Science.gov

Sample records for intestinal peptide transporter

  1. Association of intestinal peptide transport with a protein related to the cadherin superfamily.

    PubMed

    Dantzig, A H; Hoskins, J A; Tabas, L B; Bright, S; Shepard, R L; Jenkins, I L; Duckworth, D C; Sportsman, J R; Mackensen, D; Rosteck, P R

    1994-04-15

    The first step in oral absorption of many medically important peptide-based drugs is mediated by an intestinal proton-dependent peptide transporter. This transporter facilitates the oral absorption of beta-lactam antibiotics and angiotensin-converting enzyme inhibitors from the intestine into enterocytes lining the luminal wall. A monoclonal antibody that blocked uptake of cephalexin was used to identify and clone a gene that encodes an approximately 92-kilodalton membrane protein that was associated with the acquisition of peptide transport activity by transport-deficient cells. The amino acid sequence deduced from the complementary DNA sequence of the cloned gene indicated that this transport-associated protein shares several conserved structural elements with the cadherin superfamily of calcium-dependent, cell-cell adhesion proteins. PMID:8153632

  2. Vasoactive intestinal peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  3. Amino acid absorption and homeostasis in mice lacking the intestinal peptide transporter PEPT1.

    PubMed

    Nässl, Anna-Maria; Rubio-Aliaga, Isabel; Fenselau, Henning; Marth, Mena Katharina; Kottra, Gabor; Daniel, Hannelore

    2011-07-01

    The intestinal peptide transporter PEPT1 mediates the uptake of di- and tripeptides derived from dietary protein breakdown into epithelial cells. Whereas the transporter appears to be essential to compensate for the reduced amino acid delivery in patients with mutations in amino acid transporter genes, such as in cystinuria or Hartnup disease, its physiological role in overall amino acid absorption is still not known. To assess the quantitative importance of PEPT1 in overall amino acid absorption and metabolism, PEPT1-deficient mice were studied by using brush border membrane vesicles, everted gut sacs, and Ussing chambers, as well as by transcriptome and proteome analysis of intestinal tissue samples. Neither gene expression nor proteome profiling nor functional analysis revealed evidence for any compensatory changes in the levels and/or function of transporters for free amino acids in the intestine. However, most plasma amino acid levels were increased in Pept1(-/-) compared with Pept1(+/+) animals, suggesting that amino acid handling is altered. Plasma appearance rates of (15)N-labeled amino acids determined after intragastric administration of a low dose of protein remained unchanged, whereas administration of a large protein load via gavage revealed marked differences in plasma appearance of selected amino acids. PEPT1 seems, therefore, important for overall amino acid absorption only after high dietary protein intake when amino acid transport processes are saturated and PEPT1 can provide additional absorption capacity. Since renal amino acid excretion remained unchanged, elevated basal concentrations of plasma amino acids in PEPT1-deficient animals seem to arise mainly from alterations in hepatic amino acid metabolism. PMID:21350187

  4. Expression of an antimicrobial peptide, digestive enzymes and nutrient transporters in the intestine of E. praecox-infected chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccidiosis is a major intestinal disease of poultry, caused by several species of the protozoan Eimeria. The objective of this study was to examine changes in expression of digestive enzymes, nutrient transporters and an antimicrobial peptide following an Eimeria praecox challenge of chickens at d...

  5. The mRNA expression of amino acid transporters, aminopeptidase, and the di- and tri-peptide transporter PepT1 in the intestine and liver of post-hatch broiler chicks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acid transporter (AAT) proteins are responsible for the movement of amino acids (AA) in and out of cells. Aminopeptidase (APN) cleaves AAs from the N terminus of polypeptides making them available for transport, while PepT1 is a di- and tri- peptide transporter. In the intestine, these prote...

  6. Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line.

    PubMed

    Guo, A; Hu, P; Balimane, P V; Leibach, F H; Sinko, P J

    1999-04-01

    The results of previous work performed in our laboratory using an in situ perfusion technique in rats and rabbit apical brush border membrane vesicles have suggested that the intestinal uptake of valacyclovir (VACV) appears to be mediated by multiple membrane transporters. Using these techniques, it is difficult to characterize the transport kinetics of VACV with each individual transporter in the presence of multiple known or unknown transporters. The purpose of this study was to characterize the interaction of VACV and the human intestinal peptide transporter using Chinese hamster ovary (CHO) cells that overexpress the human intestinal peptide transporter (hPEPT1) gene. VACV uptake was significantly greater in CHO cells transfected with hPEPT1 than in cells transfected with only the vector, pcDNA3. The optimum pH for VACV uptake was determined to occur at pH 7.5. Proton cotransport was not observed in hPEPT1/CHO cells, consistent with previously observed results in tissues and Caco-2 cells. VACV uptake was concentration dependent and saturable with a Michaelis-Menten constant and maximum velocity of 1.64 +/- 0.06 mM and 23.34 +/- 0.36 nmol/mg protein/5 min, respectively. A very similar Km value was obtained in hPEPT1/CHO cells and in rat and rabbit tissues and Caco-2 cells, suggesting that hPEPT1 dominates the intestinal transport properties of VACV in vitro. VACV uptake was markedly inhibited by various dipeptides and beta-lactam antibiotics, and Ki values of 12.8 +/- 2.7 and 9.1 +/- 1.2 mM were obtained for Gly-Sar and cefadroxil at pH 7.5, respectively. The present results demonstrate that VACV is a substrate for the human intestinal peptide transporter in hPEPT1/CHO cells and that although transport is pH dependent, proton cotransport is not apparent. Also, the results demonstrate that the hPEPT1/CHO cell system has use in investigating the transport kinetics of drugs with the human intestinal peptide transporter hPEPT1; however, the extrapolation of these

  7. Interferon-gamma increases expression of the di/tri-peptide transporter, h-PEPT1, and dipeptide transport in cultured human intestinal monolayers.

    PubMed

    Foster, David R; Landowski, Christopher P; Zheng, Xiaomei; Amidon, Gordon L; Welage, Lynda S

    2009-03-01

    The di/tri-peptide transporter h-PEPT1 plays an important role in the oral absorption of di/tri-peptides and numerous drugs. Inflammatory conditions may influence intestinal xenobiotic transporter function; however, the effects of inflammation on h-PEPT1 have not been well described. This study was conducted to determine the effects of the inflammatory cytokine interferon-gamma (IFN-gamma) on h-PEPT1 mediated dipeptide absorption. Caco-2 monolayers were grown on permeable supports. The effective apical-to-basolateral permeability (P(eff)) of glycylsarcosine (Gly-Sar) was measured following incubation with IFN-gamma or control media. Additional experiments were conducted at 4 degrees C, and with escalating concentrations of Gly-Sar. h-PEPT1 expression was determined using semiquantitative RT-PCR. IFN-gamma 50 ng/ml increased Gly-Sar P(eff) 28.6% compared to controls (p=0.03). In experiments conducted at 4 degrees C, Gly-Sar P(eff) decreased 39.6% in IFN-gamma treated cells (p=0.003) and 28.4% in controls (p=0.006). In controls and IFN-gamma treated cells, concentration dependent transport was seen with escalating concentrations of Gly-Sar. Compared to controls, IFN-gamma 50 and 100 ng/ml increased h-PEPT1 mRNA expression by 14.2% and 11.5%, respectively (p=0.019). In summary, IFN-gamma increases h-PEPT1 expression and permeation of the dipeptide Gly-Sar in Caco-2 monolayers. These findings imply that intestinal absorption of peptides and peptidomimetic drugs may be increased in certain inflammatory conditions. PMID:19084598

  8. Role of the Intestinal Peptide Transporter PEPT1 in Oseltamivir Absorption: In Vitro and In Vivo Studies

    PubMed Central

    Poirier, Agnès; Belli, Sara; Funk, Christoph; Otteneder, Michael B.; Portmann, Renée; Heinig, Katja; Prinssen, Eric; Lazic, Stanley E.; Rayner, Craig R.; Hoffmann, Gerhard; Singer, Thomas; Smith, David E.

    2012-01-01

    It was reported that oseltamivir (Tamiflu) absorption was mediated by human peptide transporter (hPEPT) 1. Understanding the exact mechanism(s) of absorption is important in the context of drug-drug and diet-drug interactions. Hence, we investigated the mechanism governing the intestinal absorption of oseltamivir and its active metabolite (oseltamivir carboxylate) in wild-type [Chinese hamster ovary (CHO)-K1] and hPEPT1-transfected cells (CHO-PEPT1), in pharmacokinetic studies in juvenile and adult rats, and in healthy volunteers. In vitro cell culture studies showed that the intracellular accumulation of oseltamivir and its carboxylate into CHO-PEPT1 and CHO-K1 was always similar under a variety of experimental conditions, demonstrating that these compounds are not substrates of hPEPT1. Furthermore, neither oseltamivir nor its active metabolite was capable of inhibiting Gly-Sar uptake in CHO-PEPT1 cells. In vivo pharmacokinetic studies in juvenile and adult rats showed that the disposition of oseltamivir and oseltamivir carboxylate, after oral administration of oseltamivir, was sensitive to the feed status but insensitive to the presence of milk and Gly-Sar. Moreover, oseltamivir and oseltamivir carboxylate exhibited significantly higher exposure in rats under fasted conditions than under fed conditions. In humans, oral dosing after a high-fat meal resulted in a statistically significant but moderate lower exposure than after an overnight fasting. This change has no clinical implications. Taken together, the results do not implicate either rat Pept1 or hPEPT1 in the oral absorption of oseltamivir. PMID:22584254

  9. Role of the intestinal peptide transporter PEPT1 in oseltamivir absorption: in vitro and in vivo studies.

    PubMed

    Poirier, Agnès; Belli, Sara; Funk, Christoph; Otteneder, Michael B; Portmann, Renée; Heinig, Katja; Prinssen, Eric; Lazic, Stanley E; Rayner, Craig R; Hoffmann, Gerhard; Singer, Thomas; Smith, David E; Schuler, Franz

    2012-08-01

    It was reported that oseltamivir (Tamiflu) absorption was mediated by human peptide transporter (hPEPT) 1. Understanding the exact mechanism(s) of absorption is important in the context of drug-drug and diet-drug interactions. Hence, we investigated the mechanism governing the intestinal absorption of oseltamivir and its active metabolite (oseltamivir carboxylate) in wild-type [Chinese hamster ovary (CHO)-K1] and hPEPT1-transfected cells (CHO-PEPT1), in pharmacokinetic studies in juvenile and adult rats, and in healthy volunteers. In vitro cell culture studies showed that the intracellular accumulation of oseltamivir and its carboxylate into CHO-PEPT1 and CHO-K1 was always similar under a variety of experimental conditions, demonstrating that these compounds are not substrates of hPEPT1. Furthermore, neither oseltamivir nor its active metabolite was capable of inhibiting Gly-Sar uptake in CHO-PEPT1 cells. In vivo pharmacokinetic studies in juvenile and adult rats showed that the disposition of oseltamivir and oseltamivir carboxylate, after oral administration of oseltamivir, was sensitive to the feed status but insensitive to the presence of milk and Gly-Sar. Moreover, oseltamivir and oseltamivir carboxylate exhibited significantly higher exposure in rats under fasted conditions than under fed conditions. In humans, oral dosing after a high-fat meal resulted in a statistically significant but moderate lower exposure than after an overnight fasting. This change has no clinical implications. Taken together, the results do not implicate either rat Pept1 or hPEPT1 in the oral absorption of oseltamivir. PMID:22584254

  10. PI3K p110α/Akt Signaling Negatively Regulates Secretion of the Intestinal Peptide Neurotensin Through Interference of Granule Transport

    PubMed Central

    Li, Jing; Song, Jun; Cassidy, Margaret G.; Rychahou, Piotr; Starr, Marlene E.; Liu, Jianyu; Li, Xin; Epperly, Garretson; Weiss, Heidi L.; Townsend, Courtney M.; Gao, Tianyan

    2012-01-01

    Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release. PMID:22700584

  11. PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport.

    PubMed

    Li, Jing; Song, Jun; Cassidy, Margaret G; Rychahou, Piotr; Starr, Marlene E; Liu, Jianyu; Li, Xin; Epperly, Garretson; Weiss, Heidi L; Townsend, Courtney M; Gao, Tianyan; Evers, B Mark

    2012-08-01

    Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release. PMID:22700584

  12. Changes in expression of an antimicrobial peptide, digestive enzymes, and nutrient transporters in the intestine of E. praecox-infected chickens.

    PubMed

    Yin, H; Sumners, L H; Dalloul, R A; Miska, K B; Fetterer, R H; Jenkins, M C; Zhu, Q; Wong, E A

    2015-07-01

    Coccidiosis is a major intestinal disease of poultry, caused by several species of the protozoan Eimeria. The objective of this study was to examine changes in expression of digestive enzymes, nutrient transporters, and an antimicrobial peptide following an Eimeria praecox challenge of chickens at days 3 and 6 post-infection. Gene expression was determined by real-time PCR and analyzed by one-way ANOVA. In the duodenum, the primary site of E. praecox infection, a number of genes were downregulated at both d3 and d6 post-infection. These genes included liver expressed antimicrobial peptide 2 (LEAP2), the cationic (CAT1), anionic (EAAT3), and L-type (LAT1) amino acid transporters, the peptide transporter PepT1 and the zinc transporter ZnT1. Other transporters were downregulated either at d3 or d6. At both d3 and d6, there was downregulation of B(o)AT and CAT1 in the jejunum and downregulation of LEAP2 and LAT1 in the ileum. LEAP2, EAAT3, and ZnT1 have been found to be downregulated following challenge with other Eimeria species, suggesting a common cellular response to Eimeria. PMID:26015586

  13. Species-Dependent Uptake of Glycylsarcosine but Not Oseltamivir in Pichia pastoris Expressing the Rat, Mouse, and Human Intestinal Peptide Transporter PEPT1

    PubMed Central

    Hu, Yongjun; Chen, Xiaomei

    2012-01-01

    The purpose of this study was to determine whether glycylsarcosine (a model dipeptide) and oseltamivir (an antiviral prodrug) exhibited a species-dependent uptake in yeast Pichia pastoris expressing the rat, mouse, and human homologs of PEPT1. Experiments were performed with [3H]glycylsarcosine (GlySar) in yeast P. pastoris expressing human, mouse, and rat peptide transporter 1 (PEPT1), in which uptake was examined as a function of time, concentration, potential inhibitors, and the dose-response inhibition of GlySar by oseltamivir. Studies with [14C]oseltamivir were also performed under identical experimental conditions. We found that GlySar exhibited saturable uptake in all three species, with Km values for human (0.86 mM) > mouse (0.30 mM) > rat (0.16 mM). GlySar uptake in the yeast transformants was specific for peptides (glycylproline) and peptide-like drugs (cefadroxil, cephradine, and valacyclovir), but was unaffected by glycine, l-histidine, cefazolin, cephalothin, cephapirin, acyclovir, 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid, tetraethylammonium, and elacridar. Although oseltamivir caused a dose-dependent inhibition of GlySar uptake [IC50 values for human (27.4 mM) > rat (18.3 mM) > mouse (10.7 mM)], the clinical relevance of this interaction would be very low in humans. Of importance, oseltamivir was not a substrate for the intestinal PEPT1 transporter in yeast expressing the three mammalian species tested. Instead, the prodrug exhibited nonspecific binding to the yeast vector and PEPT1 transformants. Finally, the mouse appeared to be a better animal model than the rat for exploring the intestinal absorption and pharmacokinetics of peptides and peptide-like drugs in human. PMID:22490229

  14. Bile Acid-regulated Peroxisome Proliferator-activated Receptor-α (PPARα) Activity Underlies Circadian Expression of Intestinal Peptide Absorption Transporter PepT1/Slc15a1*

    PubMed Central

    Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro

    2014-01-01

    Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. PMID:25016014

  15. Bile acid-regulated peroxisome proliferator-activated receptor-α (PPARα) activity underlies circadian expression of intestinal peptide absorption transporter PepT1/Slc15a1.

    PubMed

    Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro

    2014-09-01

    Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. PMID:25016014

  16. In vitro evaluation of N-methyl amide tripeptidomimetics as substrates for the human intestinal di-/tri-peptide transporter hPEPT1.

    PubMed

    Andersen, Rikke; Nielsen, Carsten Uhd; Begtrup, Mikael; Jørgensen, Flemming Steen; Brodin, Birger; Frokjaer, Sven; Steffansen, Bente

    2006-07-01

    Oral absorption of tripeptides is generally mediated by the human intestinal di-/tri-peptide transporter, hPEPT1. However, the bioavailability of tripeptides is often limited due to degradation in the GI-tract by various peptidases. The aim of the present study was to evaluate the general application of N-methyl amide bioisosteres as peptide bond replacements in tripeptides in order to decrease degradation by peptidases and yet retain affinity for and transport via hPEPT1. Seven structurally diverse N-methyl amide tripeptidomimetics were selected based on a principal component analysis of structural properties of 6859 N-methyl amide tripeptidomimetics. In vitro extracellular degradation of the selected tripeptidomimetics as well as affinity for and transepithelial transport via hPEPT1 were investigated in Caco-2 cells. Decreased apparent degradation was observed for all tripeptidomimetics compared to the corresponding natural tripeptides. However, affinity for and transepithelial transport via hPEPT1 were only seen for Gly-Sar-Sar, AsnPsi[CONCH(3)]PhePsi[CONCH(3)]Trp, and Gly-Sar-Leu. This implies that tripeptidomimetics originating from tripeptides with neutral side chains are more likely to be substrates for hPEPT1 than tripeptidomimetics with charged side chains. The results of the present study indicate that the N-methyl amide peptide bond replacement approach for increasing bioavailability of tripeptidomimetic drug candidates is not generally applicable to all tripeptides. Nevertheless, retained affinity for and transport via hPEPT1 were shown for three of the evaluated N-methyl amide tripeptidomimetics. PMID:16713701

  17. Peptide neurons in the canine small intestine.

    PubMed

    Daniel, E E; Costa, M; Furness, J B; Keast, J R

    1985-07-01

    The distributions of peptide-containing nerve fibers and cell bodies in the canine small intestine were determined with antibodies raised against seven peptides: enkephalin, gastrin-releasing peptide (GRP), neuropeptide Y, neurotensin, somatostatin, substance P, and vasoactive intestinal peptide (VIP). Immunoreactive nerve cell bodies and fibers were found for each peptide except neurotensin. In the muscle layers there were numerous substance P, VIP, and enkephalin fibers, fewer neuropeptide Y fibers, and very few GRP or somatostatin fibers. The mucosa contained many VIP and substance P fibers, moderate numbers of neuropeptide Y, somatostatin, and GRP fibers and rare enkephalin fibers. Nerve cell bodies reactive for each of the six neural peptides were located in both the myenteric and submucous plexuses. The distributions of nerve cell bodies and processes in the canine small intestine show many similarities with other mammals, for example, in the distributions of VIP, substance P, neuropeptide Y, and somatostatin nerves. There are some major differences, such as the presence in dogs of numerous submucosal nerve cell bodies with enkephalinlike immunoreactivity and of GRP-like immunoreactivity in submucous nerve cell bodies and mucosal fibers. PMID:2411766

  18. Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and PepT1 knockout mice.

    PubMed

    Yang, Bei; Smith, David E

    2013-03-01

    The purpose of this study was to quantitatively determine the contribution of PepT1 [peptide transporter 1 (SLC15A1)] to the intestinal permeability of valacyclovir, an ester prodrug of the antiviral drug acyclovir. In situ single-pass intestinal perfusions were employed (pH 6.5 × 90 minutes) to assess the effective permeability (P(eff)) of 100 μM [(3)H]valacyclovir in wild-type and PepT1 knockout mice. Acyclovir pharmacokinetics was also evaluated after oral administration of 25 nmol/g valacyclovir. In wild-type mice, jejunal uptake of valacyclovir was best described by both saturable (K(m) = 10.2 mM) and nonsaturable components where the saturable pathway accounted for 82% of total transport. Valacyclovir P(eff) was 2.4 × 10(-4) cm/s in duodenum, 1.7 × 10(-4) cm/s in jejunum, 2.1 × 10(-4) cm/s in ileum, and 0.27 × 10(-4) cm/s in colon. In Pept1 knockout mice, P(eff) values were about 10% of that in wild-type animals for these small intestinal segments. Valacyclovir P(eff) was similar in the colon of both genotypes. There were no differences in valacyclovir P(eff) between any of the intestinal segments of PepT1 knockout mice. Valacyclovir P(eff) was significantly reduced by the dipeptide glycylsarcosine and the aminocephalosporin cefadroxil, but not by the amino acids l-valine or l-histidine, the organic acid p-aminohippurate, or the organic base tetraethylammonium (all at 25 mM). PepT1 ablation resulted in 3- to 5-fold reductions in the in vivo rate and extent of valacyclovir absorption. Our findings conclusively demonstrate, using in situ and in vivo validations in genetically modified mice, that PepT1 has a major influence in improving the oral absorption of valacyclovir. PMID:23264448

  19. cis-Peptide Bonds: A Key for Intestinal Permeability of Peptides? .

    PubMed

    Marelli, Udaya Kiran; Ovadia, Oded; Frank, Andreas Oliver; Chatterjee, Jayanta; Gilon, Chaim; Hoffman, Amnon; Kessler, Horst

    2015-10-19

    Recent structural studies on libraries of cyclic hexapeptides led to the identification of common backbone conformations that may be instrumental to the oral availability of peptides. Furthermore, the observation of differential Caco-2 permeabilities of enantiomeric pairs of some of these peptides strongly supports the concept of conformational specificity driven uptake and also suggests a pivotal role of carrier-mediated pathways for peptide transport, especially for scaffolds of polar nature. This work presents investigations on the Caco-2 and PAMPA permeability profiles of 13 selected N-methylated cyclic pentaalanine peptides derived from the basic cyclo(-D-Ala-Ala4 -) template. These molecules generally showed moderate to low transport in intestinal epithelia with a few of them exhibiting a Caco-2 permeability equal to or slightly higher than that of mannitol, a marker for paracellular permeability. We identified that the majority of the permeable cyclic penta- and hexapeptides possess an N-methylated cis-peptide bond, a structural feature that is also present in the orally available peptides cyclosporine A and the tri-N-methylated analogue of the Veber-Hirschmann peptide. Based on these observations it appears that the presence of N-methylated cis-peptide bonds at certain locations may promote the intestinal permeability of peptides through a suitable conformational preorganization. PMID:26337831

  20. Role of fatty acid transport protein 4 in oleic acid-induced glucagon-like peptide-1 secretion from murine intestinal L cells

    PubMed Central

    Poreba, M. A.; Dong, C. X.; Li, S. K.; Stahl, A.; Miner, J. H.

    2012-01-01

    The antidiabetic intestinal L cell hormone glucagon-like peptide-1 (GLP-1) enhances glucose-dependent insulin secretion and inhibits gastric emptying. GLP-1 secretion is stimulated by luminal oleic acid (OA), which crosses the cell membrane by an unknown mechanism. We hypothesized that L cell fatty acid transport proteins (FATPs) are essential for OA-induced GLP-1 release. Therefore, the murine GLUTag L cell model was used for immunoblotting, [3H]OA uptake assay, and GLP-1 secretion assay as determined by radioimmunoassay following treatment with OA ± phloretin, sulfo-N-succinimidyl oleate, or siRNA against FATP4. FATP4−/− and cluster-of-differentiation 36 (CD36)−/− mice received intraileal OA, and plasma GLP-1 was measured by sandwich immunoassay. GLUTag cells were found to express CD36, FATP1, FATP3, and FATP4. The cells demonstrated specific 3H[OA] uptake that was dose-dependently inhibited by 500 and 1,000 μM unlabeled OA (P < 0.001). Cell viability was not altered by treatment with OA. Phloretin and sulfo-N-succinimidyl oleate, inhibitors of protein-mediated transport and CD36, respectively, also decreased [3H]OA uptake, as did knockdown of FATP4 by siRNA transfection (P < 0.05–0.001). OA dose-dependently increased GLP-1 secretion at 500 and 1,000 μM (P < 0.001), whereas phloretin, sulfo-N-succinimidyl oleate, and FATP4 knockdown decreased this response (P < 0.05–0.01). FATP4−/− mice displayed lower plasma GLP-1 at 60 min in response to intraileal OA (P < 0.05), whereas, unexpectedly, CD36−/− mice displayed higher basal GLP-1 levels (P < 0.01) but a normal response to intraileal OA. Together, these findings demonstrate a key role for FATP4 in OA-induced GLP-1 secretion from the murine L cell in vitro and in vivo, whereas the precise role of CD36 remains unclear. PMID:22871340

  1. Vasoactive intestinal peptide (VIP) receptors in the canine gastrointestinal tract

    SciTech Connect

    Zimmerman, R.P.; Gates, T.S.; Mantyh, C.R.; Vigna, S.R.; Boehmer, C.G.; Mantyh, P.W.

    1988-11-01

    Vasoactive intestinal peptide (VIP) is a putative neurotransmitter in both the brain and peripheral tissues. To define possible target tissues of VIP we have used quantitative receptor autoradiography to localize and quantify the distribution of /sup 125/I-VIP receptor binding sites in the canine gastrointestinal tract. While the distribution of VIP binding sites was different for each segment examined, specific VIP binding sites were localized to the mucosa, the muscularis mucosa, the smooth muscle of submucosal arterioles, lymph nodules, and the circular and longitudinal smooth muscle of the muscularis externa. These results identify putative target tissues of VIP action in the canine gastrointestinal tract. In correlation with physiological data, VIP sites appear to be involved in the regulation of a variety of gastrointestinal functions including epithelial ion transport, gastric secretion, hemodynamic regulation, immune response, esophageal, gastric and intestinal motility.

  2. Role of vasoactive intestinal peptide in osteoarthritis.

    PubMed

    Jiang, Wei; Wang, Hua; Li, Yu-Sheng; Luo, Wei

    2016-01-01

    Vasoactive intestinal peptide (VIP) plays important roles in many biological functions, such as, stimulation of contractility in the heart, vasodilation, promoting neuroendocrine-immune communication, lowering arterial blood pressure, and anti-inflammatory and immune-modulatory activity. Osteoarthritis (OA) is a chronic and degenerative bone disease, which is one of the most common causes of disability and most common in both sexes as people become older. Interestingly VIP can prevent chronic cartilage damage and joint remodeling. This review article provides update information on the association of VIP and OA and its treatment. Evidences suggest that VIP is down-regulated in synovial fluid of OA, and VIP down-regulation leads to increase in the production of pro-inflammatory cytokines that might contribute to the pathogenesis of OA; however contradictory reports also exist suggesting that accumulation of VIP in joints can also contribute OA. A number of studies indicated that up-regulation of VIP can counteract the action of pro-inflammatory stimuli and alleviate the pain in OA. More clinical investigations are necessary to determine the biology of VIP and its therapeutic potential in OA that might represent the future standards of care for OA. PMID:27553659

  3. An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins.

    PubMed Central

    Steiner, H Y; Song, W; Zhang, L; Naider, F; Becker, J M; Stacey, G

    1994-01-01

    An Arabidopsis peptide transport gene was cloned from an Arabidopsis cDNA library by functionally complementing a yeast peptide transport mutant. The Arabidopsis plant peptide transporter (AtPTR2) allowed growth of yeast cells on dipeptides and tripeptides but not peptides four residues and higher. The plant peptide transporter also conferred sensitivity to a number of ethionine-containing, toxic peptides of chain length three or less and restored the ability to take up radiolabeled dileucine at levels similar to that of the wild type. Dileucine uptake was reduced by the addition of a variety of growth-promoting peptides. The sequence of a cDNA insert of 2.8 kb indicated an open reading frame encoding a 610-amino acid polypeptide (67.5 kD). Hydropathy analysis predicted a highly hydrophobic protein with a number of potential transmembrane segments. At the amino acid level, the Arabidopsis plant peptide transporter shows 24.6, 28.5, and 45.2% identity to the Arabidopsis nitrate-inducible nitrate transporter (CHL1), the rabbit small intestine oligopeptide transporter (PepT1), and the yeast peptide transporter (Ptr2p), respectively, but little identity to other proteins known to be involved in peptide transport. Root growth of Arabidopsis seedlings exposed to ethionine-containing toxic peptides was inhibited, and growth was restored by the addition of certain peptides shown to compete with dileucine uptake in yeast expressing the Arabidopsis transport gene. Consistent with the observed inhibition of root growth by toxic peptides, the peptide transporter is expressed in the roots of Arabidopsis seedlings. This study represents the characterization of a plant peptide transporter that is a member of a new class of related membrane transport proteins. PMID:7919993

  4. Mice lacking the intestinal peptide transporter display reduced energy intake and a subtle maldigestion/malabsorption that protects them from diet-induced obesity.

    PubMed

    Kolodziejczak, Dominika; Spanier, Britta; Pais, Ramona; Kraiczy, Judith; Stelzl, Tamara; Gedrich, Kurt; Scherling, Christian; Zietek, Tamara; Daniel, Hannelore

    2013-05-15

    The intestinal transporter PEPT1 mediates the absorption of di- and tripeptides originating from breakdown of dietary proteins. Whereas mice lacking PEPT1 did not display any obvious changes in phenotype on a high-carbohydrate control diet (HCD), Pept1(-/-) mice fed a high-fat diet (HFD) showed a markedly reduced weight gain and reduced body fat stores. They were additionally protected from hyperglycemia and hyperinsulinemia. Energy balance studies revealed that Pept1(-/-) mice on HFD have a reduced caloric intake, no changes in energy expenditure, but increased energy content in feces. Cecal biomass in Pept1(-/-) mice was as well increased twofold on both diets, suggesting a limited capacity in digesting and/or absorbing the dietary constituents in the small intestine. GC-MS-based metabolite profiling of cecal contents revealed high levels and a broad spectrum of sugars in PEPT1-deficient mice on HCD, whereas animals fed HFD were characterized by high levels of free fatty acids and absence of sugars. In search of the origin of the impaired digestion/absorption, we observed that Pept1(-/-) mice lack the adaptation of the upper small intestinal mucosa to the trophic effects of the diet. Whereas wild-type mice on HFD adapt to diet with increased villus length and surface area, Pept1(-/-) mice failed to show this response. In search for the origin of this, we recorded markedly reduced systemic IL-6 levels in all Pept1(-/-) mice, suggesting that IL-6 could contribute to the lack of adaptation of the mucosal architecture to the diets. PMID:23494121

  5. Impact of peptide transporter 1 on the intestinal absorption and pharmacokinetics of valacyclovir after oral dose escalation in wild-type and PepT1 knockout mice.

    PubMed

    Yang, Bei; Hu, Yongjun; Smith, David E

    2013-10-01

    The primary objective of this study was to determine the in vivo absorption properties of valacyclovir, including the potential for saturable proton-coupled oligopeptide transporter 1 (PepT1)-mediated intestinal uptake, after escalating oral doses of prodrug within the clinical dose range. A secondary aim was to characterize the role of PepT1 on the tissue distribution of its active metabolite, acyclovir. [³H]Valacyclovir was administered to wild-type (WT) and PepT1 knockout (KO) mice by oral gavage at doses of 10, 25, 50, and 100 nmol/g. Serial blood samples were collected over 180 minutes, and tissue distribution studies were performed 20 minutes after a 25-nmol/g oral dose of valacyclovir. We found that the C(max) and area under the curve (AUC)₀₋₁₈₀ of acyclovir were 4- to 6-fold and 2- to 3-fold lower, respectively, in KO mice for all four oral doses of valacyclovir. The time to peak concentration of acyclovir was 3- to 10-fold longer in KO compared with WT mice. There was dose proportionality in the C(max) and AUC₀₋₁₈₀ of acyclovir in WT and KO mice over the valacyclovir oral dose range of 10-100 nmol/g (i.e., linear absorption kinetics). No differences were observed in the peripheral tissue distribution of acyclovir once these tissues were adjusted for differences in perfusing drug concentrations in the systemic circulation. In contrast, some differences were observed between genotypes in the concentrations of acyclovir in the distal intestine. Collectively, the findings demonstrate a critical role of intestinal PepT1 in improving the rate and extent of oral absorption for valacyclovir. Moreover, this study provides definitive evidence for the rational development of a PepT1-targeted prodrug strategy. PMID:23924683

  6. Expression of intestinal transporter genes in beagle dogs

    PubMed Central

    CHO, SOO-MIN; PARK, SUNG-WON; KIM, NA-HYUN; PARK, JIN-A; YI, HEE; CHO, HEE-JUNG; PARK, KI-HWAN; HWANG, INGYUN; SHIN, HO-CHUL

    2013-01-01

    This study was performed to produce a transcriptional database of the intestinal transporters of beagle dogs. Total RNA was isolated from the duodenum and the expression of various mRNAs was measured using GeneChip® oligonucleotide arrays. A total of 124 transporter genes were detected. Genes for fatty acid, peptide, amino acid and glucose and multidrug resistance/multidrug resistance-associated protein (MDR/MRP) transport were expressed at relatively higher levels than the other transporter types. The dogs exhibited abundant mRNA expression of the fatty acid transporters (fatty acid binding proteins, FABPs) FABP1 and FABP2, the ATP-binding cassettes (ABCs) ABCB1A and ABCC2, the amino acid/peptide transporters SLC3A1 and SLC15A1, the glucose transporters SLC5A1, SLC2A2 and SLC2A5, the organic anion transporter SLC22A9 and the phosphate transporters SLC20A1 and SLC37A4. In mice, a similar profile was observed with high expression of the glucose transporters SLC5A1 and SLC2As, the fatty acid transporters FABP1 and FABP2, the MDR/MRP transporters ABCB1A and ABCC2 and the phosphate transporter SLC37A4. However, the overall data reveal diverse transcriptomic profiles of the intestinal transporters of dogs and mice. Therefore, the current database may be useful for comparing the intestinal transport systems of dogs with those of mice to better evaluate xenobiotics. PMID:23251289

  7. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery

    NASA Technical Reports Server (NTRS)

    Bai, J. P.; Amidon, G. L.

    1992-01-01

    The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

  8. Food Derived Bioactive Peptides and Intestinal Barrier Function

    PubMed Central

    Martínez-Augustin, Olga; Rivero-Gutiérrez, Belén; Mascaraque, Cristina; Sánchez de Medina, Fermín

    2014-01-01

    A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF) whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action. PMID:25501338

  9. Transepithelial transport of milk derived bioactive peptide VLPVPQK.

    PubMed

    Vij, Rishika; Reddi, Srinu; Kapila, Suman; Kapila, Rajeev

    2016-01-01

    The transepithelial transport of an antioxidative and ACE inhibitory peptide, VLPVPQK (named peptide C) derived from casein hydrolysates was investigated along with extensively studied opioid peptide β-casomorphin using a human intestinal cell (Caco-2) monolayer. The susceptibility to the brush-border peptidases and route of transepithelial transport were observed to be the primary factors influencing the transport of these peptides. The apical to basal transport mechanism was studied using bradykinin as control as it shows resistance to cellular peptidases and its route of transepithelial transport had been established. VLPVPQK and BCM 5 were hydrolyzed by cellular peptidases while bradykinin was found intact. The transport of VLPVPQK (1.0%) was found to be relatively much higher than BCM 5 (0.03%) and bradykinin (0.1%). Interestingly the effect of some inhibitors on the transport of VLPVPQK suggested involvement of PepT1 like transporters/SOPT2 while BCM 5, its hydrolytic product and bradykinin were suggested to be transported mainly via the intracellular transcytosis pathway. PMID:26213026

  10. Vasoactive intestinal peptide stimulates protein phosphorylation in a colonic epithelial cell line

    SciTech Connect

    Cohn, J.A.

    1987-09-01

    The T/sub 84/ colonic epithelial cell line was used to examine protein phosphorylation during neurohumoral stimulation of ion transport. T/sub 84/ cell monolayers grown on collagen-coated filters were mounted in Ussing chambers to measure ion transport stimulated by vasoactive intestinal peptide. Maximal stimulation of active secretion occurred after 8-10 min of stimulation. Protein phosphorylation events accompanying stimulated secretion were detected using two-dimensional gel electrophoresis to resolve phosphoproteins from monolayers previously labeled using /sup 32/P/sub i/. Within 8 min of exposure to vasoactive intestinal peptide, several phosphorylation events were detected, including a two- to fivefold increase in /sup 32/P incorporation into four soluble proteins with apparent molecular weights of 17,000, 18,000, 23,000, and 37,000. The same phosphorylation response occurs in monolayers stimulated by dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP), suggesting that cAMP mediates these intracellular events. This study indicates that changes in protein phosphorylation accompany the secretory action of vasocactive intestinal peptide and suggests that T/sub 84/ cells offer a useful model for studying the possibility that such phosphorylation events regulate enterocyte ion transport.

  11. Identification of an intestinal heme transporter.

    PubMed

    Shayeghi, Majid; Latunde-Dada, Gladys O; Oakhill, Jonathan S; Laftah, Abas H; Takeuchi, Ken; Halliday, Neil; Khan, Yasmin; Warley, Alice; McCann, Fiona E; Hider, Robert C; Frazer, David M; Anderson, Gregory J; Vulpe, Christopher D; Simpson, Robert J; McKie, Andrew T

    2005-09-01

    Dietary heme iron is an important nutritional source of iron in carnivores and omnivores that is more readily absorbed than non-heme iron derived from vegetables and grain. Most heme is absorbed in the proximal intestine, with absorptive capacity decreasing distally. We utilized a subtractive hybridization approach to isolate a heme transporter from duodenum by taking advantage of the intestinal gradient for heme absorption. Here we show a membrane protein named HCP 1 (heme carrier protein 1), with homology to bacterial metal-tetracycline transporters, mediates heme uptake by cells in a temperature-dependent and saturable manner. HCP 1 mRNA was highly expressed in duodenum and regulated by hypoxia. HCP 1 protein was iron regulated and localized to the brush-border membrane of duodenal enterocytes in iron deficiency. Our data indicate that HCP 1 is the long-sought intestinal heme transporter. PMID:16143108

  12. Regulation of the Intestinal Barrier Function by Host Defense Peptides

    PubMed Central

    Robinson, Kelsy; Deng, Zhuo; Hou, Yongqing; Zhang, Guolong

    2015-01-01

    Intestinal barrier function is achieved primarily through regulating the synthesis of mucins and tight junction (TJ) proteins, which are critical for maintaining optimal gut health and animal performance. An aberrant expression of TJ proteins results in increased paracellular permeability, leading to intestinal and systemic disorders. As an essential component of innate immunity, host defense peptides (HDPs) play a critical role in mucosal defense. Besides broad-spectrum antimicrobial activities, HDPs promotes inflammation resolution, endotoxin neutralization, wound healing, and the development of adaptive immune response. Accumulating evidence has also indicated an emerging role of HDPs in barrier function and intestinal homeostasis. HDP deficiency in the intestinal tract is associated with barrier dysfunction and dysbiosis. Several HDPs were recently shown to enhance mucosal barrier function by directly inducing the expression of multiple mucins and TJ proteins. Consistently, dietary supplementation of HDPs often leads to an improvement in intestinal morphology, production performance, and feed efficiency in livestock animals. This review summarizes current advances on the regulation of epithelial integrity and homeostasis by HDPs. Major signaling pathways mediating HDP-induced mucin and TJ protein synthesis are also discussed. As an alternative strategy to antibiotics, supplementation of exogenous HDPs or modulation of endogenous HDP synthesis may have potential to improve intestinal barrier function and animal health and productivity. PMID:26664984

  13. Modulation of intestinal L-glutamate transport by luminal leptin.

    PubMed

    Fanjul, Carmen; Barrenetxe, Jaione; Lostao, María Pilar; Ducroc, Robert

    2015-06-01

    Leptin is secreted into the digestive tract and contributes to the absorption of dietary molecules by regulating transporters activity. Here, we studied the effect of luminal leptin on the intestinal transport of L-glutamate, an important component of human diet. We examined the effect of leptin on L-glutamate uptake in rat intestine in vitro measuring glutamate-induced short-circuit current (Isc) in Ussing chambers and L-[(3)H (U)]-glutamate uptake in jejunal everted rings. Glutamate-induced Isc was only observed in Na(+)-free conditions. This Isc was concentration (1-60 mmol L(-1)) and pH dependent. Luminal leptin increased glutamate Isc (∼100 %). Dose-response curve showed a biphasic pattern, with maximal stimulations observed at 10(-13) and 10(-10) mmol L(-1), that were sensitive to leptin receptor antagonist. In everted rings, two glutamate transport mechanisms were distinguished: a Na(+)-dependent, H(+)-independent, that was inhibited by leptin (∼20 %), and a Na(+)-independent but H(+)-dependent, that was enhanced by leptin (∼20 %), in line with data obtained in Ussing chambers. Altogether, these data reveal original non-monotonic effect of luminal leptin in the intestine and demonstrate a new role for this hormone in the modulation of L-glutamate transport, showing that luminal active gut peptides can influence absorption of amino acids. PMID:25935421

  14. Do Antimicrobial Peptides and Complement Collaborate in the Intestinal Mucosa?

    PubMed Central

    Kopp, Zoë A.; Jain, Umang; Van Limbergen, Johan; Stadnyk, Andrew W.

