IL-6, 4/74 induced higher concentrations (P<0.05). VIP significantly decreased (P<0.05) TNF-α and IL-1β production by 4/74-infected monocytes after 6 pi, but only after 24h in LPS-cultured monocytes. This trend was reversed for IL-6 production. However, TNF-α and IL-1β production by 4/74-infected monocytes, cultured with VIP, still remained higher (P<0.05) than concentrations measured in supernatants cultured only with LPS. VIP also increased (P<0.05) production of anti-inflammatory IL-10 in both 4/74 and LPS cultures after 24h. We also show a differential effect of VIP on the expression of TNFα and IL-6 receptors, since VIP was only able to decreased expression in LPS-stimulated monocytes but not in 4/74-infected monocytes. In conclusion, we show a differential effect of VIP on human monocytes infected with virulent Salmonella or stimulated with LPS. Our study suggests that the use of VIP in bacteraemia and/or sepsis may be limited to an adjunctive therapy to antibiotic treatment. PMID:26206287

  12. Peptide neurons in the canine small intestine.

    PubMed

    Daniel, E E; Costa, M; Furness, J B; Keast, J R

    1985-07-01

    The distributions of peptide-containing nerve fibers and cell bodies in the canine small intestine were determined with antibodies raised against seven peptides: enkephalin, gastrin-releasing peptide (GRP), neuropeptide Y, neurotensin, somatostatin, substance P, and vasoactive intestinal peptide (VIP). Immunoreactive nerve cell bodies and fibers were found for each peptide except neurotensin. In the muscle layers there were numerous substance P, VIP, and enkephalin fibers, fewer neuropeptide Y fibers, and very few GRP or somatostatin fibers. The mucosa contained many VIP and substance P fibers, moderate numbers of neuropeptide Y, somatostatin, and GRP fibers and rare enkephalin fibers. Nerve cell bodies reactive for each of the six neural peptides were located in both the myenteric and submucous plexuses. The distributions of nerve cell bodies and processes in the canine small intestine show many similarities with other mammals, for example, in the distributions of VIP, substance P, neuropeptide Y, and somatostatin nerves. There are some major differences, such as the presence in dogs of numerous submucosal nerve cell bodies with enkephalinlike immunoreactivity and of GRP-like immunoreactivity in submucous nerve cell bodies and mucosal fibers. PMID:2411766

  13. Role of vasoactive intestinal peptide in osteoarthritis.

    PubMed

    Jiang, Wei; Wang, Hua; Li, Yu-Sheng; Luo, Wei

    2016-01-01

    Vasoactive intestinal peptide (VIP) plays important roles in many biological functions, such as, stimulation of contractility in the heart, vasodilation, promoting neuroendocrine-immune communication, lowering arterial blood pressure, and anti-inflammatory and immune-modulatory activity. Osteoarthritis (OA) is a chronic and degenerative bone disease, which is one of the most common causes of disability and most common in both sexes as people become older. Interestingly VIP can prevent chronic cartilage damage and joint remodeling. This review article provides update information on the association of VIP and OA and its treatment. Evidences suggest that VIP is down-regulated in synovial fluid of OA, and VIP down-regulation leads to increase in the production of pro-inflammatory cytokines that might contribute to the pathogenesis of OA; however contradictory reports also exist suggesting that accumulation of VIP in joints can also contribute OA. A number of studies indicated that up-regulation of VIP can counteract the action of pro-inflammatory stimuli and alleviate the pain in OA. More clinical investigations are necessary to determine the biology of VIP and its therapeutic potential in OA that might represent the future standards of care for OA. PMID:27553659

  14. Diazepam binding inhibitor is a potent cholecystokinin-releasing peptide in the intestine.

    PubMed Central

    Herzig, K H; Schön, I; Tatemoto, K; Ohe, Y; Li, Y; Fölsch, U R; Owyang, C

    1996-01-01

    Pancreatic proteases in the duodenum inhibit the release of cholecystokinin (CCK) and thus exert feedback control of pancreatic exocrine secretion. Exclusion of proteases from the duodenum either by the diversion of bile-pancreatic juice or by the addition of protease inhibitors stimulates exocrine pancreatic secretion. The mechanism by which pancreatic proteases in the duodenum regulate CCK secretion is unknown. In this study, we isolated a trypsin-sensitive peptide that is secreted intraduodenally, releases CCK, and stimulates pancreatic enzyme secretion in rats. This peptide was found to be identical to the porcine diazepam binding inhibitor by peptide sequencing and mass spectrometry analysis. Intraduodenal infusion of 200 ng of synthetic porcine diazepam binding inhibitor1-86 in rats significantly stimulated pancreatic amylase output. Infusion of the CCK antagonist MK-329 completely blocked the diazepam binding inhibitor-stimulated amylase secretion. Similarly, diazepam binding inhibitor33-52 [corrected] also stimulated CCK release and pancreatic secretion in a dose-dependent manner although it was 100 times less potent than the whole peptide. Using a perfusion system containing isolated mucosal cells from the proximal intestine of rats, porcine diazepam binding inhibitor 10(-12) M) dose dependently stimulated CCK secretion. In separate studies, it was demonstrated that luminal secretion of the diazepam binding inhibitor immunoreactivity (7.5 X 10(11) M) could be detected in rat's intestinal washing following the diversion of bile-pancreatic juice. The secretion of this peptide was inhibited by atropine. In conclusion, we have isolated and characterized a CCK-releasing peptide that has a sequence identical to the porcine diazepam binding inhibitor from pig intestinal mucosa and that stimulates CCK release when administered intraduodenally in rat. This peptide may mediate feedback regulation of pancreatic enzyme secretion. Images Fig. 1 PMID:8755579

  15. Vasoactive intestinal peptide receptors in rat liver after partial hepatectomy.

    PubMed Central

    Guijarro, L G; Couvineau, A; Rodriguez-Pena, M S; Juarranz, M G; Rodriguez-Henche, N; Arilla, E; Laburthe, M; Prieto, J C

    1992-01-01

    We describe the status of vasoactive intestinal peptide (VIP) receptors in regenerating liver. VIP-stimulated adenylate cyclase activity was markedly decreased in proliferating liver 3 days after partial (70%) hepatectomy. This was associated with a reduced efficacy of VIP (53% compared with controls), with no change in the potency of the peptide (ED50 0.8 nM). In contrast, forskolin- and guanosine 5'-[beta gamma-imido]triphosphate (Gpp[NH]p)-stimulated enzyme activities were not decreased after hepatectomy. The expression of Gs protein subunits (alpha and beta) was studied by cholera toxin-catalysed ADP ribosylation of alpha s and by immunoblotting of alpha s and beta subunits. Both subunits were increased in regenerating liver, further suggesting that the decreased response to VIP was not related to a decreased expression of Gs proteins. In fact, the reduced adenylate cyclase response to VIP in regenerating liver was associated with quantitative and structural changes in VIP receptors. Equilibrium binding data obtained with 125I-VIP indicated the presence of two classes of binding sites, the Kds of which were not altered after hepatectomy. In contrast, changes in binding capacity (Bmax.) were as follows: 0.11 +/- 0.01 and 0.05 +/- 0.01 pmol/mg of protein for high-affinity sites in control and hepatectomized rats respectively; and 2.3 +/- 0.2 and 0.65 +/- 0.03 pmol/mg of protein for low-affinity sites in control and hepatectomized rats respectively. Moreover, affinity labelling experiments showed that the M(r) value of 125I-VIP-receptor complexes was higher in regenerating liver than in quiescent hepatocytes, e.g. 58,000 and 53,000 respectively. It is concluded that VIP receptors are altered in regenerating liver, resulting in a decreased response of adenylate cyclase to the neuropeptide. Images Fig. 3. Fig. 4. Fig. 6. PMID:1322136

  16. Cyclic AMP formation in chicken brain: effect of vasoactive intestinal peptide, peptide histidine-isoleucine (PHI), and some PHI-related peptides.

    PubMed

    Dejda, Agnieszka; Matczak, Izabela; Wiktorowska-Owczarek, Anna; Nowak, Jerzy Z

    2003-01-01

    Vasoactive intestinal peptide (chicken form; chVIP), peptide histidine-isoleucine (porcine and rat forms; pPHI and rPHI), D-Phe(4) derivative of porcine PHI (D-Phe(4)-pPHI), peptide histidine-methionine (PHM; human PHI), and helodermin, were tested for their ability to stimulate cAMP production in [(3)H]adenine-prelabeled slices of chick cerebral cortex (CCx) and hypothalamus (HTh). The chVIP (0.1-3 microM) concentration-dependently and potently stimulated cAMP production in HTh and CCx; the responses observed after 3 microM of chVIP were comparable to those produced by 0.1 microM PACAP38. Helodermin (5 microM) moderately but significantly stimulated cAMP formation in both HTh and CCx, whereas pPHI, rPHI, PHM at 5 microM concentration only weakly affected cAMP production in CCx, and were inactive in HTh; D-Phe(4)-pPHI was inactive in both tissues. These data demonstrate that chVIP, PACAP, and to a lesser extent helodermin were capable of potently stimulating cAMP generation in the avian central nervous system. PHI-related peptides showed only weak or no activity, depending on the tissue. PMID:14704471

  17. Vasoactive intestinal peptide may participate in the vasodilation of the dog hepatic artery

    SciTech Connect

    Varga, G.; Kiss, J.Z.; Papp, M.; Vizi, E.S.

    1986-08-01

    The possible direct action of vasoactive intestinal peptide (VIP) on dog hepatic arterial wall or on the noradrenergic innervation of the artery was investigated in vitro. In addition, VIP-containing nerve fibers and terminals were located in the wall of the artery with immunochemical staining. Direct evidence showed that VIP did not affect the release of (TH)norepinephrine but reduced the response of the isolated hepatic artery to electrical field stimulation and exogenous norepinephrine. This suggest that the effect of VIP is postjunctional on the smooth muscle of the artery. VIP-containing nerve fibers and varicosities were observed in the adventitial and medial layer of the arterial wall. These findings strongly support the hypothesis that vasoactive intestinal peptide is a physiological mediator of vasodilation in the hepatic artery.

  18. Food Derived Bioactive Peptides and Intestinal Barrier Function

    PubMed Central

    Martínez-Augustin, Olga; Rivero-Gutiérrez, Belén; Mascaraque, Cristina; Sánchez de Medina, Fermín

    2014-01-01

    A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF) whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action. PMID:25501338

  19. cis-Peptide Bonds: A Key for Intestinal Permeability of Peptides? .

    PubMed

    Marelli, Udaya Kiran; Ovadia, Oded; Frank, Andreas Oliver; Chatterjee, Jayanta; Gilon, Chaim; Hoffman, Amnon; Kessler, Horst

    2015-10-19

    Recent structural studies on libraries of cyclic hexapeptides led to the identification of common backbone conformations that may be instrumental to the oral availability of peptides. Furthermore, the observation of differential Caco-2 permeabilities of enantiomeric pairs of some of these peptides strongly supports the concept of conformational specificity driven uptake and also suggests a pivotal role of carrier-mediated pathways for peptide transport, especially for scaffolds of polar nature. This work presents investigations on the Caco-2 and PAMPA permeability profiles of 13 selected N-methylated cyclic pentaalanine peptides derived from the basic cyclo(-D-Ala-Ala4 -) template. These molecules generally showed moderate to low transport in intestinal epithelia with a few of them exhibiting a Caco-2 permeability equal to or slightly higher than that of mannitol, a marker for paracellular permeability. We identified that the majority of the permeable cyclic penta- and hexapeptides possess an N-methylated cis-peptide bond, a structural feature that is also present in the orally available peptides cyclosporine A and the tri-N-methylated analogue of the Veber-Hirschmann peptide. Based on these observations it appears that the presence of N-methylated cis-peptide bonds at certain locations may promote the intestinal permeability of peptides through a suitable conformational preorganization. PMID:26337831

  20. Regulation of the Intestinal Barrier Function by Host Defense Peptides

    PubMed Central

    Robinson, Kelsy; Deng, Zhuo; Hou, Yongqing; Zhang, Guolong

    2015-01-01

    Intestinal barrier function is achieved primarily through regulating the synthesis of mucins and tight junction (TJ) proteins, which are critical for maintaining optimal gut health and animal performance. An aberrant expression of TJ proteins results in increased paracellular permeability, leading to intestinal and systemic disorders. As an essential component of innate immunity, host defense peptides (HDPs) play a critical role in mucosal defense. Besides broad-spectrum antimicrobial activities, HDPs promotes inflammation resolution, endotoxin neutralization, wound healing, and the development of adaptive immune response. Accumulating evidence has also indicated an emerging role of HDPs in barrier function and intestinal homeostasis. HDP deficiency in the intestinal tract is associated with barrier dysfunction and dysbiosis. Several HDPs were recently shown to enhance mucosal barrier function by directly inducing the expression of multiple mucins and TJ proteins. Consistently, dietary supplementation of HDPs often leads to an improvement in intestinal morphology, production performance, and feed efficiency in livestock animals. This review summarizes current advances on the regulation of epithelial integrity and homeostasis by HDPs. Major signaling pathways mediating HDP-induced mucin and TJ protein synthesis are also discussed. As an alternative strategy to antibiotics, supplementation of exogenous HDPs or modulation of endogenous HDP synthesis may have potential to improve intestinal barrier function and animal health and productivity. PMID:26664984

  1. Neonate Intestinal Immune Response to CpG Oligodeoxynucleotide Stimulation

    PubMed Central

    Lacroix-Lamandé, Sonia; Rochereau, Nicolas; Mancassola, Roselyne; Barrier, Mathieu; Clauzon, Amandine; Laurent, Fabrice

    2009-01-01

    Background The development of mucosal vaccines is crucial to efficiently control infectious agents for which mucosae are the primary site of entry. Major drawbacks of these protective strategies are the lack of effective mucosal adjuvant. Synthetic oligodeoxynucleotides that contain several unmethylated cytosine-guanine dinucleotide (CpG-ODN) motifs are now recognized as promising adjuvants displaying mucosal adjuvant activity through direct activation of TLR9-expressing cells. However, little is known about the efficacy of these molecules in stimulating the intestinal immune system in neonates. Methodology/Principal Findings First, newborn mice received CpG-ODN orally, and the intestinal cytokine and chemokine response was measured. We observed that oral administration of CpG-ODN induces CXC and CC chemokine responses and a cellular infiltration in the intestine of neonates as detected by immunohistochemistry. We next compared the efficiency of the oral route to intraperitoneal administration in stimulating the intestinal immune responses of both adults and neonates. Neonates were more responsive to TLR9-stimulation than adults whatever the CpG-ODN administration route. Their intestinal epithelial cells (IECs) indirectly responded to TLR9 stimulation and contributed to the CXC chemokine response, whereas other TLR9-bearing cells of the lamina-propria produced CC chemokines and Th1-type cytokines. Moreover, we showed that the intestine of adult exhibited a significantly higher level of IL10 at homeostasis than neonates, which might be responsible for the unresponsiveness to TLR9-stimulation, as confirmed by our findings in IL10-deficient mice. Conclusions/Significance This is the first report that deciphers the role played by CpG-ODN in the intestine of neonates. This work clearly demonstrates that an intraperitoneal administration of CpG-ODN is more efficient in neonates than in adults to stimulate an intestinal chemokine response due to their lower IL-10

  2. Atrial natriuretic peptide stimulates salt secretion by shark rectal gland by releasing VIP

    SciTech Connect

    Silva, P.; Stoff, J.S.; Solomon, R.J.; Lear, S.; Kniaz, D.; Greger, R.; Epstein, F.H.

    1987-01-01

    Salt secretion by the isolated perfused rectal gland of the spiny dogfish shark, Squalus acanthias, is stimulated by synthetic rat atrial natriuretic peptide (ANP II) as well as extracts of shark heart, but not by 8-bromo-cyclic guanosine 5'-monophosphate. Cardiac peptides have no effect on isolated rectal gland cells or perfused tubules, suggesting that stimulation requires an intact gland. The stimulation of secretion by ANP II is eliminated by maneuvers that block neurotransmitter release. Cardiac peptides stimulate the release of vasoactive intestinal peptide (VIP), known to be present in rectal glands nerves, into the venous effluent of perfused glands in parallel with their stimulation of salt secretion, but the release of VIP induced by ANP II is prevented by perfusion with procaine. VIP was measured by radioimmunoassay. Cardiac peptides thus appear to regulate rectal gland secretion by releasing VIP from neural stores within the gland. It is possible that other physiological effects of these hormones might be explained by an action to enhanced local release of neurotransmitters.

  3. Do Antimicrobial Peptides and Complement Collaborate in the Intestinal Mucosa?

    PubMed Central

    Kopp, Zoë A.; Jain, Umang; Van Limbergen, Johan; Stadnyk, Andrew W.

    2015-01-01

    It is well understood that multiple antimicrobial peptides (AMPs) are constitutively deployed by the epithelium to bolster the innate defenses along the entire length of the intestines. In addition to this constitutive/homeostatic production, AMPs may be inducible and levels changed during disease. In contrast to this level of knowledge on AMP sources and roles in the intestines, our understanding of the complement cascade in the healthy and diseased intestines is rudimentary. Epithelial cells make many complement proteins and there is compelling evidence that complement becomes activated in the lumen. With the common goal of defending the host against microbes, the opportunities for cross-talk between these two processes is great, both in terms of actions on the target microbes but also on regulating the synthesis and secretion of the alternate family of molecules. This possibility is beginning to become apparent with the finding that colonic epithelial cells possess anaphylatoxin receptors. There still remains much to be learned about the possible points of collaboration between AMPs and complement, for example, whether there is reciprocal control over expression in the intestinal mucosa in homeostasis and restoring the balance following infection and inflammation. PMID:25688244

  4. Vasoactive intestinal peptide (VIP) receptors in the canine gastrointestinal tract

    SciTech Connect

    Zimmerman, R.P.; Gates, T.S.; Mantyh, C.R.; Vigna, S.R.; Boehmer, C.G.; Mantyh, P.W.

    1988-11-01

    Vasoactive intestinal peptide (VIP) is a putative neurotransmitter in both the brain and peripheral tissues. To define possible target tissues of VIP we have used quantitative receptor autoradiography to localize and quantify the distribution of /sup 125/I-VIP receptor binding sites in the canine gastrointestinal tract. While the distribution of VIP binding sites was different for each segment examined, specific VIP binding sites were localized to the mucosa, the muscularis mucosa, the smooth muscle of submucosal arterioles, lymph nodules, and the circular and longitudinal smooth muscle of the muscularis externa. These results identify putative target tissues of VIP action in the canine gastrointestinal tract. In correlation with physiological data, VIP sites appear to be involved in the regulation of a variety of gastrointestinal functions including epithelial ion transport, gastric secretion, hemodynamic regulation, immune response, esophageal, gastric and intestinal motility.

  5. Antisecretory effect of prescribed appetite stimulator drug cyproheptadine in rat intestine.

    PubMed

    Meddah, Bouchra; Limas-Nzouzi, Nicolas; Mamadou, Godefroy; Miantezila, Joe; Soudy, Imar Djibrine; Eto, Bruno

    2014-06-01

    Cyproheptadine (Cph) is an antiserotoninergic and antihistaminergic agent with alpha-blocking activity and central sedative effect. Cph has been found to be effective in stimulating appetite, but to our knowledge, its direct effects on the intestine have not been documented. We aimed to assess the antisecretory effects of Cph in rat proximal colon using Ussing chambers' technique. In basal and serotonin (5-HT)-stimulated conditions, Cph induced a dose-dependent reduction in short-circuit current (Isc). This effect was different in fed vs. fasted rats (EC50 = 1.9 × 10(-5 ) m and 4.9 × 10(-5 ) m, respectively). As expected, Cph induced a marked dose-dependent rightward shift of the concentration-response curve to 5-HT (pA2 = 5.4). The effect of Cph was found to be close to that of antisecretory agents in the following sequence: peptide YY > somatostatin > clonidine > Cph > C7-sorbin. To our knowledge, this is the first demonstration that Cph has a direct effect on the inhibition of electrogenic ionic secretion in intestinal epithelium in vitro. Our results indicate that Cph can modulate the intestinal transport of electrolytes and provide a new insight into the peripheral effects of this drug, which is frequently prescribed as appetite stimulator in developing countries. PMID:23565811

  6. Vasoactive intestinal peptide signaling axis in human leukemia

    PubMed Central

    Dorsam, Glenn Paul; Benton, Keith; Failing, Jarrett; Batra, Sandeep

    2011-01-01

    The vasoactive intestinal peptide (VIP) signaling axis constitutes a master “communication coordinator” between cells of the nervous and immune systems. To date, VIP and its two main receptors expressed in T lymphocytes, vasoactive intestinal peptide receptor (VPAC)1 and VPAC2, mediate critical cellular functions regulating adaptive immunity, including arresting CD4 T cells in G1 of the cell cycle, protection from apoptosis and a potent chemotactic recruiter of T cells to the mucosa associated lymphoid compartment of the gastrointestinal tissues. Since the discovery of VIP in 1970, followed by the cloning of VPAC1 and VPAC2 in the early 1990s, this signaling axis has been associated with common human cancers, including leukemia. This review highlights the present day knowledge of the VIP ligand and its receptor expression profile in T cell leukemia and cell lines. Also, there will be a discussion describing how the anti-leukemic DNA binding transcription factor, Ikaros, regulates VIP receptor expression in primary human CD4 T lymphocytes and T cell lymphoblastic cell lines (e.g. Hut-78). Lastly, future goals will be mentioned that are expected to uncover the role of how the VIP signaling axis contributes to human leukemogenesis, and to establish whether the VIP receptor signature expressed by leukemic blasts can provide therapeutic and/or diagnostic information. PMID:21765981

  7. Microbiota/Host Crosstalk Biomarkers: Regulatory Response of Human Intestinal Dendritic Cells Exposed to Lactobacillus Extracellular Encrypted Peptide

    PubMed Central

    Al-Hassi, Hafid O.; Mann, Elizabeth R.; Urdaci, María C.; Knight, Stella C.; Margolles, Abelardo

    2012-01-01

    The human gastrointestinal tract is exposed to a huge variety of microorganisms, either commensal or pathogenic; at this site, a balance between immunity and immune tolerance is required. Intestinal dendritic cells (DCs) control the mechanisms of immune response/tolerance in the gut. In this paper we have identified a peptide (STp) secreted by Lactobacillus plantarum, characterized by the abundance of serine and threonine residues within its sequence. STp is encoded in one of the main extracellular proteins produced by such species, which includes some probiotic strains, and lacks cleavage sites for the major intestinal proteases. When studied in vitro, STp expanded the ongoing production of regulatory IL-10 in human intestinal DCs from healthy controls. STp-primed DC induced an immunoregulatory cytokine profile and skin-homing profile on stimulated T-cells. Our data suggest that some of the molecular dialogue between intestinal bacteria and DCs may be mediated by immunomodulatory peptides, encoded in larger extracellular proteins, secreted by commensal bacteria. These peptides may be used for the development of nutraceutical products for patients with IBD. In addition, this kind of peptides seem to be absent in the gut of inflammatory bowel disease patients, suggesting a potential role as biomarker of gut homeostasis. PMID:22606249

  8. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following in...

  9. Pharmacological characterization of the receptors mediating vasoactive intestinal peptide-induced vasodilation in rat aorta

    SciTech Connect

    Turner, J.T.; Bylund, D.B.

    1986-03-01

    Vasoactive intestinal peptide (VIP)-contain nerve fibers associated with blood vessels are widely distributed, both in the central nervous system and in the periphery. VIP has been shown to be a potent vasodilator in a variety of vascular preparations. The authors have evaluated VIP, the VIP fragment 10-28, and several related peptides including PHI-27, PHM-27 and secretin in terms of their potencies in (1) stimulating the synthesis of cyclic AMP, using the method of Shimizu, in aortic rings; and (2) reversing norepinephrine induced contraction in aortic rings. The authors results indicate that VIP is the most potent of the peptides in both experimental protocols and that the rank order potencies of the various peptides are consistent between the two parameters measured. The authors are currently conducting radioligand binding studies with (/sup 125/I)VIP to further characterize the receptors involved. Additionally, the authors experiments in rat aorta indicate that the presence of the endothelial layer is not required for VIP receptor mediated effects to occur. A potential role for synthetic compounds with high specificity for the VIP receptor in treating hypertension is suggested.

  10. The role of vasoactive intestinal peptide in scavenging singlet oxygen

    SciTech Connect

    Misra, B.R.; Misra, H.P. )

    1990-02-26

    The neuropeptide vasoactive intestinal peptide (VIP), a highly basic 28 amino acid peptide, has a widespread distribution in the body. The functional specificity of this peptide not only includes its potent vasodilatory activity, but also its role in protecting lungs against acute injury, in preventing T-lymphocyte proliferation and in modulating immune function. The purpose of this study was to examine the possible antioxidant properties of VIP. The authors found that VIP up to 50 {mu}g/ml had no inhibitory effect on its reduction of cytochrome C by xanthine and xanthine oxidase, indicating that the peptide does not have significant O{sub 2} scavenging ability. However, VIP was found to inhibit, in a dose-dependent manner, the {sup 1}O{sub 2} dependent 2, 2, 6, 6 tetramethyl piperidine oxide (TEMPO) formation. {sup 1}O{sub 2} was produced by rose benzal photosensitizing system and was detected as TEMP-{sup 1}O{sub 2} adduct (TEMPO) by electron paramagnetic resonance (EPR) spectroscopic technique. The formation of TEMPO signal was strongly inhibited by {beta}-carotene, histidine as well as azide, but not by superoxide dismutase (48 {mu}g/ml), catalase (20 {mu}g/ml) and mannitol (6mM), indicating that TEMPO signal was a TEMP-{sup 1}O{sub 2} adduct. These results indicate that VIP has potent antioxidant activity and may serve as a singlet O{sub 2} scavenger, thus it may modulate the oxidative tissue injury caused by this reactive oxygen species.

  11. Intestinal and renal guanylin peptides system in hypertensive obese mice.

    PubMed

    Simões-Silva, Liliana; Moreira-Rodrigues, Mónica; Quelhas-Santos, Janete; Fernandes-Cerqueira, Cátia; Pestana, Manuel; Soares-Silva, Isabel; Sampaio-Maia, Benedita

    2013-01-01

    Guanylin (GN), uroguanylin (UGN) and the GC-C receptor have been associated with two endocrine axes: the salt and water homeostasis regulating enterorenal axis and the recently described appetite-regulating UGN/GC-C extraintestinal axis. The present work assessed the mRNA expression levels of GN peptides system (GPS) in a model of diet-induced obesity. Male C57BL/6J mice were submitted to either a high-fat high-simple carbohydrate diet (obese) or a normal diet (control). The renal and intestinal GN, UGN and GC-C receptor mRNA expression were evaluated by reverse transcriptase quantitative polymerase chain reaction in both groups, during normo-saline (NS) and high-saline (HS) diet. The diet-induced obesity was accompanied by glucose intolerance and insulin resistance as well as by a significant increase in blood pressure. During NS diet, obese mice presented reduced mRNA expression of GN in ileum and colon, UGN in duodenum, ileum and colon and GC-C in duodenum, jejunum, ileum and colon. This was accompanied by increased UGN mRNA expression in renal cortex. During HS diet, obese mice presented reduced mRNA expression of GN in jejunum as well as reduced mRNA expression of UGN and GC-C in duodenum, jejunum and colon. The data obtained suggest that, in a mouse model of diet-induced obesity, a down-regulation of intestinal mRNA expression of GN, UGN and its GC-C receptor is accompanied by a compensatory increase of renal UGN mRNA expression. We hypothesize that the decrease in gene expression levels of intestinal GPS may contribute to the development of hypertension and obesity during hypercaloric diet intake. PMID:23479768

  12. The Responses of Rat Intestinal Brush Border and Cytosol Peptide Hydrolase Activities to Variation in Dietary Protein Content DIETARY REGULATION OF INTESTINAL PEPTIDE HYDROLASES

    PubMed Central

    Nicholson, J. Alex; McCarthy, Denis M.; Kim, Young S.

    1974-01-01

    The effects of variation in dietary protein content on small intestinal brush border and cytosol peptide hydrolase activities have been investigated. One group of rats was fed a high protein diet (55% casein) and another group was fed a low protein diet (10% casein). After 1 wk, brush border peptide hydrolase activity (L-leucyl-β-naphthylamide as substrate) and cytosol peptide hydrolase activity (L-prolyl-L-leucine as substrate) were determined in mucosae taken from the proximal, middle, and distal small intestine. As judged by several parameters, brush border peptide hydrolase activity was significantly greater in rats fed the high protein diet when data for corresponding segments were compared. In contrast, no significant difference was seen in cytosol peptide hydrolase activity. In a second study, brush border and cytosol peptide hydrolase activities were determined in the proximal intestine by utilizing an additional three peptide substrates: L-leucyl-L-alanine, L-phenylalanylglycine, and glycyl-L-phenylalanine. Sucrase, maltase, and alkaline phosphatase activities were also determined. As before, brush border peptide hydrolase activities were significantly greater in rats fed the high protein diet. However, activities of the nonproteolytic brush border enzymes did not vary significantly with diet. In contrast to the results obtained with L-prolyl-L-leucine as substrate for the cytosol enzymes, cytosol activity against the three additional peptide substrates was greater in rats fed the high protein diet. It is suggested that the brush border peptide hydrolase response to variation in dietary protein content represents a functional adaptation analogous to the regulation of intestinal disaccharidases by dietary carbohydrates. The implication of the differential responses of the cytosol peptide hydrolases is uncertain, since little is known of the functional role of these nonorgan-specific enzymes. PMID:4430719

  13. Stimulation of proteolytic digestion by intestinal goblet cell mucus.

    PubMed

    Shora, W; Forstner, G G; Forstner, J F

    1975-03-01

    Intestinal goblet cell mucus (GCM) was added to incubations of casein and trypsin (or chymotrypsin) to discover whether mucus could inhibit proteolysis. Contrary to expectation, GCM stimulated casein hydrolysis, reaching a maximum effect at a GCM to casein ratio (w/w) of 0.083. GCM did not contain proteolytic enzymes or proenzymes as contaminants, nor did GCM serve as a substrate for trypsin. Stimulation was not reduced by removing 85% of the sialic acid from GCM. Harsh physical treatment (boiling and freezing) of casein decreased (50%) the GCM effect, as did partial predigestion of casein by trypsin, and elevation of trypsin concentration beyond 3 mug per ml. Thus the undegraded structure of casein appeared to be important for the stimulation of proteolysis by GCM. GCM also enhanced the hydrolysis by trypsin of intestinal brush border membrane protein, but had no effect on the hydrolysis of hemoglobin, albumin, or benzoyl arginine ethyl ester. These results suggest that GCM reacts with specific substrates, in a fashion which promotes their digestion by trypsin or chymotrypsin. PMID:1112451

  14. Actions of vasoactive intestinal peptide and secretin on chief cells prepared from guinea pig stomach

    SciTech Connect

    Sutliff, V.E.; Raufman, J.P.; Jensen, R.T.; Gardner, J.D.

    1986-07-01

    Vasoactive intestinal peptide and secretin increased cellular cAMP and pepsinogen secretion in dispersed chief cells from guinea pig gastric mucosa. With each peptide there was a close correlation between the dose-response curve for changes in cellular cAMP and that for changes in pepsinogen secretion. Vasoactive intestinal peptide- (10-28) and secretin- (5-27) had no agonist activity and antagonized the actions of vasoactive intestinal peptide and secretin on cellular cAMP and pepsinogen secretion. Studies of binding of SVI-vasoactive intestinal peptide and of SV-secretin indicated that gastric chief cells possess four classes of binding sites for vasoactive intestinal peptide and secretin and that occupation of two of these classes of binding sites correlates with the abilities of vasoactive intestinal peptide and secretin to increase cellular cAMP and pepsinogen secretion. What function, in any, is mediated by occupation by the other two classes of binding sites remains to be determined.

  15. Immunoregulatory properties of vasoactive intestinal peptide in human T cell subsets: implications for rheumatoid arthritis.

    PubMed

    Gutiérrez-Cañas, Irene; Juarranz, Yasmina; Santiago, Begoña; Martínez, Carmen; Gomariz, Rosa P; Pablos, José Luis; Leceta, Javier

    2008-03-01

    Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease whose pathogenesis is not completely understood. Unbalanced Th1/Th2 T-cell polarization has been suggested to play a pathogenetic role and therefore, modulation of T-cell polarization is a potential therapeutic target. Vasoactive intestinal peptide (VIP) is a broadly distributed peptide that exerts anti-inflammatory and immunomodulatory effects, in the collagen-induced arthritis (CIA) murine model of RA, and ex vivo, in synovial cells from RA patients. In the present study, we have found that polyclonal stimulation of peripheral blood lymphocytes (PBL) from RA patients produces higher levels of inflammatory mediators and lower levels of Th1 cytokines than PBL from healthy controls; moreover, VIP has negligible effects on inflammatory mediators and Th1 cytokines produced by PBL from healthy controls but favours Th2 profile and enhanced IL-10 production after stimulation. VIP increases the levels of IL-10 and IL-4 in the supernatant of human CD4(+)CD45RA(+) cells cultured in a non-conditioned or a Th2-conditioned situation. In contrast, VIP does not modify the production of these cytokines in a Th1-conditioned medium. In summary, VIP can differentially modify the functional capacity of human lymphocytes by inducing Th2/Treg differentiation depending on their previous phenotype. PMID:17951026

  16. The effects of vasoactive intestinal peptide on adrenal steroid hormone secretion

    SciTech Connect

    Cunningham, L.A.

    1988-01-01

    Vasoactive intestinal peptide (VIP)-immunoreactive nerve fibers have been demonstrated in the rat adrenal cortex in close association with zona glomerulosa cells. We have studied the effects of VIP on steroid hormone secretion from the outer zones of the normal rat adrenal cortex. Intact capsule-glomerulosa preparations, consisting of the capsule, zona glomerulosa, and a small portion of the zona fasciculata were perifused in vitro. The secretory responsiveness was assessed by measuring aldosterone and corticosterone release following stimulation with the physiological secretagogues ACTH and angiotensin II. The distribution of adrenal VIP receptors was assessed by in vitro autoradiography of {sup 125}I-VIP binding. {sup 125}I-VIP (0.75 and 2.0 nM) binding was concentrated in the capsule and zone glomerulosa, coincident with the distribution of VIP nerve fibers which aborize extensively in this region. The specificity of this binding was demonstrated using unlabelled VIP, ACTH and angiotensin II.

  17. Glucagon-like peptide-2 increases small intestinal mass of calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is a 33-amino acid hormone secreted from the gastrointestinal tract in response to luminal nutrients that potently increases small intestinal mass in non-ruminants. However, the effects of GLP-2 on small intestinal mass and morphology of ruminants is unknown. Eight Ho...

  18. Pharmacodynamics and toxicity of vasoactive intestinal peptide for intranasal administration.

    PubMed

    Cui, Xu; Cao, De-Ying; Wang, Zhi-Min; Zheng, Ai-Ping

    2013-01-01

    The aim of this work was to study the nasal route for the delivery of vasoactive intestinal peptide (VIP) to the brain and to evaluate the toxicity of VIP nasal spray. Mice were injected intracerebroventricularly with the aggregated Abeta25-35 to mimic Alzheimer's disease. Following administration, different groups of mice were treated over one week, and their spatial learning and memory capacities were evaluated by the Morris water maze test. The toxicity of VIP nasal spray was evaluated by examining the morphology of individual rat nasal mucosa cilia and the pathology of rat nasal mucosa. Rats receiving intranasal VIP (40 microg/ml) showed good spatial memory relative to the Abeta25-35 model group, but the escape latency did not show any statistically significant difference. Intranasal administration of VIP nasal spray (200 microg/ml) improved deficits in spatial memory to the point that test animals receiving intranasal VIP showed no statistically significant differences from the normal control group in escape latency. This indicated that the nasal spray method could increase the quantity of VIP entering the brain and protect the central nervous systems of mice. Toxicity evaluation showed that the preparation could cause minor irritation, which resolved spontaneously within a week at the end of treatment. In conclusion, VIP can be delivered successfully to the brain using the intranasal route. PMID:23444784

  19. Glucagon like peptide-2 induces intestinal restitution through VEGF release from subepithelial myofibroblasts.

    PubMed

    Bulut, Kerem; Pennartz, Christian; Felderbauer, Peter; Meier, Juris J; Banasch, Matthias; Bulut, Daniel; Schmitz, Frank; Schmidt, Wolfgang E; Hoffmann, Peter

    2008-01-14

    Glucagon like peptide-2 (GLP-2) exerts intestinotrophic actions, but the underlying mechanisms are still a matter of debate. Recent studies demonstrated the expression of the GLP-2 receptor on fibroblasts located in the subepithelial tissue, where it might induce the release of growth factors such as keratinocyte growth factor (KGF) or vascular endothelial growth factor (VEGF). Therefore, in the present studies we sought to elucidate the downstream mechanisms involved in improved intestinal adaptation by GLP-2. Human colonic fibroblasts (CCD-18Co), human colonic cancer cells (Caco-2 cells) and rat ileum IEC-18 cells were used. GLP-2 receptor mRNA expression was determined using real time RT-PCR. Conditioned media from CCD-18Co cells were obtained following incubation with GLP-2 (50-250 nM) for 24 h. Cell viability was assessed by a 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide (MTT)-assay, and wound healing was determined with an established migration-assay. Transforming Growth Factor beta (TGF-beta), VEGF and KGF mRNA levels were determined by RT-PCR. Protein levels of VEGF and TGF-beta in CCD-18Co cells following GLP-2 stimulation were determined using ELISA. Neutralizing TGF-beta and VEGF-A antibodies were utilized to assess the role of TGF-beta and VEGF-A in the process of wound healing. GLP-2 receptor expression was detected in CCD-18Co cells. Conditioned media from CCD-18Co cells dose-dependently induced proliferation in Caco-2 cells, but not in IEC-18 cells. Conditioned media also enhanced cell migration in IEC-18 cells (P<0.01), while migration was even inhibited in Caco-2 cells (P<0.0012). GLP-2 significantly stimulated mRNA expression of VEGF and TGF-beta, but not of KGF in CCD-18Co. The migratory effects of GLP-2 were completely abolished in the presence of TGF-beta and VEGF-A antibodies. GLP-2 exerts differential effects on the epithelium of the small intestine and the colon. Thus, in small intestinal cells GLP-2 stimulates wound

  20. Receptors for vasoactive intestinal peptide in rat anterior pituitary glands: Localization of binding to lactotropes

    SciTech Connect

    Wanke, I.E.; Rorstad, O.P. )

    1990-04-01

    Vasoactive intestinal peptide (VIP) has been implicated as a physiological PRL-releasing factor; however, characterization of VIP receptors on normal pituitaries using radioligand-binding methods has been problematic. In this study we demonstrated specific receptors for VIP in anterior pituitary glands of female rats using HPLC-purified monoiodinated (Tyr(125I)10)VIP. Binding of VIP was reversible, saturable to receptor and radioligand, regulated by guanine nucleotides, and dependent on time and temperature. Scatchard analysis of competitive binding studies indicated high and low affinity binding sites, with equilibrium dissociation constants (Kd) of 0.19 +/- 0.03 and 28 +/- 16 nM, respectively. The corresponding maximum numbers of binding sites were 158 +/- 34 fmol/mg and 11.7 +/- 6.9 pmol/mg. Binding was specific, as peptides with structural homology to VIP were less than 100th as potent as VIP. The rank order of potency of the peptides tested was VIP greater than rat (r) peptide histidine isoleucine = human (h) PHI greater than rGRF greater than bovine GRF = porcine PHI = VIP-(10-28) greater than hGRF greater than secretin greater than apamin greater than glucagon. Radioligand binding was associated primarily with lactotrope-enriched fractions prepared by unit gravity sedimentation of dispersed anterior pituitary cells. VIP stimulated PRL release from cultured rat anterior pituitary cells, with an ED50 of 1 nM. These results, comprising the first identification of specific VIP receptors in normal rat anterior pituitary tissue using radioligand-binding methods, provide additional support for a biological role of VIP in lactotrope function.

  1. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion.