    2015-01-01

    It is well understood that multiple antimicrobial peptides (AMPs) are constitutively deployed by the epithelium to bolster the innate defenses along the entire length of the intestines. In addition to this constitutive/homeostatic production, AMPs may be inducible and levels changed during disease. In contrast to this level of knowledge on AMP sources and roles in the intestines, our understanding of the complement cascade in the healthy and diseased intestines is rudimentary. Epithelial cells make many complement proteins and there is compelling evidence that complement becomes activated in the lumen. With the common goal of defending the host against microbes, the opportunities for cross-talk between these two processes is great, both in terms of actions on the target microbes but also on regulating the synthesis and secretion of the alternate family of molecules. This possibility is beginning to become apparent with the finding that colonic epithelial cells possess anaphylatoxin receptors. There still remains much to be learned about the possible points of collaboration between AMPs and complement, for example, whether there is reciprocal control over expression in the intestinal mucosa in homeostasis and restoring the balance following infection and inflammation. PMID:25688244

  15. Vasoactive intestinal peptide signaling axis in human leukemia

    PubMed Central

    Dorsam, Glenn Paul; Benton, Keith; Failing, Jarrett; Batra, Sandeep

    2011-01-01

    The vasoactive intestinal peptide (VIP) signaling axis constitutes a master “communication coordinator” between cells of the nervous and immune systems. To date, VIP and its two main receptors expressed in T lymphocytes, vasoactive intestinal peptide receptor (VPAC)1 and VPAC2, mediate critical cellular functions regulating adaptive immunity, including arresting CD4 T cells in G1 of the cell cycle, protection from apoptosis and a potent chemotactic recruiter of T cells to the mucosa associated lymphoid compartment of the gastrointestinal tissues. Since the discovery of VIP in 1970, followed by the cloning of VPAC1 and VPAC2 in the early 1990s, this signaling axis has been associated with common human cancers, including leukemia. This review highlights the present day knowledge of the VIP ligand and its receptor expression profile in T cell leukemia and cell lines. Also, there will be a discussion describing how the anti-leukemic DNA binding transcription factor, Ikaros, regulates VIP receptor expression in primary human CD4 T lymphocytes and T cell lymphoblastic cell lines (e.g. Hut-78). Lastly, future goals will be mentioned that are expected to uncover the role of how the VIP signaling axis contributes to human leukemogenesis, and to establish whether the VIP receptor signature expressed by leukemic blasts can provide therapeutic and/or diagnostic information. PMID:21765981

  16. Intestinal transport and metabolism of bile acids

    PubMed Central

    Dawson, Paul A.; Karpen, Saul J.

    2015-01-01

    In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150

  17. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following in...

  18. The role of vasoactive intestinal peptide in scavenging singlet oxygen

    SciTech Connect

    Misra, B.R.; Misra, H.P. )

    1990-02-26

    The neuropeptide vasoactive intestinal peptide (VIP), a highly basic 28 amino acid peptide, has a widespread distribution in the body. The functional specificity of this peptide not only includes its potent vasodilatory activity, but also its role in protecting lungs against acute injury, in preventing T-lymphocyte proliferation and in modulating immune function. The purpose of this study was to examine the possible antioxidant properties of VIP. The authors found that VIP up to 50 {mu}g/ml had no inhibitory effect on its reduction of cytochrome C by xanthine and xanthine oxidase, indicating that the peptide does not have significant O{sub 2} scavenging ability. However, VIP was found to inhibit, in a dose-dependent manner, the {sup 1}O{sub 2} dependent 2, 2, 6, 6 tetramethyl piperidine oxide (TEMPO) formation. {sup 1}O{sub 2} was produced by rose benzal photosensitizing system and was detected as TEMP-{sup 1}O{sub 2} adduct (TEMPO) by electron paramagnetic resonance (EPR) spectroscopic technique. The formation of TEMPO signal was strongly inhibited by {beta}-carotene, histidine as well as azide, but not by superoxide dismutase (48 {mu}g/ml), catalase (20 {mu}g/ml) and mannitol (6mM), indicating that TEMPO signal was a TEMP-{sup 1}O{sub 2} adduct. These results indicate that VIP has potent antioxidant activity and may serve as a singlet O{sub 2} scavenger, thus it may modulate the oxidative tissue injury caused by this reactive oxygen species.

  19. Electron Transport in Short Peptide Single Molecules

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Brisendine, Joseph; Ng, Fay; Nuckolls, Colin; Koder, Ronald; Venkarataman, Latha

    We present a study of the electron transport through a series of short peptides using scanning tunneling microscope-based break junction method. Our work is motivated by the need to gain a better understanding of how various levels of protein structure contribute to the remarkable capacity of proteins to transport charge in biophysical processes such as respiration and photosynthesis. We focus here on short mono, di and tri-peptides, and probe their conductance when bound to gold electrodes in a native buffer environment. We first show that these peptides can bind to gold through amine, carboxyl, thiol and methyl-sulfide termini. We then focus on two systems (glycine and alanine) and show that their conductance decays faster than alkanes terminated by the same linkers. Importantly, our results show that the peptide bond is less conductive than a sigma carbon-carbon bond. This work was supported in part by NSF-DMR 1507440.

  20. Intestinal and renal guanylin peptides system in hypertensive obese mice.

    PubMed

    Simões-Silva, Liliana; Moreira-Rodrigues, Mónica; Quelhas-Santos, Janete; Fernandes-Cerqueira, Cátia; Pestana, Manuel; Soares-Silva, Isabel; Sampaio-Maia, Benedita

    2013-01-01

    Guanylin (GN), uroguanylin (UGN) and the GC-C receptor have been associated with two endocrine axes: the salt and water homeostasis regulating enterorenal axis and the recently described appetite-regulating UGN/GC-C extraintestinal axis. The present work assessed the mRNA expression levels of GN peptides system (GPS) in a model of diet-induced obesity. Male C57BL/6J mice were submitted to either a high-fat high-simple carbohydrate diet (obese) or a normal diet (control). The renal and intestinal GN, UGN and GC-C receptor mRNA expression were evaluated by reverse transcriptase quantitative polymerase chain reaction in both groups, during normo-saline (NS) and high-saline (HS) diet. The diet-induced obesity was accompanied by glucose intolerance and insulin resistance as well as by a significant increase in blood pressure. During NS diet, obese mice presented reduced mRNA expression of GN in ileum and colon, UGN in duodenum, ileum and colon and GC-C in duodenum, jejunum, ileum and colon. This was accompanied by increased UGN mRNA expression in renal cortex. During HS diet, obese mice presented reduced mRNA expression of GN in jejunum as well as reduced mRNA expression of UGN and GC-C in duodenum, jejunum and colon. The data obtained suggest that, in a mouse model of diet-induced obesity, a down-regulation of intestinal mRNA expression of GN, UGN and its GC-C receptor is accompanied by a compensatory increase of renal UGN mRNA expression. We hypothesize that the decrease in gene expression levels of intestinal GPS may contribute to the development of hypertension and obesity during hypercaloric diet intake. PMID:23479768

  1. The Responses of Rat Intestinal Brush Border and Cytosol Peptide Hydrolase Activities to Variation in Dietary Protein Content DIETARY REGULATION OF INTESTINAL PEPTIDE HYDROLASES

    PubMed Central

    Nicholson, J. Alex; McCarthy, Denis M.; Kim, Young S.

    1974-01-01

    The effects of variation in dietary protein content on small intestinal brush border and cytosol peptide hydrolase activities have been investigated. One group of rats was fed a high protein diet (55% casein) and another group was fed a low protein diet (10% casein). After 1 wk, brush border peptide hydrolase activity (L-leucyl-β-naphthylamide as substrate) and cytosol peptide hydrolase activity (L-prolyl-L-leucine as substrate) were determined in mucosae taken from the proximal, middle, and distal small intestine. As judged by several parameters, brush border peptide hydrolase activity was significantly greater in rats fed the high protein diet when data for corresponding segments were compared. In contrast, no significant difference was seen in cytosol peptide hydrolase activity. In a second study, brush border and cytosol peptide hydrolase activities were determined in the proximal intestine by utilizing an additional three peptide substrates: L-leucyl-L-alanine, L-phenylalanylglycine, and glycyl-L-phenylalanine. Sucrase, maltase, and alkaline phosphatase activities were also determined. As before, brush border peptide hydrolase activities were significantly greater in rats fed the high protein diet. However, activities of the nonproteolytic brush border enzymes did not vary significantly with diet. In contrast to the results obtained with L-prolyl-L-leucine as substrate for the cytosol enzymes, cytosol activity against the three additional peptide substrates was greater in rats fed the high protein diet. It is suggested that the brush border peptide hydrolase response to variation in dietary protein content represents a functional adaptation analogous to the regulation of intestinal disaccharidases by dietary carbohydrates. The implication of the differential responses of the cytosol peptide hydrolases is uncertain, since little is known of the functional role of these nonorgan-specific enzymes. PMID:4430719

  2. Intestinal transport as a potential determinant of drug bioavailability.

    PubMed

    Nauli, Andromeda M; Nauli, Surya M

    2013-08-01

    Orally administered drugs are generally absorbed by the small intestine and transported either to the lymphatic system or to the hepatic portal system. In general, lipid soluble drugs and vitamins are transported by the small intestine to the lymphatics, and water-soluble drugs are transported to the hepatic portal system. By avoiding the early hepatic first pass effect, the lymphatic transport system may increase drug bioavailability. In addition to its transport systems, the small intestine may affect drug bioavailability through drug uptake, intestinal first pass effect, recruitment of drugs by chylomicrons, formation and secretion of chylomicrons, and enterohepatic circulation. All of these factors should be considered when formulating orally administered lipophilic drugs. Our data also suggest that Caco-2 cells may serve as a valuable in vitro model to study the intestinal transport of orally administered drugs. PMID:23343017

  3. Actions of vasoactive intestinal peptide and secretin on chief cells prepared from guinea pig stomach

    SciTech Connect

    Sutliff, V.E.; Raufman, J.P.; Jensen, R.T.; Gardner, J.D.

    1986-07-01

    Vasoactive intestinal peptide and secretin increased cellular cAMP and pepsinogen secretion in dispersed chief cells from guinea pig gastric mucosa. With each peptide there was a close correlation between the dose-response curve for changes in cellular cAMP and that for changes in pepsinogen secretion. Vasoactive intestinal peptide- (10-28) and secretin- (5-27) had no agonist activity and antagonized the actions of vasoactive intestinal peptide and secretin on cellular cAMP and pepsinogen secretion. Studies of binding of SVI-vasoactive intestinal peptide and of SV-secretin indicated that gastric chief cells possess four classes of binding sites for vasoactive intestinal peptide and secretin and that occupation of two of these classes of binding sites correlates with the abilities of vasoactive intestinal peptide and secretin to increase cellular cAMP and pepsinogen secretion. What function, in any, is mediated by occupation by the other two classes of binding sites remains to be determined.

  4. Glucagon-like peptide-2 protects against TPN-induced intestinal hexose malabsorption in enterally refed piglets.

    PubMed

    Cottrell, J J; Stoll, B; Buddington, R K; Stephens, J E; Cui, L; Chang, X; Burrin, D G

    2006-02-01

    Premature infants receiving chronic total parenteral nutrition (TPN) due to feeding intolerance develop intestinal atrophy and reduced nutrient absorption. Although providing the intestinal trophic hormone glucagon-like peptide-2 (GLP-2) during chronic TPN improves intestinal growth and morphology, it is uncertain whether GLP-2 enhances absorptive function. We placed catheters in the carotid artery, jugular and portal veins, duodenum, and a portal vein flow probe in piglets before providing either enteral formula (ENT), TPN or a coinfusion of TPN plus GLP-2 for 6 days. On postoperative day 7, all piglets were fed enterally and digestive functions were evaluated in vivo using dual infusion of enteral ((13)C) and intravenous ((2)H) glucose, in vitro by measuring mucosal lactase activity and rates of apical glucose transport, and by assessing the abundances of sodium glucose transporter-1 (SGLT-1) and glucose transporter-2 (GLUT2). Both ENT and GLP-2 pigs had larger intestine weights, longer villi, and higher lactose digestive capacity and in vivo net glucose and galactose absorption compared with TPN alone. These endpoints were similar in ENT and GLP-2 pigs except for a lower intestinal weight and net glucose absorption in GLP-2 compared with ENT pigs. The enhanced hexose absorption in GLP-2 compared with TPN pigs corresponded with higher lactose digestive and apical glucose transport capacities, increased abundance of SGLT-1, but not GLUT-2, and lower intestinal metabolism of [(13)C]glucose to [(13)C]lactate. Our findings indicate that GLP-2 treatment during chronic TPN maintains intestinal structure and lactose digestive and hexose absorptive capacities, reduces intestinal hexose metabolism, and may facilitate the transition to enteral feeding in TPN-fed infants. PMID:16166344

  5. Intestinal fructose transport and malabsorption in humans.

    PubMed

    Jones, Hilary F; Butler, Ross N; Brooks, Doug A

    2011-02-01

    Fructose is a hexose sugar that is being increasingly consumed in its monosaccharide form. Patients who exhibit fructose malabsorption can present with gastrointestinal symptoms that include chronic diarrhea and abdominal pain. However, with no clearly established gastrointestinal mechanism for fructose malabsorption, patient analysis by the proxy of a breath hydrogen test (BHT) is controversial. The major transporter for fructose in intestinal epithelial cells is thought to be the facilitative transporter GLUT5. Consistent with a facilitative transport system, we show here by analysis of past studies on healthy adults that there is a significant relationship between fructose malabsorption and fructose dose (r = 0.86, P < 0.001). Thus there is a dose-dependent and limited absorption capacity even in healthy individuals. Changes in fructose malabsorption with age have been observed in human infants, and this may parallel the developmental regulation of GLUT5 expression. Moreover, a GLUT5 knockout mouse has displayed the hallmarks associated with profound fructose malabsorption. Fructose malabsorption appears to be partially modulated by the amount of glucose ingested. Although solvent drag and passive diffusion have been proposed to explain the effect of glucose on fructose malabsorption, this could possibly be a result of the facilitative transporter GLUT2. GLUT5 and GLUT2 mRNA have been shown to be rapidly upregulated by the presence of fructose and GLUT2 mRNA is also upregulated by glucose, but in humans the distribution and role of GLUT2 in the brush border membrane are yet to be definitively decided. Understanding the relative roles of these transporters in humans will be crucial for establishing a mechanistic basis for fructose malabsorption in gastrointestinal patients. PMID:21148401

  6. Vasoactive intestinal peptide receptors in rat liver after partial hepatectomy.

    PubMed Central

    Guijarro, L G; Couvineau, A; Rodriguez-Pena, M S; Juarranz, M G; Rodriguez-Henche, N; Arilla, E; Laburthe, M; Prieto, J C

    1992-01-01

    We describe the status of vasoactive intestinal peptide (VIP) receptors in regenerating liver. VIP-stimulated adenylate cyclase activity was markedly decreased in proliferating liver 3 days after partial (70%) hepatectomy. This was associated with a reduced efficacy of VIP (53% compared with controls), with no change in the potency of the peptide (ED50 0.8 nM). In contrast, forskolin- and guanosine 5'-[beta gamma-imido]triphosphate (Gpp[NH]p)-stimulated enzyme activities were not decreased after hepatectomy. The expression of Gs protein subunits (alpha and beta) was studied by cholera toxin-catalysed ADP ribosylation of alpha s and by immunoblotting of alpha s and beta subunits. Both subunits were increased in regenerating liver, further suggesting that the decreased response to VIP was not related to a decreased expression of Gs proteins. In fact, the reduced adenylate cyclase response to VIP in regenerating liver was associated with quantitative and structural changes in VIP receptors. Equilibrium binding data obtained with 125I-VIP indicated the presence of two classes of binding sites, the Kds of which were not altered after hepatectomy. In contrast, changes in binding capacity (Bmax.) were as follows: 0.11 +/- 0.01 and 0.05 +/- 0.01 pmol/mg of protein for high-affinity sites in control and hepatectomized rats respectively; and 2.3 +/- 0.2 and 0.65 +/- 0.03 pmol/mg of protein for low-affinity sites in control and hepatectomized rats respectively. Moreover, affinity labelling experiments showed that the M(r) value of 125I-VIP-receptor complexes was higher in regenerating liver than in quiescent hepatocytes, e.g. 58,000 and 53,000 respectively. It is concluded that VIP receptors are altered in regenerating liver, resulting in a decreased response of adenylate cyclase to the neuropeptide. Images Fig. 3. Fig. 4. Fig. 6. PMID:1322136

  7. Glucagon-like peptide-2 increases small intestinal mass of calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is a 33-amino acid hormone secreted from the gastrointestinal tract in response to luminal nutrients that potently increases small intestinal mass in non-ruminants. However, the effects of GLP-2 on small intestinal mass and morphology of ruminants is unknown. Eight Ho...

  8. Pharmacodynamics and toxicity of vasoactive intestinal peptide for intranasal administration.

    PubMed

    Cui, Xu; Cao, De-Ying; Wang, Zhi-Min; Zheng, Ai-Ping

    2013-01-01

    The aim of this work was to study the nasal route for the delivery of vasoactive intestinal peptide (VIP) to the brain and to evaluate the toxicity of VIP nasal spray. Mice were injected intracerebroventricularly with the aggregated Abeta25-35 to mimic Alzheimer's disease. Following administration, different groups of mice were treated over one week, and their spatial learning and memory capacities were evaluated by the Morris water maze test. The toxicity of VIP nasal spray was evaluated by examining the morphology of individual rat nasal mucosa cilia and the pathology of rat nasal mucosa. Rats receiving intranasal VIP (40 microg/ml) showed good spatial memory relative to the Abeta25-35 model group, but the escape latency did not show any statistically significant difference. Intranasal administration of VIP nasal spray (200 microg/ml) improved deficits in spatial memory to the point that test animals receiving intranasal VIP showed no statistically significant differences from the normal control group in escape latency. This indicated that the nasal spray method could increase the quantity of VIP entering the brain and protect the central nervous systems of mice. Toxicity evaluation showed that the preparation could cause minor irritation, which resolved spontaneously within a week at the end of treatment. In conclusion, VIP can be delivered successfully to the brain using the intranasal route. PMID:23444784

  9. Expression pattern of peptide and amino acid genes in digestive tract of transporter juvenile turbot ( Scophthalmus maximus L.)

    NASA Astrophysics Data System (ADS)

    Xu, Dandan; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei; Song, Fei

    2016-04-01

    Turbot ( Scophthalmus maximus L.), a carnivorous fish species with high dietary protein requirement, was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach, pyloric caeca, rectum, and three equal parts of the remainder of the intestine. The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns. Peptide transporter 1 (PepT1) was rich in proximal intestine while peptide transporter 2 (PepT2) was abundant in distal intestine. A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B0-type amino acid transporter 1 (B0AT1), L-type amino acid transporter 2 (LAT2), T-type amino acid transporter 1 (TAT1), proton-coupled amino acid transporter 1 (PAT1), y+L-type amino acid transporter 1 (y+LAT1), and cationic amino acid transporter 2 (CAT2) while ASC amino acid transporter 2 (ASCT2), sodium-coupled neutral amino acid transporter 2 (SNAT2), and y+L-type amino acid transporter 2 (y+LAT2) abundantly expressed in stomach. In addition, system b0,+ transporters (rBAT and b0,+AT) existed richly in distal intestine. These findings comprehensively characterized the distribution of solute carrier family proteins, which revealed the relative importance of peptide and amino acid absorption through luminal membrane. Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.

  10. Campylobacter jejuni influences the expression of nutrient transporter genes in the intestine of chickens.

    PubMed

    Awad, Wageha A; Aschenbach, Jörg R; Ghareeb, Khaled; Khayal, Basel; Hess, Claudia; Hess, Michael

    2014-08-01

    The gastrointestinal tract represents the first barrier against pathogens. However, the interaction of Campylobacter with intestinal epithelial cells and its effects on the intestinal function of chickens are poorly studied. Therefore, the goal of the present study was to characterize the effects of C. jejuni oral infection on the mRNA expression of nutrient transporters in the intestine. Newly hatched specific pathogen-free (SPF) chickens were orally infected with C. jejuni (NCTC 12744; 1 × 10(8)CFU/bird) at 14 days of age. Quantitative RT-PCR analyses at 14 days-post infection (dpi) revealed that the relative gene expression of the sodium/glucose cotransporter (SGLT-1) and the peptide transporter (PepT-1) was down-regulated (P<0.05) in all investigated segments (duodenum, jejunum and cecum) of Campylobacter-infected birds, while the facilitated glucose transporter (GLUT-2) was down-regulated (P<0.05) in jejunal and cecal tissues only. Furthermore, down-regulation (P<0.05) of the cationic amino acid transporter (CAT-2) and the excitatory amino acid transporter (EAAT-3) was seen in the jejunum, and down-regulation (P<0.05) of the l-type amino acid transporter (y(+)LAT-2) was noticed in the duodenum of infected birds. The decreased expression of intestinal nutrient transporters coincided with a decrease (P<0.05) in body weight and body weight gain during a 2-week post infection period. For the first time, it can be concluded that nutrient transporter expression is compromised in the small and large intestine of Campylobacter-infected birds with negative consequences on growth performance. Furthermore, the down-regulation of mRNA expression of glucose and amino acid transporters may result in accumulation of nutrients in the intestinal lumen, which may favor C. jejuni replication and colonization. PMID:24834798

  11. Intestinal peptidases form functional complexes with the neutral amino acid transporter B0AT1

    PubMed Central

    Fairweather, Stephen J.; Bröer, Angelika; O'Mara, Megan L.; Bröer, Stefan

    2012-01-01

    The brush-border membrane of the small intestine and kidney proximal tubule are the major sites for the absorption and re-absorption of nutrients in the body respectively. Transport of amino acids is mediated through the action of numerous secondary active transporters. In the mouse, neutral amino acids are transported by B0AT1 [broad neutral (0) amino acid transporter 1; SLC6A19 (solute carrier family 6 member 19)] in the intestine and by B0AT1 and B0AT3 (SLC6A18) in the kidney. Immunoprecipitation and Blue native electrophoresis of intestinal brush-border membrane proteins revealed that B0AT1 forms complexes with two peptidases, APN (aminopeptidase N/CD13) and ACE2 (angiotensin-converting enzyme 2). Physiological characterization of B0AT1 expressed together with these peptidases in Xenopus laevis oocytes revealed that APN increased the substrate affinity of the transporter up to 2.5-fold and also increased its surface expression (Vmax). Peptide competition experiments, in silico modelling and site-directed mutagenesis of APN suggest that the catalytic site of the peptidase is involved in the observed changes of B0AT1 apparent substrate affinity, possibly by increasing the local substrate concentration. These results provide evidence for the existence of B0AT1-containing digestive complexes in the brush-border membrane, interacting differentially with various peptidases, and responding to the dynamic needs of nutrient absorption in the intestine and kidney. PMID:22677001

  12. Intravenous phage display identifies peptide sequences that target the burn-injured intestine

    PubMed Central

    Costantini, Todd W.; Eliceiri, Brian P.; Putnam, James G.; Bansal, Vishal; Baird, Andrew; Coimbra, Raul

    2015-01-01

    The injured intestine is responsible for significant morbidity and mortality after severe trauma and burn; however, targeting the intestine with therapeutics aimed at decreasing injury has proven difficult. We hypothesized that we could use intravenous phage display technology to identify peptide sequences that target the injured intestinal mucosa in a murine model, and then confirm the cross-reactivity of this peptide sequence with ex vivo human gut. Four hours following 30% TBSA burn we performed an in vivo, intravenous systemic administration of phage library containing 1012 phage in balb/c mice to biopan for gut-targeting peptides. In vivo assessment of the candidate peptide sequences identified after 4 rounds of internalization was performed by injecting 1 × 1012 copies of each selected phage clone into sham or burned animals. Internalization into the gut was assessed using quantitative polymerase chain reaction. We then incubated this gut-targeting peptide sequence with human intestine and visualized fluorescence using confocal microscopy. We identified 3 gut-targeting peptide sequences which caused collapse of the phage library (4–1: SGHQLLLNKMP, 4–5: ILANDLTAPGPR, 4–11: SFKPSGLPAQSL). Sequence 4–5 was internalized into the intestinal mucosa of burned animals 9.3-fold higher than sham animals injected with the same sequence (2.9 × 105 vs. 3.1 × 104 particles per mg tissue). Sequences 4–1 and 4–11 were both internalized into the gut, but did not demonstrate specificity for the injured mucosa. Phage sequence 4–11 demonstrated cross-reactivity with human intestine. In the future, this gut-targeting peptide sequence could serve as a platform for the delivery of biotherapeutics. PMID:22960048

  13. The role of some small peptides in the transfer of amino nitrogen across the wall of vascularly perfused intestine.

    PubMed Central

    Cheeseman, C I; Parsons, D S

    1976-01-01

    The characteristics have been investigated of the transfer into the vascular bed of L-leucine and glycine from free amino acids or peptides in the intestinal lumen of Rana pipiens. Over the concentration range 0-5-10 mM the transfer of L-leucine is but little affected by the presence of equimolar concentrations of glycine but the transfer of glycine, in contrast, is greatly inhibited by the presence of L-leucine. 2. With glycyl-L-leucine in the intestinal lumen, the rate of transfer of glycine into the vascular bed is much greater than from the mixture of the two amino acids and is equal to that of the L-leucine. From L-leucyl-glycine the rates of transfer of leucine and of glycine are also higher than from the mixture of the two amino acids but the rate of transfer of glycine is somewhat lower than that of leucine. There is no evidence of the presence of the dipeptides in the effluent from the portal vein. 3. When the peptide glycyl-L-leucine is added to the lumen in the presence of 10 mM concentrations of the free amino acids, additional amounts of L-leucine and of glycine are transferred in approximately equimolar quantities into the vascular bed. This additional transfer exhibits saturation with respect to concentration of peptide in the intestinal lumen. An additional transfer of amino acids was also found when L-leucyl-glycine was added to the lumen in the presence of saturating concentrations of the two amino acids. 4. Evidence is presented that the presence of the dipeptides in the intestinal lumen had little effect on the transfer of free amino acids from the lumen into the vascular bed. Although the transfer of free amino acids from the lumen into the vascular bed is significantly, but not completely, abolished when the Na in the intestinal lumen is replaced by K, the transfer of the amino acids from the dipeptides is but little affected. 5. The findings are discussed in relation to the view that the dipeptides are transported into the mucosal epithelium

  14. Enhanced visualization of small peptides absorbed in rat small intestine by phytic-acid-aided matrix-assisted laser desorption/ionization-imaging mass spectrometry.

    PubMed

    Hong, Seong-Min; Tanaka, Mitsuru; Yoshii, Saori; Mine, Yoshinori; Matsui, Toshiro

    2013-11-01

    Enhanced visualization of small peptides absorbed through a rat intestinal membrane was achieved by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-IMS) with the aid of phytic acid as a matrix additive. Penetrants through intestinal peptide transporter 1, i.e., glycyl-sarcosine (Gly-Sar, 147.1 m/z) and antihypertensive dipeptide, Val-Tyr (281.2 m/z), were chosen for MALDI-IMS. The signal-to-noise (S/N) ratios of dipeptides Gly-Sar and Val-Tyr were seen to increase by 2.4- and 8.0-fold, respectively, when using a 2',4',6'-trihydroxyacetophenone (THAP) matrix containing 5.0 mM phytic acid, instead of the THAP matrix alone. Owing to the phytic-acid-aided MALDI-IMS method, Gly-Sar and Val-Tyr absorbed in the rat intestinal membrane were successfully visualized. The proposed imaging method also provided useful information on intestinal peptide absorption; to some extent, Val-Tyr was rapidly hydrolyzed to Tyr by peptidases located at the intestinal microvillus during the absorption process. In conclusion, the strongly acidic additive, phytic acid, is beneficial for enhancing the visualization of small peptides using MALDI-IMS, owing to the suppression of ionization-interfering salts in the tissue. PMID:24063774

  15. Cholinergic regulation of epithelial ion transport in the mammalian intestine

    PubMed Central

    Hirota, C L; McKay, D M

    2006-01-01

    Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004

  16. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion

    PubMed Central

    Zietek, Tamara; Rath, Eva; Haller, Dirk; Daniel, Hannelore

    2015-01-01

    Intestinal nutrient transport and sensing are of emerging interest in research on obesity and diabetes and as drug targets. Appropriate in vitro models are lacking that allow both, studies on transport processes as well as sensing and subsequent incretin hormone secretion including intracellular signaling. We here demonstrate that murine small-intestinal organoids are the first in vitro model system enabling concurrent investigations of nutrient and drug transport, sensing and incretin hormone secretion as well as fluorescent live-cell imaging of intracellular signaling processes. By generating organoid cultures from wild type mice and animals lacking different nutrient transporters, we show that organoids preserve the main phenotypic features and functional characteristics of the intestine. This turns them into the best in vitro model currently available and opens new avenues for basic as well as medical research. PMID:26582215

  17. Transport of deutherium oxide across isolated rat small intestine.

    PubMed Central

    Bywater, R J; Fisher, R B; Gardner, M L

    1975-01-01

    1. Transport of deuterium oxide from a luminal perfusate containing 1% D2O was studied in Fisher & Gardners (1974) isolated preparation of perfused rat small intestine. 2. The kinetics of appearance of D2O in the intestinal secretion at the serosal surface fitted well to a single exponential function. 3. The steady-state concentration of D2O in this secretion was not significantly different from the concentration in the luminal perfusate. 4. The total tissue water contained D2O at a concentration, on average, 5% lower than that in the luminal perfusate. 5. There is no evidence to suggest discrimination in transport across the intestinal mucosa between H2O and D2O. 6. The kinetics of wash-in of D2O to intestinal secretion show that the ratio of flux out of the lumen to reflux back to the lumen is 1-38;1. PMID:1177106

  18. Transepithelial transport of PAMAM dendrimers across isolated intestinal tissue

    NASA Astrophysics Data System (ADS)

    Hubbard, Dallin A.

    Poly(amido amine) (PAMAM) dendrimers have shown potential to carry poorly absorbed drugs across the intestinal barrier and into systemic circulation, reducing the need for intravenous injections. Much of the in vitro transepithelial transport of PAMAM dendrimers to date has been investigated using Caco-2 monolayers which lack the microvilli morphology and enzymes present in isolated intestinal tissues. In addition, a challenge in predicting oral absorption is establishing a correlation between transport across rodent and human intestinal tissues. This dissertation focused on investigating the transepithelial transport of PAMAM dendrimers across rat and human isolated intestinal tissues. Permeability values in isolated tissues were compared with those across Caco-2 cell monolayers. Results indicate a difference in transport of PAMAM dendrimers, morphological changes and transepithelial electrical resistance between Caco-2 cell monolayers, rat and human intestinal tissue models. A relatively high transport rate across the tissues, given the macromolecular nature of PAMAM dendrimers, shows promise for use of these constructs for oral delivery in human.

  19. Intestinal Permeability and Glucagon-Like Peptide-2 in Children with Autism: A Controlled Pilot Study

    ERIC Educational Resources Information Center

    Robertson, Marli A.; Sigalet, David L.; Holst, Jens J.; Meddings, Jon B.; Wood, Julie; Sharkey, Keith A.

    2008-01-01

    We measured small intestinal permeability using a lactulose:mannitol sugar permeability test in a group of children with autism, with current or previous gastrointestinal complaints. Secondly, we examined whether children with autism had an abnormal glucagon-like peptide-2 (GLP-2) response to feeding. Results were compared with sibling controls…

  20. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters

    PubMed Central

    Chen, Lihong; Tuo, Biguang; Dong, Hui

    2016-01-01

    The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na+/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca2+]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca2+ in IEC are regulated by cation channels and transporters, such as Ca2+ channels, K+ channels, Na+/Ca2+ exchangers, and Na+/H+ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes. PMID:26784222

  1. Transmembrane transport of peptide type compounds: prospects for oral delivery

    NASA Technical Reports Server (NTRS)

    Lipka, E.; Crison, J.; Amidon, G. L.

    1996-01-01

    Synthesis and delivery of potential therapeutic peptides and peptidomimetic compounds has been the focus of intense research over the last 10 years. While it is widely recognized that numerous limitations apply to oral delivery of peptides, some of the limiting factors have been addressed and their mechanisms elucidated, which has lead to promising strategies. This article will briefly summarize the challenges, results and current approaches of oral peptide delivery and give some insight on future strategies. The barriers determining peptide bioavailability after oral administration are intestinal membrane permability, size limitations, intestinal and hepatic metabolism and in some cases solubility limitations. Poor membrane permeabilities of hydrophilic peptides might be overcome by structurally modifying the compounds, thus increasing their membrane partition characteristics and/or their affinity to carrier proteins. Another approach is the site-specific delivery of the peptide to the most permeable parts of the intestine. The current view on size limitation for oral drug delivery has neglected partition considerations. Recent studies suggest that compounds with a molecular weight up to 4000 might be significantly absorbed, assuming appropriate partition behavior and stability. Metabolism, probably the most significant factor in the absorption fate of peptides, might be controlled by coadministration of competitive enzyme inhibitors, structural modifications and administration of the compound as a well absorbed prodrug that is converted into the therapeutically active agent after its absorption. For some peptides poor solubility might present a limitation to oral absorption, an issue that has been addressed by mechanistically defining and therefore improving formulation parameters. Effective oral peptide delivery requires further development in understanding these complex mechanisms in order to maximize the therapeutic potential of this class of compounds.

  2. Antimicrobial peptide Cathelicidin-BF prevents intestinal barrier dysfunction in a mouse model of endotoxemia.

    PubMed

    Song, Deguang; Zong, Xin; Zhang, Haiwen; Wang, Tenghao; Yi, Hongbo; Luan, Chao; Wang, Yizhen

    2015-03-01

    Intestinal barrier functions are altered during the development of sepsis. Cathelicidin antimicrobial peptides, such as LL-37 and mCRAMP, can protect animals against intestinal barrier dysfunction. Cathelicidin-BF (C-BF), a new cathelicidin peptide purified from the venom of the snake Bungarus fasciatus, has been shown to have both antimicrobial and anti-inflammatory properties. This study investigated whether C-BF pretreatment could protect the intestinal barrier against dysfunction in a mouse model of endotoxemia, induced by intraperitoneal injection of LPS (10mg/kg). Mice were treated with low or high dose C-BF before treatment with LPS, and samples were collected 5h after LPS treatment. C-BF reduced LPS induced intestinal histological damage and gut permeability to 4 KD Fluorescein-isothiocyanate-conjugated dextran. Pretreatment with C-BF prevented LPS induced intestinal tight junction disruption and epithelial cell apoptosis. Moreover, C-BF down regulated the expression and secretion of TNF-α, a process involving the NF-κB signaling pathway. C-BF also reduced LPS induced TNF-α expression through the NF-κB signaling pathway in mouse RAW 264.7 macrophages. These findings indicate that C-BF can prevent gut barrier dysfunction induced by LPS, suggesting that C-BF may be used to develop a prophylactic agent for intestinal injury in endotoxemia. PMID:25639228

  3. Inflammatory bowel disease alters intestinal bile acid transporter expression.

    PubMed

    Jahnel, Jörg; Fickert, Peter; Hauer, Almuthe C; Högenauer, Christoph; Avian, Alexander; Trauner, Michael

    2014-09-01

    The enterohepatic circulation of bile acids (BAs) critically depends on absorption of BA in the terminal ileum and colon, which can be affected by inflammatory bowel disease (IBD). Diarrhea in IBD is believed to result in part from BA malabsorption (BAM). We explored whether IBD alters mRNA expression of key intestinal BA transporters, BA detoxifying systems, and nuclear receptors that regulate BA transport and detoxification. Using real-time polymerase chain reaction, mucosal biopsy specimens from the terminal ileum in Crohn's disease (CD) patients and from the descending colon in ulcerative colitis (UC) patients were assessed for mRNA expression. Levels were compared with healthy controls. The main ileal BA uptake transporter, the apical sodium dependent bile acid transporter, was downregulated in active CD and UC and in CD in remission. Other significant changes such as repression of breast cancer-related protein and sulphotransferase 2A1 were seen only during active disease. In UC, pancolitis (but not exclusively left-sided colitis) was associated with altered expression of major BA transporters [multidrug resistance-associated protein 3 (MRP3), MRP4, multidrug resistance gene 1, organic solute transporter α/β] and nuclear receptors (pregnane X receptor, vitamin D receptor) in the descending colon. UC pancolitis leads to broad changes and CD ileitis to selective changes in intestinal BA transporter expression. Early medical manipulation of intestinal BA transporters may help prevent BAM. PMID:24965812

  4. Tumor suppressor gene adenomatous polyposis coli downregulates intestinal transport.

    PubMed

    Rexhepaj, Rexhep; Rotte, Anand; Gu, Shuchen; Michael, Diana; Pasham, Venkanna; Wang, Kan; Kempe, Daniela S; Ackermann, Teresa F; Brücher, Björn; Fend, Falko; Föller, Michael; Lang, Florian

    2011-05-01

    Loss of function mutations of the tumor suppressor gene adenomatous polyposis coli (APC) underly the familial adenomatous polyposis. Mice carrying an inactivating mutation in the apc gene (apc (Min/+)) similarly develop intestinal polyposis. APC is effective at least in part by degrading β-catenin and lack of APC leads to markedly enhanced cellular β-catenin levels. β-Catenin has most recently been shown to upregulate the Na+/K+ ATPase. The present study, thus, explored the possibility that APC could influence intestinal transport. The abundance and localization of β-catenin were determined utilizing Western blotting and confocal microscopy, the activity of the electrogenic glucose carrier (SGLT1) was estimated from the glucose-induced current in jejunal segments utilizing Ussing chamber experiments and the Na+/H+ exchanger (NHE3) activity from Na+ -dependent re-alkalinization of cytosolic pH (ΔpH(i)) following an ammonium pulse employing BCECF fluorescence. As a result, β-catenin abundance in intestinal tissue was significantly higher in apc (Min/+) mice than in wild-type mice (apc (+/+)). The β-catenin protein was localized in the basolateral membrane. Both, the glucose-induced current and ΔpH(i) were significantly higher in apc (Min/+) mice than in apc (+/+) mice. In conclusion, intestinal electrogenic transport of glucose and intestinal Na+/H+ exchanger activity are both significantly enhanced in apc (Min/+) mice, pointing to a role of APC in the regulation of epithelial transport. PMID:21476133

  5. Effect of different intestinal conditions on the intermolecular interaction between insulin and cell-penetrating peptide penetratin and on its contribution to stimulation of permeation through intestinal epithelium.

    PubMed

    Kamei, Noriyasu; Aoyama, Yukina; Khafagy, El-Sayed; Henmi, Mao; Takeda-Morishita, Mariko

    2015-08-01

    Our recent studies have shown that the coadministration of cell-penetrating peptides (CPPs) is a potential strategy for oral delivery of peptide- and protein-based biopharmaceuticals. The intermolecular interaction between drug and CPP is an essential factor in the effective delivery of these drugs, but the characteristics of the interaction under the conditions of the intestinal lumen remain unknown. In this study, therefore, we examined the characteristics of binding of the amphipathic CPP penetratin to insulin and the efficiency of its enhancement of epithelial insulin transport at different pH and in simulated intestinal fluids (SIFs). The binding between insulin and penetratin was pH dependent and particularly decreased at pH 5.0. In addition, we clarified that the sodium taurocholate (NaTC) present in two types of SIF (fasted-state SIF [FaSSIF] and fed-state SIF [FeSSIF]) affected binding efficiency. However, the permeation of insulin through a Caco-2 cell monolayer was significantly facilitated by coincubation with l- or d-penetratin at various pH values. Moreover, the permeation-stimulating effect of l-penetratin was observed in FaSSIF containing NaTC and lecithin, but not in 3mM NaTC solution, suggesting that the presence of lecithin was the key factor in maintaining the ability of penetratin to enhance the intestinal absorption of biopharmaceuticals. This report describes the essential considerations for in vivo use and clinical application of a CPP-based oral delivery strategy. PMID:25960330

  6. Diazepam binding inhibitor is a potent cholecystokinin-releasing peptide in the intestine.

    PubMed Central

    Herzig, K H; Schön, I; Tatemoto, K; Ohe, Y; Li, Y; Fölsch, U R; Owyang, C

    1996-01-01

    Pancreatic proteases in the duodenum inhibit the release of cholecystokinin (CCK) and thus exert feedback control of pancreatic exocrine secretion. Exclusion of proteases from the duodenum either by the diversion of bile-pancreatic juice or by the addition of protease inhibitors stimulates exocrine pancreatic secretion. The mechanism by which pancreatic proteases in the duodenum regulate CCK secretion is unknown. In this study, we isolated a trypsin-sensitive peptide that is secreted intraduodenally, releases CCK, and stimulates pancreatic enzyme secretion in rats. This peptide was found to be identical to the porcine diazepam binding inhibitor by peptide sequencing and mass spectrometry analysis. Intraduodenal infusion of 200 ng of synthetic porcine diazepam binding inhibitor1-86 in rats significantly stimulated pancreatic amylase output. Infusion of the CCK antagonist MK-329 completely blocked the diazepam binding inhibitor-stimulated amylase secretion. Similarly, diazepam binding inhibitor33-52 [corrected] also stimulated CCK release and pancreatic secretion in a dose-dependent manner although it was 100 times less potent than the whole peptide. Using a perfusion system containing isolated mucosal cells from the proximal intestine of rats, porcine diazepam binding inhibitor 10(-12) M) dose dependently stimulated CCK secretion. In separate studies, it was demonstrated that luminal secretion of the diazepam binding inhibitor immunoreactivity (7.5 X 10(11) M) could be detected in rat's intestinal washing following the diversion of bile-pancreatic juice. The secretion of this peptide was inhibited by atropine. In conclusion, we have isolated and characterized a CCK-releasing peptide that has a sequence identical to the porcine diazepam binding inhibitor from pig intestinal mucosa and that stimulates CCK release when administered intraduodenally in rat. This peptide may mediate feedback regulation of pancreatic enzyme secretion. Images Fig. 1 PMID:8755579

  7. SOME DETERMINANTS OF INTESTINAL CADMIUM TRANSPORT IN THE RAT

    EPA Science Inventory

    The hypothesis was tested that Cd absorption from the intestinal lumen is mediated by cellular transport systems. Cd is readily extracted from glucose-saline during perfusion of jejunal segments in the living rat. Over periods as long as 40 minutes, essentially all extracted Cd i...

  8. The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease

    PubMed Central

    Ayyadurai, Saravanan; Charania, Moiz A.; Laroui, Hamed; Yan, Yutao; Merlin, Didier

    2012-01-01

    Intestinal inflammation is characterized by epithelial disruption, leading to loss of barrier function and the recruitment of immune cells, including neutrophils. Although the mechanisms are not yet completely understood, interactions between environmental and immunological factors are thought to be critical in the initiation and progression of intestinal inflammation. In recent years, it has become apparent that the di/tripeptide transporter PepT1 may play an important role in the pathogenesis of such inflammation. In healthy individuals, PepT1 is primarily expressed in the small intestine and transports di/tripeptides for metabolic purposes. However, during chronic inflammation such as that associated with inflammatory bowel disease, PepT1 expression is upregulated in the colon, wherein the protein is normally expressed either minimally or not at all. Several recent studies have shown that PepT1 binds to and transports various bacterial di/tripeptides into colon cells, leading to activation of downstream proinflammatory responses via peptide interactions with innate immune receptors. In the present review, we examine the relationship between colonic PepT1-mediated peptide transport in the colon and activation of innate immune responses during disease. It is important to understand the mechanisms of PepT1 action during chronic intestinal inflammation to develop future therapies addressing inappropriate immune activation in the colon. PMID:22194420

  9. Analysis of glycylsarcosine transport by lobster intestine using gas chromatography.

    PubMed

    Peterson, Maria L; Lane, Amy L; Ahearn, Gregory A

    2015-01-01

    Gas chromatography was used to measure transepithelial transport of glycylsarcosine (Gly-Sar) by perfused lobster (Homarus americanus) intestine. Unidirectional and net fluxes of dipeptide across the tissue and luminal factors affecting their magnitude and direction were characterized by perfusing the lumen with the dipeptide and measuring its appearance in saline on the serosal side of the organ. Transmural transport of 10 mM Gly-Sar resulted in serosal accumulation of only the dipeptide; no appearance of corresponding monomeric amino acids glycine or sarcosine was observed. Carrier-mediated and diffusional transmural intestinal transport of Gly-Sar was estimated at 1-15 mM luminal concentrations and followed a curvilinear equation providing a K m = 0.44 ± 0.17 mM, a J max = 1.27 ± 0.12 nmol cm(-2) min(-1), and a diffusional coefficient = 0.026 ± 0.008 nmol cm(-2) min(-1) mM(-1). Unidirectional mucosal to serosal and serosal to mucosal fluxes of 10 mM Gly-Sar provided a significant (p < 0.05) net absorptive flux toward the serosa of 3.54 ± 0.77 nmol cm(-2) min(-1), further supporting carrier-mediated dipeptide transport across the gut. Alkaline (pH 8.5) luminal pH more than doubled transmural Gly-Sar transport as compared to acidic (pH 5.5) luminal pH, while luminal amino acid-metal chelates (e.g., Leu-Zn-Leu), and high concentrations of amino acids alone significantly (p < 0.001) reduced intestinal Gly-Sar transfer by inhibiting carrier transport of the dipeptide. Proposed mechanisms accounting for intestinal dipeptide transport and luminal factors affecting this process are discussed. PMID:25260349

  10. Dietary and developmental regulation of intestinal sugar transport.

    PubMed Central

    Ferraris, R P

    2001-01-01

    The Na(+)-dependent glucose transporter SGLT1 and the facilitated fructose transporter GLUT5 absorb sugars from the intestinal lumen across the brush-border membrane into the cells. The activity of these transport systems is known to be regulated primarily by diet and development. The cloning of these transporters has led to a surge of studies on cellular mechanisms regulating intestinal sugar transport. However, the small intestine can be a difficult organ to study, because its cells are continuously differentiating along the villus, and because the function of absorptive cells depends on both their state of maturity and their location along the villus axis. In this review, I describe the typical patterns of regulation of transport activity by dietary carbohydrate, Na(+) and fibre, how these patterns are influenced by circadian rhythms, and how they vary in different species and during development. I then describe the molecular mechanisms underlying these regulatory patterns. The expression of these transporters is tightly linked to the villus architecture; hence, I also review the regulatory processes occurring along the crypt-villus axis. Regulation of glucose transport by diet may involve increased transcription of SGLT1 mainly in crypt cells. As cells migrate to the villus, the mRNA is degraded, and transporter proteins are then inserted into the membrane, leading to increases in glucose transport about a day after an increase in carbohydrate levels. In the SGLT1 model, transport activity in villus cells cannot be modulated by diet. In contrast, GLUT5 regulation by the diet seems to involve de novo synthesis of GLUT5 mRNA synthesis and protein in cells lining the villus, leading to increases in fructose transport a few hours after consumption of diets containing fructose. In the GLUT5 model, transport activity can be reprogrammed in mature enterocytes lining the villus column. Innovative experimental approaches are needed to increase our understanding of sugar

  11. Inhibition of Intestinal Thiamin Transport in Rat Model of Sepsis

    PubMed Central

    Sassoon, Catherine S.; Zhu, Ercheng; Fang, Liwei; Subramanian, Veedamali S.; Said, Hamid M.

    2016-01-01

    Objective Thiamin deficiency is highly prevalent in patients with sepsis, but the mechanism by which sepsis induces thiamin deficiency is unknown. This study aimed to determine the influence of various severity of sepsis on carrier-mediated intestinal thiamin uptake, level of expressions of thiamin transporters (thiamin transporter-1 (THTR-1) and thiamin transporter-2 (THTR-2)), and mitochondrial thiamin pyrophosphate transporter (MTPPT). Design Randomized, controlled study Setting Research laboratory at a Veterans Affairs Medical Center Subjects Twenty-four Sprague-Dawley rats were randomized into controls, mild, moderate and severe sepsis with equal number of animals in each group. Measurements and Main Results Sepsis was induced by cecal ligation and puncture with the cecum ligated below the cecal valve at 25 %, 50 % and 75 % of cecal length, defined as severe, moderate and mild sepsis, respectively. Control animals underwent laparotomy only. After 2 days of induced sepsis, carrier-mediated intestinal thiamin uptake was measured using [3H]thiamin. Expressions of THTR-1, THTR-2, and MTPPT proteins and mRNA were measured. Proinflammatory cytokines (IL-1β and IL-6), and adenosine triphosphate (ATP) were also measured. Sepsis inhibited [3H]thiamin uptake and the inhibition was a function of sepsis severity. Both cell membranes thiamin transporters and MTPPT expression levels were suppressed; also levels of ATP in the intestine of animals with moderate and severe sepsis were significantly lower than that of sham operated controls. Conclusions For the first time we demonstrated that sepsis inhibited carrier-mediated intestinal thiamin uptake as a function of sepsis severity, suppressed thiamin transporters and MTPPT, leading to ATP depletion. PMID:27065466

  12. Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter

    PubMed Central

    Parker, Joanne L; Mindell, Joseph A; Newstead, Simon

    2014-01-01

    Peptide transport plays an important role in cellular homeostasis as a key route for nitrogen acquisition in mammalian cells. PepT1 and PepT2, the mammalian proton coupled peptide transporters (POTs), function to assimilate and retain diet-derived peptides and play important roles in drug pharmacokinetics. A key characteristic of the POT family is the mechanism of peptide selectivity, with members able to recognise and transport >8000 different peptides. In this study, we present thermodynamic evidence that in the bacterial POT family transporter PepTSt, from Streptococcus thermophilus, at least two alternative transport mechanisms operate to move peptides into the cell. Whilst tri-peptides are transported with a proton:peptide stoichiometry of 3:1, di-peptides are co-transported with either 4 or 5 protons. This is the first thermodynamic study of proton:peptide stoichiometry in the POT family and reveals that secondary active transporters can evolve different coupling mechanisms to accommodate and transport chemically and physically diverse ligands across the membrane. DOI: http://dx.doi.org/10.7554/eLife.04273.001 PMID:25457052

  13. Vasoactive intestinal peptide may participate in the vasodilation of the dog hepatic artery

    SciTech Connect

    Varga, G.; Kiss, J.Z.; Papp, M.; Vizi, E.S.

    1986-08-01

    The possible direct action of vasoactive intestinal peptide (VIP) on dog hepatic arterial wall or on the noradrenergic innervation of the artery was investigated in vitro. In addition, VIP-containing nerve fibers and terminals were located in the wall of the artery with immunochemical staining. Direct evidence showed that VIP did not affect the release of (TH)norepinephrine but reduced the response of the isolated hepatic artery to electrical field stimulation and exogenous norepinephrine. This suggest that the effect of VIP is postjunctional on the smooth muscle of the artery. VIP-containing nerve fibers and varicosities were observed in the adventitial and medial layer of the arterial wall. These findings strongly support the hypothesis that vasoactive intestinal peptide is a physiological mediator of vasodilation in the hepatic artery.

  14. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  15. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms

    PubMed Central

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela

    2015-01-01

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines. PMID:25999427

  16. Acetaminophen inhibits intestinal p-glycoprotein transport activity.

    PubMed

    Novak, Analia; Carpini, Griselda Delli; Ruiz, María Laura; Luquita, Marcelo G; Rubio, Modesto C; Mottino, Aldo D; Ghanem, Carolina I

    2013-10-01

    Repeated acetaminophen (AP) administration modulates intestinal P-glycoprotein (P-gp) expression. Whether AP can modulate P-gp activity in a short-term fashion is unknown. We investigated the acute effect of AP on rat intestinal P-gp activity in vivo and in vitro. In everted intestinal sacs, AP inhibited serosal-mucosal transport of rhodamine 123 (R123), a prototypical P-gp substrate. R123 efflux plotted against R123 concentration adjusted well to a sigmoidal curve. Vmax decreased 50% in the presence of AP, with no modification in EC50, or slope, ruling out the possibility of inhibition to be competitive. Inhibition by AP was absent at 0°C, consistent with interference of the active transport of R123 by AP. Additionally, AP showed no effect on normal localization of P-gp at the apical membrane of the enterocyte and neither affected paracellular permeability. Consistent with absence of a competitive inhibition, two further strategies strongly suggested that AP is not a P-gp substrate. First, serosal-mucosal transport of AP was not affected by the classical P-gp inhibitors verapamil or Psc 833. Second, AP accumulation was not different between P-gp knock-down and wild-type HepG2 cells. In vivo intestinal absorption of digoxin, another substrate of P-gp, was assessed in the presence or absence of AP (100 μM). Portal digoxin concentration was increased by 214%, in average, by AP, as compared with digoxin alone. In conclusion, AP inhibited P-gp activity, increasing intestinal absorption of digoxin, a prototypical substrate. These results suggest that therapeutic efficacy of P-gp substrates can be altered if coadministered with AP. PMID:23897240

  17. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.

    PubMed

    Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza

    2015-11-01

    Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs. PMID:26414679

  18. Cell-penetrating peptides transport therapeutics into cells.

    PubMed

    Ramsey, Joshua D; Flynn, Nicholas H

    2015-10-01

    Nearly 30years ago, certain small, relatively nontoxic peptides were discovered to be capable of traversing the cell membrane. These cell-penetrating peptides, as they are now called, have been shown to not only be capable of crossing the cell membrane themselves but can also carry many different therapeutic agents into cells, including small molecules, plasmid DNA, siRNA, therapeutic proteins, viruses, imaging agents, and other various nanoparticles. Many cell-penetrating peptides have been derived from natural proteins, but several other cell-penetrating peptides have been developed that are either chimeric or completely synthetic. How cell-penetrating peptides are internalized into cells has been a topic of debate, with some peptides seemingly entering cells through an endocytic mechanism and others by directly penetrating the cell membrane. Although the entry mechanism is still not entirely understood, it seems to be dependent on the peptide type, the peptide concentration, the cargo the peptide transports, and the cell type tested. With new intracellular disease targets being discovered, cell-penetrating peptides offer an exciting approach for delivering drugs to these intracellular targets. There are hundreds of cell-penetrating peptides being studied for drug delivery, and ongoing studies are demonstrating their success both in vitro and in vivo. PMID:26210404

  19. Intestinal absorption of an arginine-containing peptide in cystinuria

    PubMed Central

    Asatoor, A. M.; Harrison, B. D. W.; Milne, M. D.; Prosser, D. I.

    1972-01-01

    Separate tolerance tests involving oral intake of the dipeptide, L-arginyl-L-aspartate, and of a corresponding free amino acid mixture, were carried out in a single type 2 cystinuric patient. Absorption of aspartate was within normal limits, whilst that of arginine was normal after the peptide but considerably reduced after the amino acid mixture. The results are compared with the increments of serum arginine found in eight normal subjects after the oral intake of the free amino acid mixture. Analyses of urinary pyrrolidine and of tetramethylenediamine in urine samples obtained after the two tolerance tests in the patient support the view that arginine absorption was subnormal after the amino acid mixture but within normal limits after the dipeptide. PMID:5045711

  20. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats

    PubMed Central

    Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun

    2015-01-01

    AIM: To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. METHODS: Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14th day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. RESULTS: In the rat model, jaundice was obvious, and the rats’ activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01). CONCLUSION: GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin. PMID:25593463

  1. Amino acid and peptide absorption from partial digests of proteins in isolated rat small intestine.

    PubMed Central

    Gardner, M L

    1978-01-01

    1. Absorption of each of sixteen amino acids, free and peptide-bound, has been measured in isolated rat small intestine perfused with five partial digests of proteins. 2. At low concentrations net absorption of each amino acid was proportional to its luminal concentration and independent of the nature of the amino acid. 3. A series of first-order multiple regressions was found to describe well the characteristics of absorption. 4. Rate constants for disappearance of free and peptide-bound amino acids from the lumen were closely similar. However, substantial back-flux occurred of amino acids derived from peptide hydrolysis. Hence 60-70% of the amino-N entering the serosal tissue fluid probably had left the lumen as free amino acids. 5. Intact peptides crossed the mucosa during absorption from a soy bean hydrolysate and in substantial quantities during absorption from one casein digest but not from another. With other hydrolysates there was no evidence for passage of peptides to the serosa. 6. In several cases there was a serious discrepancy between the amount of amino-N absorbed from the lumen and the amount accounted for as peptide or free amino acid in the serosal secretion. 7. The characteristics of absorption were similar (apart from the exceptions in 5 above) for all the digests studied except for soy bean hydrolysate. PMID:731590

  2. Intestinal-fatty acid binding protein and lipid transport in human intestinal epithelial cells

    SciTech Connect

    Montoudis, Alain; Delvin, Edgard; Menard, Daniel

    2006-01-06

    Intestinal-fatty acid binding protein (I-FABP) is a 14-15 kDa cytoplasmic molecule highly expressed in the enterocyte. Although different functions have been proposed for various FABP family members, the specific function of I-FABP in human intestine remains unclear. Here, we studied the role of I-FABP in molecularly modified normal human intestinal epithelial cells (HIEC-6). cDNA transfection resulted in 90-fold I-FABP overexpression compared to cells treated with empty pQCXIP vector. The high-resolution immunogold technique revealed labeling mainly in the cytosol and confirmed the marked phenotype abundance of I-FABP in cDNA transfected cells. I-FABP overexpression was not associated with alterations in cell proliferation and viability. Studies using these transfected cells cultured with [{sup 14}C]oleic acid did not reveal higher efficiency in de novo synthesis or secretion of triglycerides, phospholipids, and cholesteryl esters compared to cells treated with empty pQCXIP vector only. Similarly, the incubation with [{sup 35}S]methionine did not disclose a superiority in the biogenesis of apolipoproteins (apo) A-I, A-IV, B-48, and B-100. Finally, cells transfected with I-FABP did not exhibit an increased production of chylomicrons, VLDL, LDL, and HDL. Our observations establish that I-FABP overexpression in normal HIEC-6 is not related to cell proliferation, lipid esterification, apo synthesis, and lipoprotein assembly, and, therefore, exclude its role in intestinal fat transport.

  3. Pleiotropic effects of bombesin and neurotensin on intestinal mucosa: not just trefoil peptides.

    PubMed

    Assimakopoulos, Stelios-F; Scopa, Chrisoula-D; Nikolopoulou, Vassiliki-N; Vagianos, Constantine-E

    2008-06-14

    Bombesin and neurotensin are neuropeptides which exert a wide spectrum of biological actions on gastrointestinal tissues influencing intestinal growth and adaptation, intestinal motility, blood flow, secretion, nutrient absorption and immune response. Based mainly on their well-established potent enterotrophic effect, numerous experimental studies investigated their potential positive effect on the atrophic or injured intestinal mucosa. These peptides proved to be effective mucosa-healing factors, but the potential molecular and cellular mechanisms for this action remained unresolved. In a recently published study (World J Gastroenterol 2008; 14(8): 1222-1230), it was shown that their protective effect on the intestine in experimentally induced inflammatory bowel disease was related to anti-inflammatory, antioxidant and antiapoptotic actions. These results are in close agreement with our previous studies on jaundiced and hepatectomized rats that showed a regulatory effect of bombesin and neurotensin on critical cellular processes such as enterocyte' proliferation and death, oxidative stress and redox equilibrium, tight junctions' formation and function, and inflammatory response. The pleiotropic effects of bombesin and neurotensin on diverse types of intestinal injury may justify their consideration for clinical trials. PMID:18567096

  4. Expression of small intestinal nutrient transporters in embryonic and posthatch turkeys.

    PubMed

    Weintraut, M L; Kim, S; Dalloul, R A; Wong, E A

    2016-01-01

    Nutrients are absorbed in the small intestine through a variety of transporter proteins, which have not been as well characterized in turkeys as in chickens. The objective of this study was to profile the mRNA expression of amino acid and monosaccharide transporters in the small intestine of male and female turkeys. Jejunum was collected during embryonic development (embryonic d 21 and 24, and d of hatch (DOH)) and duodenum, jejunum, and ileum were collected in a separate experiment during posthatch development (DOH, d 7, 14, 21, and 28). Real-time PCR was used to determine expression of aminopeptidase N (APN), one peptide (PepT1), 6 amino acid (ASCT1, b(o,+)AT, CAT1, EAAT3, LAT1, y(+)LAT2) and 3 monosaccharide (GLUT2, GLUT5, SGLT1) transporters. Data were analyzed by ANOVA using JMP Pro 11.0. APN, b(o,+)AT, PepT1, y(+)LAT2, GLUT5, and SGLT1 showed increased expression from embryonic d 21 and 24 to DOH. During posthatch, all genes except GLUT2 and SGLT1 were expressed greater in females than males. GLUT2 was expressed the same in males as females and SGLT1 was expressed greater in males than females. All basolateral membrane transporters were expressed greater during early development then decreased with age, while the brush border membrane transporters EAAT3, GLUT5, and SGLT1 showed increased expression later in development. Because turkeys showed high-level expression of the anionic amino acid transporter EAAT3, a direct comparison of tissue-specific expression of EAAT3 between chicken and turkey was conducted. The anionic amino acid transporter EAAT3 showed 6-fold greater expression in the ileum of turkeys at d 14 compared to chickens. This new knowledge can be used not only to better formulate turkey diets to accommodate increased glutamate transport, but also to optimize nutrition for both sexes. PMID:26574034

  5. Endocrine regulation of ion transport in the avian lower intestine.

    PubMed

    Laverty, Gary; Elbrønd, Vibeke S; Arnason, Sighvatur S; Skadhauge, Erik

    2006-05-15

    The lower intestine (colon and coprodeum) of the domestic fowl maintains a very active, transporting epithelium, with a microvillus brush border, columnar epithelial cells, and a variety of transport systems. The colon of normal or high salt-acclimated hens expresses sodium-linked glucose and amino acid cotransporters, while the coprodeum is relatively inactive. Following acclimation to low salt diets, however, both colon and coprodeum shift to a pattern of high expression of electrogenic sodium channels, and the colonic cotransporter activity is simultaneously downregulated. These changes in the transport patterns seem to be regulated, at least in part, by aldosterone. Our recent work with this tissue has focused on whether aldosterone alone can account for the low salt pattern of transport. Other work has looked at the changes in morphology and in proportions of cell types that occur during chronic acclimation to high or low salt diets, and on a cAMP-activated chloride secretion pathway. Recent findings suggesting effects of other hormones on lower intestinal transport are also presented. PMID:16494879

  6. Characterization of the rabbit intestinal fructose transporter (GLUT5).

    PubMed Central

    Miyamoto, K; Tatsumi, S; Morimoto, A; Minami, H; Yamamoto, H; Sone, K; Taketani, Y; Nakabou, Y; Oka, T; Takeda, E

    1994-01-01

    Recent studies suggest that the jejunal/kidney-type facilitative glucose transporter (GLUT5) functions as a high-affinity D-fructose transporter. However, its precise role in the small intestine is not clear. In an attempt to identify the fructose transporter in the small intestine, we measured fructose uptake in Xenopus oocytes expressing jejunal mRNA from five species (rat, mouse, rabbit, hamster and guinea-pig). Only jejunal mRNA from the rabbit significantly increased fructose uptake. We also cloned a rabbit GLUT5 cDNA from a jejunal library The predicted amino acid sequence of the 487-residue rabbit GLUT5 showed 72.3 and 67.1% identity with human and rat GLUT5 respectively. Northern-blot analysis revealed GLUT5 transcripts in rabbit duodenum, jejunum and, to a lesser extent, kidney. After separation of rabbit jejunal mRNA on a sucrose density gradient, the fractions that conferred D-fructose transport activity in oocytes also hybridized with rabbit GLUT5 cDNA. Hybrid depletion of jejunal mRNA with a GLUT5 antisense oligonucleotide markedly inhibited the mRNA-induced fructose uptake in oocytes. Immunoblot analysis indicated that GLUT5 (49 kDa) is located in the brush-border membrane of rabbit intestinal epithelial cells. Xenopus oocytes injected with rabbit GLUT5 cRNA exhibited fructose uptake activity with a Km of 11 mM for D-fructose. D-Fructose transport by GLUT5 was significantly inhibited by D-glucose and D-galactose. D-Fructose uptake in brush-border membrane vesicles shows a Km similar to that of GLUT5, but was not inhibited by D-glucose or D-galactose. Finally, cytochalasin B photolabelled a 49 kDa protein in rabbit brush-border-membrane preparations that was immunoprecipitated by antibodies to GLUT5. Our results suggest that GLUT5 functions as a fructose transporter in rabbit small intestine. However, biochemical properties of fructose transport in Xenopus oocytes injected with GLUT5 cRNA differed from those in rabbit jejunal vesicles. Images Figure 2

  7. Calcium glycerophosphate preserves transepithelial integrity in the Caco-2 model of intestinal transport

    PubMed Central

    Datta, Palika; Weis, Margaret T

    2015-01-01

    AIM: To assess the direct effects of ischemia on intestinal epithelial integrity. Furthermore, clinical efforts at mitigating the effect of hypoperfusion on gut permeability have focused on restoring gut vascular function. METHODS: We report that, in the Caco-2 cell model of transepithelial transport, calcium glycerophosphate (CGP), an inhibitor of intestinal alkaline phosphatase F3, has a significant effect to preserve transepithelial electrical resistance (TEER) and to attenuate increases in mannitol flux rates during hypoxia or cytokine stimulation. RESULTS: The effect was observable even at concentrations as low as 1 μmol/L. As celiac disease is also marked by a loss of gut epithelial integrity, the effect of CGP to attenuate the effect of the α-gliadin peptide 31-55 was also examined. In this instance, CGP exerted little effect of preservation of TEER, but significantly attenuated peptide induced increase in mannitol flux. CONCLUSION: It appears that CGP treatment might synergize with other therapies to preserve gut epithelial integrity. PMID:26290632

  8. Transport of free and peptide-bound glycated amino acids: synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins.

    PubMed

    Hellwig, Michael; Geissler, Stefanie; Matthes, René; Peto, Anett; Silow, Christoph; Brandsch, Matthias; Henle, Thomas

    2011-05-16

    In glycation reactions, the side chains of protein-bound nucleophilic amino acids such as lysine and arginine are post-translationally modified to a variety of derivatives also known as Maillard reaction products (MRPs). Considerable amounts of MRPs are taken up in food. Here we have studied the interactions of free and dipeptide-bound MRPs with intestinal transport systems. Free and dipeptide-bound derivatives of N(6)-(1-fructosyl)lysine (FL), N(6)-(carboxymethyl)lysine (CML), N(6)-(1-carboxyethyl)lysine (CEL), formyline, argpyrimidine, and methylglyoxal-derived hydroimidazolone 1 (MG-H1) were synthesized. The inhibition of L-[(3)H]lysine and [(14) C]glycylsarcosine uptakes was measured in Caco-2 cells which express the H(+)/peptide transporter PEPT1 and lysine transport system(s). Glycated amino acids always displayed lower affinities than their unmodified analogues towards the L-[(3)H]lysine transporter(s). In contrast, all glycated dipeptides except Ala-FL were medium- to high-affinity inhibitors of [(14)C]Gly-Sar uptake. The transepithelial flux of the derivatives across Caco-2 cell monolayers was determined. Free amino acids and intact peptides derived from CML and CEL were translocated to very small extents. Application of peptide-bound MRPs, however, led to elevation (up to 80-fold) of the net flux and intracellular accumulation of glycated amino acids, which were hydrolyzed from the dipeptides inside the cells. We conclude 1) that free MRPs are not substrates for the intestinal lysine transporter(s), and 2) that dietary MRPs are absorbed into intestinal cells in the form of dipeptides, most likely by the peptide transporter PEPT1. After hydrolysis, hydrophobic glycated amino acids such as pyrraline, formyline, maltosine, and argpyrimidine undergo basolateral efflux, most likely by simple diffusion down their concentration gradients. PMID:21538757

  9. Transport of levovirin prodrugs in the human intestinal Caco-2 cell line.

    PubMed

    Li, Fujun; Hong, Lei; Mau, Cheng-I; Chan, Rebecca; Hendricks, Than; Dvorak, Chuck; Yee, Calvin; Harris, Jason; Alfredson, Tom

    2006-06-01

    The transport of 10 amino acid ester prodrugs of levovirin (LVV) was investigated in the human intestinal Caco-2 cell line in order to overcome the poor oral bioavailability of LVV, an investigational drug for the treatment of hepatitis C infection. The prodrugs were designed to improve the permeability of LVV across the intestinal epithelium by targeting the di/tri-peptide carrier, PepT1. Caco-2 cell monolayers were employed to study the transport and hydrolysis properties of the prodrugs. Among all mono amino acid ester prodrugs studied, the LVV-5'-(L)-valine prodrug (R1518) exhibited the maximum increase (48-fold) in permeability with nearly complete conversion to LVV within 1 h. Di-amino acid esters did not offer significant enhancement in permeability comparing with mono amino acid esters and exhibited slower conversion to LVV in Caco2 cell monolayers. Pharmacokinetic screening studies of the prodrugs in rats yielded the highest fold increase (6.9-fold) of AUC with R1518 and in general displayed a similar trend to that observed in increases of permeability in Caco-2 cells. Mechanisms involved in the Caco-2 cell transport of R1518 were also investigated. Results of bi-directional transport studies support the involvement of carrier-mediated transport mechanisms for R1518, but not for the LVV-5'-(D)-valine prodrug or LVV. Moreover, the permeability of R1518 was found to be proton dependent. PepT1-mediated transport of R1518 was supported by results of competitive transport studies of R1518 with the PepT1 substrates enalapril, Gly-Sar, valganciclovir, and cephalexin. R1518 was also found to inhibit the permeability of valganciclovir and cephalexin. These results suggest that R1518 is a PepT1 substrate as well as an inhibitor. PMID:16634069

  10. Growth of embryo and gene expression of nutrient transporters in the small intestine of the domestic pigeon (Columba livia).

    PubMed

    Chen, Ming-xia; Li, Xiang-guang; Yang, Jun-xian; Gao, Chun-qi; Wang, Bin; Wang, Xiu-qi; Yan, Hui-chao

    2015-06-01

    The objective of this study was to investigate the relationship between gene expression of nutrient (amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons (Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions (temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day (E) 9, 11, 13, 15 and day of hatch (DOH). The eggs, embryos (without yolk sac), and organs (head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The mRNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction (RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The mRNA abundances of b(0,+)AT, EAAT3, y(+)LAT2, PepT1, LAT4, NHE2, and NHE3 increased linearly with age, whereas mRNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b(0,+)AT, EAAT3, PepT1, LAT4, NHE2, NHE3, and y(+)LAT2 had positive correlations with body weight (0.71intestinal weight (0.80intestinal weight (-0

  11. Growth of embryo and gene expression of nutrient transporters in the small intestine of the domestic pigeon (Columba livia)*

    PubMed Central

    Chen, Ming-xia; Li, Xiang-guang; Yang, Jun-xian; Gao, Chun-qi; Wang, Bin; Wang, Xiu-qi; Yan, Hui-chao

    2015-01-01

    The objective of this study was to investigate the relationship between gene expression of nutrient (amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons (Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions (temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day (E) 9, 11, 13, 15 and day of hatch (DOH). The eggs, embryos (without yolk sac), and organs (head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The mRNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction (RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The mRNA abundances of b0,+AT, EAAT3, y+LAT2, PepT1, LAT4, NHE2, and NHE3 increased linearly with age, whereas mRNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b0,+AT, EAAT3, PepT1, LAT4, NHE2, NHE3, and y+LAT2 had positive correlations with body weight (0.71intestinal weight (0.80intestinal weight (−0.84

  12. Cyclic AMP formation in chicken brain: effect of vasoactive intestinal peptide, peptide histidine-isoleucine (PHI), and some PHI-related peptides.

    PubMed

    Dejda, Agnieszka; Matczak, Izabela; Wiktorowska-Owczarek, Anna; Nowak, Jerzy Z

    2003-01-01

    Vasoactive intestinal peptide (chicken form; chVIP), peptide histidine-isoleucine (porcine and rat forms; pPHI and rPHI), D-Phe(4) derivative of porcine PHI (D-Phe(4)-pPHI), peptide histidine-methionine (PHM; human PHI), and helodermin, were tested for their ability to stimulate cAMP production in [(3)H]adenine-prelabeled slices of chick cerebral cortex (CCx) and hypothalamus (HTh). The chVIP (0.1-3 microM) concentration-dependently and potently stimulated cAMP production in HTh and CCx; the responses observed after 3 microM of chVIP were comparable to those produced by 0.1 microM PACAP38. Helodermin (5 microM) moderately but significantly stimulated cAMP formation in both HTh and CCx, whereas pPHI, rPHI, PHM at 5 microM concentration only weakly affected cAMP production in CCx, and were inactive in HTh; D-Phe(4)-pPHI was inactive in both tissues. These data demonstrate that chVIP, PACAP, and to a lesser extent helodermin were capable of potently stimulating cAMP generation in the avian central nervous system. PHI-related peptides showed only weak or no activity, depending on the tissue. PMID:14704471

  13. Identification of intestinal ion transport defects in microvillus inclusion disease.

    PubMed

    Kravtsov, Dmitri V; Ahsan, Md Kaimul; Kumari, Vandana; van Ijzendoorn, Sven C D; Reyes-Mugica, Miguel; Kumar, Anoop; Gujral, Tarunmeet; Dudeja, Pradeep K; Ameen, Nadia A

    2016-07-01

    Loss of function mutations in the actin motor myosin Vb (Myo5b) lead to microvillus inclusion disease (MVID) and death in newborns and children. MVID results in secretory diarrhea, brush border (BB) defects, villus atrophy, and microvillus inclusions (MVIs) in enterocytes. How loss of Myo5b results in increased stool loss of chloride (Cl(-)) and sodium (Na(+)) is unknown. The present study used Myo5b loss-of-function human MVID intestine, polarized intestinal cell models of secretory crypt (T84) and villus resembling (CaCo2BBe, C2BBe) enterocytes lacking Myo5b in conjunction with immunofluorescence confocal stimulated emission depletion (gSTED) imaging, immunohistochemical staining, transmission electron microscopy, shRNA silencing, immunoblots, and electrophysiological approaches to examine the distribution, expression, and function of the major BB ion transporters NHE3 (Na(+)), CFTR (Cl(-)), and SLC26A3 (DRA) (Cl(-)/HCO3 (-)) that control intestinal fluid transport. We hypothesized that enterocyte maturation defects lead villus atrophy with immature secretory cryptlike enterocytes in the MVID epithelium. We investigated the role of Myo5b in enterocyte maturation. NHE3 and DRA localization and function were markedly reduced on the BB membrane of human MVID enterocytes and Myo5bKD C2BBe cells, while CFTR localization was preserved. Forskolin-stimulated CFTR ion transport in Myo5bKD T84 cells resembled that of control. Loss of Myo5b led to YAP1 nuclear retention, retarded enterocyte maturation, and a cryptlike phenotype. We conclude that preservation of functional CFTR in immature enterocytes, reduced functional expression of NHE3, and DRA contribute to Cl(-) and Na(+) stool loss in MVID diarrhea. PMID:27229121

  14. Deficient Vasoactive Intestinal Peptide Innervation in the Sweat Glands of Cystic Fibrosis Patients

    NASA Astrophysics Data System (ADS)

    Heinz-Erian, Peter; Dey, Richard D.; Flux, Marinus; Said, Sami I.

    1985-09-01

    The innervation of acini and ducts of eccrine sweat glands by immunoreactive, vasoactive intestinal peptide--containing nerve fibers was sharply reduced in seven patients with cystic fibrosis compared to eight normal subjects. The decrease in innervation by this neuropeptide, which has been shown to promote blood flow and the movement of water and chloride across epithelial surfaces in other systems, may be a basic mechanism for the decreased water content and relative impermeability of the epithelium to chloride and other ions that characterize cystic fibrosis.

  15. Intestinal transport of hexoses in the rat following chronic heat exposure

    NASA Technical Reports Server (NTRS)

    Carpenter, M.; Musacchia, X. J.

    1979-01-01

    The study examines intestinal transport of sugars (D-glucose and D-galactose) in vitro and assesses organ maintenance in chronically heat-exposed rats. The results suggest that the response of intestinal absorption to heat exposure in the rat involves changes in intestinal weight and in glucose utilization. Despite the reduction in total intestinal weight, the ability of intestinal tissue to transport hexose per unit weight remains stable. Differences in intestinal weight and glucose utilization between pair-fed and heat-exposed animals suggest that the intestinal response to chronic heat exposure is not solely a function of the amount of food consumed. Alterations of hexose transport appear to be related to altered glucose metabolism and not altered transport capacity.

  16. Influence of dietary substances on intestinal drug metabolism and transport.

    PubMed

    Won, Christina S; Oberlies, Nicholas H; Paine, Mary F

    2010-11-01

    Successful delivery of promising new chemical entities via the oral route is rife with challenges, some of which cannot be explained or foreseen during drug development. Further complicating an already multifaceted problem is the obvious, yet often overlooked, effect of dietary substances on drug disposition and response. Some dietary substances, particularly fruit juices, have been shown to inhibit biochemical processes in the intestine, leading to altered pharmacokinetic (PK), and potentially pharmacodynamic (PD), outcomes. Inhibition of intestinal CYP3Amediated metabolism is the major mechanism by which fruit juices, including grapefruit juice, enhances systemic exposure to new and already marketed drugs. Inhibition of intestinal non-CYP3A enzymes and apically-located transport proteins represent recently identified mechanisms that can alter PK and PD. Several fruit juices have been shown to inhibit these processes in vitro, but some interactions have not translated to the clinic. The lack of in vitroin vivo concordance is due largely to a lack of rigorous methods to elucidate causative ingredients prior to clinical testing. Identification of specific components and underlying mechanisms is challenging, as dietary substances frequently contain multiple, often unknown, bioactive ingredients that vary in composition and bioactivity. A translational research approach, combining expertise from clinical pharmacologists and natural products chemists, is needed to develop robust models describing PK/PD relationships between a given dietary substance and drug of interest. Validation of these models through well-designed clinical trials would facilitate development of common practice guidelines for managing drug-dietary substance interactions appropriately. PMID:21189136

  17. Pharmacological characterization of the receptors mediating vasoactive intestinal peptide-induced vasodilation in rat aorta

    SciTech Connect

    Turner, J.T.; Bylund, D.B.

    1986-03-01

    Vasoactive intestinal peptide (VIP)-contain nerve fibers associated with blood vessels are widely distributed, both in the central nervous system and in the periphery. VIP has been shown to be a potent vasodilator in a variety of vascular preparations. The authors have evaluated VIP, the VIP fragment 10-28, and several related peptides including PHI-27, PHM-27 and secretin in terms of their potencies in (1) stimulating the synthesis of cyclic AMP, using the method of Shimizu, in aortic rings; and (2) reversing norepinephrine induced contraction in aortic rings. The authors results indicate that VIP is the most potent of the peptides in both experimental protocols and that the rank order potencies of the various peptides are consistent between the two parameters measured. The authors are currently conducting radioligand binding studies with (/sup 125/I)VIP to further characterize the receptors involved. Additionally, the authors experiments in rat aorta indicate that the presence of the endothelial layer is not required for VIP receptor mediated effects to occur. A potential role for synthetic compounds with high specificity for the VIP receptor in treating hypertension is suggested.

  18. Transepithelial transport of flavanone in intestinal Caco-2 cell monolayers

    SciTech Connect

    Kobayashi, Shoko; Konishi, Yutaka

    2008-03-28

    Our recent study [S. Kobayashi, S. Tanabe, M. Sugiyama, Y. Konishi, Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers, Biochim. Biophys. Acta, 1778 (2008) 33-41] shows that the mechanism of absorption of hesperetin involves both proton-coupled active transport and transcellular passive diffusion. Here, as well as analyzing the cell permeability of hesperetin, we also study the transport of other flavanones, naringenin and eriodictyol, using Caco-2 cell monolayers. Similar to hesperetin mentioned, naringenin and eriodictyol showed proton-coupled polarized transport in apical-to-basolateral direction in non-saturable manner, constant permeation in the apical-to-basolateral direction (J{sub ap{yields}}{sub bl}) irrespective of the transepithelial electrical resistance (TER), and preferable distribution into the basolateral side after apical loading in the presence of a proton gradient. Furthermore, the proton-coupled J{sub ap{yields}}{sub bl} of hesperetin, naringenin and eriodictyol, were inhibited by substrates of the monocarboxylic acid transporter (MCT), such as benzoic acid, but not by ferulic acid. In contrast, both benzoic and ferulic acids have no stimulatory effect on J{sub ap{yields}}{sub bl} of each flavanone by trans-stimulation analysis. These results indicates that proton-driven active transport is commonly participated in the absorption of flavanone in general, and that its transport is presumed to be unique other than MCT-mediated transport for absorption of phenolic acids (PAs), sodium-dependent MCT (SMCT) nor anion exchanger-mediated transport.

  19. Transepithelial transport of glutathione in isolated perfused small intestine

    SciTech Connect

    Hagen, T.M.; Jones, D.P.

    1986-03-01

    Uptake of GSH was studied in isolated perfused segment of jejunum in the adult rat. Krebs-Henseleit buffer was infused through the superior mesenteric artery and fractions were collected from the portal vein. The maintenance of vascular and epithelial integrity was established by lack of transfer of /sup 14/C-inulin or /sup 14/C-polyethylene glycol from the lumen to the perfusate. (glycine-2-/sup 3/H)GSH was introduced in the lumen and perfusate fractions collected every min. With 1 mM GSH and 10 mM Gly in the lumen, transport into the perfusate was 220 nmol/min. Analysis by HPLC showed that 80% was at the intact tripeptide, GSH. No cysteinylgylcine was detected in the perfusate. Pretreatment of the segment with 0.25 mM acivicin and 1 mM buthionine sulfoximine had no significant effect on GSH transport rate, thus showing that degradation and resynthesis of GSH did not contribute to the appearance of GSH in the perfusate. GSH transport was inhibited 50% by replacing lumenal NaCl with choline Cl. Addition of 10 mM ..gamma..-Clu-Glu or 10 mM ophthalmic acid decreased the rat of transport by 60-70%. These results establish that transepithelial transport of intact GSH occurs in rat small intestine. This may allow utilization of dietary GSH or reutilization of biliary GSH. In addition, the results suggest that oral GSH may be of therapeutic benefit.

  20. Carrier-mediated transport of peptides by the kidney

    SciTech Connect

    Skopicki, H.A.

    1988-01-01

    Small peptide transport was characterized to determine if: (1) Multiple carriers are present in the luminal membrane of renal proximal tubular cells; (2) Carrier-mediated peptide transport is limited by size; and (3) Gentamicin inhibits carrier-mediated reabsorption of peptides. Uptake of glycyl-({sup 3}H)proline (Gly-Pro) into renal brush border membrane vesicles demonstrated a dual affinity carrier system. Whether multiple carriers are present was further investigated by characterizing the uptake of ({sup 3}H)pyroglutamyl-histidine. To determine if carrier-mediated transport of peptides is limited by size of the molecule, uptake of the hydrolytically resistant tripeptide, ({sup 3}H)pryroglutamyl-histidyl-tryptophan (pGlu-His-Trp), and tetrapeptide, ({sup 3}H)pyroglutamyl-histidyl-tryptophyl-serine (pGlu-His-Trp-Ser) were assessed. These data indicate: multiple carriers exist on the luminal membrane of renal proximal tubular cells for the transport of dipeptides, and tripeptide pGlu-His-Trp and the tetrapeptide pGlu-His-Trp-Ser are not taken up by a carrier-mediated mechanism, suggesting that the carrier may be limited by the size of the substrate.

  1. INFLUENCE OF DIETARY SUBSTANCES ON INTESTINAL DRUG METABOLISM AND TRANSPORT

    PubMed Central

    Won, Christina S.; Oberlies, Nicholas H.; Paine, Mary F.