    PubMed

    Mizokami, Akiko; Yasutake, Yu; Higashi, Sen; Kawakubo-Yasukochi, Tomoyo; Chishaki, Sakura; Takahashi, Ichiro; Takeuchi, Hiroshi; Hirata, Masato

    2014-12-01

    Uncarboxylated osteocalcin (GluOC), a bone-derived hormone, regulates energy metabolism by stimulating insulin secretion and pancreatic β-cell proliferation. We previously showed that the effect of GluOC on insulin secretion is mediated largely by glucagon-like peptide-1 (GLP-1) secreted from the intestine in response to GluOC exposure. We have now examined the effect of oral administration of GluOC on glucose utilization as well as the fate of such administered GluOC in mice. Long-term intermittent or daily oral administration of GluOC reduced the fasting blood glucose level and improved glucose tolerance in mice without affecting insulin sensitivity. It also increased the fasting serum insulin concentration as well as the β-cell area in the pancreas. A small proportion of orally administered GluOC reached the small intestine and remained there for at least 24h. GluOC also entered the general circulation, and the serum GLP-1 concentration was increased in association with the presence of GluOC in the intestine and systemic circulation. The putative GluOC receptor, GPRC6A was detected in intestinal cells, and was colocalized with GLP-1 in some of these cells. Our results suggest that orally administered GluOC improved glucose handling likely by acting from both the intestinal lumen and the general circulation, with this effect being mediated in part by stimulation of GLP-1 secretion. Oral administration of GluOC warrants further study as a safe and convenient option for the treatment or prevention of metabolic disorders. PMID:25230237

  2. Glucagon-like peptide-2 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro.

    PubMed

    Baldassano, Sara; Liu, Sumei; Qu, Mei-Hu; Mulè, Flavia; Wood, Jackie D

    2009-10-01

    Glucagon-like peptide-2 (GLP-2) is an important neuroendocrine peptide in intestinal physiology. It influences digestion, absorption, epithelial growth, motility, and blood flow. We studied involvement of GLP-2 in intestinal mucosal secretory behavior. Submucosal-mucosal preparations from guinea pig ileum were mounted in Ussing chambers for measurement of short-circuit current (I(sc)) as a surrogate for chloride secretion. GLP-2 action on neuronal release of acetylcholine was determined with ELISA. Enteric neuronal expression of the GLP-2 receptor (GLP-2R) was studied with immunohistochemical methods. Application of GLP-2 (0.1-100 nM) to the serosal or mucosal side of the preparations evoked no change in baseline I(sc) and did not alter transepithelial ionic conductance. Transmural electrical field stimulation (EFS) evoked characteristic biphasic increases in I(sc), with an initially rapid rising phase followed by a sustained phase. Application of GLP-2 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-2R antagonist GLP-2-(3-33) significantly reversed suppression of the EFS-evoked responses by GLP-2. Tetrodotoxin, scopolamine, and hexamethonium, but not vasoactive intestinal peptide type 1 receptor (VPAC1) antagonist abolished or reduced to near zero the EFS-evoked responses. GLP-2 suppressed EFS-evoked acetylcholine release as measured by ELISA. Pretreatment with GLP-2-(3-33) offset this action of GLP-2. In the submucosal plexus, GLP-2R immunoreactivity (-IR) was expressed in choline acetyltransferase-IR neurons, somatostatin-IR neurons, neuropeptide Y-IR neurons, and vasoactive intestinal peptide-IR neurons. We conclude that submucosal neurons in the guinea pig ileum express GLP-2R. Activation of GLP-2R decreases neuronally evoked epithelial chloride secretion by suppressing acetylcholine release from secretomotor neurons. PMID:19628655

  3. Medicinal Plants Qua Glucagon-Like Peptide-1 Secretagogue via Intestinal Nutrient Sensors

    PubMed Central

    Kim, Ki-Suk; Jang, Hyeung-Jin

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) participates in glucose homeostasis and feeding behavior. Because GLP-1 is rapidly inactivated by the enzymatic cleavage of dipeptidyl peptidase-4 (DPP4) long-acting GLP-1 analogues, for example, exenatide and DPP4 inhibitors, for example, liraglutide, have been developed as therapeutics for type 2 diabetes mellitus (T2DM). However, the inefficient clinical performance and the incidence of side effects reported on the existing therapeutics for T2DM have led to the development of a novel therapeutic strategy to stimulate endogenous GLP-1 secretion from enteroendocrine L cells. Since the GLP-1 secretion of enteroendocrine L cells depends on the luminal nutrient constituents, the intestinal nutrient sensors involved in GLP-1 secretion have been investigated. In particular, nutrient sensors for tastants, cannabinoids, and bile acids are able to recognize the nonnutritional chemical compounds, which are abundant in medicinal plants. These GLP-1 secretagogues derived from medicinal plants are easy to find in our surroundings, and their effectiveness has been demonstrated through traditional remedies. The finding of GLP-1 secretagogues is directly linked to understanding of the role of intestinal nutrient sensors and their recognizable nutrients. Concurrently, this study demonstrates the possibility of developing novel therapeutics for metabolic disorders such as T2DM and obesity using nutrients that are readily accessible in our surroundings. PMID:26788106

  4. Intravenous phage display identifies peptide sequences that target the burn-injured intestine

    PubMed Central

    Costantini, Todd W.; Eliceiri, Brian P.; Putnam, James G.; Bansal, Vishal; Baird, Andrew; Coimbra, Raul

    2015-01-01

    The injured intestine is responsible for significant morbidity and mortality after severe trauma and burn; however, targeting the intestine with therapeutics aimed at decreasing injury has proven difficult. We hypothesized that we could use intravenous phage display technology to identify peptide sequences that target the injured intestinal mucosa in a murine model, and then confirm the cross-reactivity of this peptide sequence with ex vivo human gut. Four hours following 30% TBSA burn we performed an in vivo, intravenous systemic administration of phage library containing 1012 phage in balb/c mice to biopan for gut-targeting peptides. In vivo assessment of the candidate peptide sequences identified after 4 rounds of internalization was performed by injecting 1 × 1012 copies of each selected phage clone into sham or burned animals. Internalization into the gut was assessed using quantitative polymerase chain reaction. We then incubated this gut-targeting peptide sequence with human intestine and visualized fluorescence using confocal microscopy. We identified 3 gut-targeting peptide sequences which caused collapse of the phage library (4–1: SGHQLLLNKMP, 4–5: ILANDLTAPGPR, 4–11: SFKPSGLPAQSL). Sequence 4–5 was internalized into the intestinal mucosa of burned animals 9.3-fold higher than sham animals injected with the same sequence (2.9 × 105 vs. 3.1 × 104 particles per mg tissue). Sequences 4–1 and 4–11 were both internalized into the gut, but did not demonstrate specificity for the injured mucosa. Phage sequence 4–11 demonstrated cross-reactivity with human intestine. In the future, this gut-targeting peptide sequence could serve as a platform for the delivery of biotherapeutics. PMID:22960048

  5. Glucagon-like peptide-1 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro.

    PubMed

    Baldassano, Sara; Wang, Guo-Du; Mulè, Flavia; Wood, Jackie D

    2012-02-01

    Glucagon-like peptide-1 (GLP-1) acts at the G protein-coupled receptor, GLP-1R, to stimulate secretion of insulin and to inhibit secretion of glucagon and gastric acid. Involvement in mucosal secretory physiology has received negligible attention. We aimed to study involvement of GLP-1 in mucosal chloride secretion in the small intestine. Ussing chamber methods, in concert with transmural electrical field stimulation (EFS), were used to study actions on neurogenic chloride secretion. ELISA was used to study GLP-1R effects on neural release of acetylcholine (ACh). Intramural localization of GLP-1R was assessed with immunohistochemistry. Application of GLP-1 to serosal or mucosal sides of flat-sheet preparations in Ussing chambers did not change baseline short-circuit current (I(sc)), which served as a marker for chloride secretion. Transmural EFS evoked neurally mediated biphasic increases in I(sc) that had an initial spike-like rising phase followed by a sustained plateau-like phase. Blockade of the EFS-evoked responses by tetrodotoxin indicated that the responses were neurally mediated. Application of GLP-1 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-1 receptor antagonist exendin-(9-39) suppressed this action of GLP-1. The GLP-1 inhibitory action on EFS-evoked responses persisted in the presence of nicotinic or vasoactive intestinal peptide receptor antagonists but not in the presence of a muscarinic receptor antagonist. GLP-1 significantly reduced EFS-evoked ACh release. In the submucosal plexus, GLP-1R immunoreactivity (IR) was expressed by choline acetyltransferase-IR neurons, neuropeptide Y-IR neurons, somatostatin-IR neurons, and vasoactive intestinal peptide-IR neurons. Our results suggest that GLP-1R is expressed in guinea pig submucosal neurons and that its activation leads to a decrease in neurally evoked chloride secretion by suppressing release of ACh at neuroepithelial junctions in the enteric neural networks

  6. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells.

    PubMed

    Costantini, Todd W; Bansal, Vishal; Krzyzaniak, Michael; Putnam, James G; Peterson, Carrie Y; Loomis, William H; Wolf, Paul; Baird, Andrew; Eliceiri, Brian P; Coimbra, Raul

    2010-12-01

    The enteric nervous system may have an important role in modulating gastrointestinal barrier response to disease through activation of enteric glia cells. In vitro studies have shown that enteric glia activation improves intestinal epithelial barrier function by altering the expression of tight junction proteins. We hypothesized that severe injury would increase expression of glial fibrillary acidic protein (GFAP), a marker of enteric glial activation. We also sought to define the effects of vagal nerve stimulation on enteric glia activation and intestinal barrier function using a model of systemic injury and local gut mucosal involvement. Mice with 30% total body surface area steam burn were used as model of severe injury. Vagal nerve stimulation was performed to assess the role of parasympathetic signaling on enteric glia activation. In vivo intestinal permeability was measured to assess barrier function. Intestine was collected to investigate changes in histology; GFAP expression was assessed by quantitative PCR, by confocal microscopy, and in GFAP-luciferase transgenic mice. Stimulation of the vagus nerve prevented injury-induced intestinal barrier injury. Intestinal GFAP expression increased at early time points following burn and returned to baseline by 24 h after injury. Vagal nerve stimulation prior to injury increased GFAP expression to a greater degree than burn alone. Gastrointestinal bioluminescence was imaged in GFAP-luciferase transgenic animals following either severe burn or vagal stimulation and confirmed the increased expression of intestinal GFAP. Injection of S-nitrosoglutathione, a signaling molecule released by activated enteric glia cells, following burn exerts protective effects similar to vagal nerve stimulation. Intestinal expression of GFAP increases following severe burn injury. Stimulation of the vagus nerve increases enteric glia activation, which is associated with improved intestinal barrier function. The vagus nerve may mediate the

  7. Intestinal Permeability and Glucagon-Like Peptide-2 in Children with Autism: A Controlled Pilot Study

    ERIC Educational Resources Information Center

    Robertson, Marli A.; Sigalet, David L.; Holst, Jens J.; Meddings, Jon B.; Wood, Julie; Sharkey, Keith A.

    2008-01-01

    We measured small intestinal permeability using a lactulose:mannitol sugar permeability test in a group of children with autism, with current or previous gastrointestinal complaints. Secondly, we examined whether children with autism had an abnormal glucagon-like peptide-2 (GLP-2) response to feeding. Results were compared with sibling controls…

  8. Flavonoids stimulate cholecystokinin peptide secretion from the enteroendocrine STC-1 cells.

    PubMed

    Al Shukor, Nadin; Ravallec, Rozenn; Van Camp, John; Raes, Katleen; Smagghe, Guy

    2016-09-01

    Animal experiments showed that flavonoids might have the potential for an anti-obesity effect by reducing weight and food intake. However, the exact mechanisms that could be involved in these proposed effects are still under investigation. The complex process of food intake is partially regulated by gastrointestinal hormones. Cholecystokinin (CCK) is the best known gastrointestinal hormone to induce satiety signal that plays a key role in food intake regulation. It is released from the endocrine cells (I cell) in response to the ingestion of nutrients into the small intestine. In this study, we investigated the possible effects of flavonoids (quercetin, kaempferol, apigenin, rutin and baicalein) on stimulation of CCK release in vitro using enteroendocrine STC-1 cells. In comparison with the control, quercetin, kaempferol and apigenin resulted in a significant increase in CCK secretion with quercetin showing the highest activity. On the other hand, no significant effect was seen by rutin and baicalein. To our knowledge, this is the first report to study the stimulation of CCK peptide hormone secretion from STC-1 cells by quercetin and kaempferol, rutin, apigenin and baicalein. Based on the cell-based results in this work, it can be suggested that the reported activity of flavonoids against food intake and weight could be mediated by stimulation of CCK signal which in turn is responsible for food intake reduction, but future animal and human studies are needed to confirm this conclusion at organism level. PMID:27496247

  9. Adrenal cortical responses to vasoactive intestinal peptide in conscious hypophysectomized calves.

    PubMed Central

    Bloom, S R; Edwards, A V; Jones, C T

    1987-01-01

    1. Right adrenal and various cardiovascular responses to an intra-aortic infusion of vasoactive intestinal polypeptide (VIP; 4 micrograms min-1 kg-1) have been investigated in the presence and absence of exogenous adrenocorticotrophin, (ACTH1-24; 5 ng min-1 kg-1, i.v.). The adrenal clamp technique was employed in conscious calves in which the pituitary stalk had been cauterized 3-4 days previously. 2. The i.v. infusion of ACTH1-24 increased mean plasma ACTH concentration by between 1000 and 1100 pg ml-1 and mean right cortisol output by about 700 ng min-1 kg-1. Under these conditions the intra-aortic infusion of VIP produced a further rise in mean adrenal cortisol output, together with a consequential rise in mean arterial plasma cortisol concentration, without affecting the concentration of ACTH in the arterial plasma significantly. In the absence of ACTH the same infusion of VIP had no detectable effect on adrenal cortisol output. 3. In each of the above respects this intra-aortic infusion of VIP closely mimicked the effect of stimulation of the peripheral end of the right splanchnic nerve in these animals, as it also did by causing a substantial fall in adrenal vascular resistance in the absence, but not in the presence, of ACTH. 4. It is concluded that release of this peptide from splanchnic nerve terminals in the adrenal gland most probably accounts, at least in part, for the powerful adrenocortical steroidogenic response to splanchnic nerve stimulation, that occurs in the presence of submaximal doses of ACTH. PMID:2832592

  10. Antimicrobial peptide Cathelicidin-BF prevents intestinal barrier dysfunction in a mouse model of endotoxemia.

    PubMed

    Song, Deguang; Zong, Xin; Zhang, Haiwen; Wang, Tenghao; Yi, Hongbo; Luan, Chao; Wang, Yizhen

    2015-03-01

    Intestinal barrier functions are altered during the development of sepsis. Cathelicidin antimicrobial peptides, such as LL-37 and mCRAMP, can protect animals against intestinal barrier dysfunction. Cathelicidin-BF (C-BF), a new cathelicidin peptide purified from the venom of the snake Bungarus fasciatus, has been shown to have both antimicrobial and anti-inflammatory properties. This study investigated whether C-BF pretreatment could protect the intestinal barrier against dysfunction in a mouse model of endotoxemia, induced by intraperitoneal injection of LPS (10mg/kg). Mice were treated with low or high dose C-BF before treatment with LPS, and samples were collected 5h after LPS treatment. C-BF reduced LPS induced intestinal histological damage and gut permeability to 4 KD Fluorescein-isothiocyanate-conjugated dextran. Pretreatment with C-BF prevented LPS induced intestinal tight junction disruption and epithelial cell apoptosis. Moreover, C-BF down regulated the expression and secretion of TNF-α, a process involving the NF-κB signaling pathway. C-BF also reduced LPS induced TNF-α expression through the NF-κB signaling pathway in mouse RAW 264.7 macrophages. These findings indicate that C-BF can prevent gut barrier dysfunction induced by LPS, suggesting that C-BF may be used to develop a prophylactic agent for intestinal injury in endotoxemia. PMID:25639228

  11. Association of intestinal peptide transport with a protein related to the cadherin superfamily.

    PubMed

    Dantzig, A H; Hoskins, J A; Tabas, L B; Bright, S; Shepard, R L; Jenkins, I L; Duckworth, D C; Sportsman, J R; Mackensen, D; Rosteck, P R

    1994-04-15

    The first step in oral absorption of many medically important peptide-based drugs is mediated by an intestinal proton-dependent peptide transporter. This transporter facilitates the oral absorption of beta-lactam antibiotics and angiotensin-converting enzyme inhibitors from the intestine into enterocytes lining the luminal wall. A monoclonal antibody that blocked uptake of cephalexin was used to identify and clone a gene that encodes an approximately 92-kilodalton membrane protein that was associated with the acquisition of peptide transport activity by transport-deficient cells. The amino acid sequence deduced from the complementary DNA sequence of the cloned gene indicated that this transport-associated protein shares several conserved structural elements with the cadherin superfamily of calcium-dependent, cell-cell adhesion proteins. PMID:8153632

  12. Diffused and Sustained Inhibitory Effects of Intestinal Electrical Stimulation on Intestinal Motility Mediated via Sympathetic Pathway

    PubMed Central

    Zhao, Xiaotuan; Yin, Jieyun; Wang, Lijie; Chen, J D Z

    2013-01-01

    Objective The aims was to investigate the energy-dose response effect of IES on small bowel motility, to compare the effect of forward and backward IES; to explore the possibility of using intermittent IES and mechanism of IES on intestinal motility. Material and Methods Five dogs implanted with a duodenal cannula and one pair of intestinal serosal electrodes were studied in 5 sessions: 1) energy-dose response study; 2) forward IES; 3) backward IES; 4) intermittent IES vs. continuous IES; 5) administration of guanethidine. The contractile activity and tonic pressure of the small intestine were recorded. The duration of sustained effect after turning off IES was manually calculated. Results 1) IES with long pulses energy-dose dependently inhibited contractile activity and tonic pressure of the small intestine (p < 0.001). 2) The duration of sustained inhibitory effect of IES on the small intestine depended on the energy of IES delivered (p < 0.001). 3) The potency of the inhibitory effect was the same between forward and backward IES. 4) The efficacy of intermittent IES was the same as continuous IES in inhibiting motility of the small intestine. 5) Guanethidine blocked the inhibitory effect of IES on intestinal motility. Conclusions IES with long pulses inhibits small intestinal motility; the effect is energy-dose dependent, diffused and sustained. Intermittent IES has the same efficacy as the continuous IES in inhibiting small intestinal motility. Forward and backward IES have similar inhibitory effects on small bowel motility. This IES-induced inhibitory effect is mediated via the sympathetic pathway. PMID:23924055

  13. Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1.

    PubMed

    Park, Yoo Jung; Lee, Ha Young; Jung, Young Su; Park, Joon Seong; Hwang, Jae Sam; Bae, Yoe-Sik

    2015-08-01

    In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. PMID:26129676

  14. Intestinal protozoa are hypothesized to stimulate immunosurveillance against colon cancer.

    PubMed

    Juckett, David A; Aylsworth, Charles F; Quensen, Janet Murphy

    2008-01-01

    Colon cancer in humans results in considerable morbidity and mortality throughout most of the world. During the twentieth century, there was a rapid rise in colon cancer within modernizing countries that has not been adequately explained, although the role of diet has been widely explored. Previously, we showed that the presence of the endemic Eimeria spp. protozoan in intestinal tissues is associated with regions of low tumorigenesis in the large and small bovine intestine and that an Eimeria surface protein is a potent activator of dendritic cells and a useful immunomodulator, with anti-cancer and anti-viral properties. Therefore, we hypothesize that the persistent presence of such an intestinal protozoan enhances immunosurveillance by elevating the intestinal alert status and that the loss of these organisms could lead to a higher incidence of colon cancer. Preliminary support of this hypothesis derives from the observations that domestic animals, known to maintain this protozoan, have very low colon cancer incidence. We propose that this also may occur in human populations that use human excrement (night soil) as a fertilizer, a practice that serves to complete the life cycle of this type of microbe. We examine some evidence for this hypothesis in Japan's mortality patterns, where we show that colon cancer increased after the cessation of night soil use, but before the change to a western diet. We conclude that this hypothesis, a variation of the hygiene hypothesis, is worth further consideration and continued elaboration. PMID:18343044

  15. Endogenous inhibition of hippocampal LTD and depotentiation by vasoactive intestinal peptide VPAC1 receptors.

    PubMed

    Cunha-Reis, Diana; Aidil-Carvalho, Maria de Fatima; Ribeiro, Joaquim A

    2014-11-01

    Vasoactive intestinal peptide (VIP), an important modulator of hippocampal synaptic transmission, influences exploration and hippocampal-dependent learning in rodents. Homosynaptic long-term depression (LTD) and depotentiation are two plasticity phenomena implicated in learning of behavior flexibility and spatial novelty detection. In this study, we investigated the influence of endogenous VIP on LTD and depotentiation induced by low-frequency stimulation (1 Hz, 900 pulses) of the hippocampal CA1 area in vitro in juvenile and young adult rats, respectively. LTD and depotentiation were enhanced by the VIP receptor antagonist Ac-Tyr(1) , D-Phe(2) GRF (1-29), and the selective VPAC1 receptor antagonist, PG 97-269, but not the selective VPAC2 receptor antagonist, PG 99-465. This action was mimicked by an anti-VIP antibody, suggesting that VIP, and not pituitary adenylate cyclase-activating polypeptide (PACAP), is the endogenous mediator of these effects. Selective inhibition of PAC1 receptors with PACAP (6-38) enhanced depotentiation, but not LTD. VPAC1 receptor blockade also revealed LTD in young adult rats, an effect abolished by the GABAA antagonist bicuculline, evidencing an involvement of GABAergic transmission. We conclude that inhibition of LTD and depotentiation by endogenous VIP occurs through VPAC1 receptor-mediated mechanisms and suggest that disinhibition of pyramidal cell dendrites is the most likely physiological mechanism underlying this effect. As such, VPAC1 receptor ligands may be considered promising pharmacological targets for treatment of cognitive dysfunction in diseases involving altered GABAergic circuits and pathological saturation of LTP/LTD like Down's syndrome and temporal lobe epilepsy. PMID:24935659

  16. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  17. Intestinal absorption of an arginine-containing peptide in cystinuria

    PubMed Central

    Asatoor, A. M.; Harrison, B. D. W.; Milne, M. D.; Prosser, D. I.

    1972-01-01

    Separate tolerance tests involving oral intake of the dipeptide, L-arginyl-L-aspartate, and of a corresponding free amino acid mixture, were carried out in a single type 2 cystinuric patient. Absorption of aspartate was within normal limits, whilst that of arginine was normal after the peptide but considerably reduced after the amino acid mixture. The results are compared with the increments of serum arginine found in eight normal subjects after the oral intake of the free amino acid mixture. Analyses of urinary pyrrolidine and of tetramethylenediamine in urine samples obtained after the two tolerance tests in the patient support the view that arginine absorption was subnormal after the amino acid mixture but within normal limits after the dipeptide. PMID:5045711

  18. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats

    PubMed Central

    Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun

    2015-01-01

    AIM: To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. METHODS: Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14th day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. RESULTS: In the rat model, jaundice was obvious, and the rats’ activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01). CONCLUSION: GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin. PMID:25593463

  19. Granulocyte macrophage colony-stimulating factor and the intestinal innate immune cell homeostasis in Crohn's disease.

    PubMed

    Däbritz, Jan

    2014-03-01

    Current literature consolidates the view of Crohn's disease (CD) as a form of immunodeficiency highlighting dysregulation of intestinal innate immunity in the pathogenesis of CD. Intestinal macrophages derived from blood monocytes play a key role in sustaining the innate immune homeostasis in the intestine, suggesting that the monocyte/macrophage compartment might be an attractive therapeutic target for the management of CD. Granulocyte macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that also promotes myeloid cell activation, proliferation, and differentiation. GM-CSF has a protective effect in human CD and mouse models of colitis. However, the role of GM-CSF in immune and inflammatory reactions in the intestine is not well defined. Beneficial effects exerted by GM-CSF during intestinal inflammation could relate to modulation of the mucosal barrier function in the intestine, including epithelial cell proliferation, survival, restitution, and immunomodulatory actions. The aim of this review is to summarize potential mechanistic roles of GM-CSF in intestinal innate immune cell homeostasis and to highlight its central role in maintenance of the intestinal immune barrier in the context of immunodeficiency in CD. PMID:24503766

  20. Helical synthetic peptides that stimulate cellular cholesterol efflux

    SciTech Connect

    Bielicki, John K.; Natarajan, Pradeep

    2010-04-06

    The present invention provides peptides comprising at least one amphipathic alpha helix and having an cholesterol mediating activity and a ABCA stabilization activity. The invention further provides methods of using such peptides.

  1. Starfish gonadotropic hormone: Relaxin-like gonad-stimulating peptides.

    PubMed

    Mita, Masatoshi

    2016-05-01

    Relaxin-like gonad-stimulating peptide (RGP) of starfish Patiria (= Asterina) pectinifera is the first identified invertebrate gonadotropin to trigger final gamete maturation. Recently, chemical structures of RGP were identified in several species of starfish. Three kinds of RGP molecules are found in the class Asteroidea. The chemical structure of P. pectinifera RGP (PpeRGP) is conserved among starfish of the order Valvatida beyond species. In contrast, the chemical structures of RGP identified in Asterias amurensis and Aphelasterias japonica of the order Forcipulatida are quite different from that of PpeRGP. The chemical structure of RGP in A. amurensis (AamRGP) is exactly the same as that in Asterias rubens (the order Forcipulatida), Astropecten scoparius (the order Paxillosida), Astropecten polyacanthus (the order Paxillosida), and Echinaster luzonicus (the order Spinulosida). The chemical structure of Coscinasterias acutispina RGP (the order Forcipulatida) is consistent with that of A. japonica RGP (AjaRGP). In cross-experiments using P. pectinifera, A. amurensis, and A. japonica ovaries, AamRGP and AjaRGP can induce each species of ovaries. Neither AamRGP nor AjaRGP induce oocyte maturation and ovulation in the ovary of P. pectinifera, although the PpeRGP is active in ovaries of A. amurensis and A. japonica. This suggests that the AamRGP and AjaRGP partly act species specificity. PMID:27102940

  2. Amino acid and peptide absorption from partial digests of proteins in isolated rat small intestine.

    PubMed Central

    Gardner, M L

    1978-01-01

    1. Absorption of each of sixteen amino acids, free and peptide-bound, has been measured in isolated rat small intestine perfused with five partial digests of proteins. 2. At low concentrations net absorption of each amino acid was proportional to its luminal concentration and independent of the nature of the amino acid. 3. A series of first-order multiple regressions was found to describe well the characteristics of absorption. 4. Rate constants for disappearance of free and peptide-bound amino acids from the lumen were closely similar. However, substantial back-flux occurred of amino acids derived from peptide hydrolysis. Hence 60-70% of the amino-N entering the serosal tissue fluid probably had left the lumen as free amino acids. 5. Intact peptides crossed the mucosa during absorption from a soy bean hydrolysate and in substantial quantities during absorption from one casein digest but not from another. With other hydrolysates there was no evidence for passage of peptides to the serosa. 6. In several cases there was a serious discrepancy between the amount of amino-N absorbed from the lumen and the amount accounted for as peptide or free amino acid in the serosal secretion. 7. The characteristics of absorption were similar (apart from the exceptions in 5 above) for all the digests studied except for soy bean hydrolysate. PMID:731590

  3. Pleiotropic effects of bombesin and neurotensin on intestinal mucosa: not just trefoil peptides.

    PubMed

    Assimakopoulos, Stelios-F; Scopa, Chrisoula-D; Nikolopoulou, Vassiliki-N; Vagianos, Constantine-E

    2008-06-14

    Bombesin and neurotensin are neuropeptides which exert a wide spectrum of biological actions on gastrointestinal tissues influencing intestinal growth and adaptation, intestinal motility, blood flow, secretion, nutrient absorption and immune response. Based mainly on their well-established potent enterotrophic effect, numerous experimental studies investigated their potential positive effect on the atrophic or injured intestinal mucosa. These peptides proved to be effective mucosa-healing factors, but the potential molecular and cellular mechanisms for this action remained unresolved. In a recently published study (World J Gastroenterol 2008; 14(8): 1222-1230), it was shown that their protective effect on the intestine in experimentally induced inflammatory bowel disease was related to anti-inflammatory, antioxidant and antiapoptotic actions. These results are in close agreement with our previous studies on jaundiced and hepatectomized rats that showed a regulatory effect of bombesin and neurotensin on critical cellular processes such as enterocyte' proliferation and death, oxidative stress and redox equilibrium, tight junctions' formation and function, and inflammatory response. The pleiotropic effects of bombesin and neurotensin on diverse types of intestinal injury may justify their consideration for clinical trials. PMID:18567096

  4. Helodermin-like peptides in thyroid C cells: stimulation of thyroid hormone secretion and suppression of calcium incorporation into bone.

    PubMed Central

    Grunditz, T; Persson, P; Håkanson, R; Absood, A; Böttcher, G; Rerup, C; Sundler, F

    1989-01-01

    Helodermin is a vasoactive intestinal peptide-like peptide in the salivary gland venom of the lizard Heloderma suspectum. Helodermin-like immunofluorescence was observed in the parafollicular (C) cells in several mammals and in the C cell homologues of the chicken ultimobranchial gland. Thus, helodermin-like peptides coexist with calcitonin. The results of radioimmunoassay agreed with the immunocytochemical findings. HPLC of rat thyroid extracts revealed one major peak of helodermin-like immunoreactivity, which eluted in a position close to that of lizard helodermin. Helodermin stimulated basal thyroid hormone secretion and colloid droplet formation in conscious mice. The effect of large doses of helodermin was quite long-lasting and the maximal response occurred after 2-6 hr. In addition, helodermin suppressed the incorporation of calcium into bone in conscious rats. The findings suggest that helodermin-like peptides in C cells may be involved in the local regulation of thyroid hormone secretion and in the maintenance of calcium homeostasis. Images PMID:2645580

  5. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion

    PubMed Central

    Parker, HE; Wallis, K; le Roux, CW; Wong, KY; Reimann, F; Gribble, FM

    2012-01-01

    BACKGROUND AND PURPOSE The glucagon-like peptides GLP-1 and GLP-2 are secreted from enteroendocrine L-cells following nutrient ingestion. Drugs that increase activity of the GLP-1 axis are highly successful therapies for type 2 diabetes, and boosting L-cell secretion is a potential strategy for future diabetes treatment. The aim of the present study was to further our understanding of the bile acid receptor GPBA (TGR5), an L-cell target currently under therapeutic exploration. EXPERIMENTAL APPROACH GLUTag cells and mixed primary murine intestinal cultures were exposed to bile acids and a specific agonist, GPBAR-A. Secretion was measured using hormone assays and intracellular calcium and cAMP responses were monitored using real-time imaging techniques. KEY RESULTS Bile acid-triggered GLP-1 secretion from GLUTag cells was GPBA-dependent, as demonstrated by its abolition following tgr5 siRNA transfection. Bile acids and GPBAR-A increased GLP-1 secretion from intestinal cultures, with evidence for synergy between the effects of glucose and GPBA activation. Elevation of cAMP was observed following GPBA activation in individual GLUTag cells. Direct calcium responses to GPBAR-A were small, but in the presence of the agonist, a subpopulation of cells that was previously poorly glucose-responsive exhibited robust glucose responses. In vivo, increased delivery of bile to more distal regions of the ileum augmented L-cell stimulation. CONCLUSIONS AND IMPLICATIONS GPBA signalling in L-cells involves rapid elevation of cAMP, and enhanced calcium and secretory responses to glucose. Modulation of this receptor therapeutically may be an attractive strategy to enhance GLP-1 secretion and achieve better glycaemic control in diabetic patients. PMID:21718300

  6. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease.

    PubMed

    Thomas, Karen E; Sapone, Anna; Fasano, Alessio; Vogel, Stefanie N

    2006-02-15

    Recent studies have demonstrated the importance of TLR signaling in intestinal homeostasis. Celiac disease (CD) is an autoimmune enteropathy triggered in susceptible individuals by the ingestion of gliadin-containing grains. In this study, we sought to test the hypothesis that gliadin initiates this response by stimulating the innate immune response to increase intestinal permeability and by up-regulating macrophage proinflammatory gene expression and cytokine production. To this end, intestinal permeability and the release of zonulin (an endogenous mediator of gut permeability) in vitro, as well as proinflammatory gene expression and cytokine release by primary murine macrophage cultures, were measured. Gliadin and its peptide derivatives, 33-mer and p31-43, were found to be potent inducers of both a zonulin-dependent increase in intestinal permeability and macrophage proinflammatory gene expression and cytokine secretion. Gliadin-induced zonulin release, increased intestinal permeability, and cytokine production were dependent on myeloid differentiation factor 88 (MyD88), a key adapter molecule in the TLR/IL-1R signaling pathways, but were neither TLR2- nor TLR4-dependent. Our data support the following model for the innate immune response to gliadin in the initiation of CD. Gliadin interaction with the intestinal epithelium increases intestinal permeability through the MyD88-dependent release of zonulin that, in turn, enables paracellular translocation of gliadin and its subsequent interaction with macrophages within the intestinal submucosa. There, the interaction of gliadin with macrophages elicits a MyD88-dependent proinflammatory cytokine milieu that facilitates the interaction of T cells with APCs, leading ultimately to the Ag-specific adaptive immune response seen in patients with CD. PMID:16456012

  7. Vasoactive intestinal peptide loss leads to impaired CNS parenchymal T-cell infiltration and resistance to experimental autoimmune encephalomyelitis.

    PubMed

    Abad, Catalina; Tan, Yossan-Var; Lopez, Robert; Nobuta, Hiroko; Dong, Hongmei; Phan, Phu; Feng, Ji-Ming; Campagnoni, Anthony T; Waschek, James A

    2010-11-01

    The neuropeptide vasoactive intestinal peptide (VIP) has been shown to inhibit macrophage proinflammatory actions, promote a positive Th2/Th1 balance, and stimulate regulatory T-cell production. The fact that this peptide is highly efficacious in animal models of inflammatory diseases such as collagen-induced arthritis and experimental autoimmune encephalomyelitis (EAE) suggests that the endogenous peptide might normally provide protection against such pathologies. We thus studied the response of VIP-deficient (i.e., VIP KO) mice to myelin oligodendrocyte protein-induced EAE. Surprisingly, VIP KO mice were almost completely resistant to EAE, with delayed onset and mild or absent clinical profile. Despite this, flow cytometric analyses and antigen-rechallenge experiments indicated that myelin oligodendrocyte protein-treated VIP KO mice exhibited robust Th1/Th17 cell inductions and antigen-specific proliferation and cytokine responses. Moreover, adoptive transfer of lymphocytes from immunized VIP KO mice to WT recipients resulted in full-blown EAE, supporting their encephalitogenic potential. In contrast, transfer of encephalitogenic WT cells to VIP KO hosts did not produce EAE, suggesting that loss of VIP specifically affected the effector phase of the disease. Histological analyses indicated that CD4 T cells entered the meningeal and perivascular areas of VIP-deficient mice, but that parenchymal infiltration was strongly impaired. Finally, VIP pretreatment of VIP KO mice before immunization was able to restore their sensitivity to EAE. These results indicate that VIP plays an unanticipated permissive and/or proinflammatory role in the propagation of the inflammatory response in the CNS, a finding with potential therapeutic relevance in autoimmune neuroinflammatory diseases such as multiple sclerosis. PMID:20978211

  8. Deficient Vasoactive Intestinal Peptide Innervation in the Sweat Glands of Cystic Fibrosis Patients

    NASA Astrophysics Data System (ADS)

    Heinz-Erian, Peter; Dey, Richard D.; Flux, Marinus; Said, Sami I.

    1985-09-01

    The innervation of acini and ducts of eccrine sweat glands by immunoreactive, vasoactive intestinal peptide--containing nerve fibers was sharply reduced in seven patients with cystic fibrosis compared to eight normal subjects. The decrease in innervation by this neuropeptide, which has been shown to promote blood flow and the movement of water and chloride across epithelial surfaces in other systems, may be a basic mechanism for the decreased water content and relative impermeability of the epithelium to chloride and other ions that characterize cystic fibrosis.

  9. Arginine stimulates intestinal cell migration through a focal adhesion kinase dependent mechanism

    PubMed Central

    Rhoads, J M; Chen, W; Gookin, J; Wu, G Y; Fu, Q; Blikslager, A T; Rippe, R A; Argenzio, R A; Cance, W G; Weaver, E M; Romer, L H

    2004-01-01

    Background: l-Arginine is a nutritional supplement that may be useful for promoting intestinal repair. Arginine is metabolised by the oxidative deiminase pathway to form nitric oxide (NO) and by the arginase pathway to yield ornithine and polyamines. Aims: To determine if arginine stimulates restitution via activation of NO synthesis and/or polyamine synthesis. Methods: We determined the effects of arginine on cultured intestinal cell migration, NO production, polyamine levels, and activation of focal adhesion kinase, a key mediator of cell migration. Results: Arginine increased the rate of cell migration in a dose dependent biphasic manner, and was additive with bovine serum concentrate (BSC). Arginine and an NO donor activated focal adhesion kinase (a tyrosine kinase which localises to cell matrix contacts and mediates β1 integrin signalling) after wounding. Arginine stimulated cell migration was dependent on focal adhesion kinase (FAK) signalling, as demonstrated using adenovirus mediated transfection with a kinase negative mutant of FAK. Arginine stimulated migration was dependent on NO production and was blocked by NO synthase inhibitors. Arginine dependent migration required synthesis of polyamines but elevating extracellular arginine concentration above 0.4 mM did not enhance cellular polyamine levels. Conclusions: These results showed that l-arginine stimulates cell migration through NO and FAK dependent pathways and that combination therapy with arginine and BSC may enhance intestinal restitution via separate and convergent pathways. PMID:15016745

  10. Novel GM1 ganglioside-like peptide mimics prevent the association of cholera toxin to human intestinal epithelial cells in vitro.

    PubMed

    Yu, Robert K; Usuki, Seigo; Itokazu, Yutaka; Wu, Han-Chung

    2016-01-01

    Cholera is an acute diarrheal disease caused by infection in the gastrointestinal tract by the gram-negative bacterium, Vibrio cholerae, and is a serious public health threat worldwide. There has not been any effective treatment for this infectious disease. Cholera toxin (CT), which is secreted by V. cholerae, can enter host cells by binding to GM1, a monosialoganglioside widely distributed on the plasma membrane surface of various animal epithelial cells. The present study was undertaken to generate peptides that are conformationally similar to the carbohydrate epitope of GM1 for use in the treatment of cholera and related bacterial infection. For this purpose, we used cholera toxin B (CTB) subunit to select CTB-binding peptides that structurally mimic GM1 from a dodecamer phage-display library. Six GM1-replica peptides were selected by biopanning based on CTB recognition. Five of the six peptides showed inhibitory activity for GM1 binding to CTB. To test the potential of employing the peptide mimics for intervening with the bacterial infection, those peptides were examined for their binding capacity, functional inhibitory activity and in vitro effects using a human intestinal epithelial cell line, Caco-2 cells. One of the peptides, P3 (IPQVWRDWFKLP), was most effective in inhibiting cellular uptake of CTB and suppressing CT-stimulated cyclic adenosine monophosphate production in the cells. Our results thus provide convincing evidence that GM1-replica peptides could serve as novel agents to block CTB binding on epithelial cells and prevent the ensuing physiological effects of CT. PMID:26405107

  11. Fasting stimulates 2-AG biosynthesis in the small intestine: role of cholinergic pathways.

    PubMed

    DiPatrizio, Nicholas V; Igarashi, Miki; Narayanaswami, Vidya; Murray, Conor; Gancayco, Joseph; Russell, Amy; Jung, Kwang-Mook; Piomelli, Daniele

    2015-10-15

    The endocannabinoids are lipid-derived signaling molecules that control feeding and energy balance by activating CB1-type cannabinoid receptors in the brain and peripheral tissues. Previous studies have shown that oral exposure to dietary fat stimulates endocannabinoid signaling in the rat small intestine, which provides positive feedback that drives further food intake and preference for fat-rich foods. We now describe an unexpectedly broader role for cholinergic signaling of the vagus nerve in the production of the endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), in the small intestine. We show that food deprivation increases levels of 2-AG and its lipid precursor, 1,2-diacylglycerol, in rat jejunum mucosa in a time-dependent manner. This response is abrogated by surgical resection of the vagus nerve or pharmacological blockade of small intestinal subtype-3 muscarinic acetylcholine (m3 mAch) receptors, but not inhibition of subtype-1 muscarinic acetylcholine (m1 mAch). We further show that blockade of peripheral CB1 receptors or intestinal m3 mAch receptors inhibits refeeding in fasted rats. The results suggest that food deprivation stimulates 2-AG-dependent CB1 receptor activation through a mechanism that requires efferent vagal activation of m3 mAch receptors in the jejunum, which, in turn, may promote feeding after a fast. PMID:26290104

  12. Nesfatin-1 stimulates cholecystokinin and suppresses peptide YY expression and secretion in mice.

    PubMed

    Ramesh, Naresh; Mortazavi, Sima; Unniappan, Suraj

    2016-03-25

    Nesfatin-1 is an 82 amino acid secreted peptide encoded in the precursor, nucleobindin-2 (NUCB2). It is an insulinotropic anorexigen abundantly expressed in the stomach and hypothalamus. Post-prandial insulin secretion is predominantly regulated by incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Nesfatin-1 was previously reported to modulate GLP-1 and GIP secretion in vitro in an enteroendocrine (STC-1) cell line. Intestine is a source of additional hormones including cholecystokinin (CCK) and peptide YY (PYY) that regulate metabolism. We hypothesized that nesfatin-1 modulates CCK and PYY secretion. Immunofluorescence histochemistry showed NUCB2/nesfatin-1 co-localizing CCK and PYY in the intestinal mucosa of mice. Static incubation of STC-1 cells with nesfatin-1 upregulated both CCK mRNA expression (1 and 10 nM) and secretion (0.1, 1 and 10 nM) at 1 h post-incubation. In contrast, nesfatin-1 treatment for 1 h downregulated PYY mRNA expression (all doses tested) and secretion (0.01 and 0.1 nM) in STC-1 cells. Continuous infusion of nesfatin-1 using osmotic mini-pumps for 12 h upregulated CCK mRNA expression in large intestine, and downregulated PYY mRNA expression in both large and small intestines of male C57BL/6J mice. In these tissues, Western blot analysis found a corresponding increase in CCK and a decrease in PYY content. Collectively, we provide new information on the cell specific localization of NUCB2/nesfatin-1 in the intestinal mucosa, and a novel function for nesfatin-1 in modulating intestinal CCK and PYY expression and secretion in mice. PMID:26920055

  13. SPARC is a source of copper-binding peptides that stimulate angiogenesis.

    PubMed

    Lane, T F; Iruela-Arispe, M L; Johnson, R S; Sage, E H

    1994-05-01

    SPARC is a transiently expressed extracellular matrix-binding protein that alters cell shape and regulates endothelial cell proliferation in vitro. In this study, we show that SPARC mRNA and protein are synthesized by endothelial cells during angiogenesis in vivo. SPARC and peptides derived from a cationic region of the protein (amino acids 113-130) stimulated the formation of endothelial cords in vitro; moreover, these peptides stimulated angiogenesis in vivo. Mapping of the active domain demonstrated that the sequence KGHK was responsible for most of the angiogenic activity; substitution of the His residue decreased the effect. We found that proteolysis of SPARC provided a source of KGHK, GHK, and longer peptides that contained these sequences. Although the Cu(2+)-GHK complex had been identified as a mitogen/morphogen in normal human plasma, we found KGHK and longer peptides to be potent stimulators of angiogenesis. SPARC113-130 and KGHK were shown to bind Cu2+ with high affinity; however, previous incubation with Cu2+ was not required for the stimulatory activity. Since a peptide from a second cationic region of SPARC (SPARC54-73) also bound Cu2+ but had no effect on angiogenesis, the angiogenic activity appeared to be sequence specific and independent of bound Cu2+. Thus, specific degradation of SPARC, a matrix-associated protein expressed by endothelial cells during vascular remodeling, releases a bioactive peptide or peptides, containing the sequence (K)GHK, that could regulate angiogenesis in vivo. PMID:7514608

  14. SPARC is a source of copper-binding peptides that stimulate angiogenesis

    PubMed Central

    1994-01-01

    SPARC is a transiently expressed extracellular matrix-binding protein that alters cell shape and regulates endothelial cell proliferation in vitro. In this study, we show that SPARC mRNA and protein are synthesized by endothelial cells during angiogenesis in vivo. SPARC and peptides derived from a cationic region of the protein (amino acids 113- 130) stimulated the formation of endothelial cords in vitro; moreover, these peptides stimulated angiogenesis in vivo. Mapping of the active domain demonstrated that the sequence KGHK was responsible for most of the angiogenic activity; substitution of the His residue decreased the effect. We found that proteolysis of SPARC provided a source of KGHK, GHK, and longer peptides that contained these sequences. Although the Cu(2+)-GHK complex had been identified as a mitogen/morphogen in normal human plasma, we found KGHK and longer peptides to be potent stimulators of angiogenesis. SPARC113-130 and KGHK were shown to bind Cu2+ with high affinity; however, previous incubation with Cu2+ was not required for the stimulatory activity. Since a peptide from a second cationic region of SPARC (SPARC54-73) also bound Cu2+ but had no effect on angiogenesis, the angiogenic activity appeared to be sequence specific and independent of bound Cu2+. Thus, specific degradation of SPARC, a matrix-associated protein expressed by endothelial cells during vascular remodeling, releases a bioactive peptide or peptides, containing the sequence (K)GHK, that could regulate angiogenesis in vivo. PMID:7514608

  15. The SKW 6.4 line of human B lymphocytes specifically binds and responds to vasoactive intestinal peptide.

    PubMed

    Cheng, P P; Sreedharan, S P; Kishiyama, J L; Goetzl, E J

    1993-05-01

    Vasoactive intestinal peptide (VIP1-28) is a neuromediator recognized by high-affinity receptors on human lymphocytes, which inhibits T-cell proliferation and cytokine secretion, and suppresses immunoglobulin production by mitogen-stimulated mixed mononuclear leucocytes. The direct interactions of VIP1-28 with B cells were studied in the SKW 6.4 line of EBV-transformed human B cells, that express a mean (+/- SD) of 6116 +/- 969 receptors for [125I]VIP1-28 with a mean Kd of 59 nM, that decreases to 12 nM after exposure to phorbol 12-myristate 13-acetate (PMA). The secretion of IgM by SKW 6.4 B cells stimulated optimally with 100 ng/ml of PMA, but not unstimulated secretion of IgM, was suppressed significantly by 10(-12) M to 10(-9) M VIP1-28 and up to a mean maximum (+/- SD) of 40 +/- 2% by 10(-10) M VIP1-28. VIP1-28 elicited concomitant increases in intracellular cyclic AMP up to a mean maximum of 163% at 10(-10) M VIP1-28. The requirement for specific signal transduction by the occupied VIP receptors to inhibit IgM secretion was demonstrated by the lack of effect of VIP4-28 on both cyclic AMP concentration and IgM secretion, despite the equal affinity of binding of VIP4-28 and VIP1-28. The effects of VIP on immunoglobulin secretion by stimulated mixed mononuclear leucocytes thus may be due in part to a direct action on B cells. PMID:8509142

  16. The SKW 6.4 line of human B lymphocytes specifically binds and responds to vasoactive intestinal peptide.

    PubMed Central

    Cheng, P P; Sreedharan, S P; Kishiyama, J L; Goetzl, E J

    1993-01-01

    Vasoactive intestinal peptide (VIP1-28) is a neuromediator recognized by high-affinity receptors on human lymphocytes, which inhibits T-cell proliferation and cytokine secretion, and suppresses immunoglobulin production by mitogen-stimulated mixed mononuclear leucocytes. The direct interactions of VIP1-28 with B cells were studied in the SKW 6.4 line of EBV-transformed human B cells, that express a mean (+/- SD) of 6116 +/- 969 receptors for [125I]VIP1-28 with a mean Kd of 59 nM, that decreases to 12 nM after exposure to phorbol 12-myristate 13-acetate (PMA). The secretion of IgM by SKW 6.4 B cells stimulated optimally with 100 ng/ml of PMA, but not unstimulated secretion of IgM, was suppressed significantly by 10(-12) M to 10(-9) M VIP1-28 and up to a mean maximum (+/- SD) of 40 +/- 2% by 10(-10) M VIP1-28. VIP1-28 elicited concomitant increases in intracellular cyclic AMP up to a mean maximum of 163% at 10(-10) M VIP1-28. The requirement for specific signal transduction by the occupied VIP receptors to inhibit IgM secretion was demonstrated by the lack of effect of VIP4-28 on both cyclic AMP concentration and IgM secretion, despite the equal affinity of binding of VIP4-28 and VIP1-28. The effects of VIP on immunoglobulin secretion by stimulated mixed mononuclear leucocytes thus may be due in part to a direct action on B cells. PMID:8509142

  17. The effect of active immunization against vasoactive intestinal peptide and inhibin on reproductive performance of young White Leghorn roosters.