    2011-01-01

    Successful delivery of promising new chemical entities via the oral route is rife with challenges, some of which cannot be explained or foreseen during drug development. Further complicating an already multifaceted problem is the obvious, yet often overlooked, effect of dietary substances on drug disposition and response. Some dietary substances, particularly fruit juices, have been shown to inhibit biochemical processes in the intestine, leading to altered pharmacokinetic (PK), and potentially pharmacodynamic (PD), outcomes. Inhibition of intestinal CYP3A-mediated metabolism is the major mechanism by which fruit juices, including grapefruit juice, enhances systemic exposure to new and already marketed drugs. Inhibition of intestinal non-CYP3A enzymes and apically-located transport proteins represent recently identified mechanisms that can alter PK and PD. Several fruit juices have been shown to inhibit these processes in vitro, but some interactions have not translated to the clinic. The lack of in vitro-in vivo concordance is due largely to a lack of rigorous methods to elucidate causative ingredients prior to clinical testing. Identification of specific components and underlying mechanisms is challenging, as dietary substances frequently contain multiple, often unknown, bioactive ingredients that vary in composition and bioactivity. A translational research approach, combining expertise from clinical pharmacologists and natural products chemists, is needed to develop robust models describing PK/PD relationships between a given dietary substance and drug of interest. Validation of these models through well-designed clinical trials would facilitate development of common practice guidelines for managing drug-dietary substance interactions appropriately. PMID:21189136

  2. Transport of nattokinase across the rat intestinal tract.

    PubMed

    Fujita, M; Hong, K; Ito, Y; Misawa, S; Takeuchi, N; Kariya, K; Nishimuro, S

    1995-09-01

    Intraduodenal administration of nattokinase (NK) at a dose of 80 mg/kg, resulted in the degradation of fibrinogen in plasma suggesting transport of NK across the intestinal tract in normal rats. The action of NK on the cleavage of fibrinogen in the plasma from blood samples drawn at intervals after intraduodenal administration of the enzyme was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting analysis with an anti-fibrinogen gamma chain antibody. The 270 kDa fragment carrying antigenic sites for the binding of the anti-fibrinogen gamma chain antibody appeared within 0.5 h and was then degraded gradually to a 105 kDa fragment via a 200 kDa fragment. This suggests that fibrinogen was degraded to a 105 kDa fragment via several intermediates (270 and 200 kDa). In parallel with the degradation process, plasma recalcification times were remarkably prolonged NK was also detected in the plasma from blood samples drawn 3 and 5 h after administration of the enzyme by SDS-PAGE and Western blotting analysis with an anti-NK antibody. The results indicate that NK is absorbed from the rat intestinal tract and that NK cleaves fibrinogen in plasma after intraduodenal administration of the enzyme. PMID:8845803

  3. Functions of Ion Transport Peptide and Ion Transport Peptide-Like in the Red Flour Beetle Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ion transport peptide (ITP) and ITP-like (ITPL) are highly conserved neuropeptides in insects and crustaceans. We investigated the alternatively spliced variants of ITP/ITPL in Tribolium castaneum to understand their functions. We identified three alternatively spliced transcripts named itp, itpl-...

  4. Intestine.

    PubMed

    Smith, J M; Skeans, M A; Horslen, S P; Edwards, E B; Harper, A M; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    Intestine and intestine-liver transplant plays an important role in the treatment of intestinal failure, despite decreased morbidity associated with parenteral nutrition. In 2014, 210 new patients were added to the intestine transplant waiting list. Among prevalent patients on the list at the end of 2014, 65% were waiting for an intestine transplant and 35% were waiting for an intestine-liver transplant. The pretransplant mortality rate decreased dramatically over time for all age groups. Pretransplant mortality was highest for adult candidates, at 22.1 per 100 waitlist years compared with less than 3 per 100 waitlist years for pediatric candidates, and notably higher for candidates for intestine-liver transplant than for candidates for intestine transplant without a liver. Numbers of intestine transplants without a liver increased from a low of 51 in 2013 to 67 in 2014. Intestine-liver transplants increased from a low of 44 in 2012 to 72 in 2014. Short-gut syndrome (congenital and other) was the main cause of disease leading to both intestine and intestine-liver transplant. Graft survival improved over the past decade. Patient survival was lowest for adult intestine-liver recipients and highest for pediatric intestine recipients. PMID:26755265

  5. Electrophysiology of chloride transport in Aplysia (mollusk) intestine.

    PubMed

    Gerencser, G A

    1983-02-01

    This investigation was principally undertaken to examine the mechanism of Cl- transport across the Aplysia californica intestinal epithelium. Previous results have shown: 1) the transmural potential difference (psi m leads to s) and the mucosal membrane potential difference (psi m) to be negative relative to the mucosal solution, 2) mucosal D-glucose hyperpolarized psi m leads to s and depolarized psi m, 3) mucosal D-glucose significantly increased intracellular Cl- activity (aiCl), however the electrochemical potential (-mu i) for intracellular Cl- was significantly less in both cases, than the -muCl in the mucosal solution, 4) replacing Cl- in the bathing medium with SO-4(2) significantly reduced both psi m and psi m leads to s, and 5) the energy within the electrochemical potential difference for Na+ (delta -mu Na) directed from mucosa to cytosol was energetically adequate so that intracellular Cl- accumulation could occur. New results showed: 1) psi m and psi m leads to s to significantly hyperpolarize when Na+ was replaced with Tris+ in the bathing medium, 2) aiCl decreased from 13.9 +/- 0.5 to 9.1 +/- 0.3 mM when Na+ was replaced with Tris+ in the bathing medium. The intracellular -muCl, both in the presence and absence of Na+, was significantly less than -muCl in the mucosal medium. These results suggest that Na+ and Cl- transport across the mucosal membrane are not mechanistically coupled and that an active extrusion mechanism for Cl- exists in the lateral-serosal membrane of the surface epithelial cells of A. californica intestine. PMID:6824101

  6. Receptors for vasoactive intestinal peptide in rat anterior pituitary glands: Localization of binding to lactotropes

    SciTech Connect

    Wanke, I.E.; Rorstad, O.P. )

    1990-04-01

    Vasoactive intestinal peptide (VIP) has been implicated as a physiological PRL-releasing factor; however, characterization of VIP receptors on normal pituitaries using radioligand-binding methods has been problematic. In this study we demonstrated specific receptors for VIP in anterior pituitary glands of female rats using HPLC-purified monoiodinated (Tyr(125I)10)VIP. Binding of VIP was reversible, saturable to receptor and radioligand, regulated by guanine nucleotides, and dependent on time and temperature. Scatchard analysis of competitive binding studies indicated high and low affinity binding sites, with equilibrium dissociation constants (Kd) of 0.19 +/- 0.03 and 28 +/- 16 nM, respectively. The corresponding maximum numbers of binding sites were 158 +/- 34 fmol/mg and 11.7 +/- 6.9 pmol/mg. Binding was specific, as peptides with structural homology to VIP were less than 100th as potent as VIP. The rank order of potency of the peptides tested was VIP greater than rat (r) peptide histidine isoleucine = human (h) PHI greater than rGRF greater than bovine GRF = porcine PHI = VIP-(10-28) greater than hGRF greater than secretin greater than apamin greater than glucagon. Radioligand binding was associated primarily with lactotrope-enriched fractions prepared by unit gravity sedimentation of dispersed anterior pituitary cells. VIP stimulated PRL release from cultured rat anterior pituitary cells, with an ED50 of 1 nM. These results, comprising the first identification of specific VIP receptors in normal rat anterior pituitary tissue using radioligand-binding methods, provide additional support for a biological role of VIP in lactotrope function.

  7. Glucagon-like peptide-2 (GLP-2) increases small intestinal blood flow and mucosal growth in ruminating calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2), increases small intestinal mass and blood flow in non-ruminants, but its effect in ruminants is unknown. Eight Holstein calves with an ultrasonic flow probe around the superior mesenteric artery (SMA), and catheters in the carotid artery and mesenteric vein, were pa...

  8. Bile acids induce glucagon-like peptide 2 secretion with limited effects on intestinal adaptation in early weaned pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestina...

  9. Microbiota/Host Crosstalk Biomarkers: Regulatory Response of Human Intestinal Dendritic Cells Exposed to Lactobacillus Extracellular Encrypted Peptide

    PubMed Central

    Al-Hassi, Hafid O.; Mann, Elizabeth R.; Urdaci, María C.; Knight, Stella C.; Margolles, Abelardo

    2012-01-01

    The human gastrointestinal tract is exposed to a huge variety of microorganisms, either commensal or pathogenic; at this site, a balance between immunity and immune tolerance is required. Intestinal dendritic cells (DCs) control the mechanisms of immune response/tolerance in the gut. In this paper we have identified a peptide (STp) secreted by Lactobacillus plantarum, characterized by the abundance of serine and threonine residues within its sequence. STp is encoded in one of the main extracellular proteins produced by such species, which includes some probiotic strains, and lacks cleavage sites for the major intestinal proteases. When studied in vitro, STp expanded the ongoing production of regulatory IL-10 in human intestinal DCs from healthy controls. STp-primed DC induced an immunoregulatory cytokine profile and skin-homing profile on stimulated T-cells. Our data suggest that some of the molecular dialogue between intestinal bacteria and DCs may be mediated by immunomodulatory peptides, encoded in larger extracellular proteins, secreted by commensal bacteria. These peptides may be used for the development of nutraceutical products for patients with IBD. In addition, this kind of peptides seem to be absent in the gut of inflammatory bowel disease patients, suggesting a potential role as biomarker of gut homeostasis. PMID:22606249

  10. Effect of Dietary Lead on Intestinal Nutrient Transporters mRNA Expression in Broiler Chickens

    PubMed Central

    Ebrahimi, Roohollah; Faseleh Jahromi, Mohammad; Liang, Juan Boo; Soleimani Farjam, Abdoreza; Shokryazdan, Parisa; Idrus, Zulkifli

    2015-01-01

    Lead- (Pb-) induced oxidative stress is known to suppress growth performance and feed efficiency in broiler chickens. In an attempt to describe the specific underlying mechanisms of such phenomenon we carried out the current study. Ninety-six one-day-old broiler chicks were randomly assigned to 2 dietary treatment groups of 6 pen replicates, namely, (i) basal diet containing no lead supplement (control) and (ii) basal diet containing 200 mg lead acetate/kg of diet. Following 3 weeks of experimental period, jejunum samples were collected to examine the changes in gene expression of several nutrient transporters, antioxidant enzymes, and heat shock protein 70 (Hsp70) using quantitative real-time PCR. The results showed that addition of lead significantly decreased feed intake, body weight gain, and feed efficiency. Moreover, with the exception of GLUT5, the expression of all sugar, peptide, and amino acid transporters was significantly downregulated in the birds under Pb induced oxidative stress. Exposure to Pb also upregulated the antioxidant enzymes gene expression together with the downregulation of glutathione S-transferase and Hsp70. In conclusion, it appears that Pb-induced oxidative stress adversely suppresses feed efficiency and growth performance in chicken and the possible underlying mechanism for such phenomenon is downregulation of major nutrient transporter genes in small intestine. PMID:25695048

  11. Clostridium difficile suppresses colonic vasoactive intestinal peptide associated with altered motility.

    PubMed

    Nassif, A; Longo, W E; Sexe, R; Stratton, M; Standeven, J; Vernava, A M; Kaminski, D L

    1995-01-01

    We investigated whether Clostridium difficile toxin alters colonic tissue levels of vasoactive intestinal peptide (VIP) at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 10(-8) M C. difflcile toxin. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. C. difflcile administration produced histologic changes consistent with epithelial damage. This was associated with an increased production of prostaglandin E(2) and thromboxane B(2). Tissue levels of VIP but not substance P were significantly reduced. This was associated with an increased number of contractions per minute and an average force of each colonic contraction. These results suggest that tissue levels of VIP are suppressed by C. difflcile and may participate in colonic dysmotility during active inflammation. PMID:18475679

  12. The effects of vasoactive intestinal peptide on adrenal steroid hormone secretion

    SciTech Connect

    Cunningham, L.A.

    1988-01-01

    Vasoactive intestinal peptide (VIP)-immunoreactive nerve fibers have been demonstrated in the rat adrenal cortex in close association with zona glomerulosa cells. We have studied the effects of VIP on steroid hormone secretion from the outer zones of the normal rat adrenal cortex. Intact capsule-glomerulosa preparations, consisting of the capsule, zona glomerulosa, and a small portion of the zona fasciculata were perifused in vitro. The secretory responsiveness was assessed by measuring aldosterone and corticosterone release following stimulation with the physiological secretagogues ACTH and angiotensin II. The distribution of adrenal VIP receptors was assessed by in vitro autoradiography of {sup 125}I-VIP binding. {sup 125}I-VIP (0.75 and 2.0 nM) binding was concentrated in the capsule and zone glomerulosa, coincident with the distribution of VIP nerve fibers which aborize extensively in this region. The specificity of this binding was demonstrated using unlabelled VIP, ACTH and angiotensin II.

  13. Intestinal deletion of leptin signaling alters activity of nutrient transporters and delayed the onset of obesity in mice.

    PubMed

    Tavernier, Annabelle; Cavin, Jean-Baptiste; Le Gall, Maude; Ducroc, Robert; Denis, Raphaël G P; Cluzeaud, Françoise; Guilmeau, Sandra; Sakar, Yassine; Barbot, Laurence; Kapel, Nathalie; Le Beyec, Johanne; Joly, Francisca; Chua, Streamson; Luquet, Serge; Bado, Andre

    2014-09-01

    The importance of B-isoform of leptin receptor (LEPR-B) signaling in the hypothalamus, pancreas, or liver has been well characterized, but in the intestine, a unique site of entry for dietary nutrition into the body, it has been relatively ignored. To address this question, we characterized a mouse model deficient for LEPR-B specifically in intestinal epithelial cells (IECs). (IEC)LEPR-B-knockout (KO) and wild-type (WT) mice were generated by Cre-Lox strategy and fed a normal or high-fat diet (HFD). The analyses of the animals involved histology and immunohistochemistry of intestinal mucosa, indirect calorimetric measurements, whole-body composition, and expression and activities of nutrient transporters. (IEC)LEPR-B-KO mice exhibited a 2-fold increase in length of jejunal villi and have normal growth on a normal diet but were less susceptible (P<0.01) to HFD-induced obesity. No differences occurred in energy intake and expenditure between (IEC)LEPR-B-WT and -KO mice, but (IEC)LEPR-B-KO mice fed an HFD showed increased excreted fats (P<0.05). Activities of the Na(+)/glucose cotransporter SGLT-1 and GLUT2 were unaffected in LEPR-B-KO jejunum, while GLUT5-mediated fructose transport and PepT1-mediated peptide transport were substantially reduced (P<0.01). These data demonstrate that intestinal LEPR-B signaling is important for the onset of diet-induced obesity. They suggest that intestinal LEPR-B could be a potential per os target for prevention against obesity. PMID:24928195

  14. Regulatory signals for intestinal amino acid transporters and peptidases

    SciTech Connect

    Ferraris, R.P.; Kwan, W.W.; Diamond, J. )

    1988-08-01

    Dietary protein ultimately regulates many processes involved in protein digestion, but it is often unclear whether proteins themselves, peptides, or amino acids (AAs) are the proximate regulatory signal. Hence the authors compared several processes involved in protein digestion in mice adapted to one of three rations, identical except for containing 54% of either casein, a partial hydrolysate of casein, or a free AA mixture simulating a complete hydrolysate of casein. The authors measured brush-border uptakes of seven AAs that variously serve as substrates for four AA transporters, and brush-border and cytosolic activities of four peptidases. The three rations yielded essentially the same AA uptake rates. Peptidase activities tended to be lower on the AA ration than on the protein ration. In other studies, all three rations yielded the same rates of brush-border peptide uptake; protein is only modestly more effective than AAs at inducing synthesis of pancreatic proteases; and, depending on the animal species, protein is either much less or much more effective than AAs at stimulating release of cholecystokinin and hence of pancreatic enzymes. Thus the regulators of each process involved in protein digestion are not necessarily that process's substrate.

  15. Membrane Transporters and Folate Homeostasis; Intestinal Absorption, Transport into Systemic Compartments and Tissues

    PubMed Central

    Zhao, Rongbao; Matherly, Larry H.; Goldman, I. David

    2013-01-01

    Folates, the generic term for the family of B vitamins, are derived entirely from dietary sources, and are key one-carbon donors required for de novo nucleotide and methionine synthesis. These highly hydrophilic molecules utilize genetically distinct and functionally diverse transport systems to enter cells: the reduced folate carrier (RFC), the proton-coupled folate transporter (PCFT), and the folate receptors. Each plays a unique role in mediating folate transport across epithelia and into systemic tissues. With the recent discovery of the mechanism of intestinal folate absorption, and the clarification of the genetic basis for the autosomal recessive disorder, hereditary folate malabsorption, involving loss-of-function mutations in PCFT protein, it is now possible to piece together how these folate transporters contribute, both individually and collectively, to folate homeostasis in humans. This review focuses on the physiological roles of these major folate transporters with a brief consideration of their impact on the pharmacological activities of antifolates. PMID:19173758

  16. Peptide YY receptor in submucosal and myenteric plexus synaptosomes of canine small intestine.

    PubMed

    Mao, Y K; Wang, Y F; Ward, G; Cipris, S; Daniel, E E; McDonald, T J

    1996-07-01

    PYY receptors were characterized and their loci determined in canine small intestine. The density of 125I-labeled peptide tyrosine tyrosine (PYY) binding was highest in myenteric (MY) and submucosal (SUB) plexus fractions enriched in synaptosomes. Two binding sites [high affinity (H) and low affinity (L)] were found in the submucosal synaptosome-enriched membrane: dissociation constant (Kd)H = 7.6 pM, maximal binding capacity (Bmax)H = 28 fmol/mg; KdL = 0.18 nM, BmaxL = 120 fmol/mg protein. The binding of 125I-PYY reached a maximum within 30 min; dissociation was incomplete in the presence of unlabeled PYY. The rate of dissociation was enhanced after exposure of synaptosomes to guanosine 5'-O-(3-thiotriphosphate). Binding of 125I-PYY was completely inhibited by neuropeptide Y (NPY)-(13-36) (in SUB and MY) and by [Leu31,Pro34]NPY (in MY) but only partially by [Leu31,Pro34]NPY in SUB, suggesting the presence of Y2 receptor in SUB and the presence of Y1 and Y2 receptors in MY. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PYY receptor complex revealed a radioactive band at 70 kDa. The PYY receptors in the canine small intestinal myenteric and submucosal plexus correspond in location to that of PYY in synaptosomes and are coupled with G proteins. Different subtypes are present in different loci. PMID:8760104

  17. Medicinal Plants Qua Glucagon-Like Peptide-1 Secretagogue via Intestinal Nutrient Sensors

    PubMed Central

    Kim, Ki-Suk; Jang, Hyeung-Jin

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) participates in glucose homeostasis and feeding behavior. Because GLP-1 is rapidly inactivated by the enzymatic cleavage of dipeptidyl peptidase-4 (DPP4) long-acting GLP-1 analogues, for example, exenatide and DPP4 inhibitors, for example, liraglutide, have been developed as therapeutics for type 2 diabetes mellitus (T2DM). However, the inefficient clinical performance and the incidence of side effects reported on the existing therapeutics for T2DM have led to the development of a novel therapeutic strategy to stimulate endogenous GLP-1 secretion from enteroendocrine L cells. Since the GLP-1 secretion of enteroendocrine L cells depends on the luminal nutrient constituents, the intestinal nutrient sensors involved in GLP-1 secretion have been investigated. In particular, nutrient sensors for tastants, cannabinoids, and bile acids are able to recognize the nonnutritional chemical compounds, which are abundant in medicinal plants. These GLP-1 secretagogues derived from medicinal plants are easy to find in our surroundings, and their effectiveness has been demonstrated through traditional remedies. The finding of GLP-1 secretagogues is directly linked to understanding of the role of intestinal nutrient sensors and their recognizable nutrients. Concurrently, this study demonstrates the possibility of developing novel therapeutics for metabolic disorders such as T2DM and obesity using nutrients that are readily accessible in our surroundings. PMID:26788106

  18. Immunoregulatory properties of vasoactive intestinal peptide in human T cell subsets: implications for rheumatoid arthritis.

    PubMed

    Gutiérrez-Cañas, Irene; Juarranz, Yasmina; Santiago, Begoña; Martínez, Carmen; Gomariz, Rosa P; Pablos, José Luis; Leceta, Javier

    2008-03-01

    Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease whose pathogenesis is not completely understood. Unbalanced Th1/Th2 T-cell polarization has been suggested to play a pathogenetic role and therefore, modulation of T-cell polarization is a potential therapeutic target. Vasoactive intestinal peptide (VIP) is a broadly distributed peptide that exerts anti-inflammatory and immunomodulatory effects, in the collagen-induced arthritis (CIA) murine model of RA, and ex vivo, in synovial cells from RA patients. In the present study, we have found that polyclonal stimulation of peripheral blood lymphocytes (PBL) from RA patients produces higher levels of inflammatory mediators and lower levels of Th1 cytokines than PBL from healthy controls; moreover, VIP has negligible effects on inflammatory mediators and Th1 cytokines produced by PBL from healthy controls but favours Th2 profile and enhanced IL-10 production after stimulation. VIP increases the levels of IL-10 and IL-4 in the supernatant of human CD4(+)CD45RA(+) cells cultured in a non-conditioned or a Th2-conditioned situation. In contrast, VIP does not modify the production of these cytokines in a Th1-conditioned medium. In summary, VIP can differentially modify the functional capacity of human lymphocytes by inducing Th2/Treg differentiation depending on their previous phenotype. PMID:17951026

  19. Disrupted reproduction, estrous cycle, and circadian rhythms in female vasoactive intestinal peptide deficient mice

    PubMed Central

    Loh, Dawn Hsiao-Wei; Kuljis, Dika Ana; Azuma, Lauren; Wu, Yingfei; Truong, Danny; Wang, Huei-Bin; Colwell, Christopher Scott

    2015-01-01

    The female reproductive cycle is gated by the circadian timing system and may be vulnerable to disruptions in the circadian system. Prior work suggests that vasoactive intestinal peptide (VIP) expressing neurons in the suprachiasmatic nucleus (SCN) are one pathway by which the circadian clock can influence the estrous cycle but the impact of the loss of this peptide on reproduction has not been assessed. In the present study, we first examine the impact of the genetic loss of the neuropeptide VIP on the reproductive success of female mice. Significantly, mutant females produced about half the offspring of their wild type sisters even when mated to the same males. We also find that VIP-deficient females exhibit a disrupted estrous cycle i.e. ovulation occurs less frequently and results in the release of fewer oocytes compared to controls. Circadian rhythms of wheel running activity are disrupted in the female mutant mice as are the spontaneous electrical activity of dorsal SCN neurons. On a molecular level, the VIP-deficient SCN tissue exhibit lower amplitude oscillations with altered phase relationships between the SCN and peripheral oscillators as measured by PER2-driven bioluminescence. The simplest explanation of our data is that the loss of VIP results in a weakened SCN oscillator which reduces the synchronization of the female circadian system. These results clarify one of the mechanisms by which disruption of the circadian system reduces female reproductive success. PMID:25252712

  20. Expression of the peptide transporters PepT1, PepT2, and PHT1 in the embryonic and posthatch chick.

    PubMed

    Zwarycz, B; Wong, E A

    2013-05-01

    Peptide transporters 1 and 2 (PepT1 and PepT2) and peptide/histidine transporter 1 (PHT1) are all members of the proton-coupled oligopeptide transporter family, which are important for the transport of amino acids in peptide form. The PepT1 acts as a low-affinity/high-capacity transporter and PepT2 as a high-affinity/low-capacity transporter for di- and tri-peptides. The PHT1 transports di- and tri-peptides as well as histidine. The objective of this study was to profile PepT1, PepT2, and PHT1 mRNA expression in the proventriculus, duodenum, jejunum, ileum, ceca, large intestine, brain, heart, bursa of Fabricius, lung, kidney, and liver in layer chicks on embryonic d 18 and 20 and d 1, 3, 7, 10, and 14 posthatch. Absolute quantification real-time PCR was used to measure gene expression. Expression of PepT1 was greatest in the duodenum, jejunum, and ileum. Expression of PepT1 increased in the duodenum, jejunum, and ileum from late embryonic stages to posthatch and in the large intestine from late embryonic stages to d 10 posthatch. In the ceca, PepT1 expression increased from embryonic d 20 to d 1 posthatch and then decreased. Expression of PepT2 was greatest in the brain and kidney. Expression of PepT2 increased from d 10 to 14 in the bursa of Fabricius and decreased in the proventriculus, duodenum, jejunum, and liver from late embryonic stages to posthatch. In the small intestine and liver, PepT2 may function to transport di- and tri-peptides during embryogenesis. The PHT1 was expressed in all tissues analyzed. Expression of PHT1 increased in the jejunum, large intestine, brain, and liver posthatch and decreased in the proventriculus from embryonic stages to posthatch. A tissue × age interaction was observed for all genes. The uptake of peptides in the developing chick is regulated by peptide transporters that are expressed in a tissue- and development-specific manner. PMID:23571341

  1. Isolation and characterization of a Saccharomyces cerevisiae peptide transport gene.

    PubMed Central

    Perry, J R; Basrai, M A; Steiner, H Y; Naider, F; Becker, J M

    1994-01-01

    We have cloned and characterized a Saccharomyces cerevisiae peptide transport gene (PTR2) isolated from a genomic DNA library by directly selecting for functional complementation of a peptide transport-deficient mutant. Deletion and frameshift mutageneses were used to localize the complementing activity to a 3.1-kbp region on the transforming plasmid. DNA sequencing of the complementing region identified an open reading frame spanning 1,803 bp. The deduced amino acid sequence predicts a hydrophobic peptide consisting of 601 amino acids, having a molecular mass of 68.1 kDa, composed in part of 12 hydrophobic segments, and sharing significant similarities with a nitrate transport protein encoded by the CHL1 gene of Arabidopsis thaliana. Northern (RNA) hybridization experiments demonstrated a single transcript that was 1.8 kb in length and that was transiently induced by the addition of L-leucine to the growth medium. The PTR2 gene was localized to the right arm of chromosome XI by contour-clamped homogeneous electric field gel chromosome blotting and by hybridization to known chromosome XI lambda phage clones of S. cerevisiae DNA. PTR2 was tightly linked to the UBI2 gene, with the coding sequences being separated by a 466-bp region and oriented so that the genes were transcribed convergently. A chromosomal disruption of the PTR2 gene in a haploid strain was not lethal under standard growth conditions. The cloning of PTR2 represents the first example of the molecular genetic characterization of a eucaryotic peptide transport gene. Images PMID:8264579

  2. Genetic and biochemical analysis of peptide transport in Escherichia coli

    SciTech Connect

    Andrews, J.C.

    1986-01-01

    E. coli peptide transport mutants have been isolated based on their resistance to toxic tripeptides. These genetic defects were found to map in two distinct chromosomal locations. The transport systems which require expression of the trp-linked opp genes and the oppE gene(s) for activity were shown to have different substrate preferences. Growth of E. coli in medium containing leucine results in increased entry of exogenously supplied tripeptides into the bacterial cell. This leucine-mediated elevation of peptide transport required expression of the trp-linked opp operon and was accompanied by increased sensitivity to toxic tripeptides, by an enhanced capacity to utilize nutritional peptides, and by an increase in both the velocity and apparent steady-state level of L-(U-/sup 14/C)alanyl-L-alanyl-L-alanine accumulation for E. coli grown in leucine-containing medium relative to these parameters of peptide transport measured with bacteria grown in media lacking leucine. Direct measurement of opp operon expression by pulse-labeling experiments demonstrated that growth of E. coli in the presence of leucine resulted in increased synthesis of the oppA-encoded periplasmic binding protein. The transcriptional regulation of the trp-linked opp operon of E. coli was investigated using lambda placMu51-generated lac operon fusions. Synthesis of ..beta..-galactosidase by strains harboring oppA-lac, oppB-lac, and oppD-lac fusions occurred at a basal level when the fusion-containing strains were grown in minimal medium.

  3. Therapeutic Efficacy of Stable Analogues of Vasoactive Intestinal Peptide against Pathogens*

    PubMed Central

    Campos-Salinas, Jenny; Cavazzuti, Antonio; O'Valle, Francisco; Forte-Lago, Irene; Caro, Marta; Beverley, Stephen M.; Delgado, Mario; Gonzalez-Rey, Elena

    2014-01-01

    Vasoactive intestinal peptide (VIP) is an anti-inflammatory neuropeptide recently identified as a potential antimicrobial peptide. To overcome the metabolic limitations of VIP, we modified the native peptide sequence and generated two stable synthetic analogues (VIP51 and VIP51(6–30)) with better antimicrobial profiles. Herein we investigate the effects of both VIP analogues on cell viability, membrane integrity, and ultrastructure of various bacterial strains and Leishmania species. We found that the two VIP derivatives kill various non-pathogenic and pathogenic Gram-positive and Gram-negative bacteria as well as the parasite Leishmania major through a mechanism that depends on the interaction with certain components of the microbial surface, the formation of pores, and the disruption of the surface membrane. The cytotoxicity of the VIP derivatives is specific for pathogens, because they do not affect the viability of mammalian cells. Docking simulations indicate that the chemical changes made in the analogues are critical to increase their antimicrobial activities. Consequently, we found that the native VIP is less potent as an antibacterial and fails as a leishmanicidal. Noteworthy from a therapeutic point of view is that treatment with both derivatives increases the survival and reduces bacterial load and inflammation in mice with polymicrobial sepsis. Moreover, treatment with VIP51(6–30) is very effective at reducing lesion size and parasite burden in a model of cutaneous leishmaniasis. These results indicate that the VIP analogues emerge as attractive alternatives for treating drug-resistant infectious diseases and provide key insights into a rational design of novel agents against these pathogens. PMID:24706753

  4. Glucagon like peptide-2 induces intestinal restitution through VEGF release from subepithelial myofibroblasts.

    PubMed

    Bulut, Kerem; Pennartz, Christian; Felderbauer, Peter; Meier, Juris J; Banasch, Matthias; Bulut, Daniel; Schmitz, Frank; Schmidt, Wolfgang E; Hoffmann, Peter

    2008-01-14

    Glucagon like peptide-2 (GLP-2) exerts intestinotrophic actions, but the underlying mechanisms are still a matter of debate. Recent studies demonstrated the expression of the GLP-2 receptor on fibroblasts located in the subepithelial tissue, where it might induce the release of growth factors such as keratinocyte growth factor (KGF) or vascular endothelial growth factor (VEGF). Therefore, in the present studies we sought to elucidate the downstream mechanisms involved in improved intestinal adaptation by GLP-2. Human colonic fibroblasts (CCD-18Co), human colonic cancer cells (Caco-2 cells) and rat ileum IEC-18 cells were used. GLP-2 receptor mRNA expression was determined using real time RT-PCR. Conditioned media from CCD-18Co cells were obtained following incubation with GLP-2 (50-250 nM) for 24 h. Cell viability was assessed by a 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide (MTT)-assay, and wound healing was determined with an established migration-assay. Transforming Growth Factor beta (TGF-beta), VEGF and KGF mRNA levels were determined by RT-PCR. Protein levels of VEGF and TGF-beta in CCD-18Co cells following GLP-2 stimulation were determined using ELISA. Neutralizing TGF-beta and VEGF-A antibodies were utilized to assess the role of TGF-beta and VEGF-A in the process of wound healing. GLP-2 receptor expression was detected in CCD-18Co cells. Conditioned media from CCD-18Co cells dose-dependently induced proliferation in Caco-2 cells, but not in IEC-18 cells. Conditioned media also enhanced cell migration in IEC-18 cells (P<0.01), while migration was even inhibited in Caco-2 cells (P<0.0012). GLP-2 significantly stimulated mRNA expression of VEGF and TGF-beta, but not of KGF in CCD-18Co. The migratory effects of GLP-2 were completely abolished in the presence of TGF-beta and VEGF-A antibodies. GLP-2 exerts differential effects on the epithelium of the small intestine and the colon. Thus, in small intestinal cells GLP-2 stimulates wound

  5. Glucose Transport into Everted Sacks of Intestine of Mice: A Model for the Study of Active Transport.

    ERIC Educational Resources Information Center

    Deyrup-Olsen, Ingrith; Linder, Alison R.

    1979-01-01

    Described is a laboratory procedure which uses the small intestines of mice as models for the transport of glucose and other solutes. Demonstrations are suitable for either introductory or advanced physiology courses. (RE)

  6. Marked changes in endogenous antioxidant expression precede vitamin A, C and E-protectable, radiation-induced reductions in small intestinal nutrient transport

    PubMed Central

    Roche, Marjolaine; Kemp, Francis W; Agrawal, Amit; Attanasio, Alicia; Neti, Prasad VSV; Howell, Roger W; Ferraris, Ronaldo P

    2010-01-01

    Rapidly proliferating epithelial crypt cells of the small intestine are susceptible to radiation-induced oxidative stress, yet there is a dearth of data linking this stress to expression of antioxidant enzymes and to alterations of intestinal nutrient absorption. We previously showed that 5 – 14 d after acute γ-irradiation, intestinal sugar absorption decreased without change in antioxidant enzyme expression. In the present study, we measured antioxidant mRNA and protein expression in mouse intestines taken at early times postirradiation. Observed changes in antioxidant expression are characterized by a rapid decrease within 1 h postirradiation, followed by dramatic upregulation within 4 h, and then downregulation a few days later. The cell type and location expressing the greatest changes in levels of the oxidative stress marker 4HNE and in antioxidant enzymes are, respectively, epithelial cells responsible for nutrient absorption and the crypt region comprised mainly of undifferentiated cells. Consumption of a cocktail of antioxidant vitamins A, C and E, before irradiation, prevents reductions in transport of intestinal sugars, amino acids, bile acids and peptides. Ingestion of antioxidants may blunt radiation-induced decreases in nutrient transport, perhaps by reducing acute oxidative stress in crypt cells, thereby allowing the small intestine to retain its absorptive function when those cells migrate to the villus days after the insult. PMID:20970494

  7. Involvement of Concentrative Nucleoside Transporter 1 in Intestinal Absorption of Trifluridine Using Human Small Intestinal Epithelial Cells.

    PubMed

    Takahashi, Koichi; Yoshisue, Kunihiro; Chiba, Masato; Nakanishi, Takeo; Tamai, Ikumi

    2015-09-01

    TAS-102, which is effective for refractory metastatic colorectal cancer, is a combination drug of anticancer trifluridine (FTD; which is derived from pyrimidine nucleoside) and FTD-metabolizing enzyme inhibitor tipiracil hydrochloride (TPI) at a molecular ratio of 1:0.5. To evaluate the intestinal absorption mechanism of FTD, the uptake and transcellular transport of FTD by human small intestinal epithelial cell (HIEC) monolayer as a model of human intestinal epithelial cells was investigated. The uptake and membrane permeability of FTD by HIEC monolayers were saturable, Na(+) -dependent, and inhibited by nucleosides. These transport characteristics are mostly comparable with those of concentrative nucleoside transporters (CNTs). Moreover, the uptake of FTD by CNT1-expressing Xenopus oocytes was the highest among human CNT transporters. The obtained Km and Vmax values of FTD by CNT1 were 69.0 μM and 516 pmol/oocyte/30 min, respectively. The transcellular transport of FTD by Caco-2 cells, where CNT1 is heterologously expressed, from apical to basolateral side was greater than that by Mock cells. In conclusion, these results demonstrated that FTD exhibits high oral absorption by the contribution of human CNT1. PMID:25900515

  8. [Role of ABC efflux transporters in the oral bioavailability and drug-induced intestinal toxicity].

    PubMed

    Yokooji, Tomoharu

    2013-01-01

    The gastrointestinal tract is the organ that absorbs nutrients and water from foods and drinks. This organ is often exposed to various harmful xenobiotics, and therefore possesses various detoxification/barrier systems, including metabolizing enzymes and efflux transporters. Intestinal epithelial cells express ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein, multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein, in addition to various solute carrier (SLC) influx transporters. These transporters are expressed site- and membrane-specifically in enterocytes, which affects the bioavailability of ingested substrate drugs. Expression and/or function of transporters can be modulated by various compounds, including therapeutic drugs, herbal products, some foods, and by disease states. The modulation of transporters could cause unexpectedly higher or lower blood concentrations, marked inter- and intra-individual variations in pharmacokinetics, and unreliable pharmacological actions in association with toxicities of substrates. Recently, we found that hyperbilirubinemia, which occurs in some disease states, increased intestinal accumulation and toxicity of methotrexate, an MRP substrate, because of the suppression of MRP function by high plasma concentrations of conjugated bilirubin. We also attempted to ameliorate the intestinal toxicity of irinotecan hydrochloride by modulating the hepatic and intestinal functions of MRP2. This review summarizes our findings regarding the role of ABC transporters, especially MRPs, in oral bioavailability and in drug-induced intestinal toxicity. Our approach to treat intestinal toxicity using an MRP2 modulator is also described. PMID:23811769

  9. Intestinal transport of gentamicin with a novel, glycosteroid drug transport agent

    NASA Technical Reports Server (NTRS)

    Axelrod, H. R.; Kim, J. S.; Longley, C. B.; Lipka, E.; Amidon, G. L.; Kakarla, R.; Hui, Y. W.; Weber, S. J.; Choe, S.; Sofia, M. J.

    1998-01-01

    PURPOSE: The objective was to investigate the ability of a glycosteroid (TC002) to increase the oral bioavailability of gentamicin. METHODS: Admixtures of gentamicin and TC002 were administered to the rat ileum by injection and to dogs by ileal or jejunal externalized ports, or PO. Bioavailability of gentamicin was determined by HPLC. 3H-TC002 was injected via externalized cannulas into rat ileum or jejunum, or PO and its distribution and elimination was determined. The metabolism of TC002 in rats was evaluated by solid phase extraction and HPLC analysis of plasma, urine and feces following oral or intestinal administration. RESULTS: The bioavailability of gentamicin was substantially increased in the presence of TC002 in both rats and dogs. The level of absorption was dependent on the concentration of TC002 and site of administration. Greatest absorption occurred following ileal orjejunal administration. TC002 was significantly more efficacious than sodium taurocholate, but similar in cytotoxicity. TC002 remained primarily in the GI tract following oral or intestinal administration and cleared rapidly from the body. It was only partly metabolized in the GI tract, but was rapidly and completely converted to its metabolite in plasma and urine. CONCLUSIONS: TC002 shows promise as a new drug transport agent for promoting intestinal absorption of polar molecules such as gentamicin.

  10. Glucagon-like peptide-2 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro.

    PubMed

    Baldassano, Sara; Liu, Sumei; Qu, Mei-Hu; Mulè, Flavia; Wood, Jackie D

    2009-10-01

    Glucagon-like peptide-2 (GLP-2) is an important neuroendocrine peptide in intestinal physiology. It influences digestion, absorption, epithelial growth, motility, and blood flow. We studied involvement of GLP-2 in intestinal mucosal secretory behavior. Submucosal-mucosal preparations from guinea pig ileum were mounted in Ussing chambers for measurement of short-circuit current (I(sc)) as a surrogate for chloride secretion. GLP-2 action on neuronal release of acetylcholine was determined with ELISA. Enteric neuronal expression of the GLP-2 receptor (GLP-2R) was studied with immunohistochemical methods. Application of GLP-2 (0.1-100 nM) to the serosal or mucosal side of the preparations evoked no change in baseline I(sc) and did not alter transepithelial ionic conductance. Transmural electrical field stimulation (EFS) evoked characteristic biphasic increases in I(sc), with an initially rapid rising phase followed by a sustained phase. Application of GLP-2 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-2R antagonist GLP-2-(3-33) significantly reversed suppression of the EFS-evoked responses by GLP-2. Tetrodotoxin, scopolamine, and hexamethonium, but not vasoactive intestinal peptide type 1 receptor (VPAC1) antagonist abolished or reduced to near zero the EFS-evoked responses. GLP-2 suppressed EFS-evoked acetylcholine release as measured by ELISA. Pretreatment with GLP-2-(3-33) offset this action of GLP-2. In the submucosal plexus, GLP-2R immunoreactivity (-IR) was expressed in choline acetyltransferase-IR neurons, somatostatin-IR neurons, neuropeptide Y-IR neurons, and vasoactive intestinal peptide-IR neurons. We conclude that submucosal neurons in the guinea pig ileum express GLP-2R. Activation of GLP-2R decreases neuronally evoked epithelial chloride secretion by suppressing acetylcholine release from secretomotor neurons. PMID:19628655

  11. Neuropeptide Y-like immunoreactivity in rat cranial parasympathetic neurons: coexistence with vasoactive intestinal peptide and choline acetyltransferase

    SciTech Connect

    Leblanc, G.C.; Trimmer, B.A.; Landis, S.C.

    1987-05-01

    Neuropeptide Y (NPY) is widely distributed in the sympathetic nervous system, where it is colocalized with norepinephrine. The authors report here that NPY-immunoreactive neurons are also abundant in three cranial parasympathetic ganglia, the otic, sphenopalatine, and ciliary, in the rat measured by radioimmunoassay. High-performance liquid chromatographic analysis of the immunoreactive material present in the otic ganglion indicates that this material is very similar to porcine NPY and indistinguishable from the NPY-like immunoreactivity present in rat sympathetic neurons. These findings raise the possibility that NPY acts as a neuromodulator in the parasympathetic as well as the sympathetic nervous system. In contrast to what had been observed for sympathetic neurons, NPY-immunoreactive neurons in cranial parasympathetic ganglia do not contain detectable catecholamines or tyrosine hydroxylase immunoreactivity, and many do contain immunoreactivity for vasoactive intestinal peptide and/or choline acetyltransferase. These findings suggest that there is no simple rule governing coexpression of NPY with norepinephrine, acetylcholine, or vasoactive intestinal peptide in autonomic neurons. Further, while functional studies have indicated that NPY exerts actions on the peripheral vasculature which are antagonistic to those of acetylcholine and vasoactive intestinal peptide, the present results raise the possibility that these three substances may have complementary effects on other target tissues.

  12. Monocarboxylate Transporter-Mediated Transport of γ-Hydroxybutyric Acid in Human Intestinal Caco-2 Cells

    PubMed Central

    Lam, Wing Ki; Felmlee, Melanie A.

    2010-01-01

    The objectives of this study were to determine mRNA expression of monocarboxylate transporters (MCT) and to evaluate intestinal transport of the MCT substrates γ-hydroxybutyrate (GHB) and d-lactate in human intestinal Caco-2 cells. The presence of mRNA for MCT1, 2, 3, and 4 was observed in Caco-2 cells. The uptake of both GHB and d-lactate in Caco-2 cells was demonstrated to be pH- and concentration-dependent and sodium-independent. The uptake of GHB and d-lactate was best described by a Michaelis-Menten equation with passive diffusion (GHB: Km = 17.6 ± 10.5 mM, Vmax = 17.3 ± 11.7 nmol/min/mg, and P = 0.38 ± 0.15 μl/min/mg; and d-lactate: Km = 6.0 ± 2.9 mM, Vmax = 35.0 ± 18.4 nmol/min/mg, and P = 1.3 ± 0.6 μl/min/mg). The uptake of GHB and d-lactate was significantly decreased by the known MCT inhibitor α-cyano-4-hydroxycinnamate and the MCT substrates GHB and d-lactate but not by the organic cation tetraethylammonium chloride. Directional flux studies with both GHB and d-lactate suggested the involvement of carrier-mediated transport with the permeability in the apical to basolateral direction higher than that in the basolateral to apical direction. These findings confirm the presence of MCT1–4 in Caco-2 cells and demonstrate GHB and d-lactate transport characteristics consistent with proton-dependent MCT-mediated transport. PMID:19952290

  13. Acute effects of the glucagon-like peptide 2 analogue, teduglutide, on intestinal adaptation in short bowel syndrome.

    PubMed

    Thymann, Thomas; Stoll, Barbara; Mecklenburg, Lars; Burrin, Douglas G; Vegge, Andreas; Qvist, Niels; Eriksen, Thomas; Jeppesen, Palle B; Sangild, Per T

    2014-06-01

    Neonatal short bowel syndrome following massive gut resection is associated with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult patients with short bowel syndrome, but its effect in pediatric patients remains unknown. Our objective was to test the efficacy of the long-acting synthetic human GLP-2 analogue, teduglutide (ALX-0600), in a neonatal piglet jejunostomy model. Two-day-old pigs were subjected to resection of 50% of the small intestine (distal part), and the remnant intestine was exteriorized on the abdominal wall as a jejunostomy. All pigs were given total parenteral nutrition for 7 days and a single daily injection of the following doses of teduglutide: 0.01 (n = 6), 0.02 (n = 6), 0.1 (n = 5), or 0.2 mg · kg · day (n = 6), and compared with placebo (n = 9). Body weight increment was similar for all 4 teduglutide groups but higher than placebo (P < 0.05). There was a dose-dependent increase in weight per length of the remnant intestine (P < 0.01) and fractional protein synthesis rate in the intestine was increased in the 0.2 mg · kg · day group versus placebo (P < 0.001); however, functional and structural endpoints including activity of digestive enzymes, absorption of enteral nutrients, and immunohistochemistry (Ki67, villin, FABP2, ChgA, and GLP-2R) were not affected by the treatment. Teduglutide induces trophicity on the remnant intestine but has limited acute effects on functional endpoints. Significant effects of teduglutide on gut function may require a longer adaptation period and/or a more frequent administration of the peptide. In perspective, GLP-2 or its analogues may be relevant to improve intestinal adaptation in pediatric patients with short bowel syndrome. PMID:24399211

  14. Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris

    PubMed Central

    Song, Ki-Duk; Lee, Woon-Kyu

    2014-01-01

    Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets. PMID:25049952

  15. Effects of vasoactive intestinal peptide on vascular conductance are unaffected by anesthesia

    SciTech Connect

    Bouder, T.G.; Huffman, L.J.; Hedge, G.A. )

    1988-12-01

    In rats anesthetized with ketamine and pentobarbital (KET/PB), vasoactive intestinal peptide (VIP) increases vascular conductance (VC) in the salivary gland, pancreas, and thyroid gland, whereas no changes in VC are observed in a number of other organs. Because anesthesia may alter the responsiveness of physiological systems, we compared the effects of VIP on organ VC in conscious or anesthetized rats. Chronically catheterized rats were studied in the conscious state or 30 min after induction of anesthesia with KET/PB, isoflurane, or Inactin. Blood flows were measured by the reference sample version of the radioactive microsphere (MS) technique using two MS injections ({sup 141}Ce-MS/{sup 85}Sr-MS). Mean arterial blood pressure was monitored and used in the calculation of VC. Organ VCs were similar under basal conditions in conscious and anesthetized rats. VIP infusion caused systemic hypotension and increased VCs in the salivary gland, pancreas, and thyroid gland, and these responses were largely unaffected by anesthesia. These results indicate that the anesthetics used do not alter basal VC or the responsiveness of the vasculature to exogenous VIP.

  16. Distribution of hypothalamic vasoactive intestinal peptide immunoreactive neurons in the male native Thai chicken.

    PubMed

    Kamkrathok, Boonyarit; Sartsoongnoen, Natagarn; Prakobsaeng, Nattiya; Rozenboim, Israel; Porter, Tom E; Chaiseha, Yupaporn

    2016-08-01

    Avian prolactin (PRL) secretion is under stimulatory control by the PRL-releasing factor (PRF), vasoactive intestinal peptide (VIP). The neuroendocrine regulation of the avian reproductive system has been extensively studied in females. However, there are limited data in males. The aim of this study was to elucidate the VIPergic system and its relationship to PRL and testosterone (T) in the male native Thai chicken. The distributions of VIP-immunoreactive (-ir) neurons and fibers were determined by immunohistochemistry. Changes in VIP-ir neurons within the nucleus inferioris hypothalami (IH) and nucleus infundibuli hypothalami (IN) areas were compared across the reproductive stages. Plasma levels of PRL and T were determined by enzyme-linked immunosorbent assay and then compared across the reproductive stages. The results revealed that the highest accumulations of VIP-ir neurons were concentrated only within the IH-IN, and VIP-ir neurons were not detected within other hypothalamic nuclei. Within the IH-IN, VIP-ir neurons were low in premature and aging males and markedly increased in mature males. Changes in VIP-ir neurons within the IH-IN were directly mirrored with changes in PRL and T levels across the reproductive stages. These results suggested that VIP neurons in the IH-IN play a regulatory role in year-round reproductive activity in males. The present study also provides additional evidence that VIP is the PRF in non-seasonal, continuously breeding equatorial species. PMID:27269881

  17. Vasoactive-intestinal-Peptide (vip) modulates the growth fraction of epithelial skin cells.

    PubMed

    Wollina, U; Bonnekoh, B; Mahrle, G

    1992-06-01

    Using the human keratinocyte cell line HaCaT, modifications of the growth fraction due to vasoactive intestinal peptide (VIP) were determined by immunostaining with monoclonal antibody Ki67. In addition, the expression of VIP receptor and epidermal growth factor (EGF) receptor have been analysed. VIP (10-(7) to 10-(11) M) produced an almost doubling of the total number of Ki67-positive cells in cultures with 2% fetal calf serum (FCS), wheras it was ineffective in FCS-free and 10% FCS cultures. The nuclear Ki67-staining patterns were classified into four categories. In FCS-free cultures VIP induced a shift from type III (light nucleus, staining nuclei) to type II (multiple, intensely stained spots). In cultures with 2% FCS, VIP induced a shift from type II to type III. VIP receptor expression was facilitated by VIP, when cells were grown in a medium supplemented with 10% FCS. VIP increased EGF receptor expression in FCS-free cultures but decreased the number EGF receptor-positive cells in experiments with 2% FCS. In conclusion, VIP is capable to modulate the growth fraction and receptor expression of HaCaT cells in vitro. The effects are dependent on the concentration of FCS within the culture medium. The findings might be of interest for keratinocyte pathology in general and dermatooncology in particular. PMID:21584504

  18. Distribution of vasoactive intestinal peptide and its receptors in the arteries of the rabbit

    SciTech Connect

    Sidawy, A.N.; Sayadi, H.; Harmon, J.W.; Termanini, B.; Andrews, B.; DePalma, R.G.; Korman, L.Y. )

    1989-08-01

    Vasoactive intestinal peptide (VIP) is a widely distributed neurotransmitter whose dilatory effects on vascular smooth muscle are believed to be mediated via specific receptors. To determine the possible role of VIP in regulating specific vascular beds, we examined the relationship between arterial wall VIP content as determined by radioimmunoassay and VIP receptors mapped by autoradiography. Analysis of arteries from 12 adult New Zealand rabbits showed that VIP receptors were consistently located in the wall of all muscular arteries, and that the {sup 125}I-VIP grain density correlated with VIP content. {sup 125}I-VIP binding in the mesenteric, renal, and iliac arteries was abundant and their VIP content was 192 +/- 56, 51 +/- 5, and 74 +/- 23 fmole/mg protein, respectively. {sup 125}I-VIP binding to the thoracic aorta was indistinguishable from nonspecific binding, its VIP content being 15 +/- 2 fmole/mg protein. The abundance of VIP receptors and the high VIP levels associated with the mesenteric, renal, and iliac arteries suggest that VIP is a potential regulator of flow to the vascular beds supplied by these arteries. In contrast, the much lower density of receptors in the extracranial carotid, which is also a muscular artery, suggests that, in rabbits, control of carotid vasomotion may be less dependent on VIP innervation. Furthermore, these results suggest that VIP receptors and VIP-containing neurons are not uniformly distributed in the arterial vasculature and that VIP may have selective vasodilatory effects.

  19. Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris.

    PubMed

    Song, Ki-Duk; Lee, Woon-Kyu

    2014-02-01

    Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets. PMID:25049952

  20. Clock genes, intestinal transport and plasma lipid homeostasis.

    PubMed

    Hussain, M Mahmood; Pan, Xiaoyue

    2009-05-01

    Light and food are two major environmental factors that impact daily life. Light entrainment is centrally controlled by suprachiasmatic nuclei of the hypothalamus. Food entrainment might require cooperation between the intestine and dorsomedial hypothalamus. Clock genes that are essential for light entrainment also play a part in food entrainment. Understanding the role of clock genes in the entrainment of intestinal functions, as well as in gut-brain communication during food entrainment, will enhance our understanding of gastrointestinal and metabolic disorders. This review highlights recent studies examining light- and food-entrained regulation of plasma lipids and of various intestinal activities and offers insight into the role of the intestine in food entrainment. PMID:19349191

  1. Sodium recirculation and isotonic transport in toad small intestine.

    PubMed

    Nedergaard, S; Larsen, E H; Ussing, H H

    1999-04-01

    Isolated small intestine of toad (Bufo bufo) was mounted on glass tubes for perfusion studies with oxygenated amphibian Ringer's solution containing glucose and acetate. Under open-circuit conditions (Vt = -3.9 +/- 1.8 mV, N = 14) the preparation generated a net influx of 134Cs+. The time course of unidirectional 134Cs+-fluxes was mono-exponential with similar rate constants for influx and outflux when measured in the same preparation. The flux-ratio was time invariant from the beginning of appearance of the tracers to steady state was achieved. Thus, just a single pathway, the paracellular pathway, is available for transepithelial transport of Cs+. From the ratio of unidirectional Cs+-fluxes the paracellular force was calculated to be, 18.2 +/- 1.5 mV (N = 6), which is directed against the small transepithelial potential difference. The paracellular netflux of cesium ions, therefore, is caused by solvent drag. The flux of 134Cs+ entering and trapped by the cells was of a magnitude similar to that passing the paracellular route. Therefore, independent of the convective flux of 134Cs+, every second 134Cs+ ion flowing into the lateral space was pumped into the cells rather than proceeding, via the low resistance pathway, to the serosal bath. It is thus indicated that the paracellular convective flow of 134Cs+ is driven by lateral Na+/K+-pumps. Transepithelial unidirectional 42K+ fluxes did not reach steady state within an observation period of 70 min, indicating that components of the fluxes in both directions pass the large cellular pool of potassium ions. The ratio of unidirectional 24Na+ fluxes was time-variant and declined from an initial value of 3.66 +/- 0.34 to a significantly smaller steady-state value of 2.57 +/- 0.26 (P < 0.001, N = 5 paired observations), indicating that sodium ions pass the epithelium both via the paracellular and the cellular pathway. Quantitatively, the larger ratio of paracellular Na+ fluxes, as compared to that of paracellular Cs

  2. Membrane transport of andrographolide in artificial membrane and rat small intestine.

    PubMed

    Daodee, Supawadee; Wangboonskul, Jinda; Jarukamjorn, Kanokwan; Sripanidkulchai, Bung-orn; Murakami, Teruo

    2007-06-15

    In the present study, the possible drug interactions of andrographolide with co-administering drugs such as acetaminophen, amoxycillin, aspirin, chlorpheniramine and norfloxacin to treat various infectious and inflammatory diseases that may be induced during absorption process were examined using artificial lipophilic membrane and everted rat intestine. The membrane transport of andrographolide across the artificial membrane was not affected by different pH of the medium (simulated gastric and intestinal fluids), different concentrations of andrographolide and co-administered drugs examined. In everted rat intestine, above co-administered drugs examined showed no significant effect on andrographolide membrane transport. The participation of efflux transporters such as P-glycoprotein and MRP2 in andrographolide transport was then examined, since andrographolide is a diterpene compound and some diterpene compounds are known as P-glycoprotein substrates. Cyclosporine, a P-glycoprotein/MRP2 inhibitor, significantly suppressed the efflux transport of andrographolide in distal region of intestine, whereas probenecid, an MRP inhibitor, showed no significant effect in both proximal and distal regions of intestine. These results suggest that P-glycoprotein, but not MRP, is participated in the intestinal absorption of andrographolide and P-glycoprotein-mediated drug interactions occur depending on the co-administered drugs and its concentrations. PMID:19093450

  3. Ontogeny of Human Hepatic and Intestinal Transporter Gene Expression during Childhood: Age Matters

    PubMed Central

    Mooij, Miriam G.; Schwarz, Ute I.; de Koning, Barbara A. E.; Leeder, J. Steven; Gaedigk, Roger; Samsom, Janneke N.; Spaans, Edwin; van Goudoever, Johannes B.; Tibboel, Dick; Kim, Richard B.

    2014-01-01

    Many drugs prescribed to children are drug transporter substrates. Drug transporters are membrane-bound proteins that mediate the cellular uptake or efflux of drugs and are important to drug absorption and elimination. Very limited data are available on the effect of age on transporter expression. Our study assessed age-related gene expression of hepatic and intestinal drug transporters. Multidrug resistance protein 2 (MRP2), organic anion transporting polypeptide 1B1 (OATP1B1), and OATP1B3 expression was determined in postmortem liver samples (fetal n = 6, neonatal n = 19, infant n = 7, child n = 2, adult n = 11) and multidrug resistance 1 (MDR1) expression in 61 pediatric liver samples. Intestinal expression of MDR1, MRP2, and OATP2B1 was determined in surgical small bowel samples (neonates n = 15, infants n = 3, adults n = 14). Using real-time reverse-transcription polymerase chain reaction, we measured fetal and pediatric gene expression relative to 18S rRNA (liver) and villin (intestines), and we compared it with adults using the 2−∆∆Ct method. Hepatic expression of MRP2, OATP1B1, and OATP1B3 in all pediatric age groups was significantly lower than in adults. Hepatic MDR1 mRNA expression in fetuses, neonates, and infants was significantly lower than in adults. Neonatal intestinal expressions of MDR1 and MRP2 were comparable to those in adults. Intestinal OATP2B1 expression in neonates was significantly higher than in adults. We provide new data that show organ- and transporter-dependent differences in hepatic and intestinal drug transporter expression in an age-dependent fashion. This suggests that substrate drug absorption mediated by these transporters may be subject to age-related variation in a transporter dependent pattern. PMID:24829289

  4. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients

    PubMed Central

    Sigalet, David L; Kravarusic, Dragan; Butzner, Decker; Hartmann, Bolette; Holst, Jens J; Meddings, Jon

    2013-01-01

    BACKGROUND/OBJECTIVES: The relationship between the enteroendocrine hormone glucagon-like peptide 2 (GLP-2) and intestinal inflammation is unclear. GLP-2 promotes mucosal growth, decreases permeability and reduces inflammation in the intestine; physiological stimulation of GLP-2 release is triggered by nutrient contact. The authors hypothesized that ileal Crohn disease (CD) affects GLP-2 release. METHODS: With ethics board approval, pediatric patients hospitalized with CD were studied; controls were recruited from local schools. Inclusion criteria were endoscopy-confirmed CD (primarily of the small intestine) with a disease activity index >150. Fasting and post-prandial GLP-2 levels and quantitative urinary recovery of orally administered 3-O-methyl-glucose (active transport) and lactulose/mannitol (passive) were quantified during the acute and remission phases. RESULTS: Seven patients (mean [± SD] age 15.3±1.3 years) and 10 controls (10.3±1.6 years) were studied. In patients with active disease, fasting levels of GLP-2 remained stable but postprandial levels were reduced. Patients with active disease exhibited reduced glucose absorption and increased lactulose/mannitol recovery; all normalized with disease remission. The change in the lactulose/mannitol ratio was due to both reduced lactulose and increased mannitol absorption. CONCLUSIONS: These findings suggest that pediatric patients with acute ileal CD have decreased postprandial GLP-2 release, reduced glucose absorption and increased intestinal permeability. Healing of CD resulted in normalization of postprandial GLP-2 release and mucosal functioning (nutrient absorption and permeability), the latter due to an increase in mucosal surface area. These findings have implications for the use of GLP-2 and feeding strategies as a therapy in CD patients; further studies of the effects of inflammation and the GLP-2 axis are recommended. PMID:24106731

  5. Serum Levels of Vasoactive Intestinal Peptide as a Prognostic Marker in Early Arthritis

    PubMed Central

    Martínez, Carmen; Ortiz, Ana M.; Juarranz, Yasmina; Lamana, Amalia; Seoane, Iria V.; Leceta, Javier; García-Vicuña, Rosario

    2014-01-01

    Objective Suitable biomarkers are essential for the design of therapeutic strategies in personalized medicine. Vasoactive intestinal peptide (VIP) has demonstrated immunomodulatory properties in autoimmune murine and ex vivo human models. Our aim was to study serum levels of VIP during the follow-up of an early arthritis (EA) cohort and to analyze its value as a biomarker predicting severity and therapeutic requirements. Methods Data from 91 patients on an EA register were analyzed (76% rheumatoid arthritis (RA), 24% undifferentiated arthritis, 73% women, and median age 54 years; median disease duration at entry, 5.4 months). We collected per protocol sociodemographic, clinical, and therapeutic data. VIP levels were determined by enzyme immunoassay in sera harvested from the 91 patients (353 visits; 3.9 visit/patient) and from 100 healthy controls. VIP values below the 25th percentile of those assessed in healthy population were considered low. To determine the effect of independent variables on VIP levels, we performed a longitudinal multivariate analysis nested by patient and visit. A multivariate ordered logistic regression was modeled to determine the effect of low VIP serum levels on disease activity at the end of follow-up. Results VIP concentrations varied considerably across EA patients. Those fulfilling the criteria for RA had the lowest values in the whole sample, although no significant differences were observed compared with healthy donors. Disease activity, which was assessed using DAS28, inversely correlated with VIP levels. After a two-year follow-up, those patients with low baseline levels of VIP displayed higher disease activity and received more intensive treatment. Conclusion Patients who are unable to up-regulate VIP seem to have a worse clinical course despite receiving more intense treatment. Therefore, measurement of VIP levels may be suitable as a prognostic biomarker. PMID:24409325

  6. Endogenous inhibition of hippocampal LTD and depotentiation by vasoactive intestinal peptide VPAC1 receptors.

    PubMed

    Cunha-Reis, Diana; Aidil-Carvalho, Maria de Fatima; Ribeiro, Joaquim A

    2014-11-01

    Vasoactive intestinal peptide (VIP), an important modulator of hippocampal synaptic transmission, influences exploration and hippocampal-dependent learning in rodents. Homosynaptic long-term depression (LTD) and depotentiation are two plasticity phenomena implicated in learning of behavior flexibility and spatial novelty detection. In this study, we investigated the influence of endogenous VIP on LTD and depotentiation induced by low-frequency stimulation (1 Hz, 900 pulses) of the hippocampal CA1 area in vitro in juvenile and young adult rats, respectively. LTD and depotentiation were enhanced by the VIP receptor antagonist Ac-Tyr(1) , D-Phe(2) GRF (1-29), and the selective VPAC1 receptor antagonist, PG 97-269, but not the selective VPAC2 receptor antagonist, PG 99-465. This action was mimicked by an anti-VIP antibody, suggesting that VIP, and not pituitary adenylate cyclase-activating polypeptide (PACAP), is the endogenous mediator of these effects. Selective inhibition of PAC1 receptors with PACAP (6-38) enhanced depotentiation, but not LTD. VPAC1 receptor blockade also revealed LTD in young adult rats, an effect abolished by the GABAA antagonist bicuculline, evidencing an involvement of GABAergic transmission. We conclude that inhibition of LTD and depotentiation by endogenous VIP occurs through VPAC1 receptor-mediated mechanisms and suggest that disinhibition of pyramidal cell dendrites is the most likely physiological mechanism underlying this effect. As such, VPAC1 receptor ligands may be considered promising pharmacological targets for treatment of cognitive dysfunction in diseases involving altered GABAergic circuits and pathological saturation of LTP/LTD like Down's syndrome and temporal lobe epilepsy. PMID:24935659

  7. Effect of vasoactive intestinal peptide on the wound healing of alkali-burned corneas

    PubMed Central

    Tuncel, Nese; Yildirim, Nilgun; Gurer, Firdevs; Basmak, Hikmet; Uzuner, Kubilay; Sahinturk, Varol; Gursoy, Huseyin

    2016-01-01

    AIM To study the effect of vasoactive intestinal peptide (VIP) on wound healing in experimental alkali burns of the cornea. METHODS Twenty-seven albino rabbits, weighing 3.2±0.75 kg were used. Alkali burns were induced on corneas by applying 10 mm Whatman paper No:50 soaked in 1 mol/L NaOH. They have further classified into 5 groups as follows: 1) control group given no treatment (n=5); 2) VIP given subconjunctivally (n=6); 3) VIP injected into anterior chamber (n=6); 4) NaCl 0.9% given subconjunctivally (n=5); 5) NaCl 0.9% given into the anterior chamber (n=5). All treatment protocols except control group were followed by topical eye drops composed of VIP at two hourly intervals for one week from 8 a.m. to 6 p.m. RESULTS VIP treated groups of rabbits with alkali burns were found to have better wound healing findings histo-pathologically when compared to those of control group who have received no treatment on day 30. No differences were observed between groups in respect to degree of polymorphonuclear leukocytes (PMNL) infiltration and degree of loss of amorphous substrate on day 15. However, PMNL infiltration and degree of loss of amorphous substrate were lower in Groups 2 and 3 when compared to that of control group on day 30 (P<0.05). CONCLUSION We have shown that VIP has positive effects on alkali induced corneal burns. VIP may inhibit PMNL migration to cornea through an immunomodulatory effect. Inhibition of PMNL migration might reduce the release of collagenases and this might prevent the extracellular amorphous substance loss. PMID:26949636

  8. Modulation of Corpus Striatal Neurochemistry by Astrocytes and Vasoactive Intestinal Peptide (VIP) in Parkinsonian Rats.

    PubMed

    Yelkenli, İbrahim Halil; Ulupinar, Emel; Korkmaz, Orhan Tansel; Şener, Erol; Kuş, Gökhan; Filiz, Zeynep; Tunçel, Neşe

    2016-06-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) is widely used in animal models of Parkinson's disease. In various neurodegenerative diseases, astrocytes play direct, active, and critical roles in mediating neuronal survival and functions. Vasoactive intestinal peptide (VIP) has neurotrophic actions and modulates a number of astrocytic activities. In this study, the effects of VIP on the striatal neurochemistry were investigated in parkinsonian rats. Adult Sprague-Dawley rats were divided into sham-operated, unilaterally 6-OHDA-lesioned, and lesioned + VIP-administered (25 ng/kg i.p.) groups. VIP was first injected 1 h after the intrastriatal 6-OHDA microinjection and then every 2 days throughout 15 days. Extracellular striatal concentration of glutathione (GSH), gamma-aminobutyric acid (GABA), glutamate (GLU), and lactate were measured in microdialysates by high-performance liquid chromatography (HPLC). Quantification of GABA and activity dependent neuroprotective protein (ADNP)-expressing cells were determined by glutamic acid decarboxylase (GAD)/ADNP + glial fibrillary acidic protein (GFAP) double immunohistochemistry. Our results demonstrated that a 6-OHDA lesion significantly increased the density of astrocytes in the striatum and VIP treatment slightly reduced the gliosis. Extracellular concentration of GABA, GLU, and lactate levels did not change, but GSH level significantly increased in the striatum of parkinsonian rats. VIP treatment reduced GSH level comparable to sham-operated groups, but enhanced GABA and GLU levels. Our double labeling results showed that VIP primarily acts on neurons to increase ADNP and GAD expression for protection. These results suggest that, in the 6-OHDA-induced neurodegeneration model, astrocytes were possibly activated for forefront defensiveness by modulating striatal neurochemistry. PMID:27115671

  9. Roles of sphincter of Oddi motility and serum vasoactive intestinal peptide, gastrin and cholecystokinin octapeptide

    PubMed Central

    Zhang, Zhen-Hai; Qin, Cheng-Kun; Wu, Shuo-Dong; Xu, Jian; Cui, Xian-Ping; Wang, Zhi-Yi; Xian, Guo-Zhe

    2014-01-01

    AIM: To investigate roles of sphincter of Oddi (SO) motility played in pigment gallbladder stone formation in model of guinea pigs. METHODS: Thirty-four adult male Hartley guinea pigs were divided randomly into two groups: the control group and pigment stone group. The pigment stone group was divided into 4 subgroups with 6 guinea pigs each according to time of sacrifice, and were fed a pigment lithogenic diet and sacrificed after 3, 6, 9 and 12 wk. SO manometry and recording of myoelectric activity of the guinea pigs were obtained by multifunctional physiograph at each stage. Serum vasoactive intestinal peptide (VIP), gastrin and cholecystokinin octapeptide (CCK-8) were detected at each stage in the process of pigment gallbladder stone formation by enzyme-linked immunosorbent assay. RESULTS: The incidence of pigment gallstone formation was 0%, 0%, 16.7% and 66.7% in the 3-, 6-, 9- and 12-wk group, respectively. The frequency of myoelectric activity decreased in the 3-wk group. The amplitude of myoelectric activity had a tendency to decrease but not significantly. The frequency of the SO decreased significantly in the 9-wk group. The SO basal pressure and common bile duct pressure increased in the 12-wk group (25.19 ± 7.77 mmHg vs 40.56 ± 11.81 mmHg, 22.35 ± 7.60 mmHg vs 38.51 ± 11.57 mmHg, P < 0.05). Serum VIP was significantly elevated in the 6- and 12-wk groups and serum CCK-8 was decreased significantly in the 12-wk group. CONCLUSION: Pigment gallstone-causing diet may induce SO dysfunction. The tension of the SO increased. The disturbance in SO motility may play a role in pigment gallstone formation, and changes in serum VIP and CCK-8 may be important causes of SO dysfunction. PMID:24782626

  10. Vasoactive intestinal peptide protects alveolar epithelial cells against hyperoxia via promoting the activation of STAT3.

    PubMed

    Ao, Xiaoxiao; Fang, Fang; Xu, Feng

    2011-06-01

    Oxidative stress injury and death in alveolar epithelial cells plays an important role in the pathogenesis of prolonged hyperoxia-induced lung impairment. A reduced survival of type II alveolar epithelial cells (AECIIs) may lead to abnormal repair, resulting in acute and chronic pulmonary diseases. Hyperoxia lung injury is associated with the secretion of various bioactive substances and the activation of multiple transcription factors. Vasoactive intestinal peptide (VIP), as a pulmonary sensory neuropeptide, performs a vital function in regulating cell proliferation and cell death through signal transducers and activators of transcription 3 (STAT3). In the present study, we investigated the effects of VIP and STAT3 on AECIIs upon the exposure of hyperoxia. MLE-12 cells were random to air (21% oxygen), hyperoxia (95% oxygen) and VIP treatment with or without STAT3 siRNA transfection. The proliferation of AECIIs was detected by MTT cell proliferation assay. The apoptosis rate was measured by flow cytometry. Mitochondrial membrane potential was evaluated by fluorescent dye JC-1 to understand mitochondrial and cell damage. The activation of STAT3 was assessed by western blot detection of phosphorylated STAT3. Compared with hyperoxia exposure alone, additional VIP treatment promoted cell proliferation, maintained the mitochondrial membrane potential and reduced the apoptosis and necrosis of AECIIs. The protective effects aforesaid were weakened after STAT3 expression was down regulated by siRNA. Cells with STAT3 siRNA transfection had a higher mortality and a sharper decline in the mitochondrial membrane potential as well as a lower proliferation compared with wild-type cells after hyperoxia exposure with VIP administration. VIP interference, a protective management, could decrease hyperoxia-induced cell injury and death and improve the survival of AECIIs exposed to hyperoxia, which might be associated with the activation of STAT3. PMID:21334383

  11. Vasoactive Intestinal Peptide Excites GnRH Neurons in Male and Female Mice.

    PubMed

    Piet, Richard; Dunckley, Henry; Lee, Kiho; Herbison, Allan E

    2016-09-01

    A variety of external and internal factors modulate the activity of GnRH neurons to control fertility in mammals. A direct, vasoactive intestinal peptide (VIP)-mediated input to GnRH neurons originating from the suprachiasmatic nucleus is thought to relay circadian information within this network. In the present study, we examined the effects of VIP on GnRH neuron activity in male and female mice at different stages of the estrous cycle. We carried out cell-attached recordings in slices from GnRH-green fluorescent protein mice and calcium imaging in slices from a mouse line expressing the genetically encoded calcium indicator GCaMP3 selectively in GnRH neurons. We show that 50%-80% of GnRH neurons increase their firing rate in response to bath-applied VIP (1nM-1000nM) in both male and female mice and that this is accompanied by a robust increase in intracellular calcium concentrations. This effect is mediated directly at the GnRH neuron likely through activation of high-affinity VIP receptors. Because suprachiasmatic nucleus-derived timing cues trigger the preovulatory surge only on the afternoon of proestrus in female mice, we examined the effects of VIP during the estrous cycle at different times of day. VIP responsiveness in GnRH neurons did not vary significantly in diestrous and proestrous mice before or around the time of the expected preovulatory surge. These results indicate that the majority of GnRH neurons in male and female mice express functional VIP receptors and that the effects of VIP on GnRH neurons do not alter across the estrous cycle. PMID:27501185

  12. Adrenal cortical responses to vasoactive intestinal peptide in conscious hypophysectomized calves.

    PubMed Central

    Bloom, S R; Edwards, A V; Jones, C T

    1987-01-01

    1. Right adrenal and various cardiovascular responses to an intra-aortic infusion of vasoactive intestinal polypeptide (VIP; 4 micrograms min-1 kg-1) have been investigated in the presence and absence of exogenous adrenocorticotrophin, (ACTH1-24; 5 ng min-1 kg-1, i.v.). The adrenal clamp technique was employed in conscious calves in which the pituitary stalk had been cauterized 3-4 days previously. 2. The i.v. infusion of ACTH1-24 increased mean plasma ACTH concentration by between 1000 and 1100 pg ml-1 and mean right cortisol output by about 700 ng min-1 kg-1. Under these conditions the intra-aortic infusion of VIP produced a further rise in mean adrenal cortisol output, together with a consequential rise in mean arterial plasma cortisol concentration, without affecting the concentration of ACTH in the arterial plasma significantly. In the absence of ACTH the same infusion of VIP had no detectable effect on adrenal cortisol output. 3. In each of the above respects this intra-aortic infusion of VIP closely mimicked the effect of stimulation of the peripheral end of the right splanchnic nerve in these animals, as it also did by causing a substantial fall in adrenal vascular resistance in the absence, but not in the presence, of ACTH. 4. It is concluded that release of this peptide from splanchnic nerve terminals in the adrenal gland most probably accounts, at least in part, for the powerful adrenocortical steroidogenic response to splanchnic nerve stimulation, that occurs in the presence of submaximal doses of ACTH. PMID:2832592

  13. IMPAIRED INTESTINAL VITAMIN B1 (THIAMIN) UPTAKE IN THIAMIN TRANSPORTER-2 DEFICIENT MICE

    PubMed Central

    Reidling, Jack C.; Lambrecht, Nils; Kassir, Mohammad; Said, Hamid M.

    2016-01-01

    BACKGROUND & AIMS Intestinal thiamin uptake process is vital for maintaining normal body homeostasis of the vitamin; in vitro studies suggest that both thiamin transporter-1 (THTR-1) and -2 (THTR-2) are involved. Mutations in THTR-1 cause thiamin-responsive megaloblastic anemia (TRMA), a tissue specific disease associated with diabetes mellitus, megaloblastic anemia, and sensorineural deafness. However in patients with TRMA, plasma thiamin levels are within normal range, indicating that THTR2 (or another carrier) could provide sufficient intestinal thiamin absorption. We tested this possibility and examined the role of THTR-2 in uptake of thiamin in the intestine of mice. METHODS THTR-2 deficient mice were generated by SLC19A3 gene knockout and used to examine intestinal uptake of thiamin in vitro (isolated cells) and in vivo (intact intestinal loops). We also examined intestinal thiamin uptake in THTR-1 deficient mice. RESULTS Intestine of THTR-2 deficient mice had reduced uptake of thiamin compared to those of wild –type littermate mice (p<0.01); this reduction was associated with a decrease (p<0.01) in blood thiamin levels in THTR-2 deficient mice. However, intestinal uptake of thiamin in THTR-1 deficient mice was not significantly different from that of wild-type littermate animals. Level of expression of THTR-1 was not altered in the intestine of THTR-2 deficient mice, but level of expression of THTR-2 was up-regulated in the intestine of THTR-1 deficient mice. CONCLUSION THTR-2 is required for normal uptake of thiamin in the intestine and can fulfill normal levels of uptake in conditions associated with THTR-1 dysfunction. PMID:19879271

  14. Reversible Opening of Intercellular Junctions of Intestinal Epithelial and Brain Endothelial Cells With Tight Junction Modulator Peptides.

    PubMed

    Bocsik, Alexandra; Walter, Fruzsina R; Gyebrovszki, Andrea; Fülöp, Lívia; Blasig, Ingolf; Dabrowski, Sebastian; Ötvös, Ferenc; Tóth, András; Rákhely, Gábor; Veszelka, Szilvia; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A

    2016-02-01

    The intercellular junctions restrict the free passage of hydrophilic compounds through the paracellular clefts. Reversible opening of the tight junctions of biological barriers is investigated as one of the ways to increase drug delivery to the systemic circulation or the central nervous system. Six peptides, ADT-6, HAV-6, C-CPE, 7-mer (FDFWITP, PN-78), AT-1002, and PN-159, acting on different integral membrane and linker junctional proteins were tested on Caco-2 intestinal epithelial cell line and a coculture model of the blood-brain barrier. All peptides tested in nontoxic concentrations showed a reversible tight junctions modulating effect and were effective to open the paracellular pathway for the marker molecules fluorescein and albumin. The change in the structure of cell-cell junctions was verified by immunostaining for occludin, claudin-4,-5, ZO-1, β-catenin, and E-cadherin. Expression levels of occludin and claudins were measured in both models. We could demonstrate a selectivity of C-CPE, ADT-6, and HAV-6 peptides for epithelial cells and 7-mer and AT-1002 peptides for brain endothelial cells. PN-159 was the most effective modulator of junctional permeability in both models possibly acting via claudin-1 and -5. Our results indicate that these peptides can be effectively and selectively used as potential pharmaceutical excipients to improve drug delivery across biological barriers. PMID:26869428

  15. Region-Dependent Role of Cell-Penetrating Peptides in Insulin Absorption Across the Rat Small Intestinal Membrane.

    PubMed

    Khafagy, El-Sayed; Iwamae, Ruisha; Kamei, Noriyasu; Takeda-Morishita, Mariko

    2015-11-01

    We have reported that the cell-penetrating peptide (CPP) penetratin acts as a potential absorption enhancer in oral insulin delivery systems and that this action occurs through noncovalent intermolecular interactions. However, the region-dependent role of CPPs in intestinal insulin absorption has not been clarified. To identify the intestinal region where CPPs have the most effect in increasing insulin absorption, the region-dependent action of penetratin was investigated using in situ closed intestinal loops in rats. The order of the insulin area under the insulin concentration-time curve (AUC) increase effect by L-penetratin was ileum > jejunum > duodenum > colon. By contrast, the AUC order after coadministration of insulin with D-penetratin was colon > duodenum ≥ jejunum and ileum. We also compared the effects of the L- and D-forms of penetratin, R8, and PenetraMax on ileal insulin absorption. Along with the CPPs used in this study, L- and D-PenetraMax produced the largest insulin AUCs. An absorption study using ilea pretreated with CPPs showed that PenetraMax had no irreversible effect on the intestinal epithelial membrane. The degradation of insulin in the presence of CPPs was assessed in rat intestinal enzymatic fluid. The half-life (t 1/2) of insulin increased from 14.5 to 23.7 and 184.7 min in the presence of L- and D-PenetraMax, respectively. These enzymatic degradation-resistant effects might contribute partly to the increased ileal absorption of insulin induced by D-PenetraMax. In conclusion, this study demonstrated that the ability of the L- and D-forms of penetratin to increase intestinal insulin absorption was maximal in the ileum and the colon, respectively, and that D-PenetraMax is a powerful but transient enhancer of oral insulin absorption. PMID:26216471

  16. Absorption of amino acids and peptides from a complex mixture in the isolated small intestine of the rat.

    PubMed Central

    Gardner, M L

    1975-01-01

    Amino acid and peptide absorption from a pancreatic digest of casein at low concentration by an isolated preparation of perfused rat small intestine has been measured. 2. The rate of absorption of each amino acid (free or peptide-bound) is closely proportional to its concentration in the perfusate; this implies a constant Vmax/Km ration for all amino acids in the mixture. 3. There is a high correlation between the compositions of luminal perfusate and secretion into the tissue fluid (apart from the content of glutamic and aspartic acids and alanine). 4. The concentrations of each free amino acid are, on average, 9 times as great in secretion as in lumen; the total peptide-N concentration in secretion is approximately 4 times that in the lumen. 5. The rate of absorption of each free amino acid is highly negatively dependent on the rate of absorption of that amino acid in peptide-bound form, in addition to being positively dependent on the perfusate concentration of free amino acid. 6. While peptide-bound proline appears to be well absorbed, free proline liberated by hydrolysis appears to pass back into the lumen as well as into the tissue fluid. Substantial back flux of hydrolysis products may occur for all amino acids. 7. About one-third of the amino acids appearing in the secretion on the serosal surface are peptide-bound. 8. The rate of absorption of peptides appears to determine the rate of their hydrolysis which probably occurs mainly after entry into the mucosal cells. PMID:1204629

  17. Functional characterization of a putative disaccharide membrane transporter in crustacean intestine.

    PubMed

    Likely, Rasheda; Johnson, Eric; Ahearn, Gregory A

    2015-02-01

    Transepithelial absorption of dietary sucrose in the American lobster, Homarus americanus, was investigated by mounting an intestine in a perfusion chamber to characterize mucosal to serosal (MS) (14)C-sucrose transport. These fluxes were measured by adding varying concentrations of (14)C-sucrose to the perfusate and monitoring their appearance in the bathing solution. Transepithelial (14)C-sucrose transport was the combination of a hyperbolic function of luminal concentration, following Michaelis-Menten kinetics, and apparent diffusion. The kinetic constants of the putative sucrose transporter were KM = 20.50 ± 6.00 µM and J max = 1.81 ± 0.50 pmol/cm(2) × min. Phloridzin, an inhibitor of Na(+)-dependent mucosal glucose transport, decreased MS (14)C-sucrose transport. Decreased MS (14)C-sucrose transport also occurred in the presence of luminal trehalose, a disaccharide containing D-glucose moieties. Thin-layer chromatography (TLC) identified the chemical nature of radioactively labeled sugars in the bath following transepithelial transport. TLC revealed (14)C-sucrose was transported across the intestine largely intact with no (14)C-glucose or (14)C-fructose appearing in the serosal bath or luminal perfusate. Only 13% of bath radioactivity was volatile metabolites. Results suggest that disaccharide sugars can be transported intact across crustacean intestine and support the occurrence of a functional disaccharide membrane transporter. PMID:25416426

  18. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine

    PubMed Central

    Thwaites, David T.; Anderson, Catriona M.H.

    2009-01-01

    The H+-electrochemical gradient was originally considered as a driving force for solute transport only across cellular membranes of bacteria, plants and yeast. However, in the mammalian small intestine a H+electrochemical gradient is present at the epithelial brush-border membrane in the form of an acid microclimate. Over recent years a large number of H+-coupled cotransport mechanisms have been identified at the luminal membrane of the mammalian small intestine. These transporters are responsible for the initial stage in absorption of a remarkable variety of essential and non-essential nutrients and micronutrients including protein digestion products (di/tripeptides and amino acids), vitamins, short-chain fatty acids and divalent metal ions. Proton-coupled cotransporters expressed at the mammalian small intestinal brush-border membrane include: the di/tripeptide transporter PepT1 (SLC15A1); the proton-coupled amino-acid transporter PAT1 (SLC36A1); the divalent metal transporter DMT1 (SLC11A2); the organic anion transporting polypeptide OATP2B1 (SLC02B1); the monocarboxylate transporter MCT1 (SLC16A1); the proton-coupled folate transporter PCFT (SLC46A1); the sodium-glucose linked cotransporter SGLT1 (SLC5A1); and the excitatory amino acid carrier EAAC1 (SLC1A1). Emerging research demonstrates that the optimal intestinal absorptive capacity of certain H+-coupled cotransporters (PepT1 and PAT1) is dependent upon function of the brush-border Na+/H+ exchanger NHE3 (SLC9A3). The high oral bioavailability of a large number of pharmaceutical compounds is due, in part, to absorptive transport via these same H+-coupled cotransporters. Drugs undergoing H+-coupled cotransport across the intestinal brush-border membrane include those used to treat bacterial infections, hypercholesterolaemia, hypertension, hyperglycaemia, viral infections, allergies, epilepsy, schizophrenia, rheumatoid arthritis and cancer. PMID:17468205

  19. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine.