    PubMed

    Avital-Cohen, N; Heiblum, R; Argov, N; Rosenstrauch, A; Chaiseha, Y; Mobarkey, N; Rozenboim, I

    2011-10-01

    The neuropeptides vasoactive intestinal peptide (VIP) and gonadal inhibin have long been considered putative regulators of reproduction in hens. However, their role in young roosters remains unclear. We studied the effect of active immunization against VIP, inhibin, and a combination of both hormones on reproduction in young White Leghorn roosters. At 13 wk of age, White Leghorn roosters (n = 60) were split into 4 groups (n = 15). One group was actively immunized against VIP, the second against inhibin, the third against both VIP and inhibin, and the fourth, untreated, served as a control. Active immunization against VIP enhanced reproductive parameters as manifested by increased semen quality, plasma steroid levels, and mRNA gene expression of hypothalamic gonadotropin-releasing hormone-I, pituitary follicle-stimulating hormone, pituitary luteinizing hormone (LH), and decreased mRNA gene expression of hypothalamic VIP, pituitary prolactin, and testicular LH receptor. In contrast, immunization against inhibin decreased reproductive parameters such as semen quality, plasma steroid levels, mRNA gene expression of pituitary follicle-stimulating hormone and testicular inhibin. The combined treatment showed the greatest increase in semen quality parameters, plasma steroid levels, and mRNA gene expression of hypothalamic gonadotropin-releasing hormone-I, pituitary follicle-stimulating hormone, pituitary LH, and testicular LH receptor. Moreover, it significantly reduced mRNA gene expression of hypothalamic VIP and pituitary prolactin and mildly reduced that of testicular inhibin. These results suggest that VIP plays a negative role, at a young age, in reproduction of roosters that is similar to that in hens and that inhibin is as important in reproductive function in young roosters as in mammals. PMID:21934016

  18. Nitric oxide, and not vasoactive intestinal peptide, as the main neurotransmitter of vagally induced relaxation of the guinea pig stomach.

    PubMed Central

    Desai, K M; Warner, T D; Bishop, A E; Polak, J M; Vane, J R

    1994-01-01

    1. Nitric oxide synthase (NOS) was localized in the guinea pig stomach by immunocytochemistry. In vitro experiments were carried out on the isolated stomach of the guinea pig to study any possible links between nitric oxide (NO) and vasoactive intestinal peptide (VIP) in mediating relaxations induced by vagal stimulation. 2. NOS was localized to nerve cell bodies and nerve fibre varicosities of the myenteric plexus in wholemounts of the longitudinal muscle-myenteric plexus of the stomach fundus. The NOS-positive cells had a Dogiel type I morphology characteristic of motor neurones. 3. The cross-sections of the stomach wall showed NOS-positive neurones mainly in the myenteric plexus ganglia and NOS-positive nerve fibre varicosities in the circular muscle layer. 4. Relaxations induced by vagal stimulation were almost completely prevented by L-NAME with an IC50 value of 5.5 x 10(-6) M. This inhibition was reversed by L-arginine (2 mM). 5. VIP (100 nM) induced reproducible relaxations of the stomach. These were unaffected by tetrodotoxin (2 microM) or N omega-nitro-L-arginine methyl ester (L-NAME, 100 microM). 6. Desensitization to the relaxant effect of VIP partially reduced relaxations induced by vagal stimulation, glyceryl trinitrate or sodium nitroprusside but not noradrenaline. 7. These results show that NO has a neuronal origin in the guinea pig stomach, and support NO, and not VIP, as the major neurotransmitter of vagally induced gastric relaxation in the guinea pig. Images Figure 1 Figure 2 PMID:7534182

  19. Purification and identification of lipolysis-stimulating peptides derived from enzymatic hydrolysis of soy protein.

    PubMed

    Tsou, May-June; Kao, Fuh-Juin; Lu, Hsi-Chi; Kao, Hao-Chun; Chiang, Wen-Dee

    2013-06-01

    The aim of this study was to purify and identify lipolysis-stimulating peptides derived from Flavourzyme®-soy protein isolate (SPI) hydrolysate (F-SPIH). Glycerol release was employed as a marker for lipolysis in 3T3-L1 adipocytes. A higher glycerol release represents a better lipolysis-stimulating activity. The peptide fraction with highest glycerol release obtained from F-SPIH fractionated by sequential ultrafiltration membranes was further purified using gel filtration chromatography and two steps of reverse-phase high-performance liquid chromatography. The peptides were identified using liquid chromatography-tandem mass spectrometry (LC/MS/MS). Three lipolysis-stimulating peptides were obtained, and the amino acid sequences were ILL, LLL and VHVV, respectively. The in vitro effect of gastrointestinal proteases on lipolysis-stimulating activity of synthetic ILL, LLL and VHVV, respectively, was also investigated. The result suggested that the gastrointestinal protease did not affect lipolysis-stimulating activity of the three novel peptides, which reveals their potential to act as anti-obesity ingredients. PMID:23411267

  20. Glucagon-Like Peptide-2 Requires a Full Complement of Bmi-1 for Its Proliferative Effects in the Murine Small Intestine.

    PubMed

    Smither, Bradley R; Pang, Hilary Y M; Brubaker, Patricia L

    2016-07-01

    The intestinal hormone, glucagon-like peptide-2 (GLP-2), stimulates growth, survival, and function of the intestinal epithelium through increased crypt cell proliferation, and a long-acting analog has recently been approved to enhance intestinal capacity in patients with short bowel syndrome. The goal of the present study was to determine whether GLP-2-induced crypt cell proliferation requires a full complement of B-cell lymphoma Moloney murine leukemia virus insertion region-1 homolog (Bmi-1), using the Bmi-1(eGFP/+) mouse model in comparison with age- and sex-matched Bmi-1(+/+) littermates. Bmi-1 is a member of the polycomb-repressive complex family that promotes stem cell proliferation and self-renewal and is expressed by both stem cells and transit-amplifying (TA) cells in the crypt. The acute (6 h) and chronic (11 d) proliferative responses to long-acting human (Gly(2))GLP-2 in the crypt TA zone, but not in the active or reserve stem cell zones, were both impaired by Bmi-1 haploinsufficiency. Similarly, GLP-2-induced crypt regeneration after 10-Gy irradiation was reduced in the Bmi-1(eGFP/+) animals. Despite these findings, chronic GLP-2 treatment enhanced overall intestinal growth in the Bmi-1(eGFP/+) mice, as demonstrated by increases in small intestinal weight per body weight and in the length of the crypt-villus axis, in association with decreased apoptosis and an adaptive increase in crypt epithelial cell migration rate. The results of these studies therefore demonstrate that a full complement of Bmi-1 is required for the intestinal proliferative effects of GLP-2 in both the physiological and pathological setting, and mediates, at least in part, the proliferation kinetics of cells in the TA zone. PMID:27187177

  1. Requirement of oestrogens for the sensitivity of prolactin cells to vasoactive intestinal peptide in rats and man.

    PubMed

    Pizzi, M; Rubessa, S; Simonazzi, E; Zanagnolo, V; Falsetti, L; Memo, M; Spano, P F

    1992-02-01

    Vasoactive intestinal peptide (VIP) is a prolactin-releasing hormone which is involved in the multifactorial modulation of prolactin secretion in mammals. Intravenous injection of VIP (1 microgram/kg) to fertile women increased plasma prolactin levels and heart rate and reduced diastolic pressure. The same treatment to menopausal women caused similar cardiovascular effects but did not modify plasma prolactin levels. In contrast, TRH (200 micrograms, i.v.) induced a significant increase in plasma prolactin levels in both fertile and menopausal women. The relevance of oestrogens in affecting VIP-stimulated prolactin secretion was evaluated in vitro by measuring prolactin release from pituitary cells of control and ovariectomized rats. The sensitivity of rat mammotrophs to VIP, but not to TRH, was completely suppressed 3 or 4 weeks after ovariectomy. Furthermore, implantation of rats with a silastic capsule containing oestradiol-17 beta during ovariectomy, preserved the cell responsiveness to VIP. The prolactin-releasing property of VIP was also restored when pituitary cells from ovariectomized rats were cultured for 3 days in the presence of 10 nmol oestradiol-17 beta/l before being used for prolactin release experiments. The present study shows that the ability of prolactin-secreting cells to respond to the stimulatory action of VIP requires high levels of circulating oestrogens, both in man and rats. PMID:1541929

  2. Modulation of cholinergic neural bronchoconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro.

    PubMed Central

    Ward, J K; Belvisi, M G; Fox, A J; Miura, M; Tadjkarimi, S; Yacoub, M H; Barnes, P J

    1993-01-01

    Human airway smooth muscle possesses an inhibitory nonadrenergic noncholinergic neural bronchodilator response mediated by nitric oxide (NO). In guinea pig trachea both endogenous NO and vasoactive intestinal peptide (VIP) modulate cholinergic neural contractile responses. To identify whether endogenous NO or VIP can modulate cholinergic contractile responses in human airways in vitro, we studied the effects of specific NO synthase inhibitors and the peptidase alpha-chymotrypsin on contractile responses evoked by electrical field stimulation (EFS) at three airway levels. Endogenous NO, but not VIP, was shown to inhibit cholinergic contractile responses at all airway levels but this inhibition was predominantly in trachea and main bronchus and less marked in segmental and subsegmental bronchi. To elucidate the mechanism of this modulation we then studied the effects of endogenous NO on acetylcholine (ACh) release evoked by EFS from tracheal smooth muscle strips. We confirmed that release was neural in origin, frequency dependent, and that endogenous NO did not affect ACh release. These findings show that endogenous NO, but not VIP, evoked by EFS can inhibit cholinergic neural responses via functional antagonism of ACh at the airway smooth muscle and that the contribution of this modulation is less marked in lower airways. PMID:8349813

  3. Intestine.

    PubMed

    Smith, J M; Skeans, M A; Horslen, S P; Edwards, E B; Harper, A M; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    Intestine and intestine-liver transplant plays an important role in the treatment of intestinal failure, despite decreased morbidity associated with parenteral nutrition. In 2014, 210 new patients were added to the intestine transplant waiting list. Among prevalent patients on the list at the end of 2014, 65% were waiting for an intestine transplant and 35% were waiting for an intestine-liver transplant. The pretransplant mortality rate decreased dramatically over time for all age groups. Pretransplant mortality was highest for adult candidates, at 22.1 per 100 waitlist years compared with less than 3 per 100 waitlist years for pediatric candidates, and notably higher for candidates for intestine-liver transplant than for candidates for intestine transplant without a liver. Numbers of intestine transplants without a liver increased from a low of 51 in 2013 to 67 in 2014. Intestine-liver transplants increased from a low of 44 in 2012 to 72 in 2014. Short-gut syndrome (congenital and other) was the main cause of disease leading to both intestine and intestine-liver transplant. Graft survival improved over the past decade. Patient survival was lowest for adult intestine-liver recipients and highest for pediatric intestine recipients. PMID:26755265

  4. Stimulation of Lysine Decarboxylase Production in Escherichia coli by Amino Acids and Peptides1

    PubMed Central

    Cascieri, T.; Mallette, M. F.

    1973-01-01

    A commercial hydrolysate of casein stimulated production of lysine decarboxylase (EC 4.1.1.18) by Escherichia coli B. Cellulose and gel chromatography of this hydrolysate yielded peptides which were variably effective in this stimulation. Replacement of individual, stimulatory peptides by equivalent amino acids duplicated the enzyme levels attained with those peptides. There was no indication of specific stimulation by any peptide. The peptides were probably taken up by the oligopeptide transport system of E. coli and hydrolyzed intracellularly by peptidases to their constituent amino acids for use in enzyme synthesis. Single omission of amino acids from mixtures was used to screen them for their relative lysine decarboxylase stimulating abilities. Over 100 different mixtures were evaluated in establishing the total amino acid requirements for maximal synthesis of lysine decarboxylase by E. coli B. A mixture containing all of the common amino acids except glutamic acid, aspartic acid, and alanine increased lysine decarboxylase threefold over an equivalent weight of casein hydrolysate. The nine most stimulatory amino acids were methionine, arginine, cystine, leucine, isoleucine, glutamine, threonine, tyrosine, and asparagine. Methionine and arginine quantitatively were the most important. A mixture of these nine was 87% as effective as the complete mixture. Several amino acids were inhibitory at moderate concentrations, and alanine (2.53 mM) was the most effective. Added pyridoxine increased lysine decarboxylase activity 30%, whereas other B vitamins and cyclic adenosine 5′-monophosphate had no effect. PMID:4588201

  5. Antagonistic actions of analogs related to growth hormone-releasing hormone (GHRH) on receptors for GHRH and vasoactive intestinal peptide on rat pituitary and pineal cells in vitro

    PubMed Central

    Rekasi, Zoltan; Varga, Jozsef L.; Schally, Andrew V.; Halmos, Gabor; Groot, Kate; Czompoly, Tamas

    2000-01-01

    Peptide analogs of growth hormone-releasing hormone (GHRH) can potentially interact with vasoactive intestinal peptide (VIP) receptors (VPAC1-R and VPAC2-R) because of the structural similarities of these two hormones and their receptors. We synthesized four new analogs related to GHRH (JV-1–50, JV-1–51, JV-1–52, and JV-1–53) with decreased GHRH antagonistic activity and increased VIP antagonistic potency. To characterize various peptide analogs for their antagonistic activity on receptors for GHRH and VIP, we developed assay systems based on superfusion of rat pituitary and pineal cells. Receptor-binding affinities of peptides to the membranes of these cells were also evaluated by radioligand competition assays. Previously reported GHRH antagonists JV-1–36, JV-1–38, and JV-1–42 proved to be selective for GHRH receptors, because they did not influence VIP-stimulated VPAC2 receptor-dependent prolactin release from pituitary cells or VPAC1 receptor-dependent cAMP efflux from pinealocytes but strongly inhibited GHRH-stimulated growth hormone (GH) release. Analogs JV-1–50, JV-1–51, and JV-1–52 showed various degrees of VPAC1-R and VPAC2-R antagonistic potency, although also preserving a substantial GHRH antagonistic effect. Analog JV-1–53 proved to be a highly potent VPAC1 and VPAC2 receptor antagonist, devoid of inhibitory effects on GHRH-evoked GH release. The antagonistic activity of these peptide analogs on processes mediated by receptors for GHRH and VIP was consistent with the binding affinity. The analogs with antagonistic effects on different types of receptors expressed on tumor cells could be utilized for the development of new approaches to treatment of various human cancers. PMID:10655511

  6. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis

    PubMed Central

    Manieri, Nicholas A.; Mack, Madison R.; Himmelrich, Molly D.; Worthley, Daniel L.; Hanson, Elaine M.; Eckmann, Lars; Wang, Timothy C.; Stappenbeck, Thaddeus S.

    2015-01-01

    Mesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall. We determined that penetrating ulcer formation in this model resulted from increased hypoxia and smooth muscle wall necrosis. Prostaglandin I2 (PGI2) stimulated VEGF-dependent angiogenesis to prevent penetrating ulcers. Treatment of mucosally injured WT mice with a VEGFR inhibitor resulted in the development of penetrating ulcers, further demonstrating that VEGF is critical for mucosal repair. We next used this model to address the role of transplanted colonic MSCs (cMSCs) in intestinal repair. Compared with intravenously injected cMSCs, mucosally injected cMSCs more effectively prevented the development of penetrating ulcers, as they were more efficiently recruited to colonic wounds. Importantly, mucosally injected cMSCs stimulated angiogenesis in a VEGF-dependent manner. Together, our results reveal that penetrating ulcer formation results from a reduction of local angiogenesis and targeted injection of MSCs can optimize transplantation therapy. Moreover, local MSC injection has potential for treating diseases with features of abnormal angiogenesis and repair. PMID:26280574

  7. Glucagon-like peptide-2 (GLP-2) increases small intestinal blood flow and mucosal growth in ruminating calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2), increases small intestinal mass and blood flow in non-ruminants, but its effect in ruminants is unknown. Eight Holstein calves with an ultrasonic flow probe around the superior mesenteric artery (SMA), and catheters in the carotid artery and mesenteric vein, were pa...

  8. Expression of an antimicrobial peptide, digestive enzymes and nutrient transporters in the intestine of E. praecox-infected chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccidiosis is a major intestinal disease of poultry, caused by several species of the protozoan Eimeria. The objective of this study was to examine changes in expression of digestive enzymes, nutrient transporters and an antimicrobial peptide following an Eimeria praecox challenge of chickens at d...

  9. Bile acids induce glucagon-like peptide 2 secretion with limited effects on intestinal adaptation in early weaned pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestina...

  10. Identification of peptide-specific TCR genes by in vitro peptide stimulation and CDR3 length polymorphism analysis.

    PubMed

    Shao, Hongwei; Lin, Yanmei; Wang, Teng; Ou, Yusheng; Shen, Han; Tao, Changli; Wu, Fenglin; Zhang, Wenfeng; Bo, Huaben; Wang, Hui; Huang, Shulin

    2015-07-10

    Identification of TCR genes specific for tumor-associated antigens (TAAs) is necessary for TCR gene modification of T cells, which is applied in anti-tumor adoptive T cell therapy (ACT). The usual identification methods are based on isolating single peptide-responding T cells and cloning the TCR gene by in vitro expansion or by single-cell RT-PCR. However, the long and exacting in vitro culture period and demanding operational requirements restrict the application of these methods. Immunoscope is an effective tool that profiles a repertoire of TCRs and identifies significantly expanded clones through CDR3 length analysis. In this study, a survivin-derived mutant peptide optimized for HLA-A2 binding was selected to load DCs and activate T cells. The monoclonal expansion of TCRA and TCRB genes was separately identified by Immunoscope analysis and following sequence identification, the properly paired TCR genes were transferred into T cells. Peptide recognition and cytotoxicity assays indicated that TCR-modified PBMCs could respond to both the mutant and wild type peptides and lyse target cells. These results show that combining Immunoscope with in vitro peptide stimulation provides an alternative and superior method for identifying specific TCR genes, which represents a significant advance for the application of TCR gene-modified T cells. PMID:25890221

  11. Clostridium difficile suppresses colonic vasoactive intestinal peptide associated with altered motility.

    PubMed

    Nassif, A; Longo, W E; Sexe, R; Stratton, M; Standeven, J; Vernava, A M; Kaminski, D L

    1995-01-01

    We investigated whether Clostridium difficile toxin alters colonic tissue levels of vasoactive intestinal peptide (VIP) at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 10(-8) M C. difflcile toxin. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. C. difflcile administration produced histologic changes consistent with epithelial damage. This was associated with an increased production of prostaglandin E(2) and thromboxane B(2). Tissue levels of VIP but not substance P were significantly reduced. This was associated with an increased number of contractions per minute and an average force of each colonic contraction. These results suggest that tissue levels of VIP are suppressed by C. difflcile and may participate in colonic dysmotility during active inflammation. PMID:18475679

  12. Peptides having reduced toxicity that stimulate cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan; Danho, Waleed

    2016-08-16

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABCA1 that parallels that of full-length apolipoproteins. Further, the peptides of the invention have little or no toxicity when administered at therapeutic and higher doses. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  13. Peptide YY antagonizes beta-adrenergic-stimulated release of insulin in dogs

    SciTech Connect

    Greeley, G.H. Jr.; Lluis, F.; Gomex, G.; Ishizuka, J.; Holland, B.; Thompson, J.C. )

    1988-04-01

    Peptide YY (PYY) and neuropeptide Y (NPY) are peptides of 36 amino acids that share structural homologies with pancreatic polypeptide (PP). PP is predominantly found in the endocrine pancreas. PYY is primarily found in mucosal endocrine cells of the distal ileum, colon, and rectum, whereas NPY is found in both the peripheral and central nervous system. Previous studies indicate that these peptides can interact with the autonomic nervous system. The objective of the present experiments was to study the effect of PYY on neurally stimulated insulin release in conscious dogs. Intravenous administration of PYY (100, 200, and 400 pmol{center dot}kg{sup {minus}1} {center dot}h{sup {minus}1}) reduced 2-DG-stimulated insulin release in a dose-dependent manner (P <0.05) without affecting plasma glucose levels. Administration of NPY, but not PP, reduced 2-DG-stimulated release of insulin. The inhibitory action of PYY on 2-DG-stimulated insulin release persisted in the presence of atropine or phentolamine treatment; however, hexamethonium alone or phentolamine plus propranolol treatment blocked the inhibitory action of PYY. Release of insulin stimulated by the {beta}-agonist isoproterenol was also inhibited by PYY. These results indicate that PYY can inhibit autonomic neurotransmission by a mechanism that may involve ganglionic or postganglionic inhibition of {beta}-adrenergic stimulation. The findings suggest a role for PYY and NPY in the autonomic regulation of insulin release.

  14. Peptide YY receptor in submucosal and myenteric plexus synaptosomes of canine small intestine.

    PubMed

    Mao, Y K; Wang, Y F; Ward, G; Cipris, S; Daniel, E E; McDonald, T J

    1996-07-01

    PYY receptors were characterized and their loci determined in canine small intestine. The density of 125I-labeled peptide tyrosine tyrosine (PYY) binding was highest in myenteric (MY) and submucosal (SUB) plexus fractions enriched in synaptosomes. Two binding sites [high affinity (H) and low affinity (L)] were found in the submucosal synaptosome-enriched membrane: dissociation constant (Kd)H = 7.6 pM, maximal binding capacity (Bmax)H = 28 fmol/mg; KdL = 0.18 nM, BmaxL = 120 fmol/mg protein. The binding of 125I-PYY reached a maximum within 30 min; dissociation was incomplete in the presence of unlabeled PYY. The rate of dissociation was enhanced after exposure of synaptosomes to guanosine 5'-O-(3-thiotriphosphate). Binding of 125I-PYY was completely inhibited by neuropeptide Y (NPY)-(13-36) (in SUB and MY) and by [Leu31,Pro34]NPY (in MY) but only partially by [Leu31,Pro34]NPY in SUB, suggesting the presence of Y2 receptor in SUB and the presence of Y1 and Y2 receptors in MY. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PYY receptor complex revealed a radioactive band at 70 kDa. The PYY receptors in the canine small intestinal myenteric and submucosal plexus correspond in location to that of PYY in synaptosomes and are coupled with G proteins. Different subtypes are present in different loci. PMID:8760104

  15. Amino acid absorption and homeostasis in mice lacking the intestinal peptide transporter PEPT1.

    PubMed

    Nässl, Anna-Maria; Rubio-Aliaga, Isabel; Fenselau, Henning; Marth, Mena Katharina; Kottra, Gabor; Daniel, Hannelore

    2011-07-01

    The intestinal peptide transporter PEPT1 mediates the uptake of di- and tripeptides derived from dietary protein breakdown into epithelial cells. Whereas the transporter appears to be essential to compensate for the reduced amino acid delivery in patients with mutations in amino acid transporter genes, such as in cystinuria or Hartnup disease, its physiological role in overall amino acid absorption is still not known. To assess the quantitative importance of PEPT1 in overall amino acid absorption and metabolism, PEPT1-deficient mice were studied by using brush border membrane vesicles, everted gut sacs, and Ussing chambers, as well as by transcriptome and proteome analysis of intestinal tissue samples. Neither gene expression nor proteome profiling nor functional analysis revealed evidence for any compensatory changes in the levels and/or function of transporters for free amino acids in the intestine. However, most plasma amino acid levels were increased in Pept1(-/-) compared with Pept1(+/+) animals, suggesting that amino acid handling is altered. Plasma appearance rates of (15)N-labeled amino acids determined after intragastric administration of a low dose of protein remained unchanged, whereas administration of a large protein load via gavage revealed marked differences in plasma appearance of selected amino acids. PEPT1 seems, therefore, important for overall amino acid absorption only after high dietary protein intake when amino acid transport processes are saturated and PEPT1 can provide additional absorption capacity. Since renal amino acid excretion remained unchanged, elevated basal concentrations of plasma amino acids in PEPT1-deficient animals seem to arise mainly from alterations in hepatic amino acid metabolism. PMID:21350187

  16. Mechanisms of lysophosphatidic acid (LPA) mediated stimulation of intestinal apical Cl-/OH- exchange.

    PubMed

    Singla, Amika; Dwivedi, Alka; Saksena, Seema; Gill, Ravinder K; Alrefai, Waddah A; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K

    2010-02-01

    Lysophosphatidic acid (LPA), a potent bioactive phospholipid, is a natural component of food products like soy and egg yolk. LPA modulates a number of epithelial functions and has been shown to inhibit cholera toxin-induced diarrhea. Antidiarrheal effects of LPA are known to be mediated by inhibiting chloride secretion. However, the effects of LPA on chloride absorption in the mammalian intestine are not known. The present studies examined the effects of LPA on apical Cl(-)/OH(-) exchangers known to be involved in chloride absorption in intestinal epithelial cells. Caco-2 cells were treated with LPA, and Cl(-)/OH(-) exchange activity was measured as DIDS-sensitive (36)Cl(-) uptake. Cell surface biotinylation studies were performed to evaluate the effect of LPA on cell surface levels of apical Cl(-)/OH(-) exchangers, downregulated in adenoma (DRA) (SLC26A3), and putative anion transporter-1 (SLC26A6). Treatment of Caco-2 cells with LPA (100 muM) significantly stimulated Cl(-)/OH(-) exchange activity. Specific agonist for LPA2 receptor mimicked the effects of LPA. LPA-mediated stimulation of Cl(-)/OH(-) exchange activity was dependent on activation of phosphatidylinositol 3-kinase/Akt signaling pathway. Consistent with the functional activity, LPA treatment resulted in increased levels of DRA on the apical membrane. Our results demonstrate that LPA stimulates apical Cl(-)/OH(-) exchange activity and surface levels of DRA in intestinal epithelial cells. This increase in Cl(-)/OH(-) exchange may contribute to the antidiarrheal effects of LPA. PMID:19910524

  17. Disrupted reproduction, estrous cycle, and circadian rhythms in female vasoactive intestinal peptide deficient mice

    PubMed Central

    Loh, Dawn Hsiao-Wei; Kuljis, Dika Ana; Azuma, Lauren; Wu, Yingfei; Truong, Danny; Wang, Huei-Bin; Colwell, Christopher Scott

    2015-01-01

    The female reproductive cycle is gated by the circadian timing system and may be vulnerable to disruptions in the circadian system. Prior work suggests that vasoactive intestinal peptide (VIP) expressing neurons in the suprachiasmatic nucleus (SCN) are one pathway by which the circadian clock can influence the estrous cycle but the impact of the loss of this peptide on reproduction has not been assessed. In the present study, we first examine the impact of the genetic loss of the neuropeptide VIP on the reproductive success of female mice. Significantly, mutant females produced about half the offspring of their wild type sisters even when mated to the same males. We also find that VIP-deficient females exhibit a disrupted estrous cycle i.e. ovulation occurs less frequently and results in the release of fewer oocytes compared to controls. Circadian rhythms of wheel running activity are disrupted in the female mutant mice as are the spontaneous electrical activity of dorsal SCN neurons. On a molecular level, the VIP-deficient SCN tissue exhibit lower amplitude oscillations with altered phase relationships between the SCN and peripheral oscillators as measured by PER2-driven bioluminescence. The simplest explanation of our data is that the loss of VIP results in a weakened SCN oscillator which reduces the synchronization of the female circadian system. These results clarify one of the mechanisms by which disruption of the circadian system reduces female reproductive success. PMID:25252712

  18. Therapeutic Efficacy of Stable Analogues of Vasoactive Intestinal Peptide against Pathogens*

    PubMed Central

    Campos-Salinas, Jenny; Cavazzuti, Antonio; O'Valle, Francisco; Forte-Lago, Irene; Caro, Marta; Beverley, Stephen M.; Delgado, Mario; Gonzalez-Rey, Elena

    2014-01-01

    Vasoactive intestinal peptide (VIP) is an anti-inflammatory neuropeptide recently identified as a potential antimicrobial peptide. To overcome the metabolic limitations of VIP, we modified the native peptide sequence and generated two stable synthetic analogues (VIP51 and VIP51(6–30)) with better antimicrobial profiles. Herein we investigate the effects of both VIP analogues on cell viability, membrane integrity, and ultrastructure of various bacterial strains and Leishmania species. We found that the two VIP derivatives kill various non-pathogenic and pathogenic Gram-positive and Gram-negative bacteria as well as the parasite Leishmania major through a mechanism that depends on the interaction with certain components of the microbial surface, the formation of pores, and the disruption of the surface membrane. The cytotoxicity of the VIP derivatives is specific for pathogens, because they do not affect the viability of mammalian cells. Docking simulations indicate that the chemical changes made in the analogues are critical to increase their antimicrobial activities. Consequently, we found that the native VIP is less potent as an antibacterial and fails as a leishmanicidal. Noteworthy from a therapeutic point of view is that treatment with both derivatives increases the survival and reduces bacterial load and inflammation in mice with polymicrobial sepsis. Moreover, treatment with VIP51(6–30) is very effective at reducing lesion size and parasite burden in a model of cutaneous leishmaniasis. These results indicate that the VIP analogues emerge as attractive alternatives for treating drug-resistant infectious diseases and provide key insights into a rational design of novel agents against these pathogens. PMID:24706753

  19. Lack of Effects of a Single High-Fat Meal Enriched with Vegetable n-3 or a Combination of Vegetable and Marine n-3 Fatty Acids on Intestinal Peptide Release and Adipokines in Healthy Female Subjects

    PubMed Central

    Narverud, Ingunn; Myhrstad, Mari C. W.; Herzig, Karl-Heinz; Karhu, Toni; Dahl, Tuva B.; Halvorsen, Bente; Ulven, Stine M.; Holven, Kirsten B.

    2016-01-01

    Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3) fatty acids (FAs) from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 FAs with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil, and a combination of linseed and cod liver oil. The test days were separated by 2 weeks. Fasting and postprandial blood samples at 3 and 6 h after intake were analyzed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin, which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 FAs from different origin stimulates intestinal peptide release without any difference between the different fat compositions.

  20. Endothelin-1 potently stimulates chloride secretion and inhibits Na(+)-glucose absorption in human intestine in vitro.

    PubMed Central

    Kuhn, M; Fuchs, M; Beck, F X; Martin, S; Jähne, J; Klempnauer, J; Kaever, V; Rechkemmer, G; Forssmann, W G

    1997-01-01

    1. Serosally added synthetic endothelin-1 (ET-1) increased short-circuit current (Isc) across isolated muscle-stripped human colonic mucosa in vitro. Bumetanide inhibited Isc responses, indicating that ET-1 stimulates electrogenic Cl- secretion. 2. In isolated human jejunal mucosa, ET-1 exhibited a concentration-dependent dual action. At low concentrations it induced rapid increases in Isc and these were inhibited by bumetanide. At a higher concentration (0.1 microM), ET-1 provoked a drastic and progressive decrease in Isc below the baseline value. 3. Pretreatment with phlorizin or omission of glucose from the Krebs-Ringer solution at the apical (luminal) side of the jejunal mucosa prevented the decreases in Isc evoked by ET-1, suggesting that the peptide inhibits the glucose-coupled electrogenic Na+ absorption. Indeed, flux experiments with D-[14C]glucose demonstrated that ET-1 decreases jejunal glucose absorption by approximately 80% within 30 min. 4. Electron microprobe analyses of cryosections of human jejunum showed that ET-1 (0.1 microM) evokes a significant decrease in intracellular Na+ concentrations of villus (not crypt) epithelial cells, suggesting that the peptide attenuates apical Na(+)-glucose entry by reducing the activity of the Na(+)-glucose cotransporter, SGLT1. 5. In the presence of tetrodotoxin (TTX), ET-1-induced Cl- secretion was significantly reduced, in both human jejunal and colonic mucosa. However, the inhibitory effect on jejunal Na(+)-glucose absorption was not affected by TTX. 6. ET-1 increases electrogenic Cl- secretion across human intestinal mucosa in vitro. This effect is mediated in part via the activation of enteric nerves. Responses of the human jejunal mucosa to high ET-1 concentrations exhibit a second component, namely the rapid inhibition of electrogenic Na(+)-glucose absorption, which might be mediated by an inhibition of the transport activity of SGLT1. This effect is independent from neuronal mediators. Our results suggest

  1. β-casein-derived peptides, produced by bacteria, stimulate cancer cell invasion and motility

    PubMed Central

    Oliveira, Maria José; Van Damme, Jozef; Lauwaet, Tineke; De Corte, Veerle; De Bruyne, Georges; Verschraegen, Gerda; Vaneechoutte, Mario; Goethals, Marc; Ahmadian, Mohammad Reza; Müller, Oliver; Vandekerckhove, Joël; Mareel, Marc; Leroy, Ancy

    2003-01-01

    In colon cancer, enteric bacteria and dietary factors are major determinants of the microenvironment but their effect on cellular invasion is not known. We therefore incubated human HCT-8/E11 colon cancer cells with bacteria or bacterial conditioned medium on top of collagen type I gels. Listeria monocytogenes stimulate cellular invasion through the formation of a soluble motility-promoting factor, identified as a 13mer β-casein-derived peptide (HKEMPFPKYPVEP). The peptide is formed through the combined action of Mpl, a Listeria thermolysin-like metalloprotease, and a collagen-associated trypsin-like serine protease. The 13mer peptide was also formed by tumour biopsies isolated from colon cancer patients and incubated with a β-casein source. The pro- invasive 13mer peptide-signalling pathway implicates activation of Cdc42 and inactivation of RhoA, linked to each other through the serine/threonine p21- activated kinase 1. Since both changes are necessary but not sufficient, another pathway might branch upstream of Cdc42 at phosphatidylinositol 3-kinase. Delta opioid receptor (δOR) is a candidate receptor for the 13mer peptide since naloxone, an δOR antagonist, blocks both δOR serine phosphorylation and 13mer peptide-mediated invasion. PMID:14609961

  2. ZP-binding peptides identified via phage display stimulate production of sperm antibodies in dogs.

    PubMed

    Samoylova, Tatiana I; Cox, Nancy R; Cochran, Anna M; Samoylov, Alexandre M; Griffin, Brenda; Baker, Henry J

    2010-07-01

    Zona pellucida (ZP) glycoproteins play a central role in sperm-oocyte binding and fertilization. Sperm protein sequences that are involved in sperm-ZP recognition and have an important role in fertilization represent attractive targets for development of contraceptive vaccines, yet are currently unknown. To identify peptide sequences that recognize and bind to ZP proteins, we developed a novel selection procedure from phage display libraries that utilizes intact oocytes surrounded by ZP proteins. The major advantage of this procedure is that ZP proteins remain in their native conformation unlike a selection protocol previously published that utilized solubilized ZP on artificial solid support. Several peptides of 7 and 12 amino acids with binding specificity to canine ZP proteins were identified. Four of them (LNSFLRS, SSWYRGA, YLPIYTIPSMVY, and NNQSPILKLSIH) plus a control ZP-binding peptide (YLPVGGLRRIGG) from the literature were synthesized and tested for antigenic properties in dogs. NNQSPILKLSIH peptide stimulated production of anti-peptide antibodies. These antibodies bind to the acrosomal region of the canine sperm cell, demonstrating ability to act as sperm antibodies. The identified ZP-binding peptides (mimicking sperm cell surface antigens) may be useful in the design of immunocontraceptive agents for dogs. PMID:20434854

  3. A new relaxin-like gonad-stimulating peptide identified in the starfish Asterias amurensis.

    PubMed

    Mita, Masatoshi; Daiya, Misaki; Haraguchi, Shogo; Tsutsui, Kazuyoshi; Nagahama, Yoshitaka

    2015-10-01

    Relaxin-like gonad-stimulating peptide (RGP) of starfish Asterina pectinifera was the first invertebrate gonadotropin to have its chemical structure identified. However, it is unclear whether gonadotropic hormones in other species starfish are relaxin-like peptides. Thus, this study tried to identify the molecular structure of gonadotropic hormone in Asterias amurensis. As a result, we identified A. amurensis gonadotropic hormone as the RGP (AamRGP). The DNA sequence encoding AamRGP consisted of 330 base pairs with an open reading frame encoding a peptide of 109 amino acids (aa), including a signal peptide (26 aa), B-chain (20 aa), C-peptide (38 aa) and A-chain (25 aa). Comparing with A. pectinifera RGP (ApeRGP), the amino acid identity levels between AmaRGP and ApeRGP were 58% for the A-chain and 73% for the B-chain. Furthermore, chemical synthetic AamRGP induced gamete spawning and oocyte maturation in ovarian fragments of A. amurensis. In contrast, the ovary of A. pectinifera failed to respond to the AamRGP. This suggested that AamRGP is a new relaxin-like peptide. PMID:26163025

  4. The role of some small peptides in the transfer of amino nitrogen across the wall of vascularly perfused intestine.

    PubMed Central

    Cheeseman, C I; Parsons, D S

    1976-01-01

    The characteristics have been investigated of the transfer into the vascular bed of L-leucine and glycine from free amino acids or peptides in the intestinal lumen of Rana pipiens. Over the concentration range 0-5-10 mM the transfer of L-leucine is but little affected by the presence of equimolar concentrations of glycine but the transfer of glycine, in contrast, is greatly inhibited by the presence of L-leucine. 2. With glycyl-L-leucine in the intestinal lumen, the rate of transfer of glycine into the vascular bed is much greater than from the mixture of the two amino acids and is equal to that of the L-leucine. From L-leucyl-glycine the rates of transfer of leucine and of glycine are also higher than from the mixture of the two amino acids but the rate of transfer of glycine is somewhat lower than that of leucine. There is no evidence of the presence of the dipeptides in the effluent from the portal vein. 3. When the peptide glycyl-L-leucine is added to the lumen in the presence of 10 mM concentrations of the free amino acids, additional amounts of L-leucine and of glycine are transferred in approximately equimolar quantities into the vascular bed. This additional transfer exhibits saturation with respect to concentration of peptide in the intestinal lumen. An additional transfer of amino acids was also found when L-leucyl-glycine was added to the lumen in the presence of saturating concentrations of the two amino acids. 4. Evidence is presented that the presence of the dipeptides in the intestinal lumen had little effect on the transfer of free amino acids from the lumen into the vascular bed. Although the transfer of free amino acids from the lumen into the vascular bed is significantly, but not completely, abolished when the Na in the intestinal lumen is replaced by K, the transfer of the amino acids from the dipeptides is but little affected. 5. The findings are discussed in relation to the view that the dipeptides are transported into the mucosal epithelium

  5. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients

    PubMed Central

    Sigalet, David L; Kravarusic, Dragan; Butzner, Decker; Hartmann, Bolette; Holst, Jens J; Meddings, Jon

    2013-01-01

    BACKGROUND/OBJECTIVES: The relationship between the enteroendocrine hormone glucagon-like peptide 2 (GLP-2) and intestinal inflammation is unclear. GLP-2 promotes mucosal growth, decreases permeability and reduces inflammation in the intestine; physiological stimulation of GLP-2 release is triggered by nutrient contact. The authors hypothesized that ileal Crohn disease (CD) affects GLP-2 release. METHODS: With ethics board approval, pediatric patients hospitalized with CD were studied; controls were recruited from local schools. Inclusion criteria were endoscopy-confirmed CD (primarily of the small intestine) with a disease activity index >150. Fasting and post-prandial GLP-2 levels and quantitative urinary recovery of orally administered 3-O-methyl-glucose (active transport) and lactulose/mannitol (passive) were quantified during the acute and remission phases. RESULTS: Seven patients (mean [± SD] age 15.3±1.3 years) and 10 controls (10.3±1.6 years) were studied. In patients with active disease, fasting levels of GLP-2 remained stable but postprandial levels were reduced. Patients with active disease exhibited reduced glucose absorption and increased lactulose/mannitol recovery; all normalized with disease remission. The change in the lactulose/mannitol ratio was due to both reduced lactulose and increased mannitol absorption. CONCLUSIONS: These findings suggest that pediatric patients with acute ileal CD have decreased postprandial GLP-2 release, reduced glucose absorption and increased intestinal permeability. Healing of CD resulted in normalization of postprandial GLP-2 release and mucosal functioning (nutrient absorption and permeability), the latter due to an increase in mucosal surface area. These findings have implications for the use of GLP-2 and feeding strategies as a therapy in CD patients; further studies of the effects of inflammation and the GLP-2 axis are recommended. PMID:24106731

  6. Neuropeptide Y-like immunoreactivity in rat cranial parasympathetic neurons: coexistence with vasoactive intestinal peptide and choline acetyltransferase

    SciTech Connect

    Leblanc, G.C.; Trimmer, B.A.; Landis, S.C.