    PubMed

    Thwaites, David T; Anderson, Catriona M H

    2007-07-01

    The H(+)-electrochemical gradient was originally considered as a driving force for solute transport only across cellular membranes of bacteria, plants and yeast. However, in the mammalian small intestine, a H(+)-electrochemical gradient is present at the epithelial brush-border membrane in the form of an acid microclimate. Over recent years, a large number of H(+)-coupled cotransport mechanisms have been identified at the luminal membrane of the mammalian small intestine. These transporters are responsible for the initial stage in absorption of a remarkable variety of essential and non-essential nutrients and micronutrients, including protein digestion products (di/tripeptides and amino acids), vitamins, short-chain fatty acids and divalent metal ions. Proton-coupled cotransporters expressed at the mammalian small intestinal brush-border membrane include: the di/tripeptide transporter PepT1 (SLC15A1); the proton-coupled amino-acid transporter PAT1 (SLC36A1); the divalent metal transporter DMT1 (SLC11A2); the organic anion transporting polypeptide OATP2B1 (SLC02B1); the monocarboxylate transporter MCT1 (SLC16A1); the proton-coupled folate transporter PCFT (SLC46A1); the sodium-glucose linked cotransporter SGLT1 (SLC5A1); and the excitatory amino acid carrier EAAC1 (SLC1A1). Emerging research demonstrates that the optimal intestinal absorptive capacity of certain H(+)-coupled cotransporters (PepT1 and PAT1) is dependent upon function of the brush-border Na(+)-H(+) exchanger NHE3 (SLC9A3). The high oral bioavailability of a large number of pharmaceutical compounds results, in part, from absorptive transport via the same H(+)-coupled cotransporters. Drugs undergoing H(+)-coupled cotransport across the intestinal brush-border membrane include those used to treat bacterial infections, hypercholesterolaemia, hypertension, hyperglycaemia, viral infections, allergies, epilepsy, schizophrenia, rheumatoid arthritis and cancer. PMID:17468205

  20. Glucagon-like peptide-1 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro.

    PubMed

    Baldassano, Sara; Wang, Guo-Du; Mulè, Flavia; Wood, Jackie D

    2012-02-01

    Glucagon-like peptide-1 (GLP-1) acts at the G protein-coupled receptor, GLP-1R, to stimulate secretion of insulin and to inhibit secretion of glucagon and gastric acid. Involvement in mucosal secretory physiology has received negligible attention. We aimed to study involvement of GLP-1 in mucosal chloride secretion in the small intestine. Ussing chamber methods, in concert with transmural electrical field stimulation (EFS), were used to study actions on neurogenic chloride secretion. ELISA was used to study GLP-1R effects on neural release of acetylcholine (ACh). Intramural localization of GLP-1R was assessed with immunohistochemistry. Application of GLP-1 to serosal or mucosal sides of flat-sheet preparations in Ussing chambers did not change baseline short-circuit current (I(sc)), which served as a marker for chloride secretion. Transmural EFS evoked neurally mediated biphasic increases in I(sc) that had an initial spike-like rising phase followed by a sustained plateau-like phase. Blockade of the EFS-evoked responses by tetrodotoxin indicated that the responses were neurally mediated. Application of GLP-1 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-1 receptor antagonist exendin-(9-39) suppressed this action of GLP-1. The GLP-1 inhibitory action on EFS-evoked responses persisted in the presence of nicotinic or vasoactive intestinal peptide receptor antagonists but not in the presence of a muscarinic receptor antagonist. GLP-1 significantly reduced EFS-evoked ACh release. In the submucosal plexus, GLP-1R immunoreactivity (IR) was expressed by choline acetyltransferase-IR neurons, neuropeptide Y-IR neurons, somatostatin-IR neurons, and vasoactive intestinal peptide-IR neurons. Our results suggest that GLP-1R is expressed in guinea pig submucosal neurons and that its activation leads to a decrease in neurally evoked chloride secretion by suppressing release of ACh at neuroepithelial junctions in the enteric neural networks

  1. Mass balance approaches for estimating the intestinal absorption and metabolism of peptides and analogues: theoretical development and applications

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Leesman, G. D.; Amidon, G. L.

    1993-01-01

    A theoretical analysis for estimating the extent of intestinal peptide and peptide analogue absorption was developed on the basis of a mass balance approach that incorporates convection, permeability, and reaction. The macroscopic mass balance analysis (MMBA) was extended to include chemical and enzymatic degradation. A microscopic mass balance analysis, a numerical approach, was also developed and the results compared to the MMBA. The mass balance equations for the fraction of a drug absorbed and reacted in the tube were derived from the general steady state mass balance in a tube: [formula: see text] where M is mass, z is the length of the tube, R is the tube radius, Pw is the intestinal wall permeability, kr is the reaction rate constant, C is the concentration of drug in the volume element over which the mass balance is taken, VL is the volume of the tube, and vz is the axial velocity of drug. The theory was first applied to the oral absorption of two tripeptide analogues, cefaclor (CCL) and cefatrizine (CZN), which degrade and dimerize in the intestine. Simulations using the mass balance equations, the experimental absorption parameters, and the literature stability rate constants yielded a mean estimated extent of CCL (250-mg dose) and CZN (1000-mg dose) absorption of 89 and 51%, respectively, which was similar to the mean extent of absorption reported in humans (90 and 50%). It was proposed previously that 15% of the CCL dose spontaneously degraded systematically; however, our simulations suggest that significant CCL degradation occurs (8 to 17%) presystemically in the intestinal lumen.(ABSTRACT TRUNCATED AT 250 WORDS).

  2. Na+-K+-activated adenosine triphosphatase and intestinal electrolyte transport. Effect of adrenal steroids.

    PubMed Central

    Charney, A N; Kinsey, M D; Myers, L; Gainnella, R A; Gots, R E

    1975-01-01

    Sodium-potassium-activated adenosine triphosphatase (Na-K-ATPase) is associated with electrolyte transport in many tissues. To help delineate its role in intestinal transport, changes in rat intestinal electrolyte and water transport induced by injecting methylprednisolone acetate 3 mg/100 g or deoxycorticosterone acetate (DOCA) 0.5 mg/100 g per day for 3 days were correlated with changes in Na-K-ATPase activity. Methylprednisolone increased sodium and water absorption, potassium secretion, transmural potential difference, and Na-K-ATPase activity in the jejunum, ileum, and colon. Examination of isolated epithelial cells demonstrated that the jejunal and ileal increase in Na-K-ATPase occurred in both the villus tip and crypermeability, Mg-ATPase, and adenylate cyclase activities were unchanged by methylprednisolone. DOCA increased sodium and water absorption, potassium secretion, transmural potential difference, and Na-K-ATPase activity in the colon alone. Colonic Mg-ATPase and adenylate cyclase activities were unaffected. Jejunal and ileal enzyme activity, electrolyte transport, and permeability were unchanged by DOCA. Methylprednisolone and DOCA were not additive in their effect on colonic Na-K-ATPase activity. Methylprednisolone and DOCA increased electrolyte and water transport and Na-K-ATPase activity concomitantly in specific segments of small intestine and colon. These data are consistent with an important role for Na-K-ATPase in intestinal electrolyte and water transport. PMID:125764

  3. Comparative cation dependency of sugar transport by crustacean hepatopancreas and intestine.

    PubMed

    Duka, Ada; Ahearn, Gregory A

    2014-01-01

    Glucose is transported in crustacean hepatopancreas and intestine by Na(+)-dependent co-transport, while Na(+)-dependent D-fructose influx has only been described for the hepatopancreas. It is still unclear if the two sugars are independently transported by two distinct cation-dependent co-transporter carrier systems. In this study, lobster (Homarus americanus) hepatopancreas brush border membrane vesicles (BBMV) were used to characterize, in detail, the cation-dependency of both D-[(3)H]-glucose and D-[(3)H]-fructose influxes, while in vitro perfused intestines were employed to determine the nature of cation-dependent sugar transport across this organ. Over the sodium concentration range of 0-100 mM, both [(3)H]-glucose and [(3)H]-fructose influxes (0.1 mM; 1 min uptakes) by hepatopancreatic BBMV were hyperbolic functions of [Na(+)]. [(3)H]-glucose and [(3)H]-fructose influxes by hepatopancreatic BBMV over a potassium concentration range of 15-100 mM were hyperbolic functions of [K(+)]. Both sugars displayed significant (p<0.01) Na(+)/K(+)-dependent and cation-independent uptake processes. Transepithelial 25 µM [(3)H]-glucose and [(3)H]-fructose fluxes across lobster intestine over luminal sodium and potassium concentration ranges of 0-50 mM and 5-100 mM, respectively, were hyperbolic functions of luminal [Na(+)] and [K(+)]. As with hepatopancreatic sugar transport, transepithelial intestinal sugar transport exhibited both significant (p<0.01) Na(+)/K(+)-dependent and cation-independent processes. Results suggest that both D-glucose and D-fructose are transported by a single SGLT-type carrier in each organ with sodium being the "preferred", high affinity, cation for both sugars in the hepatopancreas, and potassium being the "preferred", high affinity, cation for both sugars in the intestine. PMID:24950971

  4. Interaction of sirolimus and everolimus with hepatic and intestinal organic anion-transporting polypeptide transporters.

    PubMed

    Picard, Nicolas; Levoir, Laure; Lamoureux, Fabien; Yee, Sook Wah; Giacomini, Kathleen M; Marquet, Pierre

    2011-09-01

    The goal of this study was to assess the interaction of the mTOR inhibitors (ImTORs) sirolimus and everolimus with the human organic anion-transporting polypeptides (OATPs) expressed in hepatocytes and enterocytes by conducting uptake experiments using (i) transfected HEK293T cells, (ii) the hepatocyte-like HepaRG cell line and (iii) the enterocyte-like Caco-2 cell line. Sirolimus and everolimus inhibited in a dose-dependent manner the uptake of [³H]-estrone sulphate by OATP1A2 and OATP1B1 and that of mycophenolic acid 7-O-glucuronide (MPAG) by OATP1B3. ImTOR apparent 50% inhibitory concentrations (IC₅₀) for OATPs were 11.9 µM (OATP1A2), 9.8 µM (OATP1B1) and 1.3 µM (OATP1B3) for sirolimus and 4.2 µM (OATP1A2), 4.1 µM (OATP1B1) and 4.3 µM (OATP1B3) for everolimus. No transport of sirolimus or everolimus by OATP1A2, OATP1B1 or OATP1B3 was observed in HEK-transfected cells and the OAT/OATP/MRP chemical inhibitor probenecid did not significantly decrease the uptake of sirolimus and everolimus in HepaRG and Caco-2 cells, but tended to increase their intracellular accumulation presumably through efflux inhibition. In conclusion, our data suggest that the major OATP transporters expressed in the liver and the intestine do not contribute to the pharmacokinetics of sirolimus and everolimus. However, ImTORs are inhibitors of these transporters. PMID:21524191

  5. Intestinal glutathione: determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility

    SciTech Connect

    Aw, Tak Yee . E-mail: taw@lsuhsc.edu

    2005-05-01

    The intestine is a primary site of nutrient absorption and a critical defense barrier against dietary-derived mutagens, carcinogens, and oxidants. Accumulation of oxidants like peroxidized lipids in the gut lumen can contribute to impairment of mucosal metabolic pathways, enterocyte dysfunction independent of cell injury, and development of gut pathologies, such as inflammation and cancer. Despite this recognition, we know little of the pathways of intestinal transport, metabolism, and luminal disposition of dietary peroxides in vivo or of the underlying mechanisms of lipid peroxide-induced genesis of intestinal disease processes. This chapter summarizes our current understanding of the determinants of intestinal absorption and metabolism of peroxidized lipids. I will review experimental evidence from our laboratory and others (Table 1) supporting the pivotal role that glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) play in mucosal transport and metabolism of lipid hydroperoxides and how reductant availability can be compromised under chronic stress such as hypoxia, and the influence of GSH on oxidative susceptibility, and redox contribution to genesis of gut disorders. The discussion is pertinent to understanding dietary lipid peroxides and GSH redox balance in intestinal physiology and pathophysiology and the significance of luminal GSH in preserving the integrity of the intestinal epithelium.

  6. Feed Withdrawal and Transport Interactions with Intestinal and Peripheral Immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple stressors associated with transporting finishing pigs to slaughter can result in increased shedding of pathogens. Previously we found feed withdrawal by itself or followed by transportation increased Salmonella concentrations in ileal contents. However, no difference was found among treatm...

  7. Distinct Firing Properties of Vasoactive Intestinal Peptide-Expressing Neurons in the Suprachiasmatic Nucleus

    PubMed Central

    Hermanstyne, Tracey O.; Simms, Carrie L.; Carrasquillo, Yarimar; Herzog, Erik D.; Nerbonne, Jeanne M.

    2016-01-01

    The suprachiasmatic nucleus (SCN) regulates daily rhythms in physiology and behavior. Previous studies suggest a critical role for neurons expressing vasoactive intestinal peptide (VIP) in coordinating rhythmicity and synchronization in the SCN. Here we examined the firing properties of VIP-expressing SCN neurons in acute brain slices. Active and passive membrane properties were measured in VIP and in non-VIP neurons during the day and at night. Current-clamp recordings revealed that both VIP and non-VIP neurons were spontaneously active, with higher firing rates during the day than at night. Average firing frequencies, however, were higher in VIP neurons (3.1 ± 0.2 Hz, day and 2.4 ± 0.2 Hz, night) than in non-VIP neurons (1.8 ± 0.2 Hz, day and 0.9 ± 0.2 Hz, night), both day and night. The waveforms of individual action potentials in VIP and non-VIP neurons were also distinct. Action potential durations (APD50) were shorter in VIP neurons (3.6 ± 0.1 ms, day and 2.9 ± 0.1 ms, night) than in non-VIP neurons (4.4 ± 0.3 ms, day and 3.5 ± 0.2 ms, night) throughout the light-dark cycle. In addition, after hyper polarization (AHP) amplitudes were larger in VIP neurons (21 ± 0.8 mV, day and 24.9 ± 0.9 mV, night) than in non-VIP neurons (17.2 ± 1.1 mV, day and 20.5 ± 1.2 mV, night) during the day and at night. Furthermore, significant day/night differences were observed in APD50 and AHP amplitudes in both VIP and non-VIP SCN neurons, consistent with rhythmic changes in ionic conductances that contribute to shaping the firing properties of both cell types. The higher day and night firing rates of VIP neurons likely contribute to synchronizing electrical activity in the SCN. PMID:26712166

  8. Peptide Selectivity of the Proton-Coupled Oligopeptide Transporter from Neisseria meningitidis.

    PubMed

    Sharma, Neha; Aduri, Nanda G; Iqbal, Anna; Prabhala, Bala K; Mirza, Osman

    2016-01-01

    Peptide transport in living organisms is facilitated by either primary transport, hydrolysis of ATP, or secondary transport, cotransport of protons. In this study, we focused on investigating the ligand specificity of the Neisseria meningitidis proton-coupled oligopeptide transporter (NmPOT). It has been shown that the gene encoding this transporter is upregulated during infection. NmPOT conformed to the typical chain length preference as observed in prototypical transporters of this family. In contrast to prototypical transporters, it was unable to accommodate a positively charged peptide residue at the C-terminus position of the substrate peptide. Sequence analysis of the active site of NmPOT displayed a distinctive aromatic patch, which has not been observed in any other transporters from this family. This aromatic patch may be involved in providing NmPOT with its atypical preferences. This study provides important novel information towards understanding how these transporters recognize their substrates. PMID:27438044

  9. [The current concepts on the absorption of monosaccharides, amino acids and peptides in the mammalian small intestine].

    PubMed

    Timofeeva, N M; Iezuitova, N N; Gromova, L V

    2000-01-01

    The review is mainly devoted to the development of ideas about absorption, or transport, of basic nutrients in the small intestine in humans and higher animal. The absorption processes have been characterized on the example of such substances, vital for organism, as carbohydrates and proteins. The review considers a molecular structure of transporters--protein molecules, which take part in a transfer of the products of lumenal and membrane digestion of carbohydrates (glucose, galactose, fructose) and proteins (amino acids, oligopeptides) across the enterocyte membranes. An information is presented about genetic disturbances of transport of certain amino acids during such diseases as Hartnup disease, cystinuria, and iminoglycineuria. PMID:11094795

  10. Changes in relative organ weights and intestinal transporter gene expression in embryos from White Plymouth Rock and WENS Yellow Feather Chickens.

    PubMed

    Li, Xiang-guang; Chen, Xue-ling; Wang, Xiu-qi

    2013-02-01

    This study was conducted to evaluate the embryonic development of broilers with different growth rates and correlate the differences between the amino acid transporter and peptide transporter gene expression patterns to the growth of the small intestine. The results showed that the body and yolk weights of the White Plymouth Rock (WPR) embryos were higher than those of the WENS Yellow Feather Chicken (WYFC) embryos although the relative embryonic body weights were inversely correlated. We studied nine organs and classified them into four clusters according to their changes in relative weight during the hatching process. The levels of gene expression of SLC7A9, SLC1A1 and SLC15A1 in the small intestine increased during embryo development and were affected by breed. Breed-specific differences in embryonic development were observed for SLC7A9, SLC1A1 and SLC15A1 gene expression. When represented as a function of SLC7A9, SLC1A1 or SLC15A1 gene expression, strong correlations were observed for the weight of small intestine. We conclude that WPR embryos have a higher absolute growth rate but a lower relative growth rate in comparison with WYFC embryos. Moreover, the expression levels of the SLC7A9, SLC1A1 or SLC15A1 genes can be used as indicators for the growth of the small intestine. PMID:23202657

  11. Effects of waterborne Cu exposure on intestinal copper transport and lipid metabolism of Synechogobius hasta.

    PubMed

    Chen, Feng; Luo, Zhi; Chen, Guang-Hui; Shi, Xi; Liu, Xu; Song, Yu-Feng; Pan, Ya-Xiong

    2016-09-01

    The present study was conducted to explore the effects of waterborne Cu exposure on intestinal Cu transport and lipid metabolism of Synechogobius hasta. S. hasta were exposed to 0, 0.4721 and 0.9442μM Cu, respectively. Sampling occurred on days 0, 21 and 42, respectively. Growth performance, intestinal lipid deposition, Cu content, and activities and mRNA expression of enzymes and genes involved in Cu transport and lipid metabolism were analyzed. Cu exposure decreased WG and SGR on days 21 and 42. Cu exposure increased intestinal Cu and lipid contents. Increased Cu accumulation was attributable to increased enzymatic activities (Cu-ATPase and Cu, Zn-SOD) and genes' (CTR1, CTR2, DMT1, ATP7a, ATP7b, MT1 and MT2) expression involved in Cu transport. Waterborne Cu exposure also increased activities of lipogenic enzymes (6PGD and ICDH on both days 21 and 42, ME on day 42), up-regulated mRNA levels of lipogenic genes (G6PD, 6PGD, ME, ICDH, FAS and ACCa), lipolytic genes (ACCb, CPT I and HSLa) and genes involved in intestinal fatty acid uptake (IFABP and FATP4) on both days 21 and 42. The up-regulation of lipolysis may result from the increased metabolic expenditure for detoxification and maintenance of the normal body functions in a response to Cu exposure. Meantime, Cu exposure increased lipogenesis and fatty acid uptake, leading to net lipid accumulation in the intestine despite increased lipolysis. To our knowledge, this is the first report involved in intestinal lipid metabolism in combination with intestinal Cu absorption following waterborne Cu exposure, which provides new insights and evidence into Cu toxicity in fish. PMID:27509383

  12. Chemical form of selenium affects its uptake, transport and glutathione peroxidase activity in the human intestinal Caco-2 cell model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources...

  13. Crystal Structures of the Extracellular Domain from PepT1 and PepT2 Provide Novel Insights into Mammalian Peptide Transport.

    PubMed

    Beale, John H; Parker, Joanne L; Samsudin, Firdaus; Barrett, Anne L; Senan, Anish; Bird, Louise E; Scott, David; Owens, Raymond J; Sansom, Mark S P; Tucker, Stephen J; Meredith, David; Fowler, Philip W; Newstead, Simon

    2015-10-01

    Mammals obtain nitrogen via the uptake of di- and tri-peptides in the gastrointestinal tract through the action of PepT1 and PepT2, which are members of the POT family of proton-coupled oligopeptide transporters. PepT1 and PepT2 also play an important role in drug transport in the human body. Recent crystal structures of bacterial homologs revealed a conserved peptide-binding site and mechanism of transport. However, a key structural difference exists between bacterial and mammalian homologs with only the latter containing a large extracellular domain, the function of which is currently unknown. Here, we present the crystal structure of the extracellular domain from both PepT1 and PepT2 that reveal two immunoglobulin-like folds connected in tandem, providing structural insight into mammalian peptide transport. Functional and biophysical studies demonstrate that these domains interact with the intestinal protease trypsin, suggesting a role in clustering proteolytic activity to the site of peptide transport in eukaryotic cells. PMID:26320580

  14. Crystal Structures of the Extracellular Domain from PepT1 and PepT2 Provide Novel Insights into Mammalian Peptide Transport

    PubMed Central

    Beale, John H.; Parker, Joanne L.; Samsudin, Firdaus; Barrett, Anne L.; Senan, Anish; Bird, Louise E.; Scott, David; Owens, Raymond J.; Sansom, Mark S.P.; Tucker, Stephen J.; Meredith, David; Fowler, Philip W.; Newstead, Simon

    2015-01-01

    Summary Mammals obtain nitrogen via the uptake of di- and tri-peptides in the gastrointestinal tract through the action of PepT1 and PepT2, which are members of the POT family of proton-coupled oligopeptide transporters. PepT1 and PepT2 also play an important role in drug transport in the human body. Recent crystal structures of bacterial homologs revealed a conserved peptide-binding site and mechanism of transport. However, a key structural difference exists between bacterial and mammalian homologs with only the latter containing a large extracellular domain, the function of which is currently unknown. Here, we present the crystal structure of the extracellular domain from both PepT1 and PepT2 that reveal two immunoglobulin-like folds connected in tandem, providing structural insight into mammalian peptide transport. Functional and biophysical studies demonstrate that these domains interact with the intestinal protease trypsin, suggesting a role in clustering proteolytic activity to the site of peptide transport in eukaryotic cells. PMID:26320580

  15. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine.

    PubMed

    Qiu, Kai; Qin, Chun Fu; Luo, Min; Zhang, Xin; Sun, Wen Juan; Jiao, Ning; Li, De Fa; Yin, Jing Dong

    2016-01-01

    Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption. PMID:27611307

  16. Intestinal microbial affects of yeast products on weaned and transport stressed pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Study objectives were to determine effects of a commercially available yeast product (XPC, Diamond-V Mills) and stress of transportation on total Enterobacteriaceae, Escherichia coli, coliforms, and Lactobacilli populations in the intestine of weaning pigs. In a RCB design with a 2 x 2 factorial ar...

  17. Glucose Transport into Everted Sacs of the Small Intestine of Mice

    ERIC Educational Resources Information Center

    Hamilton, Kirk L.; Butt, A. Grant

    2013-01-01

    The Na[superscript +]-glucose cotransporter is a key transport protein that is responsible for absorbing Na[superscript +] and glucose from the luminal contents of the small intestine and reabsorption by the proximal straight tubule of the nephron. Robert K. Crane originally described the cellular model of absorption of Na[superscript +] and…

  18. Downregulation of mouse intestinal Na(+)-coupled glucose transporter SGLT1 by gum arabic (Acacia Senegal).

    PubMed

    Nasir, Omaima; Artunc, Ferruh; Wang, Kan; Rexhepaj, Rexhep; Föller, Michael; Ebrahim, Ammar; Kempe, Daniela S; Biswas, Raja; Bhandaru, Madhuri; Walter, Michael; Mohebbi, Nilufar; Wagner, Carsten A; Saeed, Amal M; Lang, Florian

    2010-01-01

    Intestinal Na(+)-coupled glucose transporter SGLT1 determines the rate of glucose transport, which in turn influences glucose-induced insulin release and development of obesity. The present study explored effects of Gum Arabic (GA), a dietary polysaccharide from dried exudates of Acacia Senegal, on intestinal glucose transport and body weight in wild-type C57Bl/6 mice. Treatment with GA (100 g/l) in drinking water for four weeks did not affect intestinal SGLT1 transcript levels but decreased SGLT1 protein abundance in jejunal brush border membrane vesicles. Glucose-induced jejunal short-circuit currents revealed that GA treatment decreased electrogenic glucose transport. Drinking a 20% glucose solution for four weeks significantly increased body weight and fasting plasma glucose concentrations, effects significantly blunted by simultaneous treatment with GA. GA further significantly blunted the increase in body weight, fasting plasma glucose and fasting insulin concentrations during high fat diet. In conclusion, the present observations disclose a completely novel effect of gum arabic, i.e. its ability to decrease intestinal SGLT1 expression and activity and thus to counteract glucose-induced obesity. PMID:20110681

  19. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weaning and transport stress can have a negative impact on the piglet's immune system and intestinal microbiota. The objective of this study was to determine the influence of a yeast product on innate immunity and microbial ecology of the gastrointestinal tract following stress of weaning and trans...

  20. Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport

    PubMed Central

    Kvietys, Peter R.; Granger, D. Neil

    2010-01-01

    Two of the principal functions of intestinal lymphatics are to assist in 1) maintaining interstitial volume within relatively normal limits during alterations in capillary filtration (e.g., acute portal hypertension) and 2) removal of absorbed water and chylomicrons. The contribution of lymphatics to the prevention of interstitial over-hydration or dehydration during alterations in transcapillary filtration is similar in the small intestine and colon. While the lymphatics of the small intestine contribute substantially to the removal of absorbed water (particularly at low and moderate absorption rates), the contribution of colonic lymphatics to the removal of the fluid absorbate is negligible. This difference is attributed to the relative caliber and location of lymphatics in the mucosal layer of the small and large intestines. In the small intestine, large lacteals lie in close proximity to transporting epithelium, while colonic lymph vessels are rather sparse and confined to the basal portion of the mucosa. In the small intestine, the lymphatics assume a more important role in removing absorbed water during lipid absorption than during glucose absorption. PMID:20961304

  1. Modulatory Effects of Vasoactive Intestinal Peptide on Intestinal Mucosal Immunity and Microbial Community of Weaned Piglets Challenged by an Enterotoxigenic Escherichia coli (K88)

    PubMed Central

    Xu, Chunlan; Wang, Youming; Sun, Rui; Qiao, Xiangjin; Shang, Xiaoya; Niu, Weining

    2014-01-01

    Toll-like receptors (TLRs) recognize microbial pathogens and trigger immune response, but their regulation by neuropeptide-vasoactive intestinal peptide (VIP) in weaned piglets infected by enterotoxigenic Escherichia coli (ETEC) K88 remains unexplored. Therefore, the study was conducted to investigate its role using a model of early weaned piglets infected by ETEC K88. Male Duroc×Landrace×Yorkshire piglets (n = 24) were randomly divided into control, ETEC K88, VIP, and ETEC K88+VIP groups. On the first three days, ETEC K88 and ETEC K88+VIP groups were orally administrated with ETEC K88, other two groups were given sterile medium. Then each piglet from VIP and ETEC K88+VIP group received 10 nmol VIP intraperitoneally (i.p.) once daily, on day four and six. On the seventh day, the piglets were sacrificed. The results indicated that administration of VIP improved the growth performance, reduced diarrhea incidence of ETEC K88 challenged pigs, and mitigated the histopathological changes of intestine. Serum levels of IL-2, IL-6, IL-12p40, IFN-γ and TNF-α in the ETEC K88+ VIP group were significantly reduced compared with those in the ETEC group. VIP significantly increased IL-4, IL-10, TGF-β and S-IgA production compared with the ETEC K88 group. Besides, VIP could inhibit the expression of TLR2, TLR4, MyD88, NF-κB p65 and the phosphorylation of IκB-α, p-ERK, p-JNK, and p-38 induced by ETEC K88. Moreover, VIP could upregulate the expression of occludin in the ileum mucosa compared with the ETEC K88 group. Colon and caecum content bacterial richness and diversity were lower for pigs in the ETEC group than the unchallenged groups. These results demonstrate that VIP is beneficial for the maturation of the intestinal mucosal immune system and elicited local immunomodulatory activities. The TLR2/4-MyD88 mediated NF-κB and MAPK signaling pathway may be critical to the mechanism underlying the modulatory effect of VIP on intestinal mucosal immune function and

  2. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport.

    PubMed Central

    Hempe, J M; Cousins, R J

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. We have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPLC and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein [Birkenmeier, E. H. & Gordon, J. I. (1986) Proc. Natl. Acad. Sci. USA 83, 2516-2520]. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient. Images PMID:1946385

  3. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport

    SciTech Connect

    Hempe, J.M.; Cousins, R.J. )

    1991-11-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. The authors have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPCL and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient.

  4. Identification of regulatory mechanisms of intestinal folate transport in condition of folate deficiency.

    PubMed

    Thakur, Shilpa; Rahat, Beenish; Hamid, Abid; Najar, Rauf Ahmad; Kaur, Jyotdeep

    2015-10-01

    Folic acid is an essential micronutrient, deficiency of which can lead to disturbance in various metabolic processes of cell. Folate transport across intestine occurs via the involvement of specialized folate transporters viz. proton coupled folate transporter (PCFT) and reduced folate carrier (RFC), which express at the membrane surfaces. The current study was designed to identify the regulatory mechanisms underlying the effects of folate deficiency (FD) on folate transport in human intestinal cell line as well as in rats and to check the reversibility of such effects. Caco-2 cells were grown for five generations in control and FD medium. Following treatment, one subgroup of cells was shifted on folate sufficient medium and grown for three more generations. Similarly, rats were fed an FD diet for 3 and 5 months, and after 3 months of FD treatment, one group of rats were shifted on normal folate-containing diet. Increase in folate transport and expression of folate transporters were observed on FD treatment. However, when cells and rats were shifted to control conditions after treatment, transport and expression of these genes restored to the control level. FD was found to have no impact on promoter methylation of PCFT and RFC; however, messenger RNA stability of transporters was found to be decreased, suggesting some adaptive response. Overall, increased expression of transporters under FD conditions can be attributed to enhanced rate of transcription of folate transporters and also to the increased binding of specificity protein 1 transcription factor to the RFC promoter only. PMID:26168702

  5. Characterization of intestinal absorption of mizoribine mediated by concentrative nucleoside transporters in rats.

    PubMed

    Mori, Nobuhiro; Yokooji, Tomoharu; Kamio, Yoshihiro; Murakami, Teruo

    2008-05-31

    Mizoribine, an imidazole nucleoside, is an inhibitor of purine synthesis and has been used as an orally available immunosuppressive agent in human renal transplantation. In the present study, the intestinal absorption of mizoribine was characterized by examining the contribution of concentrative nucleoside transporters (CNT1, CNT2) in rats. When mizoribine was administered orally in conscious rats, the bioavailability of mizoribine estimated by urinary excretion percentage of unchanged mizoribine was a dose dependent: 53.1+/-6.0% at 5 mg/kg and 24.0+/-5.1% at 20 mg/kg. In in-situ loop studies, the disappearance rate, or absorption rate, of mizoribine from the intestinal lumen was comparable between 1 and 5 mg/kg, but significantly lower at 25 mg/kg. Coadministration of adenosine (a substrate of both CNT1 and CNT2), thymidine (a CNT1 substrate) and inosine (a CNT2 substrate) significantly suppressed the intestinal mizoribine absorption, depending on the nucleoside concentrations coadministered. Gemcitabine (a pyrimidine nucleoside analogue, a CNT1 substrate) and ribavirin (a purine nucleoside analog, a CNT2 substrate) also significantly suppressed the mizoribine intestinal absorption. Bile salts such as sodium cholate and sodium glycocholate (10 mM) also significantly suppressed the intestinal mizoribine absorption, but not ribavirin absorption. Mizoribine is an amphoteric compound, however, the suppression of intestinal absorption by bile salts was not ascribed to the electrostatic interaction or micellar formation between mizoribine and bile salts. In conclusion, the intestinal absorption of mizoribine is mediated by CNT1 and CNT2, and nucleoside-derived drugs such as gemcitabine and ribavirin can suppress the intestinal absorption of mizoribine. Bile salts such as sodium glycocholate were also found to cause interaction with mizoribine. PMID:18371949

  6. In vitro intestinal lead uptake and transport in relation to speciation.

    PubMed

    Oomen, A G; Tolls, J; Sips, A J A M; Groten, J P

    2003-01-01

    Children might be exposed substantially to contaminants such as lead via soil ingestion. In risk assessment of soil contaminants there is a need for information on oral bioavailability of soilborne lead. Oral bioavailability can be seen as the result of four steps: (1) soil ingestion; (2) mobilization from soil during digestion, i.e., bioaccessibility; (3) transport across the intestinal epithelium; and (4) first-pass effect. Lead bioaccessibility and speciation in artificial human small intestinal fluid, i.e., chyme, have been investigated in previous studies. In the present study, transport of bioaccessible lead across the intestinal epithelium was investigated using the Caco-2 cell line. Cell monolayers were exposed to (diluted) artificial chyme. In 24 h, approximately 27% of the lead were associated to the cells and 3% were transported across the cell monolayer, without signs of approaching equilibrium. Lead associated to the cells showed a linear relationship with the total amount of lead in the system. Bile levels did not affect the fraction of lead associated to Caco-2 cells. Extrapolation of the lead flux across the Caco-2 monolayer to the in vivo situation indicates that only a fraction of the bioaccessible lead is transported across the intestinal epithelium. Furthermore, the results indicate that as the free Pb(2+) concentration in chyme was negligible, lead species other than the free metal ion must have contributed to the lead flux toward the cells. On the basis of lead speciation in chyme, this can be attributed to dissociation of labile lead species, such as lead phosphate and lead bile complexes, and subsequent transport of the released free metal ions toward the intestinal membrane. PMID:12434226

  7. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua

    PubMed Central

    Hu, Marian Y.; Michael, Katharina; Kreiss, Cornelia M.; Stumpp, Meike; Dupont, Sam; Tseng, Yung-Che; Lucassen, Magnus

    2016-01-01

    CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA), Na+/H+-exchanger 3 (NHE3), Na+/HCO3− cotransporter (NBC1), pendrin-like Cl−/HCO3− exchanger (SLC26a6), V-type H+-ATPase subunit a (VHA), and Cl− channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3− secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3− levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans. PMID:27313538

  8. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua.

    PubMed

    Hu, Marian Y; Michael, Katharina; Kreiss, Cornelia M; Stumpp, Meike; Dupont, Sam; Tseng, Yung-Che; Lucassen, Magnus

    2016-01-01

    CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid-base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na(+)/K(+)-ATPase (NKA), Na(+)/H(+)-exchanger 3 (NHE3), Na(+)/[Formula: see text] cotransporter (NBC1), pendrin-like Cl(-)/[Formula: see text] exchanger (SLC26a6), V-type H(+)-ATPase subunit a (VHA), and Cl(-) channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal [Formula: see text] secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood [Formula: see text] levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans. PMID:27313538

  9. Human, rat and chicken small intestinal Na+-Cl−-creatine transporter: functional, molecular characterization and localization

    PubMed Central

    Peral, M J; García-Delgado, M; Calonge, M L; Durán, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundáin, A A

    2002-01-01

    In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+- and Cl−-dependent, with a probable stoichiometry of 2 Na+: 1 Cl−: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 μm. [14C]Creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, β-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na+- and Cl−-dependent, apical creatine uptake. PMID:12433955

  10. Glugacon-like peptide-2: broad receptor expression, limited therapeutic effect on intestinal inflammation and novel role in liver regeneration.

    PubMed

    El-Jamal, Noura; Erdual, Edmone; Neunlist, Michel; Koriche, Dine; Dubuquoy, Caroline; Maggiotto, Francois; Chevalier, Julien; Berrebi, Dominique; Dubuquoy, Laurent; Boulanger, Eric; Cortot, Antoine; Desreumaux, Pierre

    2014-08-01

    The glucagon-like peptide 2 (GLP-2) is an intestinotrophic hormone with growth promoting and anti-inflammatory actions. However, the full biological functions of GLP-2 and the localization of its receptor (GLP-2R) remain controversial. Among cell lines tested, the expression of GLP-2R transcript was detected in human colonic myofibroblasts (CCD-18Co) and in primary culture of rat enteric nervous system but not in intestinal epithelial cell lines, lymphocytes, monocytes, or endothelial cells. Surprisingly, GLP-2R was expressed in murine (GLUTag), but not human (NCI-H716) enteroendocrine cells. The screening of GLP-2R mRNA in mice organs revealed an increasing gradient of GLP-2R toward the distal gut. An unexpected expression was detected in the mesenteric fat, mesenteric lymph nodes, bladder, spleen, and liver, particularly in hepatocytes. In two mice models of trinitrobenzene sulfonic acid (TNBS)- and dextran sulfate sodium (DSS)-induced colitis, the colonic expression of GLP-2R mRNA was decreased by 60% compared with control mice. Also, GLP-2R mRNA was significantly downregulated in intestinal tissues of inflammatory bowel disease patients. Therapeutically, GLP-2 showed a weak restorative effect on intestinal inflammation during TNBS-induced colitis as assessed by macroscopic score and inflammatory markers. Finally, GLP-2 treatment accelerated mouse liver regeneration following partial hepatectomy as assessed by histological and molecular analyses. In conclusion, the limited therapeutic effect of GLP-2 on colonic inflammation dampens its utility in the management of severe inflammatory intestinal disorders. However, the role of GLP-2 in liver regeneration is a novelty that might introduce GLP-2 into the management of liver diseases and emphasizes on the importance of elucidating other extraintestinal functions of GLP-2. PMID:24875097

  11. alpha-Lactalbumin hydrolysate stimulates glucagon-like peptide-2 secretion and small intestinal growth in suckling rats.

    PubMed

    Izumi, Hirohisa; Ishizuka, Satoshi; Inafune, Ayako; Hira, Tohru; Ozawa, Kazuhiro; Shimizu, Takashi; Takase, Mitsunori; Hara, Hiroshi

    2009-07-01

    We investigated whether bovine milk constituents influenced glucagon-like peptide (GLP)-2 secretion and intestinal growth in suckling rats. Male Sprague-Dawley rats (14 d old) received i.g. infusions of a milk protein fraction, a lactose solution, or the cream fraction of milk. The serum concentration of GLP-2, but not GLP-1, markedly increased in rats administered milk protein compared with those given the lactose solution or the cream fraction from 60 to 120 min after administration. In another experiment, both casein (CN) and whey protein isolate stimulated GLP-2 secretion at 120 min after administration, but soy protein and ovalbumin did not. Stimulation of GLP-2 secretion by several milk proteins was similar, including alpha-CN, alpha-lactalbumin (alpha-La), and beta-lactoglobulin, in a separate experiment. A hydrolysate of alpha-La obtained by incubation with protease A extracted from Aspergillus oryzae (LaHPA) caused almost twice the GLP-2 release due to intact alpha-La and other alpha-La hydrolysates. Free amino acid concentrations and molecular size distributions did not differ among alpha-La hydrolysates, including LaHPA. In rat pups reared with milk formulae containing alpha-La or LaHPA, LaHPA significantly promoted small intestinal elongation and increased the number of crypt epithelial cells compared with a formula containing intact alpha-La. LaHPA administration also increased the maltase:lactase activity ratio, a marker of maturation of the intestinal mucosa. In conclusion, milk proteins stimulate GLP-2 secretion and contribute to growth and maturation of the small intestine in suckling rats. PMID:19494023

  12. A tissue engineered model of the intestinal lacteal for evaluating lipid transport by lymphatics

    PubMed Central

    Dixon, J. Brandon; Raghunathan, Sandeep; Swartz, Melody A.

    2010-01-01

    Lacteals are the entry point of all dietary lipids into the circulation, yet little is known about the active regulation of lipid uptake by these lymphatic vessels, and there lacks in vitro models to study the lacteal – enterocyte interface. We describe an in vitro model of the human intestinal microenvironment containing differentiated Caco-2 cells and lymphatic endothelial cells (LECs). We characterize the model for fatty acid, lipoprotein, albumin, and dextran transport, and compare to qualitative uptake of fatty acids into lacteals in vivo. We demonstrate relevant morphological features of both cell types and strongly polarized transport of fatty acid in the intestinal-to-lymphatic direction. We found much higher transport rates of lipid than of dextran or albumin across the lymphatic endothelial monolayer, suggesting most lipid transport is active and intracellular. This was confirmed with confocal imaging of Bodipy, a fluorescent fatty acid, along with transmission electron microscopy. Since our model recapitulates crucial aspects of the in vivo lymphatic-enterocyte interface, it is useful for studying the biology of lipid transport by lymphatics and as a tool for screening drugs and nanoparticles that target intestinal lymphatics. PMID:19396808

  13. A peptide & peptide nucleic acid synthesis technology for transporter molecules and theranostics--the SPPS.

    PubMed

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods. Nowadays the solid phase synthesis (SPPS) chemistry emerges as a key technology and is considered as a promising methodology to design peptides for the investigation of molecular pharmacological processes at the transcriptional level. SPPS syntheses could be carried out in core facilities producing peptides for large-scale scientific implementations as presented here. PMID:24843319

  14. A Peptide & Peptide Nucleic Acid Synthesis Technology for Transporter Molecules and Theranostics - The SPPS

    PubMed Central

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods. Nowadays the solid phase synthesis (SPPS) chemistry emerges as a key technology and is considered as a promising methodology to design peptides for the investigation of molecular pharmacological processes at the transcriptional level. SPPS syntheses could be carried out in core facilities producing peptides for large-scale scientific implementations as presented here. PMID:24843319

  15. Interaction of Peptide Transporter 1 With D-Glucose and L-Glutamic Acid; Possible Involvement of Taste Receptors.

    PubMed

    Arakawa, Hiroshi; Ohmachi, Taichi; Ichiba, Kiko; Kamioka, Hiroki; Tomono, Takumi; Kanagawa, Masahiko; Idota, Yoko; Hatano, Yasuko; Yano, Kentaro; Morimoto, Kaori; Ogihara, Takuo

    2016-01-01

    We investigated the influence of sweet and umami (savory) tastants on the intestinal absorption of cephalexin (CEX), a substrate of peptide transporter 1 (PEPT1, SLC15A1) in rats. After oral administration of glucose or mannitol to rats, CEX was administered together with a second dose of glucose or mannitol. Western blot analysis indicated that expression of PEPT1 in rat jejunum membrane was decreased by glucose, compared to mannitol. Furthermore, the maximum plasma concentration (Cmax) of orally administered CEX was reduced by glucose compared to mannitol. The effect of glucose was diminished by nifedipine, a L-type Ca(2+) channel blocker. We also found that Cmax of orally administered CEX was reduced by treatment with L-glutamic acid, compared to D-glutamic acid. Thus, excessive intake of glucose and L-glutamic acid may impair oral absorption of PEPT1 substrates. PMID:26852864

  16. The effect of parachlorophenylalanine and active immunization against vasoactive intestinal peptide on reproductive activities of broiler breeder hens photostimulated with green light.