    1987-05-01

    Neuropeptide Y (NPY) is widely distributed in the sympathetic nervous system, where it is colocalized with norepinephrine. The authors report here that NPY-immunoreactive neurons are also abundant in three cranial parasympathetic ganglia, the otic, sphenopalatine, and ciliary, in the rat measured by radioimmunoassay. High-performance liquid chromatographic analysis of the immunoreactive material present in the otic ganglion indicates that this material is very similar to porcine NPY and indistinguishable from the NPY-like immunoreactivity present in rat sympathetic neurons. These findings raise the possibility that NPY acts as a neuromodulator in the parasympathetic as well as the sympathetic nervous system. In contrast to what had been observed for sympathetic neurons, NPY-immunoreactive neurons in cranial parasympathetic ganglia do not contain detectable catecholamines or tyrosine hydroxylase immunoreactivity, and many do contain immunoreactivity for vasoactive intestinal peptide and/or choline acetyltransferase. These findings suggest that there is no simple rule governing coexpression of NPY with norepinephrine, acetylcholine, or vasoactive intestinal peptide in autonomic neurons. Further, while functional studies have indicated that NPY exerts actions on the peripheral vasculature which are antagonistic to those of acetylcholine and vasoactive intestinal peptide, the present results raise the possibility that these three substances may have complementary effects on other target tissues.

  7. Glucagon-like peptide-2 protects against TPN-induced intestinal hexose malabsorption in enterally refed piglets.

    PubMed

    Cottrell, J J; Stoll, B; Buddington, R K; Stephens, J E; Cui, L; Chang, X; Burrin, D G

    2006-02-01

    Premature infants receiving chronic total parenteral nutrition (TPN) due to feeding intolerance develop intestinal atrophy and reduced nutrient absorption. Although providing the intestinal trophic hormone glucagon-like peptide-2 (GLP-2) during chronic TPN improves intestinal growth and morphology, it is uncertain whether GLP-2 enhances absorptive function. We placed catheters in the carotid artery, jugular and portal veins, duodenum, and a portal vein flow probe in piglets before providing either enteral formula (ENT), TPN or a coinfusion of TPN plus GLP-2 for 6 days. On postoperative day 7, all piglets were fed enterally and digestive functions were evaluated in vivo using dual infusion of enteral ((13)C) and intravenous ((2)H) glucose, in vitro by measuring mucosal lactase activity and rates of apical glucose transport, and by assessing the abundances of sodium glucose transporter-1 (SGLT-1) and glucose transporter-2 (GLUT2). Both ENT and GLP-2 pigs had larger intestine weights, longer villi, and higher lactose digestive capacity and in vivo net glucose and galactose absorption compared with TPN alone. These endpoints were similar in ENT and GLP-2 pigs except for a lower intestinal weight and net glucose absorption in GLP-2 compared with ENT pigs. The enhanced hexose absorption in GLP-2 compared with TPN pigs corresponded with higher lactose digestive and apical glucose transport capacities, increased abundance of SGLT-1, but not GLUT-2, and lower intestinal metabolism of [(13)C]glucose to [(13)C]lactate. Our findings indicate that GLP-2 treatment during chronic TPN maintains intestinal structure and lactose digestive and hexose absorptive capacities, reduces intestinal hexose metabolism, and may facilitate the transition to enteral feeding in TPN-fed infants. PMID:16166344

  8. Alpha-Melanocyte Stimulating Hormone: An Emerging Anti-Inflammatory Antimicrobial Peptide

    PubMed Central

    Singh, Madhuri; Mukhopadhyay, Kasturi

    2014-01-01

    The alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide belonging to the melanocortin family. It is well known for its anti-inflammatory and antipyretic effects and shares several characteristics with antimicrobial peptides (AMPs). There have been some recent reports about the direct antimicrobial activity of α-MSH against various microbes belonging to both fungal and bacterial pathogens. Similar to α-MSH's anti-inflammatory properties, its C-terminal residues also exhibit antimicrobial activity parallel to that of the entire peptide. This review is focused on the current findings regarding the direct antimicrobial potential and immunomodulatory mechanism of α-MSH and its C-terminal fragments, with particular emphasis on the prospects of α-MSH based peptides as a strong anti-infective agent. PMID:25140322

  9. Replacement of the Disulfide Bridge in a KLK3-Stimulating Peptide Using Orthogonally Protected Building Blocks

    PubMed Central

    2013-01-01

    Peptide “B-2”, which is one of the most potent kallikrein-related peptidase 3 (KLK3)-stimulating compounds, consists of 12 amino acids and is cyclized by a disulfide bridge between the N- and C-terminal cysteines. Orthogonally protected building blocks were used in the peptide synthesis to introduce a disulfide bridge mimetic consisting of four carbon atoms. The resulting pseudopeptides with alkane and E-alkene linkers doubled the proteolytic activity of KLK3 at a concentration of 14 μM. They were almost as potent as the parent “B-2” peptide, which gives a 3.6-fold increase in the proteolytic activity of KLK3 at the same concentration. PMID:24900791

  10. Acute effects of the glucagon-like peptide 2 analogue, teduglutide, on intestinal adaptation in short bowel syndrome.

    PubMed

    Thymann, Thomas; Stoll, Barbara; Mecklenburg, Lars; Burrin, Douglas G; Vegge, Andreas; Qvist, Niels; Eriksen, Thomas; Jeppesen, Palle B; Sangild, Per T

    2014-06-01

    Neonatal short bowel syndrome following massive gut resection is associated with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult patients with short bowel syndrome, but its effect in pediatric patients remains unknown. Our objective was to test the efficacy of the long-acting synthetic human GLP-2 analogue, teduglutide (ALX-0600), in a neonatal piglet jejunostomy model. Two-day-old pigs were subjected to resection of 50% of the small intestine (distal part), and the remnant intestine was exteriorized on the abdominal wall as a jejunostomy. All pigs were given total parenteral nutrition for 7 days and a single daily injection of the following doses of teduglutide: 0.01 (n = 6), 0.02 (n = 6), 0.1 (n = 5), or 0.2 mg · kg · day (n = 6), and compared with placebo (n = 9). Body weight increment was similar for all 4 teduglutide groups but higher than placebo (P < 0.05). There was a dose-dependent increase in weight per length of the remnant intestine (P < 0.01) and fractional protein synthesis rate in the intestine was increased in the 0.2 mg · kg · day group versus placebo (P < 0.001); however, functional and structural endpoints including activity of digestive enzymes, absorption of enteral nutrients, and immunohistochemistry (Ki67, villin, FABP2, ChgA, and GLP-2R) were not affected by the treatment. Teduglutide induces trophicity on the remnant intestine but has limited acute effects on functional endpoints. Significant effects of teduglutide on gut function may require a longer adaptation period and/or a more frequent administration of the peptide. In perspective, GLP-2 or its analogues may be relevant to improve intestinal adaptation in pediatric patients with short bowel syndrome. PMID:24399211

  11. Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris

    PubMed Central

    Song, Ki-Duk; Lee, Woon-Kyu

    2014-01-01

    Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets. PMID:25049952

  12. Effects of vasoactive intestinal peptide on vascular conductance are unaffected by anesthesia

    SciTech Connect

    Bouder, T.G.; Huffman, L.J.; Hedge, G.A. )

    1988-12-01

    In rats anesthetized with ketamine and pentobarbital (KET/PB), vasoactive intestinal peptide (VIP) increases vascular conductance (VC) in the salivary gland, pancreas, and thyroid gland, whereas no changes in VC are observed in a number of other organs. Because anesthesia may alter the responsiveness of physiological systems, we compared the effects of VIP on organ VC in conscious or anesthetized rats. Chronically catheterized rats were studied in the conscious state or 30 min after induction of anesthesia with KET/PB, isoflurane, or Inactin. Blood flows were measured by the reference sample version of the radioactive microsphere (MS) technique using two MS injections ({sup 141}Ce-MS/{sup 85}Sr-MS). Mean arterial blood pressure was monitored and used in the calculation of VC. Organ VCs were similar under basal conditions in conscious and anesthetized rats. VIP infusion caused systemic hypotension and increased VCs in the salivary gland, pancreas, and thyroid gland, and these responses were largely unaffected by anesthesia. These results indicate that the anesthetics used do not alter basal VC or the responsiveness of the vasculature to exogenous VIP.

  13. Distribution of hypothalamic vasoactive intestinal peptide immunoreactive neurons in the male native Thai chicken.

    PubMed

    Kamkrathok, Boonyarit; Sartsoongnoen, Natagarn; Prakobsaeng, Nattiya; Rozenboim, Israel; Porter, Tom E; Chaiseha, Yupaporn

    2016-08-01

    Avian prolactin (PRL) secretion is under stimulatory control by the PRL-releasing factor (PRF), vasoactive intestinal peptide (VIP). The neuroendocrine regulation of the avian reproductive system has been extensively studied in females. However, there are limited data in males. The aim of this study was to elucidate the VIPergic system and its relationship to PRL and testosterone (T) in the male native Thai chicken. The distributions of VIP-immunoreactive (-ir) neurons and fibers were determined by immunohistochemistry. Changes in VIP-ir neurons within the nucleus inferioris hypothalami (IH) and nucleus infundibuli hypothalami (IN) areas were compared across the reproductive stages. Plasma levels of PRL and T were determined by enzyme-linked immunosorbent assay and then compared across the reproductive stages. The results revealed that the highest accumulations of VIP-ir neurons were concentrated only within the IH-IN, and VIP-ir neurons were not detected within other hypothalamic nuclei. Within the IH-IN, VIP-ir neurons were low in premature and aging males and markedly increased in mature males. Changes in VIP-ir neurons within the IH-IN were directly mirrored with changes in PRL and T levels across the reproductive stages. These results suggested that VIP neurons in the IH-IN play a regulatory role in year-round reproductive activity in males. The present study also provides additional evidence that VIP is the PRF in non-seasonal, continuously breeding equatorial species. PMID:27269881

  14. Vasoactive-intestinal-Peptide (vip) modulates the growth fraction of epithelial skin cells.

    PubMed

    Wollina, U; Bonnekoh, B; Mahrle, G

    1992-06-01

    Using the human keratinocyte cell line HaCaT, modifications of the growth fraction due to vasoactive intestinal peptide (VIP) were determined by immunostaining with monoclonal antibody Ki67. In addition, the expression of VIP receptor and epidermal growth factor (EGF) receptor have been analysed. VIP (10-(7) to 10-(11) M) produced an almost doubling of the total number of Ki67-positive cells in cultures with 2% fetal calf serum (FCS), wheras it was ineffective in FCS-free and 10% FCS cultures. The nuclear Ki67-staining patterns were classified into four categories. In FCS-free cultures VIP induced a shift from type III (light nucleus, staining nuclei) to type II (multiple, intensely stained spots). In cultures with 2% FCS, VIP induced a shift from type II to type III. VIP receptor expression was facilitated by VIP, when cells were grown in a medium supplemented with 10% FCS. VIP increased EGF receptor expression in FCS-free cultures but decreased the number EGF receptor-positive cells in experiments with 2% FCS. In conclusion, VIP is capable to modulate the growth fraction and receptor expression of HaCaT cells in vitro. The effects are dependent on the concentration of FCS within the culture medium. The findings might be of interest for keratinocyte pathology in general and dermatooncology in particular. PMID:21584504

  15. Distribution of vasoactive intestinal peptide and its receptors in the arteries of the rabbit

    SciTech Connect

    Sidawy, A.N.; Sayadi, H.; Harmon, J.W.; Termanini, B.; Andrews, B.; DePalma, R.G.; Korman, L.Y. )

    1989-08-01

    Vasoactive intestinal peptide (VIP) is a widely distributed neurotransmitter whose dilatory effects on vascular smooth muscle are believed to be mediated via specific receptors. To determine the possible role of VIP in regulating specific vascular beds, we examined the relationship between arterial wall VIP content as determined by radioimmunoassay and VIP receptors mapped by autoradiography. Analysis of arteries from 12 adult New Zealand rabbits showed that VIP receptors were consistently located in the wall of all muscular arteries, and that the {sup 125}I-VIP grain density correlated with VIP content. {sup 125}I-VIP binding in the mesenteric, renal, and iliac arteries was abundant and their VIP content was 192 +/- 56, 51 +/- 5, and 74 +/- 23 fmole/mg protein, respectively. {sup 125}I-VIP binding to the thoracic aorta was indistinguishable from nonspecific binding, its VIP content being 15 +/- 2 fmole/mg protein. The abundance of VIP receptors and the high VIP levels associated with the mesenteric, renal, and iliac arteries suggest that VIP is a potential regulator of flow to the vascular beds supplied by these arteries. In contrast, the much lower density of receptors in the extracranial carotid, which is also a muscular artery, suggests that, in rabbits, control of carotid vasomotion may be less dependent on VIP innervation. Furthermore, these results suggest that VIP receptors and VIP-containing neurons are not uniformly distributed in the arterial vasculature and that VIP may have selective vasodilatory effects.

  16. Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris.

    PubMed

    Song, Ki-Duk; Lee, Woon-Kyu

    2014-02-01

    Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets. PMID:25049952

  17. Central regulation of intestinal basal and stimulated water and ion transport by endogenous opiates in dogs.

    PubMed

    Primi, M P; Bueno, L; Fioramonti, J

    1986-02-01

    The influence of intracerebroventricular (ICV) vs intravenous (IV) administration of (D-Ala2, Met5) enkephalinamide (Dalamide) on normal and stimulated (cholera toxin) jejunal fluxes of water, Na+, and K+ were investigated in dogs prepared with a Thiry-Vella (TV) loop. Intestinal transport in the TV loop and concomitant transit time were measured during an infusion (2 ml/min) of an isotonic electrolyte solution alone, or containing 0.4 micrograms/ml of cholera toxin (CT). Basal net water absorption was slightly, but significantly (P less than 0.05), increased during an ICV infusion of Dalamide at 0.5 ng/kg/min, while the secretory effects of cholera toxin were markedly reduced by nearly 75%. Similar effects were observed for Na+ and K+ movement. In contrast, Dalamide infused intravenously at a five times higher dose, ie, 2.5 ng/kg/min did not affect the control and CT-stimulated water and electrolyte movements. The jejunal loop transit times were halved during CT infusion. Similar values were observed under Dalamide ICV administration as well as during a five times higher dose of Dalamide administered intravenously. It was concluded that (1) Dalamide administered into the CNS, but not peripherally, increased the absorption of water, Na+, and K+, causing a net reduction in their secretion induced by cholera toxin; and (2) these effects did not result from changes in transit time. These results also suggest that Met-enkephalin can act in the brain to affect the intestinal transport of water and electrolytes in dogs. PMID:3943445

  18. A relaxin-like gonad-stimulating peptide from the starfish Aphelasterias japonica.

    PubMed

    Mita, Masatoshi; Katayama, Hidekazu

    2016-04-01

    Relaxin-like gonad-stimulating peptide (RGP) in starfish is the first identified invertebrate gonadotropin responsible for final gamete maturation. In this study, a new ortholog RGP was identified from Aphelasterias japonica. The DNA sequence encoding A. japonica RGP (AjaRGP) consists of 342 base pairs with an open reading frame encoding a peptide of 113 amino acids (aa), including a signal peptide (26aa), B-chain (20aa), C-peptide (42aa), and A-chain (25aa). AjaRGP is a heterodimeric peptide with disulfide cross-linkages. Comparing with Asterias amurensis RGP (AamRGP) and Patiria (=Asterina) pectinifera RGP (PpeRGP), the amino acid identity levels of AjaRGP with respect to AamRGP and PpeRGP are 84% and 58% for the A-chain and 90% and 68% for the B-chain, respectively. This suggests that AjaRGP is closer to AmaRGP rather than PpeRGP. Although chemical synthetic AjaRGP can induce gamete spawning and oocyte maturation in ovarian fragments of A. japonica, the ovary of P. pectinifera fails to respond to AjaRGP. This suggests that AjaRGP acts species-specifically. PMID:26944483

  19. Targeted Melanoma Imaging and Therapy with Radiolabeled Alpha-Melanocyte Stimulating Hormone Peptide Analogues

    PubMed Central

    Quinn, Thomas; Zhang, Xiuli; Miao, Yubin

    2010-01-01

    Radiolabeled alpha-melanocyte stimulating hormone (α-MSH) analogues have been used to define the expression, affinity and function of the melanocortin-1 receptor (MC1-R). The MC1-R is one of a family of five G-protein linker receptors, which is primarily involved in regulation of skin pigmentation. Over-expression of the MC1-R on melanoma tumor cells has made it an attractive target for the development of α-MSH peptide based imaging and therapeutic agents. Initially, the native α-MSH peptide was radiolabeled directly, but it suffered from low specific activity and poor stability. The addition of non-natural amino acids yielded α-MSH analogues with greater MC-1R affinity and stability. Furthermore, peptide cyclization via disulfide and lactam bond formation as well as site-specific metal coordination resulted in additional gains in receptor affinity and peptide stability in vitro and in vivo. Radiochemical stability of the α-MSH analogues was improved through the conjugation of metal chelators to the peptide’s N-terminus or lysine residues for radionuclide coordination. In vitro cell binding studies demonstrated that the radiolabeled α-MSH analogues had low to subnanomolar affinities for the MC1-R. Biodistribution and imaging studies in the B16 mouse melanoma modeled showed rapid tumor uptake of the radiolabeled peptides, with the cyclic peptides demonstrating prolonged tumor retention. Cyclic α-MSH analogues labeled with beta and alpha emitting radionuclides demonstrated melanoma therapeutic efficacy in the B16 melanoma mouse model. Strong pre-clinical imaging and therapy data highlight the clinical potential use of radiolabeled α-MSH peptides for melanoma imaging and treatment of disseminated disease. PMID:20467398

  20. Modulation of chicken intestinal immune gene expression by small cationic peptides as feed additives during the first week posthatch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have been investigating modulation strategies tailored around the selective stimulation of the host’s immune system as an alternative to direct targeting of microbial pathogens by antibiotics. One such approach is the use of a group of small cationic peptides (BT) produced by a Gram-positive soi...

  1. Response to stimulation with recombinant cytokines and synthesis of cytokines by murine intestinal macrophages infected with the Mycobacterium avium complex.

    PubMed Central

    Hsu, N; Young, L S; Bermudez, L E

    1995-01-01

    Current evidence suggests that the gut is the chief portal of entry for organisms of the Mycobacterium avium complex (MAC) in AIDS patients. Bacterial invasion of intestinal mucosa presumably occurs through epithelial cells, and M cells in the Peyer's patches, where the bacteria have contact with immunocompetent cells such as macrophages and T and B lymphocytes. As mucosal macrophages are probably the first line of defense against MAC, we examined their ability to inhibit intracellular growth of MAC when properly stimulated. Mouse intestinal macrophages were purified, infected with MAC 101, serovar 1, and MAC 86-2686, serovar 16, and subsequently stimulated with recombinant tumor necrosis factor alpha (TNF-alpha), gamma interferon (IFN-gamma), granulocyte-macrophage colony-stimulating factor (GM-CSF), or macrophage colony-stimulating factor (M-CSF). Viable intracellular bacteria were quantitated at 24 h after infection and again after 4 days of infection. Stimulation with TNF-alpha, IFN-gamma, and GM-CSF, but not M-CSF, was associated with mycobacteriostatic and/or mycobactericidal activity in macrophages. Treatment with 10(3) U of TNF-alpha, GM-CSF, and IFN-gamma per ml at 24 h prior to infection with MAC resulted in a significant enhancement in killing of MAC at 4 days after infection, compared with that observed for macrophages exposed to cytokines after infection. When stimulated with lipopolysaccharide or live MAC, intestinal macrophages had produced significantly less TNF-alpha and transforming growth factor beta than had splenic and peritoneal macrophages, although the levels of production of interleukin 6 and interleukin 10 among the three populations of cells were similar. Intestinal macrophages can be stimulated with cytokines to inhibit the intracellular growth of MAC, but they have differentiated abilities to produce cytokines which can modulate the anti-MAC immune response. PMID:7822018

  2. Natriuretic peptides stimulate the cardiac sodium pump via NPR-C-coupled NOS activation.

    PubMed

    William, M; Hamilton, E J; Garcia, A; Bundgaard, H; Chia, K K M; Figtree, G A; Rasmussen, H H

    2008-04-01

    Natriuretic peptides (NPs) and their receptors (NPRs) are expressed in the heart, but their effects on myocyte function are poorly understood. Because NPRs are coupled to synthesis of cGMP, an activator of the sarcolemmal Na(+)-K(+) pump, we examined whether atrial natriuretic peptide (ANP) regulates the pump. We voltage clamped rabbit ventricular myocytes and identified electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange and normalized for membrane capacitance) as the shift in membrane current induced by 100 micromol/l ouabain. Ten nanomoles per liter ANP stimulated the Na(+)-K(+) pump when the intracellular compartment was perfused with pipette solutions containing 10 mmol/l Na(+) but had no effect when the pump was at near maximal activation with 80 mmol/l Na(+) in the pipette solution. Stimulation was abolished by inhibition of cGMP-activated protein kinase with KT-5823, nitric oxide (NO)-activated guanylyl cyclase with 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ), or NO synthase with N(G)-nitro-L-arginine methyl ester (L-NAME). Since synthesis of cGMP by NPR-A and NPR-B is not NO dependent or ODQ sensitive, we exposed myocytes to AP-811, a highly selective ligand for the NPR-C "clearance" receptor. It abolished ANP-induced pump stimulation. Conversely, the selective NPR-C agonist ANP(4-23) reproduced stimulation. The stimulation was blocked by l-NAME. To examine NO production in response to ANP(4-23), we loaded myocytes with the NO-sensitive fluorescent dye diacetylated diaminofluorescein-2 and examined them by confocal microscopy. ANP(4-23) induced a significant increase in fluorescence, which was abolished by L-NAME. We conclude that NPs stimulate the Na(+)-K(+) pump via an NPR-C and NO-dependent pathway. PMID:18272821

  3. Serum Levels of Vasoactive Intestinal Peptide as a Prognostic Marker in Early Arthritis

    PubMed Central

    Martínez, Carmen; Ortiz, Ana M.; Juarranz, Yasmina; Lamana, Amalia; Seoane, Iria V.; Leceta, Javier; García-Vicuña, Rosario

    2014-01-01

    Objective Suitable biomarkers are essential for the design of therapeutic strategies in personalized medicine. Vasoactive intestinal peptide (VIP) has demonstrated immunomodulatory properties in autoimmune murine and ex vivo human models. Our aim was to study serum levels of VIP during the follow-up of an early arthritis (EA) cohort and to analyze its value as a biomarker predicting severity and therapeutic requirements. Methods Data from 91 patients on an EA register were analyzed (76% rheumatoid arthritis (RA), 24% undifferentiated arthritis, 73% women, and median age 54 years; median disease duration at entry, 5.4 months). We collected per protocol sociodemographic, clinical, and therapeutic data. VIP levels were determined by enzyme immunoassay in sera harvested from the 91 patients (353 visits; 3.9 visit/patient) and from 100 healthy controls. VIP values below the 25th percentile of those assessed in healthy population were considered low. To determine the effect of independent variables on VIP levels, we performed a longitudinal multivariate analysis nested by patient and visit. A multivariate ordered logistic regression was modeled to determine the effect of low VIP serum levels on disease activity at the end of follow-up. Results VIP concentrations varied considerably across EA patients. Those fulfilling the criteria for RA had the lowest values in the whole sample, although no significant differences were observed compared with healthy donors. Disease activity, which was assessed using DAS28, inversely correlated with VIP levels. After a two-year follow-up, those patients with low baseline levels of VIP displayed higher disease activity and received more intensive treatment. Conclusion Patients who are unable to up-regulate VIP seem to have a worse clinical course despite receiving more intense treatment. Therefore, measurement of VIP levels may be suitable as a prognostic biomarker. PMID:24409325

  4. Effect of vasoactive intestinal peptide on the wound healing of alkali-burned corneas

    PubMed Central

    Tuncel, Nese; Yildirim, Nilgun; Gurer, Firdevs; Basmak, Hikmet; Uzuner, Kubilay; Sahinturk, Varol; Gursoy, Huseyin

    2016-01-01

    AIM To study the effect of vasoactive intestinal peptide (VIP) on wound healing in experimental alkali burns of the cornea. METHODS Twenty-seven albino rabbits, weighing 3.2±0.75 kg were used. Alkali burns were induced on corneas by applying 10 mm Whatman paper No:50 soaked in 1 mol/L NaOH. They have further classified into 5 groups as follows: 1) control group given no treatment (n=5); 2) VIP given subconjunctivally (n=6); 3) VIP injected into anterior chamber (n=6); 4) NaCl 0.9% given subconjunctivally (n=5); 5) NaCl 0.9% given into the anterior chamber (n=5). All treatment protocols except control group were followed by topical eye drops composed of VIP at two hourly intervals for one week from 8 a.m. to 6 p.m. RESULTS VIP treated groups of rabbits with alkali burns were found to have better wound healing findings histo-pathologically when compared to those of control group who have received no treatment on day 30. No differences were observed between groups in respect to degree of polymorphonuclear leukocytes (PMNL) infiltration and degree of loss of amorphous substrate on day 15. However, PMNL infiltration and degree of loss of amorphous substrate were lower in Groups 2 and 3 when compared to that of control group on day 30 (P<0.05). CONCLUSION We have shown that VIP has positive effects on alkali induced corneal burns. VIP may inhibit PMNL migration to cornea through an immunomodulatory effect. Inhibition of PMNL migration might reduce the release of collagenases and this might prevent the extracellular amorphous substance loss. PMID:26949636

  5. Modulation of Corpus Striatal Neurochemistry by Astrocytes and Vasoactive Intestinal Peptide (VIP) in Parkinsonian Rats.

    PubMed

    Yelkenli, İbrahim Halil; Ulupinar, Emel; Korkmaz, Orhan Tansel; Şener, Erol; Kuş, Gökhan; Filiz, Zeynep; Tunçel, Neşe

    2016-06-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) is widely used in animal models of Parkinson's disease. In various neurodegenerative diseases, astrocytes play direct, active, and critical roles in mediating neuronal survival and functions. Vasoactive intestinal peptide (VIP) has neurotrophic actions and modulates a number of astrocytic activities. In this study, the effects of VIP on the striatal neurochemistry were investigated in parkinsonian rats. Adult Sprague-Dawley rats were divided into sham-operated, unilaterally 6-OHDA-lesioned, and lesioned + VIP-administered (25 ng/kg i.p.) groups. VIP was first injected 1 h after the intrastriatal 6-OHDA microinjection and then every 2 days throughout 15 days. Extracellular striatal concentration of glutathione (GSH), gamma-aminobutyric acid (GABA), glutamate (GLU), and lactate were measured in microdialysates by high-performance liquid chromatography (HPLC). Quantification of GABA and activity dependent neuroprotective protein (ADNP)-expressing cells were determined by glutamic acid decarboxylase (GAD)/ADNP + glial fibrillary acidic protein (GFAP) double immunohistochemistry. Our results demonstrated that a 6-OHDA lesion significantly increased the density of astrocytes in the striatum and VIP treatment slightly reduced the gliosis. Extracellular concentration of GABA, GLU, and lactate levels did not change, but GSH level significantly increased in the striatum of parkinsonian rats. VIP treatment reduced GSH level comparable to sham-operated groups, but enhanced GABA and GLU levels. Our double labeling results showed that VIP primarily acts on neurons to increase ADNP and GAD expression for protection. These results suggest that, in the 6-OHDA-induced neurodegeneration model, astrocytes were possibly activated for forefront defensiveness by modulating striatal neurochemistry. PMID:27115671

  6. Roles of sphincter of Oddi motility and serum vasoactive intestinal peptide, gastrin and cholecystokinin octapeptide

    PubMed Central

    Zhang, Zhen-Hai; Qin, Cheng-Kun; Wu, Shuo-Dong; Xu, Jian; Cui, Xian-Ping; Wang, Zhi-Yi; Xian, Guo-Zhe

    2014-01-01

    AIM: To investigate roles of sphincter of Oddi (SO) motility played in pigment gallbladder stone formation in model of guinea pigs. METHODS: Thirty-four adult male Hartley guinea pigs were divided randomly into two groups: the control group and pigment stone group. The pigment stone group was divided into 4 subgroups with 6 guinea pigs each according to time of sacrifice, and were fed a pigment lithogenic diet and sacrificed after 3, 6, 9 and 12 wk. SO manometry and recording of myoelectric activity of the guinea pigs were obtained by multifunctional physiograph at each stage. Serum vasoactive intestinal peptide (VIP), gastrin and cholecystokinin octapeptide (CCK-8) were detected at each stage in the process of pigment gallbladder stone formation by enzyme-linked immunosorbent assay. RESULTS: The incidence of pigment gallstone formation was 0%, 0%, 16.7% and 66.7% in the 3-, 6-, 9- and 12-wk group, respectively. The frequency of myoelectric activity decreased in the 3-wk group. The amplitude of myoelectric activity had a tendency to decrease but not significantly. The frequency of the SO decreased significantly in the 9-wk group. The SO basal pressure and common bile duct pressure increased in the 12-wk group (25.19 ± 7.77 mmHg vs 40.56 ± 11.81 mmHg, 22.35 ± 7.60 mmHg vs 38.51 ± 11.57 mmHg, P < 0.05). Serum VIP was significantly elevated in the 6- and 12-wk groups and serum CCK-8 was decreased significantly in the 12-wk group. CONCLUSION: Pigment gallstone-causing diet may induce SO dysfunction. The tension of the SO increased. The disturbance in SO motility may play a role in pigment gallstone formation, and changes in serum VIP and CCK-8 may be important causes of SO dysfunction. PMID:24782626

  7. Vasoactive intestinal peptide protects alveolar epithelial cells against hyperoxia via promoting the activation of STAT3.

    PubMed

    Ao, Xiaoxiao; Fang, Fang; Xu, Feng

    2011-06-01

    Oxidative stress injury and death in alveolar epithelial cells plays an important role in the pathogenesis of prolonged hyperoxia-induced lung impairment. A reduced survival of type II alveolar epithelial cells (AECIIs) may lead to abnormal repair, resulting in acute and chronic pulmonary diseases. Hyperoxia lung injury is associated with the secretion of various bioactive substances and the activation of multiple transcription factors. Vasoactive intestinal peptide (VIP), as a pulmonary sensory neuropeptide, performs a vital function in regulating cell proliferation and cell death through signal transducers and activators of transcription 3 (STAT3). In the present study, we investigated the effects of VIP and STAT3 on AECIIs upon the exposure of hyperoxia. MLE-12 cells were random to air (21% oxygen), hyperoxia (95% oxygen) and VIP treatment with or without STAT3 siRNA transfection. The proliferation of AECIIs was detected by MTT cell proliferation assay. The apoptosis rate was measured by flow cytometry. Mitochondrial membrane potential was evaluated by fluorescent dye JC-1 to understand mitochondrial and cell damage. The activation of STAT3 was assessed by western blot detection of phosphorylated STAT3. Compared with hyperoxia exposure alone, additional VIP treatment promoted cell proliferation, maintained the mitochondrial membrane potential and reduced the apoptosis and necrosis of AECIIs. The protective effects aforesaid were weakened after STAT3 expression was down regulated by siRNA. Cells with STAT3 siRNA transfection had a higher mortality and a sharper decline in the mitochondrial membrane potential as well as a lower proliferation compared with wild-type cells after hyperoxia exposure with VIP administration. VIP interference, a protective management, could decrease hyperoxia-induced cell injury and death and improve the survival of AECIIs exposed to hyperoxia, which might be associated with the activation of STAT3. PMID:21334383

  8. Vasoactive Intestinal Peptide Excites GnRH Neurons in Male and Female Mice.

    PubMed

    Piet, Richard; Dunckley, Henry; Lee, Kiho; Herbison, Allan E

    2016-09-01

    A variety of external and internal factors modulate the activity of GnRH neurons to control fertility in mammals. A direct, vasoactive intestinal peptide (VIP)-mediated input to GnRH neurons originating from the suprachiasmatic nucleus is thought to relay circadian information within this network. In the present study, we examined the effects of VIP on GnRH neuron activity in male and female mice at different stages of the estrous cycle. We carried out cell-attached recordings in slices from GnRH-green fluorescent protein mice and calcium imaging in slices from a mouse line expressing the genetically encoded calcium indicator GCaMP3 selectively in GnRH neurons. We show that 50%-80% of GnRH neurons increase their firing rate in response to bath-applied VIP (1nM-1000nM) in both male and female mice and that this is accompanied by a robust increase in intracellular calcium concentrations. This effect is mediated directly at the GnRH neuron likely through activation of high-affinity VIP receptors. Because suprachiasmatic nucleus-derived timing cues trigger the preovulatory surge only on the afternoon of proestrus in female mice, we examined the effects of VIP during the estrous cycle at different times of day. VIP responsiveness in GnRH neurons did not vary significantly in diestrous and proestrous mice before or around the time of the expected preovulatory surge. These results indicate that the majority of GnRH neurons in male and female mice express functional VIP receptors and that the effects of VIP on GnRH neurons do not alter across the estrous cycle. PMID:27501185

  9. Reversible Opening of Intercellular Junctions of Intestinal Epithelial and Brain Endothelial Cells With Tight Junction Modulator Peptides.

    PubMed

    Bocsik, Alexandra; Walter, Fruzsina R; Gyebrovszki, Andrea; Fülöp, Lívia; Blasig, Ingolf; Dabrowski, Sebastian; Ötvös, Ferenc; Tóth, András; Rákhely, Gábor; Veszelka, Szilvia; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A

    2016-02-01

    The intercellular junctions restrict the free passage of hydrophilic compounds through the paracellular clefts. Reversible opening of the tight junctions of biological barriers is investigated as one of the ways to increase drug delivery to the systemic circulation or the central nervous system. Six peptides, ADT-6, HAV-6, C-CPE, 7-mer (FDFWITP, PN-78), AT-1002, and PN-159, acting on different integral membrane and linker junctional proteins were tested on Caco-2 intestinal epithelial cell line and a coculture model of the blood-brain barrier. All peptides tested in nontoxic concentrations showed a reversible tight junctions modulating effect and were effective to open the paracellular pathway for the marker molecules fluorescein and albumin. The change in the structure of cell-cell junctions was verified by immunostaining for occludin, claudin-4,-5, ZO-1, β-catenin, and E-cadherin. Expression levels of occludin and claudins were measured in both models. We could demonstrate a selectivity of C-CPE, ADT-6, and HAV-6 peptides for epithelial cells and 7-mer and AT-1002 peptides for brain endothelial cells. PN-159 was the most effective modulator of junctional permeability in both models possibly acting via claudin-1 and -5. Our results indicate that these peptides can be effectively and selectively used as potential pharmaceutical excipients to improve drug delivery across biological barriers. PMID:26869428

  10. Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system.

    PubMed

    Yadavalli, Srujana S; Carey, Jeffrey N; Leibman, Rachel S; Chen, Annie I; Stern, Andrew M; Roggiani, Manuela; Lippa, Andrew M; Goulian, Mark

    2016-01-01

    Antimicrobial peptides are an important component of the molecular arsenal employed by hosts against bacteria. Many bacteria in turn possess pathways that provide protection against these compounds. In Escherichia coli and related bacteria, the PhoQ/PhoP signalling system is a key regulator of this antimicrobial peptide defence. Here we show that treating E. coli with sublethal concentrations of antimicrobial peptides causes cells to filament, and that this division block is controlled by the PhoQ/PhoP system. The filamentation results from increased expression of QueE, an enzyme that is part of a tRNA modification pathway but that, as we show here, also affects cell division. We also find that a functional YFP-QueE fusion localizes to the division septum in filamentous cells, suggesting QueE blocks septation through interaction with the divisome. Regulation of septation by PhoQ/PhoP may protect cells from antimicrobial peptide-induced stress or other conditions associated with high-level stimulation of this signalling system. PMID:27471053

  11. Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system

    PubMed Central

    Yadavalli, Srujana S.; Carey, Jeffrey N.; Leibman, Rachel S.; Chen, Annie I.; Stern, Andrew M.; Roggiani, Manuela; Lippa, Andrew M.; Goulian, Mark

    2016-01-01

    Antimicrobial peptides are an important component of the molecular arsenal employed by hosts against bacteria. Many bacteria in turn possess pathways that provide protection against these compounds. In Escherichia coli and related bacteria, the PhoQ/PhoP signalling system is a key regulator of this antimicrobial peptide defence. Here we show that treating E. coli with sublethal concentrations of antimicrobial peptides causes cells to filament, and that this division block is controlled by the PhoQ/PhoP system. The filamentation results from increased expression of QueE, an enzyme that is part of a tRNA modification pathway but that, as we show here, also affects cell division. We also find that a functional YFP–QueE fusion localizes to the division septum in filamentous cells, suggesting QueE blocks septation through interaction with the divisome. Regulation of septation by PhoQ/PhoP may protect cells from antimicrobial peptide-induced stress or other conditions associated with high-level stimulation of this signalling system. PMID:27471053

  12. Region-Dependent Role of Cell-Penetrating Peptides in Insulin Absorption Across the Rat Small Intestinal Membrane.

    PubMed

    Khafagy, El-Sayed; Iwamae, Ruisha; Kamei, Noriyasu; Takeda-Morishita, Mariko

    2015-11-01

    We have reported that the cell-penetrating peptide (CPP) penetratin acts as a potential absorption enhancer in oral insulin delivery systems and that this action occurs through noncovalent intermolecular interactions. However, the region-dependent role of CPPs in intestinal insulin absorption has not been clarified. To identify the intestinal region where CPPs have the most effect in increasing insulin absorption, the region-dependent action of penetratin was investigated using in situ closed intestinal loops in rats. The order of the insulin area under the insulin concentration-time curve (AUC) increase effect by L-penetratin was ileum > jejunum > duodenum > colon. By contrast, the AUC order after coadministration of insulin with D-penetratin was colon > duodenum ≥ jejunum and ileum. We also compared the effects of the L- and D-forms of penetratin, R8, and PenetraMax on ileal insulin absorption. Along with the CPPs used in this study, L- and D-PenetraMax produced the largest insulin AUCs. An absorption study using ilea pretreated with CPPs showed that PenetraMax had no irreversible effect on the intestinal epithelial membrane. The degradation of insulin in the presence of CPPs was assessed in rat intestinal enzymatic fluid. The half-life (t 1/2) of insulin increased from 14.5 to 23.7 and 184.7 min in the presence of L- and D-PenetraMax, respectively. These enzymatic degradation-resistant effects might contribute partly to the increased ileal absorption of insulin induced by D-PenetraMax. In conclusion, this study demonstrated that the ability of the L- and D-forms of penetratin to increase intestinal insulin absorption was maximal in the ileum and the colon, respectively, and that D-PenetraMax is a powerful but transient enhancer of oral insulin absorption. PMID:26216471

  13. Absorption of amino acids and peptides from a complex mixture in the isolated small intestine of the rat.

    PubMed Central

    Gardner, M L

    1975-01-01

    Amino acid and peptide absorption from a pancreatic digest of casein at low concentration by an isolated preparation of perfused rat small intestine has been measured. 2. The rate of absorption of each amino acid (free or peptide-bound) is closely proportional to its concentration in the perfusate; this implies a constant Vmax/Km ration for all amino acids in the mixture. 3. There is a high correlation between the compositions of luminal perfusate and secretion into the tissue fluid (apart from the content of glutamic and aspartic acids and alanine). 4. The concentrations of each free amino acid are, on average, 9 times as great in secretion as in lumen; the total peptide-N concentration in secretion is approximately 4 times that in the lumen. 5. The rate of absorption of each free amino acid is highly negatively dependent on the rate of absorption of that amino acid in peptide-bound form, in addition to being positively dependent on the perfusate concentration of free amino acid. 6. While peptide-bound proline appears to be well absorbed, free proline liberated by hydrolysis appears to pass back into the lumen as well as into the tissue fluid. Substantial back flux of hydrolysis products may occur for all amino acids. 7. About one-third of the amino acids appearing in the secretion on the serosal surface are peptide-bound. 8. The rate of absorption of peptides appears to determine the rate of their hydrolysis which probably occurs mainly after entry into the mucosal cells. PMID:1204629

  14. Antibacterial Activity of a Competence-Stimulating Peptide in Experimental Sepsis Caused by Streptococcus pneumoniae

    PubMed Central

    Oggioni, Marco R.; Iannelli, Francesco; Ricci, Susanna; Chiavolini, Damiana; Parigi, Riccardo; Trappetti, Claudia; Claverys, Jean-Pierre; Pozzi, Gianni

    2004-01-01

    Streptococcus pneumoniae, a major cause of human disease, produces a 17-mer autoinducer peptide pheromone (competence-stimulating peptide [CSP]) for the control of competence for genetic transformation. Due to previous work linking CSP to stress phenotypes, we set up an in vivo sepsis model to assay its effect on virulence. Our data demonstrate a significant increase in the rates of survival of mice, reductions of blood S. pneumoniae counts, and prolonged times to death for mice treated with CSP. In vitro the dose of CSP used in the animal model produced a transitory inhibition of growth. When a mutant with a mutation in the CSP sensor histidine kinase was assayed, no bacteriostatic phenotype was detected in vitro and no change in disease outcome was observed in vivo. The data demonstrate that CSP, which induces in vitro a temporary growth arrest through stimulation of its cognate histidine kinase receptor, is able to block systemic disease in mice. This therapeutic effect is novel, in that the drug-like effect is obtained by stimulation, rather than inhibition, of a bacterial drug target. PMID:15561850

  15. The effect of active immunization against vasoactive intestinal peptide (VIP) and inhibin on reproductive performance of aging White Leghorn roosters.

    PubMed

    Avital-Cohen, N; Heiblum, R; Argov, N; Rosenstrauch, A; Chaiseha, Y; Mobarkey, N; Rozenboim, I

    2012-01-01

    Decreasing fertility in aging domestic roosters is a well-known phenomenon. Aging is manifested by a decrease in plasma testosterone level, testis function, and spermatogenesis, resulting in a low level of fertility. The roles of vasoactive intestinal peptide (VIP) and testicular inhibin in this aging process are not clear. The effects of active immunization against VIP, inhibin, or the combination of both hormones on the reproduction of aging White Leghorn (WL) roosters were assayed. In experiment 1a, 60 White Leghorn roosters (67 wk of age) were divided into 4 groups (n = 15/group). The first group was actively immunized against VIP, the second against inhibin, the third against VIP and inhibin, and the fourth served as a control. Active immunization against VIP decreased semen quality parameters, plasma steroid levels, and gene expression of gonadotropin-releasing hormone-I (GnRH-I), follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH receptor, VIP, and prolactin (Prl). Immunization against inhibin increased some of the semen quality parameters and FSH mRNA gene expression but decreased inhibin gene expression. In experiment 1b, at 94 wk of age, we took the actively immunized against VIP group and the control group and divided them into 2 subgroups (n = 7 or 8): the first group was injected with 1 mg of ovine Prl (oPrl) daily for 7 d, and the second group served as a control. Administration of oPrl to previously VIP-immunized birds significantly elevated semen quality parameters. We suggest that VIP, Prl, and inhibin have an important effect on the reproductive axis in aging roosters. Active immunization against VIP-depressed reproductive activity and Prl administration restored their reproduction, indicating that both VIP and Prl are essential for reproduction in aging roosters. Immunization against inhibin improved FSH mRNA gene expression, suggesting a negative role of inhibin on FSH secretion in aging roosters. Not all semen quality parameters

  16. Mass balance approaches for estimating the intestinal absorption and metabolism of peptides and analogues: theoretical development and applications

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Leesman, G. D.; Amidon, G. L.

    1993-01-01

    A theoretical analysis for estimating the extent of intestinal peptide and peptide analogue absorption was developed on the basis of a mass balance approach that incorporates convection, permeability, and reaction. The macroscopic mass balance analysis (MMBA) was extended to include chemical and enzymatic degradation. A microscopic mass balance analysis, a numerical approach, was also developed and the results compared to the MMBA. The mass balance equations for the fraction of a drug absorbed and reacted in the tube were derived from the general steady state mass balance in a tube: [formula: see text] where M is mass, z is the length of the tube, R is the tube radius, Pw is the intestinal wall permeability, kr is the reaction rate constant, C is the concentration of drug in the volume element over which the mass balance is taken, VL is the volume of the tube, and vz is the axial velocity of drug. The theory was first applied to the oral absorption of two tripeptide analogues, cefaclor (CCL) and cefatrizine (CZN), which degrade and dimerize in the intestine. Simulations using the mass balance equations, the experimental absorption parameters, and the literature stability rate constants yielded a mean estimated extent of CCL (250-mg dose) and CZN (1000-mg dose) absorption of 89 and 51%, respectively, which was similar to the mean extent of absorption reported in humans (90 and 50%). It was proposed previously that 15% of the CCL dose spontaneously degraded systematically; however, our simulations suggest that significant CCL degradation occurs (8 to 17%) presystemically in the intestinal lumen.(ABSTRACT TRUNCATED AT 250 WORDS).

  17. Protective effect of atrial natriuretic peptide on electrical-field-stimulated rat ventricular strips during hypoxia.

    PubMed

    Ljusegren, M E; Andersson, R G

    1994-12-01

    We have previously shown that atrial natriuretic peptide reduces lactate accumulation in non-beating rat ventricular myocardium exposed to hypoxic conditions, and that hypoxia induces release of atrial natriuretic peptide from isolated rat atrial tissue. In these studies we suggested that atrial natriuretic peptide may be physiologically important for protection of the myocardium during periods of oxygen deficit. In the present study, we used isolated strips of rat right ventricle, contracted by electrical-field-stimulation, as a model of a beating myocardium. After contraction stabilization, hypoxic conditions were introduced through aeration with 20% O2, held for 20 or 30 min., and then interrupted by reoxygenation with 95% O2. The contractile force was recorded and the percentage regain of the contractions after reoxygenation was considered as an indication of the amount of cell damage induced during the period of hypoxia. The results show that after 30 min. of hypoxia and subsequent reoxygenation, ventricular strips treated with atrial natriuretic peptide (0.1 microM) recovered 67.9 +/- 2.8% of the prehypoxic force of contraction; control strips from the same ventricle regained 44.9 +/- 4.4% (P = 0.015) of their initial contractile activity. After 20 min. of hypoxia followed by reoxygenation, a ventricular strip incubated together with an atrium regained 78.6 +/- 2.4% of the prehypoxic force of contraction as compared to a 60.2 +/- 2.7% regain (P = 0.002) for the control strip. We conclude that atrial natriuretic peptide protects the working ventricular myocardium during hypoxia, which further supports our previously reported suggestion that the effect on myocardial metabolism is physiologically relevant during situations of oxygen deficit in heart muscle. PMID:7899254

  18. Stimulation of butyrate production in the large intestine of weaning piglets by dietary fructooligosaccharides and its influence on the histological variables of the large intestinal mucosa.

    PubMed

    Tsukahara, Takamitsu; Iwasaki, Yoshie; Nakayama, Keizo; Ushida, Kazunari

    2003-12-01

    Fructooligosaccharides (FOS) reach the large intestine and are fermented into short-chain fatty acids (SCFA), lactate, and carbon dioxide. As the major energy source for the epithelial cells of the large intestine, n-butyrate stimulates the proliferation of cells as well as mineral and water absorption from the lumen. We examined the effect of dietary FOS supplementation on luminal SCFA production and its influence on the morphometrical variables of mucosa of the large intestine in commercially available pigs. Six weaning piglets were used. After 7 d of adaptation, three pigs were given a test diet containing FOS (10%) ad libitum for 10 d. The other three remained on the basal diet and were used as controls. At the end of the experiment, their large intestines were removed, and the cecum, gyri centripetales, gyri centrifugales, and rectum were separated. The contents of each portion were collected and measured for SCFA concentration, pH, and moisture. A micrometer was used to measure the crypt depth. The numbers of epithelial and mitotic cells in the crypt columns were also counted. The concentration of SCFA was significantly higher in piglets fed FOS than in the controls. The concentration of n-butyrate was markedly stimulated by FOS. The number of epithelial. mitotic, and mucin-containing cells was higher in piglets fed FOS than in the controls. Accordingly, the crypt depth was larger in the FOS-fed piglets. The luminal n-butyrate concentration showed a significantly positive correlation with the crypt depth and the number of epithelial, mitotic, and mucin-containing cells. PMID:14974732

  19. Nesfatin-1 stimulates glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide secretion from STC-1 cells in vitro.

    PubMed

    Ramesh, Naresh; Mortazavi, Sima; Unniappan, Suraj

    2015-06-26

    Nesfatin-1 is an 82 amino acid peptide encoded in a secreted precursor, nucleobindin 2. It is an anorexigenic and insulinotropic peptide found abundantly in the hypothalamus, pancreas and gastric oxyntic mucosa. NUCB2 mRNA expression is 10 fold higher in the gastric mucosa than in brain, suggesting gastrointestinal tract as a main source of nesfatin-1. Meal responsive insulin secretion is regulated by incretins glucagon-like peptide-1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP). Since both nesfatin-1 and incretins modulate insulin secretion, we hypothesized that nesfatin-1 is present in the enteroendocrine cells, and that it regulates incretin secretion. RT-PCR analysis found NUCB2 mRNA expression, and immunofluorescence microscopy determined nesfatin-1 immunoreactivity in STC-1, an enteroendocrine cell line. NUCB2/nesfatin-1 is co-localized with GLP-1 and GIP in mouse small intestinal cells. Static incubation of STC-1 cells with nesfatin-1 upregulated preproglucagon (GLP-1 precursor) mRNA (0.01, 0.1, 1 and 10 nM) and GLP-1 secretion (0.1, 1 and 10 nM). Nesfatin-1 also enhanced GIP mRNA (0.1, 1 and 10 nM) and GIP secretion (1 and 10 nM). Together, our data support the hypothesis that nesfatin-1 is present in enteroendocrine cells and that it stimulates incretin secretion. Future studies should aim for nesfatin-1 and incretin interactions in vivo. PMID:25930999

  20. Distinct Firing Properties of Vasoactive Intestinal Peptide-Expressing Neurons in the Suprachiasmatic Nucleus

    PubMed Central

    Hermanstyne, Tracey O.; Simms, Carrie L.; Carrasquillo, Yarimar; Herzog, Erik D.; Nerbonne, Jeanne M.

    2016-01-01

    The suprachiasmatic nucleus (SCN) regulates daily rhythms in physiology and behavior. Previous studies suggest a critical role for neurons expressing vasoactive intestinal peptide (VIP) in coordinating rhythmicity and synchronization in the SCN. Here we examined the firing properties of VIP-expressing SCN neurons in acute brain slices. Active and passive membrane properties were measured in VIP and in non-VIP neurons during the day and at night. Current-clamp recordings revealed that both VIP and non-VIP neurons were spontaneously active, with higher firing rates during the day than at night. Average firing frequencies, however, were higher in VIP neurons (3.1 ± 0.2 Hz, day and 2.4 ± 0.2 Hz, night) than in non-VIP neurons (1.8 ± 0.2 Hz, day and 0.9 ± 0.2 Hz, night), both day and night. The waveforms of individual action potentials in VIP and non-VIP neurons were also distinct. Action potential durations (APD50) were shorter in VIP neurons (3.6 ± 0.1 ms, day and 2.9 ± 0.1 ms, night) than in non-VIP neurons (4.4 ± 0.3 ms, day and 3.5 ± 0.2 ms, night) throughout the light-dark cycle. In addition, after hyper polarization (AHP) amplitudes were larger in VIP neurons (21 ± 0.8 mV, day and 24.9 ± 0.9 mV, night) than in non-VIP neurons (17.2 ± 1.1 mV, day and 20.5 ± 1.2 mV, night) during the day and at night. Furthermore, significant day/night differences were observed in APD50 and AHP amplitudes in both VIP and non-VIP SCN neurons, consistent with rhythmic changes in ionic conductances that contribute to shaping the firing properties of both cell types. The higher day and night firing rates of VIP neurons likely contribute to synchronizing electrical activity in the SCN. PMID:26712166

  1. Transcobalamin derived from bovine milk stimulates apical uptake of vitamin B12 into human intestinal epithelial cells.

    PubMed

    Hine, Brad; Boggs, Irina; Green, Ralph; Miller, Joshua W; Hovey, Russell C; Humphrey, Rex; Wheeler, Thomas T

    2014-11-01

    Intestinal uptake of vitamin B12 (hereafter B12) is impaired in a significant proportion of the human population. This impairment is due to inherited or acquired defects in the expression or function of proteins involved in the binding of diet-derived B12 and its uptake into intestinal cells. Bovine milk is an abundant source of bioavailable B12 wherein it is complexed with transcobalamin. In humans, transcobalamin functions primarily as a circulatory protein, which binds B12 following its absorption and delivers it to peripheral tissues via its cognate receptor, CD320. In the current study, the transcobalamin-B12 complex was purified from cows' milk and its ability to stimulate uptake of B12 into cultured bovine, mouse and human cell lines was assessed. Bovine milk-derived transcobalamin-B12 complex was absorbed by all cell types tested, suggesting that the uptake mechanism is conserved across species. Furthermore, the complex stimulated the uptake of B12 via the apical surface of differentiated Caco-2 human intestinal epithelial cells. These findings suggest the presence of an alternative transcobalamin-mediated uptake pathway for B12 in the human intestine other than that mediated by the gastric glycoprotein, intrinsic factor. Our findings highlight the potential for transcobalamin-B12 complex derived from bovine milk to be used as a natural bioavailable alternative to orally administered free B12 to overcome B12 malabsorption. PMID:24913691

  2. Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity.

    PubMed Central

    Bab, I; Gazit, D; Chorev, M; Muhlrad, A; Shteyer, A; Greenberg, Z; Namdar, M; Kahn, A

    1992-01-01

    It has been established that regenerating marrow induces an osteogenic response in distant skeletal sites and that this activity is mediated by factors released into the circulation by the healing tissue. In the present study we have characterized one of these factors, a 14 amino acid peptide named osteogenic growth peptide (OGP). Synthetic OGP, identical in structure to the native molecule, stimulates the proliferation and alkaline phosphatase activity of osteoblastic cells in vitro and increases bone mass in rats when injected in vivo. Immunoreactive OGP in high abundance is present physiologically in the serum, mainly in the form of an OGP-OGP binding protein complex. A marked increase in serum bound and unbound OGP accompanies the osteogenic phase of post-ablation marrow regeneration and associated systemic osteogenic response. Authentic OGP is identical to the C-terminus of histone H4 and shares a five residue motif with a T-cell receptor beta-chain V-region and the Bacillus subtilis outB locus. Since these latter proteins have not been implicated previously in the control of cell proliferation or differentiation, OGP may belong to a novel, heretofore unrecognized family of regulatory peptides. Perhaps more importantly, OGP appears to represent a new class of molecules involved in the systemic control of osteoblast proliferation and differentiation. Images PMID:1582415

  3. Self-Assembly and Collagen-Stimulating Activity of a Peptide Amphiphile Incorporating a Peptide Sequence from Lumican.

    PubMed

    Hamley, Ian W; Dehsorkhi, Ashkan; Castelletto, Valeria; Walter, Merlin N M; Connon, Che J; Reza, Mehedi; Ruokolainen, Janne

    2015-04-21

    The self-assembly and bioactivity of a peptide amphiphile (PA) incorporating a 13-residue sequence derived from the last 13 amino acids of the C-terminus of lumican, C16-YEALRVANEVTLN, attached to a hexadecyl (C16) lipid chain have been examined. Lumican is a proteoglycan found in many types of tissue and is involved in collagen fibril organization. A critical aggregation concentration (cac) for the PA was determined through pyrene fluorescence measurements. The structure of the aggregates was imaged using electron microscopy, and twisted and curved nanotapes were observed. In situ small-angle X-ray scattering and fiber X-ray diffraction reveal that these tapes contain interdigitated bilayers of the PA molecules. FTIR and circular dichroism spectroscopy and fiber X-ray diffraction indicate that the lumican sequence in the PA adopts a β-sheet secondary structure. Cell assays using human dermal fibroblasts show that below the cac the PA displays good biocompatibility and also stimulates collagen production over a period of 3 weeks, exceeding a 2-fold enhancement for several concentrations. Thus, this PA has promise in future biological applications, in particular, in tissue engineering. PMID:25835126

  4. Stimulation of the intestinal phosphate transporter SLC34A2 by the protein kinase mTOR.

    PubMed

    Shojaiefard, Manzar; Lang, Florian

    2006-07-14

    Adequate phosphate homeostasis is of critical importance for a wide variety of functions including bone mineralization and energy metabolism. Phosphate balance is a function of intestinal absorption and renal elimination, which are both under tight hormonal control. Intestinal phosphate absorption is accomplished by the Na(+), phosphate cotransporter NaPi IIb (SLC34A2). Signaling mechanisms mediating hormonal regulation of SLC34A2 are incompletely understood. The mammalian target of rapamycin (mTOR) is a kinase regulating a variety of nutrient transporters. The present experiments explored whether mTOR regulates the activity of SLC34A2. In Xenopus oocytes expressing SLC34A2 but not in water injected oocytes phosphate (1 mM) induced a current (Ip) which was significantly enhanced by coexpression of mTOR. Preincubation of the oocytes for 24 h with rapamycin (50 nM) did not significantly affect Ip in the absence of mTOR but virtually abolished the increase of Ip following coexpression of mTOR. The wild type serum and glucocorticoid inducible kinase SGK1 and the constitutively active (S422D)SGK1 similarly stimulated Ip, an effect again reversed by rapamycin. Coexpression of the inactive mutant of the serum and glucocorticoid inducible kinase (K119N)SGK1 significantly decreased Ip and abrogated the stimulating effect of mTOR on Ip. In conclusion, mTOR and SGK1 cooperate in the stimulation of the intestinal phosphate transporter SLC34A2. PMID:16730658

  5. Enhanced visualization of small peptides absorbed in rat small intestine by phytic-acid-aided matrix-assisted laser desorption/ionization-imaging mass spectrometry.

    PubMed

    Hong, Seong-Min; Tanaka, Mitsuru; Yoshii, Saori; Mine, Yoshinori; Matsui, Toshiro

    2013-11-01

    Enhanced visualization of small peptides absorbed through a rat intestinal membrane was achieved by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-IMS) with the aid of phytic acid as a matrix additive. Penetrants through intestinal peptide transporter 1, i.e., glycyl-sarcosine (Gly-Sar, 147.1 m/z) and antihypertensive dipeptide, Val-Tyr (281.2 m/z), were chosen for MALDI-IMS. The signal-to-noise (S/N) ratios of dipeptides Gly-Sar and Val-Tyr were seen to increase by 2.4- and 8.0-fold, respectively, when using a 2',4',6'-trihydroxyacetophenone (THAP) matrix containing 5.0 mM phytic acid, instead of the THAP matrix alone. Owing to the phytic-acid-aided MALDI-IMS method, Gly-Sar and Val-Tyr absorbed in the rat intestinal membrane were successfully visualized. The proposed imaging method also provided useful information on intestinal peptide absorption; to some extent, Val-Tyr was rapidly hydrolyzed to Tyr by peptidases located at the intestinal microvillus during the absorption process. In conclusion, the strongly acidic additive, phytic acid, is beneficial for enhancing the visualization of small peptides using MALDI-IMS, owing to the suppression of ionization-interfering salts in the tissue. PMID:24063774

  6. The Anthocyanin Delphinidin 3-Rutinoside Stimulates Glucagon-Like Peptide-1 Secretion in Murine GLUTag Cell Line via the Ca2+/Calmodulin-Dependent Kinase II Pathway

    PubMed Central

    Kato, Masaki; Tani, Tsubasa; Terahara, Norihiko; Tsuda, Takanori

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted from enteroendocrine L-cells. Although several nutrients induce GLP-1 secretion, there is little evidence to suggest that non-nutritive compounds directly increase GLP-1 secretion. Here, we hypothesized that anthocyanins induce GLP-1 secretion and thereby significantly contribute to the prevention and treatment of diabetes. Delphinidin 3-rutinoside (D3R) was shown to increase GLP-1 secretion in GLUTag L cells. The results suggested that three hydroxyl or two methoxyl moieties on the aromatic ring are essential for the stimulation of GLP-1 secretion. Notably, the rutinose moiety was shown to be a potent enhancer of GLP-1 secretion, but only in conjunction with three hydroxyl moieties on the aromatic ring (D3R). Receptor antagonist studies revealed that D3R-stimulates GLP-1 secretion involving inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca2+ mobilization. Treatment of GLUTag cells with a Ca2+/calmodulin-dependent kinaseII (CaMKII) inhibitor (KN-93) abolished D3R-stimulated GLP-1 secretion. In addition, treatment of GLUTag cells with D3R resulted in activation of CaMKII. Pre-treatment of cells with a G protein-coupled receptor (GPR) 40/120 antagonist (GW1100) also significantly decreased D3R-stimulated GLP-1 secretion. These observations suggest that D3R stimulates GLP-1 secretion in GLUTag cells, and that stimulation of GLP-1 secretion by D3R is mediated via Ca2+-CaMKII pathway, which may possibly be mediated by GPR40/120. These findings provide a possible molecular mechanism of GLP-1 secretion in intestinal L-cells mediated by foods or drugs and demonstrate a novel biological function of anthocyanins in regards to GLP-1 secretion. PMID:25962102

  7. Stimulation of murine peritoneal macrophage functions by neuropeptide Y and peptide YY. Involvement of protein kinase C.

    PubMed Central

    De la Fuente, M; Bernaez, I; Del Rio, M; Hernanz, A

    1993-01-01

    The peptides neuropeptide Y (NPY) and peptide YY (PYY) at concentrations from 10(-12) M to 10(-8) M have been shown in this study to stimulate significantly, in vitro, several functions of resting peritoneal macrophages from BALB/c mice: adherence to substrate, chemotaxis, ingestion of inert particles (latex beads) and foreign cells (Candida albicans), and production of superoxide anion measured by nitroblue tetrazolium reduction. A dose-response relationship was observed, with a maximal stimulation of the macrophage functions studied at 10(-10) M. These effects seem to be produced by specific receptors for the neuropeptides studied in peritoneal macrophages. Whereas the two peptides induced no change of intracellular cyclic AMP, they caused a significant stimulation of protein kinase C (PKC) in murine macrophages. These results suggest that NPY and PYY produce their effects on macrophage function through PKC activation. PMID:8262554

  8. Modulatory Effects of Vasoactive Intestinal Peptide on Intestinal Mucosal Immunity and Microbial Community of Weaned Piglets Challenged by an Enterotoxigenic Escherichia coli (K88)

    PubMed Central

    Xu, Chunlan; Wang, Youming; Sun, Rui; Qiao, Xiangjin; Shang, Xiaoya; Niu, Weining

    2014-01-01

    Toll-like receptors (TLRs) recognize microbial pathogens and trigger immune response, but their regulation by neuropeptide-vasoactive intestinal peptide (VIP) in weaned piglets infected by enterotoxigenic Escherichia coli (ETEC) K88 remains unexplored. Therefore, the study was conducted to investigate its role using a model of early weaned piglets infected by ETEC K88. Male Duroc×Landrace×Yorkshire piglets (n = 24) were randomly divided into control, ETEC K88, VIP, and ETEC K88+VIP groups. On the first three days, ETEC K88 and ETEC K88+VIP groups were orally administrated with ETEC K88, other two groups were given sterile medium. Then each piglet from VIP and ETEC K88+VIP group received 10 nmol VIP intraperitoneally (i.p.) once daily, on day four and six. On the seventh day, the piglets were sacrificed. The results indicated that administration of VIP improved the growth performance, reduced diarrhea incidence of ETEC K88 challenged pigs, and mitigated the histopathological changes of intestine. Serum levels of IL-2, IL-6, IL-12p40, IFN-γ and TNF-α in the ETEC K88+ VIP group were significantly reduced compared with those in the ETEC group. VIP significantly increased IL-4, IL-10, TGF-β and S-IgA production compared with the ETEC K88 group. Besides, VIP could inhibit the expression of TLR2, TLR4, MyD88, NF-κB p65 and the phosphorylation of IκB-α, p-ERK, p-JNK, and p-38 induced by ETEC K88. Moreover, VIP could upregulate the expression of occludin in the ileum mucosa compared with the ETEC K88 group. Colon and caecum content bacterial richness and diversity were lower for pigs in the ETEC group than the unchallenged groups. These results demonstrate that VIP is beneficial for the maturation of the intestinal mucosal immune system and elicited local immunomodulatory activities. The TLR2/4-MyD88 mediated NF-κB and MAPK signaling pathway may be critical to the mechanism underlying the modulatory effect of VIP on intestinal mucosal immune function and

  9. Glugacon-like peptide-2: broad receptor expression, limited therapeutic effect on intestinal inflammation and novel role in liver regeneration.

    PubMed

    El-Jamal, Noura; Erdual, Edmone; Neunlist, Michel; Koriche, Dine; Dubuquoy, Caroline; Maggiotto, Francois; Chevalier, Julien; Berrebi, Dominique; Dubuquoy, Laurent; Boulanger, Eric; Cortot, Antoine; Desreumaux, Pierre

    2014-08-01

    The glucagon-like peptide 2 (GLP-2) is an intestinotrophic hormone with growth promoting and anti-inflammatory actions. However, the full biological functions of GLP-2 and the localization of its receptor (GLP-2R) remain controversial. Among cell lines tested, the expression of GLP-2R transcript was detected in human colonic myofibroblasts (CCD-18Co) and in primary culture of rat enteric nervous system but not in intestinal epithelial cell lines, lymphocytes, monocytes, or endothelial cells. Surprisingly, GLP-2R was expressed in murine (GLUTag), but not human (NCI-H716) enteroendocrine cells. The screening of GLP-2R mRNA in mice organs revealed an increasing gradient of GLP-2R toward the distal gut. An unexpected expression was detected in the mesenteric fat, mesenteric lymph nodes, bladder, spleen, and liver, particularly in hepatocytes. In two mice models of trinitrobenzene sulfonic acid (TNBS)- and dextran sulfate sodium (DSS)-induced colitis, the colonic expression of GLP-2R mRNA was decreased by 60% compared with control mice. Also, GLP-2R mRNA was significantly downregulated in intestinal tissues of inflammatory bowel disease patients. Therapeutically, GLP-2 showed a weak restorative effect on intestinal inflammation during TNBS-induced colitis as assessed by macroscopic score and inflammatory markers. Finally, GLP-2 treatment accelerated mouse liver regeneration following partial hepatectomy as assessed by histological and molecular analyses. In conclusion, the limited therapeutic effect of GLP-2 on colonic inflammation dampens its utility in the management of severe inflammatory intestinal disorders. However, the role of GLP-2 in liver regeneration is a novelty that might introduce GLP-2 into the management of liver diseases and emphasizes on the importance of elucidating other extraintestinal functions of GLP-2. PMID:24875097

  10. Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish.

    PubMed

    Kurita, Yukihiro; Nakada, Tsutomu; Kato, Akira; Doi, Hiroyuki; Mistry, Abinash C; Chang, Min-Hwang; Romero, Michael F; Hirose, Shigehisa

    2008-04-01

    Marine teleost fish precipitate divalent cations as carbonate deposits in the intestine to minimize the potential for excessive Ca2+ entry and to stimulate water absorption by reducing luminal osmotic pressure. This carbonate deposit formation, therefore, helps maintain osmoregulation in the seawater (SW) environment and requires controlled secretion of HCO3(-) to match the amount of Ca2+ entering the intestinal lumen. Despite its physiological importance, the process of HCO3(-) secretion has not been characterized at the molecular level. We analyzed the expression of two families of HCO3(-) transporters, Slc4 and Slc26, in fresh-water- and SW-acclimated euryhaline pufferfish, mefugu (Takifugu obscurus), and obtained the following candidate clones: NBCe1 (an Na+-HCO3(-) cotransporter) and Slc26a6A and Slc26a6B (putative Cl(-)/HCO3(-) exchangers). Heterologous expression in Xenopus oocytes showed that Slc26a6A and Slc26a6B have potent HCO3(-)-transporting activity as electrogenic Cl(-)/nHCO3(-) exchangers, whereas mefugu NBCe1 functions as an electrogenic Na+-nHCO3(-) cotransporter. Expression of NBCe1 and Slc26a6A was highly induced in the intestine in SW and expression of Slc26a6B was high in the intestine in SW and fresh water, suggesting their involvement in HCO3(-) secretion and carbonate precipitate formation. Immunohistochemistry showed staining on the apical (Slc26a6A and Slc26a6B) and basolateral (NBCe1) membranes of the intestinal epithelial cells in SW. We therefore propose a mechanism for HCO3(-) transport across the intestinal epithelial cells of marine fish that includes basolateral HCO3(-) uptake (NBCe1) and apical HCO3(-) secretion (Slc26a6A and Slc26a6B). PMID:18216137

  11. The role of selective cyclooxygenase isoforms in human intestinal smooth muscle cell stimulated prostanoid formation and proliferation.

    PubMed Central

    Longo, W E; Erickson, B; Panesar, N; Mazuski, J E; Robinson, S; Kaminski, D L

    1998-01-01

    Intestinal smooth muscle plays a major role in the repair of injured intestine and contributes to the prostanoid pool during intestinal inflammatory states. Cyclooxygenase (COX), which catalyzes the conversion of arachidonic acid to prostanoids exists in two isoforms, COX-1 and COX-2. The purpose of this study was to determine the relative contributions of COX-1 and COX-2 in the production of prostanoids by human intestinal smooth muscle (HISM) cells when stimulated by interleukin-1beta (IL-1beta) and lipopolysaccharide (LPS). Furthermore the effects of specific COX-1 and COX-2 inhibitors on the proliferation of smooth muscle cells was also evaluated. Confluent monolayer cultures of HISM cells were incubated with IL-1beta or LPS for 0-24h while control cells received medium alone. PGE2 and PGI2 as 6-keto-PGF1alpha and LTB4 were measured by a specific radioimmunoassay. COX enzymes were evaluated by Western immunoblotting. Unstimulated and stimulated cells were exposed to the specific COX-1 inhibitor valerylsalicylic acid (VSA) and the COX-2 inhibitors NS-398 and SC-58125. The effects of serum on proliferation were then evaluated in the presence of each of the specific COX inhibitors by incorporation of 3H-thymidine into DNA. IL-1beta and LPS increased both PGE2 and 6-keto-PGF1alpha in a dose dependent fashion with enhanced production detected two hours following exposure. Neither stimulus stimulated LTB4 release. Immunoblot analysis using isoform-specific antibodies showed that both COX-1 and COX-2 were present constitutively. Furthermore, COX-1 was upregulated by each inflammatory stimulus. In a separate set of experiments cells were pretreated with either the selective COX-1 inhibitor VSA or the selective COX-2 inhibitors NS-398 or SC-58125 prior to treatment with IL-1beta or LPS. The COX-1 and COX-2 inhibitors decreased both basal and IL-1beta and LPS stimulated prostanoid release. Spontaneous DNA synthesis was present and serum consistently increased

  12. Manganese-Enhanced Magnetic Resonance Imaging for Detection of Vasoactive Intestinal Peptide Receptor 2 Agonist Therapy in a Model of Parkinson's Disease.

    PubMed

    Olson, Katherine E; Bade, Aditya N; Schutt, Charles R; Dong, Jingdong; Shandler, Scott J; Boska, Michael D; Mosley, R Lee; Gendelman, Howard E; Liu, Yutong

    2016-07-01

    Neuroprotective immunity is defined by transformation of T-cell polarity for therapeutic gain. For neurodegenerative disorders and specifically for Parkinson's disease (PD), granulocyte-macrophage colony stimulating factor or vasoactive intestinal peptide receptor 2 (VIPR2) agonists elicit robust anti-inflammatory microglial responses leading to neuronal sparing in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. While neurotherapeutic potential was demonstrated for PD, there remain inherent limitations in translating these inventions from the laboratory to patients. One obstacle in translating such novel neurotherapeutics centers on the availability of suitable noninvasive methods to track disease progression and therapeutic efficacy. To this end, we developed manganese-enhanced magnetic resonance imaging (MEMRI) assays as a way to track a linkage between glial activation and VIPR2 agonist (LBT-3627)-induced neuroprotective immunity for MPTP-induced nigrostriatal degeneration. Notably, LBT-3627-treated, MPTP-intoxicated mice show reduced MEMRI brain signal intensities. These changes paralleled reduced astrogliosis and resulted in sparing of nigral tyrosine hydroxylase neurons. Most importantly, the data suggest that MEMRI can be developed as a biomarker tool to monitor neurotherapeutic responses that are relevant to common neurodegenerative disorders used to improve disease outcomes. PMID:27329163

  13. The effect of parachlorophenylalanine and active immunization against vasoactive intestinal peptide on reproductive activities of broiler breeder hens photostimulated with green light.

    PubMed

    Mobarkey, Nader; Avital, Natalie; Heiblum, Rachel; Rozenboim, Israel

    2013-04-01

    Photostimulation of retinal photoreceptors appears to inhibit reproductive activity in birds. In the present study, the involvement of serotonin and vasoactive intestinal peptide was investigated in relation to reproductive failure associated with retinal photostimulation. Hens at 23 wk of age were divided into six rooms equipped with individual cages. At 24 wk of age, three rooms were photostimulated (14L:10D) with white light (control). Three rooms had two parallel lighting systems, red (660 nm) and green (560 nm), which were both on during 6 h of the 14-h light period. Upon photostimulation, the red light was turned off after 6 h, and the green light was left on for a total of 14 h (Green). Five hens from each room served as controls, five hens were immunized against vasoactive intestinal peptide, and five hens received parachlorophenylalanine, an inhibitor of serotonin biosynthesis. Parachlorophenylalanine treatment increased reproductive performance and mRNA expression of GnRH-I, LH-beta and FSH-beta (P < 0.05) in the Green group to levels which did not differ from those of the White (control) group. Immunization against vasoactive intestinal peptide reduced plasma concentration and pituitary mRNA expression of prolactin but did not affect expression of gonadal axis genes. Collectively, the results suggest that retinal photostimulation inhibits the reproductive axis through serotonin and not through vasoactive intestinal peptide. PMID:23325814

  14. Absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs including peptide and protein drugs in rats.

    PubMed

    Alama, Tammam; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-29

    In general, the intestinal absorption of small hydrophilic molecules and macromolecules like peptides, after oral administration is very poor. Absorption enhancers are considered to be one of the most promising agents to enhance the intestinal absorption of drugs. In this research, we focused on a gemini surfactant, a new type of absorption enhancer. The intestinal absorption of drugs, with or without sodium dilauramidoglutamide lysine (SLG-30), a gemini surfactant, was examined by an in situ closed-loop method in rats. The intestinal absorption of 5(6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-dextrans (FDs) was significantly enhanced in the presence of SLG-30, such effect being reversible. Furthermore, the calcium levels in the plasma significantly decreased when calcitonin was co-administered with SLG-30, suggestive of the increased intestinal absorption of calcitonin. In addition, no significant increase in the of lactate dehydrogenase (LDH) activity or in protein release from the intestinal epithelium was observed in the presence of SLG-30, suggestive of the safety of this compound. These findings indicate that SLG-30 is an effective absorption-enhancer for improving the intestinal absorption of poorly absorbed drugs, without causing serious damage to the intestinal epithelium. PMID:26707414

  15. Peptide 19-2.5 inhibits heparan sulfate-triggered inflammation in murine cardiomyocytes stimulated with human sepsis serum.

    PubMed

    Martin, Lukas; Schmitz, Susanne; De Santis, Rebecca; Doemming, Sabine; Haase, Hajo; Hoeger, Janine; Heinbockel, Lena; Brandenburg, Klaus; Marx, Gernot; Schuerholz, Tobias

    2015-01-01

    Myocardial dysfunction in sepsis has been linked to inflammation caused by pathogen-associated molecular patterns (PAMPs) as well as by host danger-associated molecular patterns (DAMPs). These include soluble heparan sulfate (HS), which triggers the devastating consequences of the pro-inflammatory cascades in severe sepsis and septic shock. Thus, there is increasing interest in the development of anti-infective agents, with effectiveness against both PAMPs and DAMPs. We hypothesized that a synthetic antimicrobial peptide (peptide 19-2.5) inhibits inflammatory response in murine cardiomyocytes (HL-1 cells) stimulated with PAMPs, DAMPs or serum from patients with septic shock by reduction and/or neutralization of soluble HS. In the current study, our data indicate that the treatment with peptide 19-2.5 decreases the inflammatory response in HL-1 cells stimulated with either PAMPs or DAMPs. Furthermore, our work shows that soluble HS in serum from patients with Gram-negative or Gram-positive septic shock induces a strong pro-inflammatory response in HL-1 cells, which can be effectively blocked by peptide 19-2.5. Based on these findings, peptide 19-2.5 is a novel anti-inflammatory agent interacting with both PAMPs and DAMPs, suggesting peptide 19-2.5 may have the potential for further development as a broad-spectrum anti-inflammatory agent in sepsis-induced myocardial inflammation and dysfunction. PMID:26024383

  16. Peptide drugs accelerate BMP-2-induced calvarial bone regeneration and stimulate osteoblast differentiation through mTORC1 signaling.

    PubMed

    Sugamori, Yasutaka; Mise-Omata, Setsuko; Maeda, Chizuko; Aoki, Shigeki; Tabata, Yasuhiko; Murali, Ramachandran; Yasuda, Hisataka; Udagawa, Nobuyuki; Suzuki, Hiroshi; Honma, Masashi; Aoki, Kazuhiro

    2016-08-01

    Both W9 and OP3-4 were known to bind the receptor activator of NF-κB ligand (RANKL), inhibiting osteoclastogenesis. Recently, both peptides were shown to stimulate osteoblast differentiation; however, the mechanism underlying the activity of these peptides remains to be clarified. A primary osteoblast culture showed that rapamycin, an mTORC1 inhibitor, which was recently demonstrated to be an important serine/threonine kinase for bone formation, inhibited the peptide-induced alkaline phosphatase activity. Furthermore, both peptides promoted the phosphorylation of Akt and S6K1, an upstream molecule of mTORC1 and the effector molecule of mTORC1, respectively. In the in vivo calvarial defect model, W9 and OP3-4 accelerated BMP-2-induced bone formation to a similar extent, which was confirmed by histomorphometric analyses using fluorescence images of undecalcified sections. Our data suggest that these RANKL-binding peptides could stimulate the mTORC1 activity, which might play a role in the acceleration of BMP-2-induced bone regeneration by the RANKL-binding peptides. PMID:27345003

  17. Distribution of vasoactive intestinal peptide-like immunoreactivity in the taste organs of teleost fish and frog.

    PubMed

    Witt, M

    1995-02-01

    Using immunohistochemistry, vasoactive intestinal peptide (VIP) was visualized in taste bud cells of the carp, Cyprinus carpio, and the European catfish, Silurus glanis, by means of light and electron microscopy. Intracellular membrane systems, presumably smooth endoplasmic reticulum, of light (sensory) cells, but not of dark (supporting) cells and basal cells, were densely labelled with antibody. In the frog (four species: Rana temporaria, R. ridibunda, R. arvalis, R. pipiens), taste bud cells did not label. However, the dense basal nerve fibre plexus, some subepithelial ganglionic cells, but no ascending intragemmal fibres, were immunoreactive. In fish, the results support evidence that VIP is involved in the modulation of taste transduction at the level of receptor cells. In the frog, an indirect, possibly vasodilatatory effect on taste perception may be considered. PMID:7775201

  18. Rapid glucocorticoid inhibition of vasoactive intestinal peptide-induced cyclic AMP accumulation and prolactin release in rat pituitary cells in culture.

    PubMed Central

    Rotsztejn, W H; Dussaillant, M; Nobou, F; Rosselin, G

    1981-01-01

    Vasoactive intestinal peptide (VIP) stimulates both adenosine 3',5'-cyclic monophosphate (cAMP) accumulation and prolactin release in normal rat pituitary cells in culture. cAMP accumulation is significant (P less than 0.01) at VIP concentrations as low as 1 nM and reaches a maximum with 0.1 microM. Addition of dexamethasone as early as 15 min before VIP inhibits VIP stimulation of both cAMP production and PRL secretion. The rapid inhibition is dose-dependent: it appears at doses as low as 0.01 pM and is complete at 1 pM dexamethasone. Increasing concentrations of dexamethasone induce a noncompetitive type of inhibition, as shown by the decrease in Vmax with no change in the apparent Km for VIP. Cycloheximide (1 mM) counteracts the inhibitory effect of dexamethasone on VIP-induced cAMP production, which suggests the involvement of a rapid protein synthesis mechanism. Ru-26988, a specific glucocorticoid devoid of any mineralocorticoid activity and which does not bind to intracellular transcortin-like component, also produces an inhibition of VIP-induced cAMP accumulation. Corticosterone also inhibits VIP-induced cAMP production but at concentrations higher than those of dexamethasone. In contrast, aldosterone, progesterone, estradiol, and testosterone have no effect. These results demonstrate that, in normal rat pituitary cells in culture, glucocorticoids at physiological concentrations rapidly inhibit the cAMP production and prolactin release induced by VIP by acting through specific glucocorticoid receptors. PMID:6278481

  19. Intestinal Sodium Glucose Cotransporter 1 Inhibition Enhances Glucagon-Like Peptide-1 Secretion in Normal and Diabetic Rodents.