    PubMed

    Mobarkey, Nader; Avital, Natalie; Heiblum, Rachel; Rozenboim, Israel

    2013-04-01

    Photostimulation of retinal photoreceptors appears to inhibit reproductive activity in birds. In the present study, the involvement of serotonin and vasoactive intestinal peptide was investigated in relation to reproductive failure associated with retinal photostimulation. Hens at 23 wk of age were divided into six rooms equipped with individual cages. At 24 wk of age, three rooms were photostimulated (14L:10D) with white light (control). Three rooms had two parallel lighting systems, red (660 nm) and green (560 nm), which were both on during 6 h of the 14-h light period. Upon photostimulation, the red light was turned off after 6 h, and the green light was left on for a total of 14 h (Green). Five hens from each room served as controls, five hens were immunized against vasoactive intestinal peptide, and five hens received parachlorophenylalanine, an inhibitor of serotonin biosynthesis. Parachlorophenylalanine treatment increased reproductive performance and mRNA expression of GnRH-I, LH-beta and FSH-beta (P < 0.05) in the Green group to levels which did not differ from those of the White (control) group. Immunization against vasoactive intestinal peptide reduced plasma concentration and pituitary mRNA expression of prolactin but did not affect expression of gonadal axis genes. Collectively, the results suggest that retinal photostimulation inhibits the reproductive axis through serotonin and not through vasoactive intestinal peptide. PMID:23325814

  17. Effect of antidiuretic hormone on human small intestinal water and solute transport

    PubMed Central

    Soergel, Konrad H.; Whalen, George E.; Harris, John A.; Geenen, Joseph E.

    1968-01-01

    The effect of i.v. Pitressin (ADH) in a dose of 1 U/hr on permeability characteristics and on absorptive capacity of the normal human small intestine was investigated. The method of continuous intestinal perfusion was employed with polyethylene glycol 4000 as a nonabsorbable marker. Unidirectional flux rates of Na and H2O were calculated from the disappearance of 22Na and of 3HOH from isotonic saline solution within the intestinal lumen. Each study consisted of two successive perfusion periods: one while the subject was hydrated, the other during ADH infusion or while the subject was dehydrated. Water and sodium absorption from isotonic NaCl occurred in the hydrated state and was abolished by ADH as well as by dehydration in the jejunum. In some instances, net gain of water and sodium in the lumen occurred. In the ileum, ADH and dehydration caused a decrease in water and sodium absorption rate. By contrast, unidirectional flux into the intestinal lumen of water and sodium, as well as dextrose and D-xylose diffusion, remained unchanged by ADH. During perfusions with hypertonic urea solutions the rates of sodium and water entry into the intestine were greatly increased during i.v. ADH infusion, whereas urea loss from the study segment remained constant. ADH in the dosage used did not affect human intestinal motility. The results suggest that circulating ADH in physiologic concentrations affects the small intestine in one of two ways: increased secretion of water and salt into the lumen or direct interference with the active sodium transport mechanism. PMID:5645853

  18. Transport mechanisms responsible for the absorption of loracarbef, cefixime, and cefuroxime axetil into human intestinal Caco-2 cells.

    PubMed

    Dantzig, A H; Duckworth, D C; Tabas, L B

    1994-04-20

    Loracarbef, cefixime and cefuroxime axetil are beta-lactam antibiotics that are administered orally. Oral absorption of loracarbef is nearly complete, while that of cefixime and cefuroxime axetil is 30-50%. To investigate this we used the human intestinal cell line Caco-2 that possesses the proton-dependent peptide transporter that takes up cephalexin and cefaclor. Drug uptake was measured at pH 6 by high performance liquid chromatography or with radioactively labelled drug. The initial uptake rate of 1 mM cefixime was lower than that of 1 mM loracarbef. By 2 h both drugs were concentrated intracellularly against a gradient; however, the accumulation of cefixime was only 40% of that of loracarbef. The uptake rate of both drugs was sodium-independent, temperature- and energy-dependent, and was inhibited by dipeptides, cephalexin, cefaclor, but not by amino acids. Kinetic analysis of the concentration-dependence of the uptake rates for loracarbef and cefixime indicated that diffusion and a single transport system were responsible for uptake. The kinetic parameters for loracarbef and cefixime, respectively, were: Km values of 8 and 17 mM and Vmax values of 6.5 and 2 nmol/min per mg protein. Loracarbef and cefixime were competitive inhibitors of each other's uptake. By contrast, cefuroxime axetil was taken up and rapidly hydrolyzed to cefuroxime by Caco-2 cells. Cefuroxime axetil uptake was not dependent on energy and was not affected by dipeptides. Thus, cefuroxime axetil apparently enters Caco-2 cells by simple diffusion. By contrast, loracarbef and cefixime share a common transport mechanism, the proton-dependent dipeptide transporter. Cefixime was taken up less well than loracarbef due to a substantial reduction in the turnover rate and decreased affinity of the transporter for cefixime. PMID:8155686

  19. Absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs including peptide and protein drugs in rats.

    PubMed

    Alama, Tammam; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-29

    In general, the intestinal absorption of small hydrophilic molecules and macromolecules like peptides, after oral administration is very poor. Absorption enhancers are considered to be one of the most promising agents to enhance the intestinal absorption of drugs. In this research, we focused on a gemini surfactant, a new type of absorption enhancer. The intestinal absorption of drugs, with or without sodium dilauramidoglutamide lysine (SLG-30), a gemini surfactant, was examined by an in situ closed-loop method in rats. The intestinal absorption of 5(6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-dextrans (FDs) was significantly enhanced in the presence of SLG-30, such effect being reversible. Furthermore, the calcium levels in the plasma significantly decreased when calcitonin was co-administered with SLG-30, suggestive of the increased intestinal absorption of calcitonin. In addition, no significant increase in the of lactate dehydrogenase (LDH) activity or in protein release from the intestinal epithelium was observed in the presence of SLG-30, suggestive of the safety of this compound. These findings indicate that SLG-30 is an effective absorption-enhancer for improving the intestinal absorption of poorly absorbed drugs, without causing serious damage to the intestinal epithelium. PMID:26707414

  20. Distribution of vasoactive intestinal peptide-like immunoreactivity in the taste organs of teleost fish and frog.

    PubMed

    Witt, M

    1995-02-01

    Using immunohistochemistry, vasoactive intestinal peptide (VIP) was visualized in taste bud cells of the carp, Cyprinus carpio, and the European catfish, Silurus glanis, by means of light and electron microscopy. Intracellular membrane systems, presumably smooth endoplasmic reticulum, of light (sensory) cells, but not of dark (supporting) cells and basal cells, were densely labelled with antibody. In the frog (four species: Rana temporaria, R. ridibunda, R. arvalis, R. pipiens), taste bud cells did not label. However, the dense basal nerve fibre plexus, some subepithelial ganglionic cells, but no ascending intragemmal fibres, were immunoreactive. In fish, the results support evidence that VIP is involved in the modulation of taste transduction at the level of receptor cells. In the frog, an indirect, possibly vasodilatatory effect on taste perception may be considered. PMID:7775201

  1. Transport phenomena of microbial flora in the small intestine with peristalsis.

    PubMed

    Ishikawa, T; Sato, T; Mohit, G; Imai, Y; Yamaguchi, T

    2011-06-21

    The gastrointestinal tract of humans is colonized by indigenous prokaryotic and eukaryotic microbial cells that form a complex ecological system called microbial flora. Although the microbial flora has diverse functions, its homeostasis inside the gastrointestinal tract is still largely unknown. Therefore, creating a model for investigating microbial flora in the gastrointestinal tract is important. In this study, we developed a novel numerical model to explore the transport phenomena of microbial flora in the small intestine. By simultaneously solving the flow field generated by peristalsis, the concentrations of oxygen and nutrient, and the densities of moderate anaerobes and aerobes, the effects of fluid mechanics on the transport phenomena of microbial flora are discussed. The results clearly illustrated that fluid mechanics have considerable influence not only on the bacterial population, but also on the concentration distributions of oxygen and nutrient. Especially, the flow field enhances the radial variation of the concentration fields. We also show scaling arguments for bacterial growth and oxygen consumption, which capture the main features of the results. Additionally, we investigated the transport phenomena of microbial flora in a long tube with 40 constrictions. The results showed a high growth rate of aerobes in the upstream side and a high growth rate of anaerobes in the downstream side, which qualitatively agrees with experimental observations of human intestines. These new findings provide the fundamental basis for a better understanding of the transport phenomena of microbial flora in the intestine. PMID:21440560

  2. Involvement of intestinal uptake transporters in the absorption of azithromycin and clarithromycin in the rat.

    PubMed

    Garver, Eric; Hugger, Erin D; Shearn, Shawn P; Rao, Anuradha; Dawson, Paul A; Davis, Charles B; Han, Chao

    2008-12-01

    Macrolide antibiotics azithromycin (AZI) and clarithromycin (CLARI) are large molecular weight compounds and are substrates for apically polarized efflux transporters such as P-glycoprotein, which can potentially restrict intestinal absorption. However, despite these undesired physicochemical and biopharmaceutical properties, AZI and CLARI exhibit moderate to excellent p.o. bioavailability in preclinical species and humans. Intestinal uptake transporters, such as organic anion transporting polypeptides (OATPs), can facilitate the uptake of drugs that are substrates and hence increase p.o. absorption. The present study was designed to determine whether the intestinal Oatps are involved in absorption of these macrolides. AZI or CLARI was dosed p.o. to Sprague-Dawley rats after p.o. administration with vehicle or rifamycin SV (RIF), an OATP inhibitor. The p.o. exposures of AZI and CLARI were reduced 65 and 45%, respectively, when coadministered with an optimized RIF regimen. The p.o. RIF had no affect on the total blood clearance of these macrolides and most likely did not cause induction of metabolizing enzymes and/or transporters. Therefore, the results suggest that inhibition of an RIF-sensitive uptake transporter such as Oatp along the rat gastrointestinal tract was responsible for reduced p.o. exposure of AZI and CLARI. In addition, AZI and CLARI caused inhibition of taurocholate uptake in rat Oatp1a5-transfected Madin-Darby canine kidney cell monolayers. The in vitro and in vivo results suggest that the intestinal Oatps are involved in the p.o. absorption of AZI and CLARI in the rat. PMID:18755851

  3. Suppression by Trypanosoma brucei of anaphylaxis-mediated ion transport in the small intestine of rats.

    PubMed Central

    Gould, S S; Castro, G A

    1994-01-01

    The hypothesis that failure of hosts infected with Trypanosoma brucei to express type 1 hypersensitivity is related to this parasite's ability to down-regulate IgE production, and not to an innate lack of allergenicity of T. brucei antigens, was tested by studying anaphylaxis-induced changes in net epithelial ion transport in rats. Transport changes were quantified electrophysiologically in vitro, as a change in transmural short-circuit current when sensitized intestine was challenged with homologous antigen. Rats injected parenterally with trypanosome antigen elicited intestinal anaphylaxis in response to antigenic challenge, whereas the intestine of rats infected with T. brucei failed to respond. Infection with T. brucei also suppressed the anaphylactic response in rats sensitized to and challenged with ovalbumin and T. spiralis-derived antigens. In these cases suppression was related to the ability of T. brucei to block production of IgE, and not to the physiological failure of the epithelial response. However, in rats sensitized by infection with T. spiralis, neither the anaphylactic response nor IgE production were inhibited by T. brucei. Furthermore, intestinal mastocytosis normally associated with trichinosis was unaffected by the trypanosome infection. Results support the conclusion that the failure to express anaphylaxis in T. brucei-infected rats is due to the inhibition of IgE production and not to the lack of allergenicity of trypanosome antigens. PMID:8206518

  4. Sugar alcohols enhance calcium transport from rat small and large intestine epithelium in vitro.

    PubMed

    Mineo, Hitoshi; Hara, Hiroshi; Tomita, Fusao

    2002-06-01

    We compared the effect of a variety of sugar alcohols on calcium absorption from the rat small and large intestine in vitro. An Ussing chamber technique was used to determine the net transport of Ca across the epithelium isolated from the jejunum, ileum, cecum, and colon of rats. The concentration of Ca in the serosal and mucosal Tris buffer solution was 1.25 mM and 10 mM, respectively. The Ca concentration in the serosal medium was determined after incubation for 30 min and the net Ca absorption was evaluated. The addition of 0.1-200 mM erythritol, xylitol, sorbitol, maltitol, palatinit, or lactitol to the mucosal medium affected net Ca absorption in the intestinal preparations. Differences in Ca transport were observed between portions of the intestine, but not between sugar alcohols tested. We concluded that sugar alcohols directly affect the epithelial tissue and promote Ca absorption from the small and large intestine in vitro. PMID:12064809

  5. Intestinal Sodium Glucose Cotransporter 1 Inhibition Enhances Glucagon-Like Peptide-1 Secretion in Normal and Diabetic Rodents.

    PubMed

    Oguma, Takahiro; Nakayama, Keiko; Kuriyama, Chiaki; Matsushita, Yasuaki; Yoshida, Kumiko; Hikida, Kumiko; Obokata, Naoyuki; Tsuda-Tsukimoto, Minoru; Saito, Akira; Arakawa, Kenji; Ueta, Kiichiro; Shiotani, Masaharu

    2015-09-01

    The sodium glucose cotransporter (SGLT) 1 plays a major role in glucose absorption and incretin hormone release in the gastrointestinal tract; however, the impact of SGLT1 inhibition on plasma glucagon-like peptide-1 (GLP-1) levels in vivo is controversial. We analyzed the effects of SGLT1 inhibitors on GLP-1 secretion in normoglycemic and hyperglycemic rodents using phloridzin, CGMI [3-(4-cyclopropylphenylmethyl)-1-(β-d-glucopyranosyl)-4-methylindole], and canagliflozin. These compounds are SGLT2 inhibitors with moderate SGLT1 inhibitory activity, and their IC50 values against rat SGLT1 and mouse SGLT1 were 609 and 760 nM for phloridzin, 39.4 and 41.5 nM for CGMI, and 555 and 613 nM for canagliflozin, respectively. Oral administration of these inhibitors markedly enhanced and prolonged the glucose-induced plasma active GLP-1 (aGLP-1) increase in combination treatment with sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, in normoglycemic mice and rats. CGMI, the most potent SGLT1 inhibitor among them, enhanced glucose-induced, but not fat-induced, plasma aGLP-1 increase at a lower dose compared with canagliflozin. Both CGMI and canagliflozin delayed intestinal glucose absorption after oral administration in normoglycemic rats. The combined treatment of canagliflozin and a DPP4 inhibitor increased plasma aGLP-1 levels and improved glucose tolerance compared with single treatment in both 8- and 13-week-old Zucker diabetic fatty rats. These results suggest that transient inhibition of intestinal SGLT1 promotes GLP-1 secretion by delaying glucose absorption and that concomitant inhibition of intestinal SGLT1 and DPP4 is a novel therapeutic option for glycemic control in type 2 diabetes mellitus. PMID:26105952

  6. Involvement of drinking and intestinal sodium absorption in hyponatremic effect of atrial natriuretic peptide in seawater eels.

    PubMed

    Tsukada, Takehiro; Rankin, J Cliff; Takei, Yoshio

    2005-01-01

    Atrial natriuretic peptide (ANP) decreases plasma Na+ concentration and promtes seawater (SW) adaptation in eels. The hyponatremia may most probably be caused by increased branchial extrusion of Na+, but the mechanism has not been determined yet. The present study examined initially the effects of ANP on branchial Na+ efflux in vivo using isotopic 22Na. However, the efflux rate was not altered by infusion of a hyponatremic dose of ANP (5 pmol.kg(-1).min(-1)). Therefore, we sought to examine whether the ANP-mediated hyponatremia is caused by a decrease in the uptake of Na+ from the environment. Since a decrease in drinking was highly correlated with a degree of hyponatremia, conscious SW eels were infused with dilute SW into the stomach at a normal drinking rate to offset the antidipsogenic effect of ANP. Under this regimen, the hyponatremic effect of ANP was abolished. Then, we examined the site of Na+ absorption in the alimentary tract by measuring the changes in ion composition of intraluminal fluid along the tract. Since Na+ was absorbed at the esophagus and anterior/middle intestine, a sac was prepared at each site and the effects of ANP were examined in situ in conscious SW eels. ANP infusion did not alter Na+ absorption at the esophagus, but it profoundly reduced the absorption at the intestine. Together with our previous finding that ANP does not alter renal Na+ excretion, we propose that ANP reduces plasma Na+ concentration in SW eels by inhibiting drinking and subsequent absorption of Na+ by the intestine. PMID:15684587

  7. HIV-1 Alters Intestinal Expression of Drug Transporters and Metabolic Enzymes: Implications for Antiretroviral Drug Disposition.

    PubMed

    Kis, Olena; Sankaran-Walters, Sumathi; Hoque, M Tozammel; Walmsley, Sharon L; Dandekar, Satya; Bendayan, Reina

    2016-05-01

    This study investigated the effects of HIV-1 infection and antiretroviral therapy (ART) on the expression of intestinal drug efflux transporters, i.e., P-glycoprotein (Pgp), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP), and metabolic enzymes, such as cytochrome P450s (CYPs), in the human upper intestinal tract. Intestinal biopsy specimens were obtained from HIV-negative healthy volunteers, ART-naive HIV-positive (HIV(+)) subjects, and HIV(+) subjects receiving ART (10 in each group). Intestinal tissue expression of drug transporters and metabolic enzymes was examined by microarray, real-time quantitative reverse transcription-PCR (qPCR), and immunohistochemistry analyses. Microarray analysis demonstrated significantly lower expression of CYP3A4 and ABCC2/MRP2 in the HIV(+) ART-naive group than in uninfected subjects. qPCR analysis confirmed significantly lower expression of ABCC2/MRP2 in ART-naive subjects than in the control group, while CYP3A4 and ABCG2/BCRP showed a trend toward decreased expression. Protein expression of MRP2 and BCRP was also significantly lower in the HIV(+) naive group than in the control group and was partially restored to baseline levels in HIV(+) subjects receiving ART. In contrast, gene and protein expression of ABCB1/Pgp was significantly increased in HIV(+) subjects on ART relative to HIV(+) ART-naive subjects. These data demonstrate that the expression of drug-metabolizing enzymes and efflux transporters is significantly altered in therapy-naive HIV(+) subjects and in those receiving ART. Since CYP3A4, Pgp, MRPs, and BCRP metabolize or transport many antiretroviral drugs, their altered expression with HIV infection may negatively impact drug pharmacokinetics in HIV(+) subjects. This has clinical implications when using data from healthy volunteers to guide ART. PMID:26902756

  8. Perinatal upregulation of intestinal transport of carnitine (C) in newborn pigs

    SciTech Connect

    Li, B.U.K.; Murray, R.D.; Heitlinger, L.A.; McClung, H.J.; Hughes, A.M.; O'Dorisio, T.M.; Sloan, H.R. Ohio State Univ., Columbus )

    1990-02-26

    Since C facilitates the perinatal transition from carbohydrate to lipid-derived energy, the authors examined the contribution of intestinal transport of dietary C to this process by determining (C)'s in sow's milk, pig jejunum and liver, and C flux across the jejunum (J{sub m-s}) as a function of postnatal age. The authors measured portal venous glucagon (G) and insulin (l) as potential regulatory signals and attempted to alter intestinal transport of C by infusing G. Pigs at days 1-7 (NB-newborn), 14-16 (SU-suckling) and 33-35 (WN-weanling) were studied. (C)'s in sow milk, piglet jejunum, and liver were determined. Fluxes were measured in an Ussing chamber and in an in situ recirculating jejunal perfusion. The effect of an IV infusion of G on ({sup 3}H)C absorption was evaluated in a single animal; an adjacent jejunal segment received saline. Sow's milk and liver (C)'s, and jejunal C transport were highest following birth and declined towards weaning. Plasma (G) and the G:I ratio demonstrated a parallel temporal pattern. The G-stimulated jejunal segment removed 53% of the C and the non-stimulated control segment, 8%. It was concluded that during the perinatal metabolic transition, enhanced intestinal nutrient assimilation promotes the transfer of dietary C to the liver where it could facilitate fatty acid oxidation. This pattern of upregulated intestinal transport immediately after birth may be mediated by pancreatic G and I secretion.

  9. Vasoactive intestinal peptide binding sites and fibers in the brain of the pigeon Columba livia: An autoradiographic and immunohistochemical study

    SciTech Connect

    Hof, P.R.; Dietl, M.M.; Charnay, Y.; Martin, J.L.; Bouras, C.; Palacios, J.M.; Magistretti, P.J. )

    1991-03-15

    The distribution of vasoactive intestinal peptide (VIP) binding sites in the pigeon brain was examined by in vitro autoradiography on slide-mounted sections. A fully characterized monoiodinated form of VIP, which maintains the biological activity of the native peptide, was used throughout this study. The highest densities of binding sites were observed in the hyperstriatum dorsale, archistriatum, auditory field L of neostriatum, area corticoidea dorsolateralis and temporo-parieto-occipitalis, area parahippocampalis, tectum opticum, nucleus dorsomedialis anterior thalami, and in the periventricular area of the hypothalamus. Lower densities of specific binding occurred in the neostriatum, hyperstriatum ventrale and nucleus septi lateralis, dorsolateral area of the thalamus, and lateral and posteromedial hypothalamus. Very low to background levels of VIP binding were detected in the ectostriatum, paleostriatum primitivum, paleostriatum augmentatum, lobus parolfactorius, nucleus accumbens, most of the brainstem, and the cerebellum. The distribution of VIP-containing fibers and terminals was examined by indirect immunofluorescence using a polyclonal antibody against porcine VIP. Fibers and terminals were observed in the area corticoidea dorsolateralis, area parahippocampalis, hippocampus, hyperstriatum accessorium, hyperstriatum dorsale, archistriatum, tuberculum olfactorium, nuclei dorsolateralis and dorsomedialis of the thalamus, and throughout the hypothalamus and the median eminence. Long projecting fibers were visualized in the tractus septohippocampalis. In the brainstem VIP immunoreactive fibers and terminals were observed mainly in the substantia grisea centralis, fasciculus longitudinalis medialis, lemniscus lateralis, and in the area surrounding the nuclei of the 7th, 9th, and 10th cranial nerves.

  10. Characterization of the vasoactive intestinal peptide receptor in rat submandibular gland: radioligand binding assay in membrane preparations

    SciTech Connect

    Turner, J.T.; Bylund, D.B.

    1987-09-01

    The vasoactive intestinal peptide (VIP) receptor in membranes from rat submandibular gland was studied using radioligand binding assays with /sup 125/I-VIP and various unlabeled competing ligands. In addition to the necessity of working within the parameters under which all radioligand binding assays should be performed, binding studies with /sup 125/I-VIP, as with other peptide hormones and neurotransmitters, are subject to additional technical difficulties. Specific problems that were addressed included radioligand proteolysis, the identification of an effective protease inhibitor (leupeptin) and the deleterious effects of a commonly used inhibitor (bacitracin); avid radioligand absorption to incubation tubes that was eliminated by precoating of the tubes with a combination of polyethylenimine and an organosilane; and a disproportionate effect of increasing membrane protein concentration on affinity estimates. Under optimized conditions, the affinity (Kd) and density Bmax values for /sup 125/I-VIP obtained from saturation assays (76 pM, 2.0 pmol/mg) were in excellent agreement. Membrane protein (or receptor) levels beyond the linear portion of the receptor concentration curve are often used in radioligand binding assays. Results from /sup 125/I-VIP binding studies at elevated receptor concentrations revealed the predicted marked decrease in receptor affinity. In addition, the rank order potency of unlabeled ligands in inhibition binding assays was changed. The optimization of the assay for measuring VIP receptors in submandibular gland membrane provides a reliable method for studying the role of receptor regulation in stimulus-secretion coupling for this neuropeptide.

  11. Characterization and regulation of adenosine transport in T84 intestinal epithelial cells.

    PubMed

    Mun, E C; Tally, K J; Matthews, J B

    1998-02-01

    Adenosine release from mucosal sources during inflammation and ischemia activates intestinal epithelial Cl- secretion. Previous data suggest that A2b receptor-mediated Cl- secretory responses may be dampened by epithelial cell nucleoside scavenging. The present study utilizes isotopic flux analysis and nucleoside analog binding assays to directly characterize the nucleoside transport system of cultured T84 human intestinal epithelial cells and to explore whether adenosine transport is regulated by secretory agonists, metabolic inhibition, or phorbol ester. Uptake of adenosine across the apical membrane displayed characteristics of simple diffusion. Kinetic analysis of basolateral uptake revealed a Na(+)-independent, nitrobenzylthioinosine (NBTI)-sensitive facilitated-diffusion system with low affinity but high capacity for adenosine. NBTI binding studies indicated a single population of high-affinity binding sites basolaterally. Neither forskolin, 5'-(N-ethylcarboxamido)-adenosine, nor metabolic inhibition significantly altered adenosine transport. However, phorbol 12-myristate 13-acetate significantly reduced both adenosine transport and the number of specific NBTI binding sites, suggesting that transporter number may be decreased through activation of protein kinase C. This basolateral facilitated adenosine transporter may serve a conventional function in nucleoside salvage and a novel function as a regulator of adenosine-dependent Cl- secretory responses and hence diarrheal disorders. PMID:9486178

  12. Thermodynamics of peptide binding to the transporter associated with antigen processing (TAP).

    PubMed

    Neumann, Lars; Abele, Rupert; Tampé, Robert

    2002-12-13

    The ATP-binding cassette (ABC) transporter TAP plays an essential role in antigen processing and immune response to infected or malignant cells. TAP translocates proteasomal degradation products from the cytosol into the endoplasmic reticulum, where MHC class I molecules are loaded with these peptides. Kinetically stable peptide-MHC complexes are transported to the cell surface for inspection by cytotoxic T lymphocytes. The transport cycle of TAP is initiated by peptide binding, which is responsible for peptide selection and for stimulation of ATP-hydrolysis and subsequent translocation. Here we have analysed the driving forces for the formation of the peptide-TAP complex by kinetic and thermodynamic methods. First, the apparent peptide association and dissociation rates were determined at various temperatures. Strikingly, very high activation energies for apparent association (E(a)(ass)=106 kJmol(-1)) and dissociation (E(a)(diss)=80 kJmol(-1)) of the peptide-TAP complex were found. Next, the temperature-dependence of the peptide affinity constants was investigated by equilibrium-binding assays. Along with calculations of free enthalpy deltaG, enthalpy deltaH and entropy deltaS, a large positive change in heat capacity was resolved (deltaC degrees =23 kJmol(-1)K(-1)), indicating a fundamental structural reorganization of the TAP complex upon peptide binding. The inspection of the conformational entropy reveals that approximately one-fourth of all TAP residues is rearranged. These thermodynamic studies indicate that at physiological temperature, peptide binding is endothermic and driven by entropy. PMID:12470952

  13. Function, expression, and characterization of the serotonin transporter in the native human intestine

    PubMed Central

    Gill, Ravinder K.; Pant, Nitika; Saksena, Seema; Singla, Amika; Nazir, Talat M.; Vohwinkel, Lisa; Turner, Jerrold R.; Goldstein, Jay; Alrefai, Waddah A.; Dudeja, Pradeep K.

    2016-01-01

    The enteric serotonin transporter (SERT) plays a critical role in modulating serotonin availability and thus has been implicated in the pathogenesis of various intestinal disorders. To date, SERT expression and function in the human intestine have not been investigated. Current studies were designed to characterize the function, expression, distribution, and membrane localization of SERT in the native human intestine. Real-time PCR studies showed relatively higher SERT mRNA expression in the human small intestine compared with colon (ileum ≫ duodenum ≫ jejunum). Northern blot analysis revealed three mRNA hybridizing species encoding SERT (3.0, 4.9, and 6.8 kb) in the human ileum. Consistent with SERT mRNA expression, SERT immunostaining was mainly detected in the epithelial cells of human duodenal and ileal resected tissues. Notably, SERT expression was localized predominantly to the apical and intracellular compartments and was distributed throughout the crypt-villus axis. Immunoblotting studies detected a prominent protein band (~70 kDa) in the ileal apical plasma membrane vesicles (AMVs) isolated from mucosa obtained from organ-donor intestine. Functional studies showed that uptake of [3H]serotonin (150 nM) in human ileal AMVs was 1) significantly increased in the presence of both Na+ and Cl−; 2) inhibited (~50%) by the neuronal SERT inhibitor, fluoxetine (10 μM) and by unlabeled 5-HT; and 3) exhibited saturation kinetics indicating the presence of a carrier-mediated process. Our studies demonstrated differential expression of SERT across various regions of the human intestine and provide evidence for the existence of a functional SERT capable of removing intraluminal serotonin in human ileal epithelial cells. PMID:17991706

  14. Surface expression, peptide repertoire, and thermostability of chicken class I molecules correlate with peptide transporter specificity.

    PubMed

    Tregaskes, Clive A; Harrison, Michael; Sowa, Anna K; van Hateren, Andy; Hunt, Lawrence G; Vainio, Olli; Kaufman, Jim

    2016-01-19

    The chicken major histocompatibility complex (MHC) has strong genetic associations with resistance and susceptibility to certain infectious pathogens. The cell surface expression level of MHC class I molecules varies as much as 10-fold between chicken haplotypes and is inversely correlated with diversity of peptide repertoire and with resistance to Marek's disease caused by an oncogenic herpesvirus. Here we show that the average thermostability of class I molecules isolated from cells also varies, being higher for high-expressing MHC haplotypes. However, we find roughly the same amount of class I protein synthesized by high- and low-expressing MHC haplotypes, with movement to the cell surface responsible for the difference in expression. Previous data show that chicken TAP genes have high allelic polymorphism, with peptide translocation specific for each MHC haplotype. Here we use assembly assays with peptide libraries to show that high-expressing B15 class I molecules can bind a much wider variety of peptides than are found on the cell surface, with the B15 TAPs restricting the peptides available. In contrast, the translocation specificity of TAPs from the low-expressing B21 haplotype is even more permissive than the promiscuous binding shown by the dominantly expressed class I molecule. B15/B21 heterozygote cells show much greater expression of B15 class I molecules than B15/B15 homozygote cells, presumably as a result of receiving additional peptides from the B21 TAPs. Thus, chicken MHC haplotypes vary in several correlated attributes, with the most obvious candidate linking all these properties being molecular interactions within the peptide-loading complex (PLC). PMID:26699458

  15. Surface expression, peptide repertoire, and thermostability of chicken class I molecules correlate with peptide transporter specificity

    PubMed Central

    Tregaskes, Clive A.; Harrison, Michael; Sowa, Anna K.; van Hateren, Andy; Hunt, Lawrence G.; Vainio, Olli; Kaufman, Jim

    2016-01-01

    The chicken major histocompatibility complex (MHC) has strong genetic associations with resistance and susceptibility to certain infectious pathogens. The cell surface expression level of MHC class I molecules varies as much as 10-fold between chicken haplotypes and is inversely correlated with diversity of peptide repertoire and with resistance to Marek’s disease caused by an oncogenic herpesvirus. Here we show that the average thermostability of class I molecules isolated from cells also varies, being higher for high-expressing MHC haplotypes. However, we find roughly the same amount of class I protein synthesized by high- and low-expressing MHC haplotypes, with movement to the cell surface responsible for the difference in expression. Previous data show that chicken TAP genes have high allelic polymorphism, with peptide translocation specific for each MHC haplotype. Here we use assembly assays with peptide libraries to show that high-expressing B15 class I molecules can bind a much wider variety of peptides than are found on the cell surface, with the B15 TAPs restricting the peptides available. In contrast, the translocation specificity of TAPs from the low-expressing B21 haplotype is even more permissive than the promiscuous binding shown by the dominantly expressed class I molecule. B15/B21 heterozygote cells show much greater expression of B15 class I molecules than B15/B15 homozygote cells, presumably as a result of receiving additional peptides from the B21 TAPs. Thus, chicken MHC haplotypes vary in several correlated attributes, with the most obvious candidate linking all these properties being molecular interactions within the peptide-loading complex (PLC). PMID:26699458

  16. Translating Molecular Physiology of Intestinal Transport into Pharmacologic Treatment of Diarrhea: Stimulation of Na+ Absorption

    PubMed Central

    Singh, Varsha; Yang, Jianbo; Chen, Tiane-e; Zachos, Nick; Kovbasnjuk, Olga; Verkman, Alan; Donowitz, Mark

    2013-01-01

    Diarrheal diseases remain a leading cause of morbidity and mortality for children in developing countries while representing an important cause of morbidity worldwide. The WHO recommended low osmolarity oral rehydration solutions plus zinc save lives in patients with acute diarrhea1, but there are no approved, safe drugs which have been shown to be effective against most causes of acute diarrhea. Identification of abnormalities in electrolyte handling by the intestine in diarrhea, including increased intestinal anion secretion and reduced Na+ absorption, suggest a number of potential drug targets. This is based on the view that successful drug therapy for diarrhea will result from correcting the abnormalities in electrolyte transport that are pathophysiologic for diarrhea. We review the molecular mechanisms of physiologic regulation of intestinal ion transport and changes that occur in diarrhea and the status of drugs being developed to correct the transport abnormalities in Na+ absorption which occur in diarrhea. Mechanisms of Cl− secretion and approaches to anti-Cl− secretory therapies of diarrhea are discussed in a companion review. PMID:24184676

  17. Translating molecular physiology of intestinal transport into pharmacologic treatment of diarrhea: stimulation of Na+ absorption.

    PubMed

    Singh, Varsha; Yang, Jianbo; Chen, Tiane-e; Zachos, Nicholas C; Kovbasnjuk, Olga; Verkman, Alan S; Donowitz, Mark

    2014-01-01

    Diarrheal diseases remain a leading cause of morbidity and mortality for children in developing countries, while representing an important cause of morbidity worldwide. The World Health Organization recommended that low osmolarity oral rehydration solutions plus zinc save lives in patients with acute diarrhea, but there are no approved, safe drugs that have been shown to be effective against most causes of acute diarrhea. Identification of abnormalities in electrolyte handling by the intestine in diarrhea, including increased intestinal anion secretion and reduced Na(+) absorption, suggest a number of potential drug targets. This is based on the view that successful drug therapy for diarrhea will result from correcting the abnormalities in electrolyte transport that are pathophysiologic for diarrhea. We review the molecular mechanisms of physiologic regulation of intestinal ion transport and changes that occur in diarrhea and the status of drugs being developed to correct the transport abnormalities in Na(+) absorption that occur in diarrhea. Mechanisms of Cl(-) secretion and approaches to anti-Cl(-) secretory therapies of diarrhea are discussed in a companion review. PMID:24184676

  18. Vasoactive intestinal peptide loss leads to impaired CNS parenchymal T-cell infiltration and resistance to experimental autoimmune encephalomyelitis.

    PubMed

    Abad, Catalina; Tan, Yossan-Var; Lopez, Robert; Nobuta, Hiroko; Dong, Hongmei; Phan, Phu; Feng, Ji-Ming; Campagnoni, Anthony T; Waschek, James A

    2010-11-01

    The neuropeptide vasoactive intestinal peptide (VIP) has been shown to inhibit macrophage proinflammatory actions, promote a positive Th2/Th1 balance, and stimulate regulatory T-cell production. The fact that this peptide is highly efficacious in animal models of inflammatory diseases such as collagen-induced arthritis and experimental autoimmune encephalomyelitis (EAE) suggests that the endogenous peptide might normally provide protection against such pathologies. We thus studied the response of VIP-deficient (i.e., VIP KO) mice to myelin oligodendrocyte protein-induced EAE. Surprisingly, VIP KO mice were almost completely resistant to EAE, with delayed onset and mild or absent clinical profile. Despite this, flow cytometric analyses and antigen-rechallenge experiments indicated that myelin oligodendrocyte protein-treated VIP KO mice exhibited robust Th1/Th17 cell inductions and antigen-specific proliferation and cytokine responses. Moreover, adoptive transfer of lymphocytes from immunized VIP KO mice to WT recipients resulted in full-blown EAE, supporting their encephalitogenic potential. In contrast, transfer of encephalitogenic WT cells to VIP KO hosts did not produce EAE, suggesting that loss of VIP specifically affected the effector phase of the disease. Histological analyses indicated that CD4 T cells entered the meningeal and perivascular areas of VIP-deficient mice, but that parenchymal infiltration was strongly impaired. Finally, VIP pretreatment of VIP KO mice before immunization was able to restore their sensitivity to EAE. These results indicate that VIP plays an unanticipated permissive and/or proinflammatory role in the propagation of the inflammatory response in the CNS, a finding with potential therapeutic relevance in autoimmune neuroinflammatory diseases such as multiple sclerosis. PMID:20978211

  19. Utilization of peptide carrier system to improve intestinal absorption: targeting prolidase as a prodrug-converting enzyme

    NASA Technical Reports Server (NTRS)

    Bai, J. P.; Hu, M.; Subramanian, P.; Mosberg, H. I.; Amidon, G. L.

    1992-01-01

    The feasibility of targeting prolidase as a peptide prodrug-converting enzyme has been examined. The enzymatic hydrolysis by prolidase of substrates for the peptide transporter L-alpha-methyldopa-pro and several dipeptide analogues without an N-terminal alpha-amino group (phenylpropionylproline, phenylacetylproline, N-benzoylproline, and N-acetylproline) was investigated. The Michaelis-Menten parameters Km and Vmax for L-alpha-methyldopa-pro are 0.09 +/- 0.02 mM and 3.98 +/- 0.25 mumol/min/mg protein, respectively. However, no hydrolysis of the dipeptide analogues without an N-terminal alpha-amino group is observed, suggesting that an N-terminal alpha-amino group is required for prolidase activity. These results demonstrate that prolidase may serve as a prodrug-converting enzyme for the dipeptide-type prodrugs, utilizing the peptide carrier for transport of prodrugs into the mucosal cells and prolidase, a cytosolic enzyme, to release the drug. However, a free alpha-amino group appears to be necessary for prolidase hydrolysis.

  20. Effects of colchicine on the intestinal transport of endogenous lipid. Ultrastructural, biochemical, and radiochemical studies in fasting rats

    SciTech Connect

    Pavelka, M.; Gangl, A.

    1983-03-01

    The involvement of microtubules in the transepithelial transport of exogenous lipid in intestinal absorptive cells has been suggested. Using electronmicroscopic, biochemical, and radiochemical methods, researchers have studied the effects of the antimicrotubular agent colchicine on the intestinal mucosa and on the intestinal transport of endogenous lipid of rats in the fasting state. After colchicine treatment, the concentration of triglycerides in intestinal mucosa of rats fasted for 24 h doubled, and electron microscopic studies showed a striking accumulation of lipid particles in absorptive epithelial cells of the tips of jejunal villi. These findings suggest that colchicine interferes with the intestinal transepithelial transport of endogenous lipoproteins. Additional studies, using an intraduodenal pulse injection of (/sup 14/C)linoleic acid, showed that colchicine does not affect the uptake of fatty acids by intestinal mucosa. However, it had divergent effects on fatty acid esterification, enhancing their incorporation into triglycerides relative to phospholipids, and caused a significant accumulation of endogenous diglycerides, triglycerides, and cholesterol esters within the absorptive intestinal epithelium. Detailed ultrastructural and morphometric studies revealed a decrease of visible microtubules, and a displacement of the smooth and rough endoplasmic reticulum and Golgi apparatus. Furthermore, it is shown that after colchicine treatment, microvilli appear at the lateral plasma membrane of intestinal absorptive cells, a change not previously reported to our knowledge. Thus, our study shows that colchicine causes significant changes in enterocyte ultrastructure and colchicine perturbs the reesterification of absorbed endogenous fatty acids and their secretion in the form of triglyceride-rich lipoproteins from the enterocyte.