    PubMed

    Oguma, Takahiro; Nakayama, Keiko; Kuriyama, Chiaki; Matsushita, Yasuaki; Yoshida, Kumiko; Hikida, Kumiko; Obokata, Naoyuki; Tsuda-Tsukimoto, Minoru; Saito, Akira; Arakawa, Kenji; Ueta, Kiichiro; Shiotani, Masaharu

    2015-09-01

    The sodium glucose cotransporter (SGLT) 1 plays a major role in glucose absorption and incretin hormone release in the gastrointestinal tract; however, the impact of SGLT1 inhibition on plasma glucagon-like peptide-1 (GLP-1) levels in vivo is controversial. We analyzed the effects of SGLT1 inhibitors on GLP-1 secretion in normoglycemic and hyperglycemic rodents using phloridzin, CGMI [3-(4-cyclopropylphenylmethyl)-1-(β-d-glucopyranosyl)-4-methylindole], and canagliflozin. These compounds are SGLT2 inhibitors with moderate SGLT1 inhibitory activity, and their IC50 values against rat SGLT1 and mouse SGLT1 were 609 and 760 nM for phloridzin, 39.4 and 41.5 nM for CGMI, and 555 and 613 nM for canagliflozin, respectively. Oral administration of these inhibitors markedly enhanced and prolonged the glucose-induced plasma active GLP-1 (aGLP-1) increase in combination treatment with sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, in normoglycemic mice and rats. CGMI, the most potent SGLT1 inhibitor among them, enhanced glucose-induced, but not fat-induced, plasma aGLP-1 increase at a lower dose compared with canagliflozin. Both CGMI and canagliflozin delayed intestinal glucose absorption after oral administration in normoglycemic rats. The combined treatment of canagliflozin and a DPP4 inhibitor increased plasma aGLP-1 levels and improved glucose tolerance compared with single treatment in both 8- and 13-week-old Zucker diabetic fatty rats. These results suggest that transient inhibition of intestinal SGLT1 promotes GLP-1 secretion by delaying glucose absorption and that concomitant inhibition of intestinal SGLT1 and DPP4 is a novel therapeutic option for glycemic control in type 2 diabetes mellitus. PMID:26105952

  20. Involvement of drinking and intestinal sodium absorption in hyponatremic effect of atrial natriuretic peptide in seawater eels.

    PubMed

    Tsukada, Takehiro; Rankin, J Cliff; Takei, Yoshio

    2005-01-01

    Atrial natriuretic peptide (ANP) decreases plasma Na+ concentration and promtes seawater (SW) adaptation in eels. The hyponatremia may most probably be caused by increased branchial extrusion of Na+, but the mechanism has not been determined yet. The present study examined initially the effects of ANP on branchial Na+ efflux in vivo using isotopic 22Na. However, the efflux rate was not altered by infusion of a hyponatremic dose of ANP (5 pmol.kg(-1).min(-1)). Therefore, we sought to examine whether the ANP-mediated hyponatremia is caused by a decrease in the uptake of Na+ from the environment. Since a decrease in drinking was highly correlated with a degree of hyponatremia, conscious SW eels were infused with dilute SW into the stomach at a normal drinking rate to offset the antidipsogenic effect of ANP. Under this regimen, the hyponatremic effect of ANP was abolished. Then, we examined the site of Na+ absorption in the alimentary tract by measuring the changes in ion composition of intraluminal fluid along the tract. Since Na+ was absorbed at the esophagus and anterior/middle intestine, a sac was prepared at each site and the effects of ANP were examined in situ in conscious SW eels. ANP infusion did not alter Na+ absorption at the esophagus, but it profoundly reduced the absorption at the intestine. Together with our previous finding that ANP does not alter renal Na+ excretion, we propose that ANP reduces plasma Na+ concentration in SW eels by inhibiting drinking and subsequent absorption of Na+ by the intestine. PMID:15684587

  1. Rapid increase in enzyme and peptide mRNA in sympathetic ganglia after electrical stimulation in humans.

    PubMed Central

    Schalling, M; Stieg, P E; Lindquist, C; Goldstein, M; Hökfelt, T

    1989-01-01

    Thoracic ganglia in humans were studied after electrical, preganglionic stimulation using in situ hybridization with synthetic oligonucleotide probes against the catecholamine-synthesizing enzymes tyrosine hydroxylase (EC 1.14.16.2) and dopamine beta-hydroxylase (EC 1.14.17.1) and neuropeptide tyrosine. Immunohistochemical analysis was also performed. Following short peroperative stimulation a severalfold increase in all three mRNAs was found in principal ganglion cells, whereas no definite changes could be detected in enzyme or peptide levels with immunohistochemistry. The results suggest a very rapid and sensitive regulation of genes involved in signal transmission in the sympathetic nervous system of humans. Moreover, they indicate that electrical stimulation of neurons and/or pathways combined with in situ hybridization may be used as a method to define neuronal projections by visualizing increases in mRNAs for transmitter enzymes and/or peptide in target cells. Images PMID:2567003

  2. Vasoactive intestinal peptide binding sites and fibers in the brain of the pigeon Columba livia: An autoradiographic and immunohistochemical study

    SciTech Connect

    Hof, P.R.; Dietl, M.M.; Charnay, Y.; Martin, J.L.; Bouras, C.; Palacios, J.M.; Magistretti, P.J. )

    1991-03-15

    The distribution of vasoactive intestinal peptide (VIP) binding sites in the pigeon brain was examined by in vitro autoradiography on slide-mounted sections. A fully characterized monoiodinated form of VIP, which maintains the biological activity of the native peptide, was used throughout this study. The highest densities of binding sites were observed in the hyperstriatum dorsale, archistriatum, auditory field L of neostriatum, area corticoidea dorsolateralis and temporo-parieto-occipitalis, area parahippocampalis, tectum opticum, nucleus dorsomedialis anterior thalami, and in the periventricular area of the hypothalamus. Lower densities of specific binding occurred in the neostriatum, hyperstriatum ventrale and nucleus septi lateralis, dorsolateral area of the thalamus, and lateral and posteromedial hypothalamus. Very low to background levels of VIP binding were detected in the ectostriatum, paleostriatum primitivum, paleostriatum augmentatum, lobus parolfactorius, nucleus accumbens, most of the brainstem, and the cerebellum. The distribution of VIP-containing fibers and terminals was examined by indirect immunofluorescence using a polyclonal antibody against porcine VIP. Fibers and terminals were observed in the area corticoidea dorsolateralis, area parahippocampalis, hippocampus, hyperstriatum accessorium, hyperstriatum dorsale, archistriatum, tuberculum olfactorium, nuclei dorsolateralis and dorsomedialis of the thalamus, and throughout the hypothalamus and the median eminence. Long projecting fibers were visualized in the tractus septohippocampalis. In the brainstem VIP immunoreactive fibers and terminals were observed mainly in the substantia grisea centralis, fasciculus longitudinalis medialis, lemniscus lateralis, and in the area surrounding the nuclei of the 7th, 9th, and 10th cranial nerves.

  3. Characterization of the vasoactive intestinal peptide receptor in rat submandibular gland: radioligand binding assay in membrane preparations

    SciTech Connect

    Turner, J.T.; Bylund, D.B.

    1987-09-01

    The vasoactive intestinal peptide (VIP) receptor in membranes from rat submandibular gland was studied using radioligand binding assays with /sup 125/I-VIP and various unlabeled competing ligands. In addition to the necessity of working within the parameters under which all radioligand binding assays should be performed, binding studies with /sup 125/I-VIP, as with other peptide hormones and neurotransmitters, are subject to additional technical difficulties. Specific problems that were addressed included radioligand proteolysis, the identification of an effective protease inhibitor (leupeptin) and the deleterious effects of a commonly used inhibitor (bacitracin); avid radioligand absorption to incubation tubes that was eliminated by precoating of the tubes with a combination of polyethylenimine and an organosilane; and a disproportionate effect of increasing membrane protein concentration on affinity estimates. Under optimized conditions, the affinity (Kd) and density Bmax values for /sup 125/I-VIP obtained from saturation assays (76 pM, 2.0 pmol/mg) were in excellent agreement. Membrane protein (or receptor) levels beyond the linear portion of the receptor concentration curve are often used in radioligand binding assays. Results from /sup 125/I-VIP binding studies at elevated receptor concentrations revealed the predicted marked decrease in receptor affinity. In addition, the rank order potency of unlabeled ligands in inhibition binding assays was changed. The optimization of the assay for measuring VIP receptors in submandibular gland membrane provides a reliable method for studying the role of receptor regulation in stimulus-secretion coupling for this neuropeptide.

  4. PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine.

    PubMed

    Munir Ahmad, Shamaila; Martinenaite, Evelina; Hansen, Morten; Junker, Niels; Borch, Troels Holz; Met, Özcan; Donia, Marco; Svane, Inge Marie; Andersen, Mads Hald

    2016-08-01

    We recently described naturally occurring PD-L1-specific T cells that recognize PD-L1-expressing immune cells as well as malignant cells. In the present study, we investigated whether the immunogenicity of a dendritic cell (DC)-based vaccine could be influenced by co-stimulation with a known PD-L1-derived epitope. We incubated a PD-L1-derived peptide epitope (19 amino acids long) or a control peptide (an irrelevant HIV epitope) with peripheral blood mononuclear cells from patients with malignant melanoma who had received a DC-based vaccine. We observed a significantly higher number of T cells that reacted to the vaccine in cultures that had been co-stimulated with the PD-L1 peptide epitope compared to cultures incubated with control peptide. Next, we characterized a novel PD-L1-derived epitope (23 amino acids long) and found that co-stimulation with both PD-L1 epitopes boosted the immune response elicited by the DC vaccine even further. Consequently, we observed a significant increase in the number of vaccine-reacting T cells in vitro. In conclusion, activation of PD-L1-specific T cells may directly modulate immunogenicity of DC vaccines. Addition of PD-L1 epitopes may thus be an easily applicable and attractive option to augment the effectiveness of cancer vaccines and other immunotherapeutic agents. PMID:27622072

  5. Transactivation of the epidermal growth factor receptor mediates muscarinic stimulation of focal adhesion kinase in intestinal epithelial cells.

    PubMed

    Calandrella, Sean O; Barrett, Kim E; Keely, Stephen J

    2005-04-01

    We have previously shown that the Gq protein coupled receptor (GqPCR) agonist, carbachol (CCh), transactivates and recruits epidermal growth factor receptor (EGFr)-dependent signaling mechanisms in intestinal epithelial cells. Increasing evidence suggests that GqPCR agonists can also recruit focal adhesion-dependent signaling pathways in some cell types. Therefore, the aim of the present study was to investigate if CCh stimulates activation of the focal adhesion-associated protein, focal adhesion kinase (FAK), in intestinal epithelia and, if so, to examine the signaling mechanisms involved. Experiments were carried out on monolayers of T84 cells grown on permeable supports. CCh rapidly induced tyrosine phosphorylation of FAK in T84 cells. This effect was accompanied by phosphorylation of another focal adhesion-associated protein, paxillin, and association of FAK with paxillin. CCh-stimulated FAK phosphorylation was inhibited by a chelator of intracellular Ca2+, BAPTA/AM (20 microM), and was mimicked by thapsigargin (2 microM), which mobilizes intracellular Ca2+ in a receptor-independent fashion. CCh also induced association of FAK with the EGFr and FAK phosphorylation was attenuated by an EGFr inhibitor, tyrphostin AG1478, and an inhibitor of Src family kinases, PP2. The actin cytoskeleton disruptor, cytochalasin D (20 microM), abolished FAK phosphorylation in response to CCh but did not alter CCh-induced EGFr or ERK MAPK activation. In summary, these data demonstrate that agonists of GqPCRs have the ability to induce FAK activation in intestinal epithelial cells. GqPCR-induced FAK activation is mediated by via a pathway involving transactivation of the EGFr and alterations in the actin cytoskeleton. PMID:15389641

  6. Bile salt-stimulated carboxyl ester lipase influences lipoprotein assembly and secretion in intestine: a process mediated via ceramide hydrolysis.

    PubMed

    Kirby, R Jason; Zheng, Shuqin; Tso, Patrick; Howles, Philip N; Hui, David Y

    2002-02-01

    Bile salt-stimulated carboxyl ester lipase (CEL), also called cholesterol esterase, is one of the major proteins secreted by the pancreas. The physiological role of CEL was originally thought to be its mediation of dietary cholesterol absorption. However, recent studies showed no difference between wild type and CEL knockout mice in the total amount of cholesterol absorbed in a single meal. The current study tests the hypothesis that CEL in the intestinal lumen may influence the type of lipoproteins produced. A lipid emulsion containing 4 mm phospholipid, 13.33 mm [(3)H]triolein, and 2.6 mm [(14)C]cholesterol in 19 mm taurocholate was infused into the duodenum of lymph fistula CEL(+/+) and CEL(-/-) mice at a rate of 0.3 ml/h. Results showed no difference between CEL(+/+) and CEL(-/-) mice in the rate of cholesterol and triglyceride transport from the intestinal lumen to the lymph. However, CEL(-/-) mice produced predominantly smaller lipoproteins, whereas the CEL(+/+) mice produced primarily large chylomicrons and very low density lipoprotein. The proximal intestine of CEL(-/-) mice was also found to possess significantly less ceramide hydrolytic activity than that present in CEL(+/+) mice. By using Caco2 cells grown on Transwell membranes as a model, sphingomyelinase treatment inhibited the secretion of larger chylomicron-like lipoproteins without affecting total cholesterol secretion. In contrast, the addition of CEL to the apical medium increased the amount of large lipoproteins produced and alleviated the inhibition induced by sphingomyelinase. Taken together, this study identified a novel and physiologically significant role for CEL, namely the promotion of large chylomicron production in the intestine. The mechanism appears to be mediated through CEL hydrolysis of ceramide generated during the lipid absorption process. PMID:11733511

  7. Angiotensin II-stimulated secretion of arginine vasopressin is inhibited by atrial natriuretic peptide in humans.

    PubMed

    Matsukawa, Toshiyoshi; Miyamoto, Takenori

    2011-03-01

    We investigated the effect of the intravenous infusion of atrial natriuretic peptide (ANP) on the response of plasma arginine vasopressin (AVP) levels to intravenous infusion of angiotensin II (ANG II) in healthy individuals. Intravenous infusion of ANP (10 ng·kg(-1)·min(-1)) slightly but significantly decreased plasma AVP levels, while intravenous infusion of ANG II (10 ng·kg(-1)·min(-1)) resulted in slightly increased plasma AVP levels. ANG II infused significant elevations in arterial blood pressure and central venous pressure (CVP). Because the elevation in blood pressure could have potentially inhibited AVP secretion via baroreceptor reflexes, the effect of ANG II on blood pressure was attenuated by the simultaneous infusion of nitroprusside. ANG II alone produced a remarkable increase in plasma AVP levels when infused with nitroprusside, whereas the simultaneous ANP intravenous infusion (10 ng·kg(-1)·min(-1)) abolished the increase in plasma AVP levels induced by ANG II when blood pressure elevation was attenuated by nitroprusside. Thus, ANG II increased AVP secretion and ANP inhibited not only basal AVP secretion but also ANG II-stimulated AVP secretion in humans. These findings support the hypothesis that circulating ANP modulates AVP secretion, in part, by antagonizing the action of circulating ANG II. PMID:21123762

  8. 83-kilodalton heat shock proteins of trypanosomes are potent peptide-stimulated ATPases.

    PubMed Central

    Nadeau, K.; Sullivan, M. A.; Bradley, M.; Engman, D. M.; Walsh, C. T.

    1992-01-01

    A Crithidia fasciculata 83-kDa protein purified during a separate study of C. fasciculata trypanothione synthetase was shown to have ATPase activity and to belong to the hsp90 family of stress proteins. Because no ATPase activity has previously been reported for the hsp90 class, ATP utilization by C. fasciculata hsp83 was characterized: this hsp83 has an ATPase kcat of 150 min-1 and a Km of 60 microM, whereas the homologous mammalian hsp90 binds ATP but has no ATPase activity. Crithidia fasciculata hsp83 undergoes autophosphorylation on serine and threonine at a rate constant of 3.3 x 10(-3) min-1. Similar analysis was performed on recombinant Trypanosoma cruzi hsp83, and comparable ATPase parameters were obtained (kcat = 100 min-1, Km = 80 microM, kautophosphorylation = 6.3 x 10(-3) min-1). The phosphoenzyme is neither on the ATPase hydrolytic pathway nor does it affect ATPase catalytic efficiency. Both C. fasciculata and T. cruzi hsp83 show up to fivefold stimulation of ATPase activity by peptides of 6-24 amino acids. PMID:1304385

  9. Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli.

    PubMed

    Wu, Shudan; Zhang, Fengrui; Huang, Zhimin; Liu, Hong; Xie, Chunyuan; Zhang, Jiang; Thacker, Philip A; Qiao, Shiyan

    2012-06-01

    This study was conducted to determine the effects of the antimicrobial peptide cecropin on performance and intestinal health in piglets. Newly weaned barrows were randomly assigned to one of three treatments (n=8), including a corn-soybean basal diet or similar diets supplemented with antibiotics (100 mg/kg kitasamycin plus 800 mg/kg colistin sulfate) or 400 mg/kg cecropin AD. On day 13, all piglets were orally challenged with 10(9)CFU/mL of Escherichia coli K88. On day 19, all piglets were euthanized and sampled. Before challenge, piglets fed antibiotics had greater weight gain, feed efficiency, nitrogen and energy retention than the control (P<0.05). E. coli challenge decreased weight gain, feed intake and feed efficiency for the control piglets (P<0.05) but not for the antibiotic or cecropin AD treated piglets. The incidence of diarrhea post-challenge in the antibiotic and cecropin AD treatments decreased compared with the control piglets. The total viable counts of cecal E. coli were lower while the Lactobacilli counts were higher in the antibiotic and cecropin AD treatments compared with the control (P<0.05). Cecropin AD treatment decreased total aerobes while increasing total anaerobes in the ileum (P<0.05). A higher villus height to crypt depth ratio in the jejunum and ileum as well as a deeper crypt depth in the jejunum and higher villus height in the ileum were observed in piglets fed antibiotics or cecropin AD compared with control piglets (P<0.05). Piglets fed the control diet had lower levels of secretory IgA in their jejunum and lower serum IgA, IgG, interleukin-1β and interleukin-6 compared with the other treatments (P<0.05). Overall, these data suggest that cecropin AD enhances pig performance through increasing immune status and nitrogen and energy retention as well as reducing intestinal pathogens in weaned piglets. PMID:22490448

  10. Ulcerogenic and intestinal motility/transit stimulating actions of nevirapine in albino Wistar rats.

    PubMed

    Umoren, Elizabeth Bassey; Obembe, Agona Odeh; Osim, Eme Effiom

    2013-09-01

    The antiretroviral is a non-nucleoside reverse transcriptase inhibitor of human immunodeficiency virus type 1. This study was undertaken to investigate the effect of nevirapine (NVP) administration on gastric acid secretion, pepsin secretion, mucosal secretion, intestinal motility, and transit using apparently healthy albino Wistar rats. Eighty albino Wistar rats (50-125 g body weight) from the start of the experiment were used for the study. Rats in the control group were fed normal rodent chow, while the NVP group was fed by gavage NVP (0.4 mg/kg body weight) two times daily (07:00 and 18:00 hours) in addition to normal rodent chow for 12 weeks. All animals were allowed free access to clean drinking water. Mean basal gastric output and peak acid output following histamine administration in the NVP-treated group were significantly higher (p < 0.001, respectively) compared to the control. Following cimetidine administration, there was significant decrease (p < 0.001) in peak acid output in the NVP-treated group compared to the control. The concentration of gastric pepsin, adherent mucus secretion, and mean value for ulcer score were significantly higher (p < 0.001) compared to their control group, respectively. There were significant increases (p < 0.05, respectively) in intestinal motility and basal contraction (p < 0.05) and increase in intestinal transit of the ileum of NVP-treated rats compared to their control, respectively. Results of the study suggest that NVP administration might provoke gastric ulceration in rats which may be caused by high pepsin, high basal acid output, and increased intestinal motility and transit. PMID:23536414

  11. Translating Molecular Physiology of Intestinal Transport into Pharmacologic Treatment of Diarrhea: Stimulation of Na+ Absorption

    PubMed Central

    Singh, Varsha; Yang, Jianbo; Chen, Tiane-e; Zachos, Nick; Kovbasnjuk, Olga; Verkman, Alan; Donowitz, Mark

    2013-01-01

    Diarrheal diseases remain a leading cause of morbidity and mortality for children in developing countries while representing an important cause of morbidity worldwide. The WHO recommended low osmolarity oral rehydration solutions plus zinc save lives in patients with acute diarrhea1, but there are no approved, safe drugs which have been shown to be effective against most causes of acute diarrhea. Identification of abnormalities in electrolyte handling by the intestine in diarrhea, including increased intestinal anion secretion and reduced Na+ absorption, suggest a number of potential drug targets. This is based on the view that successful drug therapy for diarrhea will result from correcting the abnormalities in electrolyte transport that are pathophysiologic for diarrhea. We review the molecular mechanisms of physiologic regulation of intestinal ion transport and changes that occur in diarrhea and the status of drugs being developed to correct the transport abnormalities in Na+ absorption which occur in diarrhea. Mechanisms of Cl− secretion and approaches to anti-Cl− secretory therapies of diarrhea are discussed in a companion review. PMID:24184676

  12. Translating molecular physiology of intestinal transport into pharmacologic treatment of diarrhea: stimulation of Na+ absorption.

    PubMed

    Singh, Varsha; Yang, Jianbo; Chen, Tiane-e; Zachos, Nicholas C; Kovbasnjuk, Olga; Verkman, Alan S; Donowitz, Mark

    2014-01-01

    Diarrheal diseases remain a leading cause of morbidity and mortality for children in developing countries, while representing an important cause of morbidity worldwide. The World Health Organization recommended that low osmolarity oral rehydration solutions plus zinc save lives in patients with acute diarrhea, but there are no approved, safe drugs that have been shown to be effective against most causes of acute diarrhea. Identification of abnormalities in electrolyte handling by the intestine in diarrhea, including increased intestinal anion secretion and reduced Na(+) absorption, suggest a number of potential drug targets. This is based on the view that successful drug therapy for diarrhea will result from correcting the abnormalities in electrolyte transport that are pathophysiologic for diarrhea. We review the molecular mechanisms of physiologic regulation of intestinal ion transport and changes that occur in diarrhea and the status of drugs being developed to correct the transport abnormalities in Na(+) absorption that occur in diarrhea. Mechanisms of Cl(-) secretion and approaches to anti-Cl(-) secretory therapies of diarrhea are discussed in a companion review. PMID:24184676

  13. The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60) on the intestinal barrier function and gut peptides in breast cancer patients: an observational study

    PubMed Central

    2013-01-01

    Background Several GI peptides linked to intestinal barrier function could be involved in the modification of intestinal permeability and the onset of diarrhea during adjuvant chemotherapy. The aim of the study was to evaluate the circulating levels of zonulin, glucagon-like peptide-2 (GLP-2), epidermal growth factor (EGF) and ghrelin and their relationship with intestinal permeability and chemotherapy induced diarrhea (CTD). Methods Sixty breast cancer patients undergoing an FEC60 regimen were enrolled, 37 patients completed the study. CTD(+) patients were discriminated by appropriate questionnaire and criteria. During chemotherapy, intestinal permeability was assessed by lactulose/mannitol urinary test on day 0 and day 14. Zonulin, GLP-2, EGF and ghrelin circulating levels were evaluated by ELISA tests at five time-points (days 0, 3, 10, 14, and 21). Results During FEC60 administration, the lactulose/mannitol ratio was significantly higher on day 14 than at baseline. Zonulin levels were not affected by chemotherapy, whereas GLP-2 and EGF levels decreased significantly. GLP-2 levels on day 14 were significantly lower than those on day 0 and day 3, while EGF values were significantly lower on day 10 than at the baseline. In contrast, the total concentrations of ghrelin increased significantly at day 3 compared to days 0 and 21, respectively. Ten patients (27%) suffered from diarrhea. On day 14 of chemotherapy, a significant increase of the La/Ma ratio occurred in CTD(+) patients compared to CTD(−) patients. With regards to circulating gut peptides, the AUCg of GLP-2 and ghrelin were significantly lower and higher in CTD(+) patients than CTD(−) ones, respectively. Finally in CTD(+) patients a significant and inverse correlation between GLP-2 and La/Ma ratio was found on day 14. Conclusions Breast cancer patients undergoing FEC60 showed alterations in the intestinal permeability, which was associated with modifications in the levels of GLP-2, ghrelin and EGF. In

  14. Participation of the ascending serotonergic system in the stimulation of atrial natriuretic peptide release.

    PubMed Central

    Reis, L C; Ramalho, M J; Favaretto, A L; Gutkowska, J; McCann, S M; Antunes-Rodrigues, J

    1994-01-01

    Results obtained in our laboratories have provided evidence for the participation of the hypothalamic atrial natriuretic peptide (ANP) neuronal system in the regulation of water and electrolyte homeostasis. The anterior ventral third ventricular (AV3V) region, a site of the perikarya of the ANP neurons, receives important afferent input from ascending serotoninergic axons. We hypothesized that the ascending serotoninergic tract might be involved in control of the liberation of ANP. Therefore, electrolytic lesions were produced in the mesencephalic dorsal raphé nucleus (DRN), the site of perikarya of serotonin (5-HT) neurons whose axons project to the AV3V region. Rats with sham lesions constituted the control group. In a second group of animals, the serotoninergic system was depleted of 5-HT by lateral ventricular administration of p-chlorophenylalanine (PCPA), an amino acid that causes depletion of 5-HT from the serotoninergic neurons. Control animals were injected with an equal amount of isotonic saline. The DRN lesions induced an increase of water intake and urine output beginning on the first day that lasted for 1 week after lesions were produced. There was a concomitant sodium retention that lasted for the same period of time. When water-loaded, DRN-lesioned and PCPA-injected animals showed diminished excretion of sodium, accompanied by a decrease in basal plasma ANP concentrations, and blockade of the increase in plasma ANP, which followed blood volume expansion by intraatrial injection of hypertonic saline. The results are interpreted to mean that ascending stimulatory serotoninergic input into the ANP neuronal system in the AV3V region produces a tonic stimulation of ANP release, which augments sodium excretion and inhibits water intake. Therefore, in the absence of this serotoninergic input following destruction of the serotoninergic neurons by DRN lesions or intraventricular injection of PCPA, an antinatriuretic effect is obtained that is associated with

  15. PI3K p110α/Akt Signaling Negatively Regulates Secretion of the Intestinal Peptide Neurotensin Through Interference of Granule Transport

    PubMed Central

    Li, Jing; Song, Jun; Cassidy, Margaret G.; Rychahou, Piotr; Starr, Marlene E.; Liu, Jianyu; Li, Xin; Epperly, Garretson; Weiss, Heidi L.; Townsend, Courtney M.; Gao, Tianyan

    2012-01-01

    Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release. PMID:22700584

  16. PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport.

    PubMed

    Li, Jing; Song, Jun; Cassidy, Margaret G; Rychahou, Piotr; Starr, Marlene E; Liu, Jianyu; Li, Xin; Epperly, Garretson; Weiss, Heidi L; Townsend, Courtney M; Gao, Tianyan; Evers, B Mark

    2012-08-01

    Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release. PMID:22700584

  17. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways

    PubMed Central

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  18. Distribution of vasotocin- and vasoactive intestinal peptide-like immunoreactivity in the brain of blue tit (Cyanistes coeruleus)

    PubMed Central

    Montagnese, Catherine M.; Székely, Tamás; Csillag, András; Zachar, Gergely

    2015-01-01

    Blue tits (Cyanistes coeruleus) are songbirds, used as model animals in numerous studies covering a wide field of research. Nevertheless, the distribution of neuropeptides in the brain of this avian species remains largely unknown. Here we present some of the first results on distribution of Vasotocine (AVT) and Vasoactive intestinal peptide (VIP) in the brain of males and females of this songbird species, using immunohistochemistry mapping. The bulk of AVT-like cells are found in the hypothalamic supraoptic, paraventricular and suprachiasmatic nuclei, bed nucleus of the stria terminalis, and along the lateral forebrain bundle. Most AVT-like fibers course toward the median eminence, some reaching the arcopallium, and lateral septum. Further terminal fields occur in the dorsal thalamus, ventral tegmental area and pretectal area. Most VIP-like cells are in the lateral septal organ and arcuate nucleus. VIP-like fibers are distributed extensively in the hypothalamus, preoptic area, lateral septum, diagonal band of Broca. They are also found in the bed nucleus of the stria terminalis, amygdaloid nucleus of taenia, robust nucleus of the arcopallium, caudo-ventral hyperpallium, nucleus accumbens and the brainstem. Taken together, these results suggest that both AVT and VIP immunoreactive structures show similar distribution to other avian species, emphasizing evolutionary conservatism in the history of vertebrates. The current study may enable future investigation into the localization of AVT and VIP, in relation to behavioral and ecological traits in the brain of tit species. PMID:26236200

  19. The effect of ice-slushy consumption on plasma vasoactive intestinal peptide during prolonged exercise in the heat.

    PubMed

    Burdon, Catriona A; Ruell, Patricia; Johnson, Nathan; Chapman, Phillip; O'Brien, Sinead; O'Connor, Helen T

    2015-01-01

    The aim of this study was to determine the effect of exercise in the heat on thermoregulatory responses and plasma vasoactive intestinal peptide concentration (VIP) and whether it is modulated by ice-slushy consumption. Ten male participants cycled at 62% V̇O2max for 90min in 32°C and 40% relative humidity. A thermoneutral (37°C) or ice-slushy (-1°C) sports drink was given at 3.5mlkg(-1) body mass every 15min during exercise. VIP and rectal temperature increased during exercise (mean±standard deviation: 4.6±4.4pmolL(-1), P=0.005; and 1.3±0.4°C, P<0.001 respectively) and were moderately associated (r=0.35, P=0.008). While rectal temperature and VIP were not different between trials, ice-slushy significantly reduced heat storage (P=0.010) and skin temperature (time×trial interaction P=0.038). It appears that VIP does not provide the signal linking cold beverage ingestion and lower skin temperature in the heat. PMID:25526655

  20. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways.

    PubMed

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  1. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.

    2014-02-01

    Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side

  2. Subpopulation-Specific Transcriptome Analysis of Competence-Stimulating-Peptide-Induced Streptococcus mutans▿†

    PubMed Central

    Lemme, André; Gröbe, Lothar; Reck, Michael; Tomasch, Jürgen; Wagner-Döbler, Irene

    2011-01-01

    Competence-stimulating-peptide (CSP)-mediated competence development in Streptococcus mutans is a transient and biphasic process, since only a subpopulation induces the expression of ComX in the presence of CSP, and the activation of the DNA uptake machinery in this fraction shuts down ∼3 to 4 h postinduction. Here, we combine for the first time, to our knowledge, the bacterial flow-cytometric sorting of cells and subpopulation-specific transcriptome analysis of both the competent and noncompetent fraction of CSP-treated S. mutans cells. Sorting was guided by a ComX-green fluorescent protein (ComX-GFP) reporter, and the transcriptome analysis demonstrated the successful combination of both methods, because a strong enrichment of transcripts for comX and its downstream genes was achieved. Three two-component systems were expressed in the competent fraction, and among them was ComDE. Moreover, the recently identified regulator system ComR/S was expressed exclusively in the competent fraction. In contrast, the expression of bacteriocin-related genes was at the same level in all cells. GFP reporter strains for ComE and CipB (mutacin V) confirmed this expression pattern on the single-cell level. Fluorescence microscopy revealed that some ComX-expressing cells committed autolysis in an early stage of competence initiation. In viable ComX-expressing cells, the uptake of DNA could be shown on the single-cell level. This study demonstrates that all cells in the population respond to CSP through the activation of bacteriocin-related genes. Some of these cells start to activate ComX expression but then segregate into two subpopulations, one becoming competent and another one that lyses, resulting in intrapopulation diversity. PMID:21317319

  3. Hypothalamic paraventricular nucleus stimulation reduces intestinal injury in rats with ulcerative colitis

    PubMed Central

    Deng, Quan-Jun; Deng, Ding-Jing; Che, Jin; Zhao, Hai-Rong; Yu, Jun-Jie; Lu, Yong-Yu

    2016-01-01

    AIM: To investigate the effect and mechanism of stimulation of the hypothalamic paraventricular nucleus with glutamate acid in rats with ulcerative colitis (UC). METHODS: The rats were anesthetized with 10% chloral hydrate via abdominal injection and treated with an equal volume of TNBS + 50% ethanol enema, injected into the upper section of the anus with the tail facing up. Colonic damage scores were calculated after injecting a certain dose of glutamic acid into the paraventricular nucleus (PVN), and the effect of the nucleus tractus solitarius (NTS) and vagus nerve in alleviating UC injury through chemical stimulation of the PVN was observed in rats. Expression changes of C-myc, Apaf-1, caspase-3, interleukin (IL)-6, and IL-17 during the protection against UC injury through chemical stimulation of the PVN in rats were detected by Western blot. Malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in colon tissues of rats were measured by colorimetric methods. RESULTS: Chemical stimulation of the PVN significantly reduced UC in rats in a dose-dependent manner. The protective effects of the chemical stimulation of the PVN on rats with UC were eliminated after chemical damage to the PVN. After glutamate receptor antagonist kynurenic acid was injected into the PVN, the protective effects of the chemical stimulation of the PVN were eliminated in rats with UC. After AVP-Vl receptor antagonist ([Deamino-penl, val4, D-Arg8]-vasopressin) was injected into NTS or bilateral chemical damage to NTS, the protective effect of the chemical stimulation of PVN on UC was also eliminated. After chemical stimulation of the PVN, SOD activity increased, MDA content decreased, C-myc protein expression significantly increased, caspase-3 and Apaf-1 protein expression significantly decreased, and IL-6 and IL-17 expression decreased in colon tissues in rats with UC. CONCLUSION: Chemical stimulation of the hypothalamic PVN provides a protective effect against UC injury in

  4. Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line.

    PubMed

    Guo, A; Hu, P; Balimane, P V; Leibach, F H; Sinko, P J

    1999-04-01

    The results of previous work performed in our laboratory using an in situ perfusion technique in rats and rabbit apical brush border membrane vesicles have suggested that the intestinal uptake of valacyclovir (VACV) appears to be mediated by multiple membrane transporters. Using these techniques, it is difficult to characterize the transport kinetics of VACV with each individual transporter in the presence of multiple known or unknown transporters. The purpose of this study was to characterize the interaction of VACV and the human intestinal peptide transporter using Chinese hamster ovary (CHO) cells that overexpress the human intestinal peptide transporter (hPEPT1) gene. VACV uptake was significantly greater in CHO cells transfected with hPEPT1 than in cells transfected with only the vector, pcDNA3. The optimum pH for VACV uptake was determined to occur at pH 7.5. Proton cotransport was not observed in hPEPT1/CHO cells, consistent with previously observed results in tissues and Caco-2 cells. VACV uptake was concentration dependent and saturable with a Michaelis-Menten constant and maximum velocity of 1.64 +/- 0.06 mM and 23.34 +/- 0.36 nmol/mg protein/5 min, respectively. A very similar Km value was obtained in hPEPT1/CHO cells and in rat and rabbit tissues and Caco-2 cells, suggesting that hPEPT1 dominates the intestinal transport properties of VACV in vitro. VACV uptake was markedly inhibited by various dipeptides and beta-lactam antibiotics, and Ki values of 12.8 +/- 2.7 and 9.1 +/- 1.2 mM were obtained for Gly-Sar and cefadroxil at pH 7.5, respectively. The present results demonstrate that VACV is a substrate for the human intestinal peptide transporter in hPEPT1/CHO cells and that although transport is pH dependent, proton cotransport is not apparent. Also, the results demonstrate that the hPEPT1/CHO cell system has use in investigating the transport kinetics of drugs with the human intestinal peptide transporter hPEPT1; however, the extrapolation of these

  5. Characterization of desmoglein-3 epitope region peptides as synthetic antigens: analysis of their in vitro T cell stimulating efficacy, cytotoxicity, stability, and their conformational features.

    PubMed

    Szabados, Hajnalka; Uray, Katalin; Majer, Zsuzsa; Silló, Pálma; Kárpáti, Sarolta; Hudecz, Ferenc; Bősze, Szilvia

    2015-09-01

    Desmoglein-3 (Dsg3) adhesion protein is the main target of autoantibodies and autoreactive T cells in Pemphigus vulgaris (PV) autoimmune skin disorder. Several mapping studies of Dsg3 T cell epitope regions were performed, and based on those data, we designed and synthesized four peptide series corresponding to Dsg3 T cell epitope regions. Each peptide series consists of a 17mer full-length peptide (Dsg3/189-205, Dsg3/206-222, Dsg3/342-358, and Dsg3/761-777) and its N-terminally truncated derivatives, resulting in 15 peptides altogether. The peptides were prepared on solid phase and were chemically characterized. In order to establish a structure-activity relationship, the solution conformation of the synthetic peptides has been investigated using electronic circular dichroism spectroscopy. The in vitro T cell stimulating efficacy of the peptides has been determined on peripheral blood mononuclear cells isolated from whole blood of PV patients and also from healthy donors. After 20 h of stimulation, the interferon (IFN)-γ content of the supernatants was measured by enzyme-linked immunosorbent assay. In the in vitro conditions, peptides were stable and non-cytotoxic. The in vitro IFN-γ production profile of healthy donors and PV patients, induced by peptides as synthetic antigens, was markedly different. The most unambiguous differences were observed after stimulation with 17mer peptide Dsg3/342-358, and three truncated derivatives from two other peptide series, namely, peptides Dsg3/192-205, Dsg3/763-777, and Dsg3/764-777. Comparative analysis of in vitro activity and the capability of oligopeptides to form ordered or unordered secondary structure showed that peptides bearing high solvent sensibility and backbone flexibility were the most capable to distinguish between healthy and PV donors. PMID:26250896

  6. Acarbose, lente carbohydrate, and prebiotics promote metabolic health and longevity by stimulating intestinal production of GLP-1.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2015-01-01

    The α-glucosidase inhibitor acarbose, which slows carbohydrate digestion and blunts postprandial rises in plasma glucose, has long been used to treat patients with type 2 diabetes or glucose intolerance. Like metformin, acarbose tends to aid weight control, postpone onset of diabetes and decrease risk for cardiovascular events. Acarbose treatment can favourably affect blood pressure, serum lipids, platelet aggregation, progression of carotid intima-media thickness and postprandial endothelial dysfunction. In mice, lifetime acarbose feeding can increase median and maximal lifespan-an effect associated with increased plasma levels of fibroblast growth factor 21 (FGF21) and decreased levels of insulin-like growth factor-I (IGF-I). There is growing reason to suspect that an upregulation of fasting and postprandial production of glucagon-like peptide-1 (GLP-1)-stemming from increased delivery of carbohydrate to L cells in the distal intestinal tract-is largely responsible for the versatile health protection conferred by acarbose. Indeed, GLP-1 exerts protective effects on vascular endothelium, the liver, the heart, pancreatic β cells, and the brain which can rationalise many of the benefits reported with acarbose. And GLP-1 may act on the liver to modulate its production of FGF21 and IGF-I, thereby promoting longevity. The benefits of acarbose are likely mimicked by diets featuring slowly-digested 'lente' carbohydrate, and by certain nutraceuticals which can slow carbohydrate absorption. Prebiotics that promote colonic generation of short-chain fatty acids represent an alternative strategy for boosting intestinal GLP-1 production. The health benefits of all these measures presumably would be potentiated by concurrent use of dipeptidyl peptidase 4 inhibitors, which slow the proteolysis of GLP-1 in the blood. PMID:25685364

  7. An Arg-Gly-Asp peptide stimulates Ca2+ efflux from osteoclast precursors through a novel mechanism

    NASA Technical Reports Server (NTRS)

    Yamakawa, K.; Duncan, R.; Hruska, K. A.

    1994-01-01

    We examined the effect of a peptide containing the Arg-Gly-Asp (RGD) sequence on 45Ca2+ efflux from osteoclast precursors. 45Ca(2+)-loaded osteoclast precursors were treated with GRGDSP (170 microM) for 10 min after 30 min of basal perfusion with a bicarbonate-containing buffer. GRGDSP significantly increased fractional efflux of Ca2+ from treated cells compared with vehicle-treated cells (P < 0.01) or cells treated with up to 200 micrograms/ml of a control peptide containing GRGESP. The effect of RGD was sustained for 15 min after the peptide was removed from the perfusate, but control levels of Ca2+ efflux returned by 1 h. The Ca2+ efflux effect of GRGDSP was most likely due to activation of the plasma membrane Ca(2+)-adenosinetriphosphatase (Ca(2+)-ATPase) pump, as indicated by its inhibition with vanadate and a calmodulin antagonist, N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide, and the absence of an effect of Na+/Ca2+ exchange inhibition. An inhibitor of cyclic nucleotide-dependent protein kinases, N-[2-(methylamino)ethyl]-5-isoquinoline-sulfonamide (0.1 mM), failed to inhibit GRGDSP-stimulated Ca2+ efflux. However, genistein and herbimycin A, inhibitors of protein-tyrosine kinases, blocked Ca2+ efflux stimulated by GRGDSP. The results indicate that RGD sequences of matrix proteins may stimulate Ca2+ efflux from osteoclasts through activation of protein-tyrosine kinases and suggest that GRGDSP-stimulated Ca2+ efflux is mediated via the plasma membrane Ca(2+)-ATPase.

  8. Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3-based peptide mimetic

    SciTech Connect

    Avdic, Vanja; Zhang, Pamela; Lanouette, Sylvain; Voronova, Anastassia; Skerjanc, Ilona; Couture, Jean-Francois

    2011-08-24

    The SET1 family of methyltransferases carries out the bulk of histone H3 Lys-4 methylation in vivo. One of the common features of this family is the regulation of their methyltransferase activity by a tripartite complex composed of WDR5, RbBP5, and Ash2L. To selectively probe the role of the SET1 family of methyltransferases, we have developed a library of histone H3 peptide mimetics and report herein the characterization of an N{alpha} acetylated form of histone H3 peptide (N{alpha}H3). Binding and inhibition studies reveal that the addition of an acetyl moiety to the N terminus of histone H3 significantly enhances its binding to WDR5 and prevents the stimulation of MLL1 methyltransferase activity by the WDR5-RbBP5-Ash2L complex. The crystal structure of N{alpha}H3 in complex with WDR5 reveals that a high-affinity hydrophobic pocket accommodates the binding of the acetyl moiety. These results provide the structural basis to control WDR5-RbBP5-Ash2L-MLL1 activity and a tool to manipulate stem cell differentiation programs.-Avdic, V., Zhang, P., Lanouette, S., Voronova, A., Skerjanc, I., Couture, J.-F. Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3-based peptide mimetic.

  9. Relationship between stimulated phosphatidic acid production and inositol lipid hydrolysis in intestinal longitudinal smooth muscle from guinea pig.

    PubMed Central

    Mallows, R S; Bolton, T B

    1987-01-01

    Accumulation of [32P]phosphatidic acid (PA) and total [3H]inositol phosphates (IPs) was measured in the longitudinal smooth-muscle layer from guinea-pig small intestine. Stimulation with carbachol, histamine and substance P produced increases in accumulation of both [3H]IPs and [32P]PA over the same concentration range. The increase in [32P]PA accumulation in response to carbachol (1 microM-0.1 mM) was inhibited in the presence of atropine (0.5 microM). Buffering the external free [Ca2+] to 10 nM did not prevent the carbachol-stimulated increase in [32P]PA accumulation. Carbachol and Ca2+ appear to act synergistically to increase accumulation of [32P]PA. In contrast, although incubation with noradrenaline also increased accumulation of [3H]IPs, no increase in accumulation of [32P]PA could be detected. These results suggest that an increase in formation of IPs is not necessarily accompanied by an increase in PA formation, and imply the existence of receptor-modulated pathways regulating PA concentrations other than by phospholipase-C-catalysed inositol phospholipid hydrolysis. PMID:2451504

  10. Lactobacillus acidophilus stimulates intestinal P-glycoprotein expression via a c-Fos/c-Jun-dependent mechanism in intestinal epithelial cells.

    PubMed

    Priyamvada, Shubha; Anbazhagan, Arivarasu N; Kumar, Anoop; Soni, Vikas; Alrefai, Waddah A; Gill, Ravinder K; Dudeja, Pradeep K; Saksena, Seema

    2016-04-15

    Our previous studies showed that Lactobacillus acidophilus (LA) culture supernatant (CS) increased P-glycoprotein [Pgp/multidrug resistance 1 (MDR1)] function, expression, and promoter activity in Caco-2 cells. The current studies were designed to elucidate the molecular mechanisms mediating the stimulatory effects of LA CS on Pgp promoter activity. Deletion analysis indicated that the LA CS response element(s) is located in the -172/+428-bp region, and sequence analysis of this region revealed three potential binding sites for c-Fos or c-Jun: proximal activating protein (AP) 1a (-119/-98 bp), distal AP1b (-99/-78 bp), and AP1c (+175/+196 bp). LA CS (24 h) showed an approximately twofold increase in the protein expression of c-Fos and c-Jun in Caco-2 cells. Electrophoretic mobility shift assay showed that LA CS markedly increased the binding of Caco-2 nuclear proteins to AP1a and AP1b, but not AP1c. The DNA-protein complex was completely eliminated by c-Fos antibody, while c-Jun antibody partially eliminated the complex. Chromatin immunoprecipitation analysis also showed that LA CS enhanced the association of c-Fos and c-Jun (by ∼4- and 1.5-fold, respectively) with endogenous Pgp promoter in Caco-2 cells (p-172/+1). Interestingly, overexpression of c-Fos or c-Jun activated Pgp promoter by nearly twofold each. This increase was further enhanced (∼14-fold) when c-Fos and c-Jun were simultaneously overexpressed, suggesting that the presence of one of these transcription factors potentiates the effect of the other. These studies, for the first time, provide evidence for the involvement of c-Fos/c-Jun in stimulation of Pgp gene expression by LA CS in the human intestine. PMID:26867563

  11. Melanoma Therapy with Rhenium-Cyclized Alpha Melanocyte Stimulating Hormone Peptide Analogs

    SciTech Connect

    Thomas P Quinn

    2005-11-22

    Malignant melanoma is the 6th most commonly diagnosed cancer with increasing incidence in the United States. It is estimated that 54,200 cases of malignant melanoma will be newly diagnosed and 7,600 cases of death will occur in the United States in the year 2003 (1). At the present time, more than 1.3% of Americans will develop malignant melanoma during their lifetime (2). The average survival for patients with metastatic melanoma is about 6-9 months (3). Moreover, metastatic melanoma deposits are resistant to conventional chemotherapy and external beam radiation therapy (3). Systematic chemotherapy is the primary therapeutic approach to treat patients with metastatic melanoma. Dacarbazine is the only single chemotherapy agent approved by FDA for metastatic melanoma treatment (5). However, the response rate to Dacarbazine is only approximately 20% (6). Therefore, there is a great need to develop novel treatment approaches for metastatic melanoma. The global goal of this research program is the rational design, characterization and validation of melanoma imaging and therapeutic radiopharmaceuticals. Significant progress has been made in the design and characterization of metal-cyclized radiolabeled alpha-melanocyte stimulating hormone peptides. Therapy studies with {sup 188}Re-CCMSH demonstrated the therapeutic efficacy of the receptor-targeted treatment in murine and human melanoma bearing mice (previous progress report). Dosimetry calculations, based on biodistribution data, indicated that a significant dose was delivered to the tumor. However, {sup 188}Re is a very energetic beta-particle emitter. The longer-range beta-particles theoretically would be better for larger tumors. In the treatment of melanoma, the larger primary tumor is usually surgically removed leaving metastatic disease as the focus of targeted radiotherapy. Isotopes with lower beta-energies and/or shorter particle lengths should be better suited for targeting metastases. The {sup 177}Lu

  12. Bile Acid-regulated Peroxisome Proliferator-activated Receptor-α (PPARα) Activity Underlies Circadian Expression of Intestinal Peptide Absorption Transporter PepT1/Slc15a1*

    PubMed Central

    Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro

    2014-01-01

    Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. PMID:25016014

  13. Bile acid-regulated peroxisome proliferator-activated receptor-α (PPARα) activity underlies circadian expression of intestinal peptide absorption transporter PepT1/Slc15a1.

    PubMed

    Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro

    2014-09-01

    Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. PMID:25016014

  14. Protective effect of vasoactive intestinal peptide on bone destruction in the collagen-induced arthritis model of rheumatoid arthritis.

    PubMed

    Juarranz, Yasmina; Abad, Catalina; Martinez, Carmen; Arranz, Alicia; Gutierrez-Cañas, Irene; Rosignoli, Florencia; Gomariz, Rosa P; Leceta, Javier

    2005-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology, characterized by the presence of inflammatory synovitis accompanied by destruction of joint cartilage and bone. Treatment with vasoactive intestinal peptide (VIP) prevents experimental arthritis in animal models by downregulation of both autoimmune and inflammatory components of the disease. The aim of this study was to characterize the protective effect of VIP on bone erosion in collagen-induced arthritis (CIA) in mice. We have studied the expression of different mediators implicated in bone homeostasis, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), receptor activator of nuclear factor-kappaB (RANK), receptor activator of nuclear factor-kappaB ligand (RANKL), osteoprotegerin (OPG), IL-1, IL-4, IL-6, IL-10, IL-11 and IL-17. Circulating cytokine levels were assessed by ELISA and the local expression of mediators were determined by RT-PCR in mRNA extracts from joints. VIP treatment resulted in decreased levels of circulating IL-6, IL-1beta and TNFalpha, and increased levels of IL-4 and IL-10. CIA-mice treated with VIP presented a decrease in mRNA expression of IL-17, IL-11 in the joints. The ratio of RANKL to OPG decreased drastically in the joint after VIP treatment, which correlated with an increase in levels of circulating OPG in CIA mice treated with VIP. In addition, VIP treatment decreased the expression of mRNA for RANK, iNOS and COX-2. To investigate the molecular mechanisms involved, we tested the activity of NFkappaB and AP-1, two transcriptional factors closely related to joint erosion, by EMSA in synovial cells from CIA mice. VIP treatment in vivo was able to affect the transcriptional activity of both factors. Our data indicate that VIP is a viable candidate for the development of treatments for RA. PMID:16207319

  15. Role of the Intestinal Peptide Transporter PEPT1 in Oseltamivir Absorption: In Vitro and In Vivo Studies

    PubMed Central

    Poirier, Agnès; Belli, Sara; Funk, Christoph; Otteneder, Michael B.; Portmann, Renée; Heinig, Katja; Prinssen, Eric; Lazic, Stanley E.; Rayner, Craig R.; Hoffmann, Gerhard; Singer, Thomas; Smith, David E.

    2012-01-01

    It was reported that oseltamivir (Tamiflu) absorption was mediated by human peptide transporter (hPEPT) 1. Understanding the exact mechanism(s) of absorption is important in the context of drug-drug and diet-drug interactions. Hence, we investigated the mechanism governing the intestinal absorption of oseltamivir and its active metabolite (oseltamivir carboxylate) in wild-type [Chinese hamster ovary (CHO)-K1] and hPEPT1-transfected cells (CHO-PEPT1), in pharmacokinetic studies in juvenile and adult rats, and in healthy volunteers. In vitro cell culture studies showed that the intracellular accumulation of oseltamivir and its carboxylate into CHO-PEPT1 and CHO-K1 was always similar under a variety of experimental conditions, demonstrating that these compounds are not substrates of hPEPT1. Furthermore, neither oseltamivir nor its active metabolite was capable of inhibiting Gly-Sar uptake in CHO-PEPT1 cells. In vivo pharmacokinetic studies in juvenile and adult rats showed that the disposition of oseltamivir and oseltamivir carboxylate, after oral administration of oseltamivir, was sensitive to the feed status but insensitive to the presence of milk and Gly-Sar. Moreover, oseltamivir and oseltamivir carboxylate exhibited significantly higher exposure in rats under fasted conditions than under fed conditions. In humans, oral dosing after a high-fat meal resulted in a statistically significant but moderate lower exposure than after an overnight fasting. This change has no clinical implications. Taken together, the results do not implicate either rat Pept1 or hPEPT1 in the oral absorption of oseltamivir. PMID:22584254

  16. Role of the intestinal peptide transporter PEPT1 in oseltamivir absorption: in vitro and in vivo studies.

    PubMed

    Poirier, Agnès; Belli, Sara; Funk, Christoph; Otteneder, Michael B; Portmann, Renée; Heinig, Katja; Prinssen, Eric; Lazic, Stanley E; Rayner, Craig R; Hoffmann, Gerhard; Singer, Thomas; Smith, David E; Schuler, Franz

    2012-08-01

    It was reported that oseltamivir (Tamiflu) absorption was mediated by human peptide transporter (hPEPT) 1. Understanding the exact mechanism(s) of absorption is important in the context of drug-drug and diet-drug interactions. Hence, we investigated the mechanism governing the intestinal absorption of oseltamivir and its active metabolite (oseltamivir carboxylate) in wild-type [Chinese hamster ovary (CHO)-K1] and hPEPT1-transfected cells (CHO-PEPT1), in pharmacokinetic studies in juvenile and adult rats, and in healthy volunteers. In vitro cell culture studies showed that the intracellular accumulation of oseltamivir and its carboxylate into CHO-PEPT1 and CHO-K1 was always similar under a variety of experimental conditions, demonstrating that these compounds are not substrates of hPEPT1. Furthermore, neither oseltamivir nor its active metabolite was capable of inhibiting Gly-Sar uptake in CHO-PEPT1 cells. In vivo pharmacokinetic studies in juvenile and adult rats showed that the disposition of oseltamivir and oseltamivir carboxylate, after oral administration of oseltamivir, was sensitive to the feed status but insensitive to the presence of milk and Gly-Sar. Moreover, oseltamivir and oseltamivir carboxylate exhibited significantly higher exposure in rats under fasted conditions than under fed conditions. In humans, oral dosing after a high-fat meal resulted in a statistically significant but moderate lower exposure than after an overnight fasting. This change has no clinical implications. Taken together, the results do not implicate either rat Pept1 or hPEPT1 in the oral absorption of oseltamivir. PMID:22584254

  17. Species-Dependent Uptake of Glycylsarcosine but Not Oseltamivir in Pichia pastoris Expressing the Rat, Mouse, and Human Intestinal Peptide Transporter PEPT1

    PubMed Central

    Hu, Yongjun; Chen, Xiaomei

    2012-01-01

    The purpose of this study was to determine whether glycylsarcosine (a model dipeptide) and oseltamivir (an antiviral prodrug) exhibited a species-dependent uptake in yeast Pichia pastoris expressing the rat, mouse, and human homologs of PEPT1. Experiments were performed with [3H]glycylsarcosine (GlySar) in yeast P. pastoris expressing human, mouse, and rat peptide transporter 1 (PEPT1), in which uptake was examined as a function of time, concentration, potential inhibitors, and the dose-response inhibition of GlySar by oseltamivir. Studies with [14C]oseltamivir were also performed under identical experimental conditions. We found that GlySar exhibited saturable uptake in all three species, with Km values for human (0.86 mM) > mouse (0.30 mM) > rat (0.16 mM). GlySar uptake in the yeast transformants was specific for peptides (glycylproline) and peptide-like drugs (cefadroxil, cephradine, and valacyclovir), but was unaffected by glycine, l-histidine, cefazolin, cephalothin, cephapirin, acyclovir, 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid, tetraethylammonium, and elacridar. Although oseltamivir caused a dose-dependent inhibition of GlySar uptake [IC50 values for human (27.4 mM) > rat (18.3 mM) > mouse (10.7 mM)], the clinical relevance of this interaction would be very low in humans. Of importance, oseltamivir was not a substrate for the intestinal PEPT1 transporter in yeast expressing the three mammalian species tested. Instead, the prodrug exhibited nonspecific binding to the yeast vector and PEPT1 transformants. Finally, the mouse appeared to be a better animal model than the rat for exploring the intestinal absorption and pharmacokinetics of peptides and peptide-like drugs in human. PMID:22490229

  18. Probiotics stimulate enterocyte migration and microbial diversity in the neonatal mouse intestine.

    PubMed

    Preidis, Geoffrey A; Saulnier, Delphine M; Blutt, Sarah E; Mistretta, Toni-Ann; Riehle, Kevin P; Major, Angela M; Venable, Susan F; Finegold, Milton J; Petrosino, Joseph F; Conner, Margaret E; Versalovic, James

    2012-05-01

    Beneficial microbes and probiotics show promise for the treatment of pediatric gastrointestinal diseases. However, basic mechanisms of probiosis are not well understood, and most investigations have been performed in germ-free or microbiome-depleted animals. We sought to functionally characterize probiotic-host interactions in the context of normal early development. Outbred CD1 neonatal mice were orally gavaged with one of two strains of human-derived Lactobacillus reuteri or an equal volume of vehicle. Transcriptome analysis was performed on enterocyte RNA isolated by laser-capture microdissection. Enterocyte migration and proliferation were assessed by labeling cells with 5-bromo-2'-deoxyuridine, and fecal microbial community composition was determined by 16S metagenomic sequencing. Probiotic ingestion altered gene expression in multiple canonical pathways involving cell motility. L. reuteri strain DSM 17938 dramatically increased enterocyte migration (3-fold), proliferation (34%), and crypt height (29%) compared to vehicle-treated mice, whereas strain ATCC PTA 6475 increased cell migration (2-fold) without affecting crypt proliferative activity. In addition, both probiotic strains increased the phylogenetic diversity and evenness between taxa of the fecal microbiome 24 h after a single probiotic gavage. These experiments identify two targets of probiosis in early development, the intestinal epithelium and the gut microbiome, and suggest novel mechanisms for probiotic strain-specific effects. PMID:22267340

  19. Elastin peptides prepared from piscine and mammalian elastic tissues inhibit collagen-induced platelet aggregation and stimulate migration and proliferation of human skin fibroblasts.

    PubMed

    Shiratsuchi, Eri; Ura, Megumi; Nakaba, Misako; Maeda, Iori; Okamoto, Kouji

    2010-11-01

    We obtained pure elastin peptides from bovine ligamentum nuchae, porcine aorta, and bonito bulbus arteriosus. The inhibitory activity of these elastin peptides on platelet aggregation induced by collagen and the migratory and proliferative responsivenesses of human skin fibroblasts to these elastin peptides were examined. All of bonito, bovine, and porcine elastin peptides found to inhibit platelet aggregation, but bonito elastin peptides showed a higher inhibitory activity than bovine and porcine elastin peptides did. All elastin peptides enhanced the proliferation of fibroblasts 3.5- to 4.5-fold at a concentration of 10 µg/ml. Bovine and porcine elastin peptides stimulated the migration of fibroblasts, with the optimal response occurring at 10(-1) µg/ml, while maximal response was at 10(2) µg/ml for bonito elastin peptides. Furthermore, pretreatment of fibroblasts by lactose depressed their ability to migrate in response to all elastin peptides, suggesting the involvement of elastin receptor in cell response. These results suggest that both mammalian and piscine elastin peptides can be applied as useful biomaterials in which elasticity, antithrombotic property, and the enhancement of cell migration and proliferation are required. PMID:20853312

  20. Inhibitory effects and mechanisms of intestinal electrical stimulation on gastric tone, antral contractions, pyloric tone, and gastric emptying in dogs

    PubMed Central

    Zhao, Xiaotuan; Yin, Jieyun; Chen, Jihong; Song, Gengqing; Wang, Lijie; Zhu, Hongbing; Brining, Doug; Chen, Jiande D. Z.

    2009-01-01

    The aim of this study was to investigate the effects and mechanisms of intestinal electrical stimulation (IES) on gastric tone, antral and pyloric contractions, and gastric emptying in dogs. Female hound dogs were equipped with a duodenal or gastric cannula, and one pair of serosal electrodes was implanted in the small intestine. The study consisted of five different experiments. Liquid gastric emptying was assessed by collection of chyme from the duodenal cannula in a number of sessions with and without IES and with and without N-nitro-l-arginine (l-NNA). Postprandial antral and pyloric contractions were measured with and without IES and in the absence and presence of l-NNA or phentolamine by placement of a manometric catheter into the antrum and pylorus via the duodenal cannula. Gastric tone was assessed by measurement of gastric volume at a constant pressure. Gastric emptying was substantially and significantly delayed by IES or l-NNA compared with the control session. IES-induced delay of gastric emptying became normal with addition of l-NNA. IES reduced gastric tone, which was blocked by l-NNA. IES also inhibited antral contractions (frequency and amplitude), and this inhibitory effect was not blocked by l-NNA but was blocked by phentolamine. IES alone did not affect pyloric tone or resistance, but IES + l-NNA decreased pyloric tone. In conclusion, IES reduces gastric tone via the nitrergic pathway, inhibits antral contractions via the adrenergic pathway, does not affect pyloric tone, and delays liquid gastric emptying. IES-induced delay of gastric emptying is attributed to its inhibitory effects on gastric motility. PMID:18945955

  1. Nucleobindin-1 encodes a nesfatin-1-like peptide that stimulates insulin secretion.

    PubMed

    Ramesh, Naresh; Mohan, Haneesha; Unniappan, Suraj

    2015-05-15

    Nesfatin-1 (82 amino acid) is an anorexigenic and insulinotropic peptide encoded in a secreted precursor, nucleobindin-2 (NUCB2). Nucleobindin-1 (NUCB1) is a protein with very high sequence similarity to NUCB2. We hypothesized that a nesfatin-1 like peptide (NLP) is encoded in NUCB1, and this peptide is biologically active. In silico analysis found a signal peptide cleavage site at position 25 (Arginine) and 26 (Valine) preceding the NLP region in NUCB1 sequence, and potential proprotein convertase cleavage sites at Lys-Arg (KR), forming a 77 amino acid NLP. RT-PCR studies found NUCB1 mRNA in both pancreas and MIN6 cells. NUCB1-like immunoreactivity was detected in mouse insulinoma (MIN6) cells, and pancreatic islet beta cells of mice. In order to determine the biological activity of NLP, MIN6 cells were incubated with synthetic rat NLP. NLP (10nM and 100nM) upregulated preproinsulin mRNA expression and insulin secretion at 1h post-incubation. In identical experiments using MIN6 cells, a scrambled peptide based on the NLP sequence did not elicit any effects on preproinsulin mRNA expression or insulin secretion. From this result, it is clear that an intact NLP sequence is required for its biological activity. NLP appears as another endogenous insulinotropic peptide encoded in NUCB1. PMID:25907657

  2. Ingramon, a Peptide Inhibitor of MCP-1 Chemokine, Reduces Migration of Blood Monocytes Stimulated by Glioma-Conditioned Medium.

    PubMed

    Krasnikova, T L; Arefieva, T I; Pylaeva, E A; Sidorova, M V

    2016-02-01

    Malignant gliomas are most common and fatal primary brain tumors. In addition to neoplastic cells, the tumor tissue contains microglial cells and monocyte-derived macrophages. It is an established fact that monocyte recruiting promotes the tumor growth and dissemination. Monocyte chemotactic protein-1 (MCP-1) is the major attractant for monocytes. We have previously synthesized an MCP-1 antagonist ingramon, a synthetic peptide fragment (65-76) of this chemokine. In the present study, we demonstrated that glioma-conditioned medium contains MCP-1 and stimulates migration of blood monocytes. Ingramon inhibited the effect of glioma-conditioned medium on monocyte migration. PMID:26906197

  3. Stimulation of glucagon-like peptide-1 secretion downstream of the ligand-gated ion channel TRPA1

    PubMed Central

    Emery, Edward C.; Diakogiannaki, Eleftheria; Gentry, Clive; Psichas, Arianna; Habib, Abdella M.; Bevan, Stuart; Fischer, Michael J. M.; Reimann, Frank; Gribble, Fiona M.

    2015-01-01

    Stimulus-coupled incretin secretion from enteroendocrine cells plays a fundamental role in glucose homeostasis, and could be targeted for the treatment of type-2 diabetes. Here, we investigated the expression and function of transient receptor potential (TRP) ion channels in enteroendocrine L-cells producing glucagon-like peptide-1 (GLP-1). By microarray and qPCR analysis we identified trpa1 as an L-cell enriched transcript in the small intestine. Calcium imaging of primary L-cells and the model cell line GLUTag revealed responses triggered by the TRPA1 agonists allyl-isothiocyanate (AITC, mustard oil), carvacrol and polyunsaturated fatty acids, that were blocked by TRPA1 antagonists. Electrophysiology in GLUTag cells showed that carvacrol induced a current with characteristics typical of TRPA1 and triggered the firing of action potentials. TRPA1 activation caused an increase in GLP-1 secretion from primary murine intestinal cultures and GLUTag cells; an effect that was abolished in cultures from trpa1−/− mice or by pharmacological TRPA1 inhibition. These findings present TRPA1 as a novel sensory mechanism in enteroendocrine L-cells, coupled to the facilitation of GLP-1 release, which may be exploitable as a target for treating diabetes. PMID:25325736

  4. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion.

    PubMed

    Temel, Ryan E; Brown, J Mark

    2015-07-01

    Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high-density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention. PMID:25930707

  5. A New Model of Reverse Cholesterol Transport: EnTICEing Strategies to Stimulate Intestinal Cholesterol Excretion

    PubMed Central

    Temel, Ryan E.; Brown, J. Mark

    2015-01-01

    Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention. PMID:25930707

  6. Role of fatty acid transport protein 4 in oleic acid-induced glucagon-like peptide-1 secretion from murine intestinal L cells

    PubMed Central

    Poreba, M. A.; Dong, C. X.; Li, S. K.; Stahl, A.; Miner, J. H.

    2012-01-01

    The antidiabetic intestinal L cell hormone glucagon-like peptide-1 (GLP-1) enhances glucose-dependent insulin secretion and inhibits gastric emptying. GLP-1 secretion is stimulated by luminal oleic acid (OA), which crosses the cell membrane by an unknown mechanism. We hypothesized that L cell fatty acid transport proteins (FATPs) are essential for OA-induced GLP-1 release. Therefore, the murine GLUTag L cell model was used for immunoblotting, [3H]OA uptake assay, and GLP-1 secretion assay as determined by radioimmunoassay following treatment with OA ± phloretin, sulfo-N-succinimidyl oleate, or siRNA against FATP4. FATP4−/− and cluster-of-differentiation 36 (CD36)−/− mice received intraileal OA, and plasma GLP-1 was measured by sandwich immunoassay. GLUTag cells were found to express CD36, FATP1, FATP3, and FATP4. The cells demonstrated specific 3H[OA] uptake that was dose-dependently inhibited by 500 and 1,000 μM unlabeled OA (P < 0.001). Cell viability was not altered by treatment with OA. Phloretin and sulfo-N-succinimidyl oleate, inhibitors of protein-mediated transport and CD36, respectively, also decreased [3H]OA uptake, as did knockdown of FATP4 by siRNA transfection (P < 0.05–0.001). OA dose-dependently increased GLP-1 secretion at 500 and 1,000 μM (P < 0.001), whereas phloretin, sulfo-N-succinimidyl oleate, and FATP4 knockdown decreased this response (P < 0.05–0.01). FATP4−/− mice displayed lower plasma GLP-1 at 60 min in response to intraileal OA (P < 0.05), whereas, unexpectedly, CD36−/− mice displayed higher basal GLP-1 levels (P < 0.01) but a normal response to intraileal OA. Together, these findings demonstrate a key role for FATP4 in OA-induced GLP-1 secretion from the murine L cell in vitro and in vivo, whereas the precise role of CD36 remains unclear. PMID:22871340

  7. Proteolytic degradation and deactivation of amphibian skin peptides obtained by electrical stimulation of their dorsal glands.

    PubMed

    Samgina, Tatiana Yu; Tolpina, Miriam I; Hakalehto, Elias; Artemenko, Konstantin A; Bergquist, Jonas; Lebedev, Albert T

    2016-05-01

    Amphibians are among the oldest creatures on our planet. Their only defensive weapon efficient against microorganisms and predators involves their skin secretion. The wide range of biological activities of the peptides in the skin secretion of amphibians makes these compounds rather interesting for generation of prospective pharmaceuticals. The first step in studying these molecules requires their structures to be established. Mass spectrometry is the most powerful tool for this purpose. The sampling and sample preparation stages preceding mass spectrometry experiments appear to be rather crucial. The results obtained here demonstrate that these preparation procedures might lead to partial or complete loss of the bioactive peptides in the secretion. Five minutes in water was enough to completely destroy all of the bioactive peptides in the skin secretion of the marsh frog (Rana ridibunda); even immediate addition of methanol to the water solution of the peptides did not prevent partial destruction. Concerted effort should be directed towards development of the most efficient procedure to keep the secreted peptides intact. Graphical Abstract ᅟ. PMID:26975184

  8. Interaction of myenteric neurons and extrinsic nerves in the intestinal inhibitory response induced by mesenteric nerve stimulation.

    PubMed

    Yamasato, T; Nakayama, S

    1991-04-01

    Effects of the mesenteric nerve stimulation (MNS) on the twitch contraction induced by field stimulation were investigated regarding the relationship between myenteric neurons and extrinsic cholinergic nerves in the guinea-pig mesenteric nerve-ileal preparation. The twitch contraction was inhibited after MNS. The inhibition of the twitch contraction after MNS was induced twice, just after MNS (1st inhibition) and 2-3 min later (2nd inhibition) (type I), or once, just after MNS (1st inhibition) (type II), in recovery course of twitch contraction for 6-8 min. The 1st inhibition was slightly decreased by guanethidine and hexamethonium. The inhibitory response (1st inhibition) in both types I and II was recovered to the control level by pretreatment with naloxone (recovered twitch contraction), but the late inhibitory response (2nd inhibition) was markedly observed after 2-3 min in types I and II. Either the 1st or the 2nd inhibition was not altered by capsaicin, desensitization to calcitonin gene-related polypeptide (CGRP), vasoactive intestinal polypeptide (VIP), somatostatin, or galanin. The recovered twitch contraction in types I and II was decreased by CGRP-desensitization, or capsaicin. These results suggest that the first inhibitory response was induced by enteric opioid neurons connected with extrinsic cholinergic nerves, but the 2nd inhibition was induced by unknown substances other than CGRP, VIP, somatostatin, and galanin. The twitch contraction may partly be induced by endogenous neurokinin-like substances. And, some CGRP containing neurons, which connect with extrinsic cholinergic nerves, probably activate the intrinsic excitatory neurons. PMID:1678243

  9. Brain Natriuretic Peptide Stimulates Lipid Metabolism through Its Receptor NPR1 and the Glycerolipid Metabolism Pathway in Chicken Adipocytes.

    PubMed

    Huang, H Y; Zhao, G P; Liu, R R; Li, Q H; Zheng, M Q; Li, S F; Liang, Z; Zhao, Z H; Wen, J

    2015-11-01

    Brain natriuretic peptide (BNP) is related to lipid metabolism in mammals, but its effect and the molecular mechanisms underlying it in chickens are incompletely understood. We found that the level of natriuretic peptide precursor B (NPPB, which encodes BNP) mRNA expression in high-abdominal-fat chicken groups was significantly higher than that of low-abdominal-fat groups. Partial correlations indicated that changes in the weight of abdominal fat were positively correlated with NPPB mRNA expression level. In vitro, compared with the control group, preadipocytes with NPPB interference showed reduced levels of proliferation, differentiation, and glycerin in media. Treatments of cells with BNP led to enhanced proliferation and differentiation of cells and glycerin concentration, and mRNA expression of its receptor natriuretic peptide receptor 1 (NPR1) was upregulated significantly. In cells exposed to BNP, 482 differentially expressed genes were identified compared with controls without BNP. Four genes known to be related to lipid metabolism (diacylglycerol kinase; lipase, endothelial; 1-acylglycerol-3-phosphate O-acyltransferase 1; and 1-acylglycerol-3-phosphate O-acyltransferase 2) were enriched in the glycerolipid metabolism pathway and expressed differentially. In conclusion, BNP stimulates the proliferation, differentiation, and lipolysis of preadipocytes through upregulation of the levels of expression of its receptor NPR1 and key genes enriched in the glycerolipid metabolic pathway. PMID:26463554

  10. Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts

    PubMed Central

    Chou, Ming-Lun; Chu, Chiung-Chih; Chen, Lih-Jen; Akita, Mitsuru; Li, Hsou-min

    2006-01-01

    Three components of the chloroplast protein translocon, Tic110, Hsp93 (ClpC), and Tic40, have been shown to be important for protein translocation across the inner envelope membrane into the stroma. We show the molecular interactions among these three components that facilitate processing and translocation of precursor proteins. Transit-peptide binding by Tic110 recruits Tic40 binding to Tic110, which in turn causes the release of transit peptides from Tic110, freeing the transit peptides for processing. The Tic40 C-terminal domain, which is homologous to the C terminus of cochaperones Sti1p/Hop and Hip but with no known function, stimulates adenosine triphosphate hydrolysis by Hsp93. Hsp93 dissociates from Tic40 in the presence of adenosine diphosphate, suggesting that Tic40 functions as an adenosine triphosphatase activation protein for Hsp93. Our data suggest that chloroplasts have evolved the Tic40 cochaperone to increase the efficiency of precursor processing and translocation. PMID:17158958

  11. Blood feeding and insulin-like peptide 3 stimulate proliferation of hemocytes in the mosquito Aedes aegypti.

    PubMed

    Castillo, Julio; Brown, Mark R; Strand, Michael R

    2011-10-01

    All vector mosquito species must feed on the blood of a vertebrate host to produce eggs. Multiple cycles of blood feeding also promote frequent contacts with hosts, which enhance the risk of exposure to infectious agents and disease transmission. Blood feeding triggers the release of insulin-like peptides (ILPs) from the brain of the mosquito Aedes aegypti, which regulate blood meal digestion and egg formation. In turn, hemocytes serve as the most important constitutive defense in mosquitoes against pathogens that enter the hemocoel. Prior studies indicated that blood feeding stimulates hemocytes to increase in abundance, but how this increase in abundance is regulated is unknown. Here, we determined that phagocytic granulocytes and oenocytoids express the A. aegypti insulin receptor (AaMIR). We then showed that: 1) decapitation of mosquitoes after blood feeding inhibited hemocyte proliferation, 2) a single dose of insulin-like peptide 3 (ILP3) sufficient to stimulate egg production rescued proliferation, and 3) knockdown of the AaMIR inhibited ILP3 rescue activity. Infection studies indicated that increased hemocyte abundance enhanced clearance of the bacterium Escherichia coli at lower levels of infection. Surprisingly, however, non-blood fed females better survived intermediate and high levels of E. coli infection than blood fed females. Taken together, our results reveal a previously unrecognized role for the insulin signaling pathway in regulating hemocyte proliferation. Our results also indicate that blood feeding enhances resistance to E. coli at lower levels of infection but reduces tolerance at higher levels of infection. PMID:21998579

  12. Structure and function of a peptide pheromone family that stimulate the vomeronasal sensory system in mice.

    PubMed

    Abe, Takayuki; Touhara, Kazushige

    2014-08-01

    Mammals use pheromones to communicate with other animals of the same species. In mice, the VNO (vomeronasal organ) has a pivotal role in pheromone detection. We discovered a 7 kDa peptide, ESP1 (exocrine-gland-secreting peptide 1), in tear fluids from male mice that enhances the sexual behaviour of female mice via the VNO. NMR studies demonstrate that ESP1 adopts a compact structure with a helical fold stabilized by an intramolecular disulfide bridge. Functional analysis in combination with docking simulation indicates that ESP1 is recognized by a specific G-protein-coupled vomeronasal receptor, V2Rp5, via charge-charge interactions in the large extracellular region of the receptor. ESP1 is a member of the ESP family, which comprises 38 homologous genes in mice, and some of these genes are expressed in a sex- or age-dependent manner. Most recently, ESP22 was found to be released specifically in juvenile tear fluids and to inhibit the sexual behaviour of adult male mice. These studies demonstrate that peptide pheromones are used for chemical communication in mice, and they indicate a structural basis for the narrowly tuned perception of mammalian peptide pheromones by vomeronasal receptors. PMID:25109971

  13. Chromanol 293B, an inhibitor of KCNQ1 channels, enhances glucose-stimulated insulin secretion and increases glucagon-like peptide-1 level in mice.

    PubMed

    Liu, Lijie; Wang, Fanfan; Lu, Haiying; Ren, Xiaomei; Zou, Jihong

    2014-01-01

    Glucose-stimulated insulin secretion (GSIS) is a highly regulated process involving complex interaction of multiple factors. Potassium voltage-gated channel subfamily KQT member 1 (KCNQ1) is a susceptibility gene for type 2 diabetes (T2D) and the risk alleles of the KCNQ1 gene appear to be associated with impaired insulin secretion. The role of KCNQ1 channel in insulin secretion has been explored by previous work in clonal pancreatic β-cells but has yet to be investigated in the context of primary islets as well as intact animals. Genetic studies suggest that altered incretin glucagon-like peptide-1 (GLP-1) secretion might be a potential link between KCNQ1 variants and impaired insulin secretion, but this hypothesis has not been verified so far. In the current study, we examined KCNQ1 expression in pancreas and intestine from normal mice and then investigated the effects of chromanol 293B, a KCNQ1 channel inhibitor, on insulin secretion in vitro and in vivo. By double-immunofluorescence staining, KCNQ1 was detected in insulin-positive β-cells and GLP-1-positive L-cells. Administration of chromanol 293B enhanced GSIS in cultured islets and intact animals. Along with the potentiated insulin secretion during oral glucose tolerance tests (OGTT), plasma GLP-1 level after gastric glucose load was increased in 293B treated mice. These data not only provided new evidence for the participation of KCNQ1 in GSIS at the level of pancreatic islet and intact animal but also indicated the potential linking role of GLP-1 between KCNQ1 and insulin secretion. PMID:25437377

  14. Hypergravity differentially modulates cGMP efflux in human melanocytic cells stimulated by nitric oxide and natriuretic peptides

    NASA Astrophysics Data System (ADS)

    Ivanova, K.; Stieber, C.; Lambers, B.; Block, I.; Krieg, R.; Wellmann, A.; Gerzer, R.

    Nitric oxide NO plays a key role in many patho physiologic processes including inflammation and skin cancer The diverse cellular effects of NO are mainly mediated by activation of the soluble guanylyl cyclase sGC isoform that leads to increases in intracellular cGMP levels whereas the membrane-bound isoforms serve as receptors for natriuretic peptides e g ANP In human skin epidermal melanocytes represent the principal cells for skin pigmentation by synthesizing the pigment melanin Melanin acts as a scavenger for free radicals that may arise during metabolic stress as a result of potentially harmful effects of the environment In previous studies we found that long-term exposure to hypergravity stimulated cGMP efflux in normal human melanocytes NHMs and non-metastatic melanoma cells at least partly by an enhanced expression of the multidrug resistance proteins MRP and cGMP transporters MRP4 5 The present study investigated whether hypergravity generated by centrifugal acceleration may modulate the cGMP efflux in NO-stimulated NHMs and melanoma cells MCs with different metastatic potential The NONOates PAPA-NO and DETA-NO were used as direct NO donors for cell stimulation In the presence of 0 1 mM DETA-NO t 1 2 sim 20 h long-term application of hypergravity up to 5 g for 24 h reduced intracellular cGMP levels by stimulating cGMP efflux in NHMs and non-metastatic MCs in comparison to 1 g whereas exposure to 5 g for 6 h in the presence of 0 1 mM PAPA-NO t 1 2 sim 30 min was not effective The hypergravity-stimulated

  15. Extracellular Life Cycle of ComS, the Competence-Stimulating Peptide of Streptococcus thermophilus

    PubMed Central

    Besset, Colette; Gitton, Christophe; Guillot, Alain; Fontaine, Laetitia; Hols, Pascal; Monnet, Véronique

    2013-01-01

    In streptococci, ComX is the alternative sigma factor controlling the transcription of the genes encoding the genetic transformation machinery. In Streptococcus thermophilus, comX transcription is controlled by a complex consisting of a transcriptional regulator of the Rgg family, ComR, and a signaling peptide, ComS, which controls ComR activity. Following its initial production, ComS is processed, secreted, and imported back into the cell by the Ami oligopeptide transporter. We characterized these steps and the partners interacting with ComS during its extracellular circuit in more detail. We identified the mature form of ComS and demonstrated the involvement of the membrane protease Eep in ComS processing. We found that ComS was secreted but probably not released into the extracellular medium. Natural competence was first discovered in a chemically defined medium without peptides. We show here that the presence of a high concentration of nutritional peptides in the medium prevents the triggering of competence. In milk, the ecological niche of S. thermophilus, competence was found to be functional, suggesting that the concentration of nutritional peptides was too low to interfere with ComR activation. The kinetics of expression of the comS, comR, and comX genes and of a late competence gene, dprA, in cultures inoculated at different initial densities revealed that the activation mechanism of ComR by ComS is more a timing device than a quorum-sensing mechanism sensu stricto. We concluded that the ComS extracellular circuit facilitates tight control over the triggering of competence in S. thermophilus. PMID:23396911

  16. A Lactobacillus rhamnosus GG-derived Soluble Protein, p40, Stimulates Ligand Release from Intestinal Epithelial Cells to Transactivate Epidermal Growth Factor Receptor*

    PubMed Central

    Yan, Fang; Liu, Liping; Dempsey, Peter J.; Tsai, Yu-Hwai; Raines, Elaine W.; Wilson, Carole L.; Cao, Hailong; Cao, Zheng; Liu, LinShu; Polk, D. Brent

    2013-01-01

    p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17−/− MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17−/− MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR. PMID:24043629

  17. Interferon-gamma increases expression of the di/tri-peptide transporter, h-PEPT1, and dipeptide transport in cultured human intestinal monolayers.

    PubMed

    Foster, David R; Landowski, Christopher P; Zheng, Xiaomei; Amidon, Gordon L; Welage, Lynda S

    2009-03-01

    The di/tri-peptide transporter h-PEPT1 plays an important role in the oral absorption of di/tri-peptides and numerous drugs. Inflammatory conditions may influence intestinal xenobiotic transporter function; however, the effects of inflammation on h-PEPT1 have not been well described. This study was conducted to determine the effects of the inflammatory cytokine interferon-gamma (IFN-gamma) on h-PEPT1 mediated dipeptide absorption. Caco-2 monolayers were grown on permeable supports. The effective apical-to-basolateral permeability (P(eff)) of glycylsarcosine (Gly-Sar) was measured following incubation with IFN-gamma or control media. Additional experiments were conducted at 4 degrees C, and with escalating concentrations of Gly-Sar. h-PEPT1 expression was determined using semiquantitative RT-PCR. IFN-gamma 50 ng/ml increased Gly-Sar P(eff) 28.6% compared to controls (p=0.03). In experiments conducted at 4 degrees C, Gly-Sar P(eff) decreased 39.6% in IFN-gamma treated cells (p=0.003) and 28.4% in controls (p=0.006). In controls and IFN-gamma treated cells, concentration dependent transport was seen with escalating concentrations of Gly-Sar. Compared to controls, IFN-gamma 50 and 100 ng/ml increased h-PEPT1 mRNA expression by 14.2% and 11.5%, respectively (p=0.019). In summary, IFN-gamma increases h-PEPT1 expression and permeation of the dipeptide Gly-Sar in Caco-2 monolayers. These findings imply that intestinal absorption of peptides and peptidomimetic drugs may be increased in certain inflammatory conditions. PMID:19084598

  18. A dimeric peptide with erythropoiesis-stimulating activity uniquely affects erythropoietin receptor ligation and cell surface expression.

    PubMed

    Verma, Rakesh; Green, Jennifer M; Schatz, Peter J; Wojchowski, Don M

    2016-08-01

    Erythropoiesis-stimulating agents (ESAs) that exert long-acting antianemia effects have been developed recently, but their mechanisms are poorly understood. Analyses reveal unique erythropoietin receptor (EPOR)-binding properties for one such ESA, the synthetic EPOR agonist peginesatide. Compared with recombinant human EPO and darbepoietin, peginesatide exhibited a slow on rate, but sustained EPOR residency and resistant displacement. In EPO-dependent human erythroid progenitor UT7epo cells, culture in peginesatide unexpectedly upmodulated endogenous cell surface EPOR levels with parallel increases in full-length EPOR-68K levels. These unique properties are suggested to contribute to the durable activity of this (and perhaps additional) dimeric peptide hematopoietic growth factor receptor agonist. PMID:27174804

  19. Reducing renal uptake of 90Y- and 177Lu-labeled alpha-melanocyte stimulating hormone peptide analogues

    SciTech Connect

    Miao, Yubin; Fisher, Darrell R.; Quinn, Thomas P.