  1. Transepithelial transport of ambroxol hydrochloride across human intestinal Caco-2 cell monolayers.

    PubMed

    Stetinová, Vera; Smetanová, Libuse; Kholová, Dagmar; Svoboda, Zbynek; Kvetina, Jaroslav

    2009-09-01

    This study aimed i) to characterize the transepithelial transport of the mucolytic agent ambroxol hydrochloride across the intestinal barrier, ii) to classify the ambroxol according to Biopharmaceutics Classification System (BCS) and iii) to predict ambroxol absorption in humans. Transport of ambroxol (100, 300 and 1000 micromol/l) was studied in a human colon carcinoma cell line Caco-2 in apical to basolateral and basolateral to apical direction, under iso-pH 7.4 and pH-gradient (6 vs. 7.4) conditions. The relative contribution of the paracellular route was estimated using Ca2+-free transport medium. Ambroxol samples from receiver compartments were analysed by HPLC with UV detection (242 nm). Results showed that ambroxol transport is linear with time, pH-dependent and direction-independent, displays non-saturable (first-order) kinetics. Thus, the transport seems to be transcellular mediated by passive diffusion. Estimated high solubility and high permeability (P(app) = 45 x 10(-6) cm/s) of ambroxol rank it among well absorbed compounds and class I of BCS. It can be expected that the oral dose fraction of ambroxol absorbed in human intestine is high. PMID:20037197

  2. Use of alveolar cell monolayers of varying electrical resistance to measure pulmonary peptide transport.

    PubMed

    Dodoo, A N; Bansal, S S; Barlow, D J; Bennet, F; Hider, R C; Lansley, A B; Lawrence, M J; Marriott, C

    2000-02-01

    The apparent permeability coefficient (P(app)) of two fluorescently tagged model hydrophilic peptides, acXASNH(2) and acXAS(GAS)(7)NH(2), and (14)C-mannitol across monolayers of cultured rat alveolar epithelial cells of varying transepithelial electrical resistance (TER) has been examined. In line with their design features, the peptides were not degraded under the conditions of the test. Furthermore, no concentration dependence of transport of the tripeptide acXASNH(2) was observed over the concentration range studied, nor was any directional transport seen for either of the model peptides, indicating that under the conditions of the test they were not substrates for any transporters or efflux pumps. From the hydrophilic nature of the peptides (as assessed by their log P), and their inverse dependence of transport with molecular weight and TER, it was assumed that the peptides were transported across the cell monolayer passively via the paracellular route. The observed P(app) for the transport of (14)C-mannitol and the peptides across rat alveolar epithelial cell monolayers were found to be inversely (though not linearly) related to the measured TER and could be well-modeled assuming the presence of two populations of "pores" in the cell monolayer, namely, cylindrical pores of diameter 1.5 nm and large pores of diameter 20 nm. The relative populations of the two types of pores varied with the TER of the monolayer, with the number of large pores decreasing with an increase in TER (and the number of small pores taken as fixed). These results suggest that if the cell monolayer is well characterized with respect to the passage of a range of probe molecules across monolayers of varying electrical resistance, it should be possible to predict the P(app) of any hydrophilic peptide or drug crossing the membrane by the paracellular route at any desired TER using a monolayer of any electrical resistance, above a minimum value. PMID:10688751

  3. Characteristic transport of lactoferrin from the intestinal lumen into the bile via the blood in piglets.

    PubMed

    Harada, E; Itoh, Y; Sitizyo, K; Takeuchi, T; Araki, Y; Kitagawa, H

    1999-11-01

    Lactoferrin is a major iron-binding protein in milk from several species, such as humans, monkeys, mice and sows. Using neonatal and weaner piglets, the characteristic transfer of lactoferrin from intestinal lumen into bile via the circulation was investigated. Bovine lactoferrin (1 or 3 g/kg body weight) was infused into the stomach through a polyethylene tube or into the duodenum through a duodenal catheter over 5 min. Peripheral blood and bile samples were collected after the infusion. Lactoferrin absorbed into plasma and bile were assayed quantitatively by double-antibody enzyme-linked immunosorbent assay, and homogeneity of bovine lactoferrin in plasma and bile was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting methods. Morphological investigation was carried out according to the peroxidase anti-peroxidase method. Following oral administration in neonatal pigs, bovine lactoferrin appeared in the blood circulation and reached a peak level after 2 h. It was confirmed immunohistochemically that lactoferrin was transported by endocytosis via the epithelial cells. Lactoferrin absorbed into the blood was also detected in the bile and reached a peak value 12 h after oral administration. Transportation of lactoferrin from the intestinal lumen into the bile via the bloodstream was also observed in weaner piglets. Lactoferrin transported into plasma and bile was confirmed to be the same substance as administrated lactoferrin by electrophoresis and immunoblotting methods. Lactoferrin transported into bile was re-absorbed into the blood in neonatal pigs. These results demonstrate that lactoferrin contained in milk is transported into the circulation from the intestinal lumen and excreted into the bile, suggesting the possibility of entero-hepatic circulation of lactoferrin in neonatal pigs. PMID:10665381

  4. Cyclic peptide-selenium nanoparticles as drug transporters.

    PubMed

    Nasrolahi Shirazi, Amir; Tiwari, Rakesh K; Oh, Donghoon; Sullivan, Brian; Kumar, Anil; Beni, Yousef A; Parang, Keykavous

    2014-10-01

    A cyclic peptide composed of five tryptophan, four arginine, and one cysteine [W5R4C] was synthesized. The peptide was evaluated for generating cyclic peptide-capped selenium nanoparticles (CP-SeNPs) in situ. A physical mixing of the cyclic peptide with SeO3(-2) solution in water generated [W5R4C]-SeNPs via the combination of reducing and capping properties of amino acids in the peptide structure. Transmission electron microscopy (TEM) images showed that [W5R4C]-SeNPs were in the size range of 110-150 nm. Flow cytometry data revealed that a fluorescence-labeled phosphopeptide (F'-PEpYLGLD, where F' = fluorescein) and an anticancer drug (F'-dasatinib) exhibited approximately 25- and 9-times higher cellular uptake in the presence of [W5R4C]-SeNPs than those of F'-PEpYLGLD and dasatinib alone in human leukemia (CCRF-CEM) cells after 2 h of incubation, respectively. Confocal microscopy also exhibited higher cellular delivery of F'-PEpYLGLD and F'-dasatinib in the presence of [W5R4C]-SeNPs compared to the parent fluorescence-labeled drug alone in human ovarian adenocarcinoma (SK-OV-3) cells after 2 h of incubation at 37 °C. The antiproliferative activities of several anticancer drugs doxorubicin, gemcitabine, clofarabine, etoposide, camptothecin, irinotecan, epirubicin, fludarabine, dasatinib, and paclitaxel were improved in the presence of [W5R4C]-SeNPs (50 μM) by 38%, 49%, 36%, 36%, 31%, 30%, 30%, 28%, 24%, and 17%, respectively, after 48 h incubation in SK-OV-3 cells. The results indicate that CP-SeNPs can be potentially used as nanosized delivery tools for negatively charged biomolecules and anticancer drugs. PMID:25184366

  5. Evaluation of a thiodipeptide, L-phenylalanyl-Ψ[CS-N]-L-alanine, as a novel probe for peptide transporter 1.

    PubMed

    Arakawa, Hiroshi; Saito, Sachi; Kanagawa, Masahiko; Kamioka, Hiroki; Yano, Kentaro; Morimoto, Kaori; Ogihara, Takuo

    2014-01-01

    L-Phenylalanyl-Ψ[CS-N]-l-alanine (Phe-Ψ-Ala), a thiourea dipeptide, was evaluated as a probe for peptide transporter 1 (PEPT1). Uptake of Phe-Ψ-Ala in PEPT1-overexpressing HeLa cells was significantly higher than that in vector-transfected HeLa cells and the Km value was 275 ± 32 µM. The uptake was pH-dependent, being highest at pH 6.0, and was significantly decreased in the presence of PEPT1 inhibitors [glycylsarcosine (Gly-Sar), cephalexin, valaciclovir, glycylglycine, and glycylproline]. In metabolism assay using rat intestinal mucosa, rat hepatic microsomes, and human hepatocytes, the amount of Phe-Ψ-Ala was unchanged, whereas phenylalanylalanine was extensively decomposed. The clearance, distribution volume, and half-life of intravenously administered Phe-Ψ-Ala in rats were 0.151 ± 0.008 L/h/kg, 0.235 ± 0.012 L/kg, and 1.14 ± 0.07 h, respectively. The maximum plasma concentration of orally administered Phe-Ψ-Ala (2.31 ± 0.60 µg/mL) in the presence of Gly-Sar was significantly decreased compared with that in the absence of glycylsarcosine (3.74 ± 0.44 µg/mL), suggesting that the intestinal absorption of Phe-Ψ-Ala is mediated by intestinal PEPT1. In conclusion, our results indicate that Phe-Ψ-Ala is a high-affinity, metabolically stable, non-radioactive probe for PEPT1, and it should prove useful in studies of PEPT1, e.g., for predicting drug-drug interactions mediated by PEPT1 in vitro and in vivo. PMID:25008848

  6. Cargo Delivery into the Brain by in vivo identified Transport Peptides

    PubMed Central

    Urich, Eduard; Schmucki, Roland; Ruderisch, Nadine; Kitas, Eric; Certa, Ulrich; Jacobsen, Helmut; Schweitzer, Christophe; Bergadano, Alessandra; Ebeling, Martin; Loetscher, Hansruedi; Freskgård, Per-Ola

    2015-01-01

    The blood-brain barrier and the blood-cerebrospinal fluid barrier prevent access of biotherapeutics to their targets in the central nervous system and therefore prohibit the effective treatment of neurological disorders. In an attempt to discover novel brain transport vectors in vivo, we injected a T7 phage peptide library and continuously collected blood and cerebrospinal fluid (CSF) using a cisterna magna cannulated conscious rat model. Specific phage clones were highly enriched in the CSF after four rounds of selection. Validation of individual peptide candidates showed CSF enrichments of greater than 1000-fold. The biological activity of peptide-mediated delivery to the brain was confirmed using a BACE1 peptide inhibitor linked to an identified novel transport peptide which led to a 40% reduction of Amyloid-β in CSF. These results indicate that the peptides identified by the in vivo phage selection approach could be useful transporters for systemically administrated large molecules into the brain with therapeutic benefits. PMID:26411801

  7. Intestinal ammonia transport in freshwater and seawater acclimated rainbow trout (Oncorhynchus mykiss): evidence for a Na+ coupled uptake mechanism.

    PubMed

    Rubino, Julian G; Zimmer, Alex M; Wood, Chris M

    2015-05-01

    In vitro gut sac experiments were performed on freshwater and 60% seawater acclimated trout (Oncorhynchus mykiss) under treatments designed to discern possible mechanisms of intestinal ammonia transport. Seawater acclimation increased ammonia flux rate into the serosal saline (Jsamm) in the anterior intestine, however it did not alter Jsamm in the mid- or posterior intestine suggesting similar mechanisms of ammonia handling in freshwater and seawater fish. Both fluid transport rate (FTR) and Jsamm were inhibited in response to basolateral ouabain treatment, suggesting a linkage of ammonia uptake to active transport, possibly coupled to fluid transport processes via solvent drag. Furthermore, decreases in FTR and Jsamm caused by low Na(+) treatment indicated a Na(+) linked transport mechanism. Mucosal bumetanide (10(-4) M) had no impact on FTR, yet decreased Jsamm in the anterior and mid-intestine, suggesting NH4(+) substitution for K(+) on an apical NKCC, and at least a partial uncoupling of ammonia transport from fluid transport. Additional treatments (amiloride, 5-(N-ethyl-N-isopropyl)amiloride (EIPA), phenamil, bafilomycin, 4',6-diamidino-2-phenylindole (DAPI), high sodium) intended to disrupt alternative routes of Na(+) uptake yielded no change in FTR or Jsamm, suggesting the absence of direct competition between Na(+) and ammonia for transport. Finally, [(14)C]methylamine permeability (PMA) measurements indicated the likely presence of an intestinal Rh-mediated ammonia transport system, as increasing NH4Cl (0, 1, 5 mmol l(-1)) concentrations reduced PMA, suggesting competition for transport through Rh proteins. Overall, the data presented in this paper provide some of the first insights into mechanisms of teleost intestinal ammonia transport. PMID:25545914

  8. Effect of polyphenols on the intestinal and placental transport of some bioactive compounds.

    PubMed

    Martel, Fátima; Monteiro, Rosário; Calhau, Conceição

    2010-06-01

    Polyphenols are a group of widely distributed phytochemicals present in most foods of vegetable origin. A growing number of biological effects have been attributed to these molecules in the past few years and only recently has their interference with the transport capacity of epithelial barriers received attention. This review will present data obtained concerning the effect of polyphenols upon the transport of some compounds (organic cations, glucose and the vitamins thiamin and folic acid) at the intestinal and placental barriers. Important conclusions can be drawn: (i) different classes of polyphenols affect transport of these bioactive compounds at the intestinal epithelia and the placenta; (ii) different compounds belonging to the same phenolic family often possess opposite effects upon transport of a given molecule; (iii) the acute and chronic/short-term and long-term exposures to polyphenols do not produce parallel results and, therefore, care should be taken when extrapolating results; (iv) the effect of polyphenolics in combination may be very different from the expected ones taking into account the effect of each of these compounds alone, and so care should be taken when speculating on the effect of a drink based on the effect of one component only; (v) care should be taken in drawing conclusions for alcoholic beverages from results obtained with ethanol alone. Although most of the data reviewed in the present paper refer to in vitro experiments with cell-culture systems, these studies raise a concern about possible changes in the bioavailability of substrates upon concomitant ingestion of polyphenols. PMID:20392307

  9. Mixing and Transport in the Small Intestine: A Lattice-Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Banco, Gino; Brasseur, James; Wang, Yanxing; Aliani, Amit; Webb, Andrew

    2007-11-01

    The two primary functions of the small intestine are absorption of nutrients into the blood stream and transport of material along the gut for eventual evacuation. The primary transport mechanism is peristalsis. The time scales for absorption, however, rely on mixing and transport of molecules between the bulk flow and epithelial surface. Two basic motions contribute to mixing: peristalsis and repetitive segmental contraction of short segments of the gut. In this study we evaluate the relative roles of peristalsis vs. segmental contraction on the degree of mixing and time scales of nutrient transport to the epithelium using a two-dimensional model of flow and mixing in the small intestine. The model uses the lattice-Boltzmann framework with second-order moving boundary conditions and passive scalar (Sc = 10). Segmental and peristaltic contractions were parameterized using magnetic resonance imaging data from rat models. The Reynolds numbers (1.9), segment lengths (33 mm), max radii (2.75 mm) and occlusion ratios (0.33) were matched for direct comparison. Mixing is quantified by the rate of dispersion of scalar from an initial concentration in the center of the segment. We find that radial mixing is more rapid with segmental than peristaltic motion, that radial dispersion is much more rapid than axial, and that axial is comparable between the motions.

  10. Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli.

    PubMed

    Wu, Shudan; Zhang, Fengrui; Huang, Zhimin; Liu, Hong; Xie, Chunyuan; Zhang, Jiang; Thacker, Philip A; Qiao, Shiyan

    2012-06-01

    This study was conducted to determine the effects of the antimicrobial peptide cecropin on performance and intestinal health in piglets. Newly weaned barrows were randomly assigned to one of three treatments (n=8), including a corn-soybean basal diet or similar diets supplemented with antibiotics (100 mg/kg kitasamycin plus 800 mg/kg colistin sulfate) or 400 mg/kg cecropin AD. On day 13, all piglets were orally challenged with 10(9)CFU/mL of Escherichia coli K88. On day 19, all piglets were euthanized and sampled. Before challenge, piglets fed antibiotics had greater weight gain, feed efficiency, nitrogen and energy retention than the control (P<0.05). E. coli challenge decreased weight gain, feed intake and feed efficiency for the control piglets (P<0.05) but not for the antibiotic or cecropin AD treated piglets. The incidence of diarrhea post-challenge in the antibiotic and cecropin AD treatments decreased compared with the control piglets. The total viable counts of cecal E. coli were lower while the Lactobacilli counts were higher in the antibiotic and cecropin AD treatments compared with the control (P<0.05). Cecropin AD treatment decreased total aerobes while increasing total anaerobes in the ileum (P<0.05). A higher villus height to crypt depth ratio in the jejunum and ileum as well as a deeper crypt depth in the jejunum and higher villus height in the ileum were observed in piglets fed antibiotics or cecropin AD compared with control piglets (P<0.05). Piglets fed the control diet had lower levels of secretory IgA in their jejunum and lower serum IgA, IgG, interleukin-1β and interleukin-6 compared with the other treatments (P<0.05). Overall, these data suggest that cecropin AD enhances pig performance through increasing immune status and nitrogen and energy retention as well as reducing intestinal pathogens in weaned piglets. PMID:22490448

  11. Dysfunction of Organic Anion Transporting Polypeptide 1a1 Alters Intestinal Bacteria and Bile Acid Metabolism in Mice

    PubMed Central

    Zhang, Youcai; Limaye, Pallavi B.; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in liver and is able to transport bile acids (BAs) in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA), a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT) and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1) have similar bile flow and BA concentrations in bile as WT mice; (2) have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3) have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4) have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5) have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1) markedly alters the intestinal environment in mice, namely the bacteria composition. PMID:22496825

  12. Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice.

    PubMed

    Zhang, Youcai; Limaye, Pallavi B; Lehman-McKeeman, Lois D; Klaassen, Curtis D

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in liver and is able to transport bile acids (BAs) in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA), a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT) and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1) have similar bile flow and BA concentrations in bile as WT mice; (2) have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3) have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4) have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5) have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1) markedly alters the intestinal environment in mice, namely the bacteria composition. PMID:22496825

  13. Release of angiotensin converting enzyme-inhibitor peptides during in vitro gastrointestinal digestion of Parmigiano Reggiano PDO cheese and their absorption through an in vitro model of intestinal epithelium.

    PubMed

    Basiricò, L; Catalani, E; Morera, P; Cattaneo, S; Stuknytė, M; Bernabucci, U; De Noni, I; Nardone, A

    2015-11-01

    The occurrence of 8 bovine casein-derived peptides (VPP, IPP, RYLGY, RYLG, AYFYPEL, AYFYPE, LHLPLP, and HLPLP) reported as angiotensin converting enzyme-inhibitors (ACE-I) was investigated in the 3-kDa ultrafiltered water-soluble extract (WSE) of Parmigiano Reggiano (PR) cheese samples by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry via an electrospray ionization source. Only VPP, IPP, LHLPLP, and HLPLP were revealed in the WSE, and their total amount was in the range of 8.46 to 21.55 mg/kg of cheese. Following in vitro static gastrointestinal digestion, the same ACE-I peptides along with the newly formed AYFYPEL and AYFYPE were found in the 3 kDa WSE of PR digestates. Digestates presented high amounts (1,880-3,053 mg/kg) of LHLPLP, whereas the remaining peptides accounted for 69.24 to 82.82 mg/kg. The half-maximal inhibitory concentration (IC50) values decreased from 7.92 ± 2.08 in undigested cheese to 3.20 ± 1.69 after in vitro gastrointestinal digestion. The 3-kDa WSE of digested cheeses were used to study the transport of the 8 ACE-I peptides across the monolayers of the Caco-2 cell culture grown on a semipermeable membrane of the transwells. After 1h of incubation, 649.20 ± 148.85 mg/kg of LHLPLP remained in the apical compartment, whereas VPP, IPP, AYFYPEL, AYFYPE, and HLPLP accounted in total for less than 36.78 mg/kg. On average, 0.6% of LHLPLP initially present in the digestates added to the apical compartment were transported intact to the basolateral chamber after the same incubation time. Higher transport rate (2.9%) was ascertained for the peptide HLPLP. No other intact ACE-I peptides were revealed in the basolateral compartment. For the first time, these results demonstrated that the ACE-I peptides HLPLP and LHLPLP present in the in vitro digestates of PR cheese are partially absorbed through an in vitro model of human intestinal epithelium. PMID:26364103

  14. The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60) on the intestinal barrier function and gut peptides in breast cancer patients: an observational study

    PubMed Central

    2013-01-01

    Background Several GI peptides linked to intestinal barrier function could be involved in the modification of intestinal permeability and the onset of diarrhea during adjuvant chemotherapy. The aim of the study was to evaluate the circulating levels of zonulin, glucagon-like peptide-2 (GLP-2), epidermal growth factor (EGF) and ghrelin and their relationship with intestinal permeability and chemotherapy induced diarrhea (CTD). Methods Sixty breast cancer patients undergoing an FEC60 regimen were enrolled, 37 patients completed the study. CTD(+) patients were discriminated by appropriate questionnaire and criteria. During chemotherapy, intestinal permeability was assessed by lactulose/mannitol urinary test on day 0 and day 14. Zonulin, GLP-2, EGF and ghrelin circulating levels were evaluated by ELISA tests at five time-points (days 0, 3, 10, 14, and 21). Results During FEC60 administration, the lactulose/mannitol ratio was significantly higher on day 14 than at baseline. Zonulin levels were not affected by chemotherapy, whereas GLP-2 and EGF levels decreased significantly. GLP-2 levels on day 14 were significantly lower than those on day 0 and day 3, while EGF values were significantly lower on day 10 than at the baseline. In contrast, the total concentrations of ghrelin increased significantly at day 3 compared to days 0 and 21, respectively. Ten patients (27%) suffered from diarrhea. On day 14 of chemotherapy, a significant increase of the La/Ma ratio occurred in CTD(+) patients compared to CTD(−) patients. With regards to circulating gut peptides, the AUCg of GLP-2 and ghrelin were significantly lower and higher in CTD(+) patients than CTD(−) ones, respectively. Finally in CTD(+) patients a significant and inverse correlation between GLP-2 and La/Ma ratio was found on day 14. Conclusions Breast cancer patients undergoing FEC60 showed alterations in the intestinal permeability, which was associated with modifications in the levels of GLP-2, ghrelin and EGF. In

  15. Diet effects on glucose absorption in the small intestine of neonatal calves: importance of intestinal mucosal growth, lactase activity, and glucose transporters.

    PubMed

    Steinhoff-Wagner, Julia; Zitnan, Rudolf; Schönhusen, Ulrike; Pfannkuche, Helga; Hudakova, Monika; Metges, Cornelia C; Hammon, Harald M

    2014-10-01

    Colostrum (C) feeding in neonatal calves improves glucose status and stimulates intestinal absorptive capacity, leading to greater glucose absorption when compared with milk-based formula feeding. In this study, diet effects on gut growth, lactase activity, and glucose transporters were investigated in several gut segments of the small intestine. Fourteen male German Holstein calves received either C of milkings 1, 3, and 5 (d 1, 2, and 3 in milk) or respective formulas (F) twice daily from d 1 to d 3 after birth. Nutrient content, and especially lactose content, of C and respective F were the same. On d 4, calves were fed C of milking 5 or respective F and calves were slaughtered 2h after feeding. Tissue samples from duodenum and proximal, mid-, and distal jejunum were taken to measure villus size and crypt depth, mucosa and brush border membrane vesicles (BBMV) were taken to determine protein content, and mRNA expression and activity of lactase and mRNA expression of sodium-dependent glucose co-transporter-1 (SGLT1) and facilitative glucose transporter (GLUT2) were determined from mucosal tissue. Additionally, protein expression of SGLT1 in BBMV and GLUT2 in crude mucosal membranes and BBMV were determined, as well as immunochemically localized GLUT2 in the intestinal mucosa. Villus circumference, area, and height were greater, whereas crypt depth was smaller in C than in F. Lactase activity tended to be greater in C than in F. Protein expression of SGLT1 was greater in F than in C. Parameters of villus size, lactase activity, SGLT1 protein expression, as well as apical and basolateral GLUT2 localization in the enterocytes differed among gut segments. In conclusion, C feeding, when compared with F feeding, enhances glucose absorption in neonatal calves primarily by stimulating mucosal growth and increasing absorptive capacity in the small intestine, but not by stimulating abundance of intestinal glucose transporters. PMID:25108868

  16. Adaptive remodelling of intestinal epithelium assessed using stereology: correlation of single cell and whole organ data with nutrient transport.

    PubMed

    Mayhew, T M

    1996-07-01

    Adaptation in the intestinal epithelium depends on cell number and the properties of individual cells but these responses operate within different time frames. Changes in number take days to accomplish but those in behaviour may occur within hours. This article reviews the value of stereology for characterising structural features of the average enterocyte and the entire organ (mammalian small intestine or avian lower intestine) during adaptation. Stereological data are correlated with the physiology and molecular biology of glucose and Na+ transport. In small intestine, account is taken of vertical (crypt-villus) and longitudinal (craniocaudal) gradients and of adaptations to chemically-induced diabetes and diet. Results show that longer-term adaptation depends critically on epithelial renewal. In diabetic small intestine, changes in glucose transport are accompanied by changes in the number, but not morphology, of villous enterocytes. In avian, lower intestine, increased Na+ transport requires changes in cell number and the extent of their apical, but not basolateral membrane surfaces. These changes allow opportunities to incorporate more (or more active) transport sites in apical and basolateral membrane domains of individual cells and of whole organs. PMID:8839763

  17. Transport and uptake effects of marine complex lipid liposomes in small intestinal epithelial cell models.

    PubMed

    Du, Lei; Yang, Yu-Hong; Xu, Jie; Wang, Yu-Ming; Xue, Chang-Hu; Kurihara, Hideyuki; Takahashi, Koretaro

    2016-04-20

    Nowadays, marine complex lipids, including starfish phospholipids (SFP) and cerebrosides (SFC) separated from Asterias amurensis as well as sea cucumber phospholipids (SCP) and cerebrosides (SCC) isolated from Cucumaria frondosa, have received much attention because of their potent biological activities. However, little information is known on the transport and uptake of these lipids in liposome forms in small intestinal cells. Therefore, this study was undertaken to investigate the effects of these complex lipid liposomes on transport and uptake in Caco-2 and M cell monolayer models. The results revealed that SFP and SCP contained 42% and 47.9% eicosapentaenoic acid (EPA), respectively. The average particle sizes of liposomes prepared in this study were from 169 to 189 nm. We found that the transport of the liposomes across the M cell monolayer model was much higher than the Caco-2 cell monolayer model. The liposomes consisting of SFP or SCP showed significantly higher transport and uptake than soy phospholipid (soy-PL) liposomes in both Caco-2 and M cell monolayer models. Our results also exhibited that treatment with 1 mM liposomes composed of SFP or SCP for 3 h tended to increase the EPA content in phospholipid fractions of both differentiated Caco-2 and M cells. Moreover, it was also found that the hybrid liposomes consisting of SFP/SFC/cholesterol (Chol) revealed higher transport and uptake across the M cell monolayer in comparison with other liposomes. Furthermore, treatment with SFP/SFC/Chol liposomes could notably decrease the trans-epithelial electrical resistance (TEER) values of Caco-2 and M cell monolayers. The present data also showed that the cell viability of differentiated Caco-2 and M cells was not affected after the treatment with marine complex lipids or soy-PL liposomes. Based on the data in this study, it was suggested that marine complex lipid liposomes exhibit prominent transport and uptake in small intestinal epithelial cell models. PMID

  18. Proline transport across the intestinal microvillus membrane may be regulated by membrane physical properties.

    PubMed

    Sadowski, D C; Gibbs, D J; Meddings, J B

    1992-03-23

    There is now abundant evidence that integral membrane protein function may be modulated by the physical properties of membrane lipids. The intestinal brush border membrane represents a membrane system highly specialized for nutrient absorption and, thus, provides an opportunity to study the interaction between integral membrane transport proteins and their lipid environment. We have previously demonstrated that alterations in this environment may modulate the function of the sodium-dependent glucose transporter in terms of its affinity for glucose. In this communication we report that membrane lipid-protein interactions are distinctly different for the proline transport proteins. Maximal transport rates for L-proline by either the neutral brush border or imino transport systems are reduced 10-fold when the surrounding membrane environment is made more fluid over the physiological range that exists along the crypt-villus axis. Furthermore, in microvillus membrane vesicles prepared from enterocytes isolated from along the crypt-villus axis a similar gradient exists in the functional activity of these transport systems. This would imply that either the functional activity of these transporters are regulated by membrane physical properties or that the synthesis and insertion of these proteins is coordinated in concert with membrane physical properties as the enterocyte migrates up the crypt-villus axis. PMID:1567897

  19. Impact of a high-cholesterol diet on expression levels of Niemann-Pick C1-like 1 and intestinal transporters in rats and mice.

    PubMed

    Kawase, Atsushi; Araki, Yasuha; Ueda, Yukiko; Nakazaki, Sayaka; Iwaki, Masahiro

    2016-08-01

    Niemann-Pick C1-like 1 (NPC1L1), ATP-binding cassette (ABC)G5, and ABCG8 are all involved in intestinal cholesterol absorption. It is unclear whether a high-cholesterol (HC) diet affects the expression of these transporters in rats and mice as well as humans. We examined the effects of an HC diet on their expression in small intestine and the differences between rats and mice in the responsive of this expression to an HC diet. In addition to these transporters, alterations in six representative drug and nutrient transporters (multidrug resistance-associated protein, breast cancer resistance protein, peptide transporter, sodium-glucose linked transporter, glucose transporter, and L-type amino acid transporter) and transcriptional factors such as hepatocyte nuclear factor (HNF)4α, sterol regulatory element-binding protein (SREBP)2, and liver X receptor (LXR)α were determined. In rats and mice fed an HC diet for 7 days, the mRNA and protein levels of NPC1L1 in the small intestine were determined by real-time reverse transcription polymerase chain reaction and western blotting, respectively. The mRNA levels of ABCG5 and ABCG8, six representative transporters, and transcriptional factors such as HNF4α, SREBP2, and LXR were examined. Significant decreases in the expression levels of NPC1L1 were observed in mice, but not rats, fed the HC diet. The mRNA levels of ABCG5 and ABCG8 were significantly increased in HC rats but not in mice. Only minor changes in the mRNA levels of the other transporters were seen in HC rats and mice. Decreased mRNA levels of HNF4α and SREBP2 in mice could be involved in the reduction in NPC1L1 expression observed upon the introduction of an HC diet. These results indicate that the effects of an HC diet on the expression levels of NPC1L1, ABCG5, and ABCG8 differ between mice and rats. PMID:25716431

  20. Active Transport of Phosphorylated Carbohydrates Promotes Intestinal Colonization and Transmission of a Bacterial Pathogen.

    PubMed

    Sit, Brandon; Crowley, Shauna M; Bhullar, Kirandeep; Lai, Christine Chieh-Lin; Tang, Calvin; Hooda, Yogesh; Calmettes, Charles; Khambati, Husain; Ma, Caixia; Brumell, John H; Schryvers, Anthony B; Vallance, Bruce A; Moraes, Trevor F

    2015-08-01

    Efficient acquisition of extracellular nutrients is essential for bacterial pathogenesis, however the identities and mechanisms for transport of many of these substrates remain unclear. Here, we investigate the predicted iron-binding transporter AfuABC and its role in bacterial pathogenesis in vivo. By crystallographic, biophysical and in vivo approaches, we show that AfuABC is in fact a cyclic hexose/heptose-phosphate transporter with high selectivity and specificity for a set of ubiquitous metabolites (glucose-6-phosphate, fructose-6-phosphate and sedoheptulose-7-phosphate). AfuABC is conserved across a wide range of bacterial genera, including the enteric pathogens EHEC O157:H7 and its murine-specific relative Citrobacter rodentium, where it lies adjacent to genes implicated in sugar sensing and acquisition. C. rodentium ΔafuA was significantly impaired in an in vivo murine competitive assay as well as its ability to transmit infection from an afflicted to a naïve murine host. Sugar-phosphates were present in normal and infected intestinal mucus and stool samples, indicating that these metabolites are available within the intestinal lumen for enteric bacteria to import during infection. Our study shows that AfuABC-dependent uptake of sugar-phosphates plays a critical role during enteric bacterial infection and uncovers previously unrecognized roles for these metabolites as important contributors to successful pathogenesis. PMID:26295949

  1. Calcium transport from the intestine and into bone in a rat model simulating weightlessness

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Globus, R. K.; Morey, E. R.

    1982-01-01

    The objective of this study was to determine whether a defect in transport of calcium in the duodenum was related to decreased bone formation in the suspended rat. Rats were suspended by the tail at a 40 deg angle for up to 15 days. Ca-45 was injected into the ligated duodenum in situ 15 minutes prior to sacrific. Blood, tibia, vertebra and humerus were obtained for total calcium and Ca-45 analyses. Intestinal calcium transport did not appear to be significantly altered by suspension. However, by 5 days of suspension a significant decrease in accumulation of Ca-45 into tibia and vertebra was observed. A trend of decreasing bone mineral and mass was established in tibia and vertebra by the fifth day of suspension. The humerus failed to demonstrate a significant weight decrease or change in Ca-45 accumulation after 15 days of suspension. Results from this simulated weightlessness model suggest that transport of calcium from intestine into bone is decreased within 5 days of suspension. This deficiency appears to be associated with a progressive decrease in total mass of non-weightbearing bones.

  2. Active Transport of Phosphorylated Carbohydrates Promotes Intestinal Colonization and Transmission of a Bacterial Pathogen

    PubMed Central

    Sit, Brandon; Crowley, Shauna M.; Bhullar, Kirandeep; Lai, Christine Chieh-Lin; Tang, Calvin; Hooda, Yogesh; Calmettes, Charles; Khambati, Husain; Ma, Caixia; Brumell, John H.; Schryvers, Anthony B.; Vallance, Bruce A.; Moraes, Trevor F.

    2015-01-01

    Efficient acquisition of extracellular nutrients is essential for bacterial pathogenesis, however the identities and mechanisms for transport of many of these substrates remain unclear. Here, we investigate the predicted iron-binding transporter AfuABC and its role in bacterial pathogenesis in vivo. By crystallographic, biophysical and in vivo approaches, we show that AfuABC is in fact a cyclic hexose/heptose-phosphate transporter with high selectivity and specificity for a set of ubiquitous metabolites (glucose-6-phosphate, fructose-6-phosphate and sedoheptulose-7-phosphate). AfuABC is conserved across a wide range of bacterial genera, including the enteric pathogens EHEC O157:H7 and its murine-specific relative Citrobacter rodentium, where it lies adjacent to genes implicated in sugar sensing and acquisition. C. rodentium ΔafuA was significantly impaired in an in vivo murine competitive assay as well as its ability to transmit infection from an afflicted to a naïve murine host. Sugar-phosphates were present in normal and infected intestinal mucus and stool samples, indicating that these metabolites are available within the intestinal lumen for enteric bacteria to import during infection. Our study shows that AfuABC-dependent uptake of sugar-phosphates plays a critical role during enteric bacterial infection and uncovers previously unrecognized roles for these metabolites as important contributors to successful pathogenesis. PMID:26295949

  3. Requirement of oestrogens for the sensitivity of prolactin cells to vasoactive intestinal peptide in rats and man.

    PubMed

    Pizzi, M; Rubessa, S; Simonazzi, E; Zanagnolo, V; Falsetti, L; Memo, M; Spano, P F

    1992-02-01

    Vasoactive intestinal peptide (VIP) is a prolactin-releasing hormone which is involved in the multifactorial modulation of prolactin secretion in mammals. Intravenous injection of VIP (1 microgram/kg) to fertile women increased plasma prolactin levels and heart rate and reduced diastolic pressure. The same treatment to menopausal women caused similar cardiovascular effects but did not modify plasma prolactin levels. In contrast, TRH (200 micrograms, i.v.) induced a significant increase in plasma prolactin levels in both fertile and menopausal women. The relevance of oestrogens in affecting VIP-stimulated prolactin secretion was evaluated in vitro by measuring prolactin release from pituitary cells of control and ovariectomized rats. The sensitivity of rat mammotrophs to VIP, but not to TRH, was completely suppressed 3 or 4 weeks after ovariectomy. Furthermore, implantation of rats with a silastic capsule containing oestradiol-17 beta during ovariectomy, preserved the cell responsiveness to VIP. The prolactin-releasing property of VIP was also restored when pituitary cells from ovariectomized rats were cultured for 3 days in the presence of 10 nmol oestradiol-17 beta/l before being used for prolactin release experiments. The present study shows that the ability of prolactin-secreting cells to respond to the stimulatory action of VIP requires high levels of circulating oestrogens, both in man and rats. PMID:1541929

  4. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways

    PubMed Central

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  5. Distribution of vasotocin- and vasoactive intestinal peptide-like immunoreactivity in the brain of blue tit (Cyanistes coeruleus)

    PubMed Central

    Montagnese, Catherine M.; Székely, Tamás; Csillag, András; Zachar, Gergely

    2015-01-01

    Blue tits (Cyanistes coeruleus) are songbirds, used as model animals in numerous studies covering a wide field of research. Nevertheless, the distribution of neuropeptides in the brain of this avian species remains largely unknown. Here we present some of the first results on distribution of Vasotocine (AVT) and Vasoactive intestinal peptide (VIP) in the brain of males and females of this songbird species, using immunohistochemistry mapping. The bulk of AVT-like cells are found in the hypothalamic supraoptic, paraventricular and suprachiasmatic nuclei, bed nucleus of the stria terminalis, and along the lateral forebrain bundle. Most AVT-like fibers course toward the median eminence, some reaching the arcopallium, and lateral septum. Further terminal fields occur in the dorsal thalamus, ventral tegmental area and pretectal area. Most VIP-like cells are in the lateral septal organ and arcuate nucleus. VIP-like fibers are distributed extensively in the hypothalamus, preoptic area, lateral septum, diagonal band of Broca. They are also found in the bed nucleus of the stria terminalis, amygdaloid nucleus of taenia, robust nucleus of the arcopallium, caudo-ventral hyperpallium, nucleus accumbens and the brainstem. Taken together, these results suggest that both AVT and VIP immunoreactive structures show similar distribution to other avian species, emphasizing evolutionary conservatism in the history of vertebrates. The current study may enable future investigation into the localization of AVT and VIP, in relation to behavioral and ecological traits in the brain of tit species. PMID:26236200

  6. Vasoactive intestinal peptide stimulates melanogenesis in B16F10 mouse melanoma cells via CREB/MITF/tyrosinase signaling.

    PubMed

    Yuan, Xing-Hua; Yao, Cheng; Oh, Jang-Hee; Park, Chi-Hyun; Tian, Yu-Dan; Han, Mira; Kim, Ji Eun; Chung, Jin Ho; Jin, Zhe-Hu; Lee, Dong Hun

    2016-08-26

    Vasoactive intestinal peptide (VIP), one of the major skin neuropeptides, has been suggested to have active roles in the pathogenesis of inflammatory skin disorders such as atopic dermatitis and psoriasis, which can commonly cause post-inflammatory hyperpigmentation. However, the effect of VIP on melanogenesis remains unknown. In this study, we showed that the melanin contents, tyrosinase activity, and gene expression of tyrosinase and microphthalmia-associated transcription factor (MITF) were significantly increased by treatment with VIP in B16F10 mouse melanoma cells and the stimulatory melanogenic effect was further examined in human epidermal melanocytes (HEMns). In addition, phosphorylated levels of CRE-binding protein (CREB) and protein kinase A (PKA) were markedly increased after VIP treatment, but not p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), or Akt, indicating the possible PKA-CREB signaling pathway involved in VIP-induced melanogenesis. This result was further verified by the fact that VIP induced increased melanin synthesis, and protein levels of phosphorylated CREB, MITF, tyrosinase were significantly attenuated by H89 (a specific PKA inhibitor). These data suggest that VIP-induced upregulation of tyrosinase through the CREB-MITF signaling pathway plays an important role in finding new treatment strategy for skin inflammatory diseases related pigmentation disorders. PMID:27343558

  7. The effect of ice-slushy consumption on plasma vasoactive intestinal peptide during prolonged exercise in the heat.

    PubMed

    Burdon, Catriona A; Ruell, Patricia; Johnson, Nathan; Chapman, Phillip; O'Brien, Sinead; O'Connor, Helen T

    2015-01-01

    The aim of this study was to determine the effect of exercise in the heat on thermoregulatory responses and plasma vasoactive intestinal peptide concentration (VIP) and whether it is modulated by ice-slushy consumption. Ten male participants cycled at 62% V̇O2max for 90min in 32°C and 40% relative humidity. A thermoneutral (37°C) or ice-slushy (-1°C) sports drink was given at 3.5mlkg(-1) body mass every 15min during exercise. VIP and rectal temperature increased during exercise (mean±standard deviation: 4.6±4.4pmolL(-1), P=0.005; and 1.3±0.4°C, P<0.001 respectively) and were moderately associated (r=0.35, P=0.008). While rectal temperature and VIP were not different between trials, ice-slushy significantly reduced heat storage (P=0.010) and skin temperature (time×trial interaction P=0.038). It appears that VIP does not provide the signal linking cold beverage ingestion and lower skin temperature in the heat. PMID:25526655

  8. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways.

    PubMed

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  9. Modulation of cholinergic neural bronchoconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro.

    PubMed Central

    Ward, J K; Belvisi, M G; Fox, A J; Miura, M; Tadjkarimi, S; Yacoub, M H; Barnes, P J

    1993-01-01

    Human airway smooth muscle possesses an inhibitory nonadrenergic noncholinergic neural bronchodilator response mediated by nitric oxide (NO). In guinea pig trachea both endogenous NO and vasoactive intestinal peptide (VIP) modulate cholinergic neural contractile responses. To identify whether endogenous NO or VIP can modulate cholinergic contractile responses in human airways in vitro, we studied the effects of specific NO synthase inhibitors and the peptidase alpha-chymotrypsin on contractile responses evoked by electrical field stimulation (EFS) at three airway levels. Endogenous NO, but not VIP, was shown to inhibit cholinergic contractile responses at all airway levels but this inhibition was predominantly in trachea and main bronchus and less marked in segmental and subsegmental bronchi. To elucidate the mechanism of this modulation we then studied the effects of endogenous NO on acetylcholine (ACh) release evoked by EFS from tracheal smooth muscle strips. We confirmed that release was neural in origin, frequency dependent, and that endogenous NO did not affect ACh release. These findings show that endogenous NO, but not VIP, evoked by EFS can inhibit cholinergic neural responses via functional antagonism of ACh at the airway smooth muscle and that the contribution of this modulation is less marked in lower airways. PMID:8349813

  10. Enhanced solid-state electron transport via tryptophan containing peptide networks.

    PubMed

    Amdursky, Nadav

    2013-08-28

    The electrical conductivity via peptide networks was measured using conductive probe atomic force microscopy, where the tryptophan-containing peptide network (composed of Phe-Trp dipeptides) exhibited a superior (5 fold) conductivity in comparison to an all phenylalanine network (composed of Phe-Phe dipeptides). These results are in line with previous spectroscopic measurements exploring intramolecular electron transfer in proteins. Bias-scaling factors (instead of the more commonly used transition voltage spectroscopy method) were calculated for the two peptide networks. These calculations showed substantial differences between the two peptide networks, suggesting different electron transport characteristics. While the factor for the tryptophan-containing network is similar to conjugated molecules with a low electron-tunneling barrier, the one for the all phenylalanine network can be ascribed as an 'intermediate' factor between conjugated and saturated molecules. PMID:23832315