    2006-06-15

    The purpose of this study was to improve the tumor-to-kidney uptake ratios of 90Y- and 177Lu-[1,2,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Re-Cys,D-Phe,Arg]alpha-melanocyte stimulating hormone (DOTA-RE(Arg)CCMSH), through coupling a negatively charged glutamic acid (Glu) to the peptide sequence. A new peptide of DOTA-Re(Glu,Arg)CCMSH was designed, synthesized and labeled with 90Y and 177Lu. Pharmacokinetics of 90Y- and 177Lu-DOTA-RE(Glu,Arg)CCNSH were determined in B16/F1 murine melanoma-bearing C57 mice. Both exhibited significantly less renal uptake than 90Y- and 177Lu-DOTA-Re(Arg)CCMSH at 30 min and at 2, 3, and 24 h after dose administration. The renal uptake values of 90Y- and 177Lu-DOTA-Re(Glu,Arg)CCMSH were 28.16% and 28.81% of those of 90Y- and 177Lu-DOTA-RE(Arg)CCMSH, respectively, at 4 hr post-injection. We also showed higher tumor-to-kidney uptake ratios 2.28 and 1.69 times that of 90Y- and 177Lu-DOTA-Re(Arg)CCMSH, respectively, at 4 h post-injection. The90Y- and 177Lu-DOTA-Re(Glu,Arg)CCMSH activity accumulation was low in normal organs except for kidneys. Coupling a negatively charged amino acid (Glu) to the CCMSH peptide sequence dramatically reduced the renal uptake values and increased the tumor-to-kidney uptake ratios of 90Y- and 177Lu-DOTA-Re(Glu,Arg)CCMSH, facilitating their potential applications as radiopharmaceuticals for targeted radionuclide therapy of melanoma.

  20. Endothelin-stimulated secretion of natriuretic peptides by rat atrial myocytes is mediated by endothelin A receptors.

    PubMed

    Thibault, G; Doubell, A F; Garcia, R; Larivière, R; Schiffrin, E L

    1994-03-01

    Endothelin (ET), a potent vasoconstrictor peptide, is known to enhance the secretion of atrial natriuretic factor (ANF) by the heart. In the present study, we investigated the potency of ET isopeptides to stimulate ANF and brain natriuretic peptide (BNP) secretion in primary cultures of neonatal atrial myocytes, and we characterized the receptor mediating these effects. All ET isopeptides caused a twofold increase of ANF and BNP secretion with the following order of potency: ET-1 approximately ET-2 > sarafotoxin 6b > ET-3. Secretion of the natriuretic peptides was blocked by BQ-123, an ETA-receptor antagonist, but was not affected by either IRL-1620 or [Ala1,3,11,15]ET-1, two ETB-receptor agonists. ET receptors were localized by autoradiography on the surface of atrial myocytes, indicating that contaminating cells were not responsible for 125I-ET-1 binding. Competition binding analyses were then used to assess the ET-receptor subtype on atrial myocyte membrane preparations. A high-affinity (100 pmol/L) binding site with high density (approximately 1500 fmol/mg) was found to preferentially bind the ET isopeptides in the following order: ET-1 > or = ET-2 > or = sarafotoxin 6b > ET-3. Binding was totally displaced by BQ-123 but not by IRL-1620. The ET binding site therefore had the characteristics of an ETA-like receptor. Analysis by cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that it possessed a molecular mass of approximately 50 kD. Northern blot analysis of both ETA- and ETB-receptor mRNAs allowed only the detection of the former, indicating that the ETB receptor may be expressed in very small amounts. These results demonstrate that ANF and BNP secretion by atrial myocytes is enhanced by ET via binding to an ETA-like receptor. PMID:8118954

  1. GH-releasing peptide-2 does not stimulate arginine vasopressin secretion in healthy men.

    PubMed

    Kamoi, Kyuzi; Minagawa, Shinichi; Kimura, Keita; Ishizawa, Masahiro; Ohara, Nobumasa; Uemura, Yasuyuki; Tsuchiya, Junpei

    2010-01-01

    Ghrelin has a stimulating effect on arginine vasopressin (AVP). However, it is not known whether GHRP-2, a synthetic ghrelin receptor agonist, also has a stimulating effect on AVP release in men. To determine whether the GHRP-2 test is useful for assessing AVP secretion, blood ACTH, GH, FSH, LH, PRL, TSH and AVP levels, as well as glucose, osmolality, sodium and hematocrit, were measured before and 15, 30, 45 and 60 min after an intravenous bolus of 100 microg GHRP-2 in 10 healthy men with and without fasting. Blood pressure was measured at 15-min intervals. AVP secretion was not stimulated by the GHRP-2 test with and without fasting. There were no significant differences in hematocrit, blood pressure and plasma osmolality before and after GFRP-2 injection, although significant (p<0.001) peak blood GH, and ACTH and PRL levels were observed 30 and 15 min after GHRP-2 injection with and without fasting, respectively, and the maximal peaks were significantly (p<0.05) higher with fasting than without fasting. These results suggest that AVP secretion is not stimulated by the GHRP-2 test both with and without fasting, though GH, ACTH and PRL levels were higher with than without fasting. PMID:19907099

  2. The selective non-peptidic delta opioid agonist SNC80 does not facilitate intracranial self-stimulation in rats

    PubMed Central

    Carmo, Gail Pereira Do; Folk, John E.; Rice, Kenner C.; Chartoff, Elena; Carlezon, William A.; Negus, S. Stevens

    2009-01-01

    Delta opioid receptor agonists are under development for a variety of clinical applications, and some findings in rats raise the possibility that agents with this mechanism have abuse liability. The present study assessed the effects of the non-peptidic delta opioid agonist SNC80 in an assay of intracranial self-stimulation (ICSS) in rats. ICSS was examined at multiple stimulation frequencies to permit generation of frequency-response rate curves and evaluation of curve shifts produced by experimental manipulations. Drug-induced leftward shifts in ICSS frequency-rate curves are often interpreted as evidence of abuse liability. However, SNC80 (1.0-10 mg/kg s.c.; 10-56 mg/kg i.p.) failed to alter ICSS frequency-rate curves at doses up to those that produced convulsions in the present study or other effects (e.g. antidepressant effects) in previous studies. For comparison, the monoamine releaser d-amphetamine (0.1-1.0 mg/kg, i.p.) and the kappa agonist U69,593 (0.1-0.56 mg/kg, i.p.) produced dose-dependent leftward and rightward shifts, respectively, in ICSS frequency-rate curves, confirming the sensitivity of the procedure to drug effects. ICSS frequency-rate curves were also shifted by two non-pharmacological manipulations (reductions in stimulus intensity and increases in response requirement). Thus, SNC80 failed to facilitate or attenuate ICSS-maintained responding under conditions in which other pharmacological and non-pharmacological manipulations were effective. These results suggest that non-peptidic delta opioid receptor agonists have negligible abuse-related effects in rats. PMID:19133255

  3. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA*

    PubMed Central

    Yordanova, Martina M.; Wu, Cheng; Andreev, Dmitry E.; Sachs, Matthew S.; Atkins, John F.

    2015-01-01

    The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3′ end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5′ and 3′ of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5′ of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5′ part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3′ part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3′ of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting. PMID:25998126

  4. Antisecretory Factor Peptide AF-16 Inhibits the Secreted Autotransporter Toxin-Stimulated Transcellular and Paracellular Passages of Fluid in Cultured Human Enterocyte-Like Cells

    PubMed Central

    Nicolas, Valérie

    2014-01-01

    Both the endogenous antisecretory factor (AF) protein and peptide AF-16, which has a sequence that matches that of the active N-terminal region of AF, inhibit the increase in the epithelial transport of fluid and electrolytes induced by bacterial toxins in animal and ex vivo models. We conducted a study to investigate the inhibitory effect of peptide AF-16 against the increase of transcellular passage and paracellular permeability promoted by the secreted autotransporter toxin (Sat) in a cultured cellular model of the human intestinal epithelial barrier. Peptide AF-16 produced a concentration-dependent inhibition of the Sat-induced increase in the formation of fluid domes, in the mucosal-to-serosal passage of d-[1-14C]mannitol, and in the rearrangements in the distribution and protein expression of the tight junction (TJ)-associated proteins ZO-1 and occludin in cultured human enterocyte-like Caco-2/TC7 cell monolayers. In addition, we show that peptide AF-16 also inhibits the cholera toxin-induced increase of transcellular passage and the Clostridium difficile toxin-induced effects on paracellular permeability and TJ protein organization in Caco-2/TC7 cell monolayers. Treatment of cell monolayers by the lipid raft disorganizer methyl-β-cyclodextrin abolished the inhibitory activity of peptide AF-16 at the transcellular passage level and did not modify the effect of the peptide at the paracellular level. PMID:25534938

  5. Antisecretory factor peptide AF-16 inhibits the secreted autotransporter toxin-stimulated transcellular and paracellular passages of fluid in cultured human enterocyte-like cells.

    PubMed

    Nicolas, Valérie; Liévin-Le Moal, Vanessa

    2015-03-01

    Both the endogenous antisecretory factor (AF) protein and peptide AF-16, which has a sequence that matches that of the active N-terminal region of AF, inhibit the increase in the epithelial transport of fluid and electrolytes induced by bacterial toxins in animal and ex vivo models. We conducted a study to investigate the inhibitory effect of peptide AF-16 against the increase of transcellular passage and paracellular permeability promoted by the secreted autotransporter toxin (Sat) in a cultured cellular model of the human intestinal epithelial barrier. Peptide AF-16 produced a concentration-dependent inhibition of the Sat-induced increase in the formation of fluid domes, in the mucosal-to-serosal passage of D-[1-(14)C]mannitol, and in the rearrangements in the distribution and protein expression of the tight junction (TJ)-associated proteins ZO-1 and occludin in cultured human enterocyte-like Caco-2/TC7 cell monolayers. In addition, we show that peptide AF-16 also inhibits the cholera toxin-induced increase of transcellular passage and the Clostridium difficile toxin-induced effects on paracellular permeability and TJ protein organization in Caco-2/TC7 cell monolayers. Treatment of cell monolayers by the lipid raft disorganizer methyl-β-cyclodextrin abolished the inhibitory activity of peptide AF-16 at the transcellular passage level and did not modify the effect of the peptide at the paracellular level. PMID:25534938

  6. Fully Synthetic Granulocyte Colony-Stimulating Factor Enabled by Isonitrile-Mediated Coupling of Large, Side-Chain-Unprotected Peptides.

    PubMed

    Roberts, Andrew G; Johnston, Eric V; Shieh, Jae-Hung; Sondey, Joseph P; Hendrickson, Ronald C; Moore, Malcolm A S; Danishefsky, Samuel J

    2015-10-14

    Human granulocyte colony-stimulating factor (G-CSF) is an endogenous glycoprotein involved in hematopoiesis. Natively glycosylated and nonglycosylated recombinant forms, lenograstim and filgrastim, respectively, are used clinically to manage neutropenia in patients undergoing chemotherapeutic treatment. Despite their comparable therapeutic potential, the purpose of O-linked glycosylation at Thr133 remains a subject of controversy. In light of this, we have developed a synthetic platform to prepare G-CSF aglycone with the goal of enabling access to native and designed glycoforms with site-selectivity and glycan homogeneity. To address the synthesis of a relatively large, aggregation-prone sequence, we advanced an isonitrile-mediated ligation method. The chemoselective activation and coupling of C-terminal peptidyl Gly thioacids with the N-terminus of an unprotected peptide provide ligated peptides directly in a manner complementary to that with conventional native chemical ligation-desulfurization strategies. Herein, we describe the details and application of this method as it enabled the convergent total synthesis of G-CSF aglycone. PMID:26401918

  7. Changes in expression of an antimicrobial peptide, digestive enzymes, and nutrient transporters in the intestine of E. praecox-infected chickens.

    PubMed

    Yin, H; Sumners, L H; Dalloul, R A; Miska, K B; Fetterer, R H; Jenkins, M C; Zhu, Q; Wong, E A

    2015-07-01

    Coccidiosis is a major intestinal disease of poultry, caused by several species of the protozoan Eimeria. The objective of this study was to examine changes in expression of digestive enzymes, nutrient transporters, and an antimicrobial peptide following an Eimeria praecox challenge of chickens at days 3 and 6 post-infection. Gene expression was determined by real-time PCR and analyzed by one-way ANOVA. In the duodenum, the primary site of E. praecox infection, a number of genes were downregulated at both d3 and d6 post-infection. These genes included liver expressed antimicrobial peptide 2 (LEAP2), the cationic (CAT1), anionic (EAAT3), and L-type (LAT1) amino acid transporters, the peptide transporter PepT1 and the zinc transporter ZnT1. Other transporters were downregulated either at d3 or d6. At both d3 and d6, there was downregulation of B(o)AT and CAT1 in the jejunum and downregulation of LEAP2 and LAT1 in the ileum. LEAP2, EAAT3, and ZnT1 have been found to be downregulated following challenge with other Eimeria species, suggesting a common cellular response to Eimeria. PMID:26015586

  8. Short-term glucagon stimulation test of C-peptide effect on glucose utilization in patients with type 1 diabetes mellitus.

    PubMed

    Mojto, Viliam; Rausova, Zuzana; Chrenova, Jana; Dedik, Ladislav

    2015-12-01

    This work aimed to evaluate the use of a four-point glucagon stimulation test of C-peptide effect on glucose utilization in type 1 diabetic patients using a new mathematical model. A group of 32 type 1 diabetic patients and a group of 10 healthy control subjects underwent a four-point glucagon stimulation test with blood sampling at 0, 6, 15 and 30 min after 1 mg glucagon bolus intravenous administration. Pharmacokinetic and pharmacokinetic/pharmacodynamic models of C-peptide effect on glucose utilization versus area under curve (AUC) were used. A two-sample t test and ANOVA with Bonferroni correction were used to test the significance of differences between parameters. A significant difference between control and patient groups regarding the coefficient of whole-body glucose utilization and AUC C-peptide/AUC glucose ratio (p ≪ 0.001 and p = 0.002, respectively) was observed. The high correlation (r = 0.97) between modeled coefficient of whole-body glucose utilization and numerically calculated AUC C-peptide/AUC glucose ratio related to entire cohort indicated the stability of used method. The short-term four-point glucagon stimulation test allows the numerically calculated AUC C-peptide/AUC glucose ratio and/or the coefficient of whole-body glucose utilization calculated from model to be used to diagnostically identify type 1 diabetic patients. PMID:26607818

  9. Biphasic Peptide Amphiphile Nanomatrix Embedded with Hydroxyapatite Nanoparticles for Stimulated Osteoinductive Response

    PubMed Central

    Anderson, Joel M.; Patterson, Jessica L.; Vines, Jeremy B.; Javed, Amjad; Gilbert, Shawn R.; Jun, Ho-Wook

    2013-01-01

    Formation of the native bone extracellular matrix (ECM) provides an attractive template for bone tissue engineering. The structural support and biological complexity of bone ECM are provided within a composite microenvironment that consists of an organic fibrous network reinforced by inorganic hydroxyapatite (HA) nanoparticles. Recreating this biphasic assembly, a bone ECM analogous scaffold comprised of self-assembling peptide amphiphile (PA) nanofibers and interspersed HA nanoparticles was investigated. PAs were endowed with biomolecular ligand signaling using a synthetically inscribed peptide sequence (i.e. RGDS) and integrated with HA nanoparticles to form a biphasic nanomatrix hydrogel. It was hypothesized the biphasic hydrogel would induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) and improve bone healing as mediated by RGDS ligand signaling within PA nanofibers and embedded HA mineralization source. Viscoelastic stability of the biphasic PA hydrogels was evaluated with different weight concentrations of HA for improved gelation. After demonstrating initial viability, long-term cellularity and osteoinduction of encapsulated hMSCs in different PA hydrogels were studied in vitro. Temporal progression of osteogenic maturation was assessed by gene expression of key markers. A preliminary animal study demonstrated bone healing capacity of the biphasic PA nanomatrix under physiological conditions using a critical size femoral defect rat model. The combination of RGDS ligand signaling and HA nanoparticles within the biphasic PA nanomatrix hydrogel demonstrated the most effective osteoinduction and comparative bone healing response. Therefore, the biphasic PA nanomatrix establishes a well-organized scaffold with increased similarity to natural bone ECM with the prospect for improved bone tissue regeneration. PMID:22077993

  10. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa.

    PubMed

    Strempel, Nikola; Neidig, Anke; Nusser, Michael; Geffers, Robert; Vieillard, Julien; Lesouhaitier, Olivier; Brenner-Weiss, Gerald; Overhage, Joerg

    2013-01-01

    A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor. PMID:24349231

  11. Human Host Defense Peptide LL-37 Stimulates Virulence Factor Production and Adaptive Resistance in Pseudomonas aeruginosa

    PubMed Central

    Strempel, Nikola; Neidig, Anke; Nusser, Michael; Geffers, Robert; Vieillard, Julien; Lesouhaitier, Olivier; Brenner-Weiss, Gerald; Overhage, Joerg

    2013-01-01

    A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor. PMID:24349231

  12. The mRNA expression of amino acid transporters, aminopeptidase, and the di- and tri-peptide transporter PepT1 in the intestine and liver of post-hatch broiler chicks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acid transporter (AAT) proteins are responsible for the movement of amino acids (AA) in and out of cells. Aminopeptidase (APN) cleaves AAs from the N terminus of polypeptides making them available for transport, while PepT1 is a di- and tri- peptide transporter. In the intestine, these prote...

  13. Acute effects of morphine and opioid peptides on the motility and responses of rat colon to electrical stimulation.

    PubMed Central

    Gillan, M. G.; Pollock, D.

    1980-01-01

    1 Morphine and leucine- and methionine-enkephalins inhibited the contractile response of the pithed rat colon to electrical stimulation of the spinal motor outflows and inhibited motor responses of the isolated colon to field stimulation. 2 Morphine and the opioid peptides also had an excitatory action in the colon. In the pithed rat, opiates caused regular fluctuations in intracolonic pressure and in the isolated colon, caused regular waves of contraction. This excitatory response was produced by low concentrations of the enkephalins (2 X 10(-8) M, 2 X 10(-9) M), was stereospecific and was antagonized by naloxone. 3 Opiate-induced contractions in the isolated colon were inhibited by catecholamines, adenine nucleotides and by phosphodiesterase inhibitors. These contractions were unaffected by ergotamine and tolazoline, or by propranolol. 4 The excitatory action of opiates in the isolated colon was not antagonized and usually was potentiated by atropine, (+)-tubocurarine and hexamethonium. In the absence of opiates, these drugs also produced similar waves of contraction, which were unaffected by naloxone. 5 Opiate-induced contractions occurred in colon rendered unresponsive to 5-hydroxytryptamine (5-HT) and these contractions were potentiated by the 5-HT antagonist, lysergic acid diethylamide, which, when administered alone, caused similar contractions. The 5-HT antagonist, cyproheptadine, inhibited opiate-induced contractions but was non-specific, since it also inhibited responses of the colon to carbachol and KC1. 6 Opiate-induced contractions were unaffected by procaine and were potentiated by tetrodotoxin. Both of these drugs, when administered alone, produced waves of contractions, which were similar to those produced by opiates but were unaffected by naloxone. 7 Contractions produced in the isolated colon either by opiates, atropine or (+)-tubocurarine, or any combination of these drugs, were inhibited by field stimulation applied at the peak of a wave of

  14. Speract, a sea urchin egg peptide that regulates sperm motility, also stimulates sperm mitochondrial metabolism.

    PubMed

    García-Rincón, Juan; Darszon, Alberto; Beltrán, Carmen

    2016-04-01

    Sea urchin sperm have only one mitochondrion, that in addition to being the main source of energy, may modulate intracellular Ca(2+) concentration ([Ca(2+)]i) to regulate their motility and possibly the acrosome reaction. Speract is a decapeptide from the outer jelly layer of the Strongylocentrotus purpuratus egg that upon binding to its receptor in the sperm, stimulates sperm motility, respiration and ion fluxes, among other physiological events. Altering the sea urchin sperm mitochondrial function with specific inhibitors of this organelle, increases [Ca(2+)]i in an external Ca(2+) concentration ([Ca(2+)]ext)-dependent manner (Ardón, et al., 2009. BBActa 1787: 15), suggesting that the mitochondrion is involved in sperm [Ca(2+)]i homeostasis. To further understand the interrelationship between the mitochondrion and the speract responses, we measured mitochondrial membrane potential (ΔΨ) and NADH levels. We found that the stimulation of sperm with speract depolarizes the mitochondrion and increases the levels of NADH. Surprisingly, these responses are independent of external Ca(2+) and are due to the increase in intracellular pH (pHi) induced by speract. Our findings indicate that speract, by regulating pHi, in addition to [Ca(2+)]i, may finely modulate mitochondrial metabolism to control motility and ensure that sperm reach the egg and fertilize it. PMID:26772728

  15. Tc-99m-labeled RGD-conjugated alpha-melanocyte stimulating hormone hybrid peptides with reduced renal uptake

    PubMed Central

    Yang, Jianquan; Hu, Chien-An

    2015-01-01

    The purpose of this study was to examine whether the replacement of the positively-charged Lys or Arg linker with a neutral linker could reduce the renal uptake of Arg-Gly-Asp (RGD)-conjugated alpha-melanocyte stimulating hormone (α-MSH) hybrid peptide. The RGD motif {cyclic(Arg-Gly-Asp-dTyr-Asp)} was coupled to [Cys3,4,10, d-Phe7, Arg11]α-MSH3–13 {(Arg11)CCMSH} through the neutral βAla or Ahx {aminohexanoic acid} linker (replacing the Lys or Arg linker) to generate novel RGD-βAla-(Arg11)CCMSH and RGD-Ahx-(Arg11)CCMSH hybrid peptides. The receptor binding affinity and cytotoxicity of RGD-βAla-(Arg11)CCMSH and RGD-Ahx-(Arg11)CCMSH were determined in B16/F1 melanoma cells. The melanoma targeting and imaging properties of 99mTc-RGD-βAla-(Arg11)CCMSH and 99mTc-RGD-Ahx-(Arg11)CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The replacement of the Lys or Arg linker with the βAla or Ahx linker retained nanomolar receptor binding affinities and remarkable cytotoxicity of RGD-βAla-(Arg11)CCMSH and RGD-Ahx-(Arg11)CCMSH. The receptor binding affinities of RGD-βAla-(Arg11)CCMSH and RGD-Ahx-(Arg11)CCMSH were 0.8 and 1.3 nM. Three-hour incubation with 0.1 µM of RGD-βAla-(Arg11)CCMSH and RGD-Ahx-(Arg11)CCMSH decreased the survival percentages of B16/F1 cells by 71 and 67% as compared to the untreated control cells five days post the treatment. The replacement of the Arg linker with the βAla or Ahx linker reduced the non-specific renal uptake of 99mTc-RGD-βAla-(Arg11)CCMSH and 99mTc-RGD-Ahx-(Arg11)CCMSH by 62% and 61% at 2 h post-injection. 99mTc-RGD-βAla-(Arg11)CCMSH displayed higher melanoma uptake than 99mTc-RGD-Ahx-(Arg11)CCMSH at 0.5, 2, 4 and 24 h post-injection. Enhanced tumor to kidney uptake ratio of 99mTc-RGD-βAla-(Arg11)CCMSH warranted the further evaluation of 188Re-labeled RGD-βAla-(Arg11)CCMSH as a novel MC1 receptor-targeting therapeutic peptide for melanoma treatment in the future. PMID:25557051

  16. Amyloid β peptide stimulates platelet activation through RhoA-dependent modulation of actomyosin organization.

    PubMed

    Sonkar, Vijay K; Kulkarni, Paresh P; Dash, Debabrata

    2014-04-01

    Platelets contribute to 95% of circulating amyloid precursor protein in the body and have widely been employed as a "peripheral" model of neurons in Alzheimer's disease. We sought to analyze the effects of amyloid β (Aβ) on platelets and to understand the underlying molecular mechanism. The Aβ active fragment containing amino acid sequence 25-35 (Aβ(25-35); 10-20 μM) was found to induce strong aggregation of human platelets, granule release, and integrin activation, similar to that elicited by physiological agonists. Platelets exposed to Aβ(25-35) retracted fibrin clot and displayed augmented adhesion to collagen under arterial shear, reflective of a switch to prothrombotic phenotype. Exposure of platelets to Aβ peptide (20 μM) resulted in a 4.2- and 2.3-fold increase in phosphorylation of myosin light chain (MLC) and MLC phosphatase, respectively, which was reversed by Y27632, an inhibitor of Rho-associated coiled-coil protein kinase (ROCK). Aβ(25-35)-induced platelet aggregation and clot retraction were also significantly attenuated by Y27632. Consistent with these findings, Aβ(25-35) elicited a significant rise in the level of RhoA-GTP in platelets. Platelets pretreated with reverse-sequenced Aβ fragment (Aβ(35-25)) and untreated resting platelets served as controls. We conclude that Aβ induces cellular activation through RhoA-dependent modulation of actomyosin, and hence, RhoA could be a potential therapeutic target in Alzheimer's disease and cerebral amyloid angiopathy. PMID:24421399

  17. In-Situ-Generated Vasoactive Intestinal Peptide Loaded Microspheres in Mussel-Inspired Polycaprolactone Nanosheets Creating Spatiotemporal Releasing Microenvironment to Promote Wound Healing and Angiogenesis.

    PubMed

    Wang, Yuzhen; Chen, Zhiqiang; Luo, Gaoxing; He, Weifeng; Xu, Kaige; Xu, Rui; Lei, Qiang; Tan, Jianglin; Wu, Jun; Xing, Malcolm

    2016-03-23

    Vasoactive intestinal peptide (VIP) was reported to promote angiogenesis. Electrospun nanofibers lead to idea wound dressing substrates. Here we report a convenient and novel method to produce VIP loaded microspheres in polycaprolactone (PCL) nanofibrous membrane without complicated processes. We first coated mussel-inspired dopamine (DA) to nanofibers, then used strong adhesive DA to absorb the functional peptide. PCL membrane was then immersed into acetone to generate microspheres with VIP loading. We employed high pressure liquid chromatography to record encapsulation efficiency of (31.8 ± 2.2)% and loading capacity of (1.71 ± 0.16)%. The release profile of VIP from nanosheets showed a prolonged release. The results of laser scanning confocal microscope, scanning electron microscope and cell counting kit-8 proliferation assays showed that cell adhesion and proliferation were promoted. In order to verify the efficacy on wound healing, in vivo implantation was applied in the full-thickness defect wounds of BALB/c mice. Results showed that the wound healing was significantly promoted via favoring the growth of granulation tissue and angiogenesis. However, we found wound re-epithelialization was not significantly improved. The resulting VIP-DA-coated PCL (PCL-DA-VIP) nanosheets with spatiotemporal delivery of VIP could be a potential application in wound treatment and vascular tissue engineering. PMID:26914154

  18. [Immune stimulative potency of milk proteins].

    PubMed

    Ambroziak, Adam; Cichosz, Grazyna

    2014-02-01

    Milk proteins are characterized by the highest immune stimulative potency from among all the proteins present in human diet. Whey proteins and numerous growth factors that regulate insulin secretion, differentiation of intestine epithelium cells, and also tissue restoration, are priceless in stimulation the immune system. Lactoferrin shows the most comprehensive pro-health properties: antioxidative, anticancer, immune stimulative and even chemopreventive. Also peptides and amino acids formed from casein and whey proteins possess immune stimulative activity. The most valuable proteins, i.e. lactoferrin, immune globulins, lactoperoxidase and lisozyme, together with bioactive peptides, are resistant to pepsin and trypsin activity. This is why they maintain their exceptional biological activity within human organism. Properly high consumption of milk proteins conditions correct function of immune system, especially at children and elderly persons. PMID:24720113

  19. Acute effects of the glucagon-like peptide 2 analogue, teduglutide, on intestinal adaptation in short bowel syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neonatal short bowel syndrome following massive gut resection is associated with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult patients with short bowel syndrome, but its effect in pediatric patients remains unknown. Our object...

  20. In vitro evaluation of N-methyl amide tripeptidomimetics as substrates for the human intestinal di-/tri-peptide transporter hPEPT1.

    PubMed

    Andersen, Rikke; Nielsen, Carsten Uhd; Begtrup, Mikael; Jørgensen, Flemming Steen; Brodin, Birger; Frokjaer, Sven; Steffansen, Bente

    2006-07-01

    Oral absorption of tripeptides is generally mediated by the human intestinal di-/tri-peptide transporter, hPEPT1. However, the bioavailability of tripeptides is often limited due to degradation in the GI-tract by various peptidases. The aim of the present study was to evaluate the general application of N-methyl amide bioisosteres as peptide bond replacements in tripeptides in order to decrease degradation by peptidases and yet retain affinity for and transport via hPEPT1. Seven structurally diverse N-methyl amide tripeptidomimetics were selected based on a principal component analysis of structural properties of 6859 N-methyl amide tripeptidomimetics. In vitro extracellular degradation of the selected tripeptidomimetics as well as affinity for and transepithelial transport via hPEPT1 were investigated in Caco-2 cells. Decreased apparent degradation was observed for all tripeptidomimetics compared to the corresponding natural tripeptides. However, affinity for and transepithelial transport via hPEPT1 were only seen for Gly-Sar-Sar, AsnPsi[CONCH(3)]PhePsi[CONCH(3)]Trp, and Gly-Sar-Leu. This implies that tripeptidomimetics originating from tripeptides with neutral side chains are more likely to be substrates for hPEPT1 than tripeptidomimetics with charged side chains. The results of the present study indicate that the N-methyl amide peptide bond replacement approach for increasing bioavailability of tripeptidomimetic drug candidates is not generally applicable to all tripeptides. Nevertheless, retained affinity for and transport via hPEPT1 were shown for three of the evaluated N-methyl amide tripeptidomimetics. PMID:16713701

  1. Glucose-dependent insulinotropic peptide stimulates thymidine incorporation in endothelial cells: role of endothelin-1

    NASA Technical Reports Server (NTRS)

    Ding, Ke-Hong; Zhong, Qing; Isales, Carlos M.; Iscules, C. M. (Principal Investigator)

    2003-01-01

    We have previously characterized the receptor for glucose-dependent insulinotropic polypeptide (GIPR) in vascular endothelial cells (EC). Different EC types were found to contain distinct GIPR splice variants. To determine whether activation of the GIPR splice variants resulted in different cellular responses, we examined GIP effects on human umbilical vein endothelial cells (HUVEC), which contain two GIPR splice variants, and compared them with a spontaneously transformed human umbilical vein EC line, ECV 304, which contains four GIPR splice variants. GIP dose-dependently stimulated HUVEC and ECV 304 proliferation as measured by [3H]thymidine incorporation. GIP increased endothelin-1 (ET-1) secretion from HUVEC but not from ECV 304. Use of the endothelin B receptor blocker BQ-788 resulted in an inhibition of [3H]thymidine incorporation in HUVEC but not in ECV 304. These findings suggest that, although GIP increases [3H]thymidine incorporation in both HUVEC and ECV 304, this proliferative response is mediated by ET-1 only in HUVEC. These differences in cellular response to GIP may be related to differences in activation of GIPR splice variants.

  2. Conformations of peptide fragments comprising the complete sequence of component III of Chi t I and their relationship to T-cell stimulation.

    PubMed

    Czisch, M; Liebers, V; Bernstein, R; Chen, Z; Baur, X; Holak, T A

    1994-08-16

    Conformational preferences of synthetic peptides that span the complete sequence of Chironomus thummi hemoglobin (Chi t I) component III were studied by nuclear magnetic resonance (NMR) and CD spectroscopies. The peptides, 19-21 amino acids in length, were studied in water, except for the C-terminal peptide, which was investigated in DMSO-d6. NMR showed that all investigated peptides lacked uniquely folded conformations in water at 4 degrees C and pH 3.0 or at 10 degrees C and pD 6.6 in DMSO. However, some preferential helix-like conformations for the peptides corresponding to the helices of the folded protein could be seen in solution. These peptides showed characteristic interactions for conformations in both the beta- and alpha-regions of phi-psi space, based on strong C alpha H(i)-NH(i + 1) interactions, and on NH-NH, C alpha H(i)-NH-(i + 2), C alpha H(i)-NH(i + 3), and C alpha H(i)-C beta H(i + 3) interactions, respectively. Helical motifs seem not to be the most important factors in determining MHC-binding and/or T-cell recognition. However, there is a tendency that more stabilized secondary structures show higher T-cell stimulation. PMID:8068617

  3. Anti-allergic effects of a nonameric peptide isolated from the intestine gastrointestinal digests of abalone (Haliotis discus hannai) in activated HMC-1 human mast cells.

    PubMed

    Ko, Seok-Chun; Lee, Dae-Sung; Park, Won Sun; Yoo, Jong Su; Yim, Mi-Jin; Qian, Zhong-Ji; Lee, Chang-Min; Oh, Junghwan; Jung, Won-Kyo; Choi, Il-Whan

    2016-01-01

    The aim of the present study was to examine whether the intestine gastrointestinal (GI) digests of abalone [Haliotis discus hannai (H. discus hannai)] modulate inflammatory responses and to elucidate the mechanisms involved. The GI digests of the abalone intestines were fractionated into fractions I (>10 kDa), II (5-10 kDa) and Ⅲ (<5 kDa). Of the abalone intestine GI digests (AIGIDs), fraction Ⅲ inhibited the passive cutaneous anaphylaxis (PCA) reaction in mice. Subsequently, a bioactive peptide [abalone intestine GI digest peptide (AIGIDP)] isolated from fraction Ⅲ was determined to be 1175.2 Da, and the amino acid sequence was found to be PFNQGTFAS. We noted that the purified nonameric peptide (AIGIDP) attenuated the phorbol‑12‑myristate 13-acetate plus calcium ionophore A23187 (PMACI)-induced histamine release and the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in human mast cells (HMC-1 cells). In addition, we also noted that AIGIDP inhibited the PMACI‑induced activation of nuclear factor‑κB (NF-κB) by suppressing IκBα phosphorylation and that it suppressed the production of cytokines by decreasing the phosphorylation of JNK. The findings of our study indicate that AIGIDP exerts a modulatory, anti-allergic effect on mast cell-mediated inflammatory diseases. PMID:26718326

  4. Comparative Effects of Prolonged and Intermittent Stimulation of the Glucagon-Like Peptide 1 Receptor on Gastric Emptying and Glycemia

    PubMed Central

    Umapathysivam, Mahesh M.; Lee, Michael Y.; Jones, Karen L.; Annink, Christopher E.; Cousins, Caroline E.; Trahair, Laurence G.; Rayner, Chris K.; Chapman, Marianne J.; Nauck, Michael A.; Horowitz, Michael; Deane, Adam M.

    2014-01-01

    Acute administration of glucagon-like peptide 1 (GLP-1) and its agonists slows gastric emptying, which represents the major mechanism underlying their attenuation of postprandial glycemic excursions. However, this effect may diminish during prolonged use. We compared the effects of prolonged and intermittent stimulation of the GLP-1 receptor on gastric emptying and glycemia. Ten healthy men received intravenous saline (placebo) or GLP-1 (0.8 pmol/kg ⋅ min), as a continuous 24-h infusion (“prolonged”), two 4.5-h infusions separated by 20 h (“intermittent”), and a 4.5-h infusion (“acute”) in a randomized, double-blind, crossover fashion. Gastric emptying of a radiolabeled mashed potato meal was measured using scintigraphy. Acute GLP-1 markedly slowed gastric emptying. The magnitude of the slowing was attenuated with prolonged but maintained with intermittent infusions. GLP-1 potently diminished postprandial glycemia during acute and intermittent regimens. These observations suggest that short-acting GLP-1 agonists may be superior to long-acting agonists when aiming specifically to reduce postprandial glycemic excursions in the treatment of type 2 diabetes. PMID:24089511

  5. Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and PepT1 knockout mice.

    PubMed

    Yang, Bei; Smith, David E

    2013-03-01

    The purpose of this study was to quantitatively determine the contribution of PepT1 [peptide transporter 1 (SLC15A1)] to the intestinal permeability of valacyclovir, an ester prodrug of the antiviral drug acyclovir. In situ single-pass intestinal perfusions were employed (pH 6.5 × 90 minutes) to assess the effective permeability (P(eff)) of 100 μM [(3)H]valacyclovir in wild-type and PepT1 knockout mice. Acyclovir pharmacokinetics was also evaluated after oral administration of 25 nmol/g valacyclovir. In wild-type mice, jejunal uptake of valacyclovir was best described by both saturable (K(m) = 10.2 mM) and nonsaturable components where the saturable pathway accounted for 82% of total transport. Valacyclovir P(eff) was 2.4 × 10(-4) cm/s in duodenum, 1.7 × 10(-4) cm/s in jejunum, 2.1 × 10(-4) cm/s in ileum, and 0.27 × 10(-4) cm/s in colon. In Pept1 knockout mice, P(eff) values were about 10% of that in wild-type animals for these small intestinal segments. Valacyclovir P(eff) was similar in the colon of both genotypes. There were no differences in valacyclovir P(eff) between any of the intestinal segments of PepT1 knockout mice. Valacyclovir P(eff) was significantly reduced by the dipeptide glycylsarcosine and the aminocephalosporin cefadroxil, but not by the amino acids l-valine or l-histidine, the organic acid p-aminohippurate, or the organic base tetraethylammonium (all at 25 mM). PepT1 ablation resulted in 3- to 5-fold reductions in the in vivo rate and extent of valacyclovir absorption. Our findings conclusively demonstrate, using in situ and in vivo validations in genetically modified mice, that PepT1 has a major influence in improving the oral absorption of valacyclovir. PMID:23264448

  6. Arginine-mediated stimulation of intestinal epithelial cell protein synthesis is mTOR-dependent but NO-independent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine (ARG) is an indispensable amino acid in neonates and required for growth. Evidence indicates that intestinal epithelial cells (IEC) are capable of ARG transport, catabolism and synthesis, and express nitric oxide synthase (NOS) to produce NO from ARG. Our aim was to determine whether ARG di...

  7. GIARDIA LAMBLIA: STIMULATION OF GROWTH BY HUMAN INTESTINAL MUCUS AND EPITHELIAL CELLS IN SERUMFREE MEDIUM (JOURNAL VERSION)

    EPA Science Inventory

    Giardia lamblia trophozoites specifically colonize the upper human small intestine which is normally serum-free, but grow in vitro only in medium supplemented with serum or serum fractions. Recently, biliary lipids were shown to support the growth of G. lamblia without serum. Now...

  8. Utilization of peptide carrier system to improve intestinal absorption: targeting prolidase as a prodrug-converting enzyme

    NASA Technical Reports Server (NTRS)

    Bai, J. P.; Hu, M.; Subramanian, P.; Mosberg, H. I.; Amidon, G. L.

    1992-01-01

    The feasibility of targeting prolidase as a peptide prodrug-converting enzyme has been examined. The enzymatic hydrolysis by prolidase of substrates for the peptide transporter L-alpha-methyldopa-pro and several dipeptide analogues without an N-terminal alpha-amino group (phenylpropionylproline, phenylacetylproline, N-benzoylproline, and N-acetylproline) was investigated. The Michaelis-Menten parameters Km and Vmax for L-alpha-methyldopa-pro are 0.09 +/- 0.02 mM and 3.98 +/- 0.25 mumol/min/mg protein, respectively. However, no hydrolysis of the dipeptide analogues without an N-terminal alpha-amino group is observed, suggesting that an N-terminal alpha-amino group is required for prolidase activity. These results demonstrate that prolidase may serve as a prodrug-converting enzyme for the dipeptide-type prodrugs, utilizing the peptide carrier for transport of prodrugs into the mucosal cells and prolidase, a cytosolic enzyme, to release the drug. However, a free alpha-amino group appears to be necessary for prolidase hydrolysis.

  9. Fc Gamma Receptor Signaling in Mast Cells Links Microbial Stimulation to Mucosal Immune Inflammation in the Intestine

    PubMed Central

    Chen, Xiao; Feng, Bai-Sui; Zheng, Peng-Yuan; Liao, Xue-Qing; Chong, Jasmine; Tang, Shang-Guo; Yang, Ping-Chang

    2008-01-01

    Microbes and microbial products are closely associated with the pathogenesis of inflammatory bowel disease (IBD); however, the mechanisms behind this connection remain unclear. It has been previously reported that flagellin-specific antibodies are increased in IBD patient sera. As mastocytosis is one of the pathological features of IBD, we hypothesized that flagellin-specific immune responses might activate mast cells that then contribute to the initiation and maintenance of intestinal inflammation. Thirty-two colonic biopsy samples were collected from IBD patients. A flagellin/flagellin-specific IgG/Fc gamma receptor I complex was identified on biopsied mast cells using both immunohistochemistry and co-immunoprecipitation experiments; this complex was shown to co-localize on the surfaces of mast cells in the colonic mucosa of patients with IBD. In addition, an ex vivo study showed flagellin-IgG was able to bind to human mast cells. These cells were found to be sensitized to flagellin-specific IgG; re-exposure to flagellin induced the mast cells to release inflammatory mediators. An animal model of IBD was then used to examine flagellin-specific immune responses in the intestine. Mice could be sensitized to flagellin, and repeated challenges with flagellin induced an IBD-like T helper 1 pattern of intestinal inflammation that could be inhibited by pretreatment with anti-Fc gamma receptor I antibodies. Therefore, flagellin-specific immune responses activate mast cells in the intestine and play important roles in the pathogenesis of intestinal immune inflammation. PMID:18974296

  10. [The current concepts on the absorption of monosaccharides, amino acids and peptides in the mammalian small intestine].

    PubMed

    Timofeeva, N M; Iezuitova, N N; Gromova, L V

    2000-01-01

    The review is mainly devoted to the development of ideas about absorption, or transport, of basic nutrients in the small intestine in humans and higher animal. The absorption processes have been characterized on the example of such substances, vital for organism, as carbohydrates and proteins. The review considers a molecular structure of transporters--protein molecules, which take part in a transfer of the products of lumenal and membrane digestion of carbohydrates (glucose, galactose, fructose) and proteins (amino acids, oligopeptides) across the enterocyte membranes. An information is presented about genetic disturbances of transport of certain amino acids during such diseases as Hartnup disease, cystinuria, and iminoglycineuria. PMID:11094